University of New Mexico

UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

Spring 5-6-1975

Estimation of Growth Curves by Least Square Splines

Dorothy Rybaczyk Pathak
University of New Mexico - Main Campus

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

b Part of the Applied Mathematics Commons, Mathematics Commons, Medicine and Health Sciences

Commons, and the Statistics and Probability Commons

Recommended Citation

Pathak, Dorothy Rybaczyk. "Estimation of Growth Curves by Least Square Splines." (1975).
https://digitalrepository.unm.edu/math_etds/159

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM
Digital Repository. It has been accepted for inclusion in Mathematics & Statistics ETDs by an authorized
administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.


https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/159?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

THE UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NEW MEXICO 87106

Poricy oN Use orF THESES AND DISSERTATIONS

Unpublished theses and dissertations accepted for master's and doctor's
degrees and deposited in the University of New Mexico Library are open to
the public for inspection and reference work. They are to be used only with
due regard to the rights of the authors. The work of other authors should
always be given full credit. Avoid quoting in amounts, over and beyond
scholarly needs, such as might impair or destroy the property rights and
financial benefits of another author.

To afford reasonable safeguards to authors, and consistent with the above
principles, anyone quoting from theses and dissertations must observe the
following conditions:

1. Direct quotations during the first two years after completion may be
made only with the written permission of the author.

. After a lapse of two years, theses and dissertations may be ‘quoted
without specific prior permission in works of original scholarship
provided appropriate credit is given in the case of each quotation.

. Quotations that are complete units in themselves (e.g., complete
chapters or sections) in whatever form they may be reproduced and
quotations of whatever length presented as primary material for their
own sake (as in anthologies or books of readings) ALWAYS require
consent of the authors.

4. The quoting author is responsible for determining “fair use” of mate-
rial he uses.

This thesis /dissertation by _Dorothy Rybaczyk Pathak _ has been
used by the following persons whose signatures attest their acceptance of
the above conditions. (A library which borrows this thesis/dissertation for
use by its patrons is expected to secure the signature of each user.)

NAME AND ADDRESS DATE

8/1/72--500




This dissertation, directed and approved by the candidate’s
committee, has been accepted by the Graduate Committee of The
University of New Mexico in partial fulfillment of the require-
ments for the degree of

DOCTOR OF PHILOSOPHY

ESTIMATION OF GROWTH CURVES BY LEAST SQUARE SPLINES

Title

Dorothy Rybaczyk Pathak

Cundidate

Department of Mathemstics and Statistics

e T
M,‘!y' gf' (1725

Moo ) D
M 7 i

KT@J!Zl Threta
Cj—@”\iz\ apru&w

Dean

Commitiee




ESTIMATION OF GROWTH CURVES BY LEAST SQUARE SPLINES

BY

DOROTHY RYBACZYK PATHAK

B.S., University of Illinois, Chicago, 1970

M.A., University of New Mexico, 1972

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy in Mathematics
in the Graduate School of
The University of New Mexico
Albuquerque, New Mexico

May, 1975

ii




e ; ;T }:);:2 ? Lf

‘L_J

ACKNOWLEDGMENTS

Throughout the course of the study presented in this manuscript,
T have received much encouragement and guidasnce from all the four
members of my Ph.D. committee, Professor William Zimmer, Chairman,
Professor Herbert T. Davis, Professor Betty J. Eberle and Professor
Steven A. Pruess. They read the manuscript st different stages of
writing, corrected mistakes and made valuable comments. I am grate-
full to them for all their help.

T am particularly thankful to Professor Betty J. Eberle for intro-
ducing me to biostatistics; her constant encouragement has done much
to convince me that biostatistics is an area well worth working in.

I am much obliged to Professor Steven A. Pruess for his pains-
taking scrutiny of the final manuscript.

Chapter 5 owes much to Dr. Robert A. Munsick who provided me
with the data without which this chapter could not have been written.
This dissertation is really an outcome of my efforts to carry out &

satisfactory analysis of his data. His help is gratefﬁlly acknowledged.

iii

748727



ESTIMATION OF GROWTH CURVES BY LEAST SQUARE SPLINES

Dorothy Rybaczyk Pathak, Ph.D.
Department of Mathematics and Statistics

The University of New Mexico, 1975

The primary object of this dissertation is to present some con-
tributions to the theory of estimation of growth curves by least
square splines in the presence of unknown unequal variances. The
theoretical developments rest heavily on the standard least square

theory and the theory of polynomial spline functions., A modifica-

tion of the Aitken procedure of weighted least squares is used to

estimate regression parameters. It is shown thet this modification
of the Aitken procedure does not unduly influence the nice least
square properties of estimators so obtained; the estimators re-
main unbiased, consistent and asymptotically efficient.

The techniques developed in this dissertation are then applied
to data collected by the University of New Mexico Medical Staff on
weight and biparietal diameter of live newborns and fresh ebortuses
within thirty minutes of birth. A numerical formula is developed
for prediction of weight of a fetus or a newborn from its biparie-

tal diameter.
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CHAPTER ONE

INTRODUCTION

The subject matter of this dissertation orginated from a study
which was recently carried out by the University of New Mexico Medical
Staff for the purpose of finding the relation between biparietsl dia-
meter (maximum skull breadth) and the weight of a fetus or a newborm.

A preliminary examination of the collected data showed that the vari-
ance of the observations increased with the biparietal diameter. Since
in the literature little is known about the regression analysis of data
with unknown unequal variances we have attempted in this dissertation

to present a technique of weighted least square regression analysis

with polynomiel spline functions. We now proceed to describe the re-

sults ﬁf our investigation.

Chapter 2 contains a review of the known results concerming poly-
nomial spline functions and their representation in terms of B-splines,
which are the divided differences of trunceted power functions., It is
also shown how this basis can be used to construct regression models
for growth curves.

Chapter 3 begins with a brief introduction of the customary tech-
nique of least square estimation. Then & technique of data reduction
through the notion of sufficiency for the purpose of reducing the com-
plexity of a regression model is suggested when more than one observa-

tion is available for each value (called cell) of the independent vari-

oA




able and when the within cell variances are heterogeneous. The tech-
nique consists in replacing all the observations within each cell by
their mean and their sample variance. The theory of sufficiency is
used to establish that this data reduction leads to no loss of infor-
mation in our anslysis and much of the analysis in this dissertation
heavily depends on this technique of datas reduction. We then suggest
the use of a modification of the standard Aitken procedure of weighted
least squares in which the weights are chosen on the basis of the esti-
mated cell variances and the analysis itself is carried out on the basis
of the sample means from all the cells. Owing to the independence of
the sample meens and the sample variances this procedure preserves many
of the nice properties of the standard least square theory. As a pre-
liminary step towards establishing some of these properties some well-
known results on generalized inverses of matrices are described. Then
it is shown in Theorem 3.1 of this chapter that every estimable para-
meter p'b under the modified Aitken procedure possesses a unique un-
bissed estimator. In conclusion we derive im Theorem 3.2 an expression
for the variance of these estimators.

Chapter b deals with the asymptotic properties of the estimators
obtained by the modified Aitken procedure. For this purpose & few well-

known results concerning eigenvalues of symmetric matrices are stated

and some inequalities concerning the nonzero eigenvalues of a product

of matrices are derived in Lemma 2.9, These results are then used to
establish Theorem 3.1 which shows that under certain regularity condi-

tions (1.1) and (1.2) the modified Aitken procedure provides consistent
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estimators of estimable parameters. Theorem 4.1 shows that these esti-
mators are asymptotically equivalent to those obtained under the standard
Aitken procedure in which the cell variances are kno#n.

The last chapter gives an actual application of the techniques de-
veloped in the earlier chapters to the data collected by the University
of New Mexico Medical Staff. Among other things we develop a prediction
formula for the weight of a fetus or a newborn in terms of its biparietal
diameter; we also provide tables of predicted weight and its 90% end 95%
tolerance limits for a given biparietal diameter. The prediction curve
and its tolerance limits are also displayed graphicelly. The chapter
concludes with a brief discussion of the sdvantages and disadvantages

of the use of polynomial spline functions in regression analysis of

growth data.
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CHAPTER TWO

INTRODUCTION TO POLYNOMIAL SPLINE FUNCTIONS

1. Introduction.

Definition 1.1. A polynomial spline function s(x) of degree m with

knots Xy 9Xpy e ey Xy is a function defined over the whole real line ha-
ving the following two properties:
i) In each interval (xi’xi+l)’ 0<i<mn, vhere x =-= and

x = @, s(x) is given by a polynomial of degree m or less.

n+l
1i) s(x) and its derivatives of orders 1,2,...,m-1 are continuous

everywhere.

The space of all such splines is denoted by Sm(xl""’xh)' For m > 0,

& spline function of degree m can also be defined as & function 2

dm'l whose mth derivative is a step function.

One way of representing a spline is by the use of a truncated

power function which is defined as:

xm - { X 1F w20 (1.1)

Then any spline of degree m admits the representation:

m

s(x) = p(x) +J;_1:1°J(x - %), (1.2)

o e




where p ¢ T T being the class of polynomials of degree m or

less and the Cys 1<Jj<mn, are scalars.

From this representation it is clear that one meeds n +m + 1
independent parameters to specify a spline function of degree m since
there are n cd's and p(x) involves (m + 1) independent parameters.

An alternative way of arriving at this number of parameters is to
see that between any two sucessive knots the spline function is a poly-
nomial of degree m; this involves m + 1 parameters there and thus
over n + 1 intervals (xo,xl), (xl,xa),...,(xn,xn+l) we have in all
(p+1)(m+1) =mm +n+m+1 parameters. However from condition (ii)
of the definition of spline function, s(x) and all of its m - 1 deri-
vatives have to esgree at internal knots. This yields nm conditions
thus reducing the number of independent parameters to
(n+1)(m+1) -nm=m+n+1,

This consideration also shows that the space of splines of degree
m with n intermal knots is isomorphic to the (m +n + 1) dimensional
Euclidean space Em+n+l'

A special case of some interest is when we restrict our attention
only to the interval (Il’xh)' In this case there are (n - 1)(m + 1)
parameters involved and (n - 2)m conditions on s(x) and its deri-

vatives. Thus the number of independent parameters reduces to

(n-1)(m+1)-(n-2m=n+m- 1.

2. Natural spline.

Definition 2.1. A polynomial spline s(x) with knots XpyeeesX, Of




odd degree 2k - 1 is called a natural spline function if it is a po-
lynomial of degree 2k - 1 in the internal intervals and a polynomial
of degree k - 1 in the intervels (-myX;) amd (X ;).

The natural spline assumes the form:

n Zk-1
s(x) = p(x) + ;Eicj(x - xJ)+ (2.1)

where p(x) ¢ LY and the cj's satisfy the following conditions:

2 cdxj =0 o w QL s kel (2.2)

Unless stated otherwise we denote the class of natural splines by 15 q-
The conditions on cJ's arise from the fact that & natural spline
is & polynomial of degree Xk - 1 on the intervals (-m,xl) and (xn,-).
Over the range (—u,xl) the above spline is clearly a polynomial of
degree k - 1. Now for x > X the spline becomes a polynﬁmial of ﬁhe

form:

n
s(x) = p(x) + Ecj(x - xj)a"l (2.3)
J=1

For this to be a polynomial of degree k-1, s(k)(x),...,a(ak'l)(x)

must all be zero. Thus considering the (Zk - 1)st derivative we

obtain:




The preceding equation is equivalent to the condition:

JZ] ¢ 4% .3 = (2.4)

Next from the (2Zk - 2)nd derivative we have:

(& - 1) & ’
2 cj(x - xj) =0
which is equivalent to:
n
=0 .
n
Since x ch 0 from(2.4, this gives us the second condition:
J=1
|
12 esXy = . a (2.6)
end so on,

We shall need the following definition.

Definition 2.2. A function f(x) is said to interpolate the data

points (xl,yl),...,(xn,yn) if f(xi) =y, foresch i, 1<i<n.

The following is an important result concerning natural splines

(cf. Greville[5], p.6, for a proof).

Theorem 2.1. If 1<k<n amd a=x, < x5 < Xy oo < x =b, then

there is a unique s ¢ 'ﬂak-l(xl’” .,xn) that interpolates any set




of data points (xi’yl)""’(xn’yn)'

Suppose now that we wish to find the "smoothest" interpolating

function g(x) in c®-2 $or n distinct data points, where smooth-

ness is measured by the smallness of the integral

b
ole) = 1 (6%)x))? ax (2.7)

Then for kX < n the optimum solution is given by the unigue natural
interpolating spline of degree 2k - 1 with the abscissas of the
given data points as its knots.

If k = n, there is a unique polynomial of degree k - 1 that inter-
polates the data points ( (xj,yj) :1<j<nj}. This polynomial is

given by Lagrange's formula

_ aPpAx) :
L(x) = iziﬁié*E’ ¥y (2.8)

vhere P(x) = (x - xi)(x -xa)...(x -x. ) end PJ(x) is the product
obtained by deleting the factor (x - xj) from P(x). For g = L(x),
o(g) = 0 which is the minimum,

For k > n, there are infinitely many interpolating polynomials for

which o(g) = 0.

3, Data smoothing splines.

In order to smooth a sequence of equally spaced ordinates E. T.

Whittaker [127 in 1919 suggested minimizing the quantity:




n-k

n
2 vy vy - 31)2 + siﬂl(akvi)a (3.1)

i=1
vhere Y5 denotes the 1ith observed ordinate, vi' the corresponding
smooth value, W, @ given positive weight, A the usual finite-diffe-
rence operator and g a positive constant to be chosen by the user.

If g =0 then letting v

1 =Y provides an interpolatory spline.

If g + « and if we wish to make the whole quantity as small as possi-
ble, we are then forced into imposing the condition ﬁkvi =0, 1.e,,
the set of wvy's must then be values for a polynomial of degree T &
in which case the solution is given by & least square polynomial of
degree % - 1. Schoenberg [ 11] generalized this idea (for data points
not necessarily equslly spaced) by considering the problem of fitting

a function f ¢ &t witn f(k) piecewise continuous so that:

$a: B b SR e |
0,(£) = D (r(x) - y)* +e | (F(x)® ax (3.2)
i=1 a

is a minimum. He showed that the optimum solution to the ebove problem
is given by a natural spline of degree 2k - 1. Also if the natural

spline is expressed as:

3 -1
s(x) = p(x) + r_-_-rlcd(x - x4,

where p(x) ¢ m 4 and cd's satisfy the following conditions:

Dex, =0 r =0,...,k-1
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then s(x) 1is determined uniquely by the following additional n

equations:
s(x;) + (-1)%(z - 1) e Wy =¥y 1=1,...,m (3.3)

Tt should be noted st this stage that a natural spline is completely

specified by n independent parameters.

L, B-splines.

The determination of splines through the representation:
b m
s(x) = p(x) + ch(x - IJ)+
J=1

where p ¢ L generally leads to a system of equations which is ill
conditioned, Schoenberg [10] has developed a more satisfactory repre-
sentation of splines in terms of functions based on divided differences.
These functions, which are referred tc a&s B-splines, possess the desira-
ble property that their support (domain over which the function is non-

zero) is restricted to only finitely meny intervals determined by knots,

Definition 4.1. Define the linear functional D as the divided diffe-

rence of f of order m based on the arguments Xy 9Xgqq0 009Xy ms

i.e.,




11

£(x,) +

Df = f(xi,xi_i_l,.--,xi_‘_m) —

(xi-x1+

£(%547)

l)(xi'xi+2)"‘(xi'xi+m)

£(x54m)

L P

(x1+l'xi)(xi+l'xi+2)"{xi+l'xi+m)

" i%? fgx;)

(%% ) gy 49 ) o (R Xy 4)

(3.4)

J= PJ(xJ)

where Pd(xd) is defined in (2.8). Using this definition of the linear
functional D, Schoenberg used the following functions for representa-
tion of splines:

(3.5)

Mi(x) = DMx(t) = "x(xi""’xi+m)’ i=1,...,8-0
where Mx(t) =m(t - x)ffl and the differencing in (3.5) is carried
out with respect to 't'. For example in case of cubic splines (iﬁ

this case m = L) we have:

h(x1—x)3

(3, -x5) (%) -%5) (x,-x, )("1"‘5)

4

Ml(x) = M(x; xl,xa,...,xs) =

b (xp-x)3
(352 ) (225 ) (x5-3), ) (x5-%5)

h(x3-x)2
(x3~x1)(x3-x2)(x3-xh)(x3-x5)

- +

h(x5-x)2
(x5-x1)(x5- 2)(x5-x3)(x5—xh)

h(xh-x)i
(xh-xl)(xh-xa)(xh-x5)(xh-x5)

+
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h(xa-x)i
("2"‘3)("a"‘h)(‘a"‘s)(xa'xs)

ME(x) = M(x; xe,xy...,x(s) -

3 3
1&(11:.5-4:)+ . h(xh-x)+
(g-xa)(g—xh)(x-j-%)(x}- 2 ("h"‘a)("h"‘a)("h‘%)("h'xs)

+

h(x5-x)z P h(xs-x)i
(x-x5) (-5 ) (%5-3,, ) (35-%4) (xg-%5) (xg-%5 ) (%-%) ) (x4-%5)

and so on. The functions Mi(x) are called B-splines.

Properties of B-splines.

m-1
Since for each t, the truncated polynomial (t - x)_ as &

function of x is & spline of degree m - 1, it follows that the
Mi(x)'s are all splines of degree m - 1. It is eagily seen that

for x > x; Mi(x) venishes; and for x < x,, Kl(x) becomes

+m!
the mth divided difference of a polynomial of degree m - 1, which
is also zero. Thus the support of Mi(x) is contained in the inter-
val (J\:1 ’ Xy 4p)+ Curry and Schoenberg [4] also established that:

i) Mi(x) is strictly positive in (xi,xi_m) and

ii) eny spline s ¢ Sm_l(xl,...,xn) having its support contained

in !g:nx 2 has a unique representation as a linear combination
of Ml,Mz,...,Mn_m. This is because such a spline needs only
m(n - 1) - n(m - 1) =n - m parameters in its representation

and Hl""’"n-m are n - m linearly independent splines of




)

degree m - 1 which vanish outside (xl,xn) and therefore form
a basis for such splines, i.e., every polynomial spline of degree
m - 1 vhich vanishes outside the interval (x;,x ) is uniquely

expressible as a linear combination of Ml,Ma, ""Mn-m'

5. A basis for Sm_l(xl,xa,...,xn).

The preceding B-splines play a central role in obtaining a satis-
factory basis for Sm.l("l"“”‘n)' Since Sm.l(xl"""‘n) has dimen-
sion (n + m) and since the B-splines are only (n - m) in numbey we
need an additional 2m independent splines to form a basis. The fol-

lowing theorem furnishes these additional splines ( [5], p. 26).

Theorem 5.1. Let m < n and suppose that x4 < X, Lens & X - Then

the following (n + m) splines provide a basis for Sm_l(xl,...,xn):

B,(x) =M(x; x,..0,%), 151w e (5.1)
Bm_i(x) B Hi(x), 1<i<nm

m-1
B yg(x) = (1) Mlx ooioXy pugiyseensXpy %), 1SiZm

vhere M(x; xl,...,xi) denotes (i-1)st order divided difference

m-1
of m(t -x),  with respect to t over the knots X;,X5y«ees%y;

: - divided difference
M(xn-mﬁ’xn-m-!-iﬂ"”’xn’ x) the (m - i)th order divided e
m-
of m(x - t)+ with respect to t over the knots X . .,.ee,X,
and the Mi(x) are given by (3.5).

For example in the special case of m = 4 (cubic spline) and




n =5 the above basis admits the following representation:

B,(x) = M(x; x,) = b(x,-x),

3 3
b(x,-x), g b(x,-x),

Ba(x) = M(x; xl,xe) =
(x-x5)  (xpx;)

h(xl-x)i h(xa-x)z h(xa-x)z
+

-,

(ry-xp)(ay-x5)  (xprm Mxpoxg) (g ) ()

Bs(x) = M(x; xl,xa,x3) =

b(xy-x).

( ) = M( » s &y Kz sy ) = i
Ll afh oo (3 =x,) (% -%5) (% -%),)

h(xe-x)i h(x3-x)z k(xh-x)i

+ +

(2o Y2 ) (xp-my)  (3gm3y ) (g% (25, ) (3~ ) (3, -%5 ) (%), -%5)

h(xl—i:)i
(32, -3 ) (3 -5 ) (37 -3, ) (3 - %5)

o

Bs(x) = Ml(x) = M(x; xl,xa,x5,xh,x5) =

3 3
h(xa-x)+ ; h(xs-x)+ !
(xa-xl)(x2*x3)(x2- ) (x5x5) (:Lj-xl)(x-j—xa)(xj,-xh)(x-j—x.j)

h(xh-x)i L h(x5-x)i
(33 ) (3, -%) (31325 ) (3 35)  (3x-%p ) (5-%5) (%5-%3) (%5 )




By(x) = (-1)° M(xy,%;,%,,%; *) =

h(x—xe)i h(x-xs)i

_[ +

(rp-25 ) (xp-3) ) (%pm%5)  (33-%5) (%5-3, ) (%5-%5)
h(x~xh)i h(x-xs)i

: :

(3, -%) (%,-%5 ) (3 =%5)  (x5-%5) (x5-%5) (%5-3),)

¥

B.(x) = (-1)% Mlxy, 3,555 %) =

h(x-x3)i h(x-xh)i h(x—xﬁ)i

+ +

(k53 ) (x5-x5) (1) (1 -%5) (x5 (%57,

Mxem)y g bx-xg)] ]

Ba(x) = (<1)* M(x,,%; x) = -
BB lF 5 [ (xh‘xs) (x5_xh)

By(x) = (-2 Mxg; x) = h(x-x-j)z

Remarks.

1) Tt is worthwhile noting that for each i, 1<i<m, B, 1is
positive for x < Xy, 2zero for x> x and is a polynomial of

degree m -1 for x< xl, and Bn+i is zero for x < xn-m+i’

positive for x > X and is a polynomial of degree m - 1

m+i

POF X % .
n




2) As will be illustrated in later chapters there are situations in
biometry such as in the study of growth curves wherein one needs
to fit a spline which vanishes for x < x = 0, say. In view of
the preceding properties of the Bi's it can be shown that a sult-
able basis for splines of degree m - 1 which vanish for x < X

is given by:

Bm_'_i(x) = Mi(x), 1<i<nm and

m-1
Boeg (%) = (20777 MOxy pygs Xy pygagseeos%ni XD

Thus any spline of degree m - 1 which vanighes for x < x,

admits the representation:

s(x) = ble_'_l(x) + b23m+2(x) + eeo + BB (x) (5.4)

vhere bl,...,bn are parameters to be determined.

In & similar fashion it can be seen that a basis for splines
of degree m - 1 which vanish for x > x is given by the
B-splines By,...,B,B,.,...,B .

It should be noted that Theorem 5.1 end above remarks apply only
to the case vhen m<n. For m>n the representation of splines
in terms of the truncated power functions as given in (1.2) should

be used.




6. Fitting of splines.

A regression model commonly encountered in biometry has the fol-

lowing form:
y(x) = £(x) + ¢ (6.1)

where x denotes the nonrandom independent variable while y(x) is
the dependent variable and Ex's are independent normally distributed
errors. The function f£(x) 1is called the regression function and one
of the problems in regression esnalysis is to estimate the form of f
on the basis of the observed values of y(x) for a given set of values
of x. In many problems f(x) is assumed to have a polynomial repre-

sentation such as:

X+ b x2 U EIOSE +'quq' il SR A )

f(x) = b, + by .

where bo’bl""’bq are unknown parameters. Thus in order to ascertain

the form of regression function f(x) one needs to estimate the values
of parameters bo,bl,...,bq. This is usually done by the method of least
squares.

We shall see in later chapters that there are situations where a
regression function is better explained in terms of & spline rather than
a polynomiel. Thus if f(x) essumes a representation as a spline of
degree m - 1 with n knots, say, it then follows from our preceding

considerations that f(x) can be written in the following form:
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f(x) = blBl(x) + baBa(x) + ... # bntn_'_m(x) (6.2)

)
where bl""’bn+m are unknown parameters and the Bi s are the

B-splines of Theorem 5.1. Now in order to determine the spline that
best fits the data in a given case one can use the standard techni-
ques of least square theory and thus determine the optimum values for
yseeesb . We intend to use the representation in (6.2) for f£(x)
in the study of growth curves.




CHAPTER THREE

REGRESSION ANALYSIS WITH UNKNOWN UNEQUAL VARIANCES

1. Introduction. The main object of this chapter is to introduce a

technique of estimating parameters encountered in regression analysis
when the residual errors have unknown unequal variances. For reasons
of clarity it is worthwhile to first present a brief outline of the
estimation procedure used in case of equal variances. The basis of

analysis in this latter case is the assumption of the following model:

¥y = byXgy ¥ BXip * ee. F quiq + €5 1<i<n (1.1)
where the observations y; are assumed to be expressible as linear
combinations of known variables xil’xia""’xiq and the residual
errors gi's, which are assumed to be independent and normally distri-
buted with zero mean and an unknown common variance aa.

The unknown parameters bl’be""’bq are estimated by the s0
called technique of least squares which consists of minimizing the
following guantity:

n
¥ 2 (1.2)
U= El(yi - byXyq - BXip = eee - quiq)
The normal equations which determine b's (obtained by differentiating

(1.2) with respect to b's and equating to zero) are given by:

=39 =




2 2
by % 25y + b, X Xq +oaen t bq P R Yy%qq (1.3)

2
by Exﬂxie - I:'E‘Zx12 * ..o+ B, Exiqxia = Eyixia

2 _
%Zﬁﬁm+%zﬁﬁh+“.+%2ﬁq-2%ﬁq

In the sequel a parameter o(b) (a given function of b's) is
said to be estimable if there exists a linear function of the yi'a,
say 2, 4;y;, such that E ( Ex,iyi) = o(b).

The estimators of linear functions of b's I1f estimable have &
number of desirable properties. Among other things they possess mini-

mum variance in the class of all estimators which are linear functions

of the observations y, (cf. Rao, C.R., [7], pp. 181-182).

With this very brief introduction of the estimation technigue in

mation in which the residuals have different unknown variances and for

which no satisfactory solution is available in the literature.
LOE  Faon avninTne o Waa e weh Vo e er e pessn be k sets of a
11 151 21 2n2 k1l knk

total of n, + ... +n observations, with n, >1 for each i, and

- |
suppose that they admit the following model:

=DyXyy *Fees FBX) O+ 6y, c5< (1.4)

=blx21 wals T quaq # 623 ’




where the x's are known variables, b's unknown parameters and ¢'s
are independent normal variates with zero mean and variance V(eij) = af,
1 <i<k. Thus in our model the whole set of observations can be divi-
ded into k groups such that the observations in the ith group are
independently distributed with a common mean and a common variance of
of, 1 <i<k; the variances cf may vary from group to group and

are assumed unknown. Our object now is to study the estimation of para-
meters bl,...,bq in the above set up. We first employ the notion of

sufficiency to reduce the complexity of this problem. In this connection

we need the following well-known theorem (Cf. [7], p. 110).

Theorem 1.1 (Neyman-Fisher). Let f(yl,...,yn; ql,...,ek) denote the

joint density function of n random variables Yi,...,!h with gl,..,ak
being the unknown parsmeters under study. Then a vector-valued statistic
t 4s sufficient if and only if the density function f admits the fol-

lowing factorization:
£y s¥psevespi  Bpseeesdy) = 8(ypeeesyy) BlE,8y5.00,8) (1.5)

vhere the first function g 1is free of parameters while the second
function h depends on the parameters 91""’9k only through the
statistic t.

Under the model (1.4) and the earlier assumptions the joint density

function of the observations yll""’yln ""’ykl”"’yknk is given
1

as follows:
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f(y seney Y geeesyyareser )=
11 1n1 kl knk

X 1 : oy 5
m o o A : 3 a
180 n,/2 e"p{ 5 Z (¥55 - By%Xgy = «oc - BgXyq) }
2. Bt =1
(2n03) i
5 3 1 ii 2 2
e { - [ s S + ¥, - S }
e 22 by (v55 = 93,07 * nylyy - oyxyy quiq)]
(Enui) i
k 1
= N exp { - r (n -1)32 +n,(y, - byx =P )2-| }
P n,/2 g L RS 9I0e " Ptay 7 e T et
(2w?) oy
- we (106)
g 3 o 2 e =i
ot 2 Y1.=EI3§1’13 i ’@3/:1(3'13-‘ Aol

vely the sample mean and the sample variance of n, observations from
the ith group. From (1.6) it is clear that the joint density function

of the observations depends on the parameters only through the statistics

(¥4 A, 1 <1 <k. Thus the statistics:

(Fy 8y ooy 1) (1.7)

form a set of sufficient statistics. As a consequence of the theory of
sufficiency it now follows that the statistics given by (1.7) contain

all the informatién that is relevant for the purpose of estimating the

parameters bl""’bq and Uf,...,cf ’
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It is well-known from the theory of statistical distributions that
371. e ’i'k. : sf, - ,s]f are all mutually independent random variables
with 91. having normal distribution and (ni-l)sfﬁsf having xa dis-
tribution with (n_‘l - 1) degrees of freedom ( [7], p. 147). It can

now be seen that these sufficient statistics admit the following

model :

5’1. L TR qu‘_l.q - M (nl—l)af "Vf x?nl-l) (1.8)

4 2 2 2
Yo, 1%p1 *oeee P BoXoy tep i (ny-1)s; ~ a3 *(n,-1)

]
o
»
ik

e

Y. (“k'l)ai e Ui K?;k-l)

where all the sf and the eJ'B are mutually independent random vari-
ables with ¢, being normal with zero mean and variance gf/ni and
(ni = l)sf/af being xa with (ni - 1) degrees of freedom.

This model can be deduced from (1.4). It follows from the theory
of sufficiency that (1.8) possesses as much informastion about the para-
meters under study as does (1.4). Actually if desired, one can through
randomization obtein a new set of observations Yy, j's from i’i. of
(1.8) which would be statistically indistinguishable from those of (1.k4).
Thus the two models (1.8) and (1.4) are statistically equivalent. From
now on we therefore restrict our attention to the simpler model (1.8)
rather than (1.4). A very important advantage of the model (1.8) is
that it allows one to use s?'s as preliminary estimates of cf's

in the estimation of the parameters bl,...,bq. As we shall see later




2u

2,

i
perties of estimators of bl""’bq’ because of the independence of

this usage of s,'s does not unduly influence the distributionel pro-

2,

=~ |
8, s from the y;'s.

2. Estimation of parameters.

Let us now proceed to the estimation of parameters bl,...,bq and

%

01,...,05 by using the following two step approach.

Step 1. Preliminary estimation of variances.

It is clear from the preceding reduction that the sample variances
sf's provide unbiased estimators of the corresponding variances af's.
It is easlily seen thet

v(af) = 2 c-f,:f(ni-l) (2.1)

Since variance of 52 approaches zero as n, approaches infinity, it

i
follows that sf's are also consistent estimators of af's.
Note: The estimator Tn based on a sample of size n 1is said to be
consistent for a parameter § if lim P(lTn - 8] >e) =0 for every
¢ >0 ; the estimator 'I‘n is said to converge to { in quadratic

mean if &1m E(Tn - 9)2 = 0. Convergence in quadratic mean implies
[ -]

convergence in probability and thus consistency ( [7], p.281).

If all the of's are unequal we suggest the use of sf's as our

preliminary estimates of af‘s for our second stage of estimation. If

this is not so, then we can divide the k groups into ¢ subgroups,




say, such that within each subgroup the variances are equal, The sample
variances within each subgroup can then be pooled in the usual way in
order to obtain a more efficient pooled estimators of the corresponding
common subgroup variances. For example if 532_ = og = c§ = 02 sy 88y,

then the more efficient estimator of the common variance for the three

groups is given by:

2 (m - 1)sy + (m, - 1)e5 + (ng - 1)s3

s (2.2)

(n1+n2+n3‘3}
This pooling provides the minimum variance unbiased estimators of the
subgroup variances based on sf,...,sﬁ. A justification for this is

furnished by the following theorem:

Theorem 2.1, Let mlsf, masg,...,mrsf be independent 02 xa variables

each with Ty My e e oy T, degrees of freedom respectively, where 02 is
________________ Mt i s 2 Gty
the urnknown parameter under estimation. Then mlsl + maga S a7 m.s,.

is a complete sufficient statistic for this problem and

(mlsf + masg + ...+ mrsi)/(ml tm, 4.l mr) (2.3)

is the unique minimum variance unbiased estimator of 02 based on

2 el 2
S1» SppeeesSpe

(Note: A sufficient statistic is complete if no function of it has zero
expectation for sll values of the parsmeter unless it is itself a zero
function, Every function of a complete sufficient statistic is a mini-

mum variance unbiased estimator of its expected value (Cf. [7], p. 261).)




2 is given by:

Proof: The joint density function of nﬁ_sf,. -esM S

2 P SN
tmed,.oms?) =k 1 (AT T exp( - w2 6?)
i=1

(2.4)

T (m -2)/2
. h(af, sg,...,sf,) ( —é) + exp( -1/2 Zmi 2)
o

By the Neyman-Fisher factorization theorem it follows that t = Emisf

i=1

is a sufficient statistic, and it is also easily seen to have 0'2 x2

g

distribution with Z}mi degrees of freedom, which is complete since

1=l =
2

it is & special case of the Gamms distribution. Consequently m m 8,
i=1

is a complete gufficient statistic in this problem. Thus

Emiaf / E my is an unbiased estimator of 0‘2 based on the complete
i=1 - 1=l

sufficient statistic and therefore it :la the minimum variance unbiaaed

estimator of oa. ||

In view of this theorem it is clear that pooling of the sample
variances is the best approach for obtaining preliminary estimators
of the subgroup variances g? , 1< Jj<ec, and ve shall use this

technique of pooling of the variances in Chapter k4.

We now turn to the estimation of the parameters bl" ae ,bq.

Step 2. Estimation of bl" ..,bq.

If the residual variances cja_, cg,. ..,of were known, the best
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way of estimating the parameters bl,...,bq would be by minimizing the

weighted sum of squares:

k
2 - 2
U= izini/gi (yi. = DEXey ¢ eao - quiq) (2.5)

Since of's are not known, we replace these variances by their pooled

estimates obtained by the technique in Step 1. We shall denote these

by af, 1 <1i<k. Thus in order to estimate byseeasby We minimize
the quantity:
k e 2
¥ = 1§1ni/di (yi_ - blxil - sss = qu:lq) (2.6)

The normal egquations which determine the parameters bl""’bq are

as follows:

b, T (ny /6208, + ... + by T (nifafyxiqxu = T (n, /6529, %44
g (2.7)

al a2, 2 a2y

These normal equations can be used in much the same way as in the equal
variance case to obtain estimators of parameters bl,...,bq. As we shall
show later the substitution of af in place of of does not adversely
affect the least square properties of the estimators so obtained., The
reason for this is that we have succeeded through sufficiency and pool-

ing of sample variances in obtaining initial weights nifaf which are




independent of the sample means ii which contain all the information
about the parameters bl""’bq'

We now turn to the properties of these estimators.

3. Properties of estimated parasmeters.

For reasons of clarity in exposition in regard to the properties
of estimstors briefly introduced in the preceding section, we now re-
formulate our problem in matrix notation.

Consider the setup:
(Y, 2, ¥, V) (3:3)

in which Y is the vector of n independent observetions assumed to
be normally distributed with E(Y) = Xb and the dispersion matrix
D(Y) =V, and V is an unbiased estimator of V which is independent
of Y. 'The matrix X 1s assumed known. The parameters under study.
are the vector b and the dispersion matrix V., For simplicity we
shall assume that the matrix V is nonsinguler,

When V is nonsingular and known, the standard theory of least
squares as formulated by Aitken in 1934 [1] provides the following
estimation procedure:

1) Obtain b by minimizing the quadratic form
U= (Y- %)viy - m) (3.2)

2) Let p be a g-vector and suppose that p'b is estimable (i.e.,
has an unbiassed estimator). Then use p'b as an unbiased estimator

of p'b. We refer to this as the Aitken procedure of estimation.




The difficulty in our setup (Y, Xb, V, V) arises from the fact that
V 1is unknown and only a&an unbiased estimator of V 1s available through
G. Consequently we suggest modifying the Aitken procedure by replacing
V by V in (3.2) and we shall refer to it as the modified Aitken pro-
cedure in the sequel.

The following well-known results concerning matrices will be found

useful in our study [6].

pxn is called

Definition 3.1. Let Ahxp be an nxp matrix. Then A

8 g-inverse if the following conditions hold:
1) AA is symmetric

2) A A 1is symmetric

3) AAA=A

4) AAA = A

-1 and

It is easily seen that if A 1is nonsingular then A = A
if A is a scalar then A" =1/A for A£O end =0 for A=0,
The g-inverse of a matrix exists, is unique and has the following

properties [6]:

1) R(AA") = R(A) where R denotes rank of a matrix in question.

Since A = AA"A, R(A) < R(AA7) < R(A).

2) H=AA 1is a projection matrixon < H > =< A >, vhere <., >
denotes the vector space spanned by the columm vectors of the
matrix within.

Since H is symmetric by assumption and H2 = AA"AA" = AA” =H,

H is idempotent, hence H is a projection matrix. Further




Hx = AA x = A(A"x) which is & vector in the column space of A,

So <H> € <A> since R(H) =R(A), <H>=<A>,

Hr = A A 1is & projection matrix onto the row space of A =< A' >,
By assumption H_ 1is symmetric and Ho = AASA = AA=H_

so that Hr is idempotent and is therefore a projection matrix.

Mso Hx = H;x =A'A'x=A'(A'x) and so <H_ > ¢ <A'>;

also R(Hr) = R(A'), Therefore < H >=< &>

If A is symmetric then so is A .
The proof follows on showing that the matrix A ' satisfies
the properties of g-inverse of A. So by uniqueness of the

g-inverse A = A' l.e., A 1is symmetriec,

»
(A')” = (A7),
The proof follows on showing that A ' satisfies the pro-

perties of the unique g-inverse of A',

If A is & projection matrix them A = A,
Here A satisfies the properties of its own generalized

inverse.

This result follows from the symmetry in the definitiom of

g-inverse with respect to A and A,

(AB)” # B"A™ in general.

For example let A = [1, 0], B = [i] . Then

A = [ é] and B = [1/2, 1/2]. Thus (AB)” =1 end B A =1/2.
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5) A = (A'A)"A
Let A* = (A'A)"A'. Then AA* and A"A are easily seen to
be symmetric matrices because of the symmetry of (A'A)". Further
A*AA* = (A'A)"A'A(A'A) A" = (A'A)"A' = A", Also AA"A = A(A'A)A'A =
AHr, where Hr denotes projection onto the row space of A'A = col-
umn space of A'A, because of symmetry of A'A, = column space A',
Now AH_ = (H!A')' = (HA")' = (A")' = A Thus AA"A = A. Thus

A" satisfies all the properties of the unique g-inverse of A,

6) (A'A)” = A7A'
We have A A'"" = (A'A) A'A'"" = (A'A)"(AA)" = (A'A) (A74) =
(A'a)H, = [ HI(A'A)T]" = [ B (8'A)7]" = [ A"A(A"4)7]" =

[ (A'A) A'A(A*A)1" = [ (A'A)7]' = (A'A)]

7) The system of linear equations: Ax =b is consistent (hes at least
one solution) if and only if Hb = b where H = AA".
The system is consistent if and only if b is in < A >,
Since H 1s a projectiononto <A >, b ¢g€<A> if and only

if Hb =D,

8) Let Ax =b be a consistent system of linear equations. Then the

system admits the following general solution:
x=Ab+ (I- Hr)y (3.3)

where Hr = A"A and y is an arbitrary vector. Since the system is
consistent b = A(A"b). So A'b is a particular solution of the system

Ax = b, Further A(I - Hr)y = (A - AHr)y = (A - AAA)y = 0. So
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(T = Hr)y provides solutions to the homogeneous case. Since

o Hr) =n - Rank(a) which is the nullity of A, it follows
that < I - Hr > provides all solutions to the homogeneous case.
Thus x = A'b + (I - Hr)y provides all possible solutions of the
consistent system Ax = b,

We now turn to the study of estimable parameters in our previous

setup (modified Aitken procedure).

Lemma 3.,1. A necessary and sufficient condition that p'b admits a
linear unbiased estimator is that p ¢ < X' >,

Proof: Let 4'Y be an unbiased estimator of p'b. Then E(L'Y) =
L'Xb = p'b for all b if and only if {4'X =p' or p =X , i.e.,

if and only if p €< X' >. ||

Returning to the modified Altken procedure as outlined in the ear-

(Y - %)V Y - )

is minimized when
XVl = xv (3.4)

We refer to (3.4) as the normal equations for estimation of unknown
parameters b. Clearly the genersl solution of the system of equstions

in (3.4) is given by:

b= (XVIx)"xv iy + (1 - H_)z (3.5)

1

where H = (x'ﬁ'lx)'x'ﬁ‘ X and z is an arbitrary vector.




33

It should be noted that Hr represents the projection matrix onto the
row space of (x'G‘lx) = column space of X' = row space of X, Also
kI - Hr) represents projection onto the subspace orthogonal to the

column space of X'.

The following theorem shows thet all linear estimable parameters

under the modified Aitken procedure possess & unique unbiased estimator.

Theorem 3.1. Let p'b be & linear estimable parameter. Then for any
solution b of (3.4), p'® is unique and unbiased for p'b.

Proof:

To prove the uniqueness of b we note that p €E<X'> so that
p is orthogonal to <1I - H> . Therefore p' (X - Hr): =0 for all z.

Thus from (3.5) we have
p'b = p' (X IX)" XV 1y (%.6)

This establishes the unigueness of the estimator p'g.
Now to prove the unbiasedness we make use of the independence of

Y and V. Clearly

E(p'D) = B [E(e'5|1)] = B [E(p"(xV%) X7 Y1) (3.7)

Now, because of the independence of Y and V, the conditionsl distri-
bution of Y is seme as its unconditional distribution and therefore

the above eguation equals

By [p'(x77X) VIR = B [p'(x VI XV Im] (3.8)
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Since for a given nonsingular V, (x'ﬁ“lx)“x'{r'lx represents the pro-

1

jection matrix onto the row space of X" 'X = column space of X' = row

space of X, the equation (3.8) gives
E(p'd) = E“r(p'X'JCb) (3.9)

Since p € < X' >, this implies X Xp = p so that p'X'X = (X'Xp)' = p'

and consequently (3.9) becomes
E(p'b) = Ex(p'p) = p'b (3.10)

This completes the proof.

The theorem below furnishes the sampling variance of the estimator

considered in the preceding theorem.

Theorem 3.2, Let p'db be a linear estimable parameter and p'ﬁ S8,

unbiased estimator obtained by the modified Aitken procedure. Then
v(p') = p'Bp [(xV 0 X i x(x 0] p (3.11)

Proof:

We need the following well-known result for our proof (Cf. [7], p.79).

~H(T) = VIE(TIW)] + B v (T]W)] (3.12)

Since p'b is linearly estimable it follows from the preceding theorem

that :
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p'B = p'(x'ﬁ‘lx)x'i'lf (3.13)
and o
E(p'b|V) = p'p (3.14)

Therefore we now have from (3,12)

V(p'd) = B [W(p'p|V)] + vIE(p'®|V)] (3.15)

B [v(p"(x¥ )XV [0 + v(pm)

S
(@]

B o' (X 1%) XV In(x |V )7 1x(x7 1) p]

where D(Y|V) denotes the conditional dispersion matrix of Y given

V. Since Y and V are independent, D(Y|V) = D(Y) = V. So that

v(p's) = B [p"(XV X)XV Wi x(xVx) p) (3.16)

- o' [(x90 xd i (e 10 o

This completes the proof.

The above expression for variance of p'ﬁ cannot be further gim-
plified without additional information about the probability distribu-
tion of %. Nonetheless, we will later study under certain regularity

conditions the asymptotic behavior of the variance of p'G.

Corollary 1. Let p'b &snd q'b be two linear estimable parameters,

Then

Cov(p'p,db) = p'Ey [(X VX)XV i tx(x¥1%)"1q (3.17)
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Corollary 2. Let the design matrix X be of full rank. Then X'V'lX

is nonsingular and in this case the vector of parameters b is linearly

estimable with

b = (xV ix)txv iy (3.18)
and a . % o -
D(b) = B (v Tev-hwx(xv o) 5 49}
We now turn to the asymptotic properties of the estimators derived

under the modified Aitken procedure.




CHAPTER FOUR

ASYMPTOTIC PROPERTIES OF ESTIMATORS

1. Introduction. In the preceding chapter we introduced the modified

Aitken procedure under the setup (Y, Xb, V, G’} for estimation of un-
known parameters b, This procedure furnishes unbiased estimators of
all the linear estimable parameters. In this chapter we study the
asymptotic properties of the estimators so obtained. We begin this
study in a general manner.

For each integer n > 1, we consider the setup (Yn, Xb, V., ;In)
where Yn denotes the vector of k normally distributed observations
wvith B(Y ) =X end D(Y )=V, ﬁn denotes &n unbiased estimator
of the matrix Vn and is assumed independent of Yn. Under the modi-
fied Aitken procedure estimates of parameters are obtained by minimi-
zing the quantity (Yn = Xb)'\?;l(rn - Xb)., It should be noted that
here we are introducing the modified Aitken procedure through a sequence
of regression models [ {Y,, ¥, V , {"n? :n>11] in vhich the unknown
perameters b and the design matrix X are held fixed, while the obser-
vations Yn’ and dispersion matrices Vn and 1?‘1 vary with n. In
practice however we have only a single model. The sequence of models
considered here is introduced for the sole purpose of studying the asym-
ptotic properties of our estimators. Before we impose the necessary re-
gularity conditions on the sequence [ {Y , Xb, V , ﬁn] . on>R . we

need the following definition.

L.
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Definition 1.1. Let V be a qxq symmetric matrix and x be any

q-vector. Then x'Vx considered as a function of x is called the

quadratic form of the matrix V. The matrix V is then said to be

a) positive definite if x'Vx >0 for all nonnull x and negative
definite if -x'Vx is positive definite and

b) semipositive definite if x'Vx >0 for all x and seminegative

definite if x'Vx <0 for a1l x ([7], p. 31).

The following regularity conditions will now be imposed on the

sequence [ [Yn, Xo, V_, vn} s> L3

Regularity conditions for the modified Aitken model.

1) For each n, the matrix V, is nonsingular end there exists a
positive definite matrix V and numbers & with lima ==
n %= n

such that:
v, <V/a, (1.1)

where A < B means that the matrix (B - A) is semipositive
definite.
2) For each n the matrix ﬁn is nonsingular and there exists

numbers b_ with %im b = o such that:
n > I
v, > 5I/bn and 1im b a =0 (1.2)

where I 1is the identity matrix eand & a positive number free

of =n,
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The condition (1.2) may at first appear to be slightly arbitrary,
nonetheless this condition plays a vital role in our enalysis. It is
motivated by the fact that in practice V is a diagonal matrix

2 2 2 2
diag( 01,...,0k) and Vn = diag( cl/n1 ""’ak/nk) and we assume
that estimates of qi,...,a: are at least as large as §; the 8 then

corresponds to the smallest n

4 and the bn corresponds to the lar-

gest n, .

In order to present the consistency of the modified Aitken model
we need the following preliminary results regarding matrices and their

eigenvalues.

2. Mathematical preliminaries.

Definition 2.1. Let A be & given square nxn matrix. Then a scalar

A is said to be an eigenvalue of A if and only if there exists en
n-vector p of unit length (p'p=l) such that Ap = Ap. The unit
vector p is then said to be an eigenvector corresponding to the

eigenvalue .

Lemma 2.1. Every square matrix Anun has n eigenvalues; these are
given by the roots of the equation ]A - XII = 0 and they may be zero,
real or complex. If A is symmetric then all of its eigenvalues are

real.

Definition 2.2, Let A = (aij) be &8 given nxn square matrix. Then
n

trace(4) = tr(A) = 2
i=1

aii = gsum of the diagonal elements of A.
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Theorem 2.1 (Spectral Theorem [6], p. 5). Let A be an nxn symmetric

matrix. Then there exist n unique real numbers 11,...,xn (some of

which may be equal) and n mutually orthogonal unit vectors p,,...,p,

such that:

a) P'AP = diag(xl,...,lh) where P = (pl,pa,...,pn) is the orthogo-
nal matrix of the eigenvectors of A. .

) A= dyeip] + AgeaR) * et Apyts

e) [A-ax] = (0 - 2Oy = A)eeah) - )

d) tr(a) = MoF Ayt v A

Lemme 2.2. Let Ahxn be a symmetric matrix. Then A 1is positive
definite (pd), semipositive definite (spd), negative definite (nd),
seminegative definite (snd) according as its eigenvalues are all posi-
tive, nonnegative, nonpositive or negetive respectively ([7], p.35 ¢ 50).

The following results refer to symmetric matrices [6].

Lemna 2.3.

n
A_ -] Zx- P p' (2-1)
i=1 R

where \; = 1/xi L £0 and O othervise.

Lemma 2.4, FEvery spd matrix A has a unique spd square root Alf &

tfe = .18
&1

vhich is given by A pipi .

Lemma 2.5. Let 11 > xa > e 2 xh be the eigenvalues of an spd matrix
A. We denote by ”A" the largest eigenvalue of A. The following pro-

positions hold:
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u'Au .
sup —y— = sup u'du = “A” =
ufo . u'u=l 7\.1 (2.2)
and
u'Au -
inf —7— = inf u'Au = X (2.3)

See [7], p. 50, for details.

Lemma 2.6. Let PyseessPrsPpigsees »Pq be mutually orthogonal unit
eigenvectors corresponding to the eigemnvalues )“.L 2 e 2 L > )‘m+1 P

eee = A =0, Then

Qq
inf ‘-‘-;-f-g = inf uw'Au = A (2.4)
uto u'u=1

u€<plf"v,pm> ue<p1,-.-,Pm>

Proof':

n
By the spectral decomposition theorem 2.1 A = }) Ay p‘ipi .
i=1

Let u = CPy T e * ... O D be & given nonnull vector in

< plyooo’pm >. 'Then
' =
u'fu = 2 c3ehy PyPyPyPy (2.5)
J1k
Since the p's are orthonormal,

1 ] _m %) §2sx 1 (26)
€4y PyPyPsPy = ?ci $ 5 MW" WY k

r_..M]:l
= Me

m
Z
i

where the equality holds if e ™ 1 end CypeeesCp q = 0. Therefore

inf u'fu=2_. ||
u'u=l




L2

Lemma 2.7. The largest eigenvalue of A is the reciprocal of the
smallest nonzero eigenvalue of A, where A 1s spd.

It follows from Lemma 2.3,

Lemma 2.8. Let A< B be spd matrices. Then [|A|| < ||B]| and the

smallest eigenvalue of A is < the smallest eigenvalue of B,
The following lemma plays a vital role in the next section,

Lemma 2.9. Let Dkxk be a symmetric positive definite matrix emd X
be kxq , k >q matrix of rank m. Then the smallest nonzero eigen-
value of X'DX is at least as large as dkwm vhere d‘k denotes the
smallest eigenvelue of D and Yo the smallest nonzero eigenvalue

off X'

Proof:

Without loss of generality we can assume D is diagonal for other-
wise we can express D in a' diagonal .fr':m by applying a sui’béble ortho-
gonal transformation. Now let xl > 1.2 LT lﬁn > "m+1 o o,e. = lq =0

be the eigemvalues of X'DX. Let (pl,..., 1,...,pq) be mutually

pm’pw
orthogonal eigenvectors corresponding to Ll, P> .,).q. Then by the spect-
ral theorem 2.1

9
1
X'DX = 1}51x1 PPy (2.7)

Let e ¢< pl,...,pm> end e'e =1 and suppose that e = clpl +oan F cmpm.

Then from Lemma 2.6 it follows that
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inf e'X'DXe = A, (2.8)
e'e=1
eEes PyseessPp >

where Hn is the smallest nonzero eigenvalue of X'DX and PyseeesPy
are mutually orthogonal eigenvectors of all the nonzero eigenvalues of
X'DX. Since D is pd, the quadratic form e'X'DXe = (Xe)'D(Xe) is
never zerc unless Xe = 0. Since the vectors pd, m+1l<j<q are
orthogonal eigenvectors with eigenvalues zero,it follows from (2.7)
that e'X'DXe =0 wvhen e = pj, m+1l<]J<gq. This implies that
l\{pJ =0 for m+ 1< ]J<q. Consequently the row vectors of X are

o
orthogonal to the space < p_.,,...,P, >. 50 <X 308 < Ppyyres2Pg”

q q
= < Pyyees,Py >. Since R(X') = R(< PyseeesBp >) =m,
< X' =<py,...,pp> In view of this last equality we have from (2.8)

the following result:

inf  e'X'DXe = A ' ' ' (2.9)
e'e=1
eg<X'>

Next, let D = diag(dl,...,d.k) and Xe = ¢4 = (4,1,...,1,k)'. Then

K 2
e'X'DXe = La,2°
1l

k
S 1231{”2‘ B dk(e'x']{e) (2.10)

From (2.9) and (2.10) it follows that

A = inf e'X'DXe > dk inf e'X'Xe (2.11)
m t - - ]
e'e=1 e'e=l
eeg<X'> e e<X'>
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We now proceed to analyze the eigenvalues of X'X. Let

Vi 2y 2 .. 2V > =, =uq=o be the eigenvalues of X'X. Let

vl,...,vq be the corresponding eigenvectors. It is now easily seen

that v
J

gonal to the vectors Vo120 e

=0 for m+1<J<q. Therefore the rows of X are ortho-
]

vy sothst <X'> c <vm+1,...,vq§

=<v,...,v,> Since R(X') =m = R(< Viseens ¥y >),

<X'>=< Vi,V > In view of (2.11) this gives

Ay, >4 inf e'X'Xe (2.12)
e'e=l
e g< VyseessVp >

From the preceding considerations it follows that

] 1 ]
X'X = WViVy WV, * el A (2.13)

Now let e = k‘.l.vl s e kmv be a given but quite arbitrary umit

vector in < Vy,...,v, > Then from Lemms 2.6 and (2.13) 1t follows
that
inf e'X'Xe > w_ (2.14)

e'e=1
e g <v1,...,vm >

for all unit vectors belonging te < VyseessVp >. The equality is ac-

tually achived when k =1 and X = ... =X , =0. From (2.12)

and (2.14) we have

M 2 G

This completes the proof.



L5

With these preliminary results we are now in a position to present

the consistency of estimators under the modified Aitken procedure.

3. Consistency of estimators.

We consider the sequence of regression models introduced in Sec-
tion 1 and unless stated to the contrary we assume that they satisfy
regularity conditions (1.1) and (1.2). We recall that if p'db 1s a
linear estimable parameter then under the modified Aitken procedure

its unique unbiased estimator is

" o Wt T gL
p'd = p' (X 5 X)X i & (5.1)
with

(p'0) = p'By [(x9710) %7V -t x(x v ) I (3.2)
o

In order to prove the consistency of every linear estimable parameter

Lemma 3.1. Let {tn :n>1) be & sequence of estimators of & para-
meter g. Then a sufficient condition for the sequence ({t :n >1}

to be consistent is that %im Bt - 3)2 = 0.
» n

Theorem 3.1. Under the regularity conditions (1.1) and (1.2) every

unbiased estimator p'G as given by (3.1) is & consistent estimator
of p'b.
Proof :

Since p'ﬁ is an unbiased estimator, by virtue of Lemma 3.1 it

suffices to show that (p'b) tends to zero as n tends to infinity.
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1)

This will be so if we show that E[(X'{f;llX)_X'{’;an\};lX(x'6’;1)()'] tends
to zero as n tends to infinity. Now
S W T T
I BLXVI0) XV V(x| (3.3)
_: .A_l = lA_ n_l 'A_l =
= E[ J|(xV %)XV V(v ) ) ]
. w-ley-pio-1/28-1/20 2a-1/25-1/2 0 13-14y-
= B[ (xVX) XV Y AV S gL & (x| ]

= Bl L .,;;1/ avni;lf G

shere 1w &";1/ 2x(x'\?;1x)'. gines T'L = [(x'\?;lx)'x'ﬁ;l/ 26;1/ ax(x'v“;lx)']

= [(x'ﬁ;lx)'x'ﬁ;lx(x'ﬁ;lx)‘} = [(x'ﬁ;lx)‘] , the last expression in (3.3)

satisfies the following inequality:

< Bl ui.‘r;l/ avn{r;l./ 2 ) 1 = gl .||ﬁ;_1/ .avnﬁ;lf 3 px-ta )
(3.%)
< EL VI IvEHL Nt )

Now from regularity conditions (1.1) and (1.2) and Lemms 2.8 it follows

that
a1 IVl Py By WV (3.5)
VW< —— =
Vall Wy ll < O s,
Since u(x'ﬁglx)'“ = [reciprocal of the smallest nonzero eigenvalue

of (x'ﬁglx) ] , it follows from Lemma 2.9 that
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"(xl-‘};lx)‘” S [wn/"{rn“]“]' = “{"n“/"m (3.6)

vhere w_ denotes the smallest nonzero eigenvalue of X'X, From (3.5)

and (3.6) it follows that

iy v xxv-1x)-
Bl || (v %) x v v v ) ] (3.7)
(vl v
<EL || "v-l" H(X'V'lx) I I's E[ 53\ “wn"
m
bn a bn &
& vl BV M) < 5 — E[ tr V_ ]
o Vil b, l b, X |Iv)|°
- W tr(vn) 5 6 "vn“ —__
n m
2
-2 k v _ Y EELB
) [Wl ] (3.8)

from (1.1), wvhere Xk denotes the number of diagonal elements in the
matrix Vn.
2

Since by assumption (1.2) lim bna;l = 0, it follows that

1m Bl (x99 v 0 1 = 0 (3.9)

This completes the proof of consistency.
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4, Asymptotic optimality of the modified Aitken procedure.

The object of this section is to demonstrate that under certain
conditions the modified Aitken procedure approaches the standard Aitken
procedure as the sample size increases. For reasons of simplicity we
shall confine our asttention to the model (1.8) of Chapter 3, which is
basically the regression model for our data in the succeeding chapter.

As a first step towards showing the optimality of the modified
Aitken procedure we note that the estimator af of the within group

variance gf admits the following representation:

n

n i
2 1 1 2 "
B e —_ 7 = h,1
e Tl =3 [ n, ngyi.j 3’1.] (k.1)

and as a consequence of the strong law of large numbers, the sf con-

verges with probability one to its expected value, namely, cf, 1<1i<k.
We also note that the normal equations (2.7) of Chapter 3 which deter-
mine the parameters bl,...,bq can be equivalently written as follows:

( x'Ns;lx)b - (x'us;l )Y (4.2)

-1

where N = diag(nl,...,nk) and S -2).

= diag(aiz,..., Ve also
assume that X'X is nonsingular. In this case every linear function
of b is estimable and the unique estimator of parameters bl,...,bq

is given by

- (x'ns;lx)'lx'us;lr (.3)
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Had the true dispersion matrix v = diag(of ,...,ﬂi) been known the

estimator of b under the standard Aitken procedure would be

Et = (X'N v'lx)“lx'n v"]Y (L.4)

We now proceed to show that under certain regularity conditions

with probability one B and B

y 8re asymptotically equivalent. The

proof of this involves a number of steps.

Definition 4.1. Let fAn :n>11} be a given sequence of matrices

of the same order. This sequence is said to converge to matrix A
and we write %12 An = A 1if every element of An converges to the

corresponding element of A as n tends to infinity.
The following propositions concerning convergence of matrices hold.

Lemma 4,1, Let {A :n> 1} be & sequence of square matrices with

%}m Ah = A and suppose that A is nonsingular. Then

a) lim [A | = |A], vhere |.| denotes the determinant of the matrix.
s -]
This is so since determinant is a continuous operation invol-

ving the elements of the matrix.

b) every minor of An’ Aij, say, converges to the corresponding

minor Aia of A,
o, 8 1

¢) {A~ :n2>11 converges to A,

This is cleer from (a) and (b).




Lemma 4.2, Suppose that Lig Ah = A and Lig B B. Then
%im A B = AB.
> n n
The proof follows on observing that matrix multiplication is a

continuous operation.
We now present the asymptotic equivalence of the two procedures.

Theorem 4.1. Suppose that the regression model (1.8) of Chapter 3

satisfies the following conditions:

1) X'X is nonsingular

2) the within group sample sizes n, increase to infinity in such

a way thaet 1im nif(n1 . QRPN nk) =y s 0 < ay el s

Then with probability one

1im _(x'ns;lx_)'lx'ns'l = (X'0 v'lx)“lx'n N (4.5)

un (x Vi tenv! = (xav i) ixavt (4.6)

where these matrices have been defined in (4.2), (4.3) and (4.k4) and
{ = diag(ml,-o-’ﬁi{)o

Proof':

It is easily seen that
(xmexyxms =t = (xrs ) txers (k.7)

wvhere [ = diag(nl/(n1+,,.+nk),_,.,nk/(n1+...+nk)). By assumption




lim ' = (0 and as we have pointed out in the remark following (4.1)

1 -1

that with probability one 1lim Sn =V, Therefore lim S; = ¥

since V 1is nonsingular. Thus we have with probability one
lim (X'Ts7%) = (X'v %)
um (x'Ts7t) = vt

Combining these two equations and applying Lemms 4.1 and Lemma 4.2

it follows that

1

1im (x*ns;lx)‘lens;l o Gl (x-rs;lx)"lx'rs"

= (x'a v x)txg vt

with probability one.

The proof of equation (4.6) follows esnalogously. |!

It is clear from equations (4.3), (4.4), (4.5) and (4.6) that
under the regularity conditions of the above theorem, the modified
Aitken procedure leads to the same estimators in the limit as does
the standard Aitken procedure. Thus in this sense the two procedures

become agymptotically equivalent as the sample sizes increase.




CHAPTER FIVE

ESTIMATION OF GROWTH CURVES BY LEAST SQUARE SPLINES

1. Statement of the problem,

A few years ago the University of New Mexico Medical Staff col-
lected data on weight and biparietal diameter of live newborns and
fresh abortuses within thirty minutes of birth. The primary object
of this study was to develop & formula which could be used to predict
the weight of a fetus or a newborn from its biparietal diameter (maxi-
mum skull breadth). Such weight prediction plays en important role
in determination of fetal maturity in matermal diabetes and in cases
of repeat csesarian section. It should be added that the biparietal
diameter of a developing fetus is determined through the use of ultra-
sound without any knmown toxic effect to the mother of the fetus (Cf. [2]).

The basic data given in Table 1.1 of the Appendix consists of com-
plete records on weight measured in grams and biparietal diameter mea-
sured in centimeters on 295 newborns and abortuses. In the succeeding
sections we use the data from Table 1.1 to estimate the prediction for-
mula,

Growth curves generally display different growth patterns in dif-
ferent regions and conseguently have the handicap that knowledge of
their form in one region does not edequately determine them over the

entire region of interest. Since polynomial spline functions represent

- 52
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different polynomials in different regions determined by their knots,
some of their characteristics are analogous to those of growth curves.
Consequently a growth curve is better explained in terms of a polyno-
mial spline rather than & single polynomial over the entire region of
interest. We therefore carry out regression analysis of the data in
Table 1.1 in the Appendix by the technique of weighted least square

splines. This is based on the assumption of the following model:
y(x) = £(x) + e, (1.1)

where y(x) denotes the weight, x the biparietal diameter, f(x)
a suitable spline function and the error €y is sssumed to be inde-
pendently normally distributed with zero mean and variance 02 which

increases with x.

Initial analysis of the date was carried out by first grouping
the obgervations into 2 mm intervals of biparietal diameter; means
and standard deviations for the body weight were then calculated within

each interval which are summarized in the table on the next page.




Table 2.1

Within Group Means and Standard Deviations

54

Serial Biparietal Sample Mean Standard
Number Diameter (cm) Size Wweight (gm) Deviation

1 0.00 0.0

2 2.85 % 113.0

3 3.65 2 11%.0 1.4

4 3.85 2 288.5 212.8

5 4.05 1 115.0

6 4,25 2 206.5 12.0

7 b 45 4 319.5 83.9

8 L.65 2 383.0 100.4

g 4.85 6 376.3 188.9
10 5.05 1 765.0
11 5.45 5 550.2 51.6
12 5.65 2 553.0 19.8
13 5.85 1 709.0
14 6.05 2 701.5 290.6
15 6.25 y 800.8 43.0
16 6.45 1 1000.0
: Bg 6.85 3 o82.7 184,2
18 7.05 2 1139.5 232.6
19 7.5 5 1116.% 215.9
20 7.45 6 1224.0 184.1
21 7.65 6 1456.3 329.0
22 7.85 10 1881.7 h15.6
23 8.05 1h 2541.4 575.1
24 8.25 24 2559.8 282.8
25 8,45 17 2574.9 37L.8
26 8.65 22 2576.0 378.3
4 4 8.85 Ly 2717.7 275.4
28 9.05 8 2661, 4 353.9
29 9.25 13 2975.8 373.6
30 9.45 15 3041.3 342.9
31 9.65 10 3512.7 282,%
32 9.85 F 3317.0 439.1
33 10.05 1 B 3750.6 385.2
3) 10.25 9 3518.8 575.8
35 10.45 21 3788.1 592.5
36 10,65 5 4145.0 60k4.9
37 10.90 1 43%8.0
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As is evident from the above table within group variance for body
weight increases with biparietsl diameter. Consequently we turned to
the technique of weighted least square splines for analysis of the data.

First the whole region of interest for the biparietal diameter was
divided into the following intervals [0, 7.65), [7.65, 10.25),

[10.25 - ) since an application of Bartlett's test ([3], pp. 159-167)
showved that within each region the variances were homogeneous. Appli-
cation of formula (2.2) of Chapter 3 gave us the following estimates

of the three group variances.

Table 2.2

Estimated Pooled Variances

Biparietal Sample Center of Pooled Variance
Diameter (cm) Size . . Gravity . . ~ Estimate

Group 1 L7 5.85 25274.6

[0 - 7965)

Group 2 208 8.85 129143.6
(7.65 - 10.25)

Group 3 35 10.45 348083 .4
[10.25 - )

The center of gravity for each group was calculated by the formula
X = E(ni - 1)x, ) (n__L - 1) ; the estimated pooled variances sf
are assumed to be estimates of the error variance at the corresponding
This method provides & correction for any linear trend that might

ii.
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exist in the error variance within each group. Linear interpolation

2

of these three within group variances yielded an estimate of O for

each x in the region of interest.

3. Representation of regression equation.

We assume that the regression function f(x) given by equation
(1.1) of this chapter is representable by & cubic spline over the knots
0.0, 1.0, 3.65, 5.65, T7.65, 8.95, 10.25. The justification for the
choice of these knots is as follows. First the knots 0.0, 7.65, 10.25
were chosen because this divided the entire range of biparietal dia-
meter into groups of homogeneous within group variances. Since a cubie
spline with the end conditions f£(0) = £'(0) = £''(0) = 0 admits the
form dxj in the first region which is not desirable for the whole
region from 0,0 to 7.65, we introduced & new knot at 1.0, Further
since our real :egipn qf interest begins with_ h.o_cm we addeﬁ an addi-
tional knot at 3.65 to obtain a better approximation in the regiom to
the right. We then chose two additional knots st 5.65 and 8.95 since
these are the midpoints of the intervals 3.65 - 7.65 and 7.65 - 10.25.
These assumptions gave rise to the following regression model for the

data under study:

y(x) = by B, (x) + b B,y(x) + byBs(x) + BB (x) +

b535(x) + beBg(x) + boB (x) + e, (3.1)

wvhere y(x) denotes the weight at biparietal diameter x, €, the
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error term with zero mean and variance ai, bl,...,b7 the unknown
parameters to be estimated, and Bl”“’BY the spline functions given

below

B (x) = (4/157.76)(x)2 - (W/BL.OW)(1 - x)] + (4/77.38)(3.65 - x)3 -

(4/105.09)(5.65 - x); + (4/406.98)(7.65 - x)2

B,(x) = (k/651.46)(1 - x)? - (4/112.36)(3.65 - x),> + (4/61.38)(5.65 -z} -

(4/69.96)(7.65 - x)] + (4/180.76)(8.95 - x)?

B (x) = (4/279.84)(3.65 - x)] - (4/60.72)(5.65 - x)] +

(4/27.08)(7.65 - x)] - (4/29.56)(8.95 - ) - (4/102,62)(10.25-x)

B,(x) = (4/30.36)(x - 5.65)0 - (W/6.76)(x - T.65); +

(4/5.58)(x - 8.95)7 - (4/15.55)(x - 10.25); -
Bo(x) = (4/3.38)(x - T.65)0 - (4/1.69)(x - 8.95)] + (1/3.38)(x - 10.25)]
Bg(x) = (b/1.3)(x - 8.95)] - (W/1.3)(x - 10.25)]
B,(x) = b(x - 10.25)] (3.2)

We now turn to the estimation of the parameters bl""’bT'

4, Estimation of parameters.

As explained in Chapter 3, we now use the modified Aitken procedure
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for the purpose of estimating the parameters bl""’bT' The normal

equations determining the parameters are obtained by minimizing

37 L 2 2
;%;(”1/ 0 )(F; - by (x) - ... - boB(x)) (.1)

where n, is the number of observations with biparietal diameter Xys

j, the average veight st x,, end 3f the estimate of the error vari-

ance at x, obtained by the method described following Table 2.2 of

i
this chapter.

The normal equations are given as follows:

bySyy * BSyp ¥ eee F 050 = Q) (4.2)

blsel - ba,s‘,a2 + es + bTSeT = Q2

- . -

B8y *+ Bg8.5 *+ .ee # BoS0 = Qg

where Suw and Qu denote the following sum of products:

k

Suy = 2 ny/ 55) B,(x,)B,(x,) (4.3)
- 2

Q= ;E;(ni/ 63) B, (%) ¥(x,)

u, v =1,...,7 and k = 37,

Using the program given in the Appendix at the end of this chapter,

the following values are computed:
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7<QR

6:91 1121

C+63 396  11+46 (B.h)
(8.,) = zeo2 2097  B4e22 1443497

0.0 0+1C 18423 2000-38 566196

00 00 Oel4 575+48 2338:68 130623

8e0 8e0 G0 3e21 1670  12eU8 039

where (S._ ) is & symmetric matrix, and

r Q \ f 10126, 65)
Q, 23438.79
Q’j T9uT6.31
Q, = 1322118.00 (4.5)
% 1783669.00
Qg 543366.00
\ Q, 3307.62

Using the values in (4.6) and (4.7) we obtain the following estimetes =

of the parameters:

( "1\ { 235.97 \
b, 978. 7k
b3 214147
by | = 795.34 (4.6)
b -3.35
bg 76.99 ‘/
\ b / \—h66.61

Thus in term of the above estimates the prediction formula is:



y(x) = 235.97 B, (x) + 978.74 B, (x) + 2141.47 BB(x) 3

The residual sum of squares in this case is:

X
Rg - 1Ei(ni/ 5f)§(x1)2 - D@ - .er - bR,

793.34 B (x) -

466.61 BT(x)

8920834.0

3.35 B5txJ +

76.99 Bs(x) =

(%.7)

(%.8)

An examination of the values of parameters indicated that the

spline function B5(x) does not make & singificent contribution to

the prediction formula.

H : b =0,

o] 5

¥(x) = byBy{x) + ... + 0By (x) + beB(x) + bBo(x) + o

Uhder"Ho the fégreésioulmodel'réduéeé to

Thus we proceeded to test the hypothesis

(5.9)

A procedure similar to the earlier one yielded the following

estimates of the parameters:

/

\

\

242.19
969.95
2158.01
789.92
T1.80
-408.81

(4.10)
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and the residual sum of sguares Rf = 8924111,0, To test the signifi-

cance of the hypothesis Ho’ we calculate the variance ratio
2 2 2
F(1,30) (R - Ro)/(RO/k—T) = 0,011 (%.11)

This computed value of F(1’50) is found to be insignificant. Conse-
quently the spline function Bs(x) plays no significant role in the
prediction equation.

Thus as far as the problem of prediction is concerned the fol-

lowing formula (without Bs(x]) should be used:

y(x) = 242.19 Bl(x) + 969,95 Ba(x) + 2158.01 Bj(x) +

789.92 Bh(x) + T1..80 B6(x) - k08.81 BT(x) (k.12)

5. Large sample tolerance limits.

We now proceed to set up large semple tolerance limits. The usual
cases of interest are the 95th and 90th percentile tolerance limits.

The formula that we use is as follows:

Lower Tolerance Limit = y(x) - 2z 6:

: (5.1)
Upper Tolerance Limit = y(x) + 2 o

where G2 denotes an estimate of V-(e ) and z = 1.96 for the 95th
percentile and 1.645 for the 90th percentile.

We now turn to the estimation of Ux for each x,
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Estimation of Oy

Table 2.2 of this chapter gives us preliminary estimastes of the
within group variances gf, Ug and c;. Now & second estimate of these
variances is also available through the residual variances., The quan-
tities

>, (¥, - 3.)%/16 }5:.5 (7, - v.)/11  end %7 (7, - ¥,)%/3
B, (¥ =¥y n (¥, - ¥, a n (v, - ¥,
4= il O i 4 1=211 i i i=3hi i 1

- . I(5.2]
are asymptotically unbiased estimators of cf,egg and g? respectively.

We were motivated to use the divisors 16, 11 and 3 since in the stan-
dard regression analysis one uses the divisor Xk - q where k denotes
the number of observations and q dis the number of parameters estimated
within that group. In our case the first group contributed to estimation
of four parameters, the second to only one new parameter and the third
group.té an additionél-new pa?améter.. ﬁhué iﬁ the.secoﬁd gréuﬁ.wé éﬁb-
tracted an additional parameter to account for the effect of the other
two splines that were already accounted for in the first interval.
This is somewhat arbitrary but in no way influences the large sample
properties of these estimators.

Pooling of these estimates from Table 2.1 and (5.2) gives the follo-

wing combined estimates of variances for the three groups:
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52 . [ Din 18 + EnF -5, BV (a,-1) +26)
n,-1)s n - n. -
s ke B 1 T/ P

Q
n
[¢]

I

33 =
= [ 2 (n-1)s + g?ni(iri -3, 21 £ (n,-1) +11] (5.3)
i=21 i=21 ! i i=21

P ~ ST
83¢ [i§3£ni-l)si + 1§5ii(yi--yi-) ]/[1=31(;n1-1) + 3]

Using these formulas we obtain the following estimates of the

within group standard deviations:

61 = 205.3 at x =5.85

405.37 &t X = 8,85 (5.4)

=2
]

35 = 573.h at x = 10.45

Again by the technique of linesr interpolation we obtained esti-
mates of o at each x and then fitted a least square cubic spline
to these estimates to obtain a smooth curve for Ex. These estimates
were then used to obtain the lower and upper tolerance limits which

are presented in the tables and figures that follow.




Table 5.1

The Predicted Body Weight from Biparietal Diameter,

Its Standard Deviation and 954 Tolerance Limits

HIPARIETAL
DIAMETER
{ecm)

[F Y SO R S SN S S Y
Do~V d =

L4

- - -

oo o 9 o B s B e O =)}
O @ ~3 O B 3 py = €

ESTIMATED STANDAKD

WEIGHT
(grﬂv

254
249
264
279
296
313
331
350
37¢
391

413
437
461
487
614
542
ae
624
637
671

c8
746
87
830
876
924
975
1229
1C86
1146

DEVIATION

143
146
149
152
165
158
161
164
167
17C

173
176
173
183
167
191
195
200
2C5
£1C

LOWER UPPER
TOLERANCE  TOLERANCE
LIMIT LIMIT
¢ 515
o 536
) 557
¢ 579
e 601
2 624
15 647
28 72
42 698
53 725
74 753
18 783
1@ 814
127 847
147 881
167 918
189 956
211 957
234 1039
258 1084
284 1132
311 1182
340 1234
371 1290
404 1348
439 1409
477 1473
518 1540
561 1611
608 1685

64




BIPARIETAL ESTIMATED

DIAMETER(C™)

9.0
9.1

9.2
Q3
9.4
9.8

7
B8
9.9

12-C
18+1
102
1C+3
1C-4

G5
1C+6

07
1C+8

-9

Table 5.1 (Continued)

WEIGHT (gm) DEVIATION
1210 281
1277 288
1348 295
1422 302
15C1 309
1584 316
1671 522
1762 329
1858 335
19566 342
2066 348
2157 354
2258 361
2357 367
2454 374
2548 581
2637 388
2720 396
2797 o4
2866 412
2927 421
2979 431
3025 0
3067 451
3106 461
3146 472
3187 453
3233 494
3284 e85
A344 516
3413 b7
3495 537
3591 248
3703 558
$826 568
39583 578
4372 588
4174 088
4249 6C9

4284 62¢C

LOWER

STANDARD TOLERANCE

LIMIT

658
711
768
829
89b
964
1038
1117
12CC

1286

1373
1462
1582
1657
172¢
1880
1875
‘1944
200
2057

21CC
2134
2161
2182
2221
2228
2240
2264
2294
2332

2380
2441
2916
2688
2712
2819
2919
30C1
3065
3071

UPPER
TOLERANCE
LIMIT
1762
1843
1927
2C16
2108
2204
2304
2408
2516
2627

2739
2853
2966
3078
3188
3285
3399
3497
3589
3675

3783
3824
38839
3951
4011
4271
41534
4201
4274
4355

4446
4549
4665
4797
4941
5086
5225
5347
5444
55686

65
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Table 5.2

The Predicted Body Weight from Biparietal Diameter,

Its Standard Deviation and 904 Tolerance Limits

BIPARIETAL

DIAMETER
(em)

4+

-

(4 00 IS S S IS < IS e S
DD 90 G NN O

6+1
62
B3
64

6+6
67
68
6+9

ESTIHMATED
WEIGHT
§m

234
249
264
279
206
313
331
3560
370
591

413
437
481
487
514
542
6572
604
637
671

78
746
87
830
876
924
9786
1029
1C86
1146

STANDARD
DEVIATION

143
146
149
152
155
158
161
164
167
170

LOWER UPPER

TOLERANCE TOLERANCE
LIMIT LIMIT
8 470
8 490
17 510
28 530
0 552
52 §74
66 596
80 620
a5 645
111 671
128 6598
146 727
165 787

185 789
206 822
228 857
250 894
274 933
299 978
325 1018
352 1064
381 1112
412 1163
445 1216
80 1272
517 1351
567 1393
600 1458
646 1627
694 1598

66




Table 5.2 (Continued)

LOWER UPPER

BIPARIETAL ESTIMATED  STANDARD  TOLERANCE  TOLERANCE
DIAMETER(cm) WEIGHT(gm) DEVIATION LIMIT LIMIT
70 1210 251 746 1673
Te1 1277 288 BC2 1752
Te2 13548 295 862 1834
743 1422 302 926 1920
Ted 1501 30O S92 2210
7+5 1684 316 1064 2104
6 1671 a2z 1142 2202
?e7 1762 329 1221 2304
7.8 1858 335 13C6 2410
7+9 195686 342 1393 2519
Ba0 056 248 1483 2629
Hel 2157 354 1574 2741
B+2 2258 561 1664 2852
Hel 2567 367 1753 2962
Hed 2454 374 1838 3070
85 2548 381 1920 3175
Be«6 26837 388 1598 3276
Be7 2720 3896 2068 3372
8e8 2797 o4 2132 3462
8.9 2866 41z 2187 SH4ab
90 2927 421 2233 362C
D] 2979 451 2270 3688
82 3025 4 2299 3750
Ge3 3Ce7 451 2524 3809
Ge4q 3106 461 2347 38686
95 3146 472 2369 3923
9.6 3187 483 2392 3982
97 3233 494 2420 4045
9«8 3284 9Co 2453 4115
9.9 3544 216 2494 4193
1C+C 3413 527 2546 28C
10+1 3495 537 2610 4379
102 3591 548 2689 4403
10+3 703 558 2784 4621
104 3826 568 2891 4761
1045 3953 578 300z 4904
Ce6 4072 588 31C4 5040
18+7 4174 508 3189 5156
10+8 4249 609 3247 5262

12.9 4288 620 3266 5309




Figure 5.1

The Prediction Curve for Body Weights from Biparietal

Diameter and Upper and Lower 954 Tolerance Limits
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The Prediction Curve for Body Weights from Biparietal
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6. Conclusions.

It is worthwhile to conclude this chapter by pointing out some of
the advantages and disadvantages of the use of spline functions in the
study of growth curves. As we have noticed earlier growth curves ge-
nerally display different growth patterns in different regions and con-
sequently have the handicap that knowledge of their form in one region
does not adequately determine them over the entire region of interest.
Since polynomial spline functions represent different polynomials in
different regions determined by their knots, their characteristics are
analogous to those of growth curves, Consequently a growth curve is
better explained in terms of a polynomial spline rather than a single
polynomial over the entire region of interest. At the same time poly-
nomial spline functions have local properties which are analogous to
those of polynomial functions, for example they can be differentiated
and integrated at any given point. The least square theory with spline’
functions is no more complicated than it is for instance with ortho-
gonal polynomials. In practice electronic computers can be used to
compute values of spline functions of & given basis accurately and
rapidly.

One of the disadvantages with the use of splines is the somewhat
arbitrary nature in which the knots are chosen. The simplest guideline
that can be offered is to suggest the use of as few knots as possible
thus ensuring greater smoothness and less overfitting, In addition
the knots should be chosen close to inflection points. The reason for

-

this is that cubic spline functions tend to have inflection points in




the neighborhood of knots. Also with cubic splines one should try not
t0 have more than one inflection point per interval. The choice of
knots for our data was greatly influenced by these considerations.

If the knots are poorly chosen, there is a tendency for the residuals
to be autocorrelated, This can be used as a measure of how well the
knots have been chosen. In practice the best rule of thumb is perhaps
to obtain a scatter diagram of a sample of data, examine it very care-
fully and then carry out a trial analysis to arrive at the optimum
choice of knots.

For those interested in further pursuing this line of research
the next step would be to write a general purpose program using the
codes of Carl de Boor based on a simple recursive formula for compu-
tation of B-splines [2]. As with Schoenberg's basis in order to in-
corporate the behavior of growth curves near zero the first few basis
functions obtained by Cerl de Boor's codes should be deleted.

Another line of investigation worth further pursuing would be a
comparative study of the relative merits and demerits of regression

analysis by least square polynomial splines and by least square poly-

nomials; and to actually determine what added reduction in residual

variance can be achieved by the use of polynomial splines.
Finally how the knots should be chosen in a given case is also

an important area that needs further investigation.
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Computer Program
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Table 1.1

Data on Weight and Biparietal Diameter

Serial Biparietal Weilght Serial DBiparietal Weight
Number Diameter(cm) (gm) Number Diameter(em) (em)

1 2.9 113 29 5.9 709
2 3.6 115 30 6.0 496
31 6.0 907

3 3.7 113
32 6.2 765
L 3.8 439 33 6.2 765
5 3.8 138 34 6.2 851
6 4.0 115 35 6.3 822
7 L.2 198 36 6.5 1000
8 4.3 215 37 6.8 794
) L4 369 38 6.9 992
39 6.9 1162

10 4,5 300
11 4.5 399 40 7.0 975
12 4,5 210 L1 7.0 1304
13 4.6 454 L2 A 1021
14 4.6 312 43 e 1162
nn 7.2 1335

15 4.8 227
16 L.8 737 L5 T3 794
17 4,8 420 46 73 1270

18 4.8 250
19 L.8 312 L7 7.4 1021
L8 74 1219
20 4.9 312 49 7.4 1418
50 7.4 1446

21 ek 765
51 75 1021
22 5.4 482 52 7.5 1219

23 5.4 624
24 54 539 53 7.6 970
54 7.6 1418
5 5.5 567 55 750 1559

26 5o 539
56 77 1276
27 5.6 567 57 Lo ) 1559
28 5.6 539 58 7.7 1956
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Table 1.1 (Continued)

Serial Biparietal Weight Serial Biparietal Weight
Number Diameter(cm) (gm) Number Diameter(cm) (em)
59 7.8 1474 98 8.3 2466
60 ¥ 1588 99 8.3 2070
61 7.8 1673 100 8.3 2183
62 7.8 1758 101 8.3 2693
63 7.8 2296 102 8.3 2268
103 8.3 2183
64 7.9 1550 104 8.3 2410
65 7.9 1559 105 8.3 2552
66 7.9 1985 106 8.3 2381
67 7.9 2183
68 7.9 2751 107 8.4 2523
108 8.4 3459
69 8.0 1616 109 8.4 2608
70 8.0 1701 110 8.4 2353
71 8.0 1814 111 8.4 2807
72 8.0 1899 112 8.4 2807
73 8.0 2608 113 8.4 1928
74 8.0 2665 114 8.L 2268
?2 g.o 2948
7 .0 2977 115 8.5 2835
77 8.0 3062 116 8.5 2637
78 8.0 3090 117 8.5 2637
79 8.0 3430 118 g.5 3282
. D oo e T e A SRS % e P 3 TP
80 8.1 2410 120 8.5 3204 |
81 8.1 2637 121 8.5 2410
82 8.1 2722 122 8.5 2353
123 8.5 2268
83 8.2 1985
8L 8,2 2778 124 8.6 2722
85 8.2 2020 125 8.6 3005
86 8.2 2693 126 8.6 2296
87 8.2 2637 127 8.6 2183
88 B.2 2580 128 8.6 3005
89 8.2 2863 129 8.6 1616
g0 B.2 2750 130 8.6 2410
131 8.6 2466
91 &3 2353 132 8.6 2268
92 8.3 2778 133 8.6 2552
93 8.3 3005 134 8.6 2665
94 8.3 2948 135 8.6 2410
95 B 2778 136 8.6 3062
96 8.3 2608
97 8.3 2552 137 8.7 2466
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Table 1.1 (Continued)

Serial Biparietal Weight Serial Biparietal Weight

Number Diameter(cm) (gm) Number Diameter(cm) (gm)
138 8.7 2920 181 8.9 2778
139 8.7 2211 182 8.9 2835
140 8.7 3147 183 8.9 3289
141 8.7 2325 184 8.9 2608
142 8.7 2466 185 8.9 2892
143 8.7 2552 186 8.9 2495
144 847 3175 187 8.9 2523
145 8.7 2750 188 8.9 2353

189 8.9 3090

146 8.8 2807
147 8.8 2013 190 9.0 2807
148 8.8 3402 191 9,0 2211
149 8.8 2637 192 9.0 2835
150 8.8 2475 192 9.0 2722
151 8.8 2495
152 8.8 2655 19 9.1 3260
153 8.8 2495 19 9.1 2693
154 8.8 2495 195 9.1 2608
155 8.8 2495 196 9.1 2155
156 8.8 2778
157 8.8 2778 197 9.2 2722
158 8.8 2637 198 9.2 3147
159 8.8 2750 199 9.2 2693
160 8.8 2778 200 9.2 3345

461 - ¢ - 8.8 .7, RN - SRS 11 SRR, | (RIS
162 8.8 2608 202 Q.2 2580
163 8.8 2750
164 8.8 2410 203 9.3 3416
165 8.8 2807 204 943 3204
166 8.8 2410 205 9.3 3204
167 8.8 3119 206 9.3 3459
168 8.8 2977 207 9.3 2183

208 9.3 2863

169 8.9 2722 209 9.3 2807
170 g.9 2637
171 8.9 2835 210 Dbt 3289
172 8.9 3062 211 9.4 2381
173 8.9 3204 212 Gl 3119
174 8.9 2580 213 9.4 2665
175 8.9 2580 214 9.4 3175
176 8.9 2863
177 8.9 2211 215 9.5 3062
178 8.9 2892 216 9.5 2665
179 8.9 2609 217 9.5 3317
180 8.9 2778 218 9.5 3515
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Table 1.1 (Continued)

Serial Biparietal Weight Serial Biparietal Weight
Number Diameter(cm) (em) Number Diameter(em) (em)
219 9.5 2892 256 1021 3289
220 9.5 3260 257 10,1 3912
221 9.5 2580 258 10,1 LOsy
222 9.5 3090 259 10.1 3912

223 9.5 3547
224 9,5 3062 260 10,2 3912
261 10,2 2807
225 9.6 3374 262 10.2 3544
226 9.6 3912 263 10.2 3119
227 9.6 3742
228 9.6 2977 264 10.3 3771
229 9.6 3487 265 10,3 3629
230 9,6 3487 266 10.3 2920
267 10.3 Le78
231 Q.7 3317 268 10,3 3289
232 9.7 3856
233 9.7 3345 269 10.4 2948
235 9.7 3629
270 10.5 3090
236 9.8 2807 271 10.5 59
237 9.8 4082 272 10,5 4196
238 9.8 3033 273 10.5 3090
239 9.8 3289 274 10.5 3686
240 9.8 3232 275 10.5 3062
o, s SRR - B L aE e R K R Lt
277 10.5 4281
242 9,9 3062 278 10.5 4649
279 10,5 4678
2473 10,0 3430 280 10.5 3771
2lly 10.0 3714 281 10.5 3515
245 10.0 3686 282 10.5 4026
246 10.0 3459 283 10.5 2750
247 10.0 4564 284 10.5 4082
248 10.0 4139 285 10.5 4366
249 10.0 3544 286 10.5 3714
250 10,0 3317 287 10.5 L536
251 10,0 3799 288 10,5 3289
252 10,0 4338 289 1015 4196
253 10.0 3544
254 10.0 3912 290 10.6 4905
255 10.0 3147 291 10.6 4253
292 10.6 4309
293 10.6 3232
204 10.6 4026

295 10.9 4338




Computer Program of Regression Analysis with B-splines.

DIMENSION A(40s8B)aBSI7raTU7)9X(4C) 2 WI42)2S(797)2Y(40)
DIMENSION YY(40)sXX(4CC)»YG1420)»Q(7)
DATA T/C+C11+0136515+65917+6518:95510+25/
CALL OPEN(1,"DATTS"» 'IKPUT")

CALL OPEN(2s "PATHAK", 'OQUTPUT")

READ(1+%) N

DO 1C I=1.N

READ(1e%) A(I#1)aY(I)aw(l)

CALL SPLINE(TsA(Is1)sBSs1)

0 11 J=2.8

11 A(I+J)=ES(J-1)

1C COKTINUE

DO 15 K=2.8

DO 15 J=K.8

SUM=0+0

DO 16 I=1,N

16 SUM=SUM+A(I»E)*A(L[»J)1%¥(1)

15 StJ=1sJ-K+1)=SUH

DO 17 J=2.:8

SUN=0«2

DO B0 'I#=19N

50 SUM=SUM+Y(I)RAlL+J)%WI(])

17 0(J=1)=SUM

DO 18 I=1,7

18 WRITE(6519) QUINs(SUIsI=d+1)sJ=1s1}

19 FORMAT(BFG.2)

CALL SYMMBE(72725:7:7)

CALL SOLVE(7+73S:7:+72Q)

WRITE(Gs19) (QUI)al=1+7)

DO 2C I=1sN

CALL SPLINE(T»A(I»1)sBSs1)

20 YY(I)=011)%BS(11+0(2)%BS(2)+Q(2)*BS(3)+Ql4)*BS{4) -
TOUIS)*BSIB)+0(B) *BS(6)+QU P )=ESI T}
WHITE(6221)

21 FORMAT(//' TABLE OF RESIDUALS'/)
WRITE(Bs22)

22 FORMAT(8Xs "X"»13Xs Y '+ 10Xs "YHAT » 10Xy *"RESID" /)




Computer Program (Continued)

O §5=0+0
49C DO 23 1=1,N

02 R=Y(1)=YY(I)
510 SS=SS+RFR*W(1)
520 23 WRITE(6+24) A(LIs1)sY(I)sYY(I)oR
53C 24 FORMAT(4G15.5)
539 WRITE(6+25) S8
54C 25 FORMAT(//* SUM OF SQUARED ERRORS®»G15+8//)
550 DEL=10.9/327
560 D0 26 1=1,208
S7C XX(1)=4+0+(1-1)%DEL
58C CALL SPLINE(TsXX(1)sBSs1)

90 26 YG(1)=0(1)#BS(1)+0(2)*BS(2) +Q( 3)¥BS(B)1+0(4)#BS(4)+ -
§31 CUSI*BSI5)+0(6)XBSI6)+Q17)¥BS(7)
611 DO 99 I=1,208
612 99 WRITE(2) XX(1)4¥G(1)
650 CALL CLOSE(1)
660 ST0P
670, END
880 SUBROUTINE SELINE(Ty7s 58y NCALL)

0 DIMENSION T(7)yBS(7)sTPI757)
?0C IFINCALL+GT+1) GO TO 3
71 DO 1 1=1,7
720 DO 2 J=1s1
730 2 TPUL»J)=T(1)=T(J)
74 1 CONTINUE
750 3 A=AMAX1(Qes (Z=T(6))#x3)
760 B=AMAX1(Ces (Z-TU7))%43)
761 BS(7)=4%B
T A==4%A/TH(7,6)

C B=4%B/TP(7+6)

C BS(6)=~{A+B)

00 A=A/1P(655)
810 B=B/TR(7+5)
820 C=AMAX1(De+» (Z-T(5))%x3)
B3C C=4%C/{TPI6+5)*TP(745))
840 BSI5)=0s0
850 A=A/TP(654)
860 B=B/TP(7y4)
870 C=C/TP(5+4)
885 D=AMAX1(O+y (Z-T(4))%k3)
890 D==4%D/(TP(524)%TP (654 ) ¥TP(714))

GO BS(4)==(A+B+C+D)
910 E=AMAX1(8es(T(7)~2)%%3)
920 E1=4%E/(TP(7»3)¥TP(794)%TP( 7+ 51X TP( 746))
330 F=AMAX1(Ces (T(6)=Z)%%3)
940 F1=~4%F/(TP(6»3)*TPL614) ¥ 1P (625) ¥TP(756) )




Computer Program (Continued)

958
960
a%e
980
990

nnn
NI

110
1820
103
1840
12

1060
127C
128C
1298
1100
1118
1120
1132
1148

1150

1160
1170
1180
1190

1200
1212
1220
1232
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1360
1360
1370
1280
1390
1400

141C

G=AMAX1{Cey (TIH)=Z)%%3)
G1=4%G/ U TPI5+3) TP 524 )2 TPIBHIFTEI745) )
H=AMAX1(Zey» (T(4)=Z)%%3)
Hl==4%H/( TP(4»3)%TP{ 5941 %TF (64 ) ¥1P(794))
P=AMAX1(Des (TU3)=Z)%%3)
Pl=4%P/{ TP{4,3)#TP( 5 31 % TP( G 3)#TP(743) )
BSU5)=E1+F1+G1+H1+P1
Fe=a%F/(TP(6+2) TP 6231 *#TE(624 )1 %TP(E2D))
GR2==4%G /U TP+ 2) % TP 5231 TP (594 ) TP (6 D) )
HZ=4%H/{ TP 49 2) ¥TF 4231 %¥TP( 5241 %TP(Gs4) )
P2==4%P/ I P13+ 21 %TP( 4+ 3) % TP (5531 %¥TP(6+ 3) )
H=AMAX1(Ces (T(2)-2)%%3)
R2=4%R/(TP(312)%TE(492) *TF( 2:2)%TPI 6421 )
BSL2)=F2+G2+H2+P2+R2
GE=44G/(TP( 5211 XTP( 5+ 2) % TP( 533 ) %TP( 5s4) )
H3==4%H/{ TPl4dy 11 RTP(492) TP 14, 3)%TFP(5Hs4) )
FA=4%P/ U TP S5 1) ¥ TPIS» 2) % TP 492 ) %TPI5»3) )
EO==4%R/AITEI 2+ 1) ¥ TPIS+ 2V TP 421 %TP(5H:2))
U=AMAE1(Ses (TU1)-Z)%43)
U3=4#U/(TPI20 1 1 RTPIE2 1) TEL 491 1%TP{5s1))
ES11) =05+H3+F3+RAHUB
RETURN
END

SUBROUTINE SYMMBE(NDIEsMDIMAs o)
| REALX4 ACNDIH,KDIN) BN

" THIS ROUTINE USES SYMMETRIC ELINIBATION (IN PLACE) TO FACTOUR A

“ POSITIVE DEFIKITE N BY N BANMD MATRIX A (BAND WIDTH = 2#M+1) INTO
* L*D%ELs%T. ONLY THE LOWEE TRIAKGLE OF a4 IS USED AND THIS BECORES

" L AND D OK OUTKUT-

" Alle1)seceyAlNs1) CONTAINS THE DIAGONAL BAND

" A(292)15e0s3A(Ns2) CONTAINS THE FIRST SUBDIAGONAL BAND

" OACHELsM+EL) g een s AlNyM4+1) CORTAINS THE LOWEST SUBDIAGOHAL BAND

EM1=K~1
DO B8 K=1.HM1
EP1=K+1
LI=MIRC(K+Ms N)
DO 20 I1=KP1,sL1
I=L1+KP1-11
EM=A{IsI-K+1)/7A(Ks1)
DO 1C J=KP1sl
1C A(T»I-d+1)=Al1»1=J+1)-EM¥A(JsJ-K+1)
20 AlLl+I-K+1)=EN
30 CONTINDE
RETURN
END




Computer Program (Continued)

1420
1430
144C
1450
146C
147C
1480
1492
1568
1812
1520
1530
1540
1560
1568
1572
1680
16898
1658
161C
1620
1630
1649
1650
1660
1670

SUBROUTINE SOLVE(NDIMsMDIMs AsNolisB)
REAL#4 A(NDIMsMUIM) s BNLINM)

THIS ROUTINE USES BACK SUBSTITUTION TO SOLVE THE TRIANGULAR
BARDED SYSTEM A*X=F WHEHE A IS THE OUTPUT OF SYMMBE,» B ON INPUT
IS THE RIGHT HAND SIDE AND ON OUTPUT IS THE ANSWER X+ AS IN
SYMMBE THE ORIGIKAL COEFFICIENT MATRIX IS ASSUMED TO HAVE EAND
WIDTH 2%M+1.

DO 1C TI=2.N

L=MAXC(1+1-M)

IM1=1-1

DO & J=LsIH1
BOLI=BII)=A(1s1=J41)%E(J)
CONTINUE
BIN)=BINI/AlN1)

EM1=N-1

DO 2¢ I1=1.KH1

© 1=N-11

20

IP1=1+1
BOIY=BII)/A01+1)
L=MINC(NsI4H)

. DO 20 J=IP1,L. S
BtIV=BlI)=AtJsd=14+1)%B(J)
EETURN
END
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