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Abstract

A mixing model analyzes the mixing of helium (He) and sulfur hexafluoride (SF6) ac-

cording to two classical gaseous equations of state (EOS), namely, Amagat’s Law and

Dalton’s Law, undergoing planar traveling shocks in three dimensions (3D). Numerical

simulations utilize the Sandia National Laboratories (SNL) shock hydrodynamic code

CTH and other codes including the SNL thermochemical equilibrium code TIGER

and the uncertainty qualification (UQ) and sensitivity analysis code DAKOTA. Com-

parison with experimental results show that none of the equations of state are able to

accurately predict the properties of the shocked mixture; similar discrepancies have

been observed in previous works. A sensitivity study using incremental Latin Hy-
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percube Sampling (iLHS) was performed upon the model and various metrics were

used to establish convergence of model behaviour. Sensitivity results indicate that

the mixing model is most sensitive to the initial temperature of the He/SF6 mixture.
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Chapter 1

Introduction & Theory

“Begin at the beginning,” the King said, very gravely, “and go on till you come to

the end: then stop.” — Lewis Carroll, Alice in Wonderland

Shock tubes have a long history in the study of Equations of State (EOS). Shock tube

equation of state studies have been conducted for many substances, including liquid

nitrogen [1, 2], solid carbon dioxide [2], and gaseous argon [3, 4]. The necessity to

account for real-gas properties in shocked gases has been noted at least as early as

1996 [4], based on discrepancies between predictions on ideal gas theory and experi-

ments with pure argon. Until recently, however, there were few, if any, well-quantified

shock tube experiments considering the equation of state for gas mixtures. A 2019

study [5] considered a binary mixture of two gases, helium and sulfur hexafluoride,

both of which possess vastly different properties. The post-shock properties, such as

pressure, temperature, and velocity measurements are taken from the experiments,

and attempts are made to simulate the experimental conditions — using the Sandia

National Laboratories hydrodynamic code CTH and the thermochemical equilibrium

code TIGER — with a variety of equations of states in an attempt to determine if

any of the EOS under consideration is more accurate at predicting the post-shock

properties.
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1.1. Equations of State

1.1 Equations of State

A gas is most often described by three physical properties, namely pressure (P ),

temperature (T ), and specific volume (ν). An equation of state then defines the

relationship between the properties, such that knowledge of any two properties fully

defines the remaining state variables.

1.1.1 Ideal Gas

The ideal gas equation of state

Pν = RT (1.1)

is a simple and well known EOS which is a combination of Boyle’s Law and Gay-

Lussac’s Law among others [6].

The ideal gas relationship is only applicable at low pressures and high temper-

atures (and thus a low density) [6]. A real gas departs from the ideal-gas behavior

at higher pressures or when close to the saturation region or critical point [6]. To

account for this deviation from the ideal-gas behavior, a correction parameter known

as the compressibility factor (z) can be introduced to the ideal gas equation of state

to result in the following [6]

Pν = zRT (1.2)

where z is unity for an ideal gas.

1.1.2 Amagat & Dalton

Equations of state for gas mixtures generally make assumptions about which of the

properties can apply to the entire mixture (and thus are held constant) while the other

properties are summed over the partial property components [6, 7]. Non-reacting gas

mixtures behave as an ideal gas when under similar constraints as a pure gas. There

are two classical laws used to predict the behavior of gas mixtures: Dalton’s law of

2



1.1. Equations of State

additive pressures and Amagat’s law of additive volumes [6, 7]. Thus, for Dalton

Pm =
k∑
i

Pi(Tm, Vm) (1.3)

the pressure of the mixture is equal to the partial pressures the components of each gas

would exert if they existed at the mixture temperature and volume [6, 7]. Likewise,

for Amagat

Vm =
k∑
i

Vi(Tm, Pm) (1.4)

the volume of the mixture is equal to the partial volumes the components of each gas

would exert if they existed at the mixture temperature and pressure [6, 7].

For real gas mixtures, Equation (1.2) still applies to account for the deviation from

ideal-gas behavior. Amagat and Dalton Law’s are exact for ideal gas mixtures and

yield identical results when the compressibility factor is unity [6, 7], however, they

only serve as approximates for real gases. Amagat’s Law implicitly accounts for the

intermolecular forces between the molecules of the various gases in the mixture, while

Dalton’s Law disregards the influence of disparate molecules in the gas mixture [6].

Thus Amagat’s Law is reported to be more suitable for higher pressures and Dalton

for lower pressures [6, 7].

1.1.3 BKW

The Becker-Kistiakowsky-Wilson (BKW) EOS [8, 9] has been extensively used to

calculate detonation properties and is defined by the equations

PV

RT
= 1 +XeβX , X = κ

∑
i niki

V (T + θ)α (1.5)

where the values α, β, κ, and θ are empirically determined, constant fit parameters.

The parameters α, β, κ, θ and ki may be adjusted to fit measured detonation proper-

3



1.1. Equations of State

ties, however, this unveils a weakness of the EOS, namely that a priori estimation of

the parameters for any new chemical components introduced could prove unsatisfac-

tory if dissimilar from components used in a parameter determination study [9]. The

recommended values for the constants α, β, κ, and θ are 0.5, 0.298, 10.5, and 6620,

respectively [8], which were obtained from calibration of over sixty explosives across

a wide range of densities and constitutes the BKWS EOS ∗.

1.1.4 JCZ3

The Jacobs-Cowperthwaite-Zwisler (JCZ) EOS [10] is of the form

P = G(V, T )nRT
V

+ P0(V ) (1.6)

where the Grüneisen function G, and the internal pressure function P0, are given by

G = 1− V

f

(
∂f

∂V

)
T

, P0 = −dEo
dV (1.7)

where Eo denotes the volume potential of a face-centered cube lattice and f is a factor

based on the Helmholtz free energy of an ideal gas which guarantees that G maintains

correct behavior across a wide range of densities [10].

The JCZ3 EOS was created (JCZ1 and JCZ2 are based on less accurate potentials

and are no longer in use [11]) by modifying the Grüneisen and internal pressure func-

tion to be composed of the exponential 6 (EXP6) intermolecular potential function

P = G(V, T, ϕ)nRT
V

+ P0(V, ϕ) (1.8)

ϕ(r) = ε

[(
6

η − 6

)
exp

[
η(1− r

r∗
)
]
−
(

η

η − 6

)(
r∗

r

)6]
(1.9)

∗BKWS is SNL’s optimized, re-parameterized BKW EOS.
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1.2. Shock Waves

which describes the P -V -T relationship of the gaseous product species that result

from the detonation of energetic materials [10, 12, 13]. The molecular force parame-

ters ε (often given as ε/kB, where kB is the Boltzmann constant) and r∗ are the well

depth for the pair potential and the radius of the minimum pair potential energy,

respectively. It has been shown that the EXP6 potential function is relatively in-

sensitive to perturbations in force constant η and yields the best agreement between

measured and predicted pure liquid shock Hugoniots when using η = 13 [12, 13].

1.1.5 EXP6

The EXP6 EOS [14] has a similar formulation as the JCZ3 EOS — with slight varia-

tions in the definition of parameter mixture rules [11] — the main difference, however,

is that the molecular force parameter η is no longer assumed to be a constant η = 13

and is instead calculated as the following mixture rule

η =
∑
i,j xixjηijεijr

3
ij

εmr3
m

(1.10)

where i, j subscripts denotes parameters between chemical species i and j [11].

1.2 Shock Waves

A shock wave is defined as a traveling disturbance which is characterized by a sharp

discontinuity in the field variables of a fluid [15]. A shock wave is formed from a

finite-amplitude compression wave, as the velocity gradient steepens until asymptotic

behaviour is reached. After the shock wave is formed, it continues to travel at an

equilibrium speed [15].

The Rankine-Hugoniot Equations [15] relate the density ratio to the fluid velocity

and pressure ratios across a shock wave; the equation for a normal shock (shock wave

5



1.3. Adiabatic Flame Temperature

is oriented normal to the velocity vector) may be given by:

ρ2

ρ1
=

1 + p2

p1

(γ + 1)
(γ − 1)

(γ + 1)
(γ − 1) + p2

p1

= v1

v2
(1.11)

where the subscripts 1 and 2 refer to the pre- and post- conditions of the shock,

respectively.

Numerically modeling a shock wave is by no means trivial. Care must be taken to

avoid numerical instabilities caused by cusps in the results due to discontinuities in

the field variables [16]. However, only the post conditions of the shock are of interest

— specifically speed, pressure, temperature — and should be accurately modeled, the

characteristics of the shock wave — such as the width or structure — need not be

accurately captured [17].

1.3 Adiabatic Flame Temperature

The adiabatic flame temperature is the maximum temperature that combustion prod-

ucts reach during a combustion process when there is no heat loss to the surround-

ings [6]. The adiabatic flame temperature depends on the following [6]:

i. reactant state

ii. the completeness of the reaction

iii. amount of air used

Incomplete combustion, heat transfer, and dissociation of the products all result

in a lower temperature.

6



1.4. Sensitivity Analysis

1.4 Sensitivity Analysis

Sensitivity analyses are vital in identifying which inputs to a complex system have the

greatest influence on the outputs [18, 19, 20]. There exists a plethora of sensitivity

techniques, one of which involves generating a distribution on each of the inputs

and propagating them through the system which results in a distribution on the

outputs [20]. The inputs which yield the greatest distribution on the outputs is

considered to be the most sensitive, the identification of which allows the focus to be

redirected to the critical inputs.

1.4.1 Incremental Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a pseudo-random, stratified sampling technique

where the cumulative distribution for each variable is divided into n non-overlapping

intervals of equal probability [19, 20, 21, 22]. The size of the interval is determined

by the specified probability distribution, for instance a normal distribution possesses

smaller segments near the mean compared to the tails. A sample from each interval

is then selected at random, such that the resulting sample set contains only one

sample in every row and column of the hypercube [20]. A Latin Hypercube is the

generalization of a Latin Square into an arbitrary number of dimensions, similarly,

LHS is a k-dimensional extension of Latin Square sampling [19, 23]. A square grid

is a Latin Square if and only if there is only one sample in each row and column,

an example of which is depicted in Figure 1.1. The non-overlapping nature of the

intervals along with the definition of a Latin Square restricts a sample from being

used more than once.

7



1.4. Sensitivity Analysis

Figure 1.1: Latin Square example [21].

Incremental Latin Hypercube Sampling (iLHS) enables further sampling to be

performed until convergence is reached. Each incremental sample doubles the total

number of samples and contains the results of the previous hypercubes. The full

sample is itself a Latin Hypercube — the stratification and correlation structure are

maintained [20].

It is difficult to make a rigorous convergence assertion using random Monte Carlo

sampling techniques. Because of the random sampling, previous samples are not

considered when incrementing the random samples. The assumption cannot be made

that the sample set has filled the probability space, nor that the entire space has been

sampled with sufficient density. It typically takes orders of magnitude more samples

to achieve convergence with random Monte Carlo than with iLHS [19].

1.4.2 Gaussian Distribution

The Gaussian (or normal) distribution function is widely used to model random con-

tinuous variables [24]. When the variation of measured data is due totally to random

factors, and negative and positive deviation occurrences are equally probable, then

the Gaussian distribution has been shown to describe the dispersion of the data [24].

8



1.4. Sensitivity Analysis

The normal distribution may be given by

f(x) = 1
σ
√

2π
e−(x−µ)2/2σ2 (1.12)

where the two free parameters, µ and σ, are the population mean and standard

deviation respectively. The probability of a value x existing between a lower limit x1

and an upper limit x2 may be given by

P (x1 ≤ x ≤ x2) =
∫ x2

x1
f(x)dx =

∫ x2

x1

1
σ
√

2π
e−(x−µ)2/2σ2

dx (1.13)

the integration of which must be evaluated numerically as f(x) is in the form of an

error function [24].

Figure 1.2 depicts a normal distribution with probability as a function of standard

deviation†. The distribution curve is centered on the population mean µ.

μ μ+σ μ+2·σ μ+3·σμ−σμ−2·σμ−3·σ

P(μ−1·σ ≤ X ≤ μ+1·σ) ≈ 68,27 %
P(μ−2·σ ≤ X ≤ μ+2·σ) ≈ 95,45 %
P(μ−3·σ ≤ X ≤ μ+3·σ) ≈ 99,73 %

P(X ≤ μ) = 50 % = P(X ≥ μ)

P(X ≤ μ+1·σ) ≈ 84,13 %
P(X ≤ μ+2·σ) ≈ 97,72 %
P(X ≤ μ+3·σ) ≈ 99,87 %

0,13 % 2,14 %

13,59 %

34,13% 34,13%

13,59 %

2,14 % 0,13 %

Figure 1.2: A normal distribution graph visualizing the values 1σ, 2σ, and 3σ.

1.4.3 Convergence Metrics

The incremental Latin Hypercube Sampling is considered to have sufficiently con-

verged when the prescribed metric exhibits asymptotic behaviour for the latter few

†Wolfgang Kowarschick, Oct. 2012, Obtained from Wikimedia Commons.
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1.4. Sensitivity Analysis

incremental sample sets.

Mean, Variance, & Standard Deviation

A population contains the entire collection of measurements, observations, etc. about

which some generalizations will be made. A sample is a subset of the population for

which numerical data is obtained [24].

The mean is a common parameter used to describe the central tendency of a

dataset [24]. The population mean may be given by

µ = 1
N

N∑
i=1

xi (1.14)

where N is the finite number of observations in the population. The sample mean, x,

possess a similar formulation as the population mean, where the sample observations

is used in place of N . Given a sufficiently large sample size, the sample mean will be

representative of the population mean [25].

Variance is a measure of dispersion or variability of a dataset [25]. The population

variance may be given by

σ2 =

N∑
i=1

(xi − µ)2

N
(1.15)

and the sample variance may be given by

s2 =

N∑
i=1

(xi − x)2

N − 1 (1.16)

where N − 1 is the degrees of freedom. Since the population mean is rarely known,

the sample mean x must be used instead, however this reduces the degrees of freedom

from N to N−1 as only N−1 of the N deviations (xi−x) are freely determined [25].
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1.4. Sensitivity Analysis

The population and sample standard deviation are then the positive square roots

of the respective variance [24].

σ =

√√√√√ N∑
i=1

(xi − µ)2

N
, s =

√√√√√√ N∑
i=1

(xi − x)2

N − 1 (1.17)

Infinity Norm

The infinity norm [26] (or uniform norm) is given by

L∞ = ||x||∞ = max |x| (1.18)

and simply just returns the value in a vector with the largest magnitude.

Mean Absolute Error

The Mean Absolute Error (MAE) has been showed to be the most natural measure

of average error magnitude and is recommended over the typical Root Mean Square

Error (RMSE) as there is no clear interpretation of the RMSE [27]. The MAE is

given by

MAE = 1
N

N∑
i=1
|xi − yi| (1.19)

where xi is the predicted value and yi is the observed value [27].

Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC, also known as the sample correction co-

efficient) is a parameter which can be used to determine if there exists a functional

relationship between two variables [24, 25]. The magnitude of rxy — given by Equa-

tion (1.20) — lies between −1 and 1 where a value of 1 indicates there is a positive

11



1.4. Sensitivity Analysis

linear relationship, a value of −1 indicates a negative linear relationship, and a value

of 0 indicates there is no linear correction between the two variables. Simply stated,

the PCC measures the strength of the linear relationship between two variables [25].

rxy =
∑
i(xi − x)(yi − y)√∑

i(xi − x)2∑
i(yi − y)2

, −1 ≤ rxy ≤ 1 (1.20)
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Chapter 2

Methodology

In science one tries to tell people, in such a way as to be understood by everyone,

something that no one ever knew before. But in poetry, it’s the exact opposite.

— Paul Dirac

2.1 Software

2.1.1 DAKOTA

DAKOTA is a design optimization, parameter estimation, uncertainty quantification,

and sensitivity analysis framework developed at SNL [20]. DAKOTA possesses the

ability to wrap around a simulation code supplied by the user and parameterize the

code’s input file as shown in Figure 2.1.

DAKOTA

User's
Simulation

Code

Simulation
Input File

DAKOTA
Parameters File

Simulation
Output File

DAKOTA
Results File

Data

Pre-processing

Data

Post-processing

Figure 2.1: “Black-box” interface between DAKOTA and user’s simulation code [20].

DAKOTA’s “black-box” allows a generic simulation to be parameterized with a
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2.1. Software

unique set of variables as many times as desired in parallel. A multi-dimensional

parameter study allowed for the creation of the nominal simulations. The uncer-

tainty quantification study was then performed with DAKOTA’s incremental Latin

Hypercube sampling capability.

2.1.2 Tiger

The generation of custom, tabular EOS may be achieved through use of Tiger, which

is a thermochemical equilibrium code that was originally developed by Stanford Re-

search Institute and has since been updated and maintained by SNL [28]. For every

EOS with the exception of Amagat and Dalton, the mixing of gases is handled by

Tiger, which computes equilibrium thermodynamic states over a prescribed range

of temperatures and volumes for the desired mixture composition. Tiger contains a

species library of over 750 gases and elements which have been verified and validated

by Hobbs, et. al [11].

2.1.3 CTH & BCAT

CTH is a multidimensional, multi-material, large deformation, strong shock, solid

mechanics code (CTH is also known as a hydrocode) developed at SNL [16, 29].

CTH was the chosen analysis software primarily for its tabular equation of state

input capability, which allows for usage of mixed material models that are created

according to custom EOS formulations. There are six possible domain options avail-

able: one-dimensional linear, cylindrical, and spherical; two-dimensional cylindrical

and rectangular; and three-dimensional rectangular. The numerical solver in CTH

consists of a two-part solution scheme — a Lagrangian distortion step during which

the mesh deforms to follow the material motion and a Eulerian remap step during

which the distorted mesh is mapped back onto the original mesh [16, 29]. It should
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2.2. Experimental Setup

be noted that CTH uses the cgs-eV‡ unit system [29].

BCAT is a code in the CTH distribution package which is used to develop and test

EOS models for CTH [30]. Before Tiger’s tabular EOS can be utilized by CTH, the

tables must be converted to the SESAME format developed by Los Alamos National

Laboratory (LANL) [31]. The SESAME format consists of both plain text and binary

tabular file formats, however, only the binary format will be used. The conversion is

handled by BCAT.

2.2 Experimental Setup

The University of New Mexico (UNM) shock tube — depicted in Figure 2.2 — is

constructed with a 1.97 m long driver section and a 3.2 m long driven section [5].

The driver section consists of a 1.22 m long cylindrical tube with a 7.62 cm inner

diameter coupled to a 0.75 m long tube with a 7.62 cm inside square cross-section.

The driven section contains a 7.62 cm inside square cross-section. The driver section

was lengthened from its original length of 1.22 m [32] as the rarefaction shock wave

can overtake and accelerate the incident shock wave in a driver section of insufficient

length [33]. The driver and driven sections of the shock tube were separated by a

thin-film polyester diaphragm which was then punctured by a pneumatically driven

steel rod with a broad arrowhead at the initiation of the experiment [5].

Driver Section Driven Section

1.97m 3.2m

.3999m
1.1111m

2.0890m

2.8001m

Pressure TransducersDiaphragm

MTC IR Temperature Detector

Flow Direction

Figure 2.2: Modified notional depiction of UNM shock tube [5, 32].

The driver section was filled with Nitrogen (N2) and pressurized to one of three
‡1 eV = 11604.5 K
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2.3. Mesh and Boundary Conditions

initial pressures, the driven section was filled with a mixture (one of two different

molar concentrations) of He and SF6 and also pressurized to one of three initial

pressures§. Table 2.1 lists the varied experimental parameters which were multiplied

through each columnar entry to create 18 unique experiments [5].

Table 2.1: Variable Experimental Parameters

PN2 [kPa] PHe/SF6
[kPa] xHe

1006 39.3 50%

1145 78.6 75%

1282 118

2.3 Mesh and Boundary Conditions

The UNM shock tube was modeled in CTH using a three-dimensional rectangular

domain. Only the inside of the shock tube was modeled, therefore, the cylindrical

portion of driver section was modeled as a rectangular tube with a 7.62 cm square

cross-section; the length of the tube was shortened to preserve the volume of the

driver section. The length ratio between a cylinder of radius r and a rectangular

parallelepiped of square cross-sectional length 2r, with both of length l, can be derived

as

Vrect = 4r2lrect, Vcyl = πr2lcyl, ⇒ lrect = π

4 lcyl (2.1)

The polyester diaphragm was not modeled, at time t = 0 the assumption was made

that the diaphragm has just been punctured and did not affect the subsequent flow

development [17]. Lastly, reflective (symmetry) boundary conditions were applied on

all boundaries of the domain [29].

§Due to elevation, 78.6 kPa is the average atmospheric pressure in Albuquerque, NM.
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2.4. Amagat and Dalton Mixing

2.4 Amagat and Dalton Mixing

For the generation of tabular Amagat or Dalton EOS, it is required that Tiger com-

putes equilibrium thermodynamic states over a prescribed range of either tempera-

tures and pressures or temperatures and volumes for Amagat or Dalton respectively,

and creates a pure gas tabular EOS for each gas in the mixture composition. The

mixing of the pure gas tables to create a mixed tabular EOS is then performed man-

ually through the use of Python scripts according to the desired EOS formulation.

The tabular EOS from Tiger consists of five state variables: temperature T , specific

volume ν, pressure P , specific energy e, and specific entropy s [28].

For Dalton, temperature and volume are assumed to be constant throughout the

mixture, while for Amagat the temperature and pressure are assumed to be constant

throughout the mixture; the values for the remaining mixture variables are obtained

by summation across the pure gas EOS tables. However, Tiger outputs several specific

variables

ω = Ω
m
, m = Mn (2.2)

(where ω is an arbitrary specific variable, Ω is the arbitrary variable, and m is the

mass) instead of the variables themselves, which prevents direct summation of the

variables. Note that the number of moles in the tabular EOS is normalized to one;

as such, the mass may also be given as

mi = Mixi, xi = ni
nm

(2.3)

where x is the mole fraction of the species and the subscripts i and m denote the

ith mass and total mixture mass respectively. The specific variables must first be
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2.4. Amagat and Dalton Mixing

weighted by mass fraction w as follows

wi = mi

mm

(2.4)

for summation to occur.

2.4.1 Dalton

For Dalton, the formulation of the variables may be given as

Tm = Ti, νm = wiνi, Pm =
∑
i

Pi(T, V ) (2.5a)

em =
∑
i

wiei(T, V ), sm =
∑
i

wisi(T, V ) (2.5b)

where the specific volume is still required to be weighted by mass fraction in order to

obtain the specific volume of the mixture despite not being summed.

Dalton Mixing Nuance

An important nuance to note is that during generation of the pure gas Dalton EOS

tables with Tiger, the prescribed volume range is given as a prescribed specific volume

range and thus the range needs to be scaled between the pure gas tables in order to

create tables of equivalent thermodynamic states. The scaling may be given as follows

νj = νi
mi

mj

(2.6)

where the subscripts i and j denote the chemical species i and j respectively.
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2.4. Amagat and Dalton Mixing

2.4.2 Amagat

For Amagat, the formulation of the variables may be given as

Tm = Ti, νm =
∑
i

wiνi(T, P ), Pm = Pi (2.7a)

em =
∑
i

wiei(T, P ), sm =
∑
i

wisi(T, P ) (2.7b)

Amagat Mixing Nuance

Another important nuance to note is that BCAT demands a constant specific volume

range across all the isotherms during the conversion to the SESAME EOS format.

Due to the specific volume range being calculated instead of prescribed for Amagat,

the specific volume ranges vary between the different isotherms. To remedy this

quandary, the global maximum and minimum specific volume values are calculated

and a new specific volume range — which is evenly spaced on a logarithmic scale (a

geometric progression) — is generated using:

νnew = geomspace (min(νold),max(νold), nP ) (2.8)

where geomspace is the Python function (in the Numpy module) which produces

the geometric progression, and n is the number of pressure discretizations. A new

pressure range must then be calculated for every isotherm, however, as pressure is the

independent variable and specific volume is the dependent variable — that is, specific

volume is a function of pressure — a power law curve fit of the form:

f(x) = c0x
c1 (2.9)

must obtain pressure as a function of the specific volume and then substitute the new

specific volume range to acquire the final pressure.
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2.4. Amagat and Dalton Mixing

For every isotherm, the following system of equations must be solved:


1 ln(ν1)
... ...

1 ln(νn)


ln(c0)

c1

 =


ln(P1)

...

ln(Pn)

 (2.10a)

ln(c0)

c1

 =


1 ln(ν1)
... ...

1 ln(νn)



−1 
ln(P1)

...

ln(Pn)

 (2.10b)

The system is overdetermined, that is, there is no unique solution as the number

of equations is greater than the number of unknowns. Thus, the matrix inverse

must be computed using a Moore-Penrose pseudo-inverse [34] using singular value

decomposition (SVD). The pseudo-inverse of A (denoted A+) is unique and contains

the least-squares solution. It can be shown [26] that if

Q1ΣQT
2 = A (2.11)

is the singular value decomposition of A, then

A+ = Q2Σ+QT
1 (2.12)

where Σ is a diagonal matrix containing the singular values of A, Σ+ is the diagonal

matrix containing the reciprocal singular values of A, and Q1, Q2 are orthogonal

matrices. Finally, the new pressure range may be given by

Pnew = exp(ln(c0))vc1
new (2.13a)

Pnew = c0v
c1
new (2.13b)

20



2.4. Amagat and Dalton Mixing

Figure 2.3 depicts the original dataset superimposed upon the interpolated dataset

for the bounding isotherms of the EOS.
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(a) Highest temperature isotherm.
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(b) Lowest temperature isotherm.

Figure 2.3: Power law interpolation of prescribed pressure.

To quantify the error introduced by the interpolation, both temperature and pres-
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2.5. Adiabatic Flame Calculations

sure, and temperature and specific volume were prescribed during the creation of the

JCZ3 EOS in Tiger. The resultant post-shock variables were visually indistinguish-

able.

2.5 Adiabatic Flame Calculations

Examination of the He/SF6 mixture at the initial experimental conditions with Tiger’s

adiabatic flame temperature calculations revealed that:

i. there was no dissociation of the SF6 into its constituents.

ii. the compressibility factor z of the mixture was essentially unity (z ≈ 1.02),

indicating a weak shock.

During the generation of the mixed EOS tables, Tiger failed to converge over

the thermodynamic state prescribed. The output from Tiger revealed that that the

EOS table contained several species other than SF6. To resolve the convergence

issue, Tiger was restricted to only contain pure SF6 as the adiabatic temperature

calculations showed there was no dissociation of the SF6.

2.6 Simulation Procedure

For this research, two different studies were performed. The first was a nominal

parameter study in which simulations were performed for the unique experimental

conditions. The second was a sensitivity study in which the initial conditions of the

simulation were independently varied via iLHS to assess the correlation between the

input and output variables.

For each study, DAKOTA generates the unique parameters for each simulation

in parallel. The variables are then passed to a collection of Python scripts which

perform the following steps for each simulation:
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2.6. Simulation Procedure

1. Generate the Tiger input deck and execute Tiger to create the tabular EOS(s).

2. IF Amagat or Dalton: Manually create mixed EOS.

3. Generate BCAT input deck and execute BCAT to convert EOS to SESAME

format.

4. Generate CTH input deck and execute CTH to initialize the shock tube simu-

lation.

where an “input deck” is a plain text file containing the instruction set for the software.

After the completion of all simulations, DAKOTA post-processes the output data

from CTH for each simulation. The post-processing utilizes another Python script

which plots desired variable time-histories but more importantly calculates a sin-

gle scalar value from each of the time-histories to represent each of the post-shock

variables of interest for that particular simulation. DAKOTA then collects all the

post-shock quantities and conveniently tabulates them in a text file against the ini-

tial input parameters which allows for further post-processing outside of DAKOTA

to visualize the global results.

2.6.1 Nominal Parameter Study

The experimental parameters in Table 2.1 were combined with the six EOS to cre-

ate Table 2.2. DAKOTA then performed a multidimensional parameter study by

multiplying through the columnar entries to create 108 unique simulations.
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2.6. Simulation Procedure

Table 2.2: Nominal Parameters

EOS PN2 [kPa] PHe/SF6
[kPa] xHe

Ideal 1006 39.3 50%

Amagat 1145 78.6 75%

Dalton 1282 118

BKW

JCZ3

EXP6

2.6.2 Sensitivity Study

For the sensitivity study, only the Amagat and Dalton EOS were of interest. DAKOTA

does not contain the ability to perform iLHS sampling on top of a multidimensional

parameter study. Therefore, two individual studies were performed — one for Amagat

and one for Dalton — as part of the overall sensitivity study. The five parameters to

be perturbed are the driver initial pressure and temperature, the driven initial pres-

sure and temperature, and the molar fraction of the Helium in the mixture. Table 2.3

contains the mean values of the parameters for each study. It was unrealistic due to

the computational cost to perform a sensitivity study for every unique experiment —

18 in total — therefore, to reduce the number of studies necessary, the mean values

were chosen from Table 2.1 in such a way to mathematically bound the problem.

That is, the Amagat EOS was pared with the maximum driver pressure, the mini-

mum driven pressure, and the lowest Helium molar fraction — paring the strongest

resultant shock against the heaviest mixture. The Dalton EOS was pared with the

minimum driver pressure, the maximum driven pressure, and the highest Helium

molar fraction — paring the weakest resultant shock with the lightest mixture.
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2.6. Simulation Procedure

Table 2.3: iLHS Perturbed Variables

Variable Symbol Amagat Dalton

N2 Initial Pressure χ1 1282 [kPa] 1006 [kPa]

He/SF6 Initial Pressure χ2 39.3 [kPa] 118 [kPa]

Helium Molar Fraction χ3 50% 75%

N2 Initial Temperature χ4 295 [K] 295 [K]

He/SF6 Initial Temperature χ5 295 [K] 295 [K]

Each variable was prescribed a Gaussian distribution; for simplicity, a normalized

Gaussian distribution — depicted in Figure 2.4 — was generated in DAKOTA with

µ = 1, σ = .03 yielding an uncertainty range of approximately ±10%. The resulting

samples were then multiplied by the variable’s respective mean before being passed

to the Python scripts.

1.091.061.031.000.970.940.91

Figure 2.4: Normalized Gaussian distribution, ≈ ±10% uncertainty range.

Gaussian distributions arise in many areas of physical phenomena, such as the

height and the Intelligent Quotient (IQ) of the population, and viral infection rates.

Due to this, it was expected that the uncertainty variables would follow suit and
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2.7. Post Processing

possess a Gaussian distribution.

2.7 Post Processing

Figures 2.5 to 2.7 depict the typical time histories of the post shock variables of

interest for each simulation. The time histories are collected from tracers in the same

locations as the experimental pressure transducers. A scalar value is calculated for

each of the variables of interest by taking the average of the maximum values from

all of the transducers.
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Figure 2.5: Typical velocity time history.
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Figure 2.6: Typical pressure time history.

0 1 2 3 4 5 6 7 8
Time [ms]

200

225

250

275

300

325

350

375

Te
m

pe
ra

tu
re

 [K
]

Shock Temperature
Transducer 1
Transducer 2
Transducer 3
Transducer 4

Figure 2.7: Typical temperature time history.
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2.8. Mesh/Grid Convergence

2.8 Mesh/Grid Convergence

Mesh convergence studies were not performed for the spatial mesh in CTH nor the

discretized EOS grid in the SESAME tables. The results from Bigelow’s convergence

studies were utilized instead [17]. Table 2.4 lists the T , P , and ν ranges and the

number of discretizations which yielded a relative error of less than 10−3 for the

tabular EOS.

Table 2.4: Tabular EOS Variable Ranges [17]

Variable Min Max N

T [K] 180 1500 224

P [atm] .0328 363.1 484

ν [cc/g] 5 6005 484

For the spatial mesh, Bigelow showed that for 3D the values listed in Table 2.5

yielded an error of less than 5% [17]. Due to the shock tube growing in length since

Bigelow’s research, the number of discretizations also grew and were adjusted slightly

to obtain as close to a 1:1:1 length ratio for the computational cells as possible.

Table 2.5: Spatial Mesh Discretization [17]

Variable Bigelow White

Nx 406 516

Ny 8 8

Nz 8 8

∆x [cm] 1.088 .9516

∆y [cm] .9525 .9525

∆z [cm] .9525 .9525
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Chapter 3

Results & Discussion

The beginning of knowledge is the discovery of something we do not understand.

— Frank Herbert

3.1 Nominal Parameter Study

The results from the DAKOTA multi-dimensional parameter study — three post-

shock quantities of interest: speed, temperature, and pressure — are compared against

experimental data with uncertainty bars (in most cases, the uncertainty bars do

not extend past the size of the marker) [5] and depicted in Figures 3.1 to 3.3. A

dimensionless pressure ratio defined as

Pr = PN2

PHe/SF6

(3.1)

allows for a more concise comparison between the post-shock properties and initial

conditions.
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3.1. Nominal Parameter Study
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Figure 3.1: Comparison of simulational post-shock velocity against experimental data
for the various mixing EOS and mixture ratios.
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(a) 50% Helium molar fraction.
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Figure 3.2: Comparison of simulational post-shock pressure against experimental data
for the various mixing EOS and mixture ratios.
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Figure 3.3: Comparison of simulational post-shock temperature against experimental
data for the various mixing EOS and mixture ratios.

The results from all the EOS are visually indistinguishable from one another,

which is to be expected as z is essentially unity — signifying a weak shock. The

overall data trends are matched nicely. However, in spite of the weak shock there

are large discrepancies between experiments and simulations. Similar results were
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3.2. Sensitivity Study

obtained from previous works [5, 17] with comparisons of experimental data against

both analytical and simulation results. The corroboration of the results across the

various works presents a strong assertion that the EOS fail to take into account the

“time scale . . . of the experiment associated with the shock passage” [5]. Kinetic

Molecular Theory (KMT) appears to provide an explanation as to the cause of the

discrepancies. An attempt to provide at least a qualitative explanation of the dis-

agreement resulted in the introduction of a parameter, which is based on the difference

in mean free path collision times of the species, describing the disparity in behavior

between the species at the microscopic scale [5].

3.2 Sensitivity Study

Both studies started with five samples, and subsequently doubled the number of

samples until ending with 640 samples for each study — resulting in 1280 total samples

for the entire sensitivity study. The distributions of the outputs were examined with

respect to the aforementioned metrics and are depicted in Figures 3.4 to 3.9. From

visual inspection it is evident that sufficient samples were considered to permit a

convergence assertion for all metrics.

The majority of the linear correlations presented in Figures 3.7 to 3.9 are intu-

itive: shock speed is directly proportional to all inputs with the exception of the

driven pressure, similarly the shock pressure is directly proportional to all inputs

with the exception of molar fraction and the mixture temperature (an increase of the

temperature yields a density increase).

Of great interest, however, is that the correction between the initial He/SF6 tem-

perature and the post-shock temperature is almost identically 1 for all sample sets.
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Figure 3.4: Mean QOI for all incremental sample sets.
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Figure 3.5: QOI standard deviation for all incremental sample sets.
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Figure 3.6: Infinity Norm & Mean Absolute Error for all incremental sample sets.
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Figure 3.7: PCC correlation between inputs and post-shock speed.
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Figure 3.8: PCC correlation between inputs and post-shock pressure.
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Figure 3.9: PCC correlation between inputs and post-shock temperature.
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Chapter 4

Conclusions &

Future Work

It is finished. — Jesus Christ

4.1 Conclusions

The main conclusion from comparison between experimental and analytical data is

that the ideal gas laws used to predict the post-shock properties of the gas mixtures

do not contain the necessary physics to account for the non-equilibrium effects of the

shock. The results in Figures 3.1 to 3.3 from the numerical simulations confirm that

there indeed is model discrepancy. An explanation using KMT has been proposed in

literature which correlates the disparity of the gases to the discrepancy in the post-

shock properties. Moreover, this discrepancy is too prominent to be accounted for

solely by using, for example, van der Waals equations for component gases instead of

ideal gas equations [5].

Incremental Latin Hypercube Sampling revealed that the model and equations of

state are most sensitive to the initial temperature of the mixture.

4.2 Future Work

As with any research project of respectable size, there is no end to the advancements

which could be made. This thesis could be expanded upon in a number of ways:

• Consider other mixture ratios.
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4.2. Future Work

• Study other highly disparate gaseous mixtures.

• Develop a correction parameter based on KMT and include it in the Amagat

and Dalton EOS.

• Additional experiments will be necessary to drive EOS development.

The list above is not all-inclusive, but merely serves to provide a future researcher a

few possible directions to pursue.
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Appendix A

Python Scripts

A.1 Driver

1 #!/usr/bin/env python3
2

3 import subprocess as sp
4 import os
5

6 import tiger
7 import bcat
8 import cth
9

10 {%
11 setfmt('%0.4e')
12 R = 8.314e7
13 mol_wgt_he_sf6 = (mol_frac_he*4.002602
14 + (1-mol_frac_he)*146.055)
15 density_he_sf6 = driven_pressure*mol_wgt_he_sf6/(R*295)
16 density_n2 = driver_pressure*28.0134/(R*295)
17 int_ratio = list(mol_frac_he.as_integer_ratio())
18 int_ratio[1] -= int_ratio[0]
19 end
20 %}
21

22

23 def run(pv_max, pv_min, pv_type, mol_frac_he, bcat_mixed, bcat_input, sesame,
24 driver_density, driver_pressure, driven_density, driven_pressure, title,
25 eosnum, t_max=1500, t_min=180, t_points=224, pv_points=484,
26 tiger_he=None, tiger_sf6=None, tiger_mixed=None, lib_he='lib, jczs2',
27 lib_sf6='lib, jczs2', lib_mixed='lib, jczs2', cho_he=None, cho_sf6=None,
28 cho_mixed=None, com_he=None, com_sf6=None, com_mixed=None, geos_he=None,
29 geos_sf6=None, geos_mixed=None, scale=False, bcat_he=None,
30 bcat_sf6=None, amagat=False, dalton=False, power_law=False, eshift=0,
31 cth_input='./cth.in', _3d=False, n2_temp=295, mix_temp=295):
32 """This puts all of the functions in tiger.py, bcat.py and cth.py together.
33 First, tiger is used to generate tables of thermodynamic states, either
34 two pure tables of Helium and SF6 which are then mixed according to
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35 Amagat or Dalton's law, or a single table which tiger mixed. Next the
36 mixed tables are fed into BCAT to create a Sesame table for CTH. Next a
37 CTH input deck is written.
38

39 Parameters
40 ----------
41 pv_max : float
42 The max pressure/volume of the isolines generated.
43 pv_min : float
44 The min pressure/volume of the isolines generated.
45 pv_type : str
46 String to denote what variable the pv values are.
47 Either 'v' for volume or 'P' for pressure.
48 mol_frac_he : float
49 The percentage of helium in the mixture.
50 bcat_mixed : str
51 File name of mixed table.
52 bcat_input : str
53 The file name of the bcat input deck.
54 sesame : str
55 The file name of the sesame table.
56 driver_density : float
57 The density of the driver gas.
58 driver_pressure : float
59 The pressure of the driver gas.
60 driven_density : float
61 The density of the driven mixture.
62 driven_pressure : float
63 The pressure of the driven mixture.
64 title : str
65 The title of the CTH run.
66 eosnum : int
67 The sesame eos number.
68 t_max : float
69 The max temperature of the isolines generated.
70 t_min : float
71 The min temperature of the isolines generated.
72 t_points : int
73 The number of isolines to generate.
74 pv_points : int
75 The number of pressure/volume points to generate.
76 tiger_he : str
77 The name of the helium tiger input deck to be written.
78 tiger_sf6 : str
79 The name of the sf6 tiger input deck to be written.
80 tiger_mixed : str
81 The name of the mixed tiger input deck to be written.
82 lib : str
83 The desired 'lib' command in tiger.
84 cho : str
85 The desired 'cho' command in tiger.
86 com : str
87 The desired 'com' command in tiger.
88 geos : str
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89 The desired 'geos' command in tiger.
90 scale : bool, optional
91 Flag to scale helium specific volumes. This is needed
92 for the Dalton law as Dalton must sum over volumes and
93 not specific volumes. Thus the helium volumes is scaled
94 by mass fraction from the sf6 specific volumes.
95 bcat_he : str
96 File name of pure helium table.
97 bcat_sf6 : str
98 File name of pure sf6 table.
99 dalton : bool

100 Flag to use dalton mixing laws.
101 amagat : bool
102 Flag to use amagat mixing laws.
103 power_law : bool
104 Flag to iterpolate genereate consistent specific
105 volume and interpolate new pressures. Only needed
106 when (T,P) points are specified in Tiger rather
107 than (v,T) points.
108 eshift : float
109 The density at the reference state (ambient temp).
110 cth_input : str
111 The cth input deck file name.
112 _3d : bool
113 Flag to specify 3D simulation.
114 n2_temp : real
115 Intitial temperature [K] of N2 in CTH.
116 mix_temp : real
117 Intitial temperature [K] of He_SF6 mixture in CTH.
118 """
119 def run_tiger(tiger_input, t_max, t_min, t_points, pv_max, pv_min,
120 pv_points, pv_type, mol_frac_he, com, cho, geos, lib,
121 bcat_input, scale):
122 tiger.write_tiger(tiger_input, t_max, t_min, t_points, pv_max,
123 pv_min, pv_points, pv_type, mol_frac_he, com,
124 cho, geos, lib, scale)
125 shcmd = sp.Popen('/home/cwhite3/bin/tiger',
126 stdin=open(tiger_input),
127 stdout=open('/dev/null', 'w'),
128 stderr=open(tiger_input + '.log', 'w'))
129 shcmd.wait()
130 os.rename('./tiger.plt', bcat_input)
131 if tiger_he is not None:
132 run_tiger(tiger_he, t_max, t_min, t_points, pv_max, pv_min, pv_points,
133 pv_type, mol_frac_he, com_he, cho_he, geos_he, lib_he,
134 bcat_he, scale)
135 run_tiger(tiger_sf6, t_max, t_min, t_points, pv_max, pv_min, pv_points,
136 pv_type, mol_frac_he, com_sf6, cho_sf6, geos_sf6, lib_sf6,
137 bcat_sf6, scale=False)
138 if tiger_he is None:
139 run_tiger(tiger_mixed, t_max, t_min, t_points, pv_max, pv_min,
140 pv_points, pv_type, mol_frac_he,
141 com_mixed, cho_mixed, geos_mixed, lib_mixed, bcat_mixed,
142 scale)
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143

144 dens = bcat.write_cheetah(bcat_mixed, mol_frac_he, pv_points, t_points,
145 bcat_he, bcat_sf6, dalton, amagat, power_law)
146 bcat.write_bcat(bcat_input, bcat_mixed, pv_points, t_points, eshift,
147 {{mol_wgt_he_sf6}}, 1.01325e-4, dens, eosnum, sesame)
148 shcmd = sp.Popen('bcat',
149 stdin=open(bcat_input),
150 stdout=open(bcat_input + '.log', 'w'))
151 shcmd.wait()
152 cth.write_cth(cth_input, sesame + '{}'.format(eosnum), title,
153 eosnum, driver_density, driver_pressure,
154 driven_density, driven_pressure, _3d, n2_temp, mix_temp)
155

156

157 if __name__ == '__main__':
158 if '{{gas_law}}' == 'Dalton':
159 run(6005, 5, 'v', {{mol_frac_he}}, './he_sf6_dalton.plt',
160 './bcat_dalton.i', 'dalton', {{density_n2}},
161 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
162 'Dalton EOS', 9000, tiger_he='./tiger_dalton_he.i',
163 tiger_sf6='./tiger_dalton_sf6.i', cho_sf6='cho, sf6, f',
164 com_he='com, helium, 1, mole', com_sf6='com, sf6, 1, mole',
165 scale=True, bcat_he='./he_dalton.plt', bcat_sf6='./sf6_dalton.plt',
166 dalton=True, _3d={{_3d}})
167 elif '{{gas_law}}' == 'Amagat':
168 run(363.1, .0328, 'P', {{mol_frac_he}}, './he_sf6_amagat.plt',
169 './bcat_amagat.i', 'amagat', {{density_n2}},
170 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
171 'Amagat EOS', 9001, tiger_he='./tiger_amagat_he.i',
172 tiger_sf6='./tiger_amagat_sf6.i', cho_sf6='cho, sf6, f',
173 com_he='com, helium, 1, mole', com_sf6='com, sf6, 1, mole',
174 bcat_he='./he_amagat.plt', bcat_sf6='./sf6_amagat.plt',
175 amagat=True, power_law=True, _3d={{_3d}})
176 elif '{{gas_law}}' == 'Ideal':
177 run(6005, 5, 'v', {{mol_frac_he}}, './ideal.plt',
178 './bcat_ideal.i', 'ideal', {{density_n2}},
179 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
180 'Ideal EOS', 9002, tiger_mixed='./tiger_ideal.i',
181 cho_mixed='cho, sf6, he, f', geos_mixed='geos, ideal',
182 com_mixed='com, helium, {:.0f}, sf6, {:.0f}, mole'
183 .format(*{{int_ratio}}), _3d={{_3d}})
184 elif '{{gas_law}}' == 'BKW':
185 run(6005, 5, 'v', {{mol_frac_he}}, './bkw.plt',
186 './bcat_bkw.i', 'bkw', {{density_n2}},
187 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
188 'BKW EOS', 9003, tiger_mixed='./tiger_bkw.i',
189 cho_mixed='cho, sf6, he, f', geos_mixed='geos, bkw',
190 com_mixed='com, helium, {:.0f}, sf6, {:.0f}, mole'
191 .format(*{{int_ratio}}), _3d={{_3d}})
192 elif '{{gas_law}}' == 'JCZ3':
193 run(6005, 5, 'v', {{mol_frac_he}}, './jcz3.plt',
194 './bcat_jcz3.i', 'jcz3', {{density_n2}},
195 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
196 'JCZ3 EOS', 9004, tiger_mixed='./tiger_jcz3.i',
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197 cho_mixed='cho, sf6, he, f', geos_mixed='geos, jcz3',
198 com_mixed='com, helium, {:.0f}, sf6, {:.0f}, mole'
199 .format(*{{int_ratio}}), _3d={{_3d}})
200 elif '{{gas_law}}' == 'EXP6':
201 run(6005, 5, 'v', {{mol_frac_he}}, './exp6.plt',
202 './bcat_exp6.i', 'exp6', {{density_n2}},
203 {{driver_pressure}}, {{density_he_sf6}}, {{driven_pressure}},
204 'EXP6 EOS', 9005, tiger_mixed='./tiger_exp6.i',
205 cho_mixed='cho, sf6, he, f', geos_mixed='geos, exp6',
206 com_mixed='com, helium, {:.0f}, sf6, {:.0f}, mole'
207 .format(*{{int_ratio}}), _3d={{_3d}})
208

A.2 Tiger

1 #!/usr/bin/env python3
2

3 import numpy as np
4

5

6 def write_tiger(file_name, t_max, t_min, t_points, pv_max, pv_min, pv_points,
7 pv_type, mol_frac_he, com, cho=None, geos=None, lib='lib jczs',
8 scale=False):
9 """Generates thermodynamic states for either a pure gas or a mixture using

10 (T,P) or (v, T) states. Writes the tiger input deck.
11

12 Parameters
13 ----------
14 file_name : str
15 The name of the input deck to be written.
16 t_max : float
17 The max temperature of the isolines generated.
18 t_min : float
19 The min temperature of the isolines generated.
20 t_points : int
21 The number of isolines to generate.
22 pv_max : float
23 The max pressure/volume of the isolines generated.
24 pv_min : float
25 The min pressure/volume of the isolines generated.
26 pv_points : int
27 The number of pressure/volume points to generate.
28 pv_type : str
29 String to denote what variable the pv values are.
30 Either 'v' for volume or 'P' for pressure.
31 mol_frac_he : float
32 The percentage of helium in the mixture.
33 com : str
34 The desired 'com' command in tiger.
35 cho : str
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36 The desired 'cho' command in tiger.
37 geos : str
38 The desired 'geos' command in tiger.
39 lib : str
40 The desired 'lib' command in tiger.
41 scale : bool, optional
42 Flag to scale helium specific volumes. This is needed
43 for the Dalton law as Dalton must sum over volumes and
44 not specific volumes. Thus the helium volumes is scaled
45 by mass from the sf6 specific volumes.
46 """
47 mol_mass_he = 4.002602
48 mol_mass_sf6 = 146.055
49 mass_he = mol_mass_he*mol_frac_he
50 mass_sf6 = mol_mass_sf6*(1 - mol_frac_he)
51 t = np.linspace(t_min, t_max, num=t_points, endpoint=True)[::-1]
52

53 if pv_type == 'v':
54 pv = np.asarray([pv_min, pv_max])
55 else:
56 pv = np.asarray([pv_max, pv_min])
57

58 if scale:
59 pv = pv*mass_sf6/mass_he
60 lines = []
61 for temp1, temp2 in zip(t[:-1:2], t[1::2]):
62 lines.append('iso, T, {:.4f}, {}, {}, {}, {}, log\n'
63 .format(temp1, pv_type, pv[0], pv_points-1, pv[1]))
64 lines.append('iso, T, {:.4f}, {}, {}, {}, {}, log\n'
65 .format(temp2, pv_type, pv[1], pv_points-1, pv[0]))
66 with open(file_name, 'w') as f:
67 f.write('{}\n'.format(lib))
68 if cho is not None:
69 f.write('{}\n'.format(cho))
70 f.write('{}\n'.format(com))
71 if geos is not None:
72 f.write('{}\n'.format(geos))
73 f.write('poi, T, 1000, P, 3000\n')
74 f.write('plt, T, V, P, E, S\n')
75 f.writelines(lines)
76 f.write('stop')

A.3 BCAT

1 #!/usr/bin/env python3
2

3 import numpy as np
4 import pandas as pd
5 from scipy.interpolate import griddata
6 import scipy as scp
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7 import datetime
8

9 import matplotlib.pyplot as plt
10 from matplotlib import cm
11 import matplotlib.ticker as mticker
12 from mpl_toolkits.mplot3d import Axes3D
13 plt.switch_backend('agg')
14

15

16 def write_cheetah(file_name_mixed, mol_frac_he, pv_points, t_points,
17 file_name_he=None, file_name_sf6=None, dalton=False,
18 amagat=False, power_law=False):
19 """Mixes TIGER tables according to different laws and writes the new
20 mixture to a table for BCAT. Also queries the material surface for
21 density at the reference state
22

23 Parameters
24 ----------
25 file_name_mixed : str
26 File name of mixed table.
27 mol_frac_he : float
28 The percentage of helium in the mixture.
29 pv_points : int
30 The number of pressure/volume points.
31 t_points : int
32 The number of temperature points.
33 file_name_he : str
34 File name of pure helium table.
35 file_name_sf6 : str
36 File name of pure sf6 table.
37 dalton : bool
38 Flag to use dalton mixing laws.
39 amagat : bool
40 Flag to use amagat mixing laws.
41 power_law : bool
42 Flag to iterpolate genereate consistent specific
43 volume and interpolate new pressures.
44

45 Returns
46 -------
47 dens : float
48 The density at reference state (ambient temp).
49 """
50 mol_mass_he = 4.002602
51 mol_mass_sf6 = 146.055
52 mass_he = mol_mass_he*mol_frac_he
53 mass_sf6 = mol_mass_sf6*(1 - mol_frac_he)
54 mass_frac_sf6 = mass_sf6/(mass_he + mass_sf6)
55 mass_frac_he = mass_he/(mass_he + mass_sf6)
56 if file_name_he is not None:
57 he = pd.read_table(file_name_he, delim_whitespace=True,
58 skiprows=2, names=['T', 'v', 'p', 'e', 's'])
59 if file_name_sf6 is not None:
60 sf6 = pd.read_table(file_name_sf6, delim_whitespace=True,
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61 skiprows=2, names=['T', 'v', 'p', 'e', 's'])
62 if file_name_he is None and file_name_sf6 is None:
63 data = pd.read_table(file_name_mixed, delim_whitespace=True,
64 skiprows=2, names=['T', 'v', 'p', 'e', 's'])
65 if dalton:
66 data = pd.DataFrame()
67 data['T'] = he['T']
68 data['v'] = he['v']*mass_frac_he
69 data['p'] = he['p'] + sf6['p']
70 data['e'] = he['e']*mass_frac_he + sf6['e']*mass_frac_sf6
71 data['s'] = he['s']*mass_frac_he + sf6['s']*mass_frac_sf6
72

73 if amagat:
74 data = pd.DataFrame()
75 data['T'] = he['T']
76 data['v'] = he['v']*mass_frac_he + sf6['v']*mass_frac_sf6
77 data['p'] = he['p']
78 data['e'] = he['e']*mass_frac_he + sf6['e']*mass_frac_sf6
79 data['s'] = he['s']*mass_frac_he + sf6['s']*mass_frac_sf6
80

81 create_plots('./surface.pdf', pv_points, t_points, data)
82

83 if power_law:
84 data['v'], data['p'] = power_law_interp(data['v'], data['p'], data['T'],
85 pv_points, t_points,
86 xlabel='Specific Volume',
87 ylabel='Pressure',
88 )
89 with open(file_name_mixed, 'w') as f:
90 f.write('variables = T_K v_cc/g p_atm e_cal/g s_cal/(g-k)\n')
91 f.writelines([' {:.3e} {:.3e} {:.3e} {:.3e} {:.3e}\n'
92 .format(*data.values[i, :])
93 for i in range(len(data.values[:,0]))])
94 v = griddata((data['T'], data['p']), data['v'], (298, 1), method='linear')
95 return 1/v
96

97

98 def power_law_interp(x_old, y_old, t, x_points, t_points, linear=False,
99 plot=False, xlabel='x', ylabel='y'):

100 """Power law interpolation function. BCAT expects the volumes to be
101 constant but in the case of Amagat the volumes are calculated and
102 not specified. Thus the volumes values are not equal across all the
103 isotherms. This is used to create a constant discretization of the
104 x array and then generates the respective y array via interpolation.
105

106 Parameters
107 ----------
108 x_old : 1D Pandas DataFrame
109 Values to be discretized consistently.
110 y_old : 1D Pandas DataFrame
111 Y values matching the x_old input.
112 t : 1D Pandas DataFrame
113 Temperatures array.
114 x_points : int
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115 Number of x points.
116 t_points : int
117 Number of isotherms.
118 linear : bool, optional
119 Flag to discretize x values in a linear or logrithmic fashion.
120 plot : bool, optional
121 Flag to generate plots of the old vs. new values for the
122 isotherms.
123 xlabel : str, optional
124 Label of the x-axis for the plot command.
125 ylabel : str, optional
126 Label of the y-axis for the plot command.
127

128 Returns
129 -------
130 x : 1D Pandas DataFrame
131 Newly discretized x values.
132 y : 1D Pandas DataFrame
133 Interpolated y values.
134 """
135 x_max = np.max(x_old)
136 x_min = np.min(x_old)
137 x = np.zeros((x_points, t_points))
138 if linear:
139 x[:, 0] = np.linspace(x_min, x_max, x_points, endpoint=True)
140 else:
141 x[:, 0] = np.geomspace(x_min, x_max, x_points, endpoint=True)
142 for i in range(t_points)[::2]:
143 x[:, i] = x[:, 0].copy()
144 x[:, i+1] = x[::-1, i].copy()
145 x_old = np.asarray(x_old).reshape((x_points, t_points), order='F')
146 y = np.asarray(y_old).reshape((x_points, t_points), order='F')
147 y_old = y.copy()
148 b = np.ones((x_points, 2))
149 for i in range(t_points):
150 b[:, -1] = np.log(x_old[:, i])
151 coefficients = np.linalg.pinv(b)@np.log(y[:, i])
152 y[:, i] = np.exp(coefficients[0])*x[:, i]**coefficients[-1]
153 if plot:
154 plt.figure()
155 plt.plot(x[:, i], y[:, i], label="New", marker='o', linestyle='None',
156 markerfacecolor='none')
157 plt.plot(x_old[:, i], y_old[:, i], label="Old", marker='o',
158 linestyle='None', markerfacecolor='none')
159 plt.xscale('log')
160 plt.yscale('log')
161 plt.xlabel(xlabel)
162 plt.ylabel(ylabel)
163 plt.legend()
164 plt.title('T = {}'.format(t[i*x_points+1]))
165 plt.savefig('figs/interp{}.pdf'.format(i))
166 plt.close('all')
167 x = x.reshape(x_points*t_points, order='F')
168 y = y.reshape(x_points*t_points, order='F')
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169 return x, y
170

171

172 def create_plots(surface_plt, pv_points, t_points, df):
173 """Creates various plots of material tables.
174

175 Parameters
176 ----------
177 surface_plt : str
178 Name of the surface plot.
179 pv_points : int
180 The number of pressure/volume points.
181 t_points : int
182 The number of isolines.
183 df : Pandas DataFrame
184 Dataframe of a mixed he_sf6 table.
185 """
186 def log_tick(val, pos=None):
187 """Custom function for FuncFormatter which creates log tick labels
188 on a 3D plot. Log scale on 3D plots in python have been broken
189 since 2011. This is a simple work around.
190 """
191 return r'$10ˆ{' + '{:.0f}'.format(val) + '}$'
192

193 T = np.asarray(df['T']).reshape((pv_points, t_points), order='F')
194 p = np.asarray(df['p']).reshape((pv_points, t_points), order='F')
195 v = np.asarray(df['v']).reshape((pv_points, t_points), order='F')
196

197 fig = plt.figure()
198 ax = fig.gca(projection='3d')
199 ax.plot_surface(np.log10(v), p, T)
200 ax.xaxis.set_major_formatter(mticker.FuncFormatter(log_tick))
201 ax.set_xlabel('Density (g/cc)')
202 ax.set_ylabel('Pressure (Pa)')
203 ax.set_zlabel('Temperature (K)')
204 plt.savefig(surface_plt)
205 plt.close()
206

207

208

209 def write_bcat(file_name, tiger_table, pv_points, t_points, eshift, fw, pres,
210 dens, eosnum, file_name_sesame):
211 """Write the bcat input deck.
212

213 Parameters
214 ----------
215 file_name : str
216 The file name of the bcat input deck.
217 tiger_table : str
218 The file name of the tiger plt table.
219 pv_points : int
220 The number of pressure/volume points.
221 t_points : int
222 The number of isolines.
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223 eshift : float
224 The energy shift.
225 fw : int
226 The formula weight.
227 dens : float
228 The density at the reference state (ambient temp).
229 eosnum : int
230 The sesame material number.
231 file_name_sesame : str
232 The file name of the sesame table.
233 """
234 with open(file_name, 'w') as f:
235 f.writelines(['\n',
236 'mod use\n',
237 '{}\n'.format(tiger_table),
238 '{}, {}, {}\n'.format(pv_points, t_points, eshift),
239 'slib use\n',
240 '201\n',
241 '36, {:.3f}, {:.4e}, {:d}, {:.4e}\n'
242 .format(fw, pres, 298, dens),
243 '301\n',
244 'no\n',
245 '\n',
246 '{}, {}, {}, {}\n'
247 .format(eosnum, datetime.date.today().strftime("%m%d%y"),
248 file_name_sesame + str(eosnum), 'trash'),
249 'quit'])

A.4 CTH

1 import numpy as np
2

3 def write_cth(file_name, file_name_sesame, title, eosnum, driver_density,
4 driver_pressure, driven_density, driven_pressure, _3d,
5 n2_temp, mix_temp):
6 """Writes the CTH input deck.
7

8 Parameters
9 ----------

10 file_name : str
11 The cth input deck file name.
12 file_name_sesame : str
13 The file name of the sesame table.
14 title : str
15 The title of the CTH run.
16 eosnum : int
17 The sesame eos number.
18 driver_density : float
19 The density of the driver gas.
20 driver_pressure : float
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21 The pressure of the driver gas.
22 driven_density : float
23 The density of the driven mixture.
24 driven_pressure : float
25 The pressure of the driven mixture.
26 _3d : bool
27 Flag to specify 3D simulation.
28 n2_temp : real
29 Intitial temperature [K] of N2 in CTH.
30 mix_temp : real
31 Intitial temperature [K] of He_SF6 mixture in CTH.
32 """
33 with open(file_name, 'w') as f:
34 f.writelines(['*eor* cthin\n',
35 '{}\n\n'.format(title)])
36 f.writelines(['control\n',
37 'mmp3\n',
38 'matcs = 1\n',
39 '\tprint\n',
40 'endcontrol\n\n'])
41 f.writelines(['mesh\n'])
42 if _3d:
43 f.writelines(['\tgeometry = 3dr\n'])
44 else:
45 f.writelines(['\tgeometry = 2dr\n'])
46 f.writelines(['\t\tx0 = -171.0\n',
47 '\t\t\tx1 n=516 w=491.0 r=1.0\n',
48 '\t\tendx\n',
49 '\t\ty0 = 0.0\n',
50 '\t\t\ty1 n=8 w=7.62 r=1.0\n',
51 '\t\tendy\n'])
52 if _3d:
53 f.writelines(['\t\tz0 = 0.0\n',
54 '\t\t\tz1 n=8 w=7.62 r=1.0\n',
55 '\t\tendz\n'])
56 f.writelines(['endm\n\n'])
57 f.writelines(['eos ses=500000\n',
58 '\tmat1 ses user eos={} feos=\'{}\'\n'
59 .format(eosnum, file_name_sesame),
60 '\tmat2 idg n2\n',
61 'endeos\n\n'])
62 f.writelines(['diatom\n',
63 '\tpackage \'driver\'\n',
64 '\t\tmaterial 2\n',
65 '\t\tpressure {:.5e}\n'.format(driver_pressure),
66 '\t\ttemperature {:.5e}\n'.format(n2_temp/11604.5),
67 '\t\tinsert box\n'])
68 if _3d:
69 f.writelines(['\t\t\tp1 = -171, 0, 0\n',
70 '\t\t\tp2 = 0, 7.62, 7.62\n'])
71 else:
72 f.writelines(['\t\t\tp1 = -171, 0\n',
73 '\t\t\tp2 = 0, 7.62\n'])
74 f.writelines(['\t\tendi\n',
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75 '\tendp\n',
76 '\tpackage \'driven\'\n',
77 '\t\tmaterial 1\n',
78 '\t\tpressure {:.5e}\n'.format(driven_pressure),
79 '\t\ttemperature {:.5e}\n'.format(mix_temp/11604.5),
80 '\t\tinsert box\n'])
81 if _3d:
82 f.writelines(['\t\t\tp1 = 0, 0, 0\n',
83 '\t\t\tp2 = 320, 7.62, 7.62\n'])
84 else:
85 f.writelines(['\t\t\tp1 = 0, 0\n',
86 '\t\t\tp2 = 320, 7.62\n'])
87 f.writelines(['\t\tendi\n',
88 '\tendp\n',
89 'enddiatom\n\n'])
90 f.writelines(['epdata\n',
91 'ende\n\n'])
92 if _3d:
93 f.writelines(['tracer\n',
94 '\tadd -022.00, 3.81, 3.81 fixed=xyz\n',
95 '\tadd 039.985, 7.62, 3.81 fixed=xyz\n',
96 '\tadd 111.105, 7.62, 3.81 fixed=xyz\n',
97 '\tadd 208.895, 7.62, 3.81 fixed=xyz\n',
98 '\tadd 280.015, 7.62, 3.81 fixed=xyz\n',
99 '\tadd 039.985, 3.81, 3.81 fixed=xyz\n',

100 '\tadd 111.105, 3.81, 3.81 fixed=xyz\n',
101 '\tadd 208.895, 3.81, 3.81 fixed=xyz\n',
102 '\tadd 280.015, 3.81, 3.81 fixed=xyz\n',
103 '\tadd 000.000, 7.62, 3.81\n',
104 '\tadd 000.000, 3.81, 3.81\n',
105 '\tadd 320.000, 3.81, 3.81\n',
106 'endt\n\n'])
107 else:
108 f.writelines(['tracer\n',
109 '\tadd -022.00, 3.81 fixed=xy\n',
110 '\tadd 039.985, 7.62 fixed=xy\n',
111 '\tadd 111.105, 7.62 fixed=xy\n',
112 '\tadd 208.895, 7.62 fixed=xy\n',
113 '\tadd 280.015, 7.62 fixed=xy\n',
114 '\tadd 039.985, 3.81 fixed=xy\n',
115 '\tadd 111.105, 3.81 fixed=xy\n',
116 '\tadd 208.895, 3.81 fixed=xy\n',
117 '\tadd 280.015, 3.81 fixed=xy\n',
118 '\tadd 000.000, 7.62\n',
119 '\tadd 000.000, 3.81\n',
120 '\tadd 320.000, 3.81\n',
121 'endt\n\n'])
122 f.writelines(['convct\n',
123 '\tinterface=smyra\n',
124 'endc\n\n'])
125 f.writelines(['edit\n',
126 '\tshortc\n',
127 '\t\tcy 0 dc 100\n',
128 '\tends\n',
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129 'ende\n\n'])
130 f.writelines(['boundary\n',
131 '\tbhydro\n',
132 '\t\tbxb=0 bxt=0\n',
133 '\t\tbyb=0 byt=0\n'])
134 if _3d:
135 f.writelines(['\t\tbzb=0 bzt=0\n'])
136 f.writelines(['\tendh\n',
137 'endb\n\n'])
138 f.writelines(['mindt\n',
139 '\ttime 0 dtmin 1e-9\n',
140 'endm\n\n'])
141 f.writelines(['spy\n',
142 '\tSave("M,VOLM,VX,VY,VMAG,P,PM,T,TM,DENS,DENSM,CS,CSM");',
143 '\n',
144 '\tSaveTime(0.0,5e-5);\n',
145 '\tPlotTime(0.0,5e-5);\n',
146 '\n',
147 '\tImageFormatHD();\n',
148 '\n',
149 '\tdefine main(){\n',
150 '\t\tpprintf(" PLOT: Cycle=%d, Time=%e\\n",CYCLE,TIME);',
151 '\n',
152 '\t\tXLimits(-171,320);\n',
153 '\t\tYLimits(0,7.62);\n'])
154 if _3d:
155 f.writelines(['\t\tZLimits(0,7.62);\n'])
156 if _3d:
157 f.writelines(['\t\tHotMap1;\n',
158 '\n',
159 '\t\tImage("figs/Pressure");\n',
160 '\t\t\tWindow(0,0,1,1);\n',
161 '\t\t\tColorMapRange(1e5,2e7,LOG_MAP);\n',
162 '\t\t\tLabel(sprintf("Pressure at %0.2e s.",TIME));',
163 '\n',
164 '\t\t\tPaint3DMats("P");\n',
165 '\t\t\tDrawColorMap("(dyn/cmˆ2ˆ)",.15,.3,.25,.8);\n',
166 '\t\tEndImage;\n',
167 '\n',
168 '\t\tImage("figs/Velocity");\n',
169 '\t\t\tWindow(0,0,1,1);\n',
170 '\t\t\tColorMapRange(1e0,1e6,LOG_MAP);\n',
171 '\t\t\tLabel(sprintf("Velocity at %0.2e s.",TIME));',
172 '\n',
173 '\t\t\tPaint3DMats("VMAG");\n',
174 '\t\t\tDrawColorMap("(cm/s)",.15,.3,.25,.8);\n',
175 '\t\tEndImage;\n',
176 '\n',
177 '\t\tImage("figs/Temperature");\n',
178 '\t\t\tWindow(0,0,1,1);\n',
179 '\t\t\tColorMapRange(0,.05);\n',
180 '\t\t\tLabel(sprintf("Temperature at %0.2e s.",TIME))'
181 + ';\n',
182 '\t\t\tPaint3DMats("T");\n',
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183 '\t\t\tDrawColorMap("(eV)",.15,.3,.25,.8);\n',
184 '\t\tEndImage;\n',
185 '\n',
186 '\t\tImage("figs/Density");\n',
187 '\t\t\tWindow(0,0,1,1);\n',
188 '\t\t\tColorMapRange(0,1e-2);\n',
189 '\t\t\tLabel(sprintf("Density at %0.2e s.",TIME));\n',
190 '\t\t\tPaint3DMats("DENS");\n',
191 '\t\t\tDrawColorMap("(g/cc)",.15,.3,.25,.8);\n',
192 '\t\tEndImage;\n',
193 '\n',
194 '\t\tImage("figs/Mats");\n',
195 '\t\t\tWindow(0,0,1,1);\n',
196 '\t\t\tLabel(sprintf("Mats at %0.2e s.",TIME));\n',
197 '\t\t\tMatColors(GREEN,BLUE);\n',
198 '\t\t\tPlot3DMats;\n',
199 '\t\tEndImage;\n',
200 '\t}\n'])
201 else:
202 f.writelines(['\t\tHotMap1;\n',
203 '\n',
204 '\t\tImage("figs/Pressure");\n',
205 '\t\t\tWindow(0,0,1,1);\n',
206 '\t\t\tColorMapRange(1e5,2e7,LOG_MAP);\n',
207 '\t\t\tLabel(sprintf("Pressure at %0.2e s.",TIME));',
208 '\n',
209 '\t\t\tPlot2D("P");\n',
210 '\t\t\tDraw2DMatContour;\n',
211 '\t\t\tDraw2DTracers;\n',
212 '\t\t\tDrawColorMap("(dyn/cmˆ2ˆ)",.15,.3,.25,.8);\n',
213 '\t\tEndImage;\n',
214 '\n',
215 '\t\tImage("figs/Velocity");\n',
216 '\t\t\tWindow(0,0,1,1);\n',
217 '\t\t\tColorMapRange(1e0,1e6,LOG_MAP);\n',
218 '\t\t\tLabel(sprintf("Velocity at %0.2e s.",TIME));',
219 '\n',
220 '\t\t\tPlot2D("VMAG");\n',
221 '\t\t\tDraw2DMatContour;\n',
222 '\t\t\tDraw2DTracers;\n',
223 '\t\t\tDrawColorMap("(cm/s)",.15,.3,.25,.8);\n',
224 '\t\tEndImage;\n',
225 '\n',
226 '\t\tImage("figs/Temperature");\n',
227 '\t\t\tWindow(0,0,1,1);\n',
228 '\t\t\tColorMapRange(0,.05);\n',
229 '\t\t\tLabel(sprintf("Temperature at %0.2e s.",TIME))'
230 + ';\n',
231 '\t\t\tPlot2D("T");\n',
232 '\t\t\tDraw2DMatContour;\n',
233 '\t\t\tDraw2DTracers;\n',
234 '\t\t\tDrawColorMap("(eV)",.15,.3,.25,.8);\n',
235 '\t\tEndImage;\n',
236 '\n',
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237 '\t\tImage("figs/Density");\n',
238 '\t\t\tWindow(0,0,1,1);\n',
239 '\t\t\tColorMapRange(0,1e-2);\n',
240 '\t\t\tLabel(sprintf("Density at %0.2e s.",TIME));\n',
241 '\t\t\tPlot2D("DENS");\n',
242 '\t\t\tDraw2DMatContour;\n',
243 '\t\t\tDraw2DTracers;\n',
244 '\t\t\tDrawColorMap("(g/cc)",.15,.3,.25,.8);\n',
245 '\t\tEndImage;\n',
246 '\n',
247 '\t\tImage("figs/Mats");\n',
248 '\t\t\tWindow(0,0,1,1);\n',
249 '\t\t\tLabel(sprintf("Mats at %0.2e s.",TIME));\n',
250 '\t\t\tMatColors(GREEN,BLUE);\n',
251 '\t\t\tPlot2DMats;\n',
252 '\t\t\tDraw2DTracers;\n',
253 '\t\tEndImage;\n',
254 '\t}\n'])
255 f.writelines(['\n',
256 '\tSaveHis("GLOBAL,VOLM,M,P,PM,T,TM,DENS,DENSM,VX,VY,'
257 + 'VMAG,CVMAG,MAT_GLOBAL,CS,CSM");\n',
258 '\tSaveTracer(ALL);\n',
259 '\tStopTracer("P",12,{:.5e}'.format(driver_pressure*.5),
260 ',"CEIL",1);\n'
261 '\tHisTime(0,1e-6);\n',
262 'endspy\n\n'])
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[6] Y. A. Çengel and M. A. Boles. Thermodynamics: An Engineering Approach.
6th ed. McGraw-Hill, 2008, pp. 137–144, 701–708. isbn: 978-0071257718.

[7] K. W. Woo and S. I. Yeo. “Dalton’s Law vs. Amagat’s Law for the Mixture
of Real Gases”. In: SNU Journal of Education Research 5 (1995), pp. 127–134.
issn: 1225-5335. url: http://hdl.handle.net/10371/72458.

[8] M. L. Hobbs and M. R. Baer. “Calibrating the BKW-EOS with a large prod-
uct species data base and measured C-J properties”. In: Proceedings - Tenth
International Detonation Symposium. Boston, MA, July 1992. SAND92-1931C.

[9] R. D. Cowan and W. Fickett. “Calculation of the Detonation Properties of Solid
Explosives with the Kistiakowsky-Wilson Equation of State”. In: The Journal
of Chemical Physics 24.5 (1956), pp. 932–939. doi: 10.1063/1.1742718.

[10] M. Cowperthwaite and W. H. Zwisler. “The JCZ Equations of State for Detona-
tion Products and Their Incorporation into the TIGER Code”. In: Proceedings
- Sixth Symposium (International) on Detonation. Vol. 221. ACR. Coronado,
CA: Office of Naval Research, June 1976, pp. 162–172.

59

https://doi.org/10.1063/1.440106
https://doi.org/10.1007/BF03344910
https://doi.org/10.1002/ijch.199600044
https://doi.org/10.1126/sciadv.aax4749
http://hdl.handle.net/10371/72458
https://doi.org/10.1063/1.1742718


REFERENCES

[11] M. L. Hobbs, R. G. Schmitt, and H. K. Moffat. “JCZS3 — An Improved
Database for EOS Calculations”. In: Proposed for Proceedings - 16th Interna-
tional Detonation Symposium. Cambridge, MD, July 2018. SAND2018-6389C.

[12] B. C. McGee, M. L. Hobbs, and M. R. Baer. Exponential 6 parameterization
for the JCZ3-EOS. Sandia Technical Report SAND98-1191. Sandia National
Laboratories, July 1998. doi: 10.2172/639774.

[13] M. R. Baer, M. L. Hobbs, and B. C. McGee. “JCZS: An Intermolecular Potential
Database for Performing Accurate Detonation and Expansion Calculations”. In:
Propellants, Explosives, Pyrotechnics 24 (1999), pp. 269–279. SAND98-2452J.

[14] L. E. Fried, W. M. Howard, and P. C. Souers. “EXP6: A New Equation of State
Library for High Pressure Thermochemistry”. In: Proceedings - 12th Interna-
tional Detonation Symposium. San Diego, CA, Aug. 2002, pp. 567–575.

[15] I. G. Currie. Fundamental Mechanics of Fluids. 4th ed. CRC Press, 2013. isbn:
978-1439874608.

[16] J. M. McGlaun, S. L. Thompson, and M. G. Elrick. “CTH: A Three-Dimensional
Shock Wave Physics Code”. In: International Journal of Impact Engineering 10
(1990), pp. 351–360. doi: 10.1016/0734-743X(90)90071-3.

[17] J. M. Bigelow. “A Thermodynamic Study of Binary Real Gas Mixtures Under-
going Normal Shocks”. Master’s Thesis. The University of New Mexico, 2017.
url: https://digitalrepository.unm.edu/me_etds/168.

[18] A. Saltelli et al. Global Sensitivity Analysis. Wiley, 2008. isbn: 978-0470059975.

[19] J. Helton and F. Davis. “Latin hypercube sampling and the propagation of un-
certainty in analyses of complex systems”. In: Reliability Engineering & System
Safety 81.1 (2003), pp. 23–69. doi: 10.1016/S0951-8320(03)00058-9.

[20] B. M. Adams et al. Dakota, A Multilevel Parallel Object-Oriented Framework
for Design Optimization, Parameter Estimation, Uncertainty Quantification,
and Sensitivity Analysis: Version 6.0 User’s Manual. Sandia Technical Report
SAND2014-4633. Sandia National Laboratories, July 2014. Updated May 2019
(Version 6.10).

[21] G. Wyss and K. Jorgensen. A user’s guide to LHS: Sandia’s Latin Hypercube
Sampling Software. Sandia Technical Report SAND-98-0210. Sandia National
Laboratories, Feb. 1998. doi: 10.2172/573301.

[22] B. Tang. “Orthogonal Array-Based Latin Hypercubes”. In: Journal of the Amer-
ican Statistical Association 88.424 (1993), pp. 1392–1397. doi: 10.2307/2291282.

[23] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from

60

https://doi.org/10.2172/639774
https://doi.org/10.1016/0734-743X(90)90071-3
https://digitalrepository.unm.edu/me_etds/168
https://doi.org/10.1016/S0951-8320(03)00058-9
https://doi.org/10.2172/573301
https://doi.org/10.2307/2291282


REFERENCES

a Computer Code”. In: Technometrics 21.2 (1979), pp. 239–245. doi: 10.2307/
1268522.

[24] A. J. Wheeler and A. R. Ganji. Introduction to Engineering Experimentation.
3rd ed. Pearson, 2010. isbn: 978-0131742765.

[25] D. C. Montgomery, G. C. Runger, and N. F. Hubele. Engineering Statistics.
3rd ed. Wiley, 2006. isbn: 978-0471742227.

[26] S. J. Leon. Linear Algebra with Applications. 9th ed. Pearson, 2015. isbn: 978-
0321962218.

[27] C. J. Willmott and K. Matsuura. “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance”. In: Climate Research 30.1 (2005), pp. 79–82. doi: 10.3354/
cr030079.

[28] M. Cowperthwaite and W. H. Zwisler. TIGER Computer Program Documenta-
tion. Stanford Research Institute, Mar. 1974.

[29] M. K. Wong. CTH User’s Manual. Version 12.1. Sandia National Laboratories,
Nov. 2019.

[30] G. I. Kerley. BCAT User’s Manual and Input Instructions. Version 1.30. Sandia
National Laboratories, Mar. 2015.

[31] S. Lyon and J. Johnson. SESAME: The Los Alamos National Laboratory Equa-
tion of State Database. LANL Technical Report LA-UR-92-3407. Los Alamos
National Laboratory, 1992.

[32] J. Bigelow et al. “Mixing-Model Sensitivity to Input Parameter Variation”. In:
vol. 115. WIT Transactions on Engineering Sciences. June 2017, pp. 85–96. doi:
10.2495/MPF170101.

[33] P. J. Wayne. “Characterization of single- and multi-phase shock-accelerated
flows”. Ph. D. Dissertation. The University of New Mexico, 2019. url: https:
//digitalrepository.unm.edu/me_etds/170.

[34] R. Penrose. “A generalized inverse for matrices”. In: Mathematical Proceedings
of the Cambridge Philosophical Society 51.3 (1955), pp. 406–413. doi: 10.1017/
S0305004100030401.

61

https://doi.org/10.2307/1268522
https://doi.org/10.2307/1268522
https://doi.org/10.3354/cr030079
https://doi.org/10.3354/cr030079
https://doi.org/10.2495/MPF170101
https://digitalrepository.unm.edu/me_etds/170
https://digitalrepository.unm.edu/me_etds/170
https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1017/S0305004100030401

	Qualitative Investigation of Gaseous Hydrodynamic Mixing Model Efficacy and Associated Sensitivity
	Recommended Citation

	List of Figures
	List of Tables
	Nomenclature
	Introduction & Theory
	Equations of State
	Ideal Gas
	Amagat & Dalton
	BKW
	JCZ3
	EXP6

	Shock Waves
	Adiabatic Flame Temperature
	Sensitivity Analysis
	Incremental Latin Hypercube Sampling
	Gaussian Distribution
	Convergence Metrics


	Methodology
	Software
	DAKOTA
	Tiger
	CTH & BCAT

	Experimental Setup
	Mesh and Boundary Conditions
	Amagat and Dalton Mixing
	Dalton
	Amagat

	Adiabatic Flame Calculations
	Simulation Procedure
	Nominal Parameter Study
	Sensitivity Study

	Post Processing
	Mesh/Grid Convergence

	Results & Discussion
	Nominal Parameter Study
	Sensitivity Study

	Conclusions & Future Work
	Conclusions
	Future Work

	Appendices
	Appendix Python Scripts
	Driver
	Tiger
	BCAT
	CTH

	References

