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CHAPTER 4. SYMMETRY IN GRAPHS
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Figure 4.2: (A) A quotient graph with three quotient nodes and two quotient edges. This
quotient graph’s adjacency matrix, Q, is shown below the quotient graph, and the matrix
A that appears in Eq. (4.3.8) is shown below it. (B) The ILP that must be solved to
determine the population that each quotient node represents. (C) Each quotient edge and
quotient loop in (A) is shown by its pattern, and the created edges for the full graph are
listed underneath. (D) The resulting graph with the desired symmetries as dictated by the
original quotient graph in (A).

each cluster. Further details on how the set of edges in Fig. 4.2(C) were found are

contained in Sec. 4.4.

4.3.3 Forcing Populations [9]

With the acknowledged difficulty of construcing quotient edge weights that ensure the

constraint matrix in the ILP in Eq. (4.3.8) is not full rank, an alternative method

to construct feasible quotient graphs was conceived. In this framework, we instead

design the intra-cluster degrees sk and the cluster populations nk for all Ck ∈ C.

Rearranging the fourth constraint for a feasible quotient graph in Def. 4.3.1 using the

alternative definition of the quotient edge weights in Eq. (4.3.5), the requirement for

the quotient edge weights can be rewritten,

nj
nk

=
Wk,j

Wj,k

, nj ≥ Wk,j, nk ≥ Wj,k, ∀(Cj, Ck) ∈ F (4.3.9)

Let cj,k = gcd(nj, nk) be the greatest common denominator between the two cluster

populations and let dj,k be any factor of cj,k. The quotient edge weight relation in Eq.
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CHAPTER 4. SYMMETRY IN GRAPHS

(4.3.9) can be written as,

Wj,k =
nk
dj,k

and Wk,j =
nj
dj,k

(4.3.10)

Note that dj,k = 1 is always a valid choice for Eq. (4.3.10). The resulting number of

edges between the nodes in clusters Cj and Ck is wj,k = njWj,k = nkWk,j =
njnk
dj,k

. The

density of the edges between nodes in Cj and Ck can be written,

ρj,k =
wj,k
njnk

=
1

dj,k
(4.3.11)

The result of Eq. (4.3.11) provides a way to choose the values of dj,k as to adjust the

density of the resulting graph. The benefit of this method is that one may determine

the values Wj,k and Wk,j independently of each other, so one does not need to solve

the system of diophantine equations like in the previous subsection.

4.4 Generating Symmetric Graphs

At this point, we assume Q is a feasible quotient graph constructed using either of

the methods described above or some other way. The graph to create is denoted

G = (V , E) where,

V =
nc×
k=1

Ck, (4.4.1)

is the collection of the nodes that make up each cluster and the edges,

E =

(
nc×
k=1

Ek
)
×
(

×
(Cj ,Ck)∈F

Ej,k
)
. (4.4.2)

are composed of both the intra-cluster edges and the inter-cluster edges. The nodes

in defined by Eq. (4.4.1) are labeled according to their originating cluster so that,

Ck =
{
vk` |` = 0, . . . , pk − 1

}
, |Ck| = pk (4.4.3)
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CHAPTER 4. SYMMETRY IN GRAPHS

The intra-cluster edges and inter-cluster edges sets, as defined in Eq. (4.4.2), each

consist of only edges,

Ek ⊆ Ck × Ck, |Ek| = sk, k = 0, . . . , nc − 1

Ej,k ⊆ Cj × Ck, |Ej,k| = wj,k, ∀(Cj, Ck) ∈ F
(4.4.4)

respectively. To simplify the following notation in the theorems, apply the notation in

Eqs. (4.4.3) and (4.4.4) and let edges be equivalently denoted in terms of the nodes’

cluster indices, that is, in the proper context,

(vj` , v
k
`′) = (`, `′), ` = 0, . . . , nj − 1, `′ = 0, . . . , nk − 1 (4.4.5)

The intra-cluster edges are constructed using the following theorems with the notation

in Eq. (4.4.5).

Theorem 4.4.1 (Intra-Cluster Edges). Let there be nk nodes, vk` , ` = 0, . . . , nk − 1,

and let 0 ≤ sk < nk be the intra-cluster degree of the nodes in Ck. Let b be a set of

integers between 1 and nk−nk mod 2
2

without repetition. Then, the edges (`, `′) ∈ Ek, are,

(` mod nk, (`+ bj) mod nk)

(` mod nk, (`− bj) mod nk)

j = 1, . . .
sk − sk mod 2

2
(4.4.6)

If sk is odd, then we additionally add one more edge,

(` mod nk, (`+ nk/2) mod nk)

The proof is contained in Appendix C.1.

Theorem 4.4.2 (Inter-Cluster Edges). Let (Cj, Ck) ∈ F be a quotient edge. Define

c = gcd(nj, nk) to be the greatest common denominator between the populations of

clusters Cj and Ck. Define two integers dj and dk such that,

nj = djc nk = dkc
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CHAPTER 4. SYMMETRY IN GRAPHS
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Figure 4.3: Examples of the intra-cluster wiring and the inter-cluster wiring. In (A), an
example of intra-cluster wiring is shown for nk = 8 and sk = 3. The sequence b = (1, 2). In
(B), an example of inter-cluster wiring is shown for nk = 4 and n` = 8 with quotient edge
weights Wk,` = 2 and W`,k = 4. The values c = gcd(4, 8) = 4 and m = 2 with sequence
b = (1, 3).

Let m =
Wj,kc

nk
=

Wk,jc

nj
and define a sequence of positive integers b = {b1, . . . , bm} such

that,
m∑

`=1

bj = c

Then, the set of edges can be written in two equivalent ways, either from Cj to Ck as,

(
` mod pj,

(
`+ r1c+

r2∑

a=1

ba

)
mod pk

)
,

r1 = 0, . . . , dk − 1

r2 = 1, . . . ,m

(4.4.7)

or from Ck to Cj as,

(
`′ mod pk,

(
`′ + r3c+

r4∑

a=1

bm−a+1

)
mod nj

)
,

r3 = 0, . . . , dj − 1

r4 = 1, . . . ,m

(4.4.8)

The proof is contained in Appendix C.2. An example of the intra-cluster wiring

procedure is shown in Fig. 4.3(A) where pnk = 8 and sk = 3. The sequence used is

b = (1, 2) and node sk is odd so each node, vk` has neighbors

N` =





(`+ 1) mod 8, (`− 1) mod 8, (`+ 2) mod 8

(`− 2) mod 8, (`+ 4) mod 8




.

An example of the inter-cluster wiring procedure is shown in Fig. 4.3(B) where nk = 4
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CHAPTER 4. SYMMETRY IN GRAPHS

and n` = 8 with quotient edge weights Wk,` = 2 and W`,k = 4. The greatest common

denominator is c = gcd(4, 8) = 4 so that m = 2. The sequence chosen is b = (1, 3)

which can be seen as node vk0 has neighbors v`1, v`4, v`5 and v`0.

The final step is to prove that the resulting graph has the desired orbits of the

automorphism group.

Theorem 4.4.3 (Orbits of the Automorphism Graph). The graph constructed using

Thms. 4.4.1 and 4.4.2 has symmetries,

π(vk` ) = vk(`+z) mod nk
, ∀` = 0, . . . , nk − 1, ∀Ck ∈ C (4.4.9)

for any integer z ∈ Z. The permutation in Eq. (4.4.9) is a group cyclic permutation.

The set of all symmetries of the form in Eq. (4.4.9) make up the automorphism

group of the graph with orbits corresponding to those nodes originating from the same

cluster.

Proof. From the expression for the intra-cluster edges in Eq. (4.4.6), a group cyclic

permutation does not affect the set of edges. Similarly, the inter-cluster edges in Eq.

(4.4.7) or in Eq. (4.4.8) are unaffected by the group cyclic permutation. Thus, as the

edges are invariant under the group cyclic permutation applied to the nodes, these

permutations must be symmetries. The orbits of the automorphism group correspond

to the nodes originating from the clusters which can be seen that any two nodes vk` and

vk`′ from cluster Ck there exists a group cyclic permutation with z = (`′ − `) mod nk

that maps π(vk` ) = vk`′ .

The process described in the past couple of sections constructs graphs with the

desired orbits of the automorphism group, and whose automorphism group consists

of group cyclic permutations. An interesting future extension of this work would be

to impose a particular automorphism group along with the desired orbits. To do this,

additional constraints must be placed on the properties of the quotient graph as well

as the edge wiring process would be less straightforward.

Two examples of this process are shown in Figs. 4.2 and 4.4. In Fig. 4.2(C) each
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Figure 4.4: An example of creating a graph with desired orbits. The feasible quotient
graph is shown in (A) with quotient edge weights written along each edge and quotient
nodes colored uniquely. The node populations and the intra-cluster degrees are shown as
the vectors n and s. The resulting graph is shown in (B) with nodes colored according to
their originating cluster.

quotient edge is shown with the originating pattern (dashed, solid, dotted) and the

resulting edges in the graph below it. The graph is shown in Fig. 4.2(D) with edges

patterned according to the originating quotient edges. A larger example is shown in

Fig. 4.4 with the quotient graph shown in Fig. 4.4(A) where each quotient node

is colored uniquely and the quotient edge weights written along each quotient edge.

The cluster populations and intra-cluster degrees are shown as the vectors n and s,

respectively. The resulting graph is shown in Fig. 4.4(B) with nodes colored according

to their originating quotient node.

4.5 Orbits vs. Minimal Equitable Partition

It has previously been demonstrated that the orbits of the automorphism group

(OAG) represent an equitable partition of the nodes. It is also known [205, 215,

216] that the orbits of the automorphism group is not necessarily the minimal equi-

table partition (MEP). If the quotient graph is irreducable, then the graph constructed

using the method described in the previous sections have coinciding orbits of the au-

tomorphism group (OAG) and minimal equitable partition (MEP).

To numerically investigate how often the OAG and MBC align, we perform the fol-

lowing procedure.
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CHAPTER 4. SYMMETRY IN GRAPHS

1. With a feasible quotient graph with cluster populations n, we scale the popu-

lations with an integer t.

2. Construct a graph using the wiring procedure described above.

3. Perform cluster degree preserving randomization which is a process by which

we choose two edges from the same set of intra-cluster edges Ek or inter-cluster

edges Ej,k and swap one end of the two edges. This procedure preserves the

cluster degree of each node but may eliminate some of the symmetries from the

automorphism group and thus refines the OAG.

An example is shown in Fig. 4.5(A) and Fig. 4.5(B) where the same graph is shown

but the nodes are colored according to its MEP in panel (A) where |C| = 2 and its

OAG in panel (B) where |O| = 10, i.e., the orbits are all trivial. Let O be the OAG

and let C be the MEP, and define the function,

f(O) =
n− |O|
n− |C| (4.5.1)

where f(O) = 1 if O = C and f(O) = 0 if O consists of only trivial orbits, that

is, an orbit Ok ∈ O such that |Ok| = 1. An example of this process is shown in

Fig. 4.5(C) for the two quotient node quotient graph shown in the inset. For each

value of t, we generate 1000 graphs and compute their MEP and OAG and compute

f(O). The black curve plots the mean value of f(O) and the error bars represent one

standard deviation. The blue curve is the minimum value of f(O) and the red curve

is the maximum value of f(O). We see that for t = 1, the MEP and OAG coincide

and so f(O) = 1. As t increases, the average value of f(O) and the maximum value

of f(O) over all 1000 realizations decrease rapidly. This means that for t > 1, less

than 0.1% of graphs with the two node quotient graph shown in the inset will have

their OAG and MEP coincide. This example, typical of all other quotient graphs

examined, provides evidence that the OAG and the MEP rarely coincide rather than

the expected result that they usually coincide.

In the next section, we show that the result above can, by extending the definition
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Figure 4.5: Examples of cases when the OAG and the MBC are not the same. (A) A 10
node graph with nodes colored according to its minimum equitable partition which consists
of two orbits. (B) The same graph but with nodes colored according to the orbits of its
automorphism group. There is no orbit with more than a single node in it, i.e., there is
only one symmetry, the identity permutation. (C) A numerical example for the relative
sizes of the OAG and the MEP using Eq. (4.5.1). The quotient graph in the inset is used
to generate graphs with two orbits such that the populations of the two orbits is scaled by
t. The red curve is the maximum value of f(O) found over 1000 realizations and the blue
curve is the minimum.

of a quotient graph, be directly applied to multi-layer networks, which may be more

useful to describe certain types of systems.

4.6 Symmetries in Multi-Layer Networks [15]

Most generally, a multi-layer network can be described using the following definition.

Definition 4.6.1 (Multi-Layer Graphs). Let G = (V , E) be a multi-layer graph by

which it is meant there is a partition of the nodes into n` layers, denoted,

V =
n`×
k=1

V`

Additionally, let the set of edges be similarly split,

E =
n`×

j,k=1

Ej,k

where an edge (va, vb) ∈ Ej,k if va ∈ Vj and vb ∈ Vk. Each set of edges may be further

111



CHAPTER 4. SYMMETRY IN GRAPHS

v1
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v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

Figure 4.6: A multi-layer graph with n` = 2 layers (denoted as circles and rectangles)
with m = 3 edge types, but with m` = 2 (denoted as solid, dashed, or dotted). The nodes
are colored according to its automorphism group.

refined to mj,k different types so that,

Ej,k =

mj,k×
i=1

E (i)
j,k

The effective number of edge types is denoted m` = maxmj,k, i.e., the largest number

of edge types between any pair of node types.

An example of a multi-layer graph is shown in Fig. 4.6 with two types of nodes,

n` = 2, where node types are denoted by the shape. There are three edge types,

denoted by solid, dashed, or dotted lines, but at most there are only m` = 2 edge

types at most between any two types of nodes. The quotient graph of this multi-

layer graph is shown in Fig. 4.7 where the quotient nodes are colored and have

shape corresponding to their originating nodes and the quotient edges have pattern
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O1 O2 O3

n1 = 2 n2 = 6 n3 = 6

m2
1,2 = 6

m1
2,2 = 6

m1
2,3 = 6

m2
2,3 = 12

m3
3,3 = 12

Figure 4.7: The quotient graph of the multi-layer graph in Fig. 4.6. Nodes are colored
and have shape according to their originating orbit. Edges have pattern according to their
originating edge types as well.

corresponding to their originating edges.

The definition of a quotient graph in Def. 4.2.1 can be directly applied to the

multi layer networks with the caveat that each quotient node in C now has a node

type associated with it and each edge (Cj, Ck) likewise has an edge type associated

with it. The procedure to create feasible quotient graphs remains the same except

that now there may be more than one quotient edge connecting two quotient nodes

of different types.

In the following section, we turn to an application of graphs with symmetries,

namely, the consensus problem. This problem addresses how linear dynamics applied

to graphs with symmetry can exhibit interesting consensus states, even if the system

is unstable.

4.7 Symmetry Induced Group Consensus [12]

As an application of the use of graphs with symmetry, we briefly discuss consensus

problems and in particular, group consensus. In consensus problems, we assign to

each node in a graph vj ∈ V , a time-varying state vector, xj(t), and consensus is

achieved if,

lim
t→∞
||xj(t)− xk(t)|| = 0, ∀vj, vk ∈ V (4.7.1)

Consensus type problems as described by Eq. (4.7.1) find applications in vehicle co-

ordination [217], opinion dynamics [218], sensor networks [219], and communication

[220]. More recently, cluster consensus and group consensus (sometimes used inter-
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changeably) have been investigated which is defined for some partition of the nodes,

C, as,

lim
t→∞
||xj(t)− xk(t)|| = 0, ∀vj, vk ∈ C`, ∀C` ∈ C (4.7.2)

Group consensus, as defined in Eq. (4.7.2), for undirected and directed graphs with

and without topology switching is investigated in [221–223]. The intra-group coupling

is used as the mechanism for determining whether group consensus will occur in

[224–226]. Most of the current work on group consensus [227–230] assumes that the

adjacency matrix is balanced, that is, the inter-group coupling for each node sums to

zero, that is,
∑

vk∈Cb
Aj,k = 0, vj ∈ Ca, a 6= b

The works referenced above do not exploit intrinsic properties of the graph structure

which is different from our work which uses the automorphism group of the graph.

The only work on consensus, or synchronization, using the automorphism group of a

graph, applies contraction theory [231, 232] which does not provide insight into the

role control gains may have in whether or not group consensus can be achieved.

Let G = (V , E) be a graph with adjacency matrix A and n nodes. We assume

the edge weights w(vj, vk) = 1 ∀(vj, vk) ∈ E . Let Aut(G) be the automorphism group

of the graph and let O be the partition of the nodes induced by the orbits of the

automorphim group of the graph (as described in Lemma 4.2.1). We assume that

there are |O| = q orbits. To determine the orbit of each node, we use the notation,

k̄ = ` if vk ∈ O` (4.7.3)

We are interested in linear dynamics described by the equation,

ẋj(t) = Fj̄xj(t) +
N∑

k=1

Aj,kHxk(t). (4.7.4)

where each node’s state vector is composed of N variables. Let x(t) be the composite

vector of all states of the nodes in the graph which has length Nn, then the evolution
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of the states for all systems governed by Eq. (4.7.4) can be written,

ẋ(t) =

[
q∑

k=1

Jk ⊗ Fk + A⊗H
]
x(t) (4.7.5)

where Jk is a diagonal matrix with diagonal elements `, ` equal to 1 if ¯̀= k as defined

in Eq. (4.7.3) and equal to 0 otherwise. The symbol ⊗ denotes the Kronecker product.

Definition 4.7.1 (Group Consensus Manifold). The set of states xj(t) = xk(t) for

all j̄ = k̄ defines an invariant manifold of the dynamics in Eq. (4.7.5).

If the system lies on the group consensus manifold, then the evolution of the

system can equivalently be described by the quotient graph dynamics,

q̇k(t) = Fkqk(t) +

q∑

`=1

Qk,`Hq`(t), k = 1, . . . , q (4.7.6)

where the Q ∈ Rq×q is the adjacency matrix of the quotient graph. The matrix Q can

be constructed as,

Q = E†AE

where E ∈ {0, 1}n×q is the orbit indicator matrix with elements Ek,k̄ = 1 for k =

1, . . . , n and all other elements equal to 0. The symbol † represents the Moore-Penrose

pseudo-inverse defined as,

E† = (ETE)−1ET

The quotient dynamics in Eq. (4.7.6) is stable if the matrix,

(F1 ⊕ F2 ⊕ . . .⊕ Fq) +Q⊗H

is Hurwitz.

We separate four possible cases of interest:

1. The system in Eq. (4.7.5) is unstable and group consensus is not achieved.

2. The system in Eq. (4.7.5) is unstable and group consensus is achieved.
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3. The system in Eq. (4.7.5) is stable and group consensus is achieved.

4. The quotient dynamics in Eq. (4.7.6) is stable but the group consensus manifold

is not.

To determine which case will occur for a particular choice of matrices Fk, k = 1, . . . , q,

adjacency matrix A, and coupling matrix H, we use the automorphism group block

diagonalizing orthogonal transformation [204], T ∈ Rn×n. The transformation is

determined from the irreducible representation (IRR) of the automorphism group of

the network. The first q rows of T consists of elements,

Tk,` =





√
1
nk

if k̄ = `

0 otherwise

These first q rows describe the behavior along the group consensus manifold. The

remaining n − q rows describe motion orthogonal to the group consensus manifold

and all have row-sum equal to zero. Each row of T has non-zero values associated

with columns corresponding to a single orbit. The transformation applied to the

adjacency matrix yields the matrix TAT T = B and the transformation applied to

Jk is invariant, i.e., TJkT
T = Jk. Define the transformed states of the system as

x̃(t) = (T ⊗ In)x(t) so that the transformed version of Eq. (4.7.5) is,

˙̃x(t) =

[
q∑

k=1

Jk ⊗ Fk +B ⊗H
]
x̃(t) = B̂x̃(t) (4.7.7)

This transformation has important consequences to determine the stability of group

consensus. The first q transformed states in Eq. (4.7.7) are denoted x̃para(t) and rep-

resent motion along the group consensus manifold and the remaining n−q transformed

states are denoted x̃orth(t) and represent motion orthogonal to the group consensus

manifold. The behavior of these two components have been decoupled, that is,




˙̃xpara(t)

˙̃xorth(t)


 =




B̂para Onq×n(N−q)

On(N−q)×nq B̂orth






x̃para(t)

x̃orth(t)


 (4.7.8)
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We can now determine the stability of the group consensus manifold independent of

the stability of the global system. Let λmax
para be the largest real part of an eigenvalue

of the matrix B̂para and let λmax
orth be the largest real part of an eigenvalue of the matrix

B̂orth that appear in Eq. (4.7.8). If λmax
para < 0 (> 0), then the motion along the group

consensus manifold is stable (not stable) while if λmax
orth < 0 (> 0), then perturbations

from the group consensus manifold will vanish with increasing time (will grow with

increasing time).

An example of the automorphism group consensus problem for the twelve node

graph shown in Fig. 4.8(A) is described in depth. Each node is assigned n = 4 states.

The quotient graph is shown in Fig. 4.8(B) with associated matrices,

F1 =




O2 I2

−2I2 −2I2


 F2 =




O2 I2

−4I2 −4I2


 F3 =




O2 I2

−6I2 −6I2




and the coupling matrix has two control parameters α and β,

H =



O2 O2

αI2 β121
T
2


 (4.7.9)

The adjacency matrix with rows colored according to each node’s orbits is shown

in Fig. 4.9. The orthogonal block diagonalizing transformation T is shown in Fig.

4.10 and the resulting block diagonal matrix B is shown in Fig. 4.11. Note that

the upper left hand corner represents the motion along the group consensus manifold

while the lower right hand corner represents the blocks describing motion orthogo-

nal to the group consensus manifold. Using the control parameters α and β in Eq.

(4.7.9), we examine the stability of the system and whether or not group consensus is

achieved which is colored in Fig. 4.8(C). We see all four possibilities occur for differ-

ent values of the control parameters where red corresponds to stable global dynamics

and group consensus occurs, the purple region corresponds to unstable dynamics but

group consensus is achieved, the green region corresponds to unstable dynamics and

group consensus is not achieved, and the blue strip corresponds to stable dynamics
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Figure 4.8: An example of the different regimes which may exist in the group consen-
sus problem. (A) A twelve node graph with three orbits in its automorphism group, with
nodes colored according to their orbits. (B) The quotient graph associated with the orbits
of the automorphism group of the graph in (A). (C) The stability of the system in control
parameter space (α,β) where the red background represents stable dynamics and group con-
sensus achieved, the purple background represents unstable dynamics but group consensus
achieved, the green background represents unstable dynamics and group consensus is not
achieved, and the blue background represents stable dynamics but group consensus is not
achieved. (D) The largest real part of the eigenvalues of the matrices B̂para and B̂orth for
α = 0.2 and varying balues of β. The background is colored according to the regions in (C).
(E) An example of the time trajectories in the blue region where B̂para is negative definite
but B̂orth is marginally stable so the system is marginally stable but group consensus is not
achieved.
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A =




0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1 0 0 0
0 1 1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0 0 1 1 1
0 0 1 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 1 1 0




Figure 4.9: The adjacency matrix of the graph in Fig. 4.8(A) with rows colored according
to each node’s orbit.

T =




0 0 0 0 0 0 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6 1/
√

6
0 0 0.5 0.5 0.5 0.5 0 0 0 0 0 0

1/
√

2 1/
√

2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2/

√
6 1/

√
6 1/

√
6 0 0 0

0 0 0 0 0 0 0 0 0 −2/
√

6 1/
√

6 1/
√

6
0 0 0 0 0 0 0 1/

√
2 −1/

√
2 0 0 0

0 0 0 0 0 0 0 0 0 0 1/
√

2 −1/
√

2
0 0 0 0 0 0 −1/

√
6 −1/

√
6 −1/

√
6 1/

√
6 1/

√
6 1/

√
6

0 0 −0.5 −0.5 0.5 0.5 0 0 0 0 0 0
0 0 −0.5 0.5 0.5 −0.5 0 0 0 0 0 0
0 0 −0.5 0.5 −0.5 0.5 0 0 0 0 0 0

−1/
√

2 1/
√

2 0 0 0 0 0 0 0 0 0 0




Figure 4.10: The block diagonalizing transformation matrix found from the IRR of the
graph in Fig. 4.8(A). The rows are colored according to the associated orbit.

but group consensus is not achieved. Values of λmax
para and λmax

orth are shown in Fig.

4.8(D) for α = 0.2 and varying β. The regions are colored according to the same

criteria as in Fig. 4.8. In Fig. 4.8(E) time trajectories of the states are shown for

α = 0.2 and β = −1 so that the system is marginally stable but group consensus is

not achieved. This example, different from the previous work on group consensus,

demonstrates that it is possible for a dynamical system to be unstable, yet still achieve

group consensus.

This work focuses on the problem of whether or not group consensus may occur

whether or not the dynamics of the overall system is stable or not. Note that the block

diagonal matrix B̂orth though is further decomposed into smaller blocks representing

different orthogonal motion from the group consensus manifold. This suggests it is

possible to determine if some orbits achieve consensus while others may not in a more

granular fashion. This focus will guide future work in this area.
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B =




2
√

6 0 0 0 0 0 0 0 0 0 0√
6 2

√
2 0 0 0 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 2

√
6 0 0 0

0 0 0 0 0 0 0
√

6 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0

√
2

0 0 0 0 0 0 0 0 0 0
√

2 0




Figure 4.11: The block diagonal matrix B = TAT T where A and T are shown in Figs. 4.9
and 4.10, respectively. The upper block is the matrix Bpara which describes motion parallel
to the group consensus manifold while the remaining blocks describe motion orthogonal to
the group consensus manifold.

4.8 Approximate Equitable Partitions

In the previous sections, our discussion concerned symmetries of graphs, a structural

property of a graph (that is, independent of edge weights). By ignoring the edge

weights though, information about a network is lost and so the orbits of the automor-

phism group may not represent redundancies in the network as described in Sec. 4.2

or may not capture those nodes with similar behavior as described in Sec. 4.7. The

obvious question though is how best to include edge weights. To discuss the various

options, we repeat some definitions. Let G = (V , E) be an undirected graph with edge

weights w : E 7→ R+. Also, let C be a partition of the nodes. We differentiate two

quantities, the cluster degree of a node and the cluster strength of a node.

Definition 4.8.1 (Cluster Degree and Cluster Strength). Let nc = |C| be the number

of clusters in the partition C. The cluster neighbors of node vj is,

Nj,k = {v` ∈ Ck|(vj, v`) ∈ E}

The cluster degree of node vj, denoted κj ∈ Znc, has elements equal to,

κj,k = |Nj,k|
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and the cluster strength of a node vj, denote σj ∈ Rnc, has elements equal to,

σj,k =
∑

v`∈Nj,k
wj,`

An equitable partition, as defined in Def. 2.2.20, has the property that, for every

pair of nodes vj, vk ∈ C`, κj = κk, but it is not necessary for σj = σk. Some

possible extensions of equitable partitions and symmetries to weighted graphs are

now discussed.

1. One can shoehorn the definition of an equitable partition to the cluster strength

vectors such that C is an equitable partition if for every pair of nodes vj, vk ∈ C`,

then σj = σk. Note that this definition will only give non-trivial results if the

edge weights are drawn from some relatively small finite set of values. If the

edge weights are drawn from some continuous distribution, then the probability

that any sum of a subset of the edge weights is equal to the sum of any other

subset of the edges is essentially zero.

2. If the edges can be classified into ne sets, that is, E =
⋃ne
`=1 Ek, then one can

compute an edge-colored equitable partition. Define cluster degrees associated

with each set of edges, κ
(`)
j , ∀vj ∈ V , ∀E` ∈ E . The partition C is an edge-colored

equitable partition if,

κ
(`)
j = κ

(`)
k , ∀vj, vk ∈ Ca, ∀Ca ∈ C, ∀E` ∈ E

This definition again ignores any edge weights, but may be applicable for net-

works with edges that perform different tasks, such as communication links and

information links.

Rather than these possibilities, we relax the strict equality demanded by the previous

definitions and instead introduce a tolerance.

Definition 4.8.2 (Approximate Equitable Partition). Let G = (V , E) be an undi-

rected graph with weights w : E 7→ R, which we assume are drawn from a continuous

121



CHAPTER 4. SYMMETRY IN GRAPHS

distribution. A partition of the nodes, C, is approximately equitable if for every pair

of nodes vj, vk ∈ C`, their cluster strengths satisfy,

||σj − σk|| ≤ ε (4.8.1)

where || · || is some norm chosen based on the application.

Of particular interest is the minimum approximate equitable partition, that is, the

partition C that satisfies Def. 4.8.2 that is of minimum size, |C| = nc.

min |C|

s.t. ||σj − σk|| ≤ ε, ∀vj, vk ∈ C`, ∀C` ∈ C
(4.8.2)

The minimum approximate equitable partition depends on the chosen value of ε, and

so we denote it as C(ε). Note that C(ε), the minimum approximate equitable partition

for a specific value of ε, is not necessarily unique. There exists n values of ε, denoted

εk, k = 1, . . . , n of particular interest which are defined as

|C(ε)| > k if ε < εk

|C(ε)| ≤ k if ε ≥ εk

(4.8.3)

These values of εk are the switching values when the MAEP increases in cardinality.

For the lower bound, εn = 0, can be trivially proven using Eq. (4.8.3). At the other

end, one can compute ε1 using Def. 4.8.2 directly. Compute the strengths of every

node, σj, and then,

εmax = max
vj ,vk∈V

|σj − σk| (4.8.4)

If the graph is small enough, one can enumerate all possible partitions. To determine

when this is possible, we define some results from the field of combinatorics.

Definition 4.8.3 (Stirling Numbers of the Second Kind [233]). The Stirling numbers

of the second kind, denoted
{
n
k

}
, are equal to the number of ways a set of n items can
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be partitioned into k subsets. An explicit formular to compute them is,

{
n

k

}
=

1

k!

k∑

j=0

(−1)k−j
(
k

j

)
jn

Even for larger values of n, one can enumerate all partitions for the first few values

of k as the Stirling numbers scale approximately as kn. This exercise can be useful to

find the first few values of εk, k = 2, 3, . . ..

Definition 4.8.4 (Bell Numbers). The Bell numbers, denoted Bn, are equal to the

number of ways a set of n items can be partitioned into any number of sets, i.e.,

Bn =
n∑

k=0

{
n

k

}

that is, a sum of the Stirling numbers of the second kind defined in Def. 4.8.3.

For n > 14, Bn > 109, after which enumerating all partitions may become com-

putationally infeasible. A small example demonstrates the above concepts.

A star graph with one central node, v1, and 10 leaves, vk, k = 2, . . . , 11, is con-

structed as shown in Fig. 4.12(A). For this example, the MAEP is computed for

different values of ε which is shown in Fig. 4.12(B). The discrete behavior of εk is seen

as the steps. For instance, ε10 = 0.01, which is the value of ε that, if ε < ε10, every

node is placed in its own cluster in the MAEP. The unweighted minimum equitable

partition is recovered for ε3 < ε ≤ ε2 where ε3 = 0.62 and ε2 = 10.59.

An additional difficult of this problem is that it does not obey transitivity. Specif-

ically, if nodes vj and vk obey Eq. (4.8.1) and nodes vk and v` obey Eq. (4.8.1), it

may be the case that nodes vj and v` do not. As an example, two partitions that are

optimal solutions to Eq. (4.8.2) for the choice of ε − 0.5 are shown in Fig. 4.12(C).

For this value of ε, nodes v2, v4, and v10 cannot be in the same cluster as node v11. On

the other hand, all of the remaining leaf nodes may be assigned to either cluster in-

discriminately, meaning that there are
(

6
2

)
= 15 possible, equally optimal, partitions.

To better visualize the change in the partitions, we define a metric on the space
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