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DEDICATION

It is easier to avoid the snares of love than to escape once
you are in that net whose cords and knots are strong;

but even so, enmeshed, entangled, you can still get out unless, poor fool,
you stand in your own way.

Lucretius
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Abstract

The control of complex networks is an emerging field yet it has already garnered

interest from across the scientific disciplines, from robotics to sociology. It has quickly

been noticed that many of the classical techniques from controls engineering, while

applicable, are not as illuminating as they were for single systems of relatively small

dimension. Instead, properties borrowed from graph theory provide equivalent but

more practical conditions to guarantee controllability, reachability, observability, and

other typical properties of interest to the controls engineer when dealing with large

networked systems. This manuscript covers three topics investigated in detail by the

author: (i) the role of the choice of target nodes (system outputs) on the control

effort, (ii) creating and analyzing graphs with symmetry, and (iii) the relationship

between graph structural properties and control effort.
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Chapter 1

Introduction

The study of the control of complex networks is an emerging field that combines the

important results from graph theory, control theory, optimal control, optimization,

and operations research. The integration of these fields is imperative in providing

meaningful answers to the important questions such as controllability, efficiency, re-

source allocation, and many others. Results have been applied to many fields such

as in synchronization in power grids, reprogramming cell populations, and flocking in

networks of multi-agent systems.

Some of the major results developed in the field concern (i) the number of inde-

pendent control inputs required to guarantee controllability, (ii) the control effort, or

energy, required to perform a particular control action, and (iii) the most efficient

allocation of resources, or control inputs, in order to perform a desired control action.

Each of these questions does not have a simple answer, and many assumptions must

be made about the underlying network. In fact, due to this important dependence on

properties of the network which are sometimes not made clear, contradictory and/or

misleading results have lead to unfortunate widespread confusion. In the following

chapters we attempt to qualify many of the existing results and create a taxonomy of

network control as well as to introduce new concepts which counter some of the more

pessimistic existing results.

This dissertation covers the following publications, pre-prints, presentations, and

1



CHAPTER 1. INTRODUCTION

ongoing projects:

1. Isaac Klickstein, Afroza Shirin, and Francesco Sorrentino. “Energy scaling of

targeted optimal control of complex networks”. In: Nature Communications 8

(Apr. 2017), p. 15145 [1]

2. Afroza Shirin, Isaac Klickstein, and Francesco Sorrentino. “Optimal control

of complex networks: Balancing accuracy and energy of the control action”.

In: Chaos: An Interdisciplinary Journal of Nonlinear Science 27.4 (Apr. 2017),

p. 041103 [2]

3. Isaac Klickstein, Afroza Shirin, and Francesco Sorrentino. “Locally Optimal

Control of Complex Networks”. In: Physical Review Letters 119.26 (Dec. 2017),

p. 268301 [3]

4. Isaac Klickstein et al. “Energy Scaling with Control Distance in Complex Net-

works”. In: 2018 IEEE International Symposium on Circuits and Systems (IS-

CAS). IEEE, May 2018, pp. 1–5 [4]

5. Isaac Samuel Klickstein and Francesco Sorrentino. “Control Distance and En-

ergy Scaling of Complex Networks”. In: IEEE Transactions on Network Science

and Engineering (2018) [5]

6. Isaac Klickstein and Francesco Sorrentino. “Control Energy of Lattice Graphs”.

In: 2018 IEEE Conference on Decision and Control (CDC). IEEE, Dec. 2018,

pp. 6132–6138 [6]

7. Ishan Kafle et al. “Optimal control of networks in the presence of attackers and

defenders”. In: Chaos 28.5 (2018) [7]

8. Isaac Samuel Klickstein and Francesco Sorrentino. “Generating Graphs with

Symmetry”. In: IEEE Transactions on Network Science and Engineering

(2018) [8]

2
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9. Isaac Klickstein and Francesco Sorrentino. “Generating symmetric graphs”. In:

Chaos: An Interdisciplinary Journal of Nonlinear Science 28.12 (Dec. 2018),

p. 121102 [9]

10. Isaac Klickstein “Generating Graphs with Symmetry” (Part of “Effects of Sym-

metries and Partitions on Dynamics in Networks”). Presented at SIAM Con-

ference on Applications of Dynamical Systems (DS19).

11. Afroza Shirin et al. “Prediction of Optimal Drug Schedules for Controlling Au-

tophagy”. In: Scientific Reports 9.1 (Dec. 2019), p. 1428 [10]

12. Afroza Shirin et al. “Optimal regulation of blood glucose level in Type I diabetes

using insulin and glucagon”. In: PLOS ONE 14.3 (Mar. 2019). Ed. by Abhyudai

Singh, e0213665 [11]

13. Isaac Klickstein, Louis Pecora, and Francesco Sorrentino. “Symmetry induced

group consensus”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science

29.7 (July 2019), p. 073101 [12]

14. Afroza Shirin, Isaac S. Klickstein, and Francesco Sorrentino. “Stability analy-

sis of reservoir computers dynamics via Lyapunov functions”. In: Chaos: An

Interdisciplinary Journal of Nonlinear Science 29.10 (Oct. 2019), p. 103147 [13]

15. Isaac Klickstein and Francesco Sorrentino. “The controllability Gramian of

lattice graphs”. In: Automatica 114 (Apr. 2020), p. 108833 [14]

16. Fabio Della Rossa et al. “Symmetries and Cluster Synchronization in Multilayer

Networks”. In: Nature Communications ACCEPTED (2020) [15]

17. Current Project: Isaac Klickstein and Francesco Sorrentino. “Controlling Net-

work Ensembles” . arxiv:

18. Current Project: Isaac Klickstein and Francesco Sorrentino. “Structure Based

Actuator Placement in Complex Networks”. arXiv:

3



CHAPTER 1. INTRODUCTION

19. Current Project: Isaac Klickstein, David Phillips, Lou Pecora, and Francesco

Sorrentino. “Approximate Equitable Partitions.”

This manuscript is split into four major chapters with conclusions made in the last

chapter.

Chapter 2 presents the notation, definitions, and theorems which are used through-

out the rest of the dissertation before turning to the main topic of controllability as it

pertains to networks. The main goal of chapter 2 is to provide a taxonomy of network

control to alleviate some of the confusion that persists in the field. The classifica-

tion scheme developed handles the myriad of results for different types of networks

and different controllers. Optimal control is also briefly described and, in particular,

Pontryagin’s minimum principle. Pontryagin’s minimum principle is used to derive

the solution of the minimum energy control problem for linear systems which forms

the basis of the results throughout this dissertation. Finally, numerical methods for

optimal control are presented and the results in applications to regulating autophagy

[10] and regulating blood glucose in diabetics [11] are discussed.

Chapter 3 describes target controllability in depth. Results concerning the scaling

of control energy [1], the control energy trade-off with accuracy [2], and most recently,

the control energy of network ensembles are presented in turn. Results on the control-

lability Gramian are used to define a geometry based controller for nonlinear systems

[3] and results on target controllability are used to develop counter measures in the

precense of attackers [7].

Chapter 4 covers our results concerning symmetries in graphs. Symmetries have

been shown to make more difficult the control of complex networks so understand-

ing how they may emerge in networks is important. In particular, our method to

generate graphs with symmetries [8, 9] is described in detail. An extension to multi-

layer networks is described [15] as well. On the other hand, if the control goal is

synchronization, symmetries actually aid in this goal, and so creating networks with

symmetries is beneficial. The role symmetry plays in consensus problems [12] is also

presented, in particular, how one can determine if consensus occurs regardless of the

4



CHAPTER 1. INTRODUCTION

stability of the dynamical system. Finally, current work concerning approximate eq-

uitable partitions that incorporate edge weights is discussed.

Chapter 5 discusses our numerical and analytical results concerning the relation-

ship between control energy and graph properties. Initially, we investigate our ability

to make predictions about control energy using simple graph models numerically [4].

Analytic results are then discussed [5, 6] and the control energy of generic lattice

graphs is presented using a discrete time Fourier transform to solve for the controlla-

bility Gramian in terms of its independent elements. Finally, current work uses the

above analytic results to derive a heuristic for the driver node selection problem, a

type of resource allocation problem, which has been shown to be NP-hard.
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Chapter 2

Background

This chapter presents the preliminary definitions, theorems, and notation needed for

the remainder of this manuscript. Previous work on controlling complex networks is

discussed as well to place the research contained in the following chapters in context

within the larger field of network control. Special care is taken to classify each result

in terms of the type of graph being analyzed and the type of control applied. Mis-

understanding of the proper context of some results has lead to confusion which this

chapter attempts to alleviate.

2.1 General Notation

Unless otherwise specified, normal font lower case letters, a, b, θ, ω, are scalars, lower

case bold face letters, a, b,θ,ω, are vectors, and upper case letters, A,B,Θ,Ω, are

matrices. The set of real numbers is denoted R, the set of complex numbers is denoted

C, and the set of integers is denoted Z. The space of real (complex) vectors of length

n is denoted Rn (Cn) and matrices of dimensions n×m is denoted Rn×m (Cn×m). The

identity matrix of dimension n is denoted In and the matrix of all zeros of dimension

m × n is Om,n. The vector of all ones of length n is 1n and of all zeros 0n. Sets are

denoted by calligraphic font such as C or S.

6
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2.2 Graph Theory and Networks

A graph consists of a set, V , and a binary relation on that set, E : V × V 7→ {0, 1},

denoted G = (V , E). The set V consists of n = |V| vertices and the set of edges

can alternatively be thought of as a subset of all pairs of nodes E ⊆ V × V . An

edge (vj, vk) ∈ E implies that node vk receives information from node vj, so it may

be read as ’from node vj to node vk.’ The nature of this connection varies by the

underlying system which the network is meant to represent. For example, in a social

media network edges represent ‘following’ or ‘friendship’ so that user vk can see what

user vj posts. For a power grid, edges represent whether the phase of a bus vk is

directly affected by the phase of vj according to the swing equations. In a foodweb,

an edge represents whether the population of specics vk is affected by the population

of vj, whether through predation or competition. The following definitions are used

to classify types of graphs.

Definition 2.2.1 (Directedness). A graph G = (V , E) is said to be undirected if,

(vj, vk) ∈ E ⇔ (vk, vj) ∈ E

If a graph is undirected, often one counts each undirected edge once, rather than

counting (vj, vk) and (vk, vj) separately. If a graph is not undirected then it is directed.

A graph is assumed to be directed unless otherwise stated explicitly. An undirected

graph can be treated as a directed graph by duplicating each edge and assigning

opposite directions to the copies. If G is directed, one can create an induced undirected

graph by augmenting the set of edges with (vk, vj) for each (vj, vk) ∈ E .

Definition 2.2.2 (Bipartite Graphs). A graph G = (V , E) is bipartite if the set of

nodes can be bisected into two parts, V = V1 ∪ V2, V1 ∩ V2 = ∅, such that every edge

(vj, vk) ∈ E has vj ∈ V1 and vk ∈ V2 (or vice versa).

7
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Definition 2.2.3 (Neighbors). The neighbors of a node vj ∈ V is a set of nodes,

Nj = {vk ∈ V|(vk, vj) ∈ E}

Specifically, Def. 2.2.3 is the set of nodes which send information to node vj.

Alternatively the set of nodes to which node vj sends its information, denoted N̄j =

{vk ∈ V|(vj, vk) ∈ E}, may be useful. If the graph is undirected according to Def.

2.2.1, then Nj = N̄j for every vj ∈ V .

Definition 2.2.4 (Degree). The in-degree of a node (sometimes referred to as simply

the degree) is the number of neighbors a node has.

κj = |Nj|, ∀vj ∈ V

Similarly, the out-degree of a node is the number of outgoing neighbors a node has.

κ̄j = |N̄j|, ∀vj ∈ V

If a graph is undirected, then κj = κ̄j.

Definition 2.2.5 (Degree Distribution). The most common way graphs are classified

is by the distribution of their degrees (Def. 2.2.4), defined as,

P (κ) =
No. of nodes with degree κ

|V|

Some common degree distributions are discussed in Subsection 2.2.1.

Definition 2.2.6 (Weighted Graphs). A graph G = (V , E) is said to be weighted

if there exists a function w : E 7→ R where w(vj, vk) = wj,k is the weight of edge

(vj, vk) ∈ E. If a graph is not weighted then it is unweighted.

Some of the types of control defined later in this chapter are concerned with graph

structure, where weights do not play a role, while other types of control requires
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weights to be assigned to each edge. An unweighted graph can be treated as a weighted

graph, typically by defining wj,k = 1 for every edge (vj, vk) ∈ E .

Definition 2.2.7 (Strength). The in-strength of a node (sometimes referred to as

simply the strength), denoted σj, is the sum of the incoming weights.

σj =
∑

vk∈Nj
wj,k

Similarly, the out-strength of a node is the sum of the weights of outgoing neighbors

a vertex has.

σ̄j =
∑

vk∈N̄j

wj,k

If a graph is undirected, then σj = σ̄j for all vertices vj ∈ V.

If a graph is unweighted, then a vertex’s degree (Def. 2.2.4) and strength (Def.

2.2.7) are usually considered equal.

Definition 2.2.8 (Loops). A loop is an edge with the same node as its tail and head,

(vj, vj) ∈ E.

Loops play a substantially different role in the dynamics to be defined on a network

in Subsection 2.2.3 and so we often treat them separately than the other edges. In

fact, the inclusion or exclusion of loops is critical to understanding many results on

the control of complex networks, especially structural ones, and so they will be treated

with care in the following sections.

Definition 2.2.9 (Subgraphs). Let G = (V , E) be a graph. A subgraph, G ′ = (V ′, E ′)

is a graph such that V ′ ⊆ V and each edge (vj, vk) ∈ E ′ must have vj, vk ∈ V ′ and

(vj, vk) ∈ E.

Definition 2.2.10 (Adjacency Matrix). A graph can be alternatively represented as

a square n− by − n matrix, A, whose entries are,

Aj,k =





wk,j, if (vk, vj) ∈ E

0 otherwise
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If the graph is unweighted then often wk,j = 1 for each edged (vk, vj) ∈ E.

Note the swap in the order of the index from the weights which are written wk,j

(from vk to vj) as compared to Aj,k (to vj from vk). This swap is necessary as the role

of the adjacency matrix is different than that of the graph. If each node is assigned

a value, xj, for all vj ∈ V , then the operation Ax describes the incoming signal

witnessed by each node. The inclusion of loops, treated separately from the graph, in

the adjacency matrix may be done with a function of the nodes, ` : V 7→ R so that

Aj,j = `(vj) = `j for j = 1, . . . , n.

Definition 2.2.11 (Paths). A path from node vj to node vk in a graph is a sequence

of edges,

(vj, v`1), (v`1 , v`2), . . . , (v`s , vk)

such that the first edge starts at node vj and the last ends at vk. The length of a path

is the number of edges it traverses.

By the distance between two nodes we mean the length of the shortest path be-

tween two nodes. There may be pairs of nodes for which no path exists.

Definition 2.2.12 (Connectedness). A graph is connected if there exists a path be-

tween all pairs of nodes of its induced undirected graph (see the discussion just after

Def. 2.2.1). A graph is strongly connected if there exists a path between all pairs of

nodes without ignoring edge directionality.

A graph can be decomposed into subgraphs representing its strongly connected

components (SCCs) which is an important concept in the control of complex networks.

A root SCC is an SCC of a graph with no incoming edges from any other SCC. The

concept of a graph matching, which is fundamental to the control of complex networks,

is presented here.

Definition 2.2.13 (Matching). Let G = (V , E) be an undirected graph. A matching

is a subset of the edges, M⊆ E such that no two edges in M share a node.

10
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A maximal matching is a matching such that, by the addition of any other edge,

the set is no longer a matching. The maximum matching is the maximal matchingM

of maximum cardinality over all matchings. If the graph G is bipartite (see Def. 2.2.2)

then one can find the maximum matching in polynomial time using the Hopcroft-Karp

algorithm [16].

2.2.1 Types of Graphs

The connectivity pattern, or topology, of real systems is quite varied [17]. The most

common method to characterize types of graphs is by their degree distribution (see

Def. 2.2.5). The first two graph models extensively studied in the literature were the

lattice graph (especially in physics [18, 19]) and the random graph [20].

Definition 2.2.14 (Lattice Graph). A lattice graph is a graph whose set of edges

follow some pattern independent of the index of any particular node. For example,

the ring lattice assigns the nodes positions around a circle from v0 to vn−1, and consists

of edges (vj, vj±k) ∈ E where the arithmetic is done modulo n, for k = 1, . . . , d
2

for

d < n.

The control of lattice graphs makes up the basis of an extensive study in Chapter

5.

Definition 2.2.15 (Erdős-Rényi Graph or Random Graph [20]). A random graph of

n nodes, G = (V , E), has edges (vj, vk) ∈ E with probability p.

Many properties of random graphs have been studied in detail, for instance, the

degree distribution of the random graph is binomial, which, in the limit of large n,

becomes Poisson. While this model can be used to represent physical systems which

have a Poisson degree distribution, for many systems of interest, this assumption does

not hold.

In the late 1990s, a renewed interest in applied graph theory emerged driven by

the increased availability of large datasets. These datasets did not exhibit the same

properties of either lattices or random graphs and so new models had to be created
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to accurately represent them. Two concepts are required to demonstrate why the

previous models are inadequate in many situations: average distance and average

clustering.

Definition 2.2.16 (Clustering Coefficient [21]). The clustering coefficient of a node

vj is the fraction of common neighbors shared among the neighbors of a node over the

total possible number of shared neighbors.. That is, using the notation defined in this

chapter,

cj =

∑
vk∈Nj |Nk ∪Nj|
κj(κj − 1)

If the graph is undirected, an additional multiplicative factor of 2 is included so as to

not count undirected edges twice.

As defined previously (see the discussion after Def. 2.2.11), the distance between

two nodes is the length of the shortest path between them. For the two graphs

described so far, lattices (see Def. 2.2.14) typically have high clustering and long

average distance, while Erdős-Rényi graphs have small clustering coefficients but short

average distances.

In [21], an alternative random graph model was introduced which attempted to

marry two concepts witnessed in datasets available at the time: a high degree of

clustering like lattices but short average distances like random graphs. The method

was to start with a lattice as defined in Def. 2.2.14 and to randomly rewire edges

with some probability p. If p = 0, the original lattice is preserved, while if p = 1,

the lattice becomes a random graph. Let 〈c(p)〉 and 〈d(p)〉 be the average clustering

and average distance, respectively. It was shown that there exists a range of p such

that 〈c(p)〉 is large while 〈d(p)〉 is small during the transition from lattice to random

graph. A small numerical example demonstrates this region in Fig. 2.1. By choosing

p properly, one can construct a graph which has both short average distance and high

clustering.

In the seminal paper [22] that helped create the field of complex network analysis

separate and apart from classic graph theory, it was shown many real systems have
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Figure 2.1: The average clustering and the average distance for Watts-Strogatz graphs
for different values of rewiring probability p. It is clear there is a range of p when 〈c(p)〉
remains large, i.e., high clustering, while 〈d(p)〉 shrinks, i.e., short average distance.

power-law degree distributions.

Definition 2.2.17 (Scale-Free Graphs). A scale-free graph is one which has a power-

law degree distribution.

P (κ) ∼ κ−γ

An example of a scale free graph is shown in Fig. 2.2.

Originally [22], the supposed prevalence of scale-free graphs in real systems was

attributed to two mechanisms, growth and preferential attachment. The resulting

Barabási-Albert model starts with a seed graph with n0 nodes. The growth arises by

adding additional nodes to the graph at discrete time steps. Edges are added between

these newly created nodes and already existing nodes with probability proportional

to the nodes’ degrees, the so-called preferential attachment. This result sparked an

explosion in publications investigating every property of these scale-free graphs from

their spectrum [23], the scaling properties of other models of growth and preferential

attachment [24], diffusion processes [25], percolation [26], etc.

The omnipresence of scale-free graphs in data has been questioned though [27,

28] leading to heated debate into this year, such as [29] and the response [30]. Al-

ternative degree distributions such as the exponential distribution with cut-off have

been proposed to explain why it appeared so many datasets had power-law degree

distribution.

One last model is presented which can be used to construct graphs of arbitrary
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Figure 2.2: Graph models based on degree distribution where the nodes’ sizes are propor-
tional to their degree. (A) A sample k-regular graph, where every node has equal degree
k. (B) An Erdős-Rényi graph as defined in Def. 2.2.15. (C) A scale-free graph as defined
in Def. 2.2.17. (D) The degree distribution of a k-regular graph is P (κ) = δ(κ = k). (E)
The degree distribution of an Erdős-Rényi graph is Poisson. (F) The degree distribution of
a scale-free graph is a power law.
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degree distribution. The configuration model [31, 32] takes as input n disconnected

nodes with degree sequence κj ∀vj ∈ V (where
∑

vj∈V κj is an even number) and

returns an undirected graph. Each node, vj, has κj stubs to represent its future

degree. While there exist nodes vj whose degree is less than κj, choose two stubs

randomly and add an edge, ensuring (i) such an edge does not already exist and (ii)

the two stubs are not attached to the same node to avoid multi-edges and self-loops,

respectively. If the original degree sequence was chosen from a power law distribution,

then the resulting graph is scale-free. The configuration model can also be used to

construct directed graphs by creating two degree sequences, an in-degree sequence κj

and an out-degree sequence κ̄j such that
∑

vj∈V κj =
∑

vj∈V κ̄j.

2.2.2 Graph Symmetry

A concept that will reappear many times throughout this dissertation is graph symme-

try [33]. Before discussing it though, we present some additional definitions concerning

partitioning and permuting graphs.

Definition 2.2.18 (Partitions (Clustering)). Let S be a set. A partition, C, is a set

of subsets of S, defined as,

C =

{
Ck ⊆ S

∣∣∣∣∣Cj ∩ Ck = ∅ ∧
p⋃

k=1

Ck = S
}

In words, every pair of subsets in the partition are disjoint and the union of all

of the subsets in the partition is complete. Sometimes we will refer to partitions as

clusterings which has the same definition. We also assume there is no subset Ck = ∅

which ensures each partition has a unique representation as C up to a relabeling of

the cluster indices. In particular, we examine partitions of nodes of a graph.

Definition 2.2.19 (Cluster Neighbors). Let G = (V , E) be an unweighted graph and

its nodes are clustered according to C, a partition (see Def. 2.2.18). The cluster
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neighbor set of node vj ∈ V in cluster Ck is defined as

Nj,k = {v` ∈ Ck|(v`, vj) ∈ E}

The cluster degree is denoted κj,k = |Nj,k|.

The cluster degrees for a clustering of the nodes can be succinctly written as

vectors κj ∈ Z|C|.

Definition 2.2.20 (Equitable Partition). An equitable partition is a partition such

that the cluster degree vectors as defined in Def. 2.2.19 for every pair of nodes in the

same cluster are equal, that is,

κj = κk, ∀vj, vk ∈ C`, ∀C` ∈ C.

Every graph has at least one equitable partition, specifically, the singleton clus-

tering, Ck = {vk}, ∀vk ∈ V . Of more interest is the minimum equitable partition, that

is the partition of smallest cardinality which is equitable. The minimum equitable

partition of a graph can be found in polynomial time [34].

Definition 2.2.21 (Permutations). A permutation is a bijection on the set of nodes,

π : V 7→ V.

A permutation of a set of n nodes can be represented as a square binary matrix P

where Pj,k = 1 if π(vj) = vk and Pj,k = 0 otherwise. A permutation applied to a graph

is denoted Gπ = (V , Eπ). Note that in general, Eπ 6= E but that Gπ is isomorphic to

G [35]. The action of applying a permutation to a graph can be represented in its

adjacency matrix as PAP T = Aπ, where in general, A 6= Aπ.

Definition 2.2.22 (Symmetry). A permutation π is a symmetry if G = Gπ which can

be verified if,

(vj, vk) ∈ E ⇔ (π(vj), π(vk)) ∈ E .

In terms of the adjacency matrix defined in Def. 2.2.10, if P is the permutation

matrix associated with a symmetry and the graph is unweighted, then PAP T = A.
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If A is weighted, then even if P represents a symmetry, it is not necessary that

PAP T = A. An alternative definition of approximate equitable partition is presented

in Sec. 4.8 which modifies Def. 2.2.20 to include edge weights. We now present the

definition of the automorphism group of a graph.

Definition 2.2.23 (Automorphism Group). The set of all symmetries of a graph,

along with function composition, is the automorphism group of a graph, defined as,

Aut(G) = {π : V 7→ V|G = Gπ} .

Computing the automorphism group of a graph is famously not a simple task [36,

37], as it is unknown if the problem is either P or NP.

Symmetries play an integral role in the controllability of complex networks which

will be discussed in the following sections. Some original work on graph symmetries

is presented in Chapter 4.

2.2.3 Networks

Generally, a network is a system described by a graph and a set of time-varying states

assigned to each node in the graph which evolve according to a set of rules [38–41].

Examples of such systems include biological systems [42–44], neuronal networks [45–

47], the power grid [48–50], social media [51–53], epidemics [25, 54, 55], transporta-

tion/routing [56, 57], and many many more [39, 58]. In this manuscript we focus

on networks where each state assigned to a node evolves continuously in time (as

opposed to discrete time networks, although most of the results in this manuscript

can be extended to discrete time systems). The evolution of the state of each node is

governed by system specific dynamics.

d

dt
xj = fj(xj, xk1 , xk2 , . . . , xkκj ), vk` ∈ Nj, (2.2.1)

where fj : Rκj+1 7→ R describes how node vj is influenced by its neighbors. The

dynamics of complex networks may not be as general as Eq. (2.2.1) suggests and
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instead the influence of each node vk on the dynamics of node vj may be pair-wise,

modelled as a function of xk and xj alone,

d

dt
xj =

∑

vk∈Nj
fj,k(xj, xk) (2.2.2)

Often, due to the pair-wise nature of the edges of a graph, in modeling dynamical

networks, Eq. (2.2.2) is more applicable than Eq. (2.2.1). Biological systems are often

described by Hill functions which describe the on-off switching of different regulatory

enzymes [59], or power systems are described by the well known swing equations [60],

or networks of coupled phase oscillators are described by phase difference coupling

[61]. As each different application consists of different dynamical equations, for the

majority of this manuscript we restrict ourselves to systems of linear equations, that is,

each fj,k(xj, xk) = wk,jxk in Eq. (2.2.2). This simplification allows us to investigate

the role of the graph topology, or its connectivity, on dynamical properties of the

network, without losing generality to specific dynamics.

2.3 Control of Networks

The control of networks is a relatively young field and as such suffers from the growing

pains of mixed terminology and a lack of standard notation. To make this section co-

herent, a categorization is imposed, (consisting of a mix of the most widely accepted

definitions and some novel inventions). Before turning to the control of networks

specifically, we present some of the classic results on the controllability of linear sys-

tems.

Definition 2.3.1 (Linear System). A linear system is defined as the triplet (A,B,C)

where A ∈ Rn×n, B ∈ Rn×nd and C ∈ Rnt×n such that,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

(2.3.1)

where x : R+ 7→ Rn is the evolution of the states, u : R+ 7→ Rnd is the input and
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y : R+ 7→ Rnt is the output.

Along with Eq. (2.3.1), we require an initial condition, x(0), that describes the

system completely at time t = 0. The theory of linear systems is extensive [62, 63].

If C = In, the n-by-n identity matrix, then one may ignore the output and succinctly

define the system as the pair (A,B).

2.3.1 Classic Results on Control

Control of linear systems theory mainly concerns itself with the question ‘what input

u will achieve a desired output y(tf ) satisfying Eq. (2.3.1) at time tf?’ To answer

this question one typically first asks if Eq. (2.3.1) is controllable.

Definition 2.3.2 (Controllability [64] [65]). A linear system (A,B) (see Def. 2.3.1)

is controllable if there exists an input u, for every initial condition x(0), that is able

to achieve any desired state x(tf ), for tf > 0. Similarly, a linear system (A,B,C) is

output controllable if there exists an input u, for every initial condition x(0), that is

able to achieve any desired output y(tf ), for tf > 0. If a system is not controllable

(output controllable) then it is said to be uncontrollable ( output uncontrollable).

A fact that will arise often is that a system may both be uncontrollable and output

controllable. A number of theorems exist with which one may test whether or not a

system is controllable. Often the first test a student of control theory learns is the

Kalman rank criterion.

Theorem 2.3.1 (Kalman Rank Criterion [66]). Define the Kalman matrix

K =
[
B|AB|A2B| · · · |An−1B

]
(2.3.2)

The pair (A,B) is controllable if and only if rank(K) = n. Similarly, the triplet

(A,B,C) is output controllable if and only if rank(CK) = nt.

If n is small then one can construct K using Eq. (2.3.2) explicitly, but for large

n, applying Thm. 2.3.1 directly can become difficult due to numerical overflow when
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determining the rank with finite precision arithmetic. A common alternative test is

the PBH criterion,

Theorem 2.3.2 (PBH Criterion [67]). A pair (A,B) is uncontrollable if and only if

there exists a left eigenvector of A, v ∈ Cn, such that,

vTB = 0T and vTA = λvT

where λ ∈ C is the corresponding eigenvalue.

While Thm. 2.3.2 does not require finding the rank of a poorly conditioned ma-

trix, it does require intimate knowledge of the eigendecomposition of the matrix A.

Depending on the structure of A this may or may not be a reasonable request. A pop-

ular alternative to classic controllability in the field of complex networks is structural

controllability.

Definition 2.3.3 (Structural Controllability [68, 69]). Let G = (V , E) be a graph. Let

A be the adjacency matrix of G (see Def. 2.2.10) associated with weight function w

(see Def. 2.2.6). The pair (A,B) is structurally controllable if ∀ε > 0 there exists a

pair (A′, B′) (i.e., another weight function w′ defined on the same graph G) that is

controllable such that ||A− A′|| < ε and ||B −B′|| < ε.

In other words, if G is structurally controllable, then if a particular weight function

w leads to the system (A,B) becoming uncontrollable, then there exists another pair,

(A′, B′), such that ||A−A′|| < ε and ||B −B′|| < ε that is controllable for any ε > 0.

This weaker definition of controllability is sometimes more applicable in the complex

networks field [70] as long as one can assume that the edge weight function w is not

known precisely and that there are not relationships between weights. Structural

controllability can also be proved using graph properties which avoids the numerical

difficulties using Thms. 2.3.1 or 2.3.2.

Definition 2.3.4 (Strong Structural Controllability [71]). Let G = (V , E) be a graph

with edge weight function w and associated adjacency matrix A. The graph is strongly

20



CHAPTER 2. BACKGROUND

Strong Structural Controllability (SSC)

Classical Controllability (CC)

Structural Controllability (SC)

Reachability (R)

Structural Reachability (SR)

Figure 2.3: Implication relationships between the defined types of controllability.

structurally controllable if the pair (A,B) is controllable for all weight functions such

that w(vj, vk) 6= 0.

Strong structural controllability is an even stronger definition of controllability

than classic controllability. One last definition before moving on concerns reachability.

Definition 2.3.5 (Reachability [72]). Let (A,B) be a system with initial condition

x(0) = x0 and final condition x(tf ) = xf . The pair (A,B) is reachable if there exists

an input u : [0, tf ] 7→ Rnd such that the state is transferred from x0 to xf .

If a system is controllable, then it is also reachable for any pair of initial condition

and final condition, while an uncontrollable system may still be reachable. Additional

relationships between the types of controllability are outlined in Fig. 2.3. Understand-

ing the proper type of control called for by an application is imperative, as requiring

too strict a definition can lead to unnecessarily pessimistic conclusions.

2.3.2 Control of Complex Networks: The Basics

Due to the age of the field of controlling networks, conflicting definitions concerning

control of networks exist [73, 74]. As such, some of the confusion present in the field is

mitigated by defining concepts with what we believe are the most accepted and/or the

most intuitive definitions and notation. We make the following classification based

on the type of controllability. First, we must classify the type of control input matrix

B with which we are interested [73].
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Actuator Node Problem

v1
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Driver Node Problem
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b1 0
0 0
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0 b2
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Figure 2.4: Types of Minimum Controllability Problems. The blue nodes are the external
inputs and the unfilled nodes represent the graph. (A) Actuator Problems allow each column
of B to have multiple non-zeros. (B) Driver Node Problems restrict each column of B to
have a single non-zero value.

1. Actuator Node Framework (ANF): In these problems, each column of the

matrix B is allowed to have multiple non-zero elements. Let I be the set of

inputs corresponding to each column of B so |I| = nd and let A be the set of

nodes whose corresponding rows in B have at least one non-zero element. The

function B : I 7→ 2A maps each input to the nodes whose rows in the input’s

column have non-zero elements. The matrix B can thus be constructed,

Bj,k =





bj,k 6= 0 if vj ∈ B(k)

0 otherwise

The values of bj,k for vj ∈ B(k) are determined based on the particular method

with which B is found.

2. Driver Node Framework (DNF): In these problems, each column is re-

stricted to having a single non-zero elements. Using the notation above, the

input to actuator mapping is now a bijection B : I 7→ A and so differentiating

between inputs and actuators is redundant. We simplify the discussion of driver

node problems by defining D ⊆ V as the set of nodes which receive a control
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input. The control input matrix is simply,

Bj,k =





1 B(k) = j

0 otherwise

The distinction between ANF and DNF is exceptionally important and the lack of

clarity in much of the literature has lead to confusion. An example of these two types

of input frameworks is shown in Fig. 2.4 where we see in the ANF, some columns of

B may have more than one non-zero entry, while in the DNF, ever column of B is

restricted to having a single non-zero entry.

Let us additionally classify the types of controllability as well.

1. Structural Controllability (SC): From Def. 2.3.3, structural controllability

is a property of the structure, G, and the input matrix B. A system that is

structurally controllable is denoted (G, B) ∈ SC (as the specific weights do not

play a role).

2. Classic Controllability (CC): From Def. 2.3.2, classic controllability is a

property of the adjaceny matrix, A(G, w) for a specific weight function w and

input matrix B. A system that is controllable is denoted (A,B) ∈ CC.

3. Strong Structural Controllability (SSC): From Def. 2.3.4, strong struc-

tural controllability is a property of the structure G and the input matrix B. A

system that is strong structurally controllable is denoted (G, B) ∈ SSC.

4. Reachability: From Def. 2.3.5, reachability is a property of the adjacency

matrix, A(G, w) for a specific weight function w, the input matrix B, and an

initial and final condition x0 and xf . A system that is reachable is denoted

(A(G, w), B,x0,xf ) ∈ RE .

There are three main types of results concerning the control of complex networks.

1. Minimum Controllability Problems (MCP): These problems, in either the

ANF or DNF, look for matrices B with the minimum number of columns, nd, to
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satisfy one of the controllability criteria listed above. A slight variation to this

problem is to set the number of columns of B and instead minimize the number

of non-zero elements of B.

2. Efficient Control Problems (ECP): These problems look for matrices B

which both (i) ensure one of the controllability criteria is satisfied and (ii) are

efficient with respect to some metric satisfying the appropriate restrictions on

B.

3. Control Classification Problems (CCP): These problems try to either clas-

sify (or rank) nodes based on some control related metric.

These three problems are closely related. For an ECP problem to be well defined, some

knowledge of the minimum number of columns of B found by an MCP is required. A

useful CCP result can inform a better MCP or ECP formulation. The remainder of

this section describes the major results for each of the above control problems.

2.3.3 Minimum Controllability Problems (MCP)

Minimum controllability problems on graphs attempt to minimize either the number

of columns of B or the number of non-zeros in B. Let the norm ||B||0 count the

number of non-zero elements in the matrix B ∈ Rn×nd and let CON be one of the

definitions of controllability (SC, CC, SSC, or RE) defined above.

1. Minimum Actuator Node Problems (MANP): In this type of problem,

the number of columns of B is fixed and the number of non-zero elements of B

to satisfy some controllability condition is minimized.

min ||B||0

s.t. B ∈ Rn×nd

(G, B) ∈ CON

2. Minimum Input Problems (MIP): In this type of problem, the number of
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columns of B is minimized while leaving the number of non-zero elements per

column free.

min |I|

s.t. B ∈ Rn×nd

(G, B) ∈ CON

The set of inputs I is defined in the description of the ANF above.

3. Minimum Driver Node Problems (MDNP): In this type of problem, the

number of columns of B is minimized while also constraining each column of B

to have a single non-zero element.

min |D|

s.t. Bj,k =





1 B(k) = j

0 otherwise

(G, B) ∈ CON

The set of driver nodes D is defined in the description of the DNF above.

With the above taxonomy in mind, the current state of each problem is addressed.

The first major contribution to minimum controllability problems [75] solved the

Minimum Input Problem to guarantee Structural Controllability (MIP-SC).

min |I|

s.t. (G, B) ∈ SC
(2.3.3)

Before presenting the result, we define a useful induced graph which is used often in

network control problems.

Definition 2.3.6 (Bipartite Representation of a Directed Graph). Let G = (V , E) be

a directed graph. The undirected graph H = (V+ ∪ V−, Ē) is induced by G where

• each node vj ∈ V is represented by two nodes, v+
j ∈ V+ and v−j ∈ V− and

• each directed edge (vj, vk) ∈ E is represented by an undirected edge (v+
j , v

−
k ) ∈ Ē.
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The induced graph H is bipartite (see Def. 2.2.2) where the two sets of nodes are V+

and V−.

The authors [75] called their answer to Eq. (2.3.3) the Minimum Input Theorem

[75].

Theorem 2.3.3 (Minimum Input Theorem [75]). Let G = (V , E) be a directed graph

and H be the induced undirected bipartite graph according to Def. 2.3.6. Let M∗ be

the maximum matching of H which can be found in polynomial time (see Def. 2.2.13).

Then, the minimum number of inputs to guarantee structural controllability is equal

to the number of unmatched nodes in V−.

The Minimum Input Theorem determines in polynomial time the minimum num-

ber of columns of the matrix B to guarantee structural controllability. The obvious

follow-up question is how to construct the matrix B of minimum dimensions. To find

B, the authors use results from [68] that decompose graphs into stems (paths) and

buds (cycles) which is detailed in their supplementary information [75].

1. Construct the matrix H according to the procedure in Def. 2.3.6 and compute

a maximum matching of G = (V , E such that M∗ ⊆ E .

2. Initialize the set of actuator nodes to the set of all unmatched nodes in V−.

3. The structure induced by the maximum matchingM∗ is a cactus which consists

of unidirectional paths (or stems) and cycles (or buds). The root of each path

is an unmatched node

As edge weights are typically not known precisely, this result is quite practical for

many real linear systems described by graphs.

The minimum number of columns of B was found to be quite large for many

real datasets, especially gene regulatory networks, which sometimes were found to

require nd ≈ 0.8n, or 80% of the network size. A response [76] made the point

that controllability is less meaningful in a biological context as one is interested in

phenotype expression, a particular final state, not the ability to drive the system to
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any point in phase space. Without using the terminology explicitly, the authors of

the response describe a reachability problem (see Def. 2.3.5). By implication, the

Minimum Input Problem for Structural Reachability (MIP-SR) has solution which is

upper-bounded by the Minimum Input Theorem.

The expected size of the maximum matching of random graphs with simple degree

distributions (such as k-regular graphs and Erdős-Rényi graphs) has been analyzed

using the cavity method from statistical mechanics developed in [77–79].

If one is given a structurally uncontrollable system (A,B), an iterative method to add

additional columns to B (either in the ANF or the DNF) until achieving structural

controllability is presented in [80].

Another response to [75] examined the case where there is a self-loop (see Def.

2.2.8), at every node vj ∈ V [81]. For this problem, the loops are treated as edges

in the graph. If the graph is strongly connected (see Def. 2.2.12), the maximum

matching of the induced bipartite graph is trivially M∗ = {(vj, vj)|∀vj ∈ V} and so

a single control input is all that is required to guarantee structural controllability.

The resulting matrix B is a vector of all non-zero elements. The authors claim the

Minimum Input Theorem for structural controllability is unable to provide meaningful

results for graphs with many self-loops.

The MIP-SC in the DNF was solved in [82] where the authors provide a theorem

using maximum matching and the SCC decomposition. Let G be decomposed into its

SCCs with β root SCCs.

Theorem 2.3.4 (Minimum Driver Node Theorem [82]). Let G = (V , E) be a graph

and let H be the induced undirected bipartite graph constructed as in Def. 2.3.6. Let

M∗ be a maximum matching of H and let G have β root SCCs. Let U(M∗) be the set

of unmatched nodes for a maximum matching M∗. For each maximum matching,

we count the number of SCCs with an unmatched node, and set the largest of these to

be α. The minimum number of driver nodes to guarantee structural controllability is

equal to

nd = n− |M∗|+ β − α
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This result makes intuitive sense as n− |M∗| is the number of unmatched nodes

and β − α is the minimum number of root SCCs without an unmatched node and so

require a driver node as well.

Other MCPs for structural controllability including the following have been ad-

dressed. For the DNF where some nodes are forbidden from being a driver node, a

polynomial time algorithm is given to find the minimum number of driver nodes [83].

A combined minimum input and output selection problem to guarantee structural

controllability and observability is given in [84]. If there is a non-uniform cost asso-

ciated with making a node an actuator node (or a driver node) then one can use a

weighted maximum matching to solve the weighted MCP [85, 86].

For the case Thm. 2.3.3 returns the result that only a single input is required for

structural controllability, [87] supplies an algorithm to find the vector B = b of max-

imum sparsity (i.e. minimizing the number of actuator nodes) to guarantee the pair

(G, b) is structurally controllable, answering the MANP-SC question for this case. In

a similar fashion [88], if one is given a graph G = (V , E), an algorithm based on Thm.

2.3.3 finds the minimum number of edges to add to E until a perfect matching exists,

thus requiring a single control input (but possibly many actuator nodes).

Solving the Minimum Input Problem for Strong Structural Controllability (MIP-

SSC) was shown to be NP-hard [89].

Additional work on applying structural controllability to temporal networks [90,

91], that is networks whose set of edges evolves in time, has received recent attention.

The structural controllability of a graph’s line graph (that is the graph L(G) = (E ,F)

where each edge in the original graph E is a node in its line graph and the new edges

(ej, ek) ∈ F if the edges ej and ek share an endpoint node, is investigated in [92].

While structural controllability is appealing in that it is used to derive an efficient

algorithm for determining the minimum number of independent inputs, if some of the

edge weights are not independent from one another, or if some edge weights are known

exactly, then the main assumption of Thm. 2.3.3 no longer holds. In particular, if

the graph is undirected, then structural controllability cannot be applied directly as
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each pair of edges (vj, vk) and (vk, vj) have an equal weight and are not independent.

A version of structural controllability applied to undirected graphs is investigated in

[93] where a heuristic to solve the MIP-SC is presented. A number of independent

research groups derived methods to determine both the minimum number of control

inputs and which nodes should receive these inputs for the traditional definition of

controllability.

Turning to the Minimum Input Problem for classic controllability (MIP-CC), in

[94], the minimum number of inputs is shown to be equal to the maximum geometric

multiplicity of the eigenvalues of the adjacency matrix A. This is an immediate result

from the PBH rank criterion in Thm. 2.3.2. The paper suffers from some opacity

about whether the result falls in the ANF or the DNF, but it can be shown that their

solution is in the ANF (that is, if there is no repeated eigenvalue, then the single input

may be attached to multiple actuator nodes). This result is applied specifically to

circulant networks in [95]. The second part of [94] presents a method to construct the

set of actuator nodes (not necessarily the minimum though as proven in [96]). The

method requires transforming the matrix A to column echelon form and determining

which rows are multiples of the previous rows. The nodes corresponding to these rows

require an input. Their method is generalized to multiplex networks in [97].

For the case where the adjacency matrx has no repeated eigenvalues, the result of

[94] states that only a single input is needed. In this case, the control input matrix

can be thought of as a vector b ∈ Rn with no clear insight about the number of

non-zeros elements in b. The problem of determining the vector b with a minimum

number of non-zeros is NP-hard as shown in [96] where the input selection problem

is demonstrated to be equivalent to the hitting set problem, one of Karp’s original 21

NP-complete problems [98].

Definition 2.3.7 (Hitting Set Problem). Let C be a set of subsets of {1, 2, . . . ,m}.

The minimum hitting set problem asks for the subset of C such that every integer in

{1, 2, . . . ,m} appears in at least one chosen element in the subset of C.

The main idea within the proof [96] is derived directly from the PBH criterion in
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Thm. 2.3.2. Define C to be the support of each of the left eigenvectors of A, then b

must have nonzeros corresponding to at least part of the support of each eigenvector.

To find b with minimum non-zero elements in the support of each eigenvector, an

instance of the Hitting Set Problem is constructed as defined in Def. 2.3.7 where each

set Ck ∈ C contains the support of the k’th eigenvector.

A particularly negative result [99] concerns reachability (see Def. 2.3.5). In [99],

they show that the Minimum Input Problem for Reachability (MIP-RE) in the DNF

to satisfy reachability can not be solved in polynomial time, it cannot be approximated

in polynomial time either.

Taken togther, structural control problems are typically easy to solve (solvable in

polynomial time) while classic control or strong structural control problems are NP-

hard. Nonetheless, the literature provides a number of approximation algorithms to

approximate the minimum number of inputs in either the ANF or the DNF. So far

though, the problems examined focus on the case that we want to guarantee one of the

controllability criteria on all of the nodes. The case where the controllability criteria

must only be applied to a subset of the nodes is addressed in the following subsection.

2.3.4 Target Control

A topic we explore in great detail is target controllability which is a specific type of

output controllability. Let A be the adjacency matrix of a graph and B be the control

input matrix in either the actuator node framework or the driver node framework.

If the matrix C consists of rows with only a single non-zero entry each, that is each

output is the state of a single node, and the triplet (A,B,C) is output controllable,

then equivalently it is target controllable. The problem of target controllability coin-

cides with the problem of full controllability, discussed in previous subsection, when

C = In, and so target controllability is a more general problem. Every type of prob-

lem mentioned previously has an immediate extension to the target control case.

The MCP for target control, even for structural control, does not map to an ex-

act solution method, such as maximum matching [65]. Instead, a greedy heuristic is
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presented in [100]. If in addition, some nodes should not witness the affects of any

control input, then one can use the ILP presented in [101]. Strong target structural

control (the extension of Def. 2.3.4 to target control) is explored in [102, 103].

2.3.5 Controllability and Symmetry

The automorphism group of a graph (see Def. 2.2.23) and controllability properties

are intimately related [104–106]. It is proven [104] that if there exists a symmetry

(see Def. 2.2.22) such that PB = B, then the system is uncontrollable (a sufficient

condition). On the other hand, the lack of any such symmetry does not prove the

system is controllable.

This result is strengthened [105] to state that if there exists any matrix P such

that AP = PA and PB = B, then the system is uncontrollable. The matrix P is a

fractional permutation corresponding to a fractional symmetry [107].

2.3.6 Nodal Control Metrics

Before moving on to other topics, here we briefly cover some controllability based

metrics. A node’s control centrality [108] is defined as the number of nodes which

said node is able to individually control. Theoretically, this can be determined by

the rank of the Kalman matrix K in Thm. 2.3.1 where B = ek, the k’th elementary

vector. More practically, using Hosoe’s theorem [109] this can be calculated as the

number of nodes in the stem-bud disjoint subgraph (see Def. 2.2.9) rooted at this

node. A seemingly identical definition, called control range, is given in [110]. In [111],

nodes are called critical if they appear in every minimum actuator node set ensuring

structural controllability. These critical nodes can be determined by examining the

minimum dominating set [112, 113] of the graph. The theory of dominating sets has

been used to analyze the critical nodes of biological networks [114]. More generally,

the control capacity of a node is the fraction of minimum driver node sets in which it

appears [115]. The emergence of critical nodes is investigated using core percolation

in [116]. Nodes which must be assigned to be actuator nodes or driver nodes are
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classified in [117] as either nodes with no incoming edges (sources), surplus sinks

(nodes with no outgoing edges), or internal dilations.

2.3.7 Efficient Control Problems (ECP)

In the previous subsections, we were interested in MCPs which try to find the input

matrix B which in some sense is minimal (number of columns, number of non-zeros)

that ensures some sense of controllability (structrual controllability, classic control-

lability, etc.). While clearly an important endeavor, it is only concerned with the

minimum requirement of controllability, while offering nothing to compare two ma-

trices B and B′, of equal dimension or equal number of non-zeros depending on the

context, which appear as local minima in the solution of the MCP.

For the rest of this section, we will assume that B ensures the system is control-

lable in the intended sense. Consider Eq. (2.3.1) along with some prescribed final

output yf . As we have assumed B yields output controllability, there exists an infi-

nite number of control inputs u which can drive the system from its initial condition

x0 to yf . The control energy of any such control input is defined as,

E =

∫ tf

0

uT (t)u(t)dt (2.3.4)

As the control to perform the task is not unique, we look for the control input which

minimizes Eq. (2.3.4).

To find the control input which minimizes Eq. (2.3.4), let us define the particular

optimal control problem (see the next section which discusses optimal control in more

detail) which is the focus in this manuscript.

min J =
1

2

∫ tf

0

uT (t)u(t)dt

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, yf = Cx(tf )

(2.3.5)
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Pontryagin’s minimum principle is used to solve Eq. (2.3.5) in Appendix B.1 and B.2.

The optimal control input is found to be,

u∗(t) = BT eA
T (tf−t)CT

(
CW (tf )C

T
)−1

(yf − CeAtfx0) (2.3.6)

where W (tf ) ∈ Rn×n is the controllability Gramian, a symmetric positive semi-definite

matrix, which can be formally written,

W (tf ) =

∫ tf

0

eAτBBT eA
T τdτ. (2.3.7)

The controllability Gramian is the solution of the differential Lyapunov equation [118,

119]

Ẇ (t) = AW (t) +W (t)AT +BBT , W (0) = On (2.3.8)

which is a linear ODE with constant nonhomogeneous term. If A is Hurwitz, then

there exists a single stable fixed point solution, W , of Eq. (2.3.8) which can be found

by setting Ẇ (t) = On. Computing W (tf ) can be done using numerical differential

equation solvers with Eq. (2.3.8), but often the steady state controllability Gramian

W is used instead as many real systems are stable and the time-varying portion of

W (t) decays exponentially if A is Hurwitz. To do this, we use the algorithm presented

in [120] and implemented in SLICOT [121]. While this method is reasonable up to

dimension n = O(100), to find controllability Gramians for larger systems, a low

rank approximation method is used [122–124]. The controllability Gramian plays

an extremely important role in both qualifying and quantifying the controllability of

linear systems.

Theorem 2.3.5 (Singularity of the Controllability Gramian [118]). A system (A,B)

is controllable if and only if the controllability Gramian W (tf ) is non-singular. A

system (A,B,C) is output controllable if and only if the matrix CW (tf )C
T is non-

singular.

Moreover, if (A,B,C) is output controllable, and using the fact that W (tf ) is
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postive semi-definite, then CW (tf )C
T must be positive definite. The minimum control

energy (using Eq. (2.3.4) and Eq. (2.3.6)) is,

E∗ = βT (CW (tf )C
T )−1β, (2.3.9)

where β = yf − CeAtfx0 is the control maneuver. The minimum control energy in

Eq. (2.3.9) is a useful metric to judge the control efficacy for a particular choice of B.

Recently, Eq. (2.3.9) has garnered a lot of attention throughout the complex

networks field. For the case C = In, and assuming ||β||2 = 1, it is clear from the

Rayleigh-Ritz theorem that,

1

µmax

≤ E∗ ≤ 1

µmin

where µmax and µmin are the largest and smallest eigenvalues of W (tf ), respectively.

The behavior of 1
µmax

and 1
µmin

in both the small and large tf regimes are presented in

[125]. Let the eigenvalue-eigenvector pairs of the controllability Gramian be denoted

W (tf )ξk = µkξk for k = 1, . . . , n. The eigen-energies of the system are found by

setting β = ξk so that the k’th eigen-energy is Ek = 1
µk

. The distribution of the

eigen-energies is investigated in [126] for both artifical networks and real networks.

For networks with unbounded degree distributions, such as scale-free graphs, the

eigen-energies are shown to also follow a power-law distribution.

Another consequence of the spectrum of eigen-energies is that, as some of the

eigenvalues of W are extremely small, its condition number may be smaller than the

finite precision arithmetic can handle. To compensate, many of the studies on the

controllability Gramian require extended precision using tools like GMP [127], MPFR

[128], MPC [129] and those libraries built on top of them like Advanpix [130]. A more

important question than simply whether the system is controllable then is whether

the system is numerically controllable. A system is numerically controllable if the

condition number of the controllability Gramian is less than machine ε associated

with the level of precision used in its computation. The transition from numerical

uncontrollablility to numerical controllablility is called the controllability transition
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[131].

We are now ready to ask ‘which set of driver nodes is the most efficient (or effective)

for a given task?’ Let us break down this question in some detail as it is deceptively

complicated. There are three components:

1. The number of inputs (in the ANF) or the number of driver nodes (in the

DNF) which have lower bounds corresponding to the minimum controllability

questions answered previously in Thms. 2.3.3 and 2.3.4, respectively. We may

also impose an upper bound due to financial or spatial restrictions.

2. The metric which we would like to maximize. If we know the exact control

maneuver we must make, β, then one can attempt to minimize βTW−1β but

this problem will be shown to be NP-hard. Alternative surrogate cost functions,

or control metrics, with beneficial properties are often used instead.

3. The maximum allowed control energy (or related metric). In this case, the

number of driver nodes is minimized while satisfying some maximum allowed

control energy constraint.

In the DNF, if one restricts the number of driver nodes to be some nd < n, one can

attempt to do a brute force search over the
(
n
nd

)
to maximize a control energy metric

but for large n, the required computational time is infeasible as this is a combinatorial

problem.

One of the first attempts to quantitatively explore the trade-offs between the

number of driver nodes and the control energy was presented in [132]. The focus

was on the smallest eigenvalue of the controllability Gramian as an arbitrary control

maneuver β will have at least some component in the eigen-direction corresponding

to it. The results therein are applied to brain networks in [133]. In terms of discrete

time systems, a similar trade-off was explored between number of driver nodes and

control time [134].

Some control metrics are discussed in the series of papers [135–138]. In this series

of papers, each metric is shown to either be or not be a submodular set function.
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Definition 2.3.8 (Submodular Set Functions [139]). Let f : 2V 7→ R be a function

that maps the power set of V to the real numbers. Let S2 ⊆ S1 ⊆ V and let a ∈ V and

a /∈ S1. Then f is submodular if,

f(S2 ∪ {a})− f(S2) ≥ f(S1 ∪ {a})− f(S2) (2.3.10)

Note the diminishing returns property of Eq. (2.3.10), that is, adding an element

to a larger set offers a smaller improvement than adding the same element to a smaller

set. Let the gain be denoted ∆(a|S) = f(S ∪ {a}) − f(S). The benefit of proving a

set function, f , is submodular is that maximizing f subject to a cardinality constraint

|S| ≤ k can be approximated with a greedy algorithm. For submodular set function

optimization, the greedy algorithm returns solution Sgreedy while the true optimal

solution Soptimal satisfies the bound [140, 141],

f(Sgreedy)
f(Soptimal)

≥ 1−
(
k − 1

k

)k
≥ e− 1

e
≈ 0.63

where we assume f(∅) = 0, The first metric examined was the trace of the controllabil-

ity Gramian (or output controllability Gramian) [135]. The controllability Gramian

for single driver nodes is explored in [142]. Next, the trace of the inverse Gramian,

the log determinant of the Gramian, and the rank of the Gramian, were all shown

to be submodular set functions [136] using Def. 2.3.8. Submodular set function op-

timization is used on metrics for observability as well [143, 144] for optimal sensor

placement problem.

Leader selection is a similar problem to the controllability problems described previ-

ously with the main difference being the inputs I ⊆ V , that is, the inputs are selected

from the nodes within the graph. Set function optimization is used as a way to choose

such leader nodes in consensus problems to minimize convergence error [145, 146] and

in the precense of link noise [147].

In [148] (and its follow-up [149]) the following NP-hard optimization problem is
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investigated,

min
D⊆V

|D|

s.t. (A,B) is controllable

βTW−1β ≤ E

(2.3.11)

for some upper energetic threshold E. Note in this case the authors do not replace the

control energy with an energetic metric, but rather face the control energy expression

head-on. An approximation algorithm is provided [148] which guarantees a solution up

to a factor O(log n) using results on supermodular constrained set covering problems

[150]. The optimization problem in Eq. (2.3.11) is reinvestigated in [149] along with

min
D⊆V

trace(W−1)

s.t. |D| ≤ nd

More sophisticated approximation algorithms are presented for both NP-hard opti-

mization problems in [149].

A radically different approach was taken in the series of papers [151–155] where

the authors developed a gradient descent type optimization applied directly to Eq.

(2.3.7). The gradient descent based algorithm is used to find local minima of the

optimization problem,

min
B∈Rn×nd

trace(W−1Xf )

s.t. trace(BTB)− nd − ε = 0

(2.3.12)

where Xf = eAtf (x0x
T
0 )eA

T tf , nd is the requested number of inputs and ε > 0 is a

small tolerance. Note that this problem sets the number of columns of B constant and

the number of nonzeros in each column of B is not restricted, that is, this problem

is an ANP. They call their algorithm the Projected Gradient Method (PGM) which

they prove (i) it converges and (ii) it converges to a local minimum. They derive

explicit expressions for the derivatives of the cost function and the constraint in Eq.

(2.3.12) with respect to B. To convert the solution of Eq. (2.3.12) to the DNF, the
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authors use a rounding of the continuous variables in B which they call key node

selection. Each row of B is summed, r = B1nd , and then the nodes corresponding

to the nd largest values of r are chosen to be the driver nodes, and B is constructed

accordingly. The algorithm is revisted in more detail in [155]

The subsequent papers added more functionality and improved performance to

PGM. A second order derivative of the cost function in Eq. (2.3.12) is derived and a

trust region method [156] is used in [152]. The cost function is modified to include

an
∫
xTxdt term in [154]. Extensions to target control and the inclusion of a proba-

bilistic gradient descent method are described in [153]. The PGM described requires

knowledge of the entire network. Instead, in [157], only local information is used to

find optimal driver node sets using a hybrid of matching and minimizing the longest

path between a driver node and a target node.

2.4 Optimal Control

The controllability Gramian arises as the central part of the solution of the Minimum

Energy Control Problem, a famous optimal control problem. More generally, in this

section, we address the theory of optimal control for any nonlinear cost function

and nonlinear dynamical system. In particular, Pontryagin’s method is described

to derive necessary conditions for the solution of an optimal control problem and

pseudospectral optimal control is described as a numerical method for solving optimal

control problems. Two biological applications of optimal control using pseudospectral

optimal control [10, 11] are presented at the end.

2.4.1 Pontryagin’s Minimum Principle

Optimal control is concerned with finding a control input to make a system perform a

certain action while satisfying a set of constraints on the end-points and throughout

the trajectory. The general optimal control problem [158, 159] can be expressed as
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follows.

min J = E(x(t0),x(tf ), t0, tf ) +

∫ tf

t0

F (x(t),u(t), t)dt

s.t. ẋ(t) = f(x(t),u(t), t)

e(x(t0),x(tf ), t0, tf ) = 0

h(x(t),u(t), t) = 0

(2.4.1)

The cost function consists of two parts, a function E : Rn × Rn × R × R 7→ R

which applies a weight to the state of the system at the initial and final times and a

function F : Rn×Rnd ×R 7→ R which applies a weight for the duration of the control

action that depends on the state and control time traces. Both of these functions are

assumed to be at least once differentiable in each of their arguments. The dynamical

equation f : Rn × Rnd × R 7→ Rn describes the controlled evolution of the system.

The end-point constraints e : Rn × Rn × R × R 7→ Rne consist of ne expressions to

constraint the states at the initial and final times, such as an initial condition. The

path constraints h : Rn × Rnd × R 7→ Rnh are used to impose realism on the system

or to ensure safety constraints are preserved. Without going into details, any solution

to Eq. (2.4.1) must also satisfy the Hamiltonian minimization problem,

min F (x(t),u(t), t) + λT (t)f(x(t),u(t), t)

s.t. h(x(t),u(t), t) = 0

(2.4.2)

where λ(t) ∈ Rn is the vector of co-states and the end-point minimization problem,

min E(x(t0),x(tf ), t0, tf )

s.t. e(x(t0),x(tf ), t0, tf ) = 0

(2.4.3)

An optimal control that is at least a local minimum is found from the stationarity

condition for Eq. (2.4.2) by differentiating its Langragian with respect to the input,

∂

∂u

(
F (x,u, t) + λTf(x,u, t) + µTh(x,u, t)

)
= 0 (2.4.4)
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where the co-states evolve according to the derivative of the Lagrangian of the Hamil-

tonian minimization problem with respect to the states,

λ̇(t) = − ∂

∂x

(
F (x,u, t) + λTf(x,u, t) + µTh(x,u, t)

)
(2.4.5)

with initial and final values found from the transversality condition determined by

differentiating the Lagrangian of the end-point ,

λ(t0) = − ∂

x(t0)

(
E(x(t0),x(tf ), t0, tf ) + νTe(x(t0),x(tf ), t0, tf )

)

λ(tf ) =
∂

∂x(tf )

(
E(x(t0),x(tf ), t0, tf ) + νTe(x(t0),x(tf ), t0, tf )

) (2.4.6)

The necessary conditions written in Eqs. (2.4.4), (2.4.5), and (2.4.6) are used as val-

idation when solving the original optimal control problem in Eq. (2.4.1) numerically.

These conditions are used to solve the general minimum energy target control prob-

lem and derive the controllability Gramian in Appendix A. The following subsection

presents a numerical scheme to solve Eq. (2.4.1) which is applied to two biological

systems by the author.

2.4.2 Pseudospectral Optimal Control

In general, there is no analytic solution to Eq. (2.4.1) and so numerical methods

must be used instead. A number of methods using the relationship between the

evolution of the states in the constraints of Eq. (2.4.1) and the costates in Eqs.

(2.4.5) and (2.4.6) have been used such as shooting methods and boundary value

problem solving methods. These methods which require solving for the evolution of

the costates are called indirect methods. With the advances in computing speeds

and storage capabilities, direct methods are now competitive alternatives to these

earlier methods which instead attempt to solve the optimization problem directly by

transcribing it to a nonlinear programming problem. The transcription is done by the

following procedure [160–163]:

1. A set of nn collocation points are computed as the roots of an othogonal poly-
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nomial at which we will compute the states and controls.

2. To discretize the states and controls, we approximate them on a basis of La-

grange interpolating polynomials.

Lj =
nn∏

k=0
k 6=j

τ − τk
τj − τk

, j = 0, . . . , nn (2.4.7)

The time-varying vector of states and controls are represented as nn vectors Xk

and Uk, k = 0, . . . , nn, respectively, which can be recovered using,

x(τ) ≈X(τ) =
nn∑

k=0

XkLk(τ)

u(τ) ≈ U(τ) =
nn∑

k=0

UkLk(τ)

(2.4.8)

3. The dynamical equations are represented as,

ẋ(τj) ≈
nn∑

k=0

XkL̇j(τk) (2.4.9)

Often the derivatives of the Lagrange interpolating polynomials in Eq. (2.4.7)

are denoted in matrix form Dk,j = L̇j(τk). The integral in the cost function, sim-

ilarly, is approximated with Gauss-Legendre quadrature as we have discretized

the states and controls at the roots of a Legendre polynomial.

4. After applying the approximate forms of the dynamical equations in Eq. (2.4.9),

the NLP is composed,

min Ĵ = E(X0,Xf , t0, tf ) +
nn∑

k=0

wkF (Xk,Uk, τk)

s.t.
nn∑

j=0

Dk,jXj −
tf − t0

2
f(Xk,Uk, τk) = 0, k = 0, . . . , nn

e(X0,Xf , t0, tf ) = 0

h(Xk,Uk, τk) = 0, k = 0, . . . , nn

(2.4.10)
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The nonlinear programming in Eq. (2.4.10) can be solved using many different tech-

niques such as interior point algorithms (implemented in IPOPT) [164] or sequential

quadratic programming (implemented in SNOPT) [165]. The states and controls can

be recovered using Eq. (2.4.8). A number of implementations of pseudospectral opti-

mal control exist such as the proprietary codes DIDO [166] and GPOPS [163] and open

source implementations such as PSOPT [167]. In the applications of pseudospectral

control contained in the following subsections, we use PSOPT which performs the

discretization described above to transcribe an optimal control problem to a nonlinear

programming problem (NLP), and then we use IPOPT [164] to solve the resulting

NLP.

Two applications of numerical optimal control to which the author contributed

are discussed in the following two subsections. The first examines a simple model of

autophagy and attempts to determine combinations of drug interventions which can

either up-regulate or down-regulate the number of autophagic vesicles produced. The

second examines the FDA approved model of diabetes and determines a minimum

input (minimum insulin) regimen to maintain a diabetic patient’s blood glucose level

after ingesting a meal.

2.4.3 Controlling and Regulating Autophagy [10]

Autophagy is a cellular recycling process that plays an important role in protein

synthesis through degradation of cytoplasmic contents [168]. It has been shown to be

a ‘double-edged sword’ [169] in terms cancer, where autophagy can either reduce the

stress of the tumor environment or induce cell death if recycling is excessive. Thus,

there may be benefits to either up-regulate (increase) or down-regulate (decrease) the

current level of autophagic vesicle production in the absence of any external drug’s

influence

The mathematical model of autophagy is constructed with four kinases that have

been shown to play critical roles in regulating autophagy and are also potential drug

targets. The model captures important features shown to occur when cells under
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Figure 2.5: The model of autophagy using differential equations. (A) The diagram which
describes the relationship between each kinase and whether it plays a role turning it on or
off, as well as each control input and whether it inhibits or activates each kinase. (B) The
steady state behavior of the autophagic vesicle production as a function of the energy supply
CEn and the nutrient supply CNu. (C)-(F) Sample time trajectories of autophagic vesicle
production after a coordinated change in CEn and CNu. (C) The response to a drop from
CNu = CEn = 1 to CNu = CEn = 0.2. (D) The response to a drop from CNu = CEn = 1 to
CNu = CEn = 0.6. (E) The response to a rise from CNu = CEn = 0.2 to CNu = CEn = 0.6.
(F) The response to a rise from CNu = CEn = 0.2 to CNu = CEn = 1. Adapted from [10].

low stress (low level of autophagy), moderate stress (oscillatory behavior) and high

stress (high level of autophagy). A schematic of the dynamical system is shown in

Fig. 2.5(A) where each state is represented by two black boxes, one which represents

the ‘off-state’ and one which represented the ‘on-stage’ for the four kinases, and one

additional state for the number of autophagic vesicles. The interactions between

states are drawn as blue arrows. The six drugs introduced to this system are drawn

in red, where each circle represents the drug concentration state. Red edges represent

how the drug concentrations may either activate or inhibit each of the kinases. For

the set of parameters considered (collected in Table A.1), the steady state behavior

of the autophagic vesicles, as a function of the parameters CNu and CEn are shown

in Fig. 2.5(B) where three distinct regions are scene. For either low CEn and/or low

CNu, there is high autophagic vesicle production. For intermediate values of CEn and

CNu, the number of autophagic vesicles oscillates about a moderate value. Finally,

for high CEn and high CNu, the autophagic vesicle production is low.

Four step responses to changes in CEn and CNu are shown in Figs. 2.5(C) thru

2.5(F).

The dynamical system that describes autophagy in an average cell consists of 5
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differential equations that describe the internal state of the cell and an additional 6

differential equations that describe the current drug concentration of possible drug

interventions.

ẋ1(t) = (1− x1(t))CNuH(w1(t))H(w2(t))− x1(t)h12(x2(t))h13(x3(t))

ẋ2(t) = (1− x2(t))h23(x3(t))H(w3(t))− x2(t)h21(x1(t))

ẋ3(t) = (1− x3(t))k1H(w4(t))− CEnx2(t)x3(t)H(w5(t))

ẋ4(t) = (1− x4(t))h42(x2(t))H(w2(t))H(w6(t))− k@x4(t)

ẋ5(t) = k3x4(t)− k4x5(t)

ẇk(t) = uk(t)− δkwk(t), k = 1, . . . , 6

(2.4.11)

where the kinase interaction Hill functions hkj have the form,

hkj(xj(t)) = rb,kj + (rm,kj − rb,kj)
x
nkj
j (t)

x
nkj
j (t) + θ

nkj
kj

(2.4.12)

and the drug concentrations also appear in Hill functions H of the form,

H(wk(t)) = rm − (rm − rb)
wnk (t)

wnk (t)− θn (2.4.13)

The Hill functions in Eqs. (2.4.12) and (2.4.13) have sinusoidal behavior in terms of

the input.

A therapy is defined as a subset of the six possible drugs, denoted T ⊆ D =

{1, 2, 3, 4, 5, 6}. We are interested in answering two questions; (i) whether a particular

therapy is capable of up-regulating or down-regulating autophagy given particular

values of CEn and CNu and (ii) which therapies are the most efficient at performing

the particular tasks. These tasks can be framed as a two phase optimal control
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problem,

min J =
∑

j∈T

∫ tf

0

uj(t)dt

s.t. Ẋ(t) = f(X(t),u(t)), 0 ≤ t ≤ tf

uj(t) = 0, ∀j ∈ D\T , 0 ≤ t ≤ tf

xf5 − ε ≤ x5(t) ≤ xf5 + ε, t1 ≤ t ≤ tf

0 ≤ wj(t) ≤ wmax
j , ∀j ∈ D

0 ≤ uj(t), ∀j ∈ D

X(0) =



x0

06




(2.4.14)

whereX(t) =

[
xT (t) wT (t)

]T
is a vector of all eleven states satisfying Eq. (2.4.11)

with initial condition xk(0) = xk,0 for k = 1, . . . , 5 and wk(0) = 0 for k = 1, . . . , 6,

i.e., initially there is no drug present in the system. The drug concentrations have

an upper bound determined as the level at which the drug becomes toxic, denoted

wmax
j for j = 1, . . . , 6. If a drug is not present in the therapy T , then uj(t) = 0 for

all time. The first phase of the optimal control problem drives the number of AVs to

the desired level, between xf5 − ε ≤ x5(t) ≤ xf5 + ε, while the second phase maintains

the number of AVs to be within this interval.

To describe the optimal control, we plot the integral of the drug, i.e., the total

amount of drug administered up to time t, which we denote r∗k,j(t) =
∫ t
t0
uk(τ)dt where

j denotes the number of drugs in the therapy. This can be more enlightening as the

optimal control input we find has pulsatile behavior, i.e., as the cost function is linear

in u, there may be Dirac-delta function-like behavior. Not all of the drugs are capable

of performing the desired control goals laid out in the optimal control problem in Eq.

(2.4.14). Drugs 2 and 6 were found capable of down-regulating the number of AVs to

certain levels on their own as shown in the first two rows of Fig. 2.6. Drug 5 is capable

of up-regulating the number of AVs alone as shown in the third row of Fig. 2.6. From

the first column of Fig. 2.6, we see that there are a number of jumps, representing
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Figure 2.6: Single drug therapies for down-regulating and up-regulating autophagy. In the
first row, drug 4 is used to down-regulate autophagy to an interval around x∗5 = 10. In the
second row, drug 2 is used to down-regulate autophagy to an interval around x∗5 = 9. In the
third row, drug 5 is used to up-regulate autophagy to an interval around x∗5 = 37. The first
column shows the optimal amount of drug developed as time grows. The second column
shows the current drug concentration as a function of time. The number of autophagic
vesicles as a function of time is shown in the third column and the time evolution of the
other four states is shown in the fourth column.
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pulses in the optimal control input. A detailed analysis of the single drug therapies

is shown in the supplementary information of [10] in order to understand which dual

drug therapies are more efficient. A selection of dual drug therapies is shown in Fig.

2.7. In the first row, drugs 2 and 6 are used to down-regulate the number of AVs

to a level that neither drug is capable of doing alone when the parameters are set

to CNu = CEn = 0.1. This non-obvious therapy is the type of result that numerical

models are useful for uncovering, as one may be unwilling to try a therapy composed

of two drugs incapable of performing the desired task. The second row shows the dual

therapy composed of drugs 2 and 6 again, but with the parameters CNu = CEn = 0.6.

For these values of CNu and CEn, drug 2 can perform the desired control goal but

drug 6 cannot. When combined into a dual therapy, the optimal solution reduces the

amount of drug 2 administered by over 80%. This result suggests that one can reduce

the amount of drug 2 required to down-regulate autophagy by introducing drug 6.

The third row shows the dual therapy composed of drugs 3 and 6 to down-regulate

autophagy with the parameters set to CNu = CEn = 0.6. Similar to the second row,

drug 3 is capable of performing the desired control goal while drug 6 cannot, but

when combined the amount of drug 3 required is reduced. The fourth row shows the

optimal control to down-regulate autophagy using drugs 1 and 6 with the parameters

set to CNu = CEn = 0.6. This combination is particularly interesting as neither drug

is capable of performing the control goal alone, but drug 1 is uncapable of down-

regulating autophagy at all. Dual therapies like drugs 1 and 6 work in tandem with

each other which can be seen in panels Figs. 2.7(O) and 2.7(P) where first drug 1 in

a single pulse increases the number of AVs, outside the oscillatory regime, at which

points drug 6, in a single pulse, down-regulates the number of AVs to the desired

level.

While the results shown in Figs. 2.6 and 2.7 are positive, the optimal control

problem is capable of determining non-effective dual therapies as well, that is, those

which are neither no better than the respective single drug therapies, or are incapable

of performing the desired control goal. Beyond the dual therapies, triple or quadruple
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Figure 2.7: Duel drug therapies for down-regulating autophagy. The first row uses drugs
2 and 6 to down-regulate autophagy for CNu = CEn = 0.1. The second row uses drugs
2 and 6 to down-regulate autophagy for CNu = CEn = 0.6. The third row uses drugs 3
and 6 to down-regulate autophagy for CNu = CEn = 0.6. The four row uses drugs 1 and
6 to down-regulate autophagy for CNu = CEn = 0.6. The first column is the amount of
drug used up to time t. The second column is the current drug concentration at each time.
The third column is the amount of AVs and the fourth column is the time trajectory of the
remaining four states.
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therapies can be systematically investigated, as running numerical simulations are

vastly cheaper than in vivo tests. Successful numerical results can guide which drug

combinations should be investigated in vivo though, especially those combinations

which are non-obvious when examining each drug’s individual capabilities.

2.4.4 Regulating Glucose in Type I Diabetes [11]

A second example of numerical optimal control concerns blood glucose levels in Type

I diabetics. Patients with Type I Diabetes are unable to produce insulin due to their

immune system attacking the beta cells which would normally produce it. Instead,

insulin is typically injected by the patient prior to injesting glucose, where the amount

to inject is determined from the current blood glucose level, the size of the meal, and

the patient’s sensitivity to insulin. Since the 1990s though, insulin pumps were devel-

oped which are capable of both delivering a basal level of insulin constantly as well as

delivering an insulin bolus prior to meals, similar to the injections self-delivered pre-

viously. A number of control techniques have been developed for the insulin available

pumps, such as PID, linear MPC, and probabilistic predict control. Each of these

control methods though use simplified versions of the full FDA approved in silico

model of blood glucose regulation.

Rather than using a simplified version of the model, we develop an optimal con-

trol problem using the complete model. In addition to the model described by 17

differential equations, xk(t), we include two inputs, insulin uI(t) and glucagon uG(t),

and a meal of known size and time, D(t). To avoid off-target affects, the amount of

insulin and glucagon is limited with an integral constraint and the amount of glucose

must not drop below a certain value (which would lead to hypoglycemia) or exceed a

certain value (which would lead to hyperglycemia). In addition to the time-varying

portion of the model, there also exist a set of parameters, ΘG,B. The complete optimal
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control problem can be stated as,

min J =

∫ tf

t0

[αpBGI(G(t)) + αIu
p
I(t) + αGu

p
G(t)] dt, p ∈ {1, 2}

s.t. ẋ(t) = f(x(t),u(t), D(t),ΘGb), u(t) = [uI(t), uG(t)]T

G(t) = x1(t)/VG

GL ≤ G(t) ≤ GU , uLI ≤ uI(t) ≤ uUI , 0 ≤ UG(t) ≤ uUG

0 ≤
∫ tf

t0

uI(t)dt ≤ ΦU
I , 0 ≤

∫ tf

t0

uG(t)dt ≤ ΦU
G

x(t0) = x̄

(2.4.15)

where the function BGI(G(t)) is called the Blood Glucose Index defined as,

BGI(G(t)) = 10
(
1.509

(
(lnG(t))1.084 − 5.3811

))2
(2.4.16)

assigns a risk of hypoglycemia or hyperglycemia to a particular blood glucose level.

Details of the dynamical equations are contained in Appendix A.2. A network repre-

sentation of the dynamical equations that govern the glucose-insulin-glucagon system

is shown in Fig. 2.8. The dashed line blocks are the various subsystems which com-

pose the full system. The two driver nodes, Isc1 and Hsc1, directly receive the inputs

uI (insulin) and uG (glucagon), respectively. The single target node is the blood glu-

cose level, Gp. A plot of the cost BGI(G(t)), defined in Eq. (2.4.16), is shown in Fig.

2.9(A) with the minimum represented as Gd, the desired blood glucose level. The

convexity of this function in the range of G(·) of interest is clear. In type I diabetics,

a useful application of the pump beyond responding to the input of glucose from a

meal, is to provide a constant basal level of insulin so that in the absence of a meal

their blood glucose remains near to Gd. In Fig. 2.9(B), the blood glucose level for

three selections of basal insulin inputs, ub are shown, 0, 1.2 × 10−3, and 2.4 × 10−3,

the third of which is capable of lowering the blood glucose level to the desired level

in the absence of a meal. This value appears in the optimal control problem in Eq.

(2.4.15) as the lower bound for the insulin input uI(t). To judge the quality of a
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Glucose Subsystem

Insulin Subsystem

Endogenous Glucose Production

Glucose Utilization

Glucagon Subsystem

Subcutaneous Insulin Subcutaneous Glucagon

Gp
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XL
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X
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H

H
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Isc1

Isc2
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uI uG

G

V = {Gp, Gt, Il, Ip, I
′, XL, Qsto1, Qsto2, Qgut, X, SRs

H , H,XH , Isc1, Isc2, Hsc1, Hsc2}
D = {Isc1, Hsc1}
T = {Gp}

Figure 2.8: A graph representation of the FDA approved dynamical model of the insulin-
glucose system in humans. An edge from state xk to xj implies that xk(t) appears in the
dynamical equation for ẋj(t). The blocks comprising sets of nodes represent the subsystems
that make up the entire system. The inputs are injected into states Isc1(t) and Hsc1(t),
making them the driver nodes, and the target, Gp(t), is the value which we would like to
control.

Figure 2.9: On the left, the plot of BGI(G) showing that there exists a single minimum
located at the desired glucose level, Gd. On the right, plots of the blood glucose, G(t),
responding to constant basal insulin rates, ub. This analysis is used to determine what
constant value of insulin should be provided through the pump so that, in the absence of a
meal, G(t)→ Gd.
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solution, from an optimal solution we determine the minimum value that the blood

glucose achieves, denoted Gmin, the maximum value that the blood glucose achieves,

denoted Gmax, and the integral of the BGI, denoted,

∆ =

∫ tf

t0

BGI(G(t))dt (2.4.17)

Also used is the total amount of insulin delivered to the patient, denoted,

φI =

∫ tf

0

uI(t)dt (2.4.18)

The first cost function we consider sets αG = 0, αI = 1, and αp = ε. In Fig. 2.10, the

effect of different choices of ε and φI are shown. For p = 1, we call the problem the

Regulation and Minimum Fuel (ReMF) problem while for p = 2, we call the prob-

lem the Regulation and Minimum Energy (ReME) problem. These two choices yield

different insulin schedules, where the ReMF problem typically results in a pulsatile

solution, that is uI(t) may have a point discontinuity, while the ReME problem typi-

cally results in a continuous insulin regime.

In all of the simulations, we choose the final time tf = 300 and the patient con-

sumes a meal of 70 grams of glucose at time t = 60. The meal is represented by a

delta function, D(t) = 70δ(t− 60). We compare the optimal solutions found with the

standard therapy which consists of 10 units of insulin injected 30 minutes before the

meal.

As a function of ε, there is a dynamic range for each of the metrics, Gmin, Gmax, ∆

(defined in Eq. (2.4.17)), and φI (defined in Eq. (2.4.18), outside of which exponen-

tial changes in ε lead to little to no change in these metrics. From this analysis, we

are able to find a value of ε that yields a solution with small ∆ without ε becoming

excessively large for both the ReMF and the ReME frameworks, which are circled in

each of the panels in Fig. 2.10. These choices of ε are used to solve the optimal control

problem in the ReMF and ReME, respectively, shown in Fig. 2.11. The time trace

of the blood glucose level using the ReMF framework (blue), the ReME framework
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Figure 2.10: The effect of the weighting term ε on the metrics used to judge the quality of
an optimal solution. We see for each metric there is a dynamic range for which it changes
rapidly with ε but that outside this range of ε, there is little or no change. The blue dashed
lines correspond to the ReMF framework while the pink dashed lines correspond to the
ReME framework. The circled points correspond to the value of ε chosen as a trade-off
between keeping ∆ small while ensuring φI is not excessively large.

(pink), and the standard therapy (orange) is shown in Fig. 2.11(A). We see that the

standard therapy, while having a smaller initial minimum value before the meal and

a smaller overshoot after the meal, the blood glucose is significantly lower than the

other two therapies. The optimal glucose time traces are almost indistinguishable,

despite the fact that in Fig. 2.11(B) we see that the ReMF insulin infusion rate has

much sharper, and larger peak than the ReME insulin infusion rate. The cumulative

insulin, rI(t) =
∫ t

0
uI(τ)dτ , for each of the three therapies is shown in Fig. 2.11(C).

We see that for both ReMF and ReME frameworks, the integrals of the two curves

are nearly equal as seen by the sharp increases. The linear slope afterwards is due to

the basal level of insulin also provided from time t = 50 to the final time tf = 300.

2.5 Conclusion

This chapter presented many of the key definitions and theorems used throughout

the remainder of this dissertation concerning graph theory, control theory, networks,

and the control of complex networks. An attempt was made to coalesce the many
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Figure 2.11: For the values of ε chosen in Fig. 2.10, the optimal solutions in the ReMF
and ReME frameworks are computed and plotted in blue and pink, respectively. The time
trace of the glucose for each of the therapies is shown in (A), the insulin infusion rate is
shown in (B), and the cumulative insulin supplied is shown in (C). The time trace of the
glucose and the cumulative insulin used for the standard therapy are shown in orange for
comparison in (A) and (C), respectively.
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definitions of types of control problems (structural controllability versus classical con-

trollability), types of input frameworks (driver nodes versus actuator nodes), and

optimization problems (minimal controllability versus efficient control). The review

of the current state of the field of controlling complex networks is necessary to prop-

erly place the results contained in the following sections as the confusion between

structural controllability and classic controllability especially continues to plague the

field.

Throughout this dissertation, only the classic notion of controllability 2.3.2 and

the driver node framework is used whenever we choose an input matrix B. In the

next chapter, random graphs are constructed using methods described above such

Erdős-Rényi graphs and Scale Free graphs and driver nodes are selected randomly

such that controllability is ensured according to the Minimum Driver Node Theorem

2.3.4 or the positive definiteness of the controllability Gramian using Thm 2.3.5.

Graph symmetries are investigated in detail in Chapter 4 where we make use of

permutations 2.2.21, symmetries 2.2.22, and the automorphism group 2.2.23.

The controllability Gramian in 2.3.8 is investigated in detail for lattice graphs in

Chapter 5 where exact expressions for the control energy, Eq. (2.3.9), in terms of

graph properties are derived.
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Target Control

3.1 Introduction

The motivation for this chapter finds its origin from the results in [126] which, as

discussed in the previous chapter, found that the spectrum of eigen-energies spans

multiple orders of magnitude. This result implies that, as an arbitrary control ma-

neuver β has components along each eigen-direction of the controllability Gramian,

the control energy is composed of a term proportional to the worst-case energy.

βTW−1(tf )β =
n∑

k=1

1

µk

(
βTξk

)2
(3.1.1)

On the one hand, it would seem that controlling complex networks is hopeless as for

generic β, βTξ1 6= 0 and 1
µ1

is extremely large. On the other hand, one should ask

whether the control application truly demands complete controllability. This chapter

presents two alternative frameworks to that of complete controllability:

1. Target Control: If only a subset of all of the nodes, T ⊂ V must be driven

to some final state, then the matrix W−1(tf ) in Eq. (3.1.1) is replaced by

(CW (tf )C
T )−1 where CW (tf )C

T is a principal submatrix of W (tf ), which has

a provably larger minimum eigenvalue than the original matrix.

2. Balanced Control: One issue that is not often mentioned in the literature

is the requirement that, at time tf , the state must be equal exactly to the
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prescribed final state x(tf ) = xf . If one relaxes this constraint so that instead

we demand ||x(tf )− xf || is small, the control energy can be reduced.

The general problem, where some nodes have a final constraint (target control) and

other nodes have a final cost (balanced control) is addressed in Appendix B.1. Numer-

ical results for the combined problem are informative for demonstrating the transition

between target control and balanced control. The general result is then specialized

to both the target control case in Section 3.2 and the balanced control case Section

3.3. An extension of balanced control to handle uncertainty in the system matrix

is demonstrated in Section 3.4. Additionally, at the end of the chapter, we discuss

applications to an iterative control strategy using the geometry of minimum energy

control in Section 3.5 and then an application to countermeasures against malicious

attacks in Section 3.6.

3.2 Scaling of Control Energy [1]

This section covers the main results published in [1] where spectral properties of

principal submatrices of the controllability Gramian (see Eqs. (2.3.7) and (2.3.8))

are investigated numerically and some scaling behavior is explained analytically. The

results for the general problem (with both final costs and final constraints) derived in

Appendix B.1 is specialized to the case when there are only final constraints. Details

of the specializations are contained in Appendix B.2 so only the results are presented

here for brevity.

The optimal control problem that is solved in this section is,

min J =
1

2

∫ tf

0

uT (t)u(t)dt

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, Cx(tf ) = yf

(3.2.1)

The solution of Eq. (3.2.1) is contained in Appendix B.2, but here we focus on only

the control energy. The control energy can be expressed as a quadratic form with the
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Figure 3.1: Control Energy for all possible sets of target nodes in the graph shown in
Fig. B.1(A) in Appendix B.1. The final states are always set to xj,f = 1 and the final time
tf = 2. The red line is the geometric mean of the control energy over each cardinality. The
blue line represents the control energy for a particular sequence of adding target nodes one
by one, namely in the sequence, (v4, v3, v5, v1, v0, v6, v2).

inverse of the output controllability Gramian.

E(T ) = βT
(
CW (tf )C

T
)−1

β (3.2.2)

In this section, we assume that the triplet (A,B,C) is output controllable (see Thm.

2.3.1) so that the matrix CW (tf )C
T is positive definite (even if W (tf ) is nonsingular).

If we instead define β ∈ Rn and substitute βCT into Eq. (3.2.2), we show that Eq.

(3.2.2) is strictly less than Eq. (3.1.1). From the definition of the C matrix, that is,

each of its rows is a distinct unit vector corresponding to each of the target nodes,

the output controllability Gramian W̄ = CW (tf )C
T is a principal submatrix of the

controllability Gramian.

Holding the graph’s adjacency matrix A, the set of driver nodes D (and thus B),

and the desired final target state, yf , constant, the control energy in Eq. (3.2.2)

can be thought of as a function of the set of targets, T . For each number of target

nodes 1 ≤ nt ≤ n, there are
(
n
nt

)
ways to select the target nodes. The control

energy of graphs was first thoroughly investigated in [126] which implicitly considered

the case that T = V , i.e., the traditional concept of controllability as opposed to

target controllability. An important fact that follows directly from the optimal control

problem in Eq. (3.2.1) is that the control energy monotonically increases with respect
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to target node sets T1 ⊆ T2, that is,

E(T1) ≤ E(T2) (3.2.3)

holding the final conditions for those nodes vj ∈ T1 constant. We plot the control

energies for the network shown in Fig. B.1(A) (which can be found in Appendix B.1)

where the driver nodes are still selected to be D = {v1, v2} and the set of target nodes

is iterated over all possible subsets of V in Fig. 3.1. We see that while clearly the

number of target nodes, nt, does not determine the order of magnitude of the control

energy, at least for this small graph, a trend can be observed,

〈log10 (E(T ))〉|T |=nt ∼ η
nt
n

(3.2.4)

where the average is taken over all sets of target nodes of cardinality equal to nt and

η is the rate of increase with nt. We choose to take the average of the logarithm

of the control energies in Eq. (3.2.4) (equivalently, the logarithm of the geometric

mean) because even when we hold nt constant, the control energy values span across

multiple orders of magnitude which would lead to the algebraic mean over-representing

the few largest control energy target node sets. The geometric mean is shown as the

red curve in Fig. 3.1. An example of the monotonicity property of the control energy

with respect to a particular target node sequence, as expressed in Eq. (3.2.3), is

shown as the blue curve in Fig. 3.1 where the sequence is listed in its caption. The

inconsistent rate of increase of E with nt is typical for generic sequences of nodes.

Note that the control energy in Eq. (3.2.2) depends on the specific choice of the

control maneuver β. To eliminate these additional variables we examine the worst-

case control energy.

Definition 3.2.1 (Worst-Case Control Energy [1]). We assume output controllability.

From the Rayleigh-Ritz theorem, for any control maneuver βT , we can bound the
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control energy using,

0 <
||β||22
µmax

≤ βT W̄−1β ≤ ||β||
2
2

µmin

<∞

where µmin and µmax are the smallest and largest eigenvalues of W̄ (tf ), respectively.

Thus, the worst case control energy, i.e., the maximum control energy for constant

||β||22, corresponds to the case the control maneuver is parallel with the eigenvector

corresponding to µmin and,

Emax(T ) = max
||β||22=1

E(T ) =
1

µmin

(3.2.5)

An important property we use in the derivation is the Cauchy Interlacing Theorem.

Theorem 3.2.1 (Cauchy Interlacing Theorem [170]). Let M be a n-by-n square,

positive definite and symmetric matrix and let M ′ be a principal submatrix of M

of dimension m < n. Then if the eigenvalues of M , denoted λk(M), k = 1, . . . , n

and M ′, denoted as λk(M
′), k = 1, . . . ,m, are ordered as λk+1(M) ≤ λk(M), and

λk+1(M ′) ≤ λk(M
′), the eigenvalues interlace as,

λm+1(M) ≤ λm(M ′) ≤ λm(M) ≤ . . . ≤ λ2(M) ≤ λ1(M ′) ≤ λ1(M)

To better describe the iterative process below, we associated each controllability

Gramian with a particular set of target nodes with subscripts WT . Define S as a

sequence of the nodes such that Sj ⊆ Sk ⊆ V for j ≤ k and |Sk| = k, k = 1, . . . , n.

To derive the rate of increase of the smallest eigenvalue of the output controllability

Gramian, we relate WSj = Wj to WSj+1
= Wj+1 for any generic sequence S. We can

relate the two output controllability Gramians,

Wj+1 = W̄j + dWj

=




0 0Tnt

wj Wj


+



wj,j wT

j

0nt Ont,nt




(3.2.6)
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Let µ
(j+1)
min and µ

(j)
min be the smallest eigenvalues of Wj+1 and W̄j, respectively, with

associated eigenvectors ξj+1 and ξ̄j and from Thm. 3.2.1 we know µ
(j+1)
min ≤ µ

(j)
min.

Wj+1ξj+1 = µ
(j+1)
min ξj+1 and W̄j ξ̄j = µ

(j)
minξ̄j

Then, pre-multiplying Eq. (3.2.6) by ξTmin(T ) and post-multiplying by ξ̄min(T̄ ) yields,

ξTWT ξ̄ = ξT W̄T̄ ξ̄ + ξTdWT̄ ξ̄

µmin(T )ξT ξ̄ = µmin(T̄ )ξT ξ̄ + ξTWTW
−1
T dWT̄ ξ̄

µmin(T ) = µmin(T̄ ) + µmin(T )
ξTW−1

T dWT̄ ξ̄

ξT ξ̄

Using Def. 3.2.1, the increase of control energy from T̄ to T = T̄ ∪ vk is,

Emax(T ) = Emax(T̄ )ηk

Thus, for each sequence of nodes, there are increases ηk, k = 1, . . . , n. Taking the

logarithm we get,

logEmax(T )− logEmax(T̄ ) = log ηk > 0.

Now, taking any two subsets among the sequence Sk ⊂ Sj, we define the increase,

logE(j)
max − logE(k)

max =

j−1∑

`=k

log η` = (j − k) log η̄k→j (3.2.7)

Note that the value η̄k→j depends only on the specific sets Sk and Sj and not the path

taken represented by the intermediate sets S`, k < ` < j. We see numerically that for

a particular graph, the average over all pairs of sets Sk ⊂ Sj, 〈log η̄k→j〉 = η
n
. This

suggests that, fixing k, we can write the average control energy as,

〈logE(nt)
max〉 = 〈logE(k)

max〉 −
k

n
η +

nt
n
η

=
nt
n
η + Ck

∼ nt
n
η
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Figure 3.2: Example of the behavior of η. (A) The distribution of values of η̄10%→nt for
different choices of nt. We see that the distributions are fairly sharp peaked as represented
by the standard deviation in the inset. (B) We choose a particular sequence S and compute

the control energy for each set Sk. The increase of logE
(nt)
max is nearly linear. (C) For each

pair of adjacent sets of nodes in the sequence, Sj and Sj+1 we compute ηj = E
(j+1)
max /E

(j)
max.

The deviation of ηj around the mean is small. Adapted from [1].

where the constant Ck = 〈logE
(k)
max〉 − k

n
η is found by choosing a reasonable value of

k.

As an example of our approximation that log η̄k→j, defined in Eq. (3.2.7), is

constant, in Fig. 3.2(A) we plot the distribution of the values η for k = n/10 and nt >

k. The probability distributions are fairly sharp peaked, as shown by the standard

deviations plotted in the inset. Additionaly, for a typical sequence, we plot the worst-

case control energy, logE
(nt)
max, in Fig. 3.2(B) which we see is nearly linear. For this

same sequence, in Fig. 3.2(C), we plot the ratio of each adjacent worst-case control

energy values, ηj = E
(j+1)
max

E
(j)
max

, which we see is nearly constant with only a small deviation.

The results contained in Fig. 3.2 are for only a sample network, but they are typical

of any other network we examined.

To demonstrate the linear scaling of the worst-case energy, we construct directed

scale-free graphs using the static model [171] with given power-law exponent γ for

both the in-degree and out-degree distributions and with average degree 〈κ〉 along
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Figure 3.3: Worst-case energy scaling with cardinality of the target set in model networks
and real networks. For the model networks, each graph has n = 500 and fraction of driver
nodes nd/n = 50%. The worst-case control energy is computed using Eq. (3.2.5). The set
of target nodes is chosen uniformly at random. The worst-case control energy for various
scale-free graphs with different exponents γ and Erdos-Renyi graphs with average degree
〈κ〉 = 2.5 (A) and 〈κ〉 = 8.0 (B). (C) The rate of increase of the control energy, η, is plotted
as a function of the average degree for the graphs of varying heterongeneity. For the real
networks, we choose the driver node fraction nd/n to be at least 50% unless it is required to
be larger to guarantee controllability. (D) The worst-case control energy for the networks
s420st circuit and the TM metabolic network are shown. (E) The worst-case control energy
for the networks Carpinteria food web, the protein structure 1 network, and a Facebook
forum network. The source of these datasets is shown in Table 3.1. (F) The values of η for
the full collection of real datasets in each of the seven classes. Adapted from [1].
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with directed Erdős-Rényi graphs with average degree 〈κ〉. We compute the worst-

case control energy over random sets of target nodes of increasing size, nt. The edge

weights are drawn from a uniform distribution between 0.5 and 1.5, U(0.5, 1.5). A

self-loop is added to each node as well, Aj,j = ε + δj such that δj is drawn from a

uniform distribution U(−1, 1) and ε is chosen such that the largest real part of the

eigenvalues is equal to −1. For average degree 〈κ〉 = 2.5, we plot the average worst-

case control energy over multiple realizations of scale-free and Erdős-Rényi graphs

along with one standard deviation represented by the error bars in Fig. 3.3(A). For

small power-law exponent, the degree distribution is more heterogeneous while for

γ → ∞ the degree distribution becomes Poisson. This relation explains why, as γ

grows, the behavior of logE
(nt)
max behaves more like the Erdős-Rényi graph. For denser

graphs, kav = 8, the same result is shown in Fig. 3.3(B) except that η, the slope of the

energy curves, is much smaller. The combined relationship between control energy

and a graph’s average degree and degree heterogeneity is shown in Fig. 3.3(C). As

the average degree grows, i.e., the graphs become more dense, the rate of increase η

decreases, while as the graphs become more heterogeneous, η increases. This suggests

that the graph easiest to control is one which (i) has hetergeneous degree distribution

and (ii) is dense.

For the real datasets, we apply edge weights and self-loop values in the same

manner as was done for the model networks. The linear energy scaling in the mean of

the worst-case control energy is seen again for some sample networks, s420st circuit

and the TM metabolic network in Fig. 3.3(D) and the Carpinteria food web, the

protein structure 1 network, and a Facebook forum network in Fig. 3.3(E). The

sources for these real datasets are collected in Table 3.1. The value of η is computed

for all of the real datasets considered in Fig. 3.3(F). The same behavior is shown

for the model networks, that is, η increases with decreasing average degree, i.e., with

increasing sparseness.

Beyond the graph properties such as average degree and degree heterogeneity, in

Fig. 3.4 we investigate the role control parameters tf and nd have on the value of
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Type Name n ` 〈κ rangle d η

Circuit s208st[172] 122 188 1.54 14 13.16
s420st[172] 252 399 1.58 16 12.78
s838st[172] 512 819 1.6 20 11.86

Citation Kohonen[173] 3772 12731 3.38 9 6.32
SG[173] 1024 4919 4.8 11 5.37
SW[173] 233 994 4.27 7 5.84
Scien[173] 2729 10413 3.82 13 6.12

FoodWeb Carpinteria[174] 128 2290 17.89 6 7.36
Florida[173] 128 2106 16.45 5 5.14
Grassland[173] 113 832 7.36 3 3.92
LRL[175] 183 2494 13.63 6 4.29
StMarks[173] 54 356 6.59 7 4.74
Ythan[176] 92 417 4.53 3 5.77

Infrastructure AirTrafficControl[177] 1226 2615 2.13 25 5.11
IEEETG[178] 118 358 3.03 14 5.01
NorthEuroGrid[179] 236 640 2.71 23 6.04
USAir500[180] 500 5960 11.92 9 4.29

Metabolic CE met[43] 1173 2864 2.44 30 13.24
EN met[43] 916 2176 2.38 28 14.72
SC met[43] 1511 3833 2.54 22 10.09
TM met[43] 830 1980 2.39 18 14.09
TP met[43] 485 1117 2.3 15 11.94
Yu-11 (New)[181, 182] 1144 2293 2.0 16 50.83
CCSB-YI1 (New)[182, 183] 1278 3450 2.7 14 24.06

ProtStruct prot struct 1[172] 95 213 2.24 11 8.95
prot struct 2[172] 53 123 2.32 6 7.0
prot struct 3[172] 99 212 2.14 10 9.1

Social EmailURV[184] 1133 10903 9.62 8 4.49
FBForum[185] 899 7089 7.89 9 6.23
Jazz[186] 198 5484 27.7 6 3.36
RHS[187] 217 2672 12.31 6 3.67
UCIrvine[188] 1899 20296 10.69 8 3.56

Table 3.1: Real datasets and some graph properties. Taken from [1].
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Figure 3.4: The effect other control parameters have on the value of η. (A) The role of
the final time tf in the rate of increase of control energy. (B) The role of the driver node
fraction nd/n in the rate of increase of the control energy. Adapted from [1].

η. For the case of final time, we find that for small tf , the value of η decreases as

tf increases, while after tf becomes large enough, η approaches a constant as shown

in the inset in Fig. 3.4. This is expected as for Hurwitz adjacency matrix, the time-

varying portion of the controllability Gramian decays to zero as tf increases.

For the driver node fraction, we see that, for the extreme case when nd/n = 1,

i.e., every node is a driver node, η ≈ 0, that is, the control energy does not change

as a function of the target node fraction nt/n. On the other hand, as nd/n decreases,

the rate of increase of the control energy increases as seen in the inset in Fig. 3.4(B).

The above discussions provide some insight into the exponential scaling of the

control energy as a function of the number of target nodes, and how the specific

growth rate is affected by both graph properties such as average degree and degree

heterogeneity, as well as control parameters such as the control horizon, tf , and the

number of driver nodes, nd. While we can prove that the control energy monotonically

increases for a particular sequence of nodes added to the target set, and though we

can provide some evidence, both numeric and analytic, that the increase should be

exponential, any connections to the underlying structure of the graph remains to be

uncovered in Chapter 5.
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3.3 Balanced Control [2]

One of the main results of the previous section is that, as |T | = nt grows linearly,

the control energy grows exponentially which suggests that, as defined in the problem

statement in the introduction, the amount of control energy required will become

prohibitively large for even relatively small nt. Remember that the control energy

computed is the minimum control energy so that any other control input which at-

tempts to satisfy the final constraints in the specified time interval will require more

control energy.

The optimal control problem addressed in this section replaces the final constraints

in Eq. (3.2.1) with final costs.

min J =
1− α

2
||Cx(tf )− yf ||22 +

α

2

∫ tf

0

||u(t)||22dt

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0

(3.3.1)

Details of the solution of Eq. (3.3.1) are presented in Appendix B.3 which is specialized

from the general problem in Appendix B.1. For this problem, there are two costs, the

control energy and the deviation that are now functions of the weighting parameter

α and the set of target nodes, T .

The optimal control energy and deviation are examined in detail before moving to

numerical results. In this framework, the optimal control input can be simplified to,

u∗(t) = −1− α
α

BT eA
T (tf−t)CTγ(tf ) (3.3.2)

and the optimal difference at the final time is found by solving the linear system,

Ū(α)γ(tf ) = αβ, Ū(α) =
(
(1− α)W̄ + αI

)
(3.3.3)
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Using Eqs. (3.3.2) and (3.3.3) in the definition of the control energy, E =
∫ tf

0
||u(t)||22dt,

the optimal control energy can be expressed as a quadratic form that is a function of

the weight α.

E(α) = (1− α)2βT Ū−1(α)W̄ Ū−1(α)β (3.3.4)

The worst-case control energy in this case, which is equal to the largest eigenvalue of

the matrix Ū−1(α)W̄ Ū−1(α), can be computed as a maximization of a function over

the eigenvalues of the output controllability Gramian, Spec(W̄ ),

Emax(α) = max
µk∈Spec(WT ′ )

(1− α)2µk
(α + (1− α)µk)2

(3.3.5)

An example of the behavior of Emax(α) is shown in Fig. 3.5(A) in black, found

numerically by computing the largest eigenvalue of the matrix in Eq. (3.3.4). The

function being maximized in Eq. (3.3.5) is also plotted for each of the five eigenvalues

in the sample system’s controllability Gramian W̄ . We see that the worst-case control

energy Emax(α) is defined by each of the eigenvalues µk, for some interval of α. We

can find the maximum in Eq. (3.3.5) by letting µ ∈ (0,∞) be a continuous variable,

differentiating with respect to µ, and setting the result equal to zero,

∂

∂µ

(1− α)2µ

(α + (1− α)µ)2
= −(1− α)2 (1− α)x− α

(1− α)x+ α)3
= 0 (3.3.6)

The value of µ that maximizes the control energy E (and a solution of Eq. (3.3.6))

is µ = α
1−α . The worst-case control energy, Emax, can be determined from the two

eigenvalues closest to α
1−α , one from above and the other one from below. We can

see that if α = 0, the optimal µ = 0, so we get the worst-case control energy we saw

in the previous section, Emax = 1
µmin

. On the other hand, if α = 1, the worst-case

control energy is Emax = 0. The behavior of Emax for intermediate values of α is quite

complicated as Emax is non-differentiable due to the transitions from eigenvalue to

eigenvalue.

In this framework, we must also concern ourselves with the accuracy (or deviation)
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Figure 3.5: Relationship between worst-case control energy Emax and worst-case control
deviation Dmax and the spectrum of W̄ . The function to maximimze over the spectrum
of W̄ is plotted for each eigenvalue of µk. The black line is the maximum eigenvalue of
Ū−1(α)W̄ Ū−1(α) found numerically which is seen to coincide with the maximum of the
function in Eq. (3.3.5) over the eigenvalues µk. In (B), the maximum deviation is plotted
in black with the function in Eq. (3.3.8). The function being maximized in Eq. (3.3.8) is
also plotted for each of the eigenvalues of W̄ where it is clear it is maximized for µmin.

of the control action, defined previously as,

D = α2βT Ū−1(α)Ū−1(α)β (3.3.7)

The worst case deviation can be found in a similar fashion as for the worst case control

energy which is equal to the maximum eigenvalue of Ū−1(α)Ū−1(α).

Dmax = max
µk∈Spec(WT ′ )

α2

(α + (1− α)µk)2
=

α2

(α + (1− α)µmin)2
(3.3.8)

The maximum deviation for an example graph is shown in Fig. 3.5(B) where the black

line is the numerically found largest eigenvalue of Ū−1(α)Ū−1(α) while the function to

maximize in Eq. (3.3.8) is shown for each eigenvalue in the other colors. We see that,

as prediced in Eq. (3.3.8), only the smallest eigenvalue of W̄ dictates the worst-case

control energy. When α = 1, the deviation reaches some finite value, Dmax ∼ 1 while

when α = 0, the deviation (assuming output controllability) goes to zero.

The optimal cost can be written in terms of a weighted sum of the control energy
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Figure 3.7: The trade-off between control energy and deviation. (A) The control energy as
a function of − logα which we see approaches a constant as α→ 0 while it approaches zero
as α → 1. (B) The deviation as a function of − logα. When α → 0, the deviation D → 0.
On the other as α→ 1, the deviation increases linearly. The cost function approaches zero
as α→ 0 as expected. Adapted from [2].

and the deviation.

J∗ =
1− α

2
D +

α

2
E = J∗1 + J∗2 (3.3.9)

The control energy E is defined in Eq. (3.3.4) and the deviation D is defined in Eq.

(3.3.7). For small α→ 0, the deviation D → 0 while the control energy E approaches

a constant. For α → 1, the deviation now approaches a constant while the control

energy approaches zero. Taken together, the total cost J → 0 for both α → 0 and

α→ 1, which can be seen in Fig. 3.6. The control energy, deviation, and cost in the

small α regime for a variety of scale-free model networks is shown in Fig. 3.7. We
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see the expected behavior in Fig. 3.7(A), as α → 0, the control energy approaches

a constant, equal to 1
µmin

. We also see from Fig. 3.7(A) that as α → 1, the rate

of decay of the control energy is invariant with respect to the type of model graph.

This behavior is expected as, if α� (1−α)µmax, Emax ∼ (1−α)2µmax

α2 , where µmax does

not vary greatly across graphs. Similarly, the deviation in Fig. 3.7(B) is shown to

approach zero as α → 0. Finally, the optimal cost is shown to decay as α
µmin

in Fig.

3.7(C). The control energy for a variety of the systems from the literature is shown in

Fig. 3.8. Again, despite the graph topology, the control energy Emax(α) is still seen

to approach the constant 1
µmin

as α→ 0.

The framework of balanced control is specialized in the next section to the case

where the state matrix is not known exactly, but rather exists as one of N possible

realizations.
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3.4 Controlling Network Ensembles

The results of the previous section is used in this section to solve the problem of

controlling network ensembles. By a network ensemble, we mean a family of weighted

networks which satisfy a particular set of constraints [189, 190]. Each network has

the same number of nodes, n. From this ensemble, we sample N adjacency matrices,

which we call A = {A(j)|j = 0, . . . , N − 1}. For each realization, we assume that B

and C are identical as they are typically designed. This problem is concerned with

finding an optimal control capable of driving each system realization to some final

output approximately.

min J =
1− α

2

N−1∑

k=0

||Cxk(tf )− yf ||22 +
α

2

∫ tf

0

||u(t)||22dt, α ∈ (0, 1)

s.t. ẋk(t) = A(k)xk(t) +Bu(t), k = 0, . . . , N − 1

xk(0) = x0

(3.4.1)

The optimal control problem in Eq. (3.4.1) can be mapped to the general problem

presented at the beginning of this chapter in Eq. (3.3.1) by defining the composite

system,




ẋ0(t)

ẋ1(t)

...

ẋN−1(t)




=




A(0) On · · · On

On A(1) · · · On

...
...

. . .
...

On On · · · A(N−1)







x0(t)

x1(t)

...

xN−1(t)




+




B

B

...

B



u(t) (3.4.2)

as well as setting γ =
[
(Cx0(tf )− yf )T · · · (CxN−1(tf )− yf )T

]T
. Rather than

deriving the solution in terms of the composite system in Eq. (3.4.2), it is more

enlightening to perform the derivation in terms of the individual system highlighting

the special structure present. An example of the type of network ensemble of interest

is shown in Fig. 3.9(a) where the structure of the network is known but each edge

weight is drawn from a distribution depending on how much information is known
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Ã =




A1

A2

A3

A4




B̃ =




B

B

B

B




(b)

Figure 3.9: Description of the method for controlling network ensembles. (a) A network
where the weight associated with each edge is only known to be drawn from a distribution.
(b) A small graph with n = 5 nodes, nd = 1 driver node and nt = 1 target node. Two of
the edges may or may not exist, leading to N = 4 network configurations, shown on the
left. The composite system is a block diagonal matrix shown as Ā, and the composite input
matrix has 4 copies of B stacked vertically. Similarly, not shown is the composite output
matrix which also has 4 copies of C lined up horiztonally.

about it. In Fig. 3.9(b), another type of network ensemble is shown, where in this

case two edges may or may not exist in the actual network. The composite system is

shown where the matrix Ā is block diagonal and B̄ has N = 4 copies of B stacked on

top of each other.

The three quantities of interest to characterize the solution are the deviation,

DN(α), the control energy EN(α), and the total cost, JN(α), repeated here for clarity.

DN(α) =
N−1∑

k=0

||γk(tf )||22

EN(α) =

∫ tf

0

||u(t)||22dt

JN(α) =
1− α

2
DN(α) +

α

2
EN(α)

(3.4.3)

The vectors γk(tf ) = Cxk(tf )−yf represent the difference between the actual output

at the final time and the desired final output of realization k = 0, . . . , N − 1. The

solution is characterized in terms of the composite output controllability Gramian
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(COCG), a special version of Eq. (2.3.7) when the matrix A is diagonal.

W̄ =




CW0,0(tf )C
T CW0,1(tf )C

T · · · CW0,N−1(tf )C
T

CW1,0(tf )C
T CW1,1(tf )C

T · · · CW1,N−1(tf )C
T

...
...

. . .
...

CWN−1,0(tf )C
T CWN−1,1(tf )C

T · · · CWN−1,N−1(tf )C
T




(3.4.4)

where each block is the solution of the differential Sylvester equation,

Ẇj,k(t) = AjWj,k(t) +Wj,k(t)A
T
k +BBT , Wj,k(0) = On (3.4.5)

From Eq. (3.4.5), it is clear that Wj,k(t) = W T
k,j(t) so the composite output control-

lability Gramian is a symmetric matrix. Also, when j = k, the differential Sylvester

equation becomes the differential Lyapunov equation in Eq. (2.3.8). Further details

are discussed in Appendix B.4. The composite output controllability Gramian is a

symmetric semi-positive definite matrix of dimension Nnt. We denote the eigenvalues

and eigenvectors of W̄ as µk and ξk, respectively, such that µk ≥ µk+1. The matrix

that will appear in the three costs in Eq. (3.4.3) after applying the optimal control

and the optimal vector γ is a scaled and shifted version of the COCG, denoted

Ū(α) = (αINnt + (1− α)W̄ ) (3.4.6)

which is similar to the original COCG, i.e., it shares its eigenvectors with W̄ but

for each eigenvalue µk, there is an associated eigenvalue of Ū(α) equal to νk = α +

(1 − α)µk. Using Eqs. (3.4.4) and (3.4.6), the cost functions in Eq. (3.4.3) can be

expressed as quadratic forms in terms of similar matrices.

DN(α) = α2βT Ū−1(α)Ū−1(α)β

EN(α) = (1− α)2βT Ū−1(α)W̄ Ū−1(α)β

JN(α) =
(1− α)α

2
βT Ū−1(α)β

(3.4.7)
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In the following results, we use the inner products of the eigenvectors and the con-

trol maneuver, which we denote θk = βTξk. From extensive numerical studies, it

appears that the following two relationships hold approximately which we will treat

as assumptions in the subsequent derivations.

Assumption 1: µk ∼ µ0r
k
1 , µ0 ∼ c1Nnt

Assumption 2: θ2
k ∼ max{θ2

0r
k
2 , θ

2
c}, θ2

0 ∼ c2Nnt

(3.4.8)

In appendix B.4, the assumptions in Eq. (3.4.8) are applied to the summation form

of Eq. (3.4.7). As the costs currently stand in Eq. (3.4.7), for constant α, the control

energy can be shown to grow logarithmically with N so that lim
N→∞

EN(α) is not finite.

Instead, we design α grow with N . The form of α that is imposed to incorporate the

growth of N is,

α(b) =
Nnt

Nnt + b
, b > 0. (3.4.9)

Note that for b = 0, α(0) = 1, and the original problem in Eq. (3.4.1) becomes one in

which we minimize the control energy with no constraint or cost applied to the final

output. This problem has the trivial solution that u∗(t) = 0 which can be deduced

by noting that any time trajectory of the states is not any better than any other in

regards to the cost function. At the other extreme, if we let b→∞ faster than N is

growing, then α(b) → 0 and the problem approaches the minimum energy problem

which will be shown in the following discussions.

In Appendix B.4, the deviation, control energy, and total cost in Eq. (3.4.7), are

rewritten as sums over the eigenvalues of W̄ , µk, k = 0, . . . , Nnt − 1, and the inner

products of the composite control maneuver and each of the eigenvectors, θk = βTξk.

After applying the assumptions in Eq. (3.4.8) and the form of α in Eq. (3.4.9) the

75



CHAPTER 3. TARGET CONTROL

costs becomes,

DN(b)/N ≈ c2nt

k̄∑

k=0

rk2
(1 + bc1rk1)2

+
θ2
c

N

Nnt−1∑

k=k̄+1

1

(1 + bc1rk1)2

EN(b) ≈ b2c1c2

k̄∑

k=0

(r1r2)k

(1 + bc1rk1)2
+
b2c1θ

2
c

Nnt

Nnt−1∑

k=k̄+1

rk1
(1 + bc1rk1)2

JN(b) ≈ bc2Nnt
2(Nnt + b)

k̄∑

k=0

rk2
1 + bc1rk1

+
bθ2
c

2(Nnt + b)

Nnt−1∑

k=k̄+1

1

1 + bc1rk1

(3.4.10)

Each of the summations in Eq. (3.4.10) can be upper bounded by convergent geo-

metric series. The upper bounds found in Appendix B.4 are all shown to approach

constant values in the N →∞ limit,

lim
N→∞

DN(b)/N ≤ c2nt
1− r2

+ θ2
cnt

lim
N→∞

EN(b) ≤ b2c1c2

1− r1r2

lim
N→∞

JN(b) ≤ bc2

2(1− r2)
+
bθ2
c

2

(3.4.11)

From Eq. (3.4.10), one can choose b to set the desired average deviation even in the

N →∞ limit, the control energy remains finite according to Eq. (3.4.11).

Three examples of types of uncertain networks follow where the assumptions in

Eq. (3.4.8) are shown to hold at least in the average over network ensembles and the

behavior of the costs as functions of both N and b is investigated. In Fig. 3.10, we

consider a network ensemble that conists of N unidirectional chain graphs n nodes

long where each chain has a common self loop, pk, and a common edge weight, sk, for

k = 0, . . . , N − 1. There is a single driver node D = {v0}, and the target set is some

subset of the remaining nodes. A diagram of the composite system is shown in Fig.

3.10(A) where each chain is n = 4 nodes long from v0 to v3, and the single control

input u is attached to each of the N copies of node v0. The regulation parameters,

pk, and the edge weights, sk, k = 0, . . . , N − 1, are drawn from uniform distributions

U(2, 4) and U(0.5, 1.5), respectively. For target set T = {v1}, the largest eigenvalue,

µ0, and the associated eigenvector value, θ2
0, of 10 realizations of N unidirectional
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Figure 3.10: Control of an ensemble of unidirectional chain graphs of length n = 4.
(A) A diagram of the composite network with one global input applied to each of the
N copies of node v0. Each realization has uniform regulation parameter pk and uniform
edge weight sk, drawn from distributions. For the remaining simulations, we choose the
target node set T = {v1}. The largest eigenvalue µ0 and corresponding inner product
θ2

0 are shown in (B) and (C), respectively, where we see the hypothesized linear growth
in the mean after averaging over 10 realizations. For N = 150, we see the eigenvalues
decay exponentially in (D) while the inner products θ2

k initially decay exponentially before
saturating to approximately a constant value in (E). The three costs are shown as functions
of both N and α in (F), (G), and (H), where little change is seen along the N axis, but there
is clearly a dynamic range along the b axis, outside of which each cost is seen to change very
little with exponential growth of the parameter b.
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chain graphs for N5, . . . , 75, are shown in Figs. 3.10(B) and 3.10(C), respectively,

where the linear growth as a function of N is seen in the average (the black marks).

For N = 150, the eigenvalues are shown to decay exponentially in Fig. 3.10(D) while

the inner products θ2
k are seen to initially decay exponentially before saturating to

something approximately constant in Fig. 3.10(E). With the results shown in Figs.

3.10(B)-(E), there is good evidence that assumptions in Eq. (3.4.8) hold and so we

expect that the costs in Eq. (3.4.10) approach a constant value in the N →∞ limit.

These costs are shown in Figs. 3.10(F)-(H) as a function of both N and b. Along the

N axis, we see the colors are constant, while along the b axis there is a dynamic range

for the average deviation and the control energy where changes in b correspond to

proportional changes in the costs. Outside of this range though, exponential changes

in b lead to only subtle changes in these costs. The total cost in Fig. 3.10(H) though

changes more uniformly than the other two costs.

The next model we consider is a small network with edge weights drawn from

distributions whose shape is shown along each edge in the diagram in Fig. 3.11(A).

The precise distributions for each edge are listed in the table in Fig. 3.11(B) where δ(a)

represents those edge weights whose values are known, U(a, b) is a uniform distribution

so each edge weight a ≤ s ≤ b, T (a, b, c) is a triangular distribution with peak at c and

edge weights a ≤ s ≤ b, and U(a, b, µ, σ) is the truncated normal distribution with

mean µ, standard deviation σ, and finite support between a and b. The driver nodes

are chosen to be D = {1, 2} while the target nodes are chosen to be T = {5, 6}. The

largest eigenvalues, µ0, and corresponding values θ2
0, for N = 2, . . . , 25, are shown in

Figs. 3.11(C) and 3.11(D), where in the average over 25 realizations, are seen to grow

linearly. The eigenvalues, µk for N = 50 (so that Nnt = 100), is shown in Fig. 3.11(E)

where the exponential decay is apparent and the inner product values (βTξk)
2 = θ2

k is

seen to decay exponentially for the first few indices k before saturating to a constant

value. Again, the assumptions in Eq. (3.4.8) are shown to hold for this network and so

we expect the average deviation, the control energy, and the total cost to all approach

constant values in the limit of large N . The total deviation for three values of b is
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Figure 3.11: Controlling a network with uncertain edge weights. (A) The network from
Fig. 3.9 is shown again with nodes colored according to their role as driver nodes (blue)
or target nodes (pink). (B) The distributions used to draw edge weights for each realiza-
tion; (i) known value δ(a), uniform distribution U(a, b), triangular distribution T (a, b, c),
or truncated normal distribution N (µ, σ, a, b). (C) The largest eigenvalue µ0 and (D) the
largest inner product θ2

0 where the black marks are the average taken over 25 realizations.
for N = 50 (so Nnt = 100), the eigevalues µk are seen to decay exponentially in (E) and
the inner products θ2

k are seen to at first decay exponentially before saturating to an ap-
proximately constant value. For three values of b, the three costs are plotted as a function
of N in (G), (H), and (I).

shown in Fig. 3.11(G) which all grow linearly with N so that DN(b)/N is constant.

As b grows, the slopes of the curves decrease. In Fig. 3.11(H), the control energy,

even for moderate values of N , for the three values of b examined, the control energy

is approximately constant. Finally, the total cost is shown in Fig. 3.11(I) which is

also shown to approach a constant value, but more slowly as the multiplier in front

of the total cost is proportional to α(b).

The third example samples state matrices A that are linearizations of a nonlinear

dynamical system when some of the parameters are unknown. The dynamical system

examined is the autophagy model discussed in Sec. 2.4.3 with the system of differential

equations written in Eq. (2.4.11). All of the parameters are chosen from Table A.1

except for the parameters CNu and CEn which are chosen from the uniform distribution

U(0.1, 0.6). From Fig. 2.5(B), we see that the system in Eq. (2.4.11) has a single

stable fixed point. The Jacobian of the dynamical system is evaluated about this

stable fixed point for each choice of CNu and CEn. The edge weights are the partial

79



CHAPTER 3. TARGET CONTROL

(A)

x3

x1x2

x4x5

w2

w4 w5

w3 w1

w6

0 0.2 0.4 0.6 0.8 1
0

50

100

F
re

q
u
e
n
c
y x̄1 x̄2

x̄3 x̄4

30 32 34 36 38 40
0

20

40

60

F
re

q
u
e
n
c
y

x̄5

(B)

(C)

0 50 100

0

2

4

·105

No. of Systems N

µ
0

0 50 100

0

10

20

30

No. of Systems N

θ
2 0

0 50 100

−80

−60

−40

−20

0

Index k

lo
g
1
0
µ
k

0 50 100

−10

−5

0

Index k

lo
g
1
0
θ
2 k

(D) (E) (F) G)

0 50 100

0

20

40

60

80

Number of Systems N

D
e
v
ia

ti
o
n

b = 10

b = 100

b = 1000

0 50 100

10−3

10−2

10−1

100

101

102

Number of Systems N

C
o
n
tr

o
l

E
n
e
rg

y

b = 10

b = 100

b = 1000

0 50 100

0

10

20

30

Number of System N

T
o
ta

l
C

o
st

b = 10

b = 100

b = 1000

(H) (I) (J)

Figure 3.12: Control of the linearized autophagy system near its stable fixed point. (A)
The diagram of its dynamical system with edges colored red if CNu appears in their expres-
sions explicitly or green if CEn appears in their expression explicitly. We choose a single
drug therapy, 1, so that only node w1 is a driver node, and we are only attempting to
control the number of AVs, represented by x5, making it the only target node. (B) and (C)
Distributions of the fixed point values of each of the 5 states when CNu and CEn are drawn
from the uniform distribution U(0.1, 0.6). (D) The largest eigenvalues of µ0 of the Jacobian
of the autophagy dynamics where the average is seen to grow linearly (albeit at a much
faster rate, note the multiplier 105) and the inner products θ2

0 are shown to grow linearly
in (E). For N = 100, the eigenvalues are shown in (F) which decay exponentially and the
inner products θ2

k are shown in (G). For three values of b, the deviation is shown growing
linearly in (H), the control energy is shown approaching constant values in (I) and the total
cost is shown to also approach constants (although quite slowly for large b) in (J).
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derivatives evaluated at the fixed point x̄ where f(x̄) = 0.

wj,k =
∂fj
∂xk

∣∣∣∣
x=x̄

(3.4.12)

The dynamical system’s network respresetation is shown in Fig. 3.12(A) where red

edges are those whose equations described by Eq. (3.4.12) have CNu appear explicitly,

and likewise green edges are those which have CEn appear explicitly. Black edges have

neither CNu nor CEn appear explicitly, but likely are affected implicitly by different

choices of CNu and CEn. For 500 random pairs of CEn and CNu, the fixed point x̄

is computed using a Newton method implemented in Kinsol [191]. The distributions

of the steady states values of the five states that represent production of autophagic

vesicles is shown in Figs. 3.12(B) and 3.12(C). By construction of the model, the first

four states are distributed between 0 and 1, while the number of autophagic vesicles,

shown in Fig. 3.12(C) is distributed with a single peak just below 38 and a tail to

about 30. As in the previous two examples, the largest eigenvalues µ0, and associated

inner product θ2
0, are shown in Figs. 3.12(D) and 3.12(E), repspectively, where in the

average over 10 realizations for N = 5, . . . , 100, they are seen to grow linearly. Note

the much larger slope of µ0 compared to the previous two examples. The fact c1 is

orders of magnitude larger does not affect the validity of the bounding performed in

Eq. (3.4.11). For 10 realizations of N = 100 selections of CEn and CNu, the eigenval-

ues µk and inner products θ2
k are shown in Figs. 3.12(F) and 3.12(G), respectively,

where the exponential decay of µk and the transition between exponential decay to a

constant value can be seen. Thus, with the numerical results in Figs. 3.12(D)-(G),

there is good evidence that the assumptions in Eq. (3.4.8) hold, and we can be sure

that DN(b)/N , EN(b) and JN(b) all approach constant values in the N → ∞ limit.

The total deviation is shown in Fig. 3.12(H) which, for the three values of b selected,

is seen to grow linearly with N so that DN(b)/N is a constant. In Fig. 3.12(I), the

control energy is shown to be nearly constant for even moderate values of N . Simi-

larly, the total cost in Fig. 3.12(J) is shown to approach constant values proportional

to the form of α(b) in Eq. (3.4.9).
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Figure 3.13: An example of the behavior of the costs as a function of the number of
targets. For the network shown in Fig. 3.11(A), we leave D = {1, 2} but we examine all
possible sets of target nodes, T ∈ 2V . For each target set, 10 realizations of the network
are taken and the values of weight b, average deviation DN (b)/Nnt, control energy EN (b),
and total cost JN (b), are shown in panels (A), (B), (C), and (D) repsectively. Error bars
represent one standard deviation.

As was demonstrated in Secs. 3.2 and 3.3, the control energy decays exponen-

tially with linear reduction in the number of target nodes. This is investigated for

the network ensemble case as well. In order to do this though, we would like to find

b such that DN (b)
Nnt

= D̄, a constant value, so the comparison will be fair. To find b,

we use a bisection method as DN(b) is a monotonically decreasing function in b. The

network examined to generate the numerical results in Fig. 3.13 is the same as the

one shown in Fig. 3.11(A). The set of driver nodes remains the same, D = {1, 2},

while each possible set of target nodes is examined in turn. For each target node

set, 10 realizations of N = 10 networks are created and the value of b is found that

sets DN (b)
Nnt

= 0.1 to within 10−16. The average values of b over sets of target nodes

of the same cardinality found from the bisection method are shown in Fig. 3.13(A)

where the error bars represent one standard deviation. The average deviation in Fig.

3.13(B) which remains constant as designed. The control energy is shown in Fig.

3.13(C) and the total cost is shown in Fig. 3.13(D). As the number of target nodes

decreases linearly, the control energy decreases exponentially.
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The main objective of this project is to demonstrate that there exists a character-

istic control energy of network ensembles that can be computed numerically. In the

presence of uncertain edge weights in particular, which is common for experimental

systems, we have seen that the assumptions in Eq. (3.4.8) held for all systems ex-

amined. These results provide insight into the relationship between optimality and

uncertainty.

3.5 Locally Optimal Control Strategies

The minimum energy control framework for the case the final states are constrained

has been correctly criticized for, in general, not being applicable to linearized systems

as it suffers from nonlocality. A linearization of a nonlinear system is only valid

for some finite region, S(xp) ⊆ Rn where the linearization is taken about xp. As

the state deviation, ||x(t) − xp||2, grows, the linearization error grows as well (not

necessarily monotonically). The state trajectory x(t) corresponding to the minimum

energy control input,

x(t) = eAtx0 −
∫ t

0

eA(t−τ)BBT eA
T (tf−τ)dτλf (3.5.1)

is generally nonlocal, by which we mean for ever ε > 0, there exists a δ(ε) > 0 such

that,

||x0 − xf || = ε ⇒
∫ tf

0

||x(t)||2dt = δ(ε) (3.5.2)

for initial conition x0 and final condition xf chosen uniformly at random from some

closed set in Rn.

A small example will show why this result is expected. Let n = 2 and let the

system matrices be,

A =




1 0

1 0


 , B =




1

0


 (3.5.3)

We choose x0 = [0.4, 1]T and xf = [0.4, 1 − γ]T for γ < 1. From the definition of ε

in Eq. (3.5.2), we see that ε = γ for this choice of initial and final conditions. The
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Figure 3.14: Example of nonlocality. (A) The minimum energy trajectories for the linear
system described by the matrices in Eq. (3.5.3) where the initial condition is x(0) =
[0.4, 1]T and the final condition is x(1) = [0.4, 1− γ]T for γ > 0. (B) The numerically
computed length L defined in Eq. (3.5.4) of the optimal trajectories for various values of γ
where it is clear that lim

γ→0+
L 6= 0.

minimum energy state trajectory as written in Eq. (3.5.1) for this control maneuver for

decreasing values of γ are shown in Fig. 3.14(A) where the trajectory length appears

to decrease to some shortest length. This trend is investigated for exponentially

decreasing γ in Fig. 3.14(B) where the trajectory length L is seen to approach a

constant positive value, the limiting value δ(ε) defined in Eq. (3.5.2) as ε→ 0 for this

example. If one examines the equation for the trajectory length,

L =

∫ tf

0

√
ẋT (t)ẋ(t)dt

=

∫ tf

0

√
xT0M1(t)x0 + βTM2(t)x0 + βTM3(t)βdt

=

[
xT0 βT

] [∫ tf

0

M(t)dt

]


x0

β




(3.5.4)

Note that the matrix M(t) does not depend on the initial and final condition. Let

xf → x0 so that β ≈
(
In − eAtf

)
x0. Thus, only if [xT0 (In − eAtf )xT0 ]T is in the

null space of
∫ tf

0
M(t)dt will the minimum energy state trajectory go to zero or, if

x0 = 0 and A is Hurwitz. While [131] explained the phenomenon with respect to the

condition of the controllability Gramian, they did not investigate remedies beyond

suggesting that additional control inputs must be added.

Alternative methods for controlling general nonlinear systems have been suggested
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such as perturbing the initial state of a system to the basin of attraction of the desired

attractor [192] or perturbing parameters of the system so as to change the shape and

size of the system’s attractor’s basins of attraction [193, 194]. Other methods require

overriding the dynamics of some states [195–197] in order to drive the remaining states

to a desired attractor.

Many of the methods for controlling nonlinear systems require brute-force [194] by

which it is meant some of the states’ values must be overridden, such as the feedback

vertex set method [195] or pinning control [198–200], which can be hard to implement

in practice.

We approach this problem geometrically, rather than algebraically, to determine

the quantitative properties of the nonlocality. Once again, let zt denote the free

evolution of the system at time t and xf be the desired final state. The control

energy can be written,

E = (xf − z(tf ))
TW−1(xf − z(tf ))

which is the equation of an ellipsoid. To be precise, let

S(tf , E) =
{
xf ∈ Rn|E = (xf − z(tf ))

T W−1(tf ) (xf − z(tf ))
}

(3.5.5)

be the ellipsoid which has principal axes along the directions of the eigenvectors of

W , denoted ξk, of widths Eµ2
k, such that Wξk = µkξk. The ellipsoid is centered

at z(tf ), the free evolution of the system. If one is interested in moving the states

in a particular direction αx̄, where ||x̄||2 = 1, we can determine the control energy

required to move a distance α away. Examples of Eq. (3.5.5) for a two dimensional

system are shown in Figs. 3.15(A) and 3.15(B) for the case that ẋ1(t) = x2(t) + u(t)

and ẋ2(t) = −x1(t). In Fig. 3.15(A) we plot ellipsoids holding the control energy

constant, E = 1, while letting tf vary. We see that as tf grows, the centroid of the

ellipsoid moves with the free evolution of the system while the directions and lengths

of the principal axes also change. In Fig. 3.15(B) we plot ellipsoids holding the time
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tf = 1 constant and we vary the control energy E. In this case, the centroid and the

directions of the axes also remain constant while with increasing energy, the widths

of the principal axes grow.

Let a generic nonlinear dynamical system that is affine in the controls be,

ẋ(t) = f(x(t)) +Bu(t)

The nonlinear system is linearized about an arbitrary point xk using a Taylor series,

ẋ(t) = fk + Akx(t) +Bu(t) +H.O.T.

where the matrix Ak = df
dx

∣∣
x=xk

is the Jacobian evaluated at xk and the drift vector

fk = f(xk) − Akxk. All higher order terms (quadratic, etc.) are collected in the

H.O.T. term. If we ignore the higher order terms, the dynamics are approximately

linear when x(t) is close to xk, which is quantified as the Valid Linear Region (VLR).

Nk = {x ∈ Rn| ||f(x)− fk − Akx||2 ≤ ε} (3.5.6)

We also restrict Nk to be closed and convex. The value of ε > 0 is chosen to adjust

the allowed tolerance for the linearization error.

The LOCS procedure can be outlined in the following set of steps.

1. Select a point, x0, to linearize about and construct A0 = df
dx

∣∣
x=x0

and f0 =

f(x0)− A0x0.

2. Choose values of tf and E such that S0(tf , E) ⊆ N0.

3. Select a new point x1 ∈ S0(tf , E) as the terminus of the control action and

repeat.

The above procedure can be used to iteratively construct a piecewise controller to

move the set of states from an initial condition x(0) = x0 to some final set denoted

B ⊂ Rn. Typically, B is chosen as a conservative approximation of the basin of attac-
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Figure 3.15: Examples of the LOCS ellipsoids. In (A) and (B) we plot the ellipsoids for
the two dimensional controlled dynamical system ẋ1 = x2 + u and ẋ2 = −x1. (A) The
ellipsoids for E = 1 while letting tf vary. (B) The ellipsoids for tf = 1 while letting the
energy E vary. (C) An example of the bounding procedure to ensure that the constant
energy ellipsoid remains within the valid linear region. Adapted from [3].

tion of a desired attractor (fixed point, orbit, strange attractor, etc).

The controller requires a decision making mechanism to choose the next lineariza-

tion point xk+1 given a starting point xk. There are three quantities which are used

to judge the “fitness” of the next point.

Fk = wEEk + wtf tk + wx||xk||B (3.5.7)

The coefficients wE, wtf , and wx, are relative weights assigned to the control energy,

the control horizon, and some metric that assigns a distance between a point and the

set B. The final time for the iteration is bounded between 0 < tk ≤ tk,max where tk,max

is the time at which the free evolution leaves the VLR defined in Eq. (3.5.6). For any

value of tk, there is an associated control energy which bounds the ellipsoid within

the VLR. Finally, the choice of the metric that measures the distance between points

within the ellipsoid Sk(tk, Ek) can take many forms. Ideally, one would choose the

value xk that minimizes the fitness function in Eq. (3.5.7) over all possible choices.

Unfortunately, minimizing the fitness function can be quite difficult due to the fact

that determining the set of valid points xk requires knowledge of the VLR for which

typically there is no closed form and the eigendecomposition of the controllability

Gramian for 0 < tk < tk,max for which there is typically also no closed form when the

dimension of the system n > 3.
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To counter these difficulties in determining the optimal choice of xk, we use the

following algorithm to select xk from a finite set of feasible choices.
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Algorithm 1: Description of LOCS

Data: Nonlinear function f : Rn 7→ Rn, input matrix B ∈ Rn×nd ,

linearization tolerance ε > 0, (possibly adaptive) weights wE, wtf , wx,

initial condition x0, and basin of attraction B

k ← 0;

xk ← x0;

while xk /∈ B do

Ak ← ∂f
∂x

∣∣
x=xk

;

fk ← f(xk)− Akxk;

tmax
k ←





min t

s.t. ||f(z(t))− fk − Akz(t)||2 = ε

ż(t) = f(z(t)), z(tk) = xk

;

Select p times, t
(j)
k , j = 1, . . . , p, such that tk < t

(j)
k < tmax

k ;

for j = 1, . . . , p do

Integrate Ẇ (t) = AW (t) +W (t)AT +BBT , W (tk) = On until t = t
(j)
k ;

Compute the eigendecomposition of W (t
(j)
k ;

for ` = 1, . . . , n do

E
(j)
+` ←





min E

s.t. ||f(y)− fk − Aky||2 = ε

y =
√

E

ξ
(j)T

` W−1(t
(j)
k )ξ

(j)
`

ξ
(j)
`

;

E
(j)
−` ←





min E

s.t. ||f(y)− fk − Aky||2 = ε

y = −
√

E

ξ
(j)T

` W−1(t
(j)
k )ξ

(j)
`

ξ
(j)
`

;

end

E
(j)
k ← min

`
E

(j)
±` ;

for ` = 1, . . . , n do

F
(j)
±` ← wEE

(j)
k + wtf t

(j)
k ±

√
E

(j)
k

ξ
(j)T

` W−1(t
(j)
k )ξ

(j)
`

ξ
(j)
` ;

end

end

(`, j)← argmin F
(j)
±` ;

xk+1 ← sign(`)

√
E

(j)
`

ξ
(j)T

` W−1(t
(j)
k )ξ

(j)
`

ξ
(j)
` ;

tk+1 ← t
(j)
k ;

end
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Figure 3.16: Small example of LOCS. (A) The optimal trajectory is shown in red which
was found by numerically solving the optimal control problem using the pseudo-spectral
optimal control method outlined in the previous chapter. The trajectory found using LOCS
is shown in blue which is quite similar to the optimal trajectory. The control energy used
per step of the LOCS procedure is shown in (B) and the instantaneous control energy of
the optimal solution is shown in (C). Adapted from [3].

A two dimensional example of the output of the LOCS procedure is shown in Fig.

3.16 which is governed by the system of equations,

ẋ1(t) = (x1(t)− 3)(x2(t)− 2)

ẋ2(t) = x2(t)(x1(t)− 1)(x2(t)− 1) + u(t)

with initial condition x1(0) = 2 and x2(0) = 3 and final condition x1(tf ) = 3 and

x2(tf ) = 0. In Fig. 3.16(A) we show the optimal state trajectory found by solving the

optimal control problem using the pseudospectral method outlined in the previous

chapter. Also shown is the state trajectory computed using LOCS which is quite

similar to the optimal solution. This was achieved by the proper choice of the fitness

function in Eq. (3.5.7),

F = 4Ek + 0.8|x1(tk)− 3|+ 0.2|x2(tf )|

Also shown is the energy used per step of the LOCS procedure in Fig. 3.16(B) and

the instantaneous energy found from the optimal solution in Fig. 3.16(C). While the
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Figure 3.17: Application of LOCS to a model of the regulatory structure of the circadian
clock in mice. The initial time trajectories of the states in dark colors are the initial condition
of the system on a stable periodic orbit. The lighter colors in the second time period
correspond to when the LOCS controller has been turned on. The last stretch of dark colors
show the LOCS controller’s success as the system is now at the desired fixed point. Adapted
from [3].

state trajectories appear similar, the times at which energy is supplied to the system

are clearly different.

For a larger example, we apply LOCS to a model of the regulatory structure of the

intracellular circadian clock in mice [201]. This model was used as a demonstration of

the feedback vertex set method [195, 196]. The feedback vertex set requires overriding

the dynamics of the states of the nodes found to be in the minimal feedback vertex

set, a brute-force method [194]. The initial condition of the system is set on a periodic

orbit and the desired attractor is a stable fixed point. In Fig. 3.17, we show the initial

evolution of the system for t < 0 on the periodic orbit, represented in the darker col-

ors. Black lines correspond to non-driver nodes while blue lines correspond to driver

nodes. The next segment of time, represented in lighter colors, plots the states while

the LOCS controller is turned on and the system is driven towards the desired fixed

point. The last segment of time, represented in darker colors again, shows the system

now residing at the desired fixed point.

In this section, a connection between the minimum energy control of linear sys-

tems and control of nonlinear systems is presented. An example of its application to
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a nonlinear system is shown, but many more applications can be found in the supple-

mentary information of [3] including the New England Power Grid [202], generalized

Lotka-Volterra equations, discrete dynamics, in the presence of noise and parame-

ter mismatch, systems with multiple timescales, and systems with riddled basins of

attraction [203].

3.6 Optimal Control of Networks in the Presence of Attack-

ers and Defenders [7]

An application of the minimum energy control is to provide counter measures if a

dynamical network is attacked. In this case, the graph G(V , E) is augmented with an

additional na nodes, W , which represent the attackers and edges F ⊂ W × V that

represent which attackers are attached to which nodes. The dynamics of each of the

attackers is assumed to be,

ẇj(t) = sjwj(t) + ri, j = 1, . . . , na (3.6.1)

which can represent either constant valued attacks (sj = 0 and rj = 0), linearly

increasing attacks (sj = 0 and rj 6= 0), or exponentially increasing attacks (sj > 0).

Let S ∈ Rna×na be a diagonal matrix with elements sj that represent the attackers

described by Eq. (3.6.1) and let H ∈ Rn×na be the adjacency matrix associated with

the edges in F . The combined node state and attacker system can be written,



ẋ(t)

ẇ(t)


 =




A H

Ona×n S






x(t)

w(t)


+




0n

r


+




B

Ona×nd


u(t)

x(t) =

[
In On×na

]


x(t)

w(t)




(3.6.2)
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which is a linear system with an additional drift vector r. The composite system in

Eq. (3.6.2) can more succinctly be written as,

ξ̇(t) = Āξ(t) + r̄ + B̄u(t)

x(t) = C̄ξ(t)

The resulting optimal control problem we solve is the same as was addressed in Sec.

3.2, or more specifically, as written in Eq. (3.2.1) with the sole modification that

there is an additional drift vector in the linear dynamical equation. The solution of

the optimal control problem with this modification is nearly identical except that the

control maneuver, β, is only slightly different.

β = C̄eĀtfξ0 + C

∫ tf

0

eĀτdτ r̄ − xf (3.6.3)

where xf is the desired final values of the states of the network. The control energy

is still E = βT W̄β where β is defined in Eq. (3.6.3) and the output controllability

Gramian is W̄ =
∫ tf

0
eAτBBT eA

T τdτ , or more specifically, the attackers’ dynamics

do not affect it. In [7], the affect of the number of attackers and the placement of

attackers is examined methodically for simple graph topologies such as chain graphs,

ring graphs, and star graphs. Additionally, for a graph constructed using the Barábasi-

Albert preferential attachment method with n = 100 nodes, we select 10% of the nodes

to be drivers and choose each node to be attacked one by one. We find that there is

a linear relationship between the degree of the attacked node and the control energy

necessary to counter the unstable dynamics.

3.7 Conclusion

This chapter covered results concerning properties of the solutions of the optimal

control problem presented in Eq. (3.2.1) which is derived in Appendix B.1. We have

seen that for the final constraint case in Sec. 3.2, the control energy increases expo-

nentially with the number of target nodes |T | = nt. On the other hand, if we relax
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the constraints so they are included as an additional term in the cost function, the

final cost case in Sec. 3.3, we can exponentially decrease the control energy while

sacrificing the accuracy. Combining these results provides a framework by which one

may balance accuracy and control energy for a desired control action on a complex

network.

Additionally, in Sec. 3.4 we derived a control input, and the control energy, when

the adjacency matrix is not known exactly, but instead is known to be one of a finite

set of possible realizations. In this framework, with the proper choice of weighting

parameter, α, it is proven that the average deviation, the control energy, and the total

cost all approach constant values in the limit N →∞. This result suggests that there

exists control inputs capable of approximately driving an entire network ensemble to

some desired output.

We use the fact the control energy expression can be expressed as an ellipsoid to

derive a control for nonlinear systems which we call locally optimal control strategy

in Sec. 3.5. Its utility is demonstrated for a selection of nonlinear systems. The

minimum energy control framework is also applied to systems when there are mali-

cious actors attacking the networked system in Sec. 3.6. In particular, we apply this

optimal control to linearized power systems.

While much of the analysis concerning the scaling of the control energy is pre-

dictable in the mean over all choices of sets of target nodes, we have seen that the

variance can be extremely large which we have not yet explored. This large variance is

explained in terms of distances, measured as the length of the shortest path, between

driver nodes and target nodes in Chapter 5 for simplified models of networks.
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Chapter 4

Symmetry in Graphs

4.1 Introduction

It has been shown that symmetries in graphs can have both beneficial and detrimen-

tal effects on dynamical systems. For example, it has been shown that symmetries

in graphs increase the number of independent control signals required to ensure a

system is controllable [75]. On the other hand, symmetries in graphs can be used to

reduce the dimension of the dynamics (by examining the quotient graph) [204–206].

Symmetries can also induce consensus and synchronization in dynamical networks

[204, 207, 208].

Three topics are covered in this chapter; (i) a method one may construct graphs

with pre-defined symmetry structure, (ii) an analysis of stable synchronization despite

unstable dynamics, and (iii) a proposed method to include edge weights in a new def-

inition of approximate symmetries. Details of more extensive proofs are contained in

Appendix C.

In section 4.2, some definitions and lemmas about the automorphism group of

a graph are stated for use later. The results of [8, 9] are described in Sections 4.3

and 4.4 covering the concept of feasible quotient graphs and generating graph’s with

symmetries. The problem of stable cluster synchronization corresponding to proper-

ties of the automorphism group of a graph is discussed in Section 4.7 as described in

[12]. The current state of ongoing work on the problem of approximate symmetries
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is discussed in Section 4.8 and the current difficulties faced. Work that the author

contributed to on symmetries in multi-layer and multiplex networks is briefly covered

in Section 4.6. Finally, concluding remarks are made in Section 4.9.

4.2 Graph Symmetries and the Automorphism Group

This section expands on some of the definitions introduced in Chapter 2. As a brief

reminder of the notation, let G = (V , E) be a graph and let Aut(G) be the automor-

phism group of this graph defined in Def. 2.2.23. The automorphism group induces

an equitable partition of the nodes (see Def. 2.2.18 for partitions and Def. 2.2.20 for

equitable partitions).

Lemma 4.2.1 (Automorphism Group Induced Equitable Partition: Orbits). The

automorphism group, Aut(G), induces an equitable partition of the nodes in the graph,

denoted as O, in which the clusters are commonly referred to as orbits. Two nodes,

vj and vk, are in the same orbit if there exists a permutation π ∈ Aut(G) such that

π(vj) = vk.

For the derivations in the following sections, we will assume that G is undirected

(see Def. 2.2.1), but extensions to directed graphs does not require too many modifi-

cations. An equitable partition of the nodes in a graph can be used to compress a

graph into a quotient graph.

Definition 4.2.1 (Quotient Graphs). Let G = (V , E) be a graph and let C be an

equitable partition of its nodes. The quotient graph is defined as a structure with 5

elements: Q = {C,F ,n, s,w}

• C: The nodes of the quotient graph are the clusters of nodes in the equitable

partition.

• F : The edges of the quotient graph. If there exists an edge (vj, vk) ∈ E and

vj ∈ Ca and vk ∈ Cb then there is a quotient edge (Ca, Cb) in the quotient graph.

• n ∈ Z |V|: The populations of the original cluster, nk = |Ck|.
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C3 n =
[
2 4 6

]

s =
[
0 3 2

]

w1,2 = 4

w2,3 = 12

(B)

Figure 4.1: An example of a quotient graph of an undirected graph. (A) An undirected
graph with nodes colored according to an equitable partition. (B) The resulting structure
of the quotient graph along with the properties n, s, and w.

• s ∈ Z |V|: The intra-cluster degrees, that is, if a node vj ∈ Ck, then sk = |Nj,k|.

• w ∈ Z |E|: The quotient edge weights which is equal to the number of edges

passing between all nodes in the two connected clusters. If the k’th quotient edge

is (Ci, Cj), then wk is the total number of edges passing between nodes in these

two clusters.

An example of an undirected graph, with nodes colored according to an equitable

partition, is shown in Fig. 4.1(A). There are three clusters in the partitioned, the

white cluster denoted C1, the gray cluster denoted C2, and the black cluster denoted

C3. The resulting quotient graph structure and additional information of the graph

in Fig. 4.1(A) is shown in Fig. 4.1(B). The original graph has 12 nodes and 28 edges

while the quotient graph has 3 quotient nodes and 2 quotient edges along with the

data required by n, s, and w.

Determining the automorphism group of a graph and representing its orbits as a

quotient graph is a famously difficult problem [33]. A number of software packages

have been developed to find the automorphism group of a graph such as nauty [37],

traces [209] , bliss [210], saucy [211], and conauto [212]. The reverse problem, of

constructing an originating graph with symmetries given a quotient graph, has, as far

as the author and his collaborators can tell, not been investigated. To construct an

originating graph from a quotient graph, the following questions must be answered.

• Does an originating graph exist? Or in other words, is the quotient graph

feasible?
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• What types of symmetries will exist in the resulting automorphism group?

These two questions are answered in sections 4.3 and 4.4, respectively.

4.3 Feasible Quotient Graphs

To answer the first question listed above, we derive the conditions for which a quotient

graph can represent some original graph, that is, whether the quotient graph is feasible.

While the structure of a quotient graph has been defined in Def. 4.2.1 as a graph and

a set of 2|C| + |F| integers, the reverse is not necessarily true, that is not all graphs

along with appropriate sets of integers are quotient graphs. The conditions which Q

must satisfy are addressed individually using the following theorems.

Theorem 4.3.1 (Erdős-Gallai [213]). Let a = (a1, a2, . . . , an) be a non-increasing

sequence of non-negative integers. The sequence is realizable as the degree sequence

of an undirected simple graph (no self-loops or multi-edges) if and only if

1.
∑n

i=1 ai is even, and

2. for 1 ≤ k ≤ n,
k∑

i=1

ai ≤ k(k − 1) +
n∑

i=k+1

min{ai, k}

Lemma 4.3.1 (Intra-Cluster Degree Condition). Using Thm. 4.3.1 for the special

case that the sequence consists of a single integer, say s, of length n, then the two

conditions become,

1. The product ns must be even, and

2. s+ 1 ≤ n

Proof. The first condition, that ns is even, can be seen from
∑n

i=1 s = ns in the first

condition of Thm. 4.3.1. The second condition comes from simplifying the second

condition of Thm. 4.3.1 for the specific case ai = s,

ks = k(k − 1) + (n− k) min{s, k}, 1 ≤ k ≤ n
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If k ≤ s, then the condition simplifies to ks ≤ (n − 1)k which can be re-written

s+ 1 ≤ n. If k > s, the inequality is trivially satisfied.

Theorem 4.3.2 (Gale-Ryser [214]). Define the following sequences,

a = (a1, a2, . . . , an1) and b = (b1, b2, . . . , bn2),

to be of length n1 and n2, respectively. The sequences a and b can be realizable as the

degree sequence of a bipartite graph if and only if,

k∑

i=1

ai ≤
n2∑

i=1

min{bi, k}, 1 ≤ k ≤ n1 (4.3.1)

or, equivalently,
k∑

i=1

bi ≤
n1∑

i=1

min{ai, k}, 1 ≤ k ≤ n2 (4.3.2)

Lemma 4.3.2 (Inter-Cluster Degree Condition). Let a and b be two sequences of

constant value r1 and r2 of lengths n1 and n2, respectively. Taking the necessary and

sufficient conditions in Thm. 4.3.2 and applying the constant sequences yield the three

conditions,

r1 ≤ n2, r2 ≤ n1, r1n1 = r2n2

Proof. Four conditions must be checked, Eq. (4.3.1) when k ≤ r2 and when k > r2

and Eq. (4.3.2) when k ≤ r1 and when k > r1. The two conditions for the specific

constant sequences described can be simplified to,

kr1 ≤
n2∑

i=1

min{r2, k} = n2 min{r2, k}, 1 ≤ k ≤ n1

kr2 ≤
n1∑

i=1

min{r1, k} = n1 min{r1, k}, 1 ≤ k ≤ n2

Taking the first condition for k ≤ r2 yields,

kr1 ≤ kn2 ⇒ r1 ≤ n2
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which implies the first condition in the Lemma. For r2 < k ≤ n1,

kr1 ≤ n2r2 ⇒ n1r1 ≤ n2r2 (4.3.3)

Taking the second condition for k ≤ r1 yields,

kr2 ≤ kn1 ⇒ r2 ≤ n1

which implies the second condition in the Lemma. For r1 < k ≤ n2,

kr2 ≤ n1r1 ⇒ n2r2 ≤ n1r2 (4.3.4)

For Eqs. (4.3.3) and (4.3.4) to both be satisfied simultaneously,

r1n1 = r2n2

Combining the results of Lemmas 4.3.2 and 4.3.1 yields the definition of a feasible

quotient graph.

Definition 4.3.1 (Feasible Quotient Graphs). Let Q = {C,F , s,n,w} be a quotient

graph as defined in Def. 4.2.1. Said quotient graph is also feasible if,

1. sk + 1 ≤ nk, ∀Ck ∈ C

2. nksk mod 2 = 0, ∀Ck ∈ C

3. wk,` ≤ nkn`, ∀(Ck, C`) ∈ F

4. wk,` mod nk = 0 and wk,` mod n` = 0, ∀(Ck, C`) ∈ F

4.3.1 Creating Feasible Quotient Graphs

The set of conditions laid forth in Def. 4.3.1 are not trivially satisfiable for arbitrary

connectivity pattern as denoted by the set of quotient edges, F . In what follows,
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we assume that C and F have been chosen a priori and that we must determine the

integers in n, s, and w. The most general framework assigns a cost to every unknown,

cpk for each pk, c
s
k for each sk, and cwk,` for each quotient edge (Ck, C`) ∈ F . Condition

2 in Def. 4.3.1 can be rewritten introducing extra variables as,

nk + yk = 2zk, yk ∈ {0, 1}, zk ≥ 1

sk + ak = 2bk, ak ∈ {0, 1}, bk ≥ 0

yk + ak ≤ 1

The interpretation of the above set of equation is that yk = 1 if nk is odd while yk = 0

if nk is even. The variables sk and ak have the same relationship. Then, requiring the

product nksk to be even is equivalent to requiring that either nk or sk be even, which

is ensured by requiring yk + ak ≤ 1.

Unfortunately, linearizing conditions 3 and 4 in Def. 4.3.1 is not possible without

introducing many auxiliary variables. Thus, to find a feasible quotient graph without

pre-specifying any of the values requires solving a quadratic integer program.

Rather than facing the daunting task of the quadratic integer programming prob-

lem and the unclear relationship between the cost function coefficients and desired

properties of the resulting graph, alternative methods are presented here where one

defines part of the quotient graph and then compute the remaining parts ensuring

feasibility. The first method allows one to design the connectivity, that is, the intra-

cluster degrees sk ∀Ck ∈ C and the quotient edge weights wa,b ∀(Ca, Cb) ∈ F and

then compute cluster populations nk to ensure feasibility. The second method in-

stead allows one to design the cluster populations and intra-cluster degrees and then

computes the necessary quotient edge weights, wa,b, to ensure feasibility.

4.3.2 Forcing Connectivity [8]

In this framework, the number of clusters |C|, the set of quotient edges F , the intra-

cluster degrees, sk, and the quotient edge weights Wa,b, are all designed with some

restrictions which will be discussed. Importantly, note that rather than computing
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the quotient edge weight directly, we instead look for two values, denoted,

wa,b
na

= Wa,b and
wa,b
nb

= Wb,a (4.3.5)

which is equal to the cluster degree from cluster b to cluster a (see Def. 2.2.19 for more

information). An integer linear program (ILP) is constructed to find the unknown

cluster populations, |Ck| = nk. For notational simplicity, the constraints for those

clusters with even and odd intra-cluster degree are slightly different and so define,

mk = sk mod 2

The variables in the ILP, xk, are defined as,

(1 +mk)xk = nk (4.3.6)

to satisfy the constraint in Lemma 4.3.1. A lower bound is assigned to each variable

from the remaining constraints,

xk ≥
(

1− mk

2

)
max

{
max

(Cj ,Ck)∈F
Wj,k, sk + 1

}
= xLBk

The remaining constraints, Wj,knk = Wk,jnj, ∀(Cj, Ck) ∈ F , are represented in matrix

form as,

Wj,k(1 +mk)xk −Wk,j(1 +mj)xj = 0

which can be composed into the system of linear equations,

Ax = 0
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where the matrix A ∈ R|F|×|C| has rows corresponding to each quotient edge. If row

` corresponds to the quotient edge (Cj, Ck) ∈ F , then matrix A has elements,

A`,j = (1 +mk)Wj,k

A`,k = −(1 +mj)Wk,j

A`,a = 0, a 6= j, k

(4.3.7)

The ILP is composed with weights assigned to each population, ck, ∀Ck ∈ C, in the

vector c.

min cTx

s.t. Ax = 0

x ≥ xLB

(4.3.8)

A caveat of this formulation arises due to the constraints which require that the

matrix A as defined in Eq. (4.3.7) has a non-empty null space. This is not a trivial

requirement as typically |F| ≥ |C| and so the choice of the quotient edge weights

W (Cj, Ck) is not free. Instead, one may choose the quotient edge weights for the first

|C| − 1 quotient edges freely. For the remaining |F| − |C| + 1 quotient edges, the

quotient edge weights must be chosen such that the corresponding row of the matrix

A is a linear combination of the previous rows.

Due to the difficulty of choosing quotient edge weights to ensure that the matrix A

has a non-empty null space, this method is mostly suited for acyclic quotient graphs,

i.e., if |F| < |C|. An example of the ILP used to compute the cluster populations is

shown in Fig. 4.2. In Fig. 4.2(A) a three node quotient graph is shown with intra-

cluster degrees sk and quotient edge weights Wj,k assigned. The quotient graph’s

adjacency matrix is shown as the matrix Q, and the constraint matrix for the ILP is

shown as the matrix A. The complete ILP is written out in Fig. 4.2(B).

The solution to this ILP is x1 = 1, x2 = 4, and x3 = 1 which leads to populations

n1 = 2, n2 = 4 and n3 = 1. Once a solution is found, x, that lies in the null space

of A, one can scale x by any integer, r, to tune the size of the resulting graph before

using Eq. (4.3.6). To create the graph in Fig. 4.2(D), r = 2 to double the size of

103



CHAPTER 4. SYMMETRY IN GRAPHS

C1

C2 C31

2 1

2

1

2

(A)

Q =




1 2 1
1 2 0
2 0 0




A =

[
2 0 −2
4 −1 0

]

min x1 + x2 + x3

s.t. 2x1 − 2x3 = 0

4x1 − x2 = 0

x1 ≥ 1, x2 ≥ 3

x3 ≥ 1

where 2sx1 = n1

sx2 = n2

sx3 = n3

s = 2

(B)

D(C1)

(v1, v3) (v2, v4)

D(C2)
(v5, v6), (v5, v12), (v6, v7), (v7, v8)

(v8, v9), (v9, v10), (v10, v11), (v11, v12)

F1 = (C1, C2)
(v1, v5), (v1, v9), (v3, v7), (v3, v11)

(v2, v6), (v2, v10), (v4, v8), (v4, v12)

F2 = (C1, C3)

(v1, v13), (v3, v13), (v2, v14), (v4, v14)

(C)

v13

v1v3

v5 v7 v9 v11

v6 v8 v10 v12

v2 v4

v14

(D)

Figure 4.2: (A) A quotient graph with three quotient nodes and two quotient edges. This
quotient graph’s adjacency matrix, Q, is shown below the quotient graph, and the matrix
A that appears in Eq. (4.3.8) is shown below it. (B) The ILP that must be solved to
determine the population that each quotient node represents. (C) Each quotient edge and
quotient loop in (A) is shown by its pattern, and the created edges for the full graph are
listed underneath. (D) The resulting graph with the desired symmetries as dictated by the
original quotient graph in (A).

each cluster. Further details on how the set of edges in Fig. 4.2(C) were found are

contained in Sec. 4.4.

4.3.3 Forcing Populations [9]

With the acknowledged difficulty of construcing quotient edge weights that ensure the

constraint matrix in the ILP in Eq. (4.3.8) is not full rank, an alternative method

to construct feasible quotient graphs was conceived. In this framework, we instead

design the intra-cluster degrees sk and the cluster populations nk for all Ck ∈ C.

Rearranging the fourth constraint for a feasible quotient graph in Def. 4.3.1 using the

alternative definition of the quotient edge weights in Eq. (4.3.5), the requirement for

the quotient edge weights can be rewritten,

nj
nk

=
Wk,j

Wj,k

, nj ≥ Wk,j, nk ≥ Wj,k, ∀(Cj, Ck) ∈ F (4.3.9)

Let cj,k = gcd(nj, nk) be the greatest common denominator between the two cluster

populations and let dj,k be any factor of cj,k. The quotient edge weight relation in Eq.
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(4.3.9) can be written as,

Wj,k =
nk
dj,k

and Wk,j =
nj
dj,k

(4.3.10)

Note that dj,k = 1 is always a valid choice for Eq. (4.3.10). The resulting number of

edges between the nodes in clusters Cj and Ck is wj,k = njWj,k = nkWk,j =
njnk
dj,k

. The

density of the edges between nodes in Cj and Ck can be written,

ρj,k =
wj,k
njnk

=
1

dj,k
(4.3.11)

The result of Eq. (4.3.11) provides a way to choose the values of dj,k as to adjust the

density of the resulting graph. The benefit of this method is that one may determine

the values Wj,k and Wk,j independently of each other, so one does not need to solve

the system of diophantine equations like in the previous subsection.

4.4 Generating Symmetric Graphs

At this point, we assume Q is a feasible quotient graph constructed using either of

the methods described above or some other way. The graph to create is denoted

G = (V , E) where,

V =
nc×
k=1

Ck, (4.4.1)

is the collection of the nodes that make up each cluster and the edges,

E =

(
nc×
k=1

Ek
)
×
(

×
(Cj ,Ck)∈F

Ej,k
)
. (4.4.2)

are composed of both the intra-cluster edges and the inter-cluster edges. The nodes

in defined by Eq. (4.4.1) are labeled according to their originating cluster so that,

Ck =
{
vk` |` = 0, . . . , pk − 1

}
, |Ck| = pk (4.4.3)

105



CHAPTER 4. SYMMETRY IN GRAPHS

The intra-cluster edges and inter-cluster edges sets, as defined in Eq. (4.4.2), each

consist of only edges,

Ek ⊆ Ck × Ck, |Ek| = sk, k = 0, . . . , nc − 1

Ej,k ⊆ Cj × Ck, |Ej,k| = wj,k, ∀(Cj, Ck) ∈ F
(4.4.4)

respectively. To simplify the following notation in the theorems, apply the notation in

Eqs. (4.4.3) and (4.4.4) and let edges be equivalently denoted in terms of the nodes’

cluster indices, that is, in the proper context,

(vj` , v
k
`′) = (`, `′), ` = 0, . . . , nj − 1, `′ = 0, . . . , nk − 1 (4.4.5)

The intra-cluster edges are constructed using the following theorems with the notation

in Eq. (4.4.5).

Theorem 4.4.1 (Intra-Cluster Edges). Let there be nk nodes, vk` , ` = 0, . . . , nk − 1,

and let 0 ≤ sk < nk be the intra-cluster degree of the nodes in Ck. Let b be a set of

integers between 1 and nk−nk mod 2
2

without repetition. Then, the edges (`, `′) ∈ Ek, are,

(` mod nk, (`+ bj) mod nk)

(` mod nk, (`− bj) mod nk)

j = 1, . . .
sk − sk mod 2

2
(4.4.6)

If sk is odd, then we additionally add one more edge,

(` mod nk, (`+ nk/2) mod nk)

The proof is contained in Appendix C.1.

Theorem 4.4.2 (Inter-Cluster Edges). Let (Cj, Ck) ∈ F be a quotient edge. Define

c = gcd(nj, nk) to be the greatest common denominator between the populations of

clusters Cj and Ck. Define two integers dj and dk such that,

nj = djc nk = dkc
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vk0

vk1

vk2

vk3

vk4

vk5

vk6

vk7

A)

v`7v`6v`5v`4v`3v`2v`1v`0

vk3vk2vk1vk0

B)

Figure 4.3: Examples of the intra-cluster wiring and the inter-cluster wiring. In (A), an
example of intra-cluster wiring is shown for nk = 8 and sk = 3. The sequence b = (1, 2). In
(B), an example of inter-cluster wiring is shown for nk = 4 and n` = 8 with quotient edge
weights Wk,` = 2 and W`,k = 4. The values c = gcd(4, 8) = 4 and m = 2 with sequence
b = (1, 3).

Let m =
Wj,kc

nk
=

Wk,jc

nj
and define a sequence of positive integers b = {b1, . . . , bm} such

that,
m∑

`=1

bj = c

Then, the set of edges can be written in two equivalent ways, either from Cj to Ck as,

(
` mod pj,

(
`+ r1c+

r2∑

a=1

ba

)
mod pk

)
,

r1 = 0, . . . , dk − 1

r2 = 1, . . . ,m

(4.4.7)

or from Ck to Cj as,

(
`′ mod pk,

(
`′ + r3c+

r4∑

a=1

bm−a+1

)
mod nj

)
,

r3 = 0, . . . , dj − 1

r4 = 1, . . . ,m

(4.4.8)

The proof is contained in Appendix C.2. An example of the intra-cluster wiring

procedure is shown in Fig. 4.3(A) where pnk = 8 and sk = 3. The sequence used is

b = (1, 2) and node sk is odd so each node, vk` has neighbors

N` =





(`+ 1) mod 8, (`− 1) mod 8, (`+ 2) mod 8

(`− 2) mod 8, (`+ 4) mod 8




.

An example of the inter-cluster wiring procedure is shown in Fig. 4.3(B) where nk = 4
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and n` = 8 with quotient edge weights Wk,` = 2 and W`,k = 4. The greatest common

denominator is c = gcd(4, 8) = 4 so that m = 2. The sequence chosen is b = (1, 3)

which can be seen as node vk0 has neighbors v`1, v`4, v`5 and v`0.

The final step is to prove that the resulting graph has the desired orbits of the

automorphism group.

Theorem 4.4.3 (Orbits of the Automorphism Graph). The graph constructed using

Thms. 4.4.1 and 4.4.2 has symmetries,

π(vk` ) = vk(`+z) mod nk
, ∀` = 0, . . . , nk − 1, ∀Ck ∈ C (4.4.9)

for any integer z ∈ Z. The permutation in Eq. (4.4.9) is a group cyclic permutation.

The set of all symmetries of the form in Eq. (4.4.9) make up the automorphism

group of the graph with orbits corresponding to those nodes originating from the same

cluster.

Proof. From the expression for the intra-cluster edges in Eq. (4.4.6), a group cyclic

permutation does not affect the set of edges. Similarly, the inter-cluster edges in Eq.

(4.4.7) or in Eq. (4.4.8) are unaffected by the group cyclic permutation. Thus, as the

edges are invariant under the group cyclic permutation applied to the nodes, these

permutations must be symmetries. The orbits of the automorphism group correspond

to the nodes originating from the clusters which can be seen that any two nodes vk` and

vk`′ from cluster Ck there exists a group cyclic permutation with z = (`′ − `) mod nk

that maps π(vk` ) = vk`′ .

The process described in the past couple of sections constructs graphs with the

desired orbits of the automorphism group, and whose automorphism group consists

of group cyclic permutations. An interesting future extension of this work would be

to impose a particular automorphism group along with the desired orbits. To do this,

additional constraints must be placed on the properties of the quotient graph as well

as the edge wiring process would be less straightforward.

Two examples of this process are shown in Figs. 4.2 and 4.4. In Fig. 4.2(C) each
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Figure 4.4: An example of creating a graph with desired orbits. The feasible quotient
graph is shown in (A) with quotient edge weights written along each edge and quotient
nodes colored uniquely. The node populations and the intra-cluster degrees are shown as
the vectors n and s. The resulting graph is shown in (B) with nodes colored according to
their originating cluster.

quotient edge is shown with the originating pattern (dashed, solid, dotted) and the

resulting edges in the graph below it. The graph is shown in Fig. 4.2(D) with edges

patterned according to the originating quotient edges. A larger example is shown in

Fig. 4.4 with the quotient graph shown in Fig. 4.4(A) where each quotient node

is colored uniquely and the quotient edge weights written along each quotient edge.

The cluster populations and intra-cluster degrees are shown as the vectors n and s,

respectively. The resulting graph is shown in Fig. 4.4(B) with nodes colored according

to their originating quotient node.

4.5 Orbits vs. Minimal Equitable Partition

It has previously been demonstrated that the orbits of the automorphism group

(OAG) represent an equitable partition of the nodes. It is also known [205, 215,

216] that the orbits of the automorphism group is not necessarily the minimal equi-

table partition (MEP). If the quotient graph is irreducable, then the graph constructed

using the method described in the previous sections have coinciding orbits of the au-

tomorphism group (OAG) and minimal equitable partition (MEP).

To numerically investigate how often the OAG and MBC align, we perform the fol-

lowing procedure.
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1. With a feasible quotient graph with cluster populations n, we scale the popu-

lations with an integer t.

2. Construct a graph using the wiring procedure described above.

3. Perform cluster degree preserving randomization which is a process by which

we choose two edges from the same set of intra-cluster edges Ek or inter-cluster

edges Ej,k and swap one end of the two edges. This procedure preserves the

cluster degree of each node but may eliminate some of the symmetries from the

automorphism group and thus refines the OAG.

An example is shown in Fig. 4.5(A) and Fig. 4.5(B) where the same graph is shown

but the nodes are colored according to its MEP in panel (A) where |C| = 2 and its

OAG in panel (B) where |O| = 10, i.e., the orbits are all trivial. Let O be the OAG

and let C be the MEP, and define the function,

f(O) =
n− |O|
n− |C| (4.5.1)

where f(O) = 1 if O = C and f(O) = 0 if O consists of only trivial orbits, that

is, an orbit Ok ∈ O such that |Ok| = 1. An example of this process is shown in

Fig. 4.5(C) for the two quotient node quotient graph shown in the inset. For each

value of t, we generate 1000 graphs and compute their MEP and OAG and compute

f(O). The black curve plots the mean value of f(O) and the error bars represent one

standard deviation. The blue curve is the minimum value of f(O) and the red curve

is the maximum value of f(O). We see that for t = 1, the MEP and OAG coincide

and so f(O) = 1. As t increases, the average value of f(O) and the maximum value

of f(O) over all 1000 realizations decrease rapidly. This means that for t > 1, less

than 0.1% of graphs with the two node quotient graph shown in the inset will have

their OAG and MEP coincide. This example, typical of all other quotient graphs

examined, provides evidence that the OAG and the MEP rarely coincide rather than

the expected result that they usually coincide.

In the next section, we show that the result above can, by extending the definition
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Figure 4.5: Examples of cases when the OAG and the MBC are not the same. (A) A 10
node graph with nodes colored according to its minimum equitable partition which consists
of two orbits. (B) The same graph but with nodes colored according to the orbits of its
automorphism group. There is no orbit with more than a single node in it, i.e., there is
only one symmetry, the identity permutation. (C) A numerical example for the relative
sizes of the OAG and the MEP using Eq. (4.5.1). The quotient graph in the inset is used
to generate graphs with two orbits such that the populations of the two orbits is scaled by
t. The red curve is the maximum value of f(O) found over 1000 realizations and the blue
curve is the minimum.

of a quotient graph, be directly applied to multi-layer networks, which may be more

useful to describe certain types of systems.

4.6 Symmetries in Multi-Layer Networks [15]

Most generally, a multi-layer network can be described using the following definition.

Definition 4.6.1 (Multi-Layer Graphs). Let G = (V , E) be a multi-layer graph by

which it is meant there is a partition of the nodes into n` layers, denoted,

V =
n`×
k=1

V`

Additionally, let the set of edges be similarly split,

E =
n`×

j,k=1

Ej,k

where an edge (va, vb) ∈ Ej,k if va ∈ Vj and vb ∈ Vk. Each set of edges may be further
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v1
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v13

v14

Figure 4.6: A multi-layer graph with n` = 2 layers (denoted as circles and rectangles)
with m = 3 edge types, but with m` = 2 (denoted as solid, dashed, or dotted). The nodes
are colored according to its automorphism group.

refined to mj,k different types so that,

Ej,k =

mj,k×
i=1

E (i)
j,k

The effective number of edge types is denoted m` = maxmj,k, i.e., the largest number

of edge types between any pair of node types.

An example of a multi-layer graph is shown in Fig. 4.6 with two types of nodes,

n` = 2, where node types are denoted by the shape. There are three edge types,

denoted by solid, dashed, or dotted lines, but at most there are only m` = 2 edge

types at most between any two types of nodes. The quotient graph of this multi-

layer graph is shown in Fig. 4.7 where the quotient nodes are colored and have

shape corresponding to their originating nodes and the quotient edges have pattern
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O1 O2 O3

n1 = 2 n2 = 6 n3 = 6

m2
1,2 = 6

m1
2,2 = 6

m1
2,3 = 6

m2
2,3 = 12

m3
3,3 = 12

Figure 4.7: The quotient graph of the multi-layer graph in Fig. 4.6. Nodes are colored
and have shape according to their originating orbit. Edges have pattern according to their
originating edge types as well.

corresponding to their originating edges.

The definition of a quotient graph in Def. 4.2.1 can be directly applied to the

multi layer networks with the caveat that each quotient node in C now has a node

type associated with it and each edge (Cj, Ck) likewise has an edge type associated

with it. The procedure to create feasible quotient graphs remains the same except

that now there may be more than one quotient edge connecting two quotient nodes

of different types.

In the following section, we turn to an application of graphs with symmetries,

namely, the consensus problem. This problem addresses how linear dynamics applied

to graphs with symmetry can exhibit interesting consensus states, even if the system

is unstable.

4.7 Symmetry Induced Group Consensus [12]

As an application of the use of graphs with symmetry, we briefly discuss consensus

problems and in particular, group consensus. In consensus problems, we assign to

each node in a graph vj ∈ V , a time-varying state vector, xj(t), and consensus is

achieved if,

lim
t→∞
||xj(t)− xk(t)|| = 0, ∀vj, vk ∈ V (4.7.1)

Consensus type problems as described by Eq. (4.7.1) find applications in vehicle co-

ordination [217], opinion dynamics [218], sensor networks [219], and communication

[220]. More recently, cluster consensus and group consensus (sometimes used inter-
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changeably) have been investigated which is defined for some partition of the nodes,

C, as,

lim
t→∞
||xj(t)− xk(t)|| = 0, ∀vj, vk ∈ C`, ∀C` ∈ C (4.7.2)

Group consensus, as defined in Eq. (4.7.2), for undirected and directed graphs with

and without topology switching is investigated in [221–223]. The intra-group coupling

is used as the mechanism for determining whether group consensus will occur in

[224–226]. Most of the current work on group consensus [227–230] assumes that the

adjacency matrix is balanced, that is, the inter-group coupling for each node sums to

zero, that is,
∑

vk∈Cb
Aj,k = 0, vj ∈ Ca, a 6= b

The works referenced above do not exploit intrinsic properties of the graph structure

which is different from our work which uses the automorphism group of the graph.

The only work on consensus, or synchronization, using the automorphism group of a

graph, applies contraction theory [231, 232] which does not provide insight into the

role control gains may have in whether or not group consensus can be achieved.

Let G = (V , E) be a graph with adjacency matrix A and n nodes. We assume

the edge weights w(vj, vk) = 1 ∀(vj, vk) ∈ E . Let Aut(G) be the automorphism group

of the graph and let O be the partition of the nodes induced by the orbits of the

automorphim group of the graph (as described in Lemma 4.2.1). We assume that

there are |O| = q orbits. To determine the orbit of each node, we use the notation,

k̄ = ` if vk ∈ O` (4.7.3)

We are interested in linear dynamics described by the equation,

ẋj(t) = Fj̄xj(t) +
N∑

k=1

Aj,kHxk(t). (4.7.4)

where each node’s state vector is composed of N variables. Let x(t) be the composite

vector of all states of the nodes in the graph which has length Nn, then the evolution
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of the states for all systems governed by Eq. (4.7.4) can be written,

ẋ(t) =

[
q∑

k=1

Jk ⊗ Fk + A⊗H
]
x(t) (4.7.5)

where Jk is a diagonal matrix with diagonal elements `, ` equal to 1 if ¯̀= k as defined

in Eq. (4.7.3) and equal to 0 otherwise. The symbol ⊗ denotes the Kronecker product.

Definition 4.7.1 (Group Consensus Manifold). The set of states xj(t) = xk(t) for

all j̄ = k̄ defines an invariant manifold of the dynamics in Eq. (4.7.5).

If the system lies on the group consensus manifold, then the evolution of the

system can equivalently be described by the quotient graph dynamics,

q̇k(t) = Fkqk(t) +

q∑

`=1

Qk,`Hq`(t), k = 1, . . . , q (4.7.6)

where the Q ∈ Rq×q is the adjacency matrix of the quotient graph. The matrix Q can

be constructed as,

Q = E†AE

where E ∈ {0, 1}n×q is the orbit indicator matrix with elements Ek,k̄ = 1 for k =

1, . . . , n and all other elements equal to 0. The symbol † represents the Moore-Penrose

pseudo-inverse defined as,

E† = (ETE)−1ET

The quotient dynamics in Eq. (4.7.6) is stable if the matrix,

(F1 ⊕ F2 ⊕ . . .⊕ Fq) +Q⊗H

is Hurwitz.

We separate four possible cases of interest:

1. The system in Eq. (4.7.5) is unstable and group consensus is not achieved.

2. The system in Eq. (4.7.5) is unstable and group consensus is achieved.
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3. The system in Eq. (4.7.5) is stable and group consensus is achieved.

4. The quotient dynamics in Eq. (4.7.6) is stable but the group consensus manifold

is not.

To determine which case will occur for a particular choice of matrices Fk, k = 1, . . . , q,

adjacency matrix A, and coupling matrix H, we use the automorphism group block

diagonalizing orthogonal transformation [204], T ∈ Rn×n. The transformation is

determined from the irreducible representation (IRR) of the automorphism group of

the network. The first q rows of T consists of elements,

Tk,` =





√
1
nk

if k̄ = `

0 otherwise

These first q rows describe the behavior along the group consensus manifold. The

remaining n − q rows describe motion orthogonal to the group consensus manifold

and all have row-sum equal to zero. Each row of T has non-zero values associated

with columns corresponding to a single orbit. The transformation applied to the

adjacency matrix yields the matrix TAT T = B and the transformation applied to

Jk is invariant, i.e., TJkT
T = Jk. Define the transformed states of the system as

x̃(t) = (T ⊗ In)x(t) so that the transformed version of Eq. (4.7.5) is,

˙̃x(t) =

[
q∑

k=1

Jk ⊗ Fk +B ⊗H
]
x̃(t) = B̂x̃(t) (4.7.7)

This transformation has important consequences to determine the stability of group

consensus. The first q transformed states in Eq. (4.7.7) are denoted x̃para(t) and rep-

resent motion along the group consensus manifold and the remaining n−q transformed

states are denoted x̃orth(t) and represent motion orthogonal to the group consensus

manifold. The behavior of these two components have been decoupled, that is,




˙̃xpara(t)

˙̃xorth(t)


 =




B̂para Onq×n(N−q)

On(N−q)×nq B̂orth






x̃para(t)

x̃orth(t)


 (4.7.8)
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We can now determine the stability of the group consensus manifold independent of

the stability of the global system. Let λmax
para be the largest real part of an eigenvalue

of the matrix B̂para and let λmax
orth be the largest real part of an eigenvalue of the matrix

B̂orth that appear in Eq. (4.7.8). If λmax
para < 0 (> 0), then the motion along the group

consensus manifold is stable (not stable) while if λmax
orth < 0 (> 0), then perturbations

from the group consensus manifold will vanish with increasing time (will grow with

increasing time).

An example of the automorphism group consensus problem for the twelve node

graph shown in Fig. 4.8(A) is described in depth. Each node is assigned n = 4 states.

The quotient graph is shown in Fig. 4.8(B) with associated matrices,

F1 =




O2 I2

−2I2 −2I2


 F2 =




O2 I2

−4I2 −4I2


 F3 =




O2 I2

−6I2 −6I2




and the coupling matrix has two control parameters α and β,

H =



O2 O2

αI2 β121
T
2


 (4.7.9)

The adjacency matrix with rows colored according to each node’s orbits is shown

in Fig. 4.9. The orthogonal block diagonalizing transformation T is shown in Fig.

4.10 and the resulting block diagonal matrix B is shown in Fig. 4.11. Note that

the upper left hand corner represents the motion along the group consensus manifold

while the lower right hand corner represents the blocks describing motion orthogo-

nal to the group consensus manifold. Using the control parameters α and β in Eq.

(4.7.9), we examine the stability of the system and whether or not group consensus is

achieved which is colored in Fig. 4.8(C). We see all four possibilities occur for differ-

ent values of the control parameters where red corresponds to stable global dynamics

and group consensus occurs, the purple region corresponds to unstable dynamics but

group consensus is achieved, the green region corresponds to unstable dynamics and

group consensus is not achieved, and the blue strip corresponds to stable dynamics
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Figure 4.8: An example of the different regimes which may exist in the group consen-
sus problem. (A) A twelve node graph with three orbits in its automorphism group, with
nodes colored according to their orbits. (B) The quotient graph associated with the orbits
of the automorphism group of the graph in (A). (C) The stability of the system in control
parameter space (α,β) where the red background represents stable dynamics and group con-
sensus achieved, the purple background represents unstable dynamics but group consensus
achieved, the green background represents unstable dynamics and group consensus is not
achieved, and the blue background represents stable dynamics but group consensus is not
achieved. (D) The largest real part of the eigenvalues of the matrices B̂para and B̂orth for
α = 0.2 and varying balues of β. The background is colored according to the regions in (C).
(E) An example of the time trajectories in the blue region where B̂para is negative definite
but B̂orth is marginally stable so the system is marginally stable but group consensus is not
achieved.
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A =




0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 0
0 1 1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0 0 1 1 1
0 0 1 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 1 1 0




Figure 4.9: The adjacency matrix of the graph in Fig. 4.8(A) with rows colored according
to each node’s orbit.

T =




0 0 0 0 0 0 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6
0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 0

1/
√

2 1/
√

2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2/

√
6 1/

√
6 1/

√
6 0 0 0

0 0 0 0 0 0 0 0 0 −2/
√

6 1/
√

6 1/
√

6
0 0 0 0 0 0 0 1/

√
2 −1/

√
2 0 0 0

0 0 0 0 0 0 0 0 0 0 1/
√

2 −1/
√

2
0 0 0 0 0 0 −1/

√
6 −1/

√
6 −1/

√
6 1/

√
6 1/

√
6 1/

√
6

0 0 −0.5 −0.5 0.5 0.5 0 0 0 0 0 0
0 0 −0.5 0.5 0.5 −0.5 0 0 0 0 0 0
0 0 −0.5 0.5 −0.5 0.5 0 0 0 0 0 0

−1/
√

2 1/
√

2 0 0 0 0 0 0 0 0 0 0




Figure 4.10: The block diagonalizing transformation matrix found from the IRR of the
graph in Fig. 4.8(A). The rows are colored according to the associated orbit.

but group consensus is not achieved. Values of λmax
para and λmax

orth are shown in Fig.

4.8(D) for α = 0.2 and varying β. The regions are colored according to the same

criteria as in Fig. 4.8. In Fig. 4.8(E) time trajectories of the states are shown for

α = 0.2 and β = −1 so that the system is marginally stable but group consensus is

not achieved. This example, different from the previous work on group consensus,

demonstrates that it is possible for a dynamical system to be unstable, yet still achieve

group consensus.

This work focuses on the problem of whether or not group consensus may occur

whether or not the dynamics of the overall system is stable or not. Note that the block

diagonal matrix B̂orth though is further decomposed into smaller blocks representing

different orthogonal motion from the group consensus manifold. This suggests it is

possible to determine if some orbits achieve consensus while others may not in a more

granular fashion. This focus will guide future work in this area.
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B =




2
√

6 0 0 0 0 0 0 0 0 0 0√
6 2

√
2 0 0 0 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 2

√
6 0 0 0

0 0 0 0 0 0 0
√

6 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0

√
2

0 0 0 0 0 0 0 0 0 0
√

2 0




Figure 4.11: The block diagonal matrix B = TAT T where A and T are shown in Figs. 4.9
and 4.10, respectively. The upper block is the matrix Bpara which describes motion parallel
to the group consensus manifold while the remaining blocks describe motion orthogonal to
the group consensus manifold.

4.8 Approximate Equitable Partitions

In the previous sections, our discussion concerned symmetries of graphs, a structural

property of a graph (that is, independent of edge weights). By ignoring the edge

weights though, information about a network is lost and so the orbits of the automor-

phism group may not represent redundancies in the network as described in Sec. 4.2

or may not capture those nodes with similar behavior as described in Sec. 4.7. The

obvious question though is how best to include edge weights. To discuss the various

options, we repeat some definitions. Let G = (V , E) be an undirected graph with edge

weights w : E 7→ R+. Also, let C be a partition of the nodes. We differentiate two

quantities, the cluster degree of a node and the cluster strength of a node.

Definition 4.8.1 (Cluster Degree and Cluster Strength). Let nc = |C| be the number

of clusters in the partition C. The cluster neighbors of node vj is,

Nj,k = {v` ∈ Ck|(vj, v`) ∈ E}

The cluster degree of node vj, denoted κj ∈ Znc, has elements equal to,

κj,k = |Nj,k|
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and the cluster strength of a node vj, denote σj ∈ Rnc, has elements equal to,

σj,k =
∑

v`∈Nj,k
wj,`

An equitable partition, as defined in Def. 2.2.20, has the property that, for every

pair of nodes vj, vk ∈ C`, κj = κk, but it is not necessary for σj = σk. Some

possible extensions of equitable partitions and symmetries to weighted graphs are

now discussed.

1. One can shoehorn the definition of an equitable partition to the cluster strength

vectors such that C is an equitable partition if for every pair of nodes vj, vk ∈ C`,

then σj = σk. Note that this definition will only give non-trivial results if the

edge weights are drawn from some relatively small finite set of values. If the

edge weights are drawn from some continuous distribution, then the probability

that any sum of a subset of the edge weights is equal to the sum of any other

subset of the edges is essentially zero.

2. If the edges can be classified into ne sets, that is, E =
⋃ne
`=1 Ek, then one can

compute an edge-colored equitable partition. Define cluster degrees associated

with each set of edges, κ
(`)
j , ∀vj ∈ V , ∀E` ∈ E . The partition C is an edge-colored

equitable partition if,

κ
(`)
j = κ

(`)
k , ∀vj, vk ∈ Ca, ∀Ca ∈ C, ∀E` ∈ E

This definition again ignores any edge weights, but may be applicable for net-

works with edges that perform different tasks, such as communication links and

information links.

Rather than these possibilities, we relax the strict equality demanded by the previous

definitions and instead introduce a tolerance.

Definition 4.8.2 (Approximate Equitable Partition). Let G = (V , E) be an undi-

rected graph with weights w : E 7→ R, which we assume are drawn from a continuous
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distribution. A partition of the nodes, C, is approximately equitable if for every pair

of nodes vj, vk ∈ C`, their cluster strengths satisfy,

||σj − σk|| ≤ ε (4.8.1)

where || · || is some norm chosen based on the application.

Of particular interest is the minimum approximate equitable partition, that is, the

partition C that satisfies Def. 4.8.2 that is of minimum size, |C| = nc.

min |C|

s.t. ||σj − σk|| ≤ ε, ∀vj, vk ∈ C`, ∀C` ∈ C
(4.8.2)

The minimum approximate equitable partition depends on the chosen value of ε, and

so we denote it as C(ε). Note that C(ε), the minimum approximate equitable partition

for a specific value of ε, is not necessarily unique. There exists n values of ε, denoted

εk, k = 1, . . . , n of particular interest which are defined as

|C(ε)| > k if ε < εk

|C(ε)| ≤ k if ε ≥ εk

(4.8.3)

These values of εk are the switching values when the MAEP increases in cardinality.

For the lower bound, εn = 0, can be trivially proven using Eq. (4.8.3). At the other

end, one can compute ε1 using Def. 4.8.2 directly. Compute the strengths of every

node, σj, and then,

εmax = max
vj ,vk∈V

|σj − σk| (4.8.4)

If the graph is small enough, one can enumerate all possible partitions. To determine

when this is possible, we define some results from the field of combinatorics.

Definition 4.8.3 (Stirling Numbers of the Second Kind [233]). The Stirling numbers

of the second kind, denoted
{
n
k

}
, are equal to the number of ways a set of n items can
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be partitioned into k subsets. An explicit formular to compute them is,

{
n

k

}
=

1

k!

k∑

j=0

(−1)k−j
(
k

j

)
jn

Even for larger values of n, one can enumerate all partitions for the first few values

of k as the Stirling numbers scale approximately as kn. This exercise can be useful to

find the first few values of εk, k = 2, 3, . . ..

Definition 4.8.4 (Bell Numbers). The Bell numbers, denoted Bn, are equal to the

number of ways a set of n items can be partitioned into any number of sets, i.e.,

Bn =
n∑

k=0

{
n

k

}

that is, a sum of the Stirling numbers of the second kind defined in Def. 4.8.3.

For n > 14, Bn > 109, after which enumerating all partitions may become com-

putationally infeasible. A small example demonstrates the above concepts.

A star graph with one central node, v1, and 10 leaves, vk, k = 2, . . . , 11, is con-

structed as shown in Fig. 4.12(A). For this example, the MAEP is computed for

different values of ε which is shown in Fig. 4.12(B). The discrete behavior of εk is seen

as the steps. For instance, ε10 = 0.01, which is the value of ε that, if ε < ε10, every

node is placed in its own cluster in the MAEP. The unweighted minimum equitable

partition is recovered for ε3 < ε ≤ ε2 where ε3 = 0.62 and ε2 = 10.59.

An additional difficult of this problem is that it does not obey transitivity. Specif-

ically, if nodes vj and vk obey Eq. (4.8.1) and nodes vk and v` obey Eq. (4.8.1), it

may be the case that nodes vj and v` do not. As an example, two partitions that are

optimal solutions to Eq. (4.8.2) for the choice of ε − 0.5 are shown in Fig. 4.12(C).

For this value of ε, nodes v2, v4, and v10 cannot be in the same cluster as node v11. On

the other hand, all of the remaining leaf nodes may be assigned to either cluster in-

discriminately, meaning that there are
(

6
2

)
= 15 possible, equally optimal, partitions.

To better visualize the change in the partitions, we define a metric on the space
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Figure 4.12: An example of the definition used for minimum approximate equitable parti-
tions. (A) A star graph with 10 leaf nodes with edge weights applied to each edge. (B) The
number of clusters in the MAEP as a function of ε. The discrete values of εk are seen as the
steps in the number of clusters. (C) An example of the non-uniqueness of solutions for the
graph in (A) when ε = 0.5. (D) The role of ε when the edge weights are drawn from more or
less narrow distributions represented by σ, the standard deviation of a normal distribution.

of partitions called the Variation of Information.

Definition 4.8.5 (Variation of Information [234]). Let C be a partition of a set of n

items into nc clusters labeled Cj, j = 1, . . . , nc. The entropy of a partition is defined

as,

H(C) = −
nc∑

j=1

pj log pj (4.8.5)

where pj =
|Cj |
nc

is the probability an item is in the j’th cluster. Note that the entropy

in Eq. (4.8.5) is bounded by,

0 ≤ H(C) ≤ log n

The mutual information shared between two clusterings is defined as,

I(C, C ′) =
nc∑

j=1

n′c∑

k=1

pj,k log
pj,k
pjpk

(4.8.6)

where pj,k = |Cj ∩ Ck| and the logarithm function is modified to satisfy log(0) = 0. If

C = C ′ it is easy to show that I(C, C) = 2H(C). The Variation of Information between
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two partitions of the same set can be written in terms Eqs. (4.8.5) and (4.8.6).

V I(C, C ′) = H(C) +H(C ′)− 2I(C, C ′)

To move beyond a single set of edge weights as shown in Fig. 4.12(A), we instead

select edge weights from a normal distribution with mean µ = 1 and standard devia-

tion σ > 0. A value of interest is ε3 which is the value at which point the unweighted

minimum equitable partition is no longer the minimum approximate equitable par-

tition. To determine this value of ε, we apply Eq. (4.8.1) for the star graph for the

minimum equitable partiton yields |dj − dk| ≤ ε for j, k = 2, . . . , 11. The distribution

of the absolute value of the difference of random variates drawn from normal distri-

bution N (µ, σ) is the half normal distribution which has CDF erf
(

x√
2σ

)
. Thus, the

probability that a pair of edges satisfies the requirement to be in the same cluster is,

P (|dj − dk| ≤ ε) = erf

(
ε√
2σ

)
(4.8.7)

For a star graph with n leaves, every pair of leaf nodes must satisfy Eq. (4.8.7), for

which we must check (n− 1)! pairs. While not strictly independent, a rough estimate

assumes each pair (dj, dk) is independent so that we may use the joint probability

formula,

erf(n−1)!

(
ε√
2σc

)
= 0.995 (4.8.8)

so that 99.5% of realizations will have the minimum equitable partition as its MAEP.

Solving Eq. (4.8.8) for the critical value of σ holding ε constant, we find that,

σc =
ε√
2

[
erf−1(0.9951/(n−1)!)

]−1
(4.8.9)

In Fig. 4.12(D), we plot the Variation of Information, V I(C, C̄) from Def. 4.8.5,

where C̄ is the minimum equitable partition of the unweighted graph for ε = 0.001,

ε = 0.01, and ε = 0.1. For each value of σ, 50 realizations of edges are drawn from

the corresponding distribution and the minimum approximate equitable partition is
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ε σc

0.1 0.0176
0.01 0.00176
0.001 0.000176

Table 4.1: Critical values of σc for n = 10.

computed. For n = 10 as used to compute the results in Fig. 4.12(D), we can compute

the critical value of σc, The results in Table 4.1 agree with the curves in Fig. 4.12(D)

despite the inapropriate assumption of independent variables discussed above.

Unfortunately, for complex networks, the simple analysis of star graphs cannot be

applied. Instead, other methods must be developed in order to search over the set

of partitions more efficiently. A first approach is to use an ILP formulation of the

problem which is amenable to general purpose solvers.

4.8.1 ILP Formulation of MAEP

The minimum approximate equitable partition can be formulated as an Integer Linear

Program (ILP). In this section, for the ILP formulation, the norm used in Eq. (4.8.2)

is chosen to be the inf-norm.

||σj − σk||∞ = max |σj,` − σk,`| ≤ ε

This choice is made because it can be constructed as a set of linear constraints.

σj,` − σk,` ≤ ε, ` = 1, . . . , |C|

Let n be the number of nodes and let nc ≤ n be the maximum allowed number of

clusters. The variables yj,k ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , nc, is equal to 1 if node

vj is in cluster Ck and is equal to 0 otherwise. We introduce additional variables

zi,j ∈ {0, 1}, 1 ≤ i < j ≤ n, which is equal to 1 if nodes vi and vj are in the same
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cluster and 0 otherwise. To find the values of εnc for a particular value of nc,

min ε

s.t.
nc∑

k=1

yj,k = 1, ∀vj ∈ V

∑

v`∈Ni
wi,`y`,k −

∑

v`∈Nj
wj,`y`,k ≤M(1− zi,j) + ε,





∀vi, vj ∈ V

i 6= j

k = 1, . . . , nc

zi,j + 1 ≥ yi,k + yj,k, i, j = 1, . . . , n, k = 1, . . . , nc

(4.8.10)

To determine the size of this ILP, we count the number of variables and constraints.

The number of variables is clearly nvar = nnc + n2 while the number of constraints is

ncon = n+(n2−n)nc+n
2nc. In its current formulation, the ILP in Eq. (4.8.10) suffers

from a few serious computational issues which can be, at least partially, addressed in

the following ways.

1. The variables zi,j and zj,i must be equal and the diagonal values, zi,i, are un-

necessary. Thus, a little more than half of the variables are redundant. Instead,

we reduce the set of variables zi,j to just 1 ≤ i < j ≤ n, so that the number of

z variables is now n2−n
2

.

2. It is difficult for most ILP software to prove optimality when there are many

equivalent optimal solutions. This problem arises in the formulation in Eq.

(4.8.10) as the solution is a clustering C which is only unique up to a permuta-

tion of the labelling of the clusters. To remedy this, we assign nodes to clusters

of index less than or equal to the node’s index, which reduces the number of

variables yj,k, j = 1, . . . , n and k = 1, . . . ,min{j, nc}. Combining the new num-

ber of z variables with the new number of y variables, the number of variables

has been reduced to,

nvar =
n2 − n

2
+
n2
c + nc

2
+ (n− nc)nc

=
1

2

(
n2 − n− n2

c + nc + 2nnc
)
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For large n and nc � n, these eliminations of redundancy cut the number of

variables in half.

3. Additionally, the first set of constraints, CON1, has been reduced from nnc to

n2
c+nc

2
+ (n−nc)nc. The number of the third set of constraints has been reduced

from n2nc to 3n2nc−3nn2
c+n

3
c−nc

6
. The second set of constraints is unaffected yet.

4. The second set of constraints is affected by the change in variables, just in a

more complex fashion. If two nodes are in the same cluster, then we must check

that the their cluster strengths satisfy ||dj−dk||∞ ≤ ε. If the node of maximum

index of the neighbors of nodes vi and vj is v` where ` < nc, then we only need

to include constraints from family CON2 for k = 1, . . . , `.

Let `j denote the maximum index of a neighbor of node vj, i.e.,

`j = max
v`∈Nj

`

From this analysis, there are two competing, not necessarily exclusive, goals to help

make the ILP more tractable. On the one hand, we want to ensure there are as few

equivalent solutions as possible, i.e., the MAEP is unique even accounting for allowed

relabeling of the clusters. To ensure this, it requires finding a labeling of the nodes

such that the first nc nodes are unlikely to be in any of the same clusters. If at least

two nodes, vi and vj such that i, j ≤ nc, are in the same cluster in the MAEP, then

there exists at least two clusters in the MAEP consisting of all nodes of index larger

than nc. The clustering where these two clusters have their labels swapped is also an

MAEP and so the MAEP is not unique which makes optimality harder to prove for

an ILP solver. On the other hand, we also want to relabel the nodes such that the

maximum index of each node’s neighbor is as small as possible to reduce the number

of constraints in family CON2. The decision about which relabelling is more beneficial

for an ILP solver is not clear.

The first relabelling can be performed by clustering the nodes’ strengths into nc

classes and choosing representatives from each cluster to have the first nc indices. The
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second relabelling can be performed by labelling the nodes of according to decreasing

degree. A mix of the two schemes can be performed by first clustering the nodes

according to strength, and then labeling each representative node from the nc clusters

according to decreasing degree.

The last task to improve the performance of the ILP is to choose proper values

for the big M constraints. If nodes vi and vj are not in the same cluster, i.e. zi,j = 0,

then M should be chosen such that this constraint is satisfied for any value of the

LHS without being larger than necessary. Assuming positive edge weights, we can

bound the difference

−sj ≤
∑

v`∈Ni
wi,`y`,k −

∑

v`∈Nj
wj,`y`,k ≤ si

As ε > 0, then we can choose Mi,j = si. Rearranging the second constraint we can

find a helpful lower bound,

−σj + σizi,j − ε ≤
∑

v`∈Ni
wi,`y`,k −

∑

v`∈Nj
wj,`y`,k + σizi,j − ε ≤ σi

The lower limit of the inequality can be lower bounded by −σj− εmax, the upper limit

of ε.

With the above discussions in mind, and using εmax from Eq. (4.8.4), the nodes

of the graph are relabeled as described above, and the more tractable version of the
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ILP is,

min ε

s.t.

min{j,nc}∑

k=1

yj,k = 1, j = 1, . . . , n

−σj − εmax ≤
∑

v`∈Ni
wi,`y`,k −

∑

v`∈Nj
wj,`y`,k

+ σizmin{i,j},max{i,j} − ε ≤ σi




i, j = 1, . . . , n

i 6= j

k = 1, . . . ,min{nc,max{`i, `j}}

− 1 ≤ yi,k + yj,k − zi,j ≤ 1,





1 ≤ i < j ≤ n

k = 1, . . . ,min{i, nc}

(4.8.11)

which is in a form amenable to any ILP solver.

Nonetheless, it has been noticed that using ILP formulations to solve partitioning

problems, even the formulation in Eq. (4.8.11), tends to be quite difficult, by which it

is meant even small problems require long computational times. Thus, even with the

symmetry breaking and constraint reduction, the problem in Eq. (4.8.11) is incapable

of handling even moderate sized problems. In fact, one of the author’s collaborators

found that for graphs with just n = 60 nodes, UNM’s Wheeler super computer was

unable to find the MAEP within allotted times. This result does not bode well for

the current formulation.

4.8.2 Heuristic for MAEP

With the difficulty of approaching this problem using an ILP formulation, a heuristic

is proposed instead. This is inline with many other partitioning problems, such as

graph coloring, where most often solutions are found using a heuristic that is,

1. very fast, and
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2. capable of random initialization that leads to different sub-optimal solutions.

These two properties are important so that we may run the heuristic many times,

potentially in parallel, with different initial conditions that yield different results, and

then we simply select whichever run returns the best solution as measured by the cost

function in Eq. (4.8.2). The heuristic developed is a modification of the polynomial

time algorithm for finding the minimum equitable partition of an unweighted graph

presented in [34]. To do this, some definitions are first presented.

Definition 4.8.6 (Graph Coloring). Let G = (V , E) be an undirected graph. A parti-

tion of the nodes C is a valid coloring if

(vj, vk) ∈ E ∧ vj ∈ C` ⇔ vk /∈ C`

Finding the minimum graph coloring of a general graph is an NP-hard problem

(but there exist substitutions for some types of graphs such as planar graphs) which

means there exists no polynomial time algorithm solve this problem. Instead, many

heuristics are used to solve the graph coloring problem, usually based on a greedy

update.

Definition 4.8.7 (Clique). Let G = (V , E) be an undirected graph. A subgraph G ′ =

(V ′, E ′) is a clique if

∃(vj, vk) ∈ E , ∀vj, vk ∈ V ′

or in other words, G ′ is a complete graph.

A clique partition of a graph is a partition such that each subgraph induced by a

cluster is a clique.

Lemma 4.8.1 (Clique Partition). A clique partition of a graph is also a graph coloring

of its complement.

Proof. Let G = (V , E) be an undirected graph and let Ḡ = (V , Ē) be its complement.
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Let C be a clique partition of the graph G so that by Def. 4.8.7,

(vj, vk) ∈ E , ∀vj, vk ∈ C`, ∀C` ∈ C

As a graph’s complement has the property (vj, vk) ∈ E ⇔ (vj, vk) /∈ Ē then,

(vj, vk) /∈ Ē , ∀vj, vk ∈ C`, ∀C` ∈ C

which is the definition of a graph coloring as stated in Def. 4.8.6.

An immediate extension of Lemma 4.8.1 is that the minimum graph coloring of a

graph is also the minimum clique partition of its complement.

Given a weighted undirected graph G = (V , E) and a partition of its nodes C, con-

struct a new unweighted undirected graph H = (V ,F) on the same set of nodes but

with edges (vj, vk) ∈ F if and only if they satisfy Eq. (4.8.1) and vj, vk ∈ C`. If H con-

sists of only disjoint cliques then C is an approximate equitable partition. On the other

hand, ifH does not consist of only cliques, then a refinement of the clustering C is made

such that the new clustering C ′ is a clique partition. Using C ′, a new induced graph is

created H′ and the process is repeated until the induced graph is a clique partition.

Algorithm 2: Heuristic for Minimum Approximate Equitable Partitioning

Data: Undirected graph G = (V , E) and initial clustering of its nodes C(0)

with n
(0)
c clusters.

k ← 0;

H(0) = (V ,F (0))← Induced Unweighted Graph G, C(0);

while H(k) is not a set of disjoint cliques do

k ← k + 1;

Compute graph coloring of H̄(k−1) and call it C(k).;

H(k) = (V ,F (k))← Induced Unweighted Graph G, C(k);

end

The initial clustering C(0) affects the approximate equitable partition found by this

heuristic so many initial choices of C(0) are used to find a best approximate equitable
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Figure 4.13: An example of using the minimum approximate equitable partition. (A)
An undirected graph with n = 20 nodes. The nodes are colored according to the graph’s
minimum equitable partition. (B) The edge weights are drawn from a normal distribution
centered around 1. (C) The comparison of three methods for computing the minimum
approximate equitable partition. The first heuristic, in light blue, initializes the method

with C(0) = V. The second heuristic, in orange, chooses initial C(0) with sizes n
(0)
c ∈ {1, 2, 3}.

The green marks are the result returned by the ILP for values of ε that terminated after
the allotted time provided on the Wheeler Machine at UNM’s CARC.

partition. The obvious choice is to set C(0) = V , that is, every node is in the same

cluster. Other choice may create C(0) by partitioning V into two or more clusters

randomly or according to some rule. Future work on approximate symmetries will

require a modification to the definition

4.9 Conclusion

This chapter investigates symmetries in graphs, and in particular, the problem of

constructing graphs with desired orbits of its automorphism group. We describe in

detail the requirements for a graph to be a feasible quotient graph showing that not

all graphs can represent an equitable partition of some original graph. With a feasible

quotient graph, we describe the procedure by which one can wire a graph such that its

automorphism group is described by the original quotient graph. With the increased

interest in graph symmetries as a way to induce consensus or synchronization, the

ability to create systems with desirable symmetry patterns is an important contribu-

tion. Extensions to multi-layer graphs is also demonstrated.

Also included is an application of how graphs with symmetries can achieve group
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consensus independent of whether or not the dynamical system is stable.
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Chapter 5

Control of Lattice Graphs

5.1 Introduction

This chapter explores in detail the exponential scaling demonstrated in Chapter 3

using both analytical and numerical methods for simple models. In particular, we

demonstrated that the control energy of the target control problem scales exponen-

tially, that is, holding G and |D| constant, the mean control energy scales exponentially

with the cardinality of the set of target nodes |T | [1].

〈logET 〉|T |=nt ∼ η
nt
n

(5.1.1)

While the exponential scaling in Eq. (5.1.1) appeared to hold quite well, we see

that the variance of the log control energy can span many orders of magnitude (see

Figs. 3.3 and 3.4). This large variance makes the result in Eq. (5.1.1) somewhat

less useful as its ability to predict even the order of magnitude of the control energy

is dubious for any particular target node set T . Let us consider the simplest case,

that is, |D| = nd = 1 and |T | = nt = 1, which we call the single driver single target

problem. In this case, for T = {vk}, and βk(tf ) = 1, the control energy can be written

as,

E{vj} =
1

Wk,k(tf )
(5.1.2)
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Figure 5.1: The control energy for the single driver single target problem for an Erdős-
Rényi graph with n = 500 nodes and edge probability p = 0.3%. The single driver is chosen
to be D = {v1} and each mark represents the control energy in Eq. (5.1.2) for T = {vk},
k = 1, . . . , n. (A) The pairwise control energy is plotted as a function of the target node
index k. (B) The control energies of the same graph as shown in (A) except, rather than
plotting the control energy as a function of the node index k, we set the x-axis to be the
distance between the driver node v1 and the various target nodes vk.

i.e., the control energy is just the inverse diagonal element of the controllability

Gramian defined in Eqs. (2.3.7) and (2.3.8) corresponding to the single target node.

As an example of the difficulty of predicting the control energy for the single driver

single target problem, Fig. 5.1(A) plots the single driver single target control energy

in Eq. (5.1.2) for an Erdős-Rényi graph (see Def. 2.2.15) with n = 500 nodes, edge

probability p = 0.003, and driver node set D = {v1}. We see that the control en-

ergy spans multiple orders of magnitude, where the minimum value is clearly when

T = {v1} and the maximum is over log10(E) > 10.

As a first attempt to explain this large variation, we plot the control energy as a

function of the length of the shortest path, or distance d1,k (see Def. 2.2.11), between

the driver node v1 and the various target nodes vk, k = 1, . . . , n in Fig. 5.1(B). The

cloud of control energies shown in Fig. 5.1(A) are now sorted nearly into a linearly

increasing curve in Fig. 5.1(B), suggesting that the distance between driver node and

target node must play a significant role.

This chapter investigates, in detail, the properties of the exponential scaling in

Fig. 5.1(B). The derivations and more involved proofs of theorems are contained in
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Appendix D. We first numerically solve the controllability Gramian for simple models

which capture the important quantities of distance and redundancy in Sec. 5.2. With

the numerical evidence gained in Sec. 5.2, we derive the analytic expressions for the

controllability Gramian for path graphs and ring graphs in Sec. 5.3 using a variety

of transforms in Appendices D.1.1 through D.4. Besides control distance, we also

investigate the role of redunant paths in Sec. 5.4 which provides a corrective factor

to the scaling laws derived in Sec. 5.3. The controllability Gramian of hypercubic

lattices is derived in Sec. 5.5 and for general lattices is derived in Sec. 5.6. Finally,

we use our analyses to propose a minimum energy driver node selection algorithm in

Sec. 5.7 that, unlike other methods currently published, is not based on evaluating

the controllability Gramian.

5.2 Control Energy and Control Distance [4]

With the above motivation, let us turn to some simple models of graphs shown in

Fig. 5.2(A) and Fig. 5.2(C) which we call the finite bidirectional path graph and the

finite bidirectional balloon graph, respectively. In this section, we assume all edges are

undirected and have uniform edge weight equal to s > 0. Also, every node is assumed

to have a uniform self-loop −p such that p > 0 and the resulting adjacency matrix A

is Hurwitz so that we may compute the steady state controllability Gramian using the

algebraic Lyapunov equation. The single driver single target control energy for the

finite path graph is shown in Fig. 5.2(B) where each curve corresponds to a different

value of the regulation parameter p. Each point represents the case for D = {v1} and

the target node T = {vd+1}. We see that as p increases, the slope of the energy curve,

η(p), also increases, so that the magnitude of the regulation plays a role in the rate

of energy increase,

logE ∼ η(p)d. (5.2.1)
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Figure 5.2: Control energy of simple models of graphs. (A) The finite path graph of
length n consists of n nodes and undirected edges (vk, vk+1) ∈ E for k = 1, . . . , n− 1. Each
edge has weight s = 1 and self-loop of weight −p for p > 2 at each node. (B) The single
driver single target control energy where the driver node set is D = {v1} and the target set
T = {vd} so that the distance between the driver node and target node is d−1. Each curve
corresponds to different values of the self-loop weight p. The slopes, η(p), of the energy
curves are plotted as a function of p in the inset. (C) The balloon graph is a simple model
of redundant paths where the distance between the two terminal nodes is d = n − 1 and
there are b identical branches. (D) The control energy reduction as a function of the number
of redundant branches for a selection of distances d between the terminal nodes.

The inset in Fig. 5.2(B) shows the slopes of the energy curves, η(p) in Eq. (5.2.1), as

a function of log p. The slope η(p) can be approximated as,

η(p) ≈ 2 log p. (5.2.2)

Combining Eqs. (5.2.1) and (5.2.2), the single driver single target control energy for

the finite path graph can be approximated as,

logE ∼ 2d log p (5.2.3)

which captures the exponential increase in the control energy as the distance between

the driver node and the target node increases linearly as seen in our motivating

example in Fig. 5.1(B). The expression in Eq. (5.2.3) will be shown to be exact in

the asymptotic limit of infinite path graphs in the following section.

While the finite path graph provides a relationship between control distance and

control energy, control distance is not the only important parameter. The graph used

138



CHAPTER 5. CONTROL OF LATTICE GRAPHS

to generate 5.1(B) is very sparse and the exponential growth of the control energy

with control distance is very clear. The pure exponential increase no longer holds

quite as tightly when the graph is more dense. In Fig. 5.3(A), we plot the single

driver single target control energy as a function of the distance between the single

driver node D = {v1} and a single target node T = {vj}. This graph is also an Erdős-

Rényi graph with n = 500 nodes as in Fig. 5.2 except that now the edge probability

p = 0.015 so that this graph is five times more dense. Also shown in Fig. 5.3(A)

is the mean log control energy for each distance d, 〈logE〉d, as red marks and the

green dashed line is the control energy estimate in Eq. (5.2.3) shifted upwards by

− log(W1,1). We see that for the first few values of d, our estimate is quite tight while

for d > 2, Eq. (5.2.3) begins to overestimate the control energy significantly. We

hypothesize that this is due to the redundancy of shortest paths in the graph.

Definition 5.2.1 (Redundancy). Let Sj,k ⊆ V be the set of all nodes that lie along

any shortest path between nodes vj and vk, i.e., if v` ∈ Sj,k then dj,k = dj,` + d`,k. The

redundancy of the ordered pair vj, vk is then,

rj,k =
|Sj,k| − 2

dj,k − 1
(5.2.4)

which is defined for dj,k > 1. If dj,k = 1, then there can only be a single unique

shortest path between nodes vj and vk as we have prohibited multi-edges. If dj,k = 0

then j = k and the concept of redundancy is not applicable.

The redundancy for any pair of nodes is lower bounded by 1 which represents the

case there is a unique shortest path between a pair of nodes. The control energy for

all target nodes that satisfy d1,j = 4 is shown in Fig. 5.3(B) as a function of 4r1,j.

We see a decreasing trend of the control energy as r1,j increases.

A simple model of redundancy is the balloon graph shown in Fig. 5.2(C) which

is characterized by the distance between the two terminal nodes, v1 and vn, denoted

d, and the number of redundant branches, denoted b. The single driver single target

control energy for balloon graphs with driver nodeD = {v1} and target node T = {vn}
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Figure 5.3: Control energy scaling of a denser graph. (A) The control energy of an Erdős-
Rényi graph of n = 500 nodes and edge probability p = 0.015 with a single driver node
D = {v1} and a single target node. Also shown is the mean log control energy for each
value of d and the estimate in Eq. (5.2.3). (B) For all target nodes vj such that the distance
d1,j = 4, we compute the redundancy using Eq. (5.2.4) in Def. 5.2.1. We see there is a
trend that as the number of nodes that lie along the shortest path increases, the control
energy decreases.

as a function of the number of branches b for some values of d is shown in Fig.

5.2(D). The control energy decreases with increasing number of branches where the

redundancy of a balloon graph is equal to b. The relationship between the density

of the graph and the number of redundant paths is complex where the density of a

graph is defined as,

ρ = 2
|E|

n(n− 1)
(5.2.5)

which is the number of edges over the maximum possible number of edges in an

undirected graph. If we know the distribution of shortest path lengths, pd, d = 1, 2, . . .,

in a graph, which depends on the density of the graph among other factors, we can

compute the probability of the number of nodes that lie along shortest paths between

pairs of nodes a certain distance apart. Let s = |Sj,k| be defined as in Def. 5.2.1.

P (s|d) =

(
n

s

)( d∑

k=0

pkpd−k

)s(
1−

d∑

k=0

pkpd−k

)n−s

(5.2.6)

From Eq. (5.2.6), in extremely dense graphs, the probability that a pair of nodes is

a large distance FINISH DISCUSSION. The mean single driver single target control

energy, 〈logE〉d, for Erdős-Rényi graphs of increasing density, proportional to |E|, is

shown in Fig. 5.4 where each graph has n = 400 nodes and number of edges |E|.
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to the density as seen in Eq. (5.2.5)). We compute the single driver single target control
energy for every ordered pair of nodes vj , vk where the first node is set to be the driver node
and the second is the target node. Each graph is an Erdős-Rényi graph with n = 400 nodes
and number of edges |E|. The black dashed line is the control energy of a finite path graph.

As we have assumed there are no multi-edges, there can exist at most a single path

between pairs of nodes of distance (vj, vk) = 1 and so the finite path graph is able

to predict the control energy quite well when d = 1. As d grows though, the finite

path graph over-estimates the control energy more significantly as the graph density

grows. For |E| = 400, the average degree < κ >= 2 which is the average degree of a

finite path graph in the large n limit and so the blue curve is well approximated by

the finite path graph control energy. As E grows, the deviation from pure exponential

growth, shown by the black dashed line, becomes more pronounced.

The analysis so far has only numerically computed the controllability Gramian for

the two simple models shown in Fig. 5.2. We determined the approximate scaling in

Eq. (5.2.3) from curve fitting the numerical results in Fig. 5.2. We also demonstrated

that redundancy can explain deviations from the pure exponential scaling that arises

due to the distance. While providing hints at the cause of the large variance in the

control energy over random sets of target nodes of equal cardinality, the underly-

ing mechanism that causes the exponential increase remains unknown. An analytic

investigation of the control energy is explored in the next section.
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Figure 5.5: Diagrams of the simple graph models examined in this section. (A) The
bidirectional path graph, (B) the unidirectional path graph, (C) the bidirectional ring, and
(D) the unidirectional rings graph.

5.3 Control Energy of Paths and Rings [5]

To investigate the control energy analytically, we examine in detail a selection of

simple models; bidirectional and unidirectional paths and rings. The four model

graphs investigated in this section are shown in Fig. 5.5.

1. The bidirectional path graph is shown in Fig. 5.5(A) which has nodes V =

{vk|∀k ∈ Z} and undirected edges E = {(vk, vk+1)|∀k ∈ Z}.

2. The unidirectional path graph is shown in Fig. 5.5(B) which has nodes V =

{vk|∀k ∈ Z} and directed edges E = {(vk, vk+1)|∀k ∈ Z}.

3. The bidirectional ring graph is shown in Fig. 5.5(C) which has nodes V =

{vk|k = 0, . . . , n− 1} and undirected edges E = {(vk, v(k+1) mod n|k = 0, . . . , n−

1}.

4. The unidirectional ring graph is shown in Fig. 5.5(D) which has nodes V =

{vk|k = 0, . . . , n− 1} and directed edges E = {(vk, v(k+1) mod n|k = 0, . . . , n− 1}.

This section concerns itself with deriving closed form expressions for the elements of

the controllability Gramian for each of these graphs. Also demonstrated is that, for

even a moderate value of n, the controllability Gramians of the path graphs in Figs.

5.5(A) and 5.5(B) can approximate the controllability Gramians of the ring graphs

in Figs. 5.5(C) and 5.5(D), respectively. This fact will be useful in the following
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sections where we relate the controllability Gramian of subgraphs of a graph to the

controllability Gramian of the original graph.

5.3.1 The Controllability Gramian of the Bidirectional Path

Graph

The bidirectional path graph is the undirected graph G = (V , E) where,

V = {vk|∀k ∈ Z} and E = {(vk, vk+1)|∀k ∈ Z} (5.3.1)

Each edge weight w(vk, vk+1) = s and each node has self-loop of value −p. The

differential Lyapunov equation for the infinite path graph in Eq. (5.3.1) with finite

set of driver nodes D ⊂ V can be written element-wise as,

Ẇj,k(t) = −2pWj,k(t) + sWj+1,k + sWj−1,k

+ sWj,k+1 + sWj,k−1 +
∑

va∈D
δj,aδk,a, Wj,k(0) = 0

(5.3.2)

for all j, k ∈ Z. The solution of Eq. (5.3.2) is derived in Appendix D.1.1 using a

Laplace transform for the temporal component and a discrete time Fourier transform

(DTFT) for the spatial component resulting in the integral expression,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτIj−a(2sτ)Ik−a(2sτ)dτ, (5.3.3)

where the functions In(z) is the modified Bessel function of the first kind (MBFFK)

of integer order (see 9.6.19 in [235])

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ)dθ. (5.3.4)

Some important properties of the MBFFK of integer order in Eq. (5.3.4) are that

1. In(z) > 0 for z > 0,

2. In(0) = δn,0,
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Figure 5.6: Control energy of the infinite path graph. A diagram of the infinite path is
shown in (A) with a single driver node D = {v0}. The logarithm of the integrand in Eq.
(5.3.3) is shown in (B) with edge weights s = 1 and p = 7. We see that as p > 2s, the
integrands each have a maximum value at some time t ≥ 0 before exponentially decreasing
towards zero with increasing time. The logarithm of the controllability Gramian in Eq.
(5.3.3) is plotted in (C) for different values of d. (D) The control energy as a function of
the distance d is plotted holding s = 1 constant and letting p increase. The inset shows the
slope of the curves as a function of log p.

3. d
dz
In(z) > 0,

4. and In(z) = I−n(z).

Returning to the single driver single target problem, we set D = {v0} and the target

set T = {vd} for d ≥ 0 (as the controllability Gramian has symmetry Wj,k(t) =

W−j,−k(t)). The control energy of the single driver single target problem on the

infinite path graph is,

Ed(t) =

[∫ t

0

e−2pτI2
d(2sτ)dτ

]−1

(5.3.5)

A diagram of the infinite path is shown in Fig. 5.6(A). Plots of the integrand are

shown in Fig. 5.6(B) for s = 1 and p = 7 where we see that, as p > 2s, the integrand

has a maximum value for some time t ≥ 0 before decreasing exponentially as t grows.

Plots of diagonal elements of the controllability Gramian are shown in Fig. 5.6(C)

where we see they approach a constant as t grows beyond the maximum value of the

integrand. The control energy is shown as a function of distance d and regulation p

where as p increases, the slope of each energy curve also increases in Fig. 5.6(D). The

slopes of these curves are shown as a function of log p in the inset in Fig. 5.6 where
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Figure 5.7: Control energy of the infinite path graph and single driver single target control
energy in model networks. In each panel, all control energies for ordered pairs (vj , vk) are
computed for 100 realizations of graphs with n = 100 nodes each. The first row are k-regular
graphs with (A) k = 2, (B) k = 3, (C) k = 4, and (D) k = 5. The second row are Erdős-
Rényi graphs with average degrees (E) 〈κ〉 = 2, (F) 〈κ〉 = 3, (G) 〈κ〉 = 4, and (H) 〈κ〉 = 5.
The third row are scale-free graphs constructed with the static model with parameters (I)
〈κ〉 = 2 and γ = 2.1, (J) 〈κ〉 = 2.5 and γ = 2.5, (K) 〈κ〉 = 3 and γ = 3, and (L) 〈κ〉 = 4 and
γ = 4. Each boxplot has a center line equal to the median control energy, upper and lower
edges of the box equal to the first and third quartile, and the whiskers show the maximum
and minimum control energies. The red line is the corresponding control energy using Eq.
(5.3.5).

again the slope is approximately 2 log p which agrees with the numerical results for

the finite path graph depicted in Fig. 5.2(B).

To show the utility of Eq. (5.3.5), we compute the single driver single target

control energy for all ordered pairs (vj, vk) in a selection of 100 realizations of model

networks of n = 100 nodes each shown as boxplots in Fig. 5.7. Each boxplot is

centered at the median of the control energy over all pairs of nodes distance d apart

for a particular model network, upper and lower box edges represent the third and

first quartiles, respectively, and the upper whisker and lower whiskey represent the

maximum and minimum control energies, respectively. The red lines in each panel in

Fig. 5.7 are found using Eq. (5.3.5) as a function of the distance d. The first row in

Fig. 5.7(A)-(D) are k-regular graphs with k = 2, k = 3, k = 4, and k = 5. For k = 2,

the k-regular graph consists of disjoint rings which, if large enough, behave similarly
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Figure 5.8: The single driver single target control energies for graphs derived from datasets
from the literature. (A) the c. Elegans neural network [236], (B) the diseasome network
[237], (C) the US air network in 1997 [180], (D) the Zachary karate club network [238],
(E) a gene network made with functional associations in worms [239], (F) the visual cortex
network in a mouse [240], the Klazar bibliography network [173], and (H) the collaboration
network among authors who write about network science [241]. All edge weights are set to
s = 1 and the regulation value p is set so that the result adjacency matrix is Hurwitz.

to the infinite path graph and so the control energy of the infinite path well approxi-

mated the control energy of the 2-regular graphs. As k increases though, the infinite

path graph control energy begins to greatly over-estimate the control energy. The

second row in Fig. 5.7(E)-(H) are Erdős-Rényi graphs with varying average degree

〈κ〉. As 〈κ〉 increases, the median control energy decreases, but the upper whisker

remains quite close to the infinite path graph energy for those ordered pairs with no

redundancy of shortest paths. The third row in Fig. 5.7(I)-(L) are scale-free graphs

with various average degree 〈κ〉 and power-law exponent γ. We see similar results

as for the Erdős-Rényi graphs with the upper whiskers nearly equal to the infinite

path graph control energy. The same analysis done for the model networks in Fig.

5.7 is done for a selection of graphs drawn from the scientific literature in Fig. 5.8.

The sources of each dataset is listed in the caption. We see the diseasome network

in (B) and the collaboration network in (H) are very path-like as nearly the entire

box lies on the infinite path graph energy curve. On the other hand the c. elegans

neural network in (A) and the bibliography network in (G) are much more dense as

the control energy with increasing distance d is significantly lower than the infinite

path graph.
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The integral in Eq. (5.3.3) does not have a simple (expressable in terms of ele-

mentary functions) closed form solution for finite t. Instead, when p > 2s, we can

compute the steady state controllability Gramian in the limit t → ∞. One approach

is to apply the final value theorem to Eq. (5.3.3) in the frequency domain (as done

in Appendix D.1.2) which yields the double integral,

Wj,k =
1

2π2

∑

va∈D

∫ π

0

∫ π

0

cos((a− j)ĵ) cos(a− k)k̂)

p− s cos ĵ − s cos k̂
dĵdk̂ (5.3.6)

Alternatively, the MBFFKs in Eq. (5.3.3) can be expanded as a power series and the

integral is computed term by term in Appendix D.1.1 which yields the summation

form of the controllability Gramian (setting D = {v0}),

Wj,k(t) =
1

2p

∞∑

`=0

(
s

2p

)j+k+2`(
j + k + 2`

`

)(
j + k + 2`

k + `

)[
1− e−2pt

j+k+2`∑

a=0

(2pt)a

a!

]

(5.3.7)

The steady state controllability Gramian for the bidirectional path graph is derived

from Eq. (5.3.7) in terms of hypergeometric functions in Appendix D.1.2 where the

result is,

Wj,k =
1

2p

(
s

2p

)j+k (
j + k

j

)

× 4F3




1
2
(j + k + 1), 1

2
(j + k + 1), 1

2
(j + k + 2), 1

2
(j + k + 2)

j + 1, k + 1, j + k + 1
; 16

(
s

2p

)2




(5.3.8)

where 4F3 is the generalized hypergeometric function (see Chapter 16 in [242])

4F3



a1, a2, a3, a4

b1, b2, b3

; z


 =

∞∑

`=0

(a1)`(a2)`(a3)`(a4)`
(b1)`(b2)`(b3)`

z`

`!
(5.3.9)

and (a)` =
∏`−1

k=0(a+k) is the rising factorial. Considering a diagonal term, j = k, the

generalized hypergeometric term in Eq. (5.3.9) simplifies to Gauss’s hypergeometric
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function (see Chapter 15 in [242]).

Wk,k =
1

2p

(
s

2p

)2k (
2k

k

)
2F1



k + 1

2
, k + 1

2

2k + 1
; 16

(
s

2p

)2


 (5.3.10)

As there are computational libraries capable of accurately computing hypergeometric

functions, Eqs. (5.3.8) and (5.3.10) are better choices for computing the steady state

controllability Gramian of the bidirectional path graph rather than numerically inte-

grating the improper integral in Eq. (5.3.3) in the t→∞ limit.

To derive the exponential increase of the control energy for the single driver single

target problem in the bidirectional path graph as a function of distance between a

driver node and a target node, we can derive a three term recurrence relation for the

diagonal elements of the controllability Gramian of the bidirectional path graph. The

integral form of the controllability Gramian in Eq. (5.3.3) is solved in the t → ∞

limit in Appendix C.3 in terms of Legendre functions of the second kind (see identity

8.1.3 in [235]) which satisfy a recurrence relation (see identity 8.5.3 in [235]). After

further simplification, the recurrence relation of the diagonal elements is,

Wk,k =
4k − 4

2k1

(
p2

2s2
− 1

)
Wk−1,k−1 −

2k − 3

2k − 1
Wk−2,k−2, k ≥ 2 (5.3.11)

The initial values for k = 0 and k = 1 can be found either by evaluating the hyper-

geometric function in Eq. (5.3.10) (using identities 17.3.9 and 17.3.10 in [235]) or by

evaluating the integral in Eq. (5.3.3) for t→∞ (using identities 6.612.4 and 6.612.5

in [243]),

W0,0 =
1

πp
K

(
2s

p

)

W1,1 =

(
p

2πs2
− 1

πp

)
K

(
2s

p

)
− p

2πs2
E

(
2s

p

) (5.3.12)
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where K(k) and E(k) are the complete elliptic integrals of the first and second kind,

respectively (see section 17.3 in [235]),

K(k) =

∫ π/2

0

1√
1− k2 sin2 θ

dθ

E(k) =

∫ π/2

0

√
1− k2 sin2 θdθ

(5.3.13)

In Appendix D.1.3, the exponential decay rate of the diagonal elements of the con-

trollability Gramian is derived as,

Wk,k ∼
(
p2

2s2
− 1 +

p

2s2

√
p2 − 4s2

)k
(5.3.14)

For p� 2s, the diagonal elements of the controllability Gramian approximately scale

as Wk,k ∼
(
p
s

)2k
and so the control energy decays approximately as,

d

dk
logEk ∼ 2(log p− log s) (5.3.15)

This behavior in the large p regime was seen numerically for the finite path graph in

the previous section where we hypothesized this expression in Eq. (5.2.3). Note that

Eq. (5.2.3) was missing the log s term as, in the numerical studies in that section, we

implicitly set s = 1, and so we missed the dependence on the edge weights as well.

The exponential approximation of the diagonal elements of the controllability

Gramian in Eq. (5.3.14) of the infinite path graph is quite accurate even for small

values of k as seen in Fig. 5.9.

The controllability Gramian of the bidirectional path graph in the t → ∞ limit

has appeared previously as the lattice Green’s function in the context of diffusion on

crystalline structures. Some of the results in this subsection have been derived inde-

pendently in other contexts such as Eq. (5.3.8) and Eq. (5.3.10) which were derived

in a much more circuitous manner using Appell’s double hypergeometric function in

[244] and the recurrence relation we developed in Eq. (5.3.11) has been derived using

a change of index and solving a different integral in two different ways in [245]. A
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Figure 5.9: The exponential scaling of the diagonal elements of the controllability Gramian

of the infinite path graph. For some values of α = p2

2s2
− 1, the marks represent the control

energy found using the recurrence in Eq. (5.3.11) while the solid lines are the scaling in Eq.
(5.3.14).

more numerically stable version of the recurrence relation from [245] was developed in

[246] that does not require any numerical integrations (as required when computing

the complete elliptic integrals, Eq. (5.3.13), in Eq. (5.3.12)).

5.3.2 The Controllability Gramian of the Unidirectional Path

Graph

The next simple model, the unidirectional path graph shown in Fig. 5.5(B), will

be used in the following sections for both derivations concerning redundancy and

for strict upper bounding the single driver single target control energy in complex

networks. The unidirectional path graph is the directed graph G = (V , E)

V = {vk|k = 0, 1, . . .} and E = {(vk−1, vk)|k = 1, 2, . . .} (5.3.16)

As noted previously, the contribution of each driver node is independent, and so

without loss of generality, we derive the controllability Gramian for D = {v0} as

we can shift the indices of the result to place the driver node at other nodes. The

controllability Gramian of the unidirectional path graph in Eq. (5.3.16) satisfies the
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differential equation,

Ẇj,k(t) = −2pWj,k(t) + sWj−1,k(t) + sWj,k−1(t), Wj,k(0) = 0, j, k ≥ 1

Ẇj,0(t) = −2pWj,0(t) + sWj−1,0(t), Wj,0(0) = 0, j ≥ 1

Ẇ0,k(t) = −2pW0,k(t) + sW0,k−1(t), W0,k(t) = 0, k ≥ 1

Ẇ0,0(t) = −2pW0,0(t) + 1, W0,0(0) = 0

(5.3.17)

for all pairs j, k ∈ Z+ with the formality that Wj,k(t) = 0 if j < 0 or k < 0. The system

of differential equations in Eq. (5.3.17) is solved using a Laplace transform and a two

term generating function in Appendix D.2 yielding the time-varying controllability

Gramian elements,

Wj,k(t) =
1

2p

(
s

2p

)j+k (
j + k

k

)[
1− e−2pt

j+k∑

`=0

(2pt)`

`!

]
(5.3.18)

Note that the expression for the controllability Gramian of the unidirectional path in

Eq. (5.3.18) is equal to the first term of the expression for the controllability Gramian

of the bidirectional path in Eq. (5.3.7). Taking the t → ∞ when p > s yields the

steady state controllability Gramian of the unidirectional path.

Wj,k =
1

2p

(
s

2p

)j+k (
j + k

k

)
(5.3.19)

The expression for the steady state controllability Gramian in Eq. (5.3.8) of the

bidirectional path graph and the unidirectional path graph in Eq. (5.3.19) are equal

except for a factor that depends on j and k, the 4F3 hypergeometric function. By

examining the behavior of 4F3, the affect of undirected graphs versus directed graphs

can be quantified.

The scaling of the single driver single target control energy can be derived using

Eq. (5.3.19) as well. In Appendix D.2, the scaling of the control energy in the
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asymptotic limit is shown to be,

Wk,k ∼
(
s

p

)2k

, (5.3.20)

which is equal to the control energy scaling of the bidirectional path graph in the

large p limit as discussed below Eq. (5.3.14). Letting k be a continuous value, we can

compute the scaling of the control energy by differentiating the negative logarithm of

Eq. (5.3.20),

d

dk
logEk ∼ 2(log p− log s). (5.3.21)

The exponential growth of the control energy for the unidirectional path graph in

Eq. (5.3.21) in the asymptotic limit is equal to the exponential growth of the control

energy for the bidirectional path graph in Eq. (5.3.15) which only holds for p� 2s, so

that, in the large p regime, bidirectional path graphs behave more like unidirectional

path graphs.

5.3.3 The Controllability Gramian of the Bidirectional Ring

Graph

The bidirectional ring is defined on a set of n nodes, v0, v1, . . . , vn−1, with undirected

edges (vk, vk mod n), k = 0, . . . , n−1. The controllability Gramian for the bidirectional

ring is derived in Appendix D.3 in a similar manner as the bidirectional path graph.

The time-varying controllability Gramian for the bidirectional ring is,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτ


 1

n

n−1∑

ĵ=0

e2sτ cos 2π
n
ĵ cos

2π

n
(a− j)ĵ




×


 1

n

n−1∑

k̂=0

e2sτ cos 2π
n
k̂ cos

2π

n
(a− k)k̂


 dτ

(5.3.22)
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and the steady state controllability Gramian for the bidirectional ring is,

Wj,k
1

2n2

∑

va∈D

n−1∑

ĵ=0

n−1∑

k̂=0

cos
(

2π
n

(a− j)ĵ
)

cos
(

2π
n

(a− k)k̂
)

2p− 2s cos 2π
n
ĵ − 2s cos 2π

n
k̂

(5.3.23)

Noting that in the n→∞ the bidirectional ring becomes the bidirectional path, Eq.

(5.3.22) approaches the expression in Eq. (5.3.3) for finite time while in the t → ∞

Eq. (5.3.23) approaches the expression in Eq. (5.3.6). For n large enough, the scaling

of the control energy derived for the bidirectional path graph appear to hold for nodes

vk, k = 0, . . . , n/2 (as because of the symmetries in the ring, the control energy for

vk and vn−k are equal).

5.3.4 The Controllability Gramian of the Unidirectional Ring

Graph

The unidirectional ring graph, shown in Fig. 5.5(D), is defined on a set of n nodes, like

the bidirectional ring, except that the edges, (vk, v(k+1) mod n), are directed. Rather

than using a discrete Fourier transform or a generating function as was used to derive

the results in Subsection 5.3.2 and 5.3.3, instead we prove that the controllability

Gramian of the unidirectional ring is a rational function in terms of the parameter

ρ = s
2p

.

Theorem 5.3.1 (Controllability Gramian of Unidirectional Ring). The controllabil-

ity Gramian of the unidirectional ring, which is goverened by the cyclic recurrence

relation,

Wj,k = ρWj−1 mod n,k + ρWj,k−1 mod n + αδj,0δk,0, j, k = 0, . . . , n− 1

has elements equal to,

Wj,k = α

∑
`=0,1,... a

(`)
j,kρ

`n+j+k

∑
`=0,1,... b`ρ

`n
(5.3.24)

where all of the coefficients a
(j,k)
` and b` are integers.
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n b1 b2 b3 b4 b5 b6

3 −7 −8 - - - -
4 −12 −64 - - - -
5 −21 −353 32 - - -
6 −38 −1691 1728 - - -
7 −71 −7585 36991 128 - -
8 −136 −32880 552704 65536 - -
9 −265 −139823 6826204 6965249 −512 -
10 −522 −587797 75135226 392963125 −3200000 -
11 −1035 −2452907 767040961 15735018638 −2061791231 −2048
12 −2060 −10184978 7435036420 508938068953 −516171815360 −191102976

Table 5.1: Coefficients of the Denominator Polynomial. The coefficients for the first few
rings of length n ≥ 3 are collected which were computed numerically. The first column is
equal to b1 = −2n − n− 1.

The proof is contained in Appendix D.4 where the coefficients a
(`)
j,k in Eq. (5.3.24)

are shown to be

a
(`)
j,k =

∑̀

p=0

c
(p)
j,kb`−p

c
(p)
j,k =

p∑

q=0

(
np+ j + k

nq + j

) (5.3.25)

To find the values of b` in Eq. (5.3.24), the system of m = dn
2
e linear diophantine

equations are constructed, denoted Mb = h where the matrix M ∈ Zm×m and vector

h ∈ Zm have elements composed from c
(p)
j,k in Eq. (5.3.25),

Mj,k = c
(m−k)
j,j , hj = −c(m)

j,j (5.3.26)

The benefit of this approach is that the coefficients b` and a
(`)
j,k need only be computed

once using Eq. (5.3.26) as they are independent of the edge weights s and loops p.

The coefficients b` for the first few values of n are collected in Table 5.1. Note that the

first term in the expression for the controllability Gramian for the unidirectional ring

in Eq. (5.3.24) is equal to the controllability Gramian of the unidirectional path. As

ρ < 1
4
, the contribution of each term ` ≥ 1 becomes negligible and the unidirectional

ring behaves much like the unidirectional path.

Having analytically derived the scaling of the single driver single target control
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energy in paths and rings, which explains the exponential scaling, we turn now to

redundancy which was briefly explored in the second half of Section 5.2 which will

add a corrective term to the results.

5.4 Redundancy

To analyze the role that redundant shortest paths play in the control energy, we

exploit the fact that each redundant path in the balloon graphs discussed briefly

before contain is symmetric. We now consider graphs with symmetries as defined in

Def. 2.2.22 and further elaborated on in Chapter 4.

Theorem 5.4.1 (Controllability Gramian of Symmetric Graphs). Let G = (V , E)

be a graph with symmetries represented by permutation matrices P . By definition,

PAP T = A and PP T = I. We use the driver node refined automorphism group,

AutD(G, which is a subgroup of the automorphism group Aut(G), which consists of

only those permutations,

P ∈ AutD(G) if PAP T = A and PB = B

Then, the controllability Gramian is invariant under the permutation,

PW (t)P T = W (t)

Proof. The proof is straightforward as we only need to pre- and post-multiply the

differential Lyapunov equation by P and P T , respectively.

PẆ (t)P T = PAP TPW (t)P T + PW (t)P TPATP T + PBBTP T , PW (0)P T = On

= APW (t)P T + PW (t)P TAT +BBT , PW (0)P T = On

As W (t) and PW (t)P T satisfy the same differential equation with the same initial

condition, W (t) = PW (t)P T .

Let Q be the quotient graph found from the equitable partition induced by the
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Figure 5.10: The control energy of the balloon graph found using its quotient graph. The
balloon graph of distance d and branches b is shown in (A) with its associated quotient
graph in (B). The control energy for different values of d is shown in (C) as a function of b
with the dashed lines equal to the infinite path graph energy in Eq. (5.3.5).

driver node refined automorphism group AutD(G). The controllability Gramian of

the quotient network, V (t), can be written,

V̇ (t) = QV (t) + V (t)QT + E†BBTE†
T

where E is the orbit indicator matrix such that Ek,k̄ = 1 and is equal to zero otherwise.

Then, if nodes vj ∈ Oj̄ and vk ∈ Ok̄ , are in the stated orbits of AutD(G), it can be

proven [5] that

Vj̄,k̄(t) = Wj,k(t) (5.4.1)

We return to the balloon graph now noting that the nodes along each branch in a

balloon graph are symmetric. Applying Thm. 5.4.1 and Eq. (5.4.1) the quotient

graph of the balloon graph, shown in Fig. 5.10(B), is an infinite path graph except

that four edges now have edge weights equal to b, namely the edges (v−1, v0), (v1, v0),

(v−d+1, v−d), and (vd−1, vd). This relatively small change reduces the control energy

by orders of magnitude as shown in Fig. 5.10(C) as seen previously for the finite

balloon graph in Fig. 5.2(D). Using Def. 5.2.1, the redundancy in a balloon graph
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Figure 5.11: The control energy reduction with redundancy as prediction by the balloon
graph. The points are the single driver single target control energy for an Erdős-Rényi
graph with n = 300 nodes and edge probability p = 0.02 as a function of each pair of nodes’
redundancy. The dashed lines are the control energies for the bidirectional path graph for
each distance d (which is invariant with b) and the solid lines are the control energies for
the balloon graph for each distance d. The blue panel is d = 3, the red panel is distance
d = 4, the green panel is distance d = 5, and the yellow panel is distance d = 6.

between nodes v0 and vd can be found as,

r0,d =
(2 + (d− 1)b)− 2

d− 1
= b

that is, the number of brances in the balloon graph. For an example graph in Fig.

5.11, we see that the dashed lines, which represents the control energy for the infinite

path graph, over-estimates the control energy considerably as the branch connectivity

increases. On the other hand, we see that the solid lines, which represent the control

energy for the balloon graph, better approximates the control energy as the redun-

dancy increases.

Despite constructing a model to represent the control energy as a function of dis-

tance d and redundancy r, we still see that the control energy holding d and b constant

in a complex network may still span an order of magnitude. Other graph properties
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must play additional roles in the control energy, possibly measures of graph centrality

of both the driver node and the target node.

The above control energies for the bidirectional symmetric balloon graph were

computed numerically. To make the problem analytically tractable, we construct the

unidirectional balloon graph. Using the analysis above, we construct the unidirec-

tional balloon graph. The quotient graph of this graph is a unidirectional path graph

with uniform edge weights as described before except the last edge (vd−1, vd) which

has weight b. After applying the result of Thm. 5.4.1 we compute the element Wd,d

of the steady state controllability Gramian. The derivation is presented in Appendix

D.5 and results in the expression,

Wd,d =
b2

2p

(
s

2p

)2d(
2d

d

)
(5.4.2)

where we see the corrective factor b2. The logarithm of the control energy (found by

inverting Eq. (5.4.2)) makes clear the independent contributions of the distance and

the redundancy.

logE(d, b) = − log
b2

2p
− 2d log

s

2p
− log

(
2d

d

)
(5.4.3)

Even though the previous balloon graphs we examined in Fig. 5.2(C) and in Fig.

5.10(A) were undirected, the rate of decay of the control energy as a function of b

appeared to be independent of d as well, as shown in Fig. 5.2(D) and Fig. 5.10(C).

Computing the derivatives of the logarithm of the control energy of the unidirectional

balloon graph in Eq. (5.4.3),

d

d(d)
logEd = 2 log

2p

s
+ 2

2d∑

k=d+1

1

k

= 2(log p− log s)

(5.4.4)

and

d

d(b)
logEd = −2

b
(5.4.5)
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Details of these results can be found in Appendix D.5. These results appear to agree

with the numericaly results in Fig. 5.10(C) where each curve is spaced evenly in the

log scale (as Eq. (5.4.4) is independent of distance d) while looking along each curve,

for smaller b, appears to decay more slowly as b grows, as suggested by Eq. (5.4.5).

For values of b that make sb just slightly less than p, other effects begin to play a

larger role as the numerical results in Fig. 5.10 are for an undirected balloon graph.

Equations (5.4.4) and (5.4.5) hold exactly for unidirectional balloon graph.

5.5 Control Energy of Hypercubic Lattices [6]

A d-dimensional hypercubic lattice, denoted G = (V , E), has nodes,

V = {vj|∀j ∈ Zd}

and edges,

E =
{

(vj±e` , vj)|∀j ∈ Zd ∧ ` = 1, . . . , d
}

(5.5.1)

where e` is the `’th unit vector. For brevity, using Eq. (5.5.1), let the set of relative

neighbors be defined as,

N = {±e`|` = 1, . . . d} (5.5.2)

Performing the same series of steps as in the previous sections where we take the

Laplace transform of the differential Lyapunov equation using the new set of neighbors

in Eq. (5.5.2), and then the 2d-dimensional DTFT,

ˆ̃Wĵ,k̂(ε) =
1

ε

∑

va∈D

e−iaĵe−iak̂

ε+ 2p− φ(ĵ)− φ(k̂)

where φ(ĵ) is the lattice function defined for this lattice to be,

φ(ĵ) =
d∑

`=1

2s cos ĵ` (5.5.3)

159



CHAPTER 5. CONTROL OF LATTICE GRAPHS

(A)

j1
j2

j1 + 1
j2

j1 − 1
j2

j1
j2 + 1

j1
j2 − 1

j1 + 1
j2 + 1

j1 + 1
j2 − 1

j1 − 1
j2 − 1

j1 − 1
j2 + 1

0 2 4
−10

−5

0

Time

L
o
g
o
f
In
te
g
ra
n
d

(B)

0 2 4
−10

−8

−6

−4

−2

Time

L
o
g
o
f
In
te
g
ra
l

Node (0,0)

Node (1,0)

Node (1,1)

Node (2,0)

Node (2,1)

Node (2,2)

(C)

Figure 5.12: Example of the square lattice’s Gramian. (A) A unit block of the square
lattice with nodes labeled with 2-tuple indices. (B) The log of the integrand of Eq. (5.5.5) for
the case D = {v(0,0)}. (C) The log of the diagonal elements of the controllability Gramian.

and the vector products aĵ =
∑d

`=1 a`ĵ`. Now taking the inverse DTFT applying Eq.

(5.5.3)

W̃j,k(ε) =
1

ε

1

(2π)2d

∑

va∈D

∫ π

−π

∫ π

−π

ei(j−a)ĵei(k−a)k̂

ε+ 2p− φ(ĵ)− φ(k̂)
dĵdk̂ (5.5.4)

where each integral is taken over the [−π, π]d d-dimensional hypercube. Taking the

inverse Laplace transform of Eq. (5.5.4) we can find the time-varying controllabiltiy

Gramian of the infinite hypercubic lattice.

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτ

d∏

`=1

[
1

2π

∫ π

−π
e2sτ cos ĵ`ei(j`−a`)ĵ`dĵ`

]

×
[

1

2π

∫ π

−π
e2sτ cos k̂`ei(k`−a`)k̂`dk̂`

]
dτ

=
∑

va∈D

∫ t

0

e−2pτ

d∏

`=1

Ij`−a`(2sτ)Ik−a(2sτ)dτ

(5.5.5)

An example of the square lattice, d = 2, is shown in Fig. 5.12(A). For the square

lattice, the controllability Gramian is now indexed by four values, W(j1,j2),(k1,k2). We

plot the log of the integrand of some diagonal elements of the controllability Gramian

in Eq. (5.5.5), by which we mean j1 = k1 and j2 = k2 in Fig. 5.12(B), for the

node indices listed at the far right of Fig. 5.12. Similar to the case when d = 1

which we plotted in Fig. 5.6(B), we see that for p > 2ds, the integrand reaches a

maximum before exponentially decreasing. As the integrand has a single maximum
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before exponentially decreasing, controllability Gramian approaches a constant as t

grows in Fig. 5.12(C). This again is similar to the behavior for d = 1 shown in Fig.

5.6(C).

5.6 Control Energy of General Lattices [14]

For a general lattice of d dimensions, we introduce the framework of a lattice operator

which describes the connectivity. We keep the concept of a lattice index vector j ∈ Zd

used in the previous section. Two examples of lattices are shown in Fig. 5.13. The

familiar bidirectional chain is shown in Fig. 5.13(A) to show how it fits in the general

framework discussed here and a two dimensional directed lattice is shown in Fig.

5.13(B). The differential Lyapunov equation can be written using the notation,

Ẇj,k(t) = −2pWj,k(t) + ∆jWj,k(t) + ∆kWj,k(t) +
∑

va∈D
δj,aδk,a (5.6.1)

where the lattice operator is defined as,

∆jWj,k(t) =
∑

`∈I
s`Wj+`,k(t) (5.6.2)

The lattice operator for the bidirectional chain in Fig. 5.13(A) is ∆jWj,k(t) =

sWj+1,k(t) + sWj−1,k(t) while for the directed two dimensional lattice in Fig. 5.13(B)

it is,

∆jWj,k(t) = s1Wj1+1,j2,k1,k2(t) + s2Wj1,j2+1,k1,k2 + s3Wj1−1,j2−1,k1,k2(t)

In Appendix D.7, Eq. (5.6.1) is solved for finite time,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτAj−a(τ)Ak−a(τ)dτ (5.6.3)
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Figure 5.13: Two lattice graphs are shown. (A) The familiar bidirectional chain graph
with uniform loop weight −p and uniform edge weight s. (B) A two dimensional lattice
with relative neighbors (1, 0), (0, 1), and (−1,−1). There is a uniform loop weights of −p
and each of the three relative neighbors, s1, s2, and s3.

where the functions,

Aj(t) =
1

(2π)d

∫ π

−π
eσ(x)t cos(ω(x)t+ jx)dx (5.6.4)

are integrals over the hyper cube of dimension d and side-length 2π. The functions

σ(x) and ω(x) are real and imaginary components of the discrete time Fourier trans-

form of the lattice operator,

F(∆j) =
∑

`∈I
s`e

i`x = σ(x) + iω(x)

For the bidirectional chain in Fig. 5.13(A),

F(∆j) = seix + se−ix = 2 cos x

while for the directed two dimensional lattice in Fig. 5.13(B) it is,

F(∆j) =s1e
ix1 + s2e

ix2 + s3e
−ix1e−ix2

= (s1 cosx1 + s2 cosx2 + s3 cos(x1 + x2)) + i (s1 sinx1 + s2 sinx2 − s3 sin(x1 + x2))
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Figure 5.14: Numerical results for the single driver problem applied to the lattice drawn
in Fig. 5.13(B). The single driver is set to the origin node, D = {v0,0}. For p = 5, s1 = 1,
s2 = 2, and s3 = 0.5, in (A) the elements Wk,k,k,k(t) are shown to converge to a constant
value that decays exponentially as k grows linearly. (B) For three different axes of the
controllability Gramian, the rate of growth is shown to be different.

In Fig. 5.14, elements of the controllability Gramian for the lattice shown in Fig.

5.13(B) are computed numerically. The regulation parameter p = 5 and the edge

weights s1 = 1, s2 = 2, and s3 = 0.5. For a two dimensional lattice, it is useful to

think of the controllability Gramian as having four indices, two from node vj and

two from node vk. For the single driver single target problem, where D = {v0,0} and

T = {vk,k}, a node diagonal from the driver node, the time traces of the controllability

Gramian are shown in Fig. 5.14(A) which are seen to converge to constant values as

expected. For other axes, T = {vk,0} (moving horizontally from the dirver node) and

T = {v0,k} (moving vertically from the driver node), the steady state Gramian values

are plotted in Fig. 5.14(B). We see that as |k| grows, the values of the controllability

Gramian decay exponentially, but at different rates.

As an example of the applicability of this general framework, we apply it to com-

pute the Gramian using Eqs. (5.6.3) and (5.6.4) for the intermediate path lattice that

provides the connection between the bidirectional path lattice and the unidirecitonal

path lattice. Define a lattice with neighbors I = {−1, 1} like the bidirectional chain

but with edge weights s−1 = s and s1 = s̄. The lattice operator in Eq. (5.6.2) then

acts as follows,

∆jWj,k(t) = sWj−1,k(t) + s̄Wj+1,k(t)
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Evaluating the Fourier transform of the lattice operator,

F(∆j) = se−ix + s̄eix = s cosx+ s̄ cosx+ i(−s sinx+ s̄ sinx)

Evaluating the function Aj(t),

Aj(t) =
1

2π

∫ π

−π
e(s+s̄) cosx cos((s̄− s) sinx+ jx)dx

=
1

2π

∫ 2π

0

e(s+s̄) cosx cos((s− s̄)− jx)dx

Using identity 3.937.2 in [243] with the parameters,

p = (s+ s̄)t a = 0

q = 0 b = (s− s̄)t

and the derived values,

A = 4ss̄t2, C = 4ss̄t2

B = 0, D = 0

(b− p)2 = 4s̄2t2, (a+ q)2 = 0

the solution of the integral becomes,

Aj(t) =
1

2π

[
2π

[4s̄2t2]j/2
(4ss̄t2)j/2Ij(2

√
ss̄t)

]

=
(s
s̄

)j/2
Ij(2
√
ss̄t)

For the bidirectional path, s̄ = s, and we recover the original result. For the unidirec-

tional path, we take the limit s̄ → 0, and use the power series form of the modified

Bessel function of the first kind of integer order,

lim
s̄→0

Aj(t) =
(s
s̄

)j/2
(
(√

ss̄t
)j ∞∑

`=0

1

(j + `)!`!

(√
ss̄t
)2j

)
=

(st)j

j!
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Evaluating the controllability Gramian elements yields,

Wj,k(t) =

∫ t

0

e−2pτ (sτ)j+k

j!k!
dτ

This integral can be solved using identity 3.351.1 from [243],

Wj,k(t) =
sj+k

j!k!

[
(j + k)!

(2p)j+k+1
− e−2pt

j+k∑

`=0

(j + k)!

`!

(t)`

(2p)(j+k)−`+1

]

=
1

2p

(
s

2p

)j+k
(j + k)!

j!k!

[
1− e−2pt

∞∑

`=0

(2pt)`

`!

]

which agrees with the previous result derived using generating functions. For inter-

mediate values of s̄, we have the Gramian elements,

Wj,k(t) =

∫ t

0

e−2pτIj(2
√
ss̄τ)Ik(2

√
ss̄τ)dτ

which provides the connection between the bidirectional chain and the unidirectional

chain.

5.7 Driver Node Selection Procedure

As briefly discussed in Chapter 2, a problem of great importance is the design problem

to construct the set of driver nodes D to minimize a control metric. The control

metrics of interest are related to the control energy repeated here for clarity,

E(B) = βT W̄−1(B)β =
nt∑

k=1

θ2
k

µk
(5.7.1)

where µk, ξk is an eigenvalue, eigenvector pair of the output controllability Gramian

W̄ and θk = βTξk. The dependence on B is made explicit as this is the quantity which

we will develop a method to design in this section. The control energy expression in

Eq. (5.7.1) is dependent on the particular choice of control maneuver β which may

not be desirable if one wants to select sets of driver nodes for an arbitrary control
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maneuver. Instead, noting that E(B) is a weighted sum of the inverse eigenvalues,

we can instead choose to minimize,

− log det W̄ = − log
nt∏

k=1

µk =
nt∑

k=1

log
1

µk
(5.7.2)

The log det W̄ is related to the volume of the ellipsoid reachable by one unit of energy

discussed in Sec. 3.5.

log(V ) = log

(
πnt/2

Γ(nt/2 + 1)

)
+

1

nt

nt∑

k=1

log µk (5.7.3)

One may equivalently either maximize the volume of the ellipsoid in Eq. (5.7.3) or

minimize the log det W̄ in Eq. (5.7.2). Additional choices include the trace of the

controllability Gramian or the trace of the inverse of the controllability Gramian.

The negative trace of the controllability Gramian,

− Tr(W̄ ) = −
nt∑

k=1

µk (5.7.4)

is inversely related to the control energy and is related to the H2 norm of the system

[138]. The trace of the inverse of the controllability Gramian,

Tr(W̄−1) =
nt∑

k=1

1

µk
(5.7.5)

is the most closely related to the original expression for the control energy in Eq.

(5.7.1).

The problem we are interested in solving in this section is the driver node selection

that was described in Sec. 2.3.7. The general optimization problem is,

min f(W̄ )

s.t. |D| = nd

(5.7.6)
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where the cost function should be either the control energy in Eq. (5.7.1) or any of

the surrogate cost functions in Eqs. (5.7.2), (5.7.4), or (5.7.5). This optimization

problem is combinatorial, that is, the set of candidate solutions is finite. The number

of possible solutions is
(
n
nd

)
if any node could be chosen to be a driver node which

eliminates a brute force search as an option to solve Eq. (5.7.6) for all but the smallest

(either n very small or nd/(n− nd) very small) problems.

The optimization problem in Eq. (5.7.6) for any of the cost functions discussed

so far have been proven to be NP-hard [96, 148, 149] so heuristics and approximation

algorithms must be used instead. The constraint in the optimization problem in Eq.

(5.7.6) places this problem in the Driver Node Framework discussed at the beginning

of Sec. 2.3.2.

There are two main methods to solve Eq. (5.7.6) currently published:

1. The first family of methods [151] lets the entries of B be continuous and uses a

gradient descent method to solve the optimization problem,

min E(B) = Trace(W−1(B)Xf )

s.t. N(B) = Trace(BTB)− nd − ε = 0

(5.7.7)

where nd is the final desired number of driver nodes, ε > 0 is a positive con-

stant, and Xf = eA
T tf eAtf . After a local optimum of Eq. (5.7.7) is found, the

entries of B are rounded to construct the set of driver nodes D. The success

of this method, as a heuristic, requires many random initializations, and the

hope that the solution to the integer version of the problem in which we are

really interested lies close enough to one of the local minima of the continuous

relaxation.

2. The second family of methods uses the fact that some control metrics are sub-

modular set functions [138] over the set of nodes in a graph. Specifically, the

negative versions of Eqs. (5.7.2), (5.7.4), and (5.7.5) were all shown to be sub-

modular set functions over the set of nodes V [138]. Some results on submodular
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set function optimization is discussed in Def. 2.3.8 and the discussion that fol-

lows. The benefit of showing a cost function is submodular is that a greedy

algorithm has an approximation guarantee. Specifically, let Dj = {vj} be the

single driver node sets and W̄ (Dj) = W̄j be the controllability Gramian when

only node vj is selected to be a driver node. The controllability Gramian can

then be written as a sum over the contributions of each driver node.

W̄ (D) =
∑

vk∈D
W̄k (5.7.8)

The greedy approximation algorithm starts with D(0) = ∅ and for k = 1, . . . , nd

augments D(k) by solving,

D(k) = D(k−1)
⋃

argmin
vj /∈D(k−1)

{
f
(
W̄ (D(k−1) ∪ {vj}

)}
, (5.7.9)

exploiting the additivity in Eq. (5.7.8). Note that the procedure in Eq. (5.7.9)

requires storing n symmetric matrices W̄j, j = 1, . . . , n, and computing the

function f(·) nnd − nd(nd−1)
2

times which may become expensive.

Before moving on, one additional note is made about the greedy approximation algo-

rithm. For nd small relative to nt, computing the cost functions may be impossible

using double precision floats, which will occur for the first few steps of the greedy

algorithm. A work around suggested in [138] is to instead use rank(W̄ ) as the cost

function for the first few steps of the greedy approximation algorithm. At step k

when rank(W̄ (D(k)) = nt, the original cost function is used for the remaining nd − k

steps. An alternative work around is suggested in [149] where the cost function used

is f(W̄ + εInt) where the value of ε is chosen carefully in order to preserve the ap-

proximation guarantee of the greedy algorithm.

Both methods discussed attempt to perform the minimization directly on the con-

trollability Gramian without explicitly exploiting the graph structure. Instead, we

suggest a structure based heuristic using results developed in the previous sections

in this chapter covering the relationships between graph distance and redudancy and
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control energy.

5.7.1 Theorem on the Gramian of Subgraphs

Before presenting the theorem we introduce some useful notation to order matrices.

Let M be an array (vector or matrix), then M > 0 (M ≥ 0) denotes that all entries of

M are strictly positive (non-negative). Similarly, if M1 and M2 are two arrays of equal

dimension, then M1 > M2 (M1 ≥M2) denotes that (M1−M2) > 0 ((M1−M2) ≥ 0).

The algebraic Lyapunov equation, AW +WAT = −BBT , is a linear equation and so

it can be written in a more familiar form,

ÂV = −B̂

where Â = (A⊗In2)+(In2⊗A) is the state matrix, V ∈ Rn2
is the stacked columns of

the controllability Gramian into a vector and B̂ is the stacked columns of the matrix

BBT . As −A is an M-matrix, so is −Â. Similarly, we assume that B ≥ 0 and so

−B̂ ≤ 0.

A useful property of M-matrices is that if M is an M-matrix, then M−1 ≥ 0.

Related to this is that M−1x ≥ 0 if x ≥ 0.

Theorem 5.7.1 (Lower Bounding the Controllability Gramian). Let G = (V , E) be

a graph with adjacency matrix A. Similarly, let G ′ = (V , E ′) be a subgraph of G so

that E ′ ⊆ E with adjacency matrix A′. For both graphs, let the input matrices be B

and B′, respectively, such that ∆B = B − B′ ≥ 0. By definition of the edge weights,

∆A = A−A′ ≥ 0. We assume that −A is an M-matrix and thus so is −A′. Then, if

W is the controllability Gramian for pair (A,B) and W ′ is the controllability Gramian

for pair (A′, B′), the difference ∆W = W −W ′ ≥ 0.

Proof. The proof is inductive. For the base case, let G = (V , {(v1, v2)}) be a graph

with |V| = n nodes and a single edge, and let the subgraph then be G = (V , ∅).

Without loss of generality, we assume that each node has self-loop −p < 0 and the
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single edge has weight s. The controllability Gramian of the disconnected graph is,

W ′ =
1

2p
B′B′T ≥ 0

which is a diagonal matrix. The controllability Gramian of the graph with a single

edge, (v1, v2), denoted W , is equal to W ′, except for the elements W1,2 = W2,1 which

has value,

W1,2 =





0 if v1, v2 /∈ D
s

4p2
if v1 ∈ D, v2 /∈ D

1
2p

if v1 /∈ D, v2 ∈ D
1
2p

+ 1
2p

+ s
4p2

if v1, v2 ∈ D

(5.7.10)

and the element W2,2 which is equal to,

W2,2 = 2sW1,2 +
∑

va∈D
δa,2

To show W1,2 −W ′
1,2 ≥ 0 and W2,2 −W ′

2,2 ≥ 0, one simply goes through each case in

Eq. (5.7.10).

For the inductive hypothesis, we assume that W ′ ≥ 0, the controllability Gramian

of some subgraph of an original graph G. The controllability Gramians of the two

graphs are,

ÂV = −B̂ and Â′V ′ = −B̂′

Subtracting these two equations from each other,

ÂV − Â′V ′ = ÂV + ∆ÂV ′ − ÂV ′

= Â∆V + ∆ÂV ′ = −B̂ + B̂′ = −∆B̂

Solving for the change in the Gramian,

∆V = (−Â)−1(∆B̂ + ∆ÂV ′)
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where we note that ∆Â ≥ 0 and ∆B̂ ≥ 0 by construction and V ′ ≥ 0 by the inductive

hypothesis so that (∆B̂+ ∆ÂV ′) ≥ 0. Also, as −Â is an M-matrix, then (−Â)−1 ≥ 0

and so the whole right hand side of is a non-negative vector, thus implies that ∆V ≥ 0.

Thus concludes the proof that ∆W = W −W ′ ≥ 0.

The usefulness of Thm. 5.7.1 is that for a graph G with a set of driver nodes D

and a set of target nodes T , we can construct a subgraph G ′ that consists of paths

from a driver node to a target node, or rings from a driver node to a target node and

back to a driver node and we know that each element Wj,k ≥ W ′
j,k. In particular, if

we trying to minimize −Tr(W̄ (D)), then we know −Tr(W̄ ′(D)) is less than or equal

to the true value.

In the remainder of this section, the graph’s structure is exploited to choose driver

nodes independent of evaluating the controllability Gramian directly. The method

developed is compared to the greedy heuristic described in [138] with the rank(W̄ )

initialization.

5.7.2 Facility Location and k-Median Problems

As demonstrated throughout this chapter, the control energy required to drive a

particular target node to a particular state is exponentially less if the driver node

used is closer to the target node. This result suggests that if one must select the

driver node to perform such a task, the driver node available for input that is closest

(with the maximum amount of redundancy) to the target node should be chosen.

On the other hand, if there is a significant number of target nodes which we must

control using more than one driver node then the selection process becomes far less

clear. There is competition between target nodes as choosing a driver node close to

one target node may be very far from another target node.

In operations research, facility location problems are concerned with choosing a

subset of nodes that are minimal in terms of some metric with respect to another set

of nodes. Originally, this type of problem was designed to choose where a company

should open distribution centers from which a set of retailers or population centers
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would be supplied. A number of variants hace since emerged that add additional

constraints or costs depending on the application. For the purpose here, we use the

k-median variation which adds the constraint that we must assign exactly k nodes

to be driver nodes (facilities). Without loss of generality, we assume that the first

nt nodes are target nodes, i.e., T = {vj|j = 1, . . . , nt}. The first set of variables are

Xk ∈ {0, 1}, k = 1, . . . , n, which is 1 if node vk ∈ D and 0 otherwise. The second set

of variables are Yj,k ∈ {0, 1}, j = 1, . . . , nt and k = 1, . . . , n which is 1 if target vj is

assigned to driver node vk. There is a cost associated with assigning target node vj

to node vk, denoted cj,k, which is chosen from the scaling behavior derived previously

in the chapter.

min
nt∑

j=1

n∑

k=1

cj,kYj,kXk

s.t.
N∑

k=1

Xk = nd

n∑

k=1

Yj,k = `, j = 1, . . . , nt

Yj,k ≤ Xk, j = 1, . . . , nt, k = 1, . . . , n

Yj,k, Xk ∈ {0, 1}, j = 1, . . . , nt, k = 1, . . . , n

(5.7.11)

The first constraint ensures we choose exactly nd driver nodes. The second constraint

ensures each target node is assigned to ` ≤ nd driver nodes. In the usual facility

location problem, ` = 1. The final constraint ensures that target node vj is assigned

to driver node vk only if node vk has been selected to be a driver node.

The proper choice of the costs cj,k is imperative for the solution of Eq. (5.7.11)

to return useful results. Let FLP (D) be the cost associated with a particular set

of driver nodes evaluated with Eq. (5.7.11). The optimal choice of cj,k is one which

satisfies the following inequalities for any pair of driver node sets D and D′ such that

|D| = |D′| = nd.

FLP (D) < FLP (D′) iff f(W̄ (D)) < f(W̄ (D′)) (5.7.12)
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where f(·) is one of the submodular set functions described above. If we can find

such a cost that makes Eq. (5.7.12) true, then the solution of Eq. (5.7.11) returns

the optimal solution to the original problem in Eq. (5.7.6).

To investigate Eq. (5.7.12) numerically, we must be able to compute FLP (D)

for any set of driver nodes. If ` = 1 as in the usual formulation of Facility Location

Problems, this can be done easily by evaluating,

FLP (D) =
nt∑

j=1

min
vk∈D

cj,k

where extensions to ` > 0 simply replace the summand with the ` smallest elements.

To determine the behavior of FLP (D) relative to the cost f(W̄ (D)), we first choose

random sets of driver nodes and evaluate both costs for these sets. We have found that

random sampling from the space of driver node sets tends to result in points tightly

clustered in a narrow region in the FLP (D) vs − log det W̄ space. To sample more

uniformly from this space, we use the fact that computing FLP (D) is cheap, we use a

hill climbing algorithm to find sets of driver nodes D such that FLP (D) ∈ [c−ε, c+ε]

for some tolerance ε. The hill climbing algorithm works by first selecting a random set

D(0) Then, for k = 1, 2, . . ., while FLP (D(k)) /∈ [c− ε, c+ ε], swap two nodes between

D(k) and V\D(k) and set the new set to D̄(k). If |FLP (D(k)) − c| > |FLP (D̄(k)) − c|

then set D(k+1) = D̄(k), otherwise D(k+1) = D(k).

Before investigating more complex choices for cj,k, we try simply using the distance

from node vk to node vj, and setting fk = 0 for k = 1, . . . , n, as well as setting ` = 1.

We call this choice the control distance. An example comparing the greedy algorithm

described in [138] and the FLP formulation in Eq. (5.7.11) using the control distance

cost is shown in Fig. 5.15 for three graphs with n = 300 nodes, nd = 33 driver

nodes and nt = 100 target nodes. The three graphs are an Erdős-Réyi graph with

〈κ〉 = 5 in Fig. 5.15(A), a Barabási-Albert graph with m = 3 in Fig. 5.15(B), and

a Watts-Strogatz graph with rewiring probability p = 0.01 in Fig. 5.15. The black

dots are the costs associated with 100 random choices of driver node. For each graph,
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Figure 5.15: The relationship between the control distance choice of FLP (D) and the
control metric log det W̄−1. Three graphs with n = 300 nodes are examined, (A) an Erdoős-
Rényi graph with p = 1/120, (B) a Barabási-Albert graph with m = 3, and (C) a Watts-
Strogatz graph with p = 0.01. For each graph, the black dots are the costs associated
with one hundred random choices of driver nodes. The green dots are found using the hill
climbing algorithm described in the text. The red cross is the cost of the driver node set
found using the greedy method described in [138]. The blue cross is the cost of the driver
node set found using the control distance cost in Eq. (5.7.11).

the random choices are clustered together and perform poorly. To better understand

the relationship between the two costs, the hill climbing algorithm described above is

used to find driver node sets with other values of FLP (D) whose cost log det(W̄−1) is

also computed. These values are shown in green where the linear trend between the

two costs is seen for all three of the graphs. The red cross is the costs for the driver

node set found by the greedy algorithm suggested in [138] where nodes are selected

at first that maximize the numerical rank of W̄ before switching to add nodes which

minimize log det W̄−1. The blue cross is the costs for the driver node set found by

the FLP formulation in Eq. (5.7.11) with the costs equal to the distance between

nodes. We see that the FLP out performs random choice and it is competitive with

the greedy algorithm.

It appears that the FLP problem is able to perform better than the greedy algo-

rithm for some graphs, vice versa for others. Let W̄−1
FLP be the inverse of the output

controllability Gramian found using the FLP method and let W̄−1
greedy be the inverse of

the output controllability Gramian found using the greedy algorithm. In Fig. 5.16(A),

100 Erdős-Rényi graphs with 〈κ〉 = 5 are created with n = 200 nodes, nd = 33 driver

nodes and nt = 100 target nodes. The difference of the performances for the two

driver node sets is shown where, if log det(W̄−1
FLP )− log det(W̄−1

greedy) < 0 then the FLP
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Figure 5.16: Difference between the performance of the FLP method and the greedy
algorithm. The blue histogram collects the results from 100 Erdős-Rényi graphs with average
degree 〈κ〉 = 5 and the red histogram collects the results from 100 Watts-Strogatz graphs
with rewiring probability p = 1%. All graphs have n = 200 nodes, nd = 33 driver nodes
and nt = 100 target nodes.

method performed better while if it is positive then the greedy algorithm performed

better. For the Erdoős-Rényi graphs, we see the FLP method typically out performs

the greedy algorithm. In Fig. 5.16(B), the difference in the performances of the driver

node sets found for 100 Watts-Strogatz graphs with rewriring probability p = 1% is

shown.

The promising results demonstrated here for the simple choice of cost matrix sug-

gests that a more informed choice may perform better. Future work will examine the

precise differences between the sets of driver nodes returned by the two algorithms.

5.8 Conclusion

This chapter investigated, in detail, the role of graph distance and redundancy on

the control energy in lattice graphs. Of particular interest were the path graphs

which provide the simplest model of graph distance. For the path graph with uniform

loop weight −p and edge weight s, unidirectional or bidirectional, the control energy

required when using a single driver node v0 to control target node vj is approximately,

logEj ∼ 2(log p− log s)
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A corrective factor was introduced that takes into account redundancy (see Def. 5.2.1)

which is derived using the unidirectional balloon graph in Eq. (5.4.3).

The results were then compared to the control energy in complex networks and

seen to provide a good approximation when the network is very sparse. With this in

mind, we develop a driver node selection heuristic that exploits the graph structure

using a Facility Location Problem type framework. This is in contrast the currently

published controllability Gramian based methods. We show that the structure based

heuristic is competitive with the greedy approximation algorithm and that potentially,

with a proper choice of the cost matrix, could be made to perform at least as well as

the greedy approximation algorithm.
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Conclusion

The results in this thesis cover three important areas in the larger field of control-

ling complex networks. In chapter 3, an optimistic response was made to earlier work

which suggested that controlling complex networks with only a few control inputs was

too costly. The response was broken into two parts that removed implicit conditions

in the earlier work, (i) that every state in the complex network must be controlled and

(ii) that the control action must be exact. In Sec. 3.2 the first condition is removed

so that only a subset of the nodes in the network have a final constraint, called target

nodes, which yields an exponential decrease in the control energy. In Sec. 3.3 the

second condition is removed so that the final state of the target nodes is satisfied

approximately, which we call balanced control, which also yields an exponential de-

crease in the control energy. These two modification to the original problem provide

the conclusion that complex networks can be controlled with a few control inputs if

the control action desired is chosen more carefully.

The balanced control problem in Sec. 3.3 is used to address the problem of con-

trolling a network ensemble in Sec. 3.4, that is, a finite set of systems, one of which

describes the actual system of interest. This problem can be used to address when

the system is unknown due to uncertainty. We find that, with the proper choice of a

weighting parameter, we can find controllers capable of performing a control action

on an entire network ensemble even when the number of systems grows to infinity.
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A geometric interpretation of the minimum energy control problem is used in Sec.

3.5 to derive a piecewise controller capable of driving a nonlinear system to a desired

stable attractor. The piecewise controller treats the nonlinear system at each step as

a linear system in a local region of state space. This result is a direct response to

the previously introduced concept of nonlocality that stated minimum energy control

actions are not applicable to linearizations of nonlinear systems.

Chapter 4 turns to the topic of graph symmetries which have recently been shown

to play an important role in the controllability of complex networks and synchroniza-

tion. While it has long been understood how to find the symmetries in graphs, a

mechanism for how to construct a graph with desirable symmetries was unknown. In

Sec. 4.3 the conditions which a particular symmetry pattern must satisfy in order to

be realized in a graph are derived along with two methods by which one may create a

feasible quotient graph. With a feasible quotient graph, the method to create a graph

with the desired symmetries is described in Sec. 4.4 along with proofs.

An appplication to the group consensus problem is described in Sec. 4.7 which

uses a block diagonalizing transformation derived from the automorphism group of a

graph to decouple synchronous motion from incoherent motion. This transformation

allows one to analyze the stability of the synchronous manifold separately from the

stability of the overall system.

Graph symmetries are strictly a structural property of a graph and do not take

into account edge weights if they exist. Rather than facing the symmetry problem

directly, we instead focus on a related problem, that of the minimum equitable parti-

tion. To address this, we attempt to include the edge weight information in Sec. 4.8

where we define the Minimum Approximate Equitable Partition. Two solution meth-

ods are presented, (i) an ILP formulation and (ii) a heuristic. The ILP formulation,

even with a number of improvements over the first naive description, suffers from a

number of issues that result in its inability to solve the problem on small graphs even

when using the Wheeler machine at UNM’s CARC. Instead, the heuristic developed

is a modification of the deterministic, polynomial time algorithm for finding the mini-
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mum equitable partition on unweighted graphs, but it typically does not perform well

when compared to those problems the ILP is able to solve. Nonetheless, there is a

significant improvement when the heuristic method is used as a pre-processor for the

ILP formulation as it can better upper bound the optimal solution and reduce the

number of variables required by the ILP.

Finally, in Chapter 5, the relationship between structural properties of the graph

and the control energy are investigated. In particular, the controllability Gramian of

lattice graphs, that is, graphs which are translationally invariant, are shown to be an-

alytically solvable. The bidirectional path graph is chosen for closer inspection as the

distance between two nodes is simply the different in their indices and so the graph

distance between driver nodes and target nodes appears explicitly in the expression

for its controllability Gramian. Beyond graph distance, the role of redundancy is

investigated by examining the effect of redundant shortest paths between a driver

node and target node. Overall, we are able to explain the exponential growth of the

control energy with distance between driver nodes and target nodes as well as the fact

redundancy is reduces the control energy independent of the control distance.

The results derived that connect graph structure and control energy is used to

form a heuristic for the driver node selection problem. Current methods used to solve

this problem are based on the controllability Gramian and ignore the structure of the

network. The structure based heuristic developed is found to be competitive with

current greedy algorithms while requiring less memory.
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Details for Applied Optimal

Control Problems

A.1 Parameters for the Autophagy Model

The parameters used in the autophagy model in Sec. 2.4.3 as written in Eq. (2.4.11)

are collected in Table A.1. These parameters are also used in the application to

network ensembles in Sec. 3.4.
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Parameter Value Parameter Value

rb,12 0 k1 1.00× 10−1

rm,12 1.00× 10−1 k2 3.00× 10−1

θ12 3.00× 10−1 k3 4.00× 100

n12 4.00× 100 k4 1.00× 10−1

rb,13 0 δ1 3.10× 10−4

rm,13 1.00× 101 δ2 1.93× 10−3

θ13 6.00× 10−1 δ3 5.78× 10−3

n13 6.00× 100 δ4 1.15× 10−2

rb,23 0 δ5 2.31× 10−3

rm,23 6.00× 100 δ6 1.16× 10−3

θ23 1.00× 100 rb 0
n23 4.00× 100 rm 1.00× 100

rb,21 1.00× 10−1 θ 5.00× 10−1

rm,21 6.00× 100 n 2.00× 100

θ21 6.00× 10−1 T 1.00× 100

n21 4.00× 100

rb,42 1.00× 10−1

rm,42 6.00× 100

θ42 5.00× 10−1

n42 4.00× 100

Table A.1: Parameters used for simulations in the autophagy model.
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A.2 Equations and Parameters for the Diabetes Model

The dynamical model that describes the human insulin-glucose-glucagon system con-

sists of a number of differential equations and a number of algebraic equations. Further

details of the meaning and units behind each of the equations can be found in the

supplementary information of [11].

Glucose Subsystem

Ġp(t) = EGP (t) +Ra(t)− Uii − E(t)− k1Gp(t) + k2Gt(t), Gp(0) = Gpb (A.2.1a)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t), Gt(0) = Gtb (A.2.1b)

G(t) =
Gp

VG
(A.2.1c)

Insulin Subsystem

İp(t) = −(m2 +m4)Ip(t) +m1I`(t) +Ria(t), Ip(0) = Ipb (A.2.2a)

İ`(t) = −(m1 +m3)I`(t) +m2Ip(t), I`(0) = I`b (A.2.2b)

I(t) =
Ip(t)

VI
(A.2.2c)
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Glucose Rate of Appearance

Qsto(t) = Qsto1(t) +Qsto2(t), Qsto(0) = 0 (A.2.3a)

Q̇sto1(t) = −kgriQsto1(t) +Dδ(t− τD), Qsto1(0) = 0

(A.2.3b)

Q̇sto2(t) = −kempt(Qsto(t))Qsto2(t) + kgriQsto1(t), Qsto2(0) = 0

(A.2.3c)

Q̇gut(t) = −kabsQgut(t) + kemptQsto(t)Qsto2(t), Qgut(0) = 0 (A.2.3d)

Ra(t) =
fkabsQgut(t)

BW
, Ra(0) = 0 (A.2.3e)

kempt(Qsto) = kmin +
kmax − kmin

2
(A.2.3f)

× [tanh (α(Qsto − bD)− tanh (β(Qsto − cD)) + 2] (A.2.3g)

Endogeneous Glucose Production

EGP (t) = kp1 − kp2Gp(t)− kp3XL(t) + ξXH(t), EGP (0) = EGPb (A.2.4a)

İ ′(t) = −ki[I ′(t)− I(t)], I ′(0) = Ib (A.2.4b)

ẊL(t) = −ki[XL(t)− I ′(t)], XL(0) = Ib (A.2.4c)

ẊH(t) = −kHXH(t) + kH max{H(t)−Hb, 0}, XH(0) = 0 (A.2.4d)

Glucose Utilization

Uii(t) = Fcns (A.2.5a)

Uid(t) =
[Vm0 + VmxX(t)]Gt(t)

Km0 +Gt(t)
(A.2.5b)

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib], X(0) = 0 (A.2.5c)
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Renal Excretion

E(t) =





ke1[Gp(t)− ke2, if Gp(t) > ke2

0, if Gp(t) ≤ ke2

(A.2.6a)

Glucagon Kinetics and Secretion

Ḣ(t) = −nH(t) + SRH(t) = RaH(t), H(0) = Hb

(A.2.7a)

SRH(t) = SRs
H(t) + SRd

H(t) (A.2.7b)

˙SR
s

H(t) = −ρ
[
SRs

H(t)−max

{
σ[Gth −G(t)]

max{I(t)− Ith, 0}+ 1
+ SRb

H , 0

}]
, SRs

H(0) = nHb

(A.2.7c)

SRd
H(t) = δmax

{
−dG(t)

dt
, 0

}
(A.2.7d)

Subcutaneous Insulin Kinetics

Ria(t) = ka1Isc1(t) + ka2Isc2(t) (A.2.8a)

İsc1(t) = −(kd + ka1)Isc1(t) + IIR(t), Isc1(0) = Isc1ss (A.2.8b)

İsc2(t) = kdIsc1(t)− ka2Isc2(t), Isc2(0) = Isc2ss (A.2.8c)

IIR(t) = IIRb +
uI(t)

BW
(A.2.8d)

Subcutaneous Glucagon Kinetics

Ḣsc1(t) = −(kh1 + kh2)Hsc1(t) +GIR(t), Hsc1(0) = Hsc1ss (A.2.9a)

Ḣsc2(t) = kh1Hsc1(t)− kh3Hsc2(t), Hsc2(0) = Hsc2ss (A.2.9b)

RaH(t) = kh3Hsc2(t) (A.2.9c)

GIR(t) = GIRb +
uG(t)

BV
(A.2.9d)

Details on the parameters and basal values can be found in the supplementary tables
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of [11] as well as discussions in [247, 248].
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Appendix B

Derivations Related to Target

Control

B.1 Combined Target Problem

B.1.1 Problem Statement

In chapter 3, the problem of target control is discussed at length. Specifically, we

consider two problems, one where there is a constraint applied to the final target

nodes’ states and one where there is a cost associated with the final target nodes’

states. These two formulations can be combined into a general problem solved using

Pontryagin’s minimum principle, described in Section 2.4.1. The result for the general

problem is then specialized for the particular cases addressed in the main text.

B.1.2 Derivation of the Optimal Control and Optimal State

Trajectory

The general problem consists of the following matrices; the state matrix A ∈ Rn×n,

the input matrix B ∈ Rn×nd , the final constraint matrix C1 ∈ Rnt,1×n, and the final

cost matrix C2 ∈ Rnt,2×n, where nt,1 + nt,2 ≤ n. Additionally, without loss of general-

ity, we require that the rows of C1 and C2 are orthogonal, that is, C1C
T
2 = Ont,1,nt,2 .

This is because any row of C2 that lies in the row-space of C1 is constrained already,
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and adding it as a cost is redundant. The Gram-Schmidt process [170] can be used

to find an alternative matrix C2 that is orthogonal with respect to C1.

Besides the matrices that describe the system, A,B,C1, C2, we introduce the cost

matrices, F and R, that are symmetric and positive definite, that weight the impor-

tance of the final costs and the control inputs. The two cost terms are also weighted

with respect to each other using a parameter α ∈ (0, 1). The complete optimal control

problem can now be stated:

min J =
1− α

2
(C2x(tf )− yf,2)T F (C2x(tf )− yf,2) +

α

2

∫ tf

0

uT (t)Ru(t)dt, α ∈ [0, 1]

s.t. ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, yf,1 = C1x(tf )

(B.1.1)

The desired final output vectors, yf,1 ∈ Rnt,1 and yf,2 ∈ Rnt,2 , are chosen to be the

desired values of each of the targets. In the network framework described previously,

the state matrix A is the adjacency matrix of the graph, the input matrix B has unit

vectors as columns corresponding to the driver nodes, and the matrices C1 and C2

have unit vectors as rows corresponding to which target nodes have constrained final

states and which have final costs.

B.1.3 Solution via Pontryagin

To solve the optimal control problem in Eq. (B.1.1), the minimum principle of Pon-

tryagin is used as described in Sec. 2.4.1. The Hamiltonian to minimize from Eq.

(2.4.2) is specialized to be,

min
α

2
uT (t)Ru(t) + λT (t)Ax(t) + λT (t)Bu(t) (B.1.2)

The optimal input is found from the stationarity condition in Eq. (2.4.4), by differ-

entiating Eq. (B.1.2) with respect to the inputs.

αRu(t) +BTλ(t) = 0 ⇒ u(t) = − 1

α
R−1BTλ(t) (B.1.3)
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The costates, λ(t), are found from Eq. (2.4.5), by differentiating Eq. (B.1.2) with

respect to the states.

λ̇(t) = −ATλ(t) ⇒ λ(t) = eA
T (tf−t)λ(tf ) (B.1.4)

The end-point minimization problem in Eq. (2.4.3) is specialized to be,

min
1− α

2
(C2x(tf )− yf,2)T F (C2x(tf )− yf,2)

s.t. C1x(tf )− yf,1 = 0

x(0)− x0 = 0

(B.1.5)

The final costate values are found by differentiating the Lagrangian of the end-point

minimization problem in Eq. (B.1.5), by introduction nt Lagrange multipliers νf,k,

k = 1, . . . , nt, with respect to the final states x(tf ),

(1− α)CT
2 F (C2x(tf )− yf,2) + CT

1 νf = λ(tf ) (B.1.6)

To simplify the following derivations, we define the difference between the final outputs

that appear in the cost and their desired values as,

γf = C2x(tf )− yf,2 (B.1.7)

The controlled state trajectory for arbitrary control input is determined with a con-

volution integral, which is then specialized using the optimal control found in Eq.

(B.1.3), the costate evolution in Eq. (B.1.4), and the final values of the costates in
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Eq. (B.1.6) using γf as defined in Eq. (B.1.7),

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

= eAtx0 −
1

α

∫ t

0

eA(t−τ)BR−1BTλ(τ)dτ

= eAtx0 −
1

α

∫ t

0

eA(t−τ)BR−1BT eA
T (tf−τ)dτλ(tf )

= eAtx0 −
1

α
W (t)eA

T (tf−t) ((1− α)CT
2 Fγf + CT

1 νf
)

(B.1.8)

The matrix W (t) is the solution of the differential Lyapunov equation in Eq. (2.3.8),

repeated here for clarity,

Ẇ (t) = AW (t) +W (t)AT +BR−1BT , W (0) = On (B.1.9)

which has formal solution,

W (t) =

∫ t

0

eAτBR−1BT eA
T τdτ (B.1.10)

To determine νf and γf , we enforce the final constraints by pre-multiplying Eq.

(B.1.8) by C1 and evaluate the expression at t = tf .

C1x(tf ) = C1e
Atfx0 −

1− α
α

C1W (tf )C
T
2 Fγf −

1

α
C1W (tf )C

T
1 νf = y1,f (B.1.11)

To determine the other necessary equations, we pre-multiply Eq. (B.1.8) by C2,

evaluate at time t = tf , and subtract yf,2 from both sides.

C2x(tf )− yf,2 = C2e
Atfx0 −

1− α
α

C2W (tf )C
T
2 Fγf −

1

α
C2W (tf )C

T
1 νf − yf,2 = γf

(B.1.12)

The full system of equations is composed by combining Eq. (B.1.11) and (B.1.12) into

the linear system where the matrix W (tf ) is found by either integration Eq. (B.1.9)

or numerically solving Eq. (B.1.10). Let Wj,k(tf ) = CjW (tf )C
T
k for j, k = 1, 2 so the
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system becomes,



− 1
α
W1,1(tf ) −1−α

α
W1,2(tf )F

− 1
α
W2,1(tf ) −1−α

α
W2,2(tf )F − Int,2






νf

γf


 =



yf,1 − C1e

Atfx0

yf,2 − C2e
Atfx0




(B.1.13)

This linear system can be simplified, and made symmetric, by pre-multiplying both

sides by

−α




Int,1 Ont,1,nt,2

Ont,2,nt,1 (1− α)F


 ,

so the system in Eq. (B.1.13) becomes,




W1,1(tf ) (1− α)W1,2(tf )F

(1− α)FW2,1(tf ) (1− α)2FW2,2(tf )F + α(1− α)F






νf

γf




= α




C1e
Atfx0 − yf,1

(1− α)F (C2e
Atfx0 − yf,2)




(B.1.14)

With just a small example graph, some of the complicated behavior that arises from

this solution can be seen. The two costs of interest are the control energy,

E =

∫ tf

0

uT (t)u(t)dt (B.1.15)

and the deviation,

D = γTf γf (B.1.16)

Both of these expressions are implicit functions of the weighting parameter α which

appears in Eq. (B.1.14) whose solution is necessary to evaluate Eqs. (B.1.15) and

(B.1.16). In Fig. B.1(A) a seven node network is shown with all edge weights set

equal to 1 and self-loops at every node equal to -4. The light blue nodes are the

driver nodes, D = {v1, v2}, the first set of target nodes with final constraints are

colored magenta, T = {v3, v4}, and the second set of target nodes with final costs

are colored green, T ′ = {v0, v6}. Node v5 is not in any of the subsets. The other
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Figure B.1: An Example of the Mixed Strategy with Hard and Soft Final Constraints.
(A) A seven node network with all edge weights equal to 1 and self-loops at every node
with weight equal to -4. The light blue nodes are the driver nodes D, the magenta nodes T
have a final constrinat and the green nodes T ′ have a final cost. Node v5 is not in any of
the subsets. (B) An example of the time trajectories subject to the optimal control input
for all states associated with non-driver nodes. In this simulation α = 10−4. (C) The time
trajectors of the driver nodes. Note that the driver nodes’ states have a larger maximum
and minimum state than the non-driver states which is typical for this type of control. (D)
The optimal control energy E(α) for values of α spanning multiple orders of magnitude.
The dashed lines correspond to the control energy for the case T = {v0, v3, v4, v6} (upper
dashed line) and T = {v3, v4} (lower dashed line) with T ′ = ∅. (E) The optimal deviation
for the same values of α. The dashed line corresponds to the deviation of nodes v0 and v6

when T = {v3, v4} and T ′ = ∅.
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parameters needed for the simulation are x0 = 17, tf = 2, x1,f = −12, x2,f = 12,

and α = 10−4. In Figs. B.1(B) and B.1(C) the time evolution of the states of the

non-driver nodes and the driver nodes are plotted. The states corresponding to the

magenta nodes (those with final contraints) can be seen to equal x3(tf ) = x4(tf ) = −1

at the final time tf = 2 (represented by the lower gray line). On the other hand, the

states with final costs (the green nodes) do not quite reach the desired final condition,

x0(tf ) ≈ 1 ≈ x6(tf ) as represented by the upper gray line. The black line is the time

evolution of node v5. The time evolution of the driver nodes is shown separately as

the maximum and minimum values are more than twice as large as the states of any

of the non-driver nodes which is typical in this type of control. Letting α vary over

multiple orders of magnitude in Figs. B.1(D) and B.1(E) shows the behavior of E(α)

and D(α) found using Eqs. (B.1.15) and (B.1.16). First, the control energy decreases

monotonically as α → 1 while remaining bounded between the dashed lines which

represent the control energy for the cases T = {v0, v3, v4, v6} (setting all target nodes

into the final constraint set), the upper dashed line, and T = {v3, v4} (removing the

final cost target nodes from either target node set), the lower dashed line. Similarly, in

Fig. B.1(E) the deviation, which in this case is D(α) = (x0(tf )−1)2 +(x6(tf )−1)2, we

see D monotonically increases as α→ 1 while remaining bounded between D(0) = 0

(assuming target controllability) and D(1) which corresponds to evaluating D when

there are no nodes with final costs.

With these general results, the solution described is specialized to the two cases,

one where nt,1 > 0 and nt,2 = 0 which we call target control which is covered in Sec.

3.2 in the main text and Appendix B.2 here, and one where nt,1 = 0 and nt,2 > 0

which we call balance control covered in Sec. 3.3 in the main text and Appendix B.3

here.

B.2 Specialization to Target Control

For target control, we consider the case when nt,1 > 0 and nt,2 = 0, that is, every

final output is a constraint. We simplify the equations so that nt = nt,1, C = C1,
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yf,1 = yf , β = CeAtf − yf and the linear system in Eq. (B.1.14) is simply,

(
CW (tf )C

T
)
νf = αβ (B.2.1)

It will be clear that the choice of α is arbitrary as when Eq. (B.2.1) is used to fully

define the optimal contorl input we see that,

u(t) = −R−1BT eA
T (tf−t)CT

(
CW (tf )C

T
)−1

β (B.2.2)

In the results in the main text, we assume R = Ind , which we assume in the following

derivations. Let W̄ = CW (tf )C
T be the output controllability Gramian so that, with

the optimal control in Eq. (B.2.2), the control energy can be determined,

E = νTf C

∫ tf

0

eAτBBT eA
T τdτCTνf

= βT W̄−1C

∫ tf

0

eAτBBT eAτdτCT W̄−1β

= βT W̄−1β

(B.2.3)

It is Eq. (B.2.3) that is investigated in detail in [1] for the case that A is a Hurwitz

adjacency matrix of a graph, B has distinct unit vectors as columns corresponding to

the set of driver nodes and C has distinct unit vectors as rows corresponding to the

set of target nodes. Further details are contained in Sec. 3.2 in the main text.

B.3 Specialization to Balanced Control

For balanced control, nt,1 = 0 while nt,2 > 0, so that we set nt = nt,2, C = C2,

yf = yf,2, and β = CeAtfx0 − yf . The results discussed in Sec. 3.3 focus on the case

F = Int and so this assumption is used in the following derivations. The expression

in Eq. (B.1.14) is simplified to,

((1− α)CW (tf )C
T + αI)γf = αβ (B.3.1)
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which does not require that the triplet (A,B,C) be output controllable as was nec-

essary for target control. Define the matrix Ū(α) = (1 − α)CW (tf )C
T + αI which

is similar to the matrix CW (tf )C
T . The eigenpairs of CW (tf )C

T are defined as

(µk, ξk), such that (CW (tf )C
T )ξk = µkξk for k = 1, . . . , nt. For each eigenvalue µk of

CW (tf )C
T , there is a corresponding eigenvalue of Ū(α) denoted νk = (1− α)µk + α.

With Eq. (B.3.1), the optimal control input in Eq. (B.1.3) is specialized to be-

come,

u(t) = −1− α
α

BT eA
T (tf−t)CTγf

= −(1− α)2BT eA
T (tf−t)CT Ū−1(α)γf

(B.3.2)

The control input is similar to the expression in Eq. (B.2.2) except with the depen-

dence on the weighting parameter α. If α = 1, it is clear that u(t) = 0 while if

α = 0, and CW (tf )C
T is invertible, then Eq. (B.3.2) becomes the control input in

Eq. (B.2.2).

The control energy in Eq. (B.1.15) is specialized for this case using Eq. (B.3.1),

E(α) =

∫ tf

0

uT (t)u(t)dt

=
(1− α)2

α2
γTf C

∫ tf

0

eAτBBT eA
T τdτCTγf

= (1− α)2βT Ū−1(α)W̄ Ū−1(α)β

(B.3.3)

and the deviation in Eq. (B.1.16) is specialized as well,

D(α) = γTf γf

= α2βT Ū−1(α)Ū−1(α)β

(B.3.4)
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The expressions in Eqs. (B.3.3) and (B.3.4) are combined to derive the total cost that

appears as the cost function in Eq. (B.1.1),

J(α) =
1− α

2
D(α) +

α

2
E(α)

=
1− α

2
γTf γf +

α

2
γTf W̄γf

=
α(1− α)

2
βT Ū−1(α)

(
αI + (1− α)W̄

)
Ū−1(α)β

=
α(1− α)

2
βT Ū−1(α)β

(B.3.5)

These three costs in Eqs. (B.3.3), (B.3.4), and (B.3.5), are all quadratic forms of

similar matrices, and can be expressed as summations over the eigenvalues µk and

eigenvectors θk = βTξk. The deviation, control energy, and total cost become,

D(α) = α2

nt∑

k=1

θ2
k

(α + (1− α)µk)2
(B.3.6a)

E(α) = (1− α)2

nt∑

k=1

θ2
kµk

(α + (1− α)µk)2
(B.3.6b)

J(α) =
α(1− α)

2

nt∑

k=1

θ2
k

α + (1− α)µk
(B.3.6c)

These summations in Eqs. (B.3.6a), (B.3.6b), and (B.3.6c) are more useful in ex-

plaining the behavior of the optimal solution as α is varied between 0 and 1 and they

are used in many of the derivations in Sec. 3.3.

B.4 Controlling Network Ensembles: Derivations

In the network ensemble framework, we consider that the state matrix is one of N

possibilities, denoted Ak, k = 0, . . . , N − 1. The input matrix and output matrix

remain the same, B and C. The composite system is constructed in the following
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way,

Ā =




A0 On · · · On

On A1 · · · On

...
...

. . .
...

On On · · · AN−1




B̄ =




B

B

...

B




C̄ =

[
C C · · · C

]

(B.4.1)

The network ensemble derivations use the balanced control method derived in Sec.

B.3 for the composite system. The special form of the composite state matrices in

Eq. (B.4.1) leads to the output controllability Gramian having a special form as well,

which we call the composite output controllability Gramian.

W̄ =




CW0,0(tf )C
T CW0,1(tf )C

T · · · CW0,N−1(tf )C
T

CW1,0(tf )C
T CW1,1(tf )C

T · · · CW1,N−1(tf )C
T

...
...

. . .
...

CWN−1,0(tf )C
T CWN−1,1(tf )C

T · · · CWN−1,N−1(tf )C
T




(B.4.2)

where each block Wj,k(tf ) in Eq. (B.4.2) is the solution of the differential Sylvester

equation,

Ẇj,k(t) = AjWj,k(t) +Wj,k(t)A
T
k +BBT , Wj,k(0) = On. (B.4.3)

Similar to the differential Lyapunov equation in Eq. (B.1.9), Eq. (B.4.3) has formal

solution,

Wj,k(t) =

∫ t

0

eAjτBBT eA
T
k τdτ

which may or may not be a useful form depending on the difficult of computing

the matrix exponentials for Aj and Ak. The summation forms of the costs in Eq.

(B.3.6) are repeated here for completeness, with the modification that the deviation
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is normalized with the number of state matrices, N .

DN(α)/N =
α2

N

Nnt−1∑

k=0

θ2
k

(α + (1− α)µk)2

EN(α) = (1− α)2

Nnt−1∑

k=0

µkθ
2
k

(α + (1− α)µk)2

JN(α) =
(1− α)α

2

Nnt−1∑

k=0

θ2
k

α + (1− α)µk

(B.4.4)

In Sec. 3.4, the following form of α is selected as it leads to predictable behavior of

the three costs.

α(b) =
Nnt

Nnt + b
(B.4.5)

Applying the form of α in Eq. (B.4.5) to the summation forms of the costs in Eq.

(B.4.4) yields the expressions in terms of the new parameter b,

DN(b)/N = Nn2
t

Nnt−1∑

k=0

θ2
k

(Nnt + bµk)2

EN(b) = b2

Nnt−1∑

k=0

µkθ
2
k

(Nnt + bµk)2

JN(b) =
Nntb

2(Nnt + b)

Nnt−1∑

k=0

θ2
k

Nnt + bµk

(B.4.6)

At this point, to move further, some idea of how µk and θ2
k change as a function of

both k and N is required. The two assumptions laid out in Sec. 3.4 are repeated here

for clarity.

Assumption 1: µk ≈ µ0r
k
1 , µ0 ≈ c1Nnt

Assumption 2: θ2
k ≈ max{θ2

0r
k
2 , θ

2
c}, θ2

0 ≈ c2Nnt

With these assumptions, we can find the index k = k̄ when θ2
k stops decaying expo-

nentially and switches to a constant value by solving the following inequality for the

largest integer k for which it holds.

c2Nntr
k
2 ≤ θ2

c ⇒ k ≤ log θ2
c − log c2Nnt

log r2

(B.4.7)
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The value of k̄ is the largest integer that satisfies the right inequality in Eq. (B.4.7).

Note that for large N , k̄ ∼ logN which will be important in the following derivations.

Applying Assumptions 1 and 2 to the summation form of the average deviation in

Eq. (B.4.6) yields the following approximate forms,

DN(b)/N ≈ Nn2
t

Nnt−1∑

k=0

max{c2Nntr
k
2 , θ

2
c}

(Nnt + bc1Nntrk1)2

= c2nt

k̄∑

k=0

rk2
(1 + bc1rk1)2

+
θ2
c

N

Nnt−1∑

k=k̄+1

1

(1 + bc1rk1)2

In this form, we can upper bound the average deviation,

DN(b)/N ≤ c2nt

k̄∑

k=0

rk2 +
θ2
c

N

Nnt−1∑

k=k̄+1

1 = c2nt
1− rk̄+1

2

1− r2

+
θ2
c

N

(
Nnt − k̄ + 1

)

which, in the limit of large N , becomes

lim
N→∞

DN(b)/N ≤ c2nt
1− r2

+ θ2
cnt (B.4.8)

Similarly, applying the assumptions to the control energy yields the expression,

EN(b) ≈ b2

N2n2
t

Nnt−1∑

k=0

c1Nntr
k
1 max{c2Nntr

k
2 , θ

2
c}

(1 + bc1rk1)2

= b2c1c2

k̄∑

k=0

(r1r2)k

(1 + bc1rk1)2
+
b2c1θ

2
c

Nnt

Nnt−1∑

k=k̄+1

rk1
(1 + bc1rk1)2

The expression for the control energy can be upper bounded,

EN(b) ≤ b2c1c2

k̄∑

k=0

(r1r2)k +
b2c1θ

2
c

Nnt

Nnt−1∑

k=k̄+1

rk1

= b2c1c2
1− (r1r2)k̄+1

1− r1r2

+
b2c1θ

2
c

Nnt

rk̄+1
1 − rNnt1

1− r1
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Finally, in the large N limit, we show that the control energy is upper bounded by a

constant.

lim
N→∞

EN(b) ≤ b2c1c2

1− r1r2

(B.4.9)

Moving to the total cost, applying assumptions 1 and 2 to the expression in Eq.

(B.4.6) yields the expression,

JN(b) ≈ b

2(Nnt + b)

Nnt−1∑

k=0

max{c2Nntr
k
2 , θ

2
c}

1 + bc1rk1

=
bc2Nnt

2(Nnt + b)

k̄∑

k=0

rk2
1 + bc1rk2

+
bθ2
c

2(Nnt + b)

Nnt−1∑

k=k̄+1

1

1 + bc1rk1

This approximation for the total cost can be upper bounded using the same method

for the previous two costs.

JN(b) ≤ bc2Nnt
2(Nnt + b)

k̄∑

k=0

rk2 +
bθ2
c

2(Nnt + b)

Nnt−1∑

k=k̄+1

1

=
bc2Nnt

2(Nnt + b)

1− rk̄+1
2

1− r2

+
bθ2
c

2(Nnt + b)
(Nnt − k̄ + 1)

In the limit of large N , the total cost is shown to approach a constant as well,

lim
N→∞

JN(b) ≤ bc2

2(1− r2)
+
bθ2
c

2
(B.4.10)

The bounds derived in Eqs. (B.4.8), (B.4.9), and (B.4.10) suggest that no matter

how large N grows, there exists control inputs of finite L2 norm which can drive

each possible realization, Ak, to any final output yf with arbitrarily small average

deviation, DN(b)/N . Examples and applications are shown in Sec. 3.4.
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Appendix C

Derivations concerning Symmetries

and Equitable Partitions

This appendix contains the details of proofs and derivation in Chapter 4 concering

graph symmetries.

C.1 Proof of Intra-Cluster Edges (Thm. 4.4.1)

Proof. The set of intra-cluster edges must be proven to (i) not contain a self-loop and

(ii) if (vk` , v
k
`′) ∈ Ek then so is (vk`′ , v

k
` ) ∈ Ek.

For a loop to exist there must be a bj in the set of integers such that ` = (` +

bj) mod pk, or that bj = qpk for some integer q. This cannot occur though because

bj > 0 so q 6= 0 and bj ≤ pk/2 so q < 1.

For the second part of the proof, let (`, (`+ bj) mod pk) be an edge. We know that

((`+ bj) mod pk, ((`+ bj) mod pk− bj) mod pk) is also an edge. Then, it can be shown

simply that,

((`+ bj) mod pk − bj) mod pk = (`+ bj − bj) mod pk = `

proving that if (vk` , v
k
`′) ∈ Ek implies (vk`′ , v

k
` ) ∈ Ek.
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C.2 Proof of Inter-Cluster Edges (Thm. 4.4.2)

Proof. To prove that the set of edges in either Eq. (4.4.7) or Eq. (4.4.8) satisfies the

requirements, we must show for each edge (vj` , v
k
`′) ∈ Ej,k, then so is (vk`′ , v

j
`) ∈ Ej,k.

Start with the edge (vj` , v
k
`′) where

`′ =

(
`+ r1c+

r2∑

j=1

bj

)
mod pk, 0 ≤ r1 ≤ dk − 1, 1 ≤ r2 ≤ m

and we show that there exists unique integers 0 ≤ r3 ≤ dj − 1 and 1 ≤ r4 ≤ m such

that for the edge (vk`′ , v
j
`′′),

`′′ = ` =

(
`′ + r3c+

r4∑

a=1

bm−a+1

)
mod pj

=

((
`+ r1c+

r2∑

a=1

ba

)
mod pk + r3c+

r4∑

a=1

bm−a+1

)
mod pj

=

(
`+ r1c+

r2∑

a=1

ba − qpk + r3c+

r4∑

a=1

bm−a+1

)
mod pj

where q is chosen such that,

0 ≤ `+ r1c+

r2∑

a=1

ba − qnk < pk

There are two possibilities we differentiate between, (i) if r2 < m and (ii) if r2 = m.

Case 1: Let r4 = m− r2 so that the summation,

r2∑

a=1

ba +

m−r2∑

a=1

bm−a+1 =

r2∑

a=1

ba +
m∑

a=r2+1

ba =
m∑

a=1

ba = c

The expression for `′′ = ` can now be simplified to,

` = (`+ (r1 + r3 + 1)c− qpk) mod pj
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For this expression to hold true, we must find the unique r3 such that,

(r1 + r3 + 1)c− qpk = tpj ⇒ r3 = tdj + qdk − r1 − 1 (C.2.1)

From the bounds on r3,

0 ≤ tdj + qdk − r1 − 1 ≤ dj − 1

r1 + 1− qdk ≤ tdj ≤ dj + r1 − qdk

What remains is to show there exists a single integer t that satisfies the above in-

equality, i.e., the upper bound and lower bound spans exactly dj integers.

(dj + r1 − qdk)− (r1 + 1− qdk) + 1 = dj

Thus, the interval only permits a single integer t which satisfies the inequality assigned

to r3.

Case 2: Now, let r2 = m and set r4 = m so that,

m∑

a=1

ba +
m∑

a=1

bm−a+1 = 2c

The expression for `′′ = ` can be simplified to,

` = (`+ (r1 + r3 + 2)c− qpk) mod pj

As before, we show there is a single integer t,

(r1 + r3 + 2)c− qpk = tnj ⇒ r3 = tdj + qdk − r1 − 2

that satisfies the bounds,

0 ≤ tdj + qdk − r1 − 2 ≤ dj − 1

r1 + 2− qdk ≤ tdj ≤ dj + r1 + 1− qdk
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Once again, we show that the number of integers covered by the lower and upper

bounds are exactly equal to dj,

dj + 1− qdk − (r1 + 2− qdk) + 1 = dj

so that there can only be a single value of t that satisfies the inequality.

In summary, given a node vj` , the mdk =
Wj,kc

pk

pk
c

= Wj,k pairs of integers (r1, r2)

such that 0 ≤ r1 ≤ dk − 1 and 1 ≤ r2 ≤ m each yield a unique neighboring node vk`′ .

Each pair (r1, r2) corresponds to a unique pair (r3, r4) so that if vk`′ is a neighbor of

vj` , then so is vj` a neighbor of vk`′ .
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Appendix D

Derivations for Results in Control

of Lattice Graphs

This appendix contains the derivations of the results presented in Chapter 5. Deriva-

tions are presented in the same order as they appear in Chapter 5. The derivation of

the time-varying controllability Gramian of the bidirectional path graph is presented

in Sec. D.1.1 and its steady state value in Sec. D.1.2. The recurrence relation for the

diagonal values of the steady state controllability Gramian of the bidirectional path

graph is derived in Sec. D.1.3. The controllability Gramian of the unidirectional path

graph is derived in Sec. D.2, the bidirectional ring graph is derived in Sec. D.3, and

the unidirectional ring graph is proven in Sec. D.4. The controllability Gramian of

the unidirectional balloon graph is derived in Sec. D.5. In Sec. D.6 the controllabil-

ity Gramian of the hypercubic lattice is derived in Sec. D.6 and the controllability

Gramian for general lattices is derived in Sec. D.7.

D.1 Derivations for the Bidirectional Path Graph

D.1.1 Time-Varying Gramian

In this section, the time-varying elements of the controllability Gramian are derived

for the bidirectional path graph as described in Sec. 5.3.1. The set of driver nodes

D consists of nd nodes placed along the path. The controllability Gramian elements
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satisfy the linear differential equation,

Ẇj,k(t) = −2pWj,k(t) + sWj+1,k(t) + sWj−1,k(t)

+ sWj,k+1(t) + sWj,k−1(t) +
∑

va∈D
δj,aδk,a, Wj,k(0) = 0, ∀j, k ∈ Z

(D.1.1)

To solve this system of equations in Eq. (D.1.1), first a Laplace transform is taken

where W̃j,k(ε) = L(Wj,k(t)) such that,

W̃j,k(ε)−ρ
(
W̃j+1,k(ε) + W̃j−1,k(ε) + W̃j,k+1(ε) + W̃j,k−1(ε)

)
=

1

ε(ε+ 2p)

∑

va∈D
δj,aδk,a, ∀j, k ∈ Z

(D.1.2)

where ρ = s
ε+2p

. To decouple the algebraic equations in Eq. (D.1.2), the discrete time

Fourier transform (DTFT) is used, defined as,

ˆ̃Wĵ,k̂(ε) =
∑

j,k∈Z
e−ijĵe−ikk̂W̃j,k(ε) (D.1.3)

with inverse,

W̃j,k(ε) =
1

4π2

∫ π

−π

∫ π

−π
eijĵeikk̂ ˆ̃Wĵ,k̂(ε)dĵdk̂ (D.1.4)

From the definition of the transform in Eq. (D.1.3), it is simple to show that, for any

pairs of integers ` and p, the transformed value of a Gramian element W̃j+`,k+p(ε) can

be found to be,

∑

j,k∈Z
W̃j+`,k+pe

−ijĵe−ikk̂ = ei`ĵeipk̂
∑

j,k∈Z
W̃j+`,k+p(ε)e

−i(j+`)ĵe−i(k+p)k̂ = ei`ĵeipk̂ ˆ̃Wĵ,k̂(ε)

(D.1.5)

Multiplying Eq. (D.1.2) by e−ijĵe−ikk̂, summing over all pairs of integers j, k ∈ Z, and

using the transform in Eq. (D.1.3) with the definition of transformed elements in Eq.
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(D.1.5),

∑

j,k∈Z
W̃j,k(ε)e

−ijĵe−ikk̂ − ρ
∑

j,k∈Z

(
W̃j+1,k(ε) + W̃j−1,k(ε) + W̃j,k+1(ε) + W̃j,k−1(ε)

)
e−ijĵe−ikk̂

=
1

ε(ε+ 2p)

∑

j,k∈Z

∑

va∈D
δj,aδk,ae

−ijĵe−ikk̂

(
1− ρeiĵ − ρe−iĵ − ρeik̂ − ρe−ik̂

)
ˆ̃Wĵ,k̂(ε) =

1

ε(ε+ 2p)

∑

va∈D
e−iaĵe−iak̂

(1− 2ρ cos ĵ − 2ρ cos k̂) ˆ̃Wĵ,k̂(ε) =
1

ε(ε+ 2p)

∑

va∈D
e−iaĵe−iak̂

(D.1.6)

Rearranging Eq. (D.1.6) for the transformed controllability Gramian elements,

ˆ̃Wj,k(ε) =
1

ε(ε+ 2p)

∑
va∈D e

−iaĵe−iak̂

1− 2ρ cos ĵ − 2ρ cos k̂
(D.1.7)

Applying the inverse DTFT in Eq. (D.1.4) to the transformed Gramian elements in

Eq. (D.1.7) yields the bidirectional path graph controllability Gramian elements in

the frequency domain,

W̃j,k(ε) =
1

4π2

∫ π

−π

∫ π

−π
eijĵeikk̂

[
1

ε(ε+ 2p)

∑
va∈D e

−iaĵe−iak̂

1− 2ρ cos ĵ − 2ρ cos k̂

]
dĵdk̂

=
1

ε

∑

va∈D

1

4π2

∫ π

−π

∫ π

−π

e−i(a−j)ĵe−i(a−k)k̂

ε+ 2p− 2s cos ĵ − 2s cos k̂
dĵdk̂

(D.1.8)

The controllability Gramian elements in the time domain are now determined by

taking the inverse Laplace transform of the form in Eq. (D.1.8),

Wj,k(t) = L−1
(
W̃j,k(ε)

)

=
∑

va∈D

∫ t

0

e−2pτ

[
1

2π

∫ π

−π
e2sτ cos ĵe−i(a−j)ĵdĵ

] [
1

2π

∫ π

−π
e2sτ cos k̂e−i(a−k)k̂dk̂

]
dτ

(D.1.9)
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Examining the integrals in Eq. (D.1.9), one can rearrange the exponential with the

imaginary exponent to show that,

1

2π

∫ π

−π
e2sτ cos ĵ(cos((a− j)ĵ)− i sin((a− j)ĵ))dĵ =

1

π

∫ π

0

e2sτ cos ĵ cos((a− j)ĵ)dĵ

(D.1.10)

where the right hand side of Eq. (D.1.10) is the integral definition of the modified

Bessel function of the first kind (MBFFK) of integer order (see identity 9.6.19 in

[235]),

In(z) =
1

π

∫ π

0

ez cos θ cosnθdθ (D.1.11)

Some important properties of the MBFFK of integer order are,

1. In(z) > 0 for z > 0,

2. In(z) = 0 for z = 0 and n 6= 0, i.e., In(0) = δn,0,

3. d
dz
In(z) > 0,

4. and they are symmetric about n = 0, i.e., In(z) = I−n(z).

Using the result of Eq. (D.1.10) and the definition of MBFFK in Eq. (D.1.11) in Eq.

(D.1.9), the elements of the controllability Gramian of the bidirectional path graph

can be succinctly expressed as the integral,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτIa−j(2sτ)Ia−k(2sτ)dτ (D.1.12)

The first result of Eq. (D.1.12) is that the contribution of each driver node is inde-

pendent, that is, we can evaluate Eq. (D.1.12) for each driver node va ∈ D sepa-

rately. With this, we can simplify the evaluation of Eq. (D.1.12) by evaluating it for

D = {v0} only. Then, for each original driver node va ∈ D, we shift the indices of

Wj,k to j + a→ j and k+ a→ k. With this in mind, moving forwards, we focus only

on the case D = {v0}.

For finite t, the expression in Eq. (D.1.12) cannot be simplified into an expression

containing elementary functions, but it can be reformulated in terms of an infinite
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summation which will be useful in the derivation of the steady state controllability

Gramian in the next section. To do this, the modified Bessel functions are expanded

as a power series (see 9.6.10 in [235]),

In(z) =
(z

2

)n ∞∑

`=0

(
z
2

)2`

`!(n+ `)!
(D.1.13)

Using the Cauchy product to evaluate Eq. (D.1.12) using the power series expansion

in Eq. (D.1.13),

Wj,k(τ) =

∫ t

0

e−2pτ

(
(sτ)j

∞∑

`=0

(sτ)2`

`!(j + `)!

)(
(sτ)k

∞∑

`=0

(sτ)2k

`!(k + `)!

)
dt

=
∞∑

`=0

∫ t

0

e−2pτ (sτ)j+k+2`
∑̀

a=0

1

a!(`− a)!(j + a)!(k + `− a)!
dτ

=
∞∑

`=0

c
(`)
j,ks

j+k+2`

∫ t

0

e−2pττ j+k+2`dτ

(D.1.14)

where the coefficients c
(`)
j,k can be evaluated using identity 3.4 from [249],

c
(`)
j,k =

∑̀

a=0

1

a!(`− a)!(j + a)!(k + `− a)!

=
1

`!(j + k + `)!

∑̀

a=0

`!

a!(`− a)!

(j + k + `)!

(j + a)!(k + `− a)!

=
1

(j + k + 2`)!

(j + k + 2`)!

`!(j + k + `)!

∑̀

a=0

(
`

a

)(
j + k + `

k + `− a

)

=
1

(j + k + 2`)!

(
j + k + 2`

`

)(
j + k + 2`

k + `

)

(D.1.15)

The integral in Eq. (D.1.14) can be solved using identity 3.351.1 in [243].

∫ t

0

e−2pττ j+k+2`dτ =
(j + k + 2`)!

(2p)j+k+2`+1
− e−2pt

j+k+2`∑

a=0

(j + k + 2`)!

a!

ta

(2p)j+k+2`−a+1

=
(j + k + 2`)!

(2p)j+k+2`+1

[
1− e−2pt

j+k+2`∑

a=0

(2pt)a

a!

]

(D.1.16)
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Plugging the results from Eq. (D.1.15) and Eq. (D.1.16) into the expression in Eq.

(D.1.14) yields the result,

Wj,k(t) =
1

2p

∞∑

`=0

(
s

2p

)j+k+2`(
j + k + 2`

`

)(
j + k + 2`

k + `

)[
1− e−2pt

j+k+2`∑

a=0

(2pt)a

a!

]

(D.1.17)

The time-varying portion of Eq. (D.1.17) decays to zero as t → ∞, which can be

shown by including the term
(
s
2p

)j+k+2`

in the fraction and noting that the exponential

e−2pt decays to zero faster than the leading term in summation over the index a. On

the other hand, for the summation over ` to converge, s
2p
< 1

4
, which is equivalent to

the requirements for the bidirectional path graph to be Hurwitz.

D.1.2 Steady State Gramian

In this section, the steady state controllability Gramian of the bidirectional path graph

is derived in two different forms as shown in Eqs. (5.3.6) and (5.3.8) in Sec. 5.3.1

of the main text. The first form is simply an application of the final value theorem

applied to Eq. (D.1.8).

Wj,k =
∑

va∈D

1

2π2

∫ π

0

∫ π

0

cos((a− j)ĵ) cos((a− k)k̂)

p− s cos ĵ − s cos k̂
dĵdk̂ (D.1.18)

This form of the steady state controllability Gramian has appeared previously in other

contexts as the lattice Green’s function of a square lattice. Alternatively, a second

form can be derived using Eq. (D.1.17) and the definition of the hypergeometric
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functions.

Wj,k = lim
t→∞

Wj,k(t)

=
1

2p

∞∑

`=0

(
s

2p

)j+k+2`(
j + k + 2`

`

)(
j + k + 2`

k + `

)

=
1

2p

(
s

2p

)j+k (
j + k

k

)

× 4F3




1
2
(j + k + 1), 1

2
(j + k + 1), 1

2
(j + k + 2), 1

2
(j + k + 2)

j + 1, k + 1, j + k + 1
;

(
2s

p

)2




(D.1.19)

where 4F3 is the generalized hypergeometric function (see chapter 16 in [242]),

4F3



a1, a2, a3, a4

b1, b2, b3

; z


 =

∞∑

`=0

(a1)`(a2)`(a3)`(a4)`
(b1)`(b2)`(b3)`

z`

`!

and (a)` =
∏`−1

k=0(a+ k) is the rising factorial. Specializing the result in Eq. (D.1.19)

to a diagonal element, the generalized hypergeometric function reduces to the more

familiar Gauss hypergeometric function (see Chapter 15 in [242]),

Wk,k =
1

2p

(
s

2p

)2k (
2k

k

)
2F1



k + 1

2
, k + 1

2

2k + 1
;

(
2s

p

)2


 (D.1.20)

There exist computational libraries to compute hypergeometric functions accurately

and so the expressions in Eqs. (D.1.19) and (D.1.20) can be more reliable than

numerically evaluating the infinite integral in Eq. (D.1.12) derived in the previous

section.

D.1.3 Diagonal Elements

In this section, the three term recurrence relation for the diagonal elements of the

controllability Gramian of the bidirectional path graph shown in Eq. (5.3.11) in Sec.

5.3.1 of the main text is derived. We return to the expression derived previously in

Eq. (D.1.12) for the time-varying controllability Gramian elements of the bidirectional
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path graph and we take the t→∞ limit.

Wj,k = lim
t→∞

Wj,k(t) =

∫ ∞

0

e−2ptIj(2st)Ik(2st)dt (D.1.21)

The integral in Eq. (D.1.21) is expressed in terms of Bessel functions using the

connection formula (see 9.6.3 in [235])

Ik(2st) = (−i)kJk(2ist)

so that the diagonal elements of the controllability Gramian in Eq. (D.1.21) become,

Wk,k = (−1)k
∫ ∞

0

e−2ptJ2
k (2ist)dt (D.1.22)

The integral in Eq. (D.1.22) appears as identity 6.612.3 in [243] where it can be

expressed in terms of the Legendre function of the second kind.

Wk,k =
(−1)k

2iπs
Qk− 1

2

(
1− p2

2s2

)
(D.1.23)

The Legendre functions of the second kind satisfy the three term recurrence relation

as stated in identity 8.5.3 in [235],

(ν + 1)Qν+1(z) = (2ν + 1)zQν(z)− νQν−1(z) (D.1.24)

The recurrence in Eq. (D.1.24) is specialized to the expression in Eq. (D.1.23) by

shifting the index ν + 1→ k − 1
2
, defining −z = p2

2s2
− 1, and multiplying through by

1
2iπs

,

2k − 1

2iπs
Qk− 1

2
(−z) +

4k − 4

2iπs
zQk− 3

2
(−z) +

2k − 3

2iπs
Qk− 5

2
(−z) = 0, k ≥ 2 (D.1.25)
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Comparing the form Wk,k in Eq. (D.1.23) to the expressions in each term in Eq.

(D.1.25) yields the recurrence relation,

Wk,k =
4k − 4

2k − 1

(
p2

2s2
− 1

)
Wk−1,k−1 −

2k − 3

2k − 1
Wk−2,k−2, k ≥ 2 (D.1.26)

The initial values of the recurrence relation, for k = 0 and k = 1, are found using

integral identity 6.612.4 in [243]

W0,0 =

∫ ∞

0

e−2ptJ2
0 (2ist)dt

=
2

π
√

4p2 − 16s2
K

(
4is√

4p2 − 16s2

)

=
1

πp
K

(
2s

p

)
(D.1.27)

and integral identity 6.612.5 in [243]

W1,1 = −
∫ ∞

0

e−2ptJ2
1 (2ist)dt

=

(2p2 − 4s2)K

(
2is√
p2−42

)

4πs2
√
p2 − 4s2

−
(p2 − 4s2)E

(
2is√
p2−4s2

)

4πs2
√
p2 − 4s2

=

(
p

2πs2
− 1

πp

)
K

(
2s

p

)
− p

2πs2
E

(
2s

p

)

(D.1.28)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind

[235], respectively.

K(k) =

∫ π/2

0

1√
1− k2 sin2 θ

dθE(k) =

∫ π/2

0

√
1− k2 sin2 θdθ

Also used were the imaginary argument identities for the complete elliptic integrals

(see 17.4.17 and 17.4.18 in [235]).

K(ik) =
1√

1 + k2
K

(
k√

1 + k2

)
, E(ik) =

√
1 + k2E

(
k√

1 + k2

)

214



APPENDIX D. DERIVATIONS FOR LATTICE GRAPHS

The expressions in Eqs. (D.1.27) and (D.1.28) were derived previously using the

fact Wk,k can be expressed as a hypergeometric function as discussed in Sec. D.1.2.

The scaling behavior of the diagonal elements are found by defining the decay rate

Rk =
Wk,k

Wk−1,k−1
and dividing Eq. (D.1.26) through by Wk−1,k−1,

Rk =
4k − 4

2k − 1

(
p2

2s2
− 1

)
− 2k − 3

2k − 1

1

Rk−1

, k ≥ 2 (D.1.29)

In the asymptotic limit of large k, we assume lim
k→∞

= R, and rewrite Eq. (D.1.29) in

this limit,

R2 = 2

(
p2

2s2
− 1

)
R− 1 (D.1.30)

Letting α = p2

2s2
−1 where, as p > 2s, α > 1, and noting that 0 < R < 1, the quadratic

equation in Eq. (D.1.30) can be solved for the meaningful value of R,

R = α−
√
α2 − 1

=
s2

p2

[
p4

2s4
− p2

s2
−
√

p8

4s8
− p6

s6

]
(D.1.31)

With the decay rate in Eq. (D.1.31), we can approximate the values Wk,k as,

Wk,k ∼ (α−
√
α2 − 1)k (D.1.32)

The asymptotic control energy for the single driver single target problem can be

derived by inverting Eq. (D.1.32) and taking its logarithm.

logEk ∼ k

[
2 log p− 2 log s− log

(
p4

2s4
− p2

s2
−
√

p8

4s8
− p6

s6

)]
(D.1.33)
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To understand the third term in Eq. (D.1.33) better, define x = p2

s2
and perform the

following simplification,

x2 − 2x

2
−
√
x4 − 4x3

4
=

(
x2−2x

2
−
√

x4−4x3

4

)(
x2−2x

2
+
√

x4−4x3

4

)

(
x2−2x

2
+
√

x4−4x3

4

)

=
1

2

(x2 − 2x)2 − (x4 − 4x3)

x2 − 2x+
√
x4 − 4x3

= 2


 1

1− 2
x

+
√

1− 4
x




(D.1.34)

Applying Eq. (D.1.34) to the asymptotic energy in Eq. (D.1.33) yields,

logEk ∼ k


2 log p− 2 log s− log


 2

1− 2s2

p2
+
√

1− 4s2

p2




 (D.1.35)

For p� 2s and k large enough, the right hand side is approximately 2k(log p− log s)

which can be shown by taking the limit of the expression in the third logarithm,

lim
s2

p2
→0

2

1− 2s2

p2
+
√

1− 4s2

p2

= 1

The exponential growth rate of the control energy in this asymptotic limit can be

found by differentiating Eq. (D.1.33),

d

dk
logEk ∼ 2 log p− 2 log s (D.1.36)

The scaling behavior in Eq. (D.1.36) agrees with the numerical results witnessed for

the finite path graph described at the beginning of Chapter 5 where logE ∼ 2k log p

and, as s = 1 was chosen for the edge weights, the constant term was zero.
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D.2 Derivations for the Unidirectional Path Graph

In this section, the results in Sec. 5.3.2 are derived using a generating function. The

differential Lyapunov equation for the controllability Gramian of the unidirectional

path graph, defined on the nodes V = {vk|k =≥ 0}, with edges (vk, vk+1), ∀k ≥ 0,

and a single driver node D = {v0}, can be expressed as a time-varying recurrence

equation.

Ẇj,k(t) = −2pWj,k(t) + sWj−1,k(t) + sWj,k−1(t), Wj,k(0) = 0, j, k ≥ 1

Ẇj,0(t) = −2pWj,0(t) + sWj−1,0(t), Wj,0(0) = 0, j ≥ 1

Ẇ0,k(t) = −2pW0,k(t) + sW0,k−1(t), W0,k(t) = 0, k ≥ 1

Ẇ0,0(t) = −2pW0,0(t) + 1, W0,0(0) = 0

(D.2.1)

First, applying the Laplace transform to the system of equations in Eq. (D.2.1), yields

the system of algebraic equations,

W̃j,k(ε)− ρW̃j−1,k(ε)− ρW̃j,k−1(ε) = 0, j, k ≥ 1

W̃j,0(ε)− ρW̃j−1,0(ε) = 0, j ≥ 1

W̃0,k(ε)− ρW̃0,k−1(ε) = 0, k ≥ 1

W̃0,0(ε) = α

(D.2.2)

where the parameters α = 1
ε(ε+2p)

and ρ = s
ε+2p

. The boundary elements are symmet-

ric, that is, W̃j,0(ε) = W̃0,j(ε) for all j ≥ 0, and so we need only to solve for one of

them. The boundary elements are found using a generating function.

W̃ (x, 0) =
∑

j≥0

W̃j,0(ε)xj (D.2.3)
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Multiplying the second equation in Eq. (D.2.2) by xj and summing over j ≥ 0,

0 =
∑

j≥0

W̃j+1,0(ε)xj − ρ
∑

j,0

(ε)xj

=
1

x

∑

j≥1

W̃j,0(ε)xj − ρW̃ (x, 0)

=
1

x

(
W̃ (x, 0)− W̃0,0(ε)

)
− ρW̃ (x, 0)

(D.2.4)

Rearranging Eq. (D.2.4) to solve for the boundary generating function and using the

binomial theorem to put the expression in the form of Eq. (D.2.3),

W̃ (x, 0) =
1

1− ρxW̃0,0(ε)

= W̃0,0(ε)
∑

j≥0

ρjxj
(D.2.5)

Comparing the forms of Eq. (D.2.3) and Eq. (D.2.5), we see the boundary elements

are,

W̃j,0(ε) =
1

ε(ε+ 2p)

(
s

ε+ 2p

)j
(D.2.6)

From symmetry in the controllability Gramian, we also know that W̃ (0, y) =

1
1−ρyW̃0,0(ε) and W̃0,k(ε) = 1

ε(ε+2p)

(
s

ε+2p

)k
. Turning to the interior terms, define

the two term generating function,

W̃ (x, y) =
∑

j,k≥0

W̃j,k(ε)x
jyk (D.2.7)
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Multiplying the first line of Eq. (D.2.2) by xjyk and summing over all pairs j, k ≥ 0

(using the boundary element form in Eq. (D.2.6)),

0 =
∑

j,k≥0

W̃j+1,k+1(ε)xjyk − ρ
∑

j,k≥0

W̃j,k+1(ε)xjyk − ρ
∑

j,k≥0

W̃j+1,k(ε)x
jyk

=
1

xy

∑

j,k≥0

W̃j+1,k+1(ε)xj+1yk+1 − ρ

y

∑

j,k≥0

W̃j,k+1x
jyk+1 − ρ

x

∑

j,k≥0

W̃j+1,k(ε)x
j+1yk

=
1

xy

[∑

j,k≥0

W̃j,k(ε)x
jyk −

∑

j≥0

W̃j,0x
j −

∑

k≥0

W̃0,ky
k + W̃0,0(ε)

]

− ρ

y

[∑

j,k≥0

W̃j,k(ε)x
jyk −

∑

j≥0

W̃j,0(ε)xj

]
− ρ

x

[∑

j,k≥0

W̃j,k(ε)x
jyk −

∑

k≥0

W̃0,k(ε)y
k

]

= W̃ (x, y)− W̃ (x, 0)− W̃ (0, y) + W̃0,0(ε)

− ρx(W̃ (x, y) + ρxW̃ (x, 0))− ρy(W̃ (x, y) + ρyW̃ (0, y))

(D.2.8)

Rearranging Eq. (D.2.8) for the generating function W̃ (x, y),

W̃ (x, y) =
1

1− ρx− ρy
[
(1− ρx)W̃ (x, 0) + (1− ρy)W̃ (0, y)− W̃0,0(ε)

]

=
W̃0,0(ε)

1− ρx− ρy

= W̃0,0(ε)
∑

`≥0

(
s

ε+ 2p

)`
(x+ y)`

= W̃0,0(ε)
∑

`≥0

(
s

ε+ 2p

)`∑̀

a=0

(
`

a

)
x`−aya

= W̃0,0(ε)
∑

j,k≥0

(
j + k

k

)(
s

ε+ 2p

)j+k
xjyk

(D.2.9)

Comparing the forms of Eq. (D.2.7) and Eq. (D.2.9), we see the interior elements of

controllability Gramian for the unidirectional path is,

W̃j,k(ε) =
1

ε(ε+ 2p)

(
s

ε+ 2p

)j+k (
j + k

k

)
(D.2.10)
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Using the inverse Laplace transform identity 5.2.18 in [250] and applying it to Eq.

(D.2.10), the time-varying controllability Gramian is,

Wj,k(t) =
1

2p

(
s

2p

)j+k (
j + k

k

)[
1− e−2pt

j+k∑

`=0

(2pt)`

`!

]

or, for p > s, one can use the final value theorem on Eq. (D.2.10) to evaluate the

steady state controllability Gramian for the unidirectional path.

Wj,k = lim
t→∞

Wj,k(t) =
1

2p

(
s

2p

)j+k (
j + k

k

)
(D.2.11)

To examine the decay rate of the Gramian elements, define Rk =
Wk,k

Wk−1,k−1
, and eval-

uate the ratio of diagonal elements of Eq. (D.2.11),

Rk =

1
2p

(
s
2p

)2k
(2k)!
(k!)2

1
2p

(
s
2p

)2k−2
(2k−2)!

((k−1)!)2

=

(
s

2p

)2
2k(2k − 1)

k2
(D.2.12)

In the asymptotic limit of large k, the decay rates in Eq. (D.2.12) approach,

R = lim
k→∞

Rk =

(
s

p

)2

so that the diagonal elements scale as,

Wk,k ∼ Rk =

(
s

p

)2k

(D.2.13)

We can derive the scaling of the control energy in the asymptotic limit by inverting

Eq. (D.2.13) and taking the logarithm. Relaxing k to be continuous, we can take the

derivative of the logarithm of Eq. (D.2.13).

d

dk
logEk ∼

d

dk

(
−2k log

s

p

)
= 2 log p− 2 log s (D.2.14)
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which captures the constant exponential growth seen numerically in the main text.

From Eq. (D.2.14), we see that the growth rate is equal to that of the bidirectional

chain derived in Eq. (D.1.36) when p� s.

D.3 Derivations for the Bidirectional Ring Graph

The derivation of the controllability Gramian of the bidirectional ring discussed in

Sec. 5.3.3 proceeds along much the same lines as for the bidirectional path graph.

The bidirectional ring is an undirected graph with |V| = n nodes labeled V = {vk|k =

0, 1, . . . , n− 1} and undirected edges (vk, vk+1 mod n). The time-varying controllability

Gramian evolves according to the following differential Lyapunov equation.

Ẇj,k(t) = −2pWj,k(t) + sW(j−1) mod n,k(t) + sW(j+1) mod n,k(t)

+ sWj,(k−1) mod n(t) + sWj,(k+1) mod n(t) +
∑

va∈D
δj,aδk,a

Wj,k(0) = 0, ∀j, k ∈ {0, 1, . . . , n− 1}

(D.3.1)

The system of differential equations in Eq. (D.3.1) is first converted into a system of

algebraic equations with a Laplace transform.

W̃j,k(ε)− ρW̃(j−1) mod n,k(ε)− ρW̃(j+1) mod n,k(ε)

− ρW̃j,(k−1) mod n(ε)− ρW̃j,(k+1) mod n(ε) =
1

ε(ε+ 2p)

∑

va∈D
δj,aδk,a

(D.3.2)

The parameter ρ = s
ε+2p

. A discrete Fourier transform (DFT), defined as,

ˆ̃Wĵ,k̂(ε) =
n−1∑

ĵ,k̂=0

e−i
2π
n
jĵe−i

2π
n
kk̂W̃j,k(ε) (D.3.3)

which has inverse,

W̃j,k(ε) =
1

n2

n−1∑

j,k=0

ei
2π
n
jĵei

2π
n
kk̂ ˆ̃Wĵ,k̂(ε) (D.3.4)
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The DFT in Eq. (D.3.3) is applied to the system of equations in Eq. (D.3.2) by multi-

plying it by e−i
2π
n
jĵe−i

2π
n
kk̂ and summing over all pairs of integers j, k ∈ {0, 1, . . . , n−1},

(
1− 2ρ cos

2π

n
ĵ − 2ρ cos

2π

n
k̂

)
ˆ̃Wĵ,k̂(ε) =

1

ε(ε+ 2p)

∑

va∈D
e−i

2π
n
aĵe−i

2π
n
ak̂ (D.3.5)

Solving for ˆ̃Wĵ,k̂(ε) in Eq. (D.3.5) and applying the inverse DFT in Eq. (D.3.4) yields

the terms of the controllability Gramian in the frequency domain.

W̃j,k(ε) =
1

n2

1

ε(ε+ 2p)

∑

va∈D

n−1∑

ĵ,k̂=0

e−i
2π
n

(a−j)ĵe−i
2π
n

(a−k)k̂

1− 2ρ cos 2π
n
ĵ − 2ρ cos 2π

n
k̂

(D.3.6)

For finite time t, the evolution of the original elements of the controllability Gramian

of bidirectional ring can be written using the inverse Laplace transform,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτ


 1

n

n−1∑

ĵ=0

e2sτ cos 2π
n
ĵe−i

2π
n

(a−j)ĵ




 1

n

n−1∑

k̂=0

e2sτ cos 2π
n
k̂e−i

2π
n

(a−k)k̂


 dτ

=
∑

va∈D

∫ t

0

e−2pτ


 1

n

n−1∑

ĵ=0

e2sτ cos 2π
n
ĵ cos

2π

n
(a− j)ĵ




 1

n

n−1∑

k̂=0

e2sτ cos 2π
n
k̂ cos

2π

n
(a− k)k̂


 dτ

(D.3.7)

On the other hand, if p > 2s, then we can compute the steady state controllability

Gramian using the final value theorem with Eq. (D.3.6),

Wj,k =
1

2n2

∑

va∈D

n−1∑

ĵ,k̂=0

cos
(

2π
n

(a− j)ĵ
)

cos
(

2π
n

(a− k)k̂
)

p− s cos 2π
n
ĵ − s cos 2π

n
k̂

(D.3.8)

In the n → ∞ limit, the bidirectional ring becomes the bidirectional path described

previously in this appendix. The relation can be seen by noting the similarity between

Eq. (D.1.9) (after applying the result of Eq. (D.1.10)) and the last line of Eq. (D.3.7)

for finite time t or for Eq. (D.1.12) and Eq. (D.3.8) for the steady state case.
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D.4 Proof of the Gramian of Unidirectional Ring

The unidirectional ring graph consists of n nodes, V = {v0, v1, . . . , vn−1}, and edges

(vk, vk+1 mod n) for k = 0, . . . , n − 1. The graph has uniform edge weights s and

self-loops −p for p > s. The algebraic Lyapunov equation of the steady state control-

lability Gramian of the unidirectional ring graph is,

W0,0 − ρWn−1,0 − ρW0,n−1 = α

Wj,0 − ρWj−1,0 − ρWj,n−1 = 0, j = 1, . . . , n− 1

W0,k − ρW0,k−1 − ρWn−1,k = 0, k = 1, . . . , n− 1

Wj,k − ρWj−1,k − ρWj,k−1 = 0, j, k = 1, . . . , n− 1

(D.4.1)

where ρ = s
2p

and α = 1
2p

. In Chapter 5, the solution of this system of this system of

equations is proposed to be,

Wj,k = α

∑
`≥0 a

(`)
j,kρ

`n+j+k

∑
`≥0 b`ρ

`n
(D.4.2)

The rational form in Eq. (D.4.2) can be proven by plugging it into the system of

equations in Eq. (D.4.1) and equating coefficients of ρx for powers of x. The first line

of Eq. (D.4.1) yields the equation,

a
(0)
0,0 − b0 +

∑

`≥1

(
a

(`)
0,0 − 2a

(`−1)
n−1,0 − b`

)
ρ`n = 0 (D.4.3)

The second and third lines of Eq. (D.4.1) are equivalent due to the symmetry of the

controllability Gramian and so only the second line is applied,

(
a

(0)
j,0 − a(0)

j−1,0

)
ρj +

∑

`≥1

(
a

(`)
j,0 − a(`)

j−1,0 − a(`−1)
j,n−1

)
ρ`n+j = 0 (D.4.4)
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Finally, the last line of Eq. (D.4.1) is used to determine the remaining relations,

∑

`≥0

(
a

(`)
j,k − a

(`)
j−1,k − a

(`)
j,k−1

)
ρ`n+j+k = 0 (D.4.5)

Putting the system of equations in Eqs. (D.4.3), (D.4.4), and (D.4.5) together yields,

a
(0)
0,0 = b0

a
(0)
j,0 − a(0)

j−1,0 = 0, j = 1, . . . , n− 1

a
(`)
0,0 − 2a

(`−1)
n−1,0 = b`, ` = 1, 2, . . .

a
(`)
j,0 − a(`)

j−1,0 − a(`−1)
j,n−1 = 0, j = 1, . . . , n− 1, ` = 1, 2, . . .

a
(`)
j,k − a

(`)
j−1,k − a

(`)
j,k−1 = 0, j, k = 1, . . . , n− 1, ` = 0, 1, . . .

(D.4.6)

As 0 < ρ < 1, the first layer, ` = 0, can be found by taking the n→∞ limit,

lim
n→∞

Wj,k = α
a

(0)
j,kρ

j+k

b0

= αρj+k
(
j + k

k

)
⇒ a

(0)
j,k =

(
j + k

k

)
, b0 = 1 (D.4.7)

which is the controllability Gramian of the unidirectional path graph derived previ-

ously. The solution to the system of equations in Eq. (D.4.6) using Eq. (D.4.7) as

the initial values is,

a
(`)
j,k =

∑̀

p=0

p∑

q=0

(
np+ j + k

nq + j

)
b`−p =

∑̀

p=0

b`−pc
(p)
j,k (D.4.8)

where the coefficient in the final form in Eq. (D.4.8) is,

c
(p)
j,k =

p∑

q=0

(
np+ j + k

nq + j

)

With the values of a
(`)
j,k now expressed in terms of only the values b`, ` = 0, 1, . . ., all

that remains is to determine them. To determine the values of b` to ensure that the

polynomials in ρ that make up the numerator and denominator in Eq. (5.3.24) have a

finite number of non-zero coefficients, we construct the following system of equations.
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We set m = dn
2
e and set,

a
(m)
j,j = 0, j = 1, . . . ,m

The resulting system of equations can be written Mb = h where the matrix M ∈

Zm×m and vector h ∈ Zm have elements found by equating coefficients of each b`,

Mj,k = c
(m−k)
j,j , hj = −c(m)

j,j (D.4.9)

The main benefit of this approach is that the coefficients a
(`)
j,k and b` need only be

computed once for each value of n, independent of the edge weights s and self-loop p.

Using multi-precision floating-point values, the coefficients for the first few values of

n are computed using the linear system in Eq. (D.4.9) and collected in Table 5.1 in

Chapter 5.

D.5 Derivation of the Gramian with Redundancy

This section provides the derivation of the role of redundancy in the control energy

presented in Sec. 5.4. The unidirectional balloon graph is the simplest model which

captures the both the role of distance and the role of redundancy in a graph whose

controllability Gramian can be solved analytically. We assume that there are b re-

dundant paths of length d connecting nodes v0 and vd. The quotient graph of the

unidirectional balloon graph is a unidirectional path graph except that edge (vd−1, vd)

has weight bs. The controllability Gramian Wj,k for elements j, k = 0, . . . , d − 1 are

equal to the of the unidirectional path graph and it is only when j = d or k = d

or both do the controllability Gramian elements change. As such, we solve for these

elements directly. First, we can solve for,

Wd,0 =
bs

2p
Wd−1,0 =

b

2p

(
s

2p

)d
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The general interface elements, for j = d and k < d, are found as,

Wd,k =
s

2p
Wd,k−1 +

bs

2p
Wd−1,k, 0 < k < d (D.5.1)

From before, we know Wd−1,k = 1
2p

(
s
2p

)d+k−1 (
d−1+k
k

)
, and we propose that,

Wd,k =
b

2p

(
s

2p

)d+k (
d+ k

k

)
(D.5.2)

which is verified by plugging it into Eq. (D.5.1),

Wd,k =
1

2p

bs

2p

(
s

2p

)d+k−1(
d+ k − 1

k − 1

)
+

b

2p

s

2p

(
s

2p

)d+k−1(
d− 1 + k

k

)

=
b

2p

(
s

2p

)d+k [(
d+ k − 1

k − 1

)
+

(
d− 1 + k

k

)]

=
b

2p

(
s

2p

)d+k (
d+ k

k

)

Finally, the term of interest is the diagonal element Wd,d, which is determined using

Eq. (D.5.2),

Wd,d = 2Wd,d−1 = 2
b

2p

bs

2p

(
s

2p

)2d−1(
d+ d− 1

d

)

=
b2

2p

(
s

2p

)2d(
2d

d

) (D.5.3)

By taking the inverse of Eq. (D.5.3), the control energy is clearly a function of both

the distance d and the redundancy b, which is written using gamma functions so that

we make take derivatives in d.

Ed =
2p

b2

(
2p

s

)2d
Γ2(d+ 1)

Γ(2d+ 1)
(D.5.4)

To better explore the growth in log scale, we take the logarithm of Eq. (D.5.4),

logEd = log
2p

b2
+ 2d log

2p

s
+ 2 log Γ(d+ 1)− log Γ(2d+ 1) (D.5.5)
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With the expression in Eq. (D.5.5), we can compute the rate of increase of the control

energy with respect to distance and the redundancy.

d

d(d)
logEd = 2 log

2p

s
+

2

d!
Γ′(d+ 1)− 1

(2d)!
Γ′(2d+ 1)

= 2 log
2p

s
+ 2

d∑

k=1

1

k
− 2

2d∑

k=1

1

k

(D.5.6)

To determine the asymptotic behavior of Eq. (D.5.6), note the summations can be

expressed as the difference of Harmonic numbers,

2H2d − 2Hd = 2H2d − 2 log(2d)− 2(Hd − log d) + 2 log 2 (D.5.7)

where the additional terms were included to use the identity,

lim
n→∞

(Hn − log(n)) = γ (D.5.8)

where γ is the Euler-Mascheroni constant. Applying the identities in Eqs. (D.5.7)

and (D.5.8), the asymptotic limit is,

lim
d→∞

d

d(d)
logEd = 2 log p− 2 log s+ 2 log 2− 2 lim

d→∞
(H2d −Hd)

= 2 log p− 2 log s+ 2 log 2− 2 (c− c+ log 2)

= 2 log p− 2 log s

(D.5.9)

which agrees with the previous results derived for the unidirectional chain using the

integral form and is independent of the number of branches. Turning to the number

of branches, the rate of change of the log control energy is,

d

d(b)
logEd = −2

b
(D.5.10)

Note that these relations can only hold for p > bs, at which value the adjacency

matrix is no longer Hurwitz and the steady state controllability Gramian does not
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exist. The expressions in Eqs. (D.5.9) and (D.5.10) are used in Sec. 5.4 of the main

text to explain the numerical results contained therein.

D.6 Derivation of the Gramian of Hypercubic Lattices

An m-dimensional hypercubic lattice is an undirected graph with nodes, vj at every

point j ∈ Zm. Let ek ∈ Zm be the k’th unit vector of dimension m. The edges of the

hypercubic lattice are undirected and consist of,

E = {(vj , vj±ek)|∀j ∈ Zm,∀k = 1, . . . ,m} (D.6.1)

Edge weights are defined for each unit vector, sk, k = 1, . . . ,m so that,

w(vj , vj±ek) = sk (D.6.2)

The controllability Gramian of the hypercubic lattice, using the connectivity defined

in Eq. (D.6.1) and the weights in Eq. (D.6.2), can be written,

Ẇj,k(t) = −2pWj,k(t) +
m∑

`=1

s` (Wj,j+e`(t) +Wj,j−e`(t) +Wk,k+e`(t) +Wk,k−e`(t))

+
∑

va∈D
δj,aδk,a, ∀j,k ∈ Zm

(D.6.3)

Applying the Laplace transform to Eq. (D.6.3), and defining ρ` = s`
ε+2p

,

W̃j,k(ε)−
m∑

`=1

ρ`

(
W̃j,j+e`(ε) +Wj,j−e`(ε) +Wk,k+e`(ε) +Wk,k−e`(ε)

)

=
1

ε(ε+ 2p)

∑

va∈D
δj,aδk,a, ∀j,k ∈ Zm

(D.6.4)

Define the 2m-dimensional discrete time Fourier transform as,

ˆ̃Wĵ,k̂(ε) =
∑

j,k∈Zm
e−ij

T ĵe−ik
T k̂W̃j,k(ε) (D.6.5)

228



APPENDIX D. DERIVATIONS FOR LATTICE GRAPHS

with inverse transform,

W̃j,k(ε) =
1

(2π)2m

∫ π

−π

∫ π

−π
eij

T ĵeik
T k̂ ˆ̃Wĵ,k̂(ε)dĵdk̂ (D.6.6)

where each integral is taken over the m-dimensional hypercube, centered at the origin,

of side length 2π. Applying the DTFT in Eq. (D.6.5) to the controllability Gramian

expression in the frequency domain in Eq. (D.6.4).

[
1−

m∑

`=1

(2ρ` cos ĵ` + 2ρ` cos k̂`)

]
ˆ̃Wĵ,k̂(ε) =

1

ε(ε+ 2p)

∑

va∈D
e−ia

T ĵe−ia
T k̂ (D.6.7)

Solving Eq. (D.6.7) for the transformed controllability Gramian elements,

ˆ̃Wĵ,k̂(ε) =
1

ε

∑

va∈D

e−ia
T ĵe−ia

T k̂

ε+ 2p−∑m
`=1

(
2s` cos ĵ` + 2s` cos k̂`

) (D.6.8)

Applying the inverse DTFT in Eq. (D.6.6) to the expression in Eq. (D.6.8),

W̃j,k(ε) =
1

ε

∑

va∈D

1

(2π)2m

∫ π

−π

∫ π

−π

e−i(a−j)
T ĵe−i(a−k)T k̂

ε+ 2p−∑m
`=1

(
2s` cos ĵ` + 2s` cos k̂`

)dĵdk̂

(D.6.9)

For finite time t, the controllability Gramian can be found from the inverse Laplace

transform,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτ

m∏

`=1

[
1

2π

∫ π

−π
e−i(a`−j`)ĵ`e2s`τ cos ĵ`dĵ`

]

×
[

1

2π

∫ π

−π
e−i(a`−k`)k̂`e2s`τ cos k̂`dk̂`

]
dτ

=
∑

va∈D

∫ t

0

e−2pτ

m∏

`=1

Ia`−j`(2s`τ)Ia`−k`(2s`τ)dτ

(D.6.10)

where In(z) is the modified Bessel function of the first kind of integer order defined

in Eq. (D.1.11). Note that for m = 1, the controllability Gramian in Eq. (D.6.10)

reduces back to the form for the bidirectional path graph as expressed in Eq. (D.1.12).

Also, if p >
∑m

`=1 2s`, then we can compute the unique steady state controllability
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Gramian using the final value theorem applied to Eq. (D.6.9).

Wj,k =
∑

va∈D

1

(2π)2m

∫ π

−π

∫ π

−π

e−i(a−j)
T ĵe−i(a−k)T k̂

2p−∑m
`=1

(
2s` cos ĵ` + 2s` cos k̂`

)dĵdk̂ (D.6.11)

Again, note that for m = 1 in Eq. (D.6.11), we recover the steady state controllability

Gramian of the bidirectional chain in Eq. (D.1.18).

D.7 Derivation of the Gramian for General Lattices

For the general lattice in m ≥ 1 dimesions, let us define the lattice operator ∆ which

defines the connectivity pattern,

∆Wj,k(t) =
∑

`∈I
s`Wj+`,k(t) + s`Wj,k+`(t) (D.7.1)

The differential Lyapunov equation to solve, in terms of the lattice operator in Eq.

(D.7.1), is,

Ẇj,k(t) = −2pWj,k(t) + ∆Wj,k(t) +
∑

va∈D
δa,jδa,k (D.7.2)

First, taking the Laplace transform yields,

W̃j,k(ε)− ρ(ε)∆W̃j,k(ε) =
1

ε(ε+ 2p)

∑

va∈D
δa,jδa,k

Applying the discrete time Fourier transform to the Gramian equation in the Laplace

domain yields,

(1− ρ(ε)F(∆)) ˆ̃Wĵ,k̂(ε) =
1

ε(ε+ 2p)

∑

va∈D
e−iaĵe−iak̂

where the DTFT of the lattice operator is found to be,

F(∆) =
∑

`∈I
s`

(
ei`ĵ + ei`k̂

)
= φ(ĵ) + φ(k̂) = σ(ĵ) + σ(k̂) + iω(ĵ) + iω(k̂)
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Splitting this term into real and imaginary components for the individual points, ĵ

and k̂, will be useful in the coming derivation. The inverse DTFT is applied to find

the Gramian in the Laplace domain,

W̃j,k(ε) =
∑

va∈D

1

(2π)2m

1

ε(ε+ 2p)

∫ π

−π

∫ π

−π

ei(j−a)xei(k−a)y

1− ρ(ε)F(∆)
dxdy

where each integral is over the m-dimensional cube of side length 2π centered at the

origin. For finite time, the inverse Laplace transform yields,

Wj,k(t) =
∑

va∈D

∫ t

0

e−2pτAj−a(τ)Ak−a(τ)dτ (D.7.3)

where the separate functions,

Aj(t) =
1

(2π)m

∫ π

−π
eijxeφ(x)tdx

=
1

(2π)m

∫ π

−π
eσ(x)t cos (ω(x)t+ jx) dx

(D.7.4)

To prove Eq. (D.7.3) solves Eq. (D.7.2), we differentiate Eq. (D.7.3) with respect to

time (remembering that the temporal integral is a convolution with the driver node

term) and apply the definition in Eq. (D.7.4),

d

dt
Wj,k(t) =

∑

va∈D

[
Aj−a(0)Ak−a(0) +

∫ t

0

∂

∂t
e−2p(t−τ)Aj−a(t− τ)Ak−a(t− τ)dτ

]

=
∑

va∈D

[
1

(2π)m

[∫ π

−π
cos((j − ax)dx

] [
1

(2π)m

∫ π

−π
cos((k − a)y)dy

]

− 2p

∫ t

0

e−2p(t−τ)Aj−a(t− τ)Ak−a(t− τ)dτ

+

∫ t

0

e−2p(t−τ)A′j−a(t− τ)Ak−a(t− τ)dτ

+

∫ t

0

e−2p(t−τ)Aj−a(t− τ)A′k−a(t− τ)dτ

]
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The derivative of the integrals,

A′j(t− τ) =
1

(2π)m

∫ π

−π
φ(x)eφ(x)teijxdx

=
1

(2π)m

∫ π

−π

∑

`∈I
ei`xeφ(x)(t−τ)eijxdx

=
∑

`∈I

1

(2π)m

∫ π

−π
ei(j+`)xeφ(x)tdx

=
∑

`∈I
A′j+`(t− τ)

The initial integrals can be rewritten,

Aj(0) =
1

(2π)m

∫ π

−π
eijxdx =

1

(2π)m

m∏

`=1

∫ π

−π
eij`x`dx` =

1

(2π)m

m∏

`=1

2 sin(πj`)

j`
=





1 j = 0

0 otherwise

With these results, the derivative of the Gramian can be rewritten as,

d

dt
Wj,k(t) = −2pWj,k(t)

∑

va∈D

[
δj,aδk,a

+
∑

`∈I
s`

∫ t

0

e−2p(t−τ)Aj+`−a(t− τ)Ak−a(t− τ)dτ

+
∑

`∈I
s`

∫ t

0

e−2p(t−τ)Aj−a(t− τ)Ak+`−a(t− τ)dτ

]

= −2pWj,k(t) +
∑

`∈I
s` (Wj+`,k(t) +Wj,k+`(t)) +

∑

va∈D
δj,aδk,a

= −2pWj,k(t) + ∆Wj,k(t) +
∑

va∈D
δj,aδk,a

which is the original expression in Eq. (D.7.2) thus completing the proof.
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