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Abstract

This paper will outline a Debiased Sinkhorn Divergence driven Bayesian inversion

framework. Conventionally, a Gaussian Driven Bayesian framework is used when

performing Bayesian inversion. A major issue with this Gaussian framework is that

the Gaussian likelihood, driven by the L2 norm, is not affected by phase shift in a

given signal. This issue has been addressed in [1] using a Wasserstein framework.

However, the Wasserstein framework still has an issue because it assumes statistical

independence when multidimensional signals are analyzed. This assumption of sta-

tistical independence cannot always be made when analyzing signals where multiple

detectors are recording one event, say from a seismic event. The Wasserstein metric

can be generalized to multidimensional signals, but implementation of the multidi-

mensional Wasserstein metric is very computationally expensive. This means that it

is unreasonable for Bayesian inversion. Debiased Sinkhorn Divergence offers an alter-

native to the multidimensional Wasserstein metric while remaining relatively cheap

computationally. This allows for the creation of a Debiased Sinkhorn Divergence

driven Bayesian framework that will be formulated and analyzed in this paper.
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Chapter 1

Introduction

In most applications of Bayesian inversion, a Gaussian likelihood (sometimes called

Normal likelihood) function is used to formulate a Bayesian inversion framework.

The Gaussian likelihood implements the L2 norm. This likelihood function is a stan-

dard choice in certain specific applications, but fails to account for phase differences

in a given signal. Because of this, the Gaussian likelihood can produce many false

optima that a Bayesian inversion algorithm can become trapped in, producing an in-

correct posterior distribution. Through the work in [1] we can see that a way to avoid

this issue all together is to use a different likelihood, namely a quadratic Wasserstein

quasi-likelihood (loss function). The advantage that this quasi-likelihood has is that

the Wasserstein metric not only measures the difference in amplitude of two signals,

but also the difference in phase. This means that depending on the application, the

Wasserstein quasi-likelihood can produce a better posterior compared to the Gaus-

sian likelihood. This idea is explored in detail in [1]. The Wasserstein metric is used

to create the Wasserstein quasi-likelihood and in [1], the one-dimensional Wasserstein

metric is used. This is because implementation of a multidimensional Wasserstein

metric would be very computationally expensive. So, instead of implementing the

multidimensional Wasserstein metric, [1] uses the one-dimensional Wasserstein met-
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Chapter 1. Introduction

ric and makes some assumptions on the signal being analyzed. The main assumption

is that the signals being analyzed are statistically independent. This assumption is

made so that we can assume that the quasi-likelihood of the signals is a product

of the quasi-likelihoods of the one-dimensional signals. This assumption allows the

one-dimensional Wasserstein quasi-likelihood to be applied to multidimensional sig-

nals. However, this assumption of statistical independence cannot always be made

for a given set of signals. This is where Debiased Sinkhorn Divergence has a ma-

jor advantage. Sinkhorn Divergence can be viewed as an entropically regularized

Wasserstein distance[2][17], allowing for the creation of a Debiased Sinkhorn Diver-

gence driven Bayesian framework. This Sinkhorn framework has the advantage that

it does not require the assumption of statistical independence to work. Sinkhorn has

an advantage over the multidimensional Wasserstein metric in that it is far less com-

putationally expensive [18]. Because Sinkhorn Divergence costs less computationally

than the multidimensional Wasserstein metric, it is a viable option in a Bayesian

framework. Also, Sinkhorn Divergence does not need the statistical independence

assumption, so it can be a better choice when analyzing a multidimensional signal

compared to the one-dimensional Wasserstein metric. In this paper a Sinkhorn Diver-

gence Bayesian framework is created by modifying the Wasserstein framework from

[1], using a Markov Chain Monte Carlo method. Specifically, Metropolis-Hastings

within Gibbs sampling algorithm will be used to formulate a numerical algorithm

(see chapter 5 for details).

The rest of the paper will explore this new Sinkhorn-Bayesian framework. Chapter

2 will outline the general Bayesian inversion Problem. Chapter 3 will explore how to

derive Sinkhorn divergence from the general optimal transport problem. Chapter 4

will outline quasi-likelihood structures based on Sinkhorn and Wasserstein. Chapter

5 will describe a numerical method using the new Sinkhorn quasi-likelihood. Chapter

6 will explore examples implementing this new Sinkhorn-Bayesian framework.
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Chapter 2

Bayesian Inversion

2.1 Bayes’ Theorem

In many stochastic processes, we are tasked with finding the conditional probability

of the model parameter given an observed quantity. This is done through Bayes’

Theorem which allows us to calculate the conditional probability of an event occur-

ring. In Bayesian inversion, we are using Bayes’ Theorem to calculate the condi-

tional probability of the model parameter vector θ = (θ1, ..., θm) ∈ Θ ⊂ R
m. Let

g = (g1, . . . , gn) ∈ R
n be vector of n observed quantities and let f = (f1, . . . , fn) ∈ R

n

be a vector of n predicted quantities created by a forward predictive model depending

on the parameter vector θ. That is:

f = f(θ) : Θ ⊂ R
m → R

n

Now, applying Bayes’ Theorem to solve for the conditional probability of θ given g,

written as π(θ|g), we have [3]:

π(θ|g) =
π(g|θ)π(θ)∫

Θ π(g|θ)π(θ)dθ
(1)

3



Chapter 2. Bayesian Inversion

Where π(θ|g) is the posterior, π(g|θ) is the likelihood, and π(θ) is the prior dis-

tribution of θ. Note that sometimes
∫
Θ
π(g|θ)π(θ)dθ is written as π(g). Since

π(g) is independent of θ, it can be viewed as a scaling constant to ensure that the

posterior obtained from (1) is consistent with the definition of a probability den-

sity function (i.e.
∫
Θ
π(θ|g)dθ = 1 and is positive for ∀θ ∈ Θ). This means that

π(θ|g) ∝ π(g|θ)π(θ), and that the proportionality constant is precisely 1
π(g) . This

now leaves the task of finding distributions for the prior and likelihood. The prior,

π(θ), is a distribution that we obtain from prior knowledge about the model param-

eter θ. As an example, if we know that θ ∈ (1, 3) then one choice for a prior could

be θ ∼ Uniform(1, 3).

Now, if we have a quasi-likelihood instead of a true likelihood, we call the result-

ing posterior distribution a quasi-posterior or Gibbs posterior. This Gibbs posterior

still gives accurate information on the probability of θ given g, but is defined using

a quasi-likelihood and thus cannot be called a true posterior [22]. These quasi-

likelihoods are defined by loss functions and still give information about goodness

of fit, and can be a more realistic choice in Bayesian processes because the true

underlying likelihood function may be unknown. This means that the Gibbs pos-

terior results in near identical results to the true posterior, while offering a more

general framework that works for applications for which the true likelihood function

is unknown [22] (see section 6.2 and Figure 6.2).

2.2 Likelihood Structure

The choice of likelihood is a fundamental step in Bayesian inversion and is one of

the main aspects of Bayesian inversion that can be changed. Often, the choice of a

likelihood function is based on the noise structure that the analyzed signal is expected

4



Chapter 2. Bayesian Inversion

to have. Under the assumption that we have a simple additive noise structure, the

Gaussian likelihood is the most common choice. Assuming that we have measurement

noise (ǫ1, . . . , ǫn) that appears in the measured quantities (g1, . . . , gn) the additive

noise is assumed to be normally distributed with mean zero and standard deviation

σ. That is to say:

gi = fi(θ) + ǫi, ǫi ∼ Normal(0, σ), i = 1, . . . , n

Where n is the number of measured quantities. This noise structure can be handled

well by the Gaussian likelihood [1]:

Lnorm(θ) = πnorm(g|θ) =
1

(2π)n/2σn exp(
−1
2σ2

∑n
i=1 |gi − fi(θ)|

2) (2)

Such a likelihood structure also requires an assumption of statistical independence

for the signals being analyzed. This is seen in the fact that the overall likelihood,

π(g|θ) is equal to the product of the individual likelihoods of gi [1]:

L(θ) = π(g|θ) =
∏n

i=1π(gi|θ)

This illuminates two major issues with the Gaussian likelihood. One is that the noise

structure may not be realistic because of its simplicity. For example, if we have a set

of two dimensional signals g(x, t) with an additive Gaussian noise structure

g(xi, tj) = f(xi, tj;θ) + ǫi,j, ǫi,j ∼ Norm(0, σ)

we can easily show that the Gaussian Likelihood fails to predict the correct values of

θ for certain applications that contain this noise structure (see chapter 6 for numer-

ical examples). Another issue with the Gaussian likelihood is that the assumption

of statistical independence may not be mathematically consistent, again depend-

ing on the application. Statistical independence exists when the probability of two

5



Chapter 2. Bayesian Inversion

events occurring is equal to the product of the individual probabilities of each event

occurring independently [4]:

P (A
⋂

B) = P (A)P (B) (3)

Another way to say this is that statistical independence exists when the occur-

rence of one event does not affect the probability of the other event occurring. Many

applications in stochastic processes do not have statistical independence, leading to a

desire to create a Bayesian framework that does not assume statistical independence

and that can handle more complicated noise structures.

6



Chapter 3

Concepts from Optimal Transport

In this section, three concepts from optimal transport will be explored. These con-

cepts are the key to creating a new Bayesian inversion framework that satisfies the

need to have a framework that does not assume statistical independence and handles

complicated noise structure well. First, the quadratic Wasserstein metric will be

explored. Then, Sinkhorn Divergence and Debiased Sinkhorn Divergence (DSD) will

be explored and will be shown to be a regularized Wasserstein distance. DSD will

then be used in the next section to create a new likelihood function that can be used

in Bayesian inversion.

One of the main desirable traits for a likelihood function used in Bayesian inversion

is convexity for the type of problems the framework is applied to. This is because a

convex function has a more well-defined minimum value compared to a non-convex

function, allowing the Bayesian inversion algorithm to converge to the correct mini-

mum and not fall into a false minimum. The likelihood functions in this paper that

employ the Wasserstein metric and the DSD have this convexity property with re-

spect to the phase shift, phase dilation, and amplitude change in the simulated and

measured signals [1]. This is the motivation behind using the Wasserstein metric

and DSD in a quasi-likelihood function.
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Chapter 3. Concepts from Optimal Transport

3.1 Kantorovich Formulation of Optimal Trans-

port

Suppose we have probability vectors f , g ∈ R
n
+ defined on sets of n points

{x1, ...,xn} ⊂ X ⊂ R
d and {y1, ...,yn} ⊂ Y ⊂ R

d respectively. Define U(f , g) to

be the transport polytype of f and g [2]:

U(f , g) = {P ∈ R
n×n
+ : P1n = f , P⊤1n = g} (4)

where 1n is a vector of length n with all entries equal to 1, and each matrix

P = [Pij] ∈ R
n×n
+ in U(f , g) is a transport matrix that encodes a transport plan.

Each element Pij describes the amount of mass transported from point xi ∈ X to

point yj ∈ Y where i, j = 1, ..., n. Now, let c : X × Y → R+ be a non-negative

cost function on X × Y so that ∀(x,y) ∈ X × Y , c(x,y) represents the cost of

transporting one unit of mass from x ∈ X to a target point y ∈ Y . This allows for

a cost matrix, C, to be defined as:

C = [Cij] ∈ R
n×n
+ , Cij = c(xi,yj), i, j = 1, ..., n. (5)

The optimal transport problem can now be viewed as minimizing the Forbenius

inner product of P and C. That is to say the transport cost TC is:

TC(f , g) = min
P∈U(f ,g)

〈P,C〉 (6)

where 〈P,C〉 is the Forbenius inner product 〈P,C〉 =
∑

i,j PijCij. One key as-

sumption when formulating the Wasserstein metric and Sinkhorn divergence is that

the cost matrix C is defined for a distance function [12]. That is to say for a distance

function d:

C = [Cij] ∈ R
n×n
+ , Cij = d(xi,yj)

p, i, j = 1, ..., n, p ∈ [1,∞) (8)

This now allows us to define the Wasserstein metric of order p induced by the

8



Chapter 3. Concepts from Optimal Transport

optimal cost TC [12][13][14][15]

Wp(f , g) = (TC(f , g))
1/p (9)

Note that the Wasserstein metric discussed in section 3.2 is a discrete one-

dimensional squared Wasserstein metric with p = 2.

3.2 Wasserstein Metric

The Wasserstein distance in this section is a one-dimensional squared Wasserstein

distance of order p = 2. This metric is simple compared to a higher dimensional

Wasserstein metric, and thus is suitable for a Bayesian framework. Because of com-

putational cost, it is infeasible to use a higher dimensional Wasserstein metric as a

basis for a Bayesian framework.

The Wasserstein metric is a distance function defined by the minimization of the

cost of turning one probability distribution into the other [1]. Suppose we have two

discrete time signals f , g ∈ R
n with discrete time steps (t1, . . . , tn). The two sig-

nals f and g need some preliminary altering before they can be implemented into

the Wasserstein metric. Since the Wasserstein metric is a measure of the distance

between two probability distributions, we need to alter the signals since they are

likely not probability distributions. We need to ensure that the signals are always

non-negative and that the
∑n

i=1 fi = 1 and
∑n

i=1 gi = 1 to remain consistent with the

definition of a probability mass function (PMF). This can be done several different

ways, but the one that will be used in this paper is to shift the signals by some

constant, and then normalize.

First, choose a constant value c such that c > min(g,f). This ensures that fi+c > 0

and gi+ c > 0 for all i = 1, . . . , n. Next, normalize the two signals which creates two

new signals that are now in the form of a probability distribution [7][8]:

9



Chapter 3. Concepts from Optimal Transport

f=
(fi+c)∑
(fi+c) , g=

(gi+c)∑
(gi+c) (10)

Now we have two PMFs which can be used to create two discrete cumulative

density functions (CDFs).

Fi =
∑i

k=1 fk, Gi =
∑i

k=1 gk, i = 1, .., n (11)

where fk and gk are the kth component of their respective functions. This allows

us to define the discrete quadratic Wasserstein distance between two signals, f and

g [12][13][14][15]:

dW (f , g) = W 2
2 (f , g) ≈

∑n
i=1 |ti − Ti|

2f i, T = G−1 ◦ F (12)

Where T = G−1 ◦ F is the optimal map from f to g [1]. Note that this is a for-

mulation for the single dimensional discrete Wasserstein metric. Applications of this

single dimensional metric in multidimensional inversion problems will be addressed

in chapter 4.

3.3 Sinkhorn Divergence

Suppose that the transport problem is now regularized by adding an entropic penalty

term to the total transport cost [2]:

T λ
C(f , g) = min

P∈U(f ,g)
〈P,C〉 − 1

λ
H(P ), (13)

where λ > 0 is a regularization parameter and H(P ) is the discrete entropy of

the transport matrix [16],

H(P ) = −
∑
i,j

Pij(logPij − 1) (14)

This regularized problem with C ∈ Mn×n has a unique solution, Pλ. As λ

10



Chapter 3. Concepts from Optimal Transport

increases, T λ
C → TC because Pλ approaches the solution with maximum entropy

within the set of all optimal solutions of the original Kantorovich’s [17]. Sinkhorn

divergence of order p between f and g is defined as [2]:

Sp,λ(f , g) = 〈Pλ, C〉1/p. (15)

Sinkhorn Divergence can be viewed as a regularized Wasserstein distance since

Pλ is the solution to the regularized Kantorovich problem [2]. Since Pλ ∈ U(f , g)

and TC(f , g) = min
P∈U(f ,g)

〈P,C〉, it is straightforward to see that [2]

Sp,λ(f , g) ≥ Wp(f , g) (16)

Unlike the Wasserstein metric, Sinkhorn divergence does not fully satisfy the

definition of a metric [16]. However, with some careful manipulation we can create

a metric using Sinkhorn Divergence called Debiased Sinkhorn Divergence (DSD) of

order p as

ddsd,p(f , g) = |Sp,λ(f , g)−
1
2
[Sp,λ(f ,f) + Sp,λ(g, g)]|. (17)

This means that d2dsd,2 (from here on simply called ddsd) can be used instead of W 2
2 as

a measure of dissimilarity while still being a distance function. Note that in practice,

λ is not chosen to be very large, but rather chosen to balance accuracy with cost.

See [2] for details.

3.4 Sinkhorn’s Algorithm

We can now write the Lagrangian for the regularized optimal transport problem by

introducing two dual variables f̂ ∈ R
n and ĝ ∈ R

n for the marginal constraints

P1n = f and P⊤1n = g [2]

L(P, f̂ , ĝ) = 〈P,C〉 − 1
λ
H(P )− f̂⊤(P1n − f)− ĝ⊤(P⊤1n − g). (19)

11



Chapter 3. Concepts from Optimal Transport

Setting ∂Pij
L = 0 we obtain

Pij = uiQijvj, Qij = exp(−λCij), ui = exp(λf̂i), vj = exp(λĝj) (20)

or in matrix factorization form

Pλ = UQV , U = diag(u1, ...,un), Q = [Qij], V = diag(v1, ...,vn). (21)

[19] Vectors u and v can be obtained from

UQV 1n = f , V Q⊤U1n = g (22)

where U1n = u and V 1n = v and we obtain equations for (u,v) ∈ R
n
+ × R

n
+ [20]

u⊙ (Qv) = f , v ⊙ (Q⊤u) = g (23)

where ⊙ is the Hadamard (entrywise) product. We can now solve for u and v

through an iterative method called Sinkhorn’s algorithm [21]

u(i) = f ⊘ (Qv(i−1)), v(i) = g ⊘ (Q⊤u(i)), i = 1, ..., K (24)

where ⊘ represents Hadamard (entrywise) division. In real applications a stop-

ping criterion is needed. This is done by defining a tolarance ǫS > 0, and continuing

Sinkhorn iterations until we have [21]:

max{||u(i) ⊙ (Qv(i))− f ||∞, ||v(i) ⊙ (Q⊤u(i))− g||∞} ≤ ǫS. (25)

After computing vectors (u,v) from Sinkhorn’s algorithm, we obtain the Sinkhorn

divergence of order p [17]:

Sp,λ = (u⊤Q̂v)1/p, Q̂ = Q⊙ C. (26)

The cost of computing Sinkhorn divergence using Sinkhorn’s algorithm isO(n2 log n)

if C is chosen naively. This is still an improvement in cost over the Wasserstein met-

ric if d ≥ 2 which has a cost of O(n3). However, if the data is given on a regular

grid, the cost of Sinkhorn’s algorithm can be reduced to O(n1+1/d log n) for specific

12



Chapter 3. Concepts from Optimal Transport

cost matrices [18][2]. One such cost matrix can be made by using the cost function

[2]

c(x,y) = ||x− y||pp =
d∑

k=1

|x(k) − y(k)|p, x = (x(1), ..., x(d)) ∈ R
d,

y = (y(1), ..., y(d)) ∈ R
d, Cij = c(xi,yj). (27)

This reduction in cost is a key advantage that DSD has over the Wasserstein

metric for d ≥ 2. A multidimensional Wasserstein metric is more costly than a

multidimensional DSD, especially if the choice of C is defined by (27).

13



Chapter 4

Optimal Transport Based Bayesian

Inversion

4.1 DSD Quasi-Likelihood

We can now create an exponential quasi-likelihood function based on the DSD. We

will first look at the quasi-likelihood function for the one-dimensional Wasserstein

metric, and derive a new DSD quasi-likelihood function based on the Wasserstein

quasi-likelihood function. The Wasserstein quasi-likelihood is [1]:

Lwass(θ) = πwass(g|θ) = sNexp(−sdW (f(θ), g)) (28)

where s is a hyperparameter that will be found through a Markov Chain Monte

Carlo (MCMC) sampling algorithm discussed later in this paper, and dW (f(θ), g) is

found using (12). This is a quasi-likelihood and connects the parameter vector θ and

observed quantities g via a loss function [22](in this case the Wasserstein distance).

Note that the one-dimensional Wasserstein quasi-likelihood can be applied to multi-

dimensional problems if statistical independence is assumed. This is the reason that

14



Chapter 4. Optimal Transport Based Bayesian Inversion

we have the term sN in the Wasserstein quasi-likelihood, since this is considering the

product of other one-dimensional exponential quasi-likelihoods. A numerical algo-

rithm for computing the Wasserstein metric can be found in [5]. As discussed in the

previous section, the DSD is a regularized multidimensional Wasserstein distance,

meaning that we do not need the product of multiple quasi-likelihoods in order to

analyze multidimensional problems. This ultimately simplifies the exponential quasi-

likelihood, thus creating an exponential quasi-likelihood with the DSD:

Ldsd(θ) = π(g|θ) = s[exp(−sddsd(f(θ), g))] (29)

where s is again a hyperparameter that will be found through the MCMC sam-

pling algorithm discussed later in this paper, and ddsd(f(θ), g)) is found using (17).

This is a quasi-likelihood and connects the parameter vector θ and observed quanti-

ties g via a loss function [22](in this case DSD). Note here that s is not raised to the

power ofN since we are no longer looking at the product of multiple quasi-likelihoods.

4.2 Convexity of DSD Quasi-Likelihood

As it has been stated earlier in this paper, one important feature of the DSD quasi-

likelihood is the convexity with respect to phase shift, phase dilation, and amplitude

change. This convexity will be tested by applying the DSD quasi-likelihood to a test

problem. A comparison will be made between the DSD quasi-likelihood, Wasserstein

quasi-likelihood, and Gaussian likelihood. Suppose that the original signal f is:

f(t) = e−( t−4

δ
)2 − e−( t−5

δ
)2 + e−( t−6

δ
)2

And a shifted version of the signal (representative of noise perhaps) g is:

g(t) = e−( t−s−4

δ
)2 − e−( t−s−5

δ
)2 + e−( t−s−6

δ
)2
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Chapter 4. Optimal Transport Based Bayesian Inversion

Where s is the factor in which the signal is shifted.

Figure 4.1: Plot of Convexity of DSD quasi-likelihood. Top plots normalized so when
s = −3 the value on the plot is 1. Left plot is for wide signals (δ = 0.5) and right
plot is for narrow signals (δ = 0.05).

Note that there are many ways to normalize the signals for the DSD quasi-

likelihood and the Wasserstein quasi-likelihood. The option that has been used in

this example is linear scaling, but other normalization protocols exist [1][7][8]. Linear

scaling normalization is:

f̂=
f+c

<f+c> and ĝ=
g+c

<g+c>, < f >=
∑N

i=1 fi (30)

Where c is some constant chosen to ensure that both f+c > 0 and g+c > 0. The

signals are then normalized to ensure that they can now be viewed as probability dis-

16



Chapter 4. Optimal Transport Based Bayesian Inversion

tributions. As seen in Figure 4.1, the DSD quasi-likelihood shows the best convexity

for this specific example. The Gaussian likelihood produced many minima which, in

a Bayesian inversion application, could produce an incorrect posterior. This exam-

ple shows the advantage of using the DSD quasi-likelihood over the L2 likelihood for

inversion problems that involve phase shift. Note that it is possible to obtain better

convexity from both DSD and Wasserstein quasi-likelihoods by choosing different

ways of normalizing the initial signals f and g.

17



Chapter 5

Numerical Algorithm

In this section a Markov Chain Monte Carlo (MCMC) algorithm, along with the DSD

quasi-likelihood, are used to create a numerical algorithm for the DSD Bayesian

framework. The specific MCMC algorithm that will be used is the Metropolis-

Hastings-within-Gibbs [9] (MH within G) sampling algorithm. MH within G is a

method that combines two MCMC algorithms, the Gibbs sampler and Metropolis-

Hastings sampler. The Gibbs sampler solves for the posterior of the hyper-parameter

s, and the Metropolis-Hastings sampler solves for the posterior of the parameter

vector θ. MH-within-G updates samples based on a selection process and keeps

samples with a probability, α (see section 5.3). Looking at the posterior in Bayesian

inversion, note that:

π(θ|g) ∝ π(g|θ)π(θ)

This means that for a Bayesian algorithm we need a likelihood and prior. This is

where we decide to use the DSD quasi-likelihood and employ a know algorithm, MH

within G.

18



Chapter 5. Numerical Algorithm

5.1 Gibbs Sampler

Suppose that we have a gamma prior for s. That is, s ∼ Gamma(a, b), where a, b > 0

are the shape and rate parameters of the Gamma prior. Employing this prior along

with the DSD quasi-likelihood we have:

π(s|θ, g) ∝ πdsd(g|θ, s) πprior(s) ∝ se−sddsdsa−1e−bs = sae−s(b+ddsd)

where ddsd = ddsd(f(θ),g). Note that the posterior is proportional to a Gamma

distribution. To be exact:

s ∼ Gamma(a∗, b∗), a∗ = a+ 1, b∗ = b+ ddsd

This will be used to generate new values of s with a given θ. Note that the prior here

is a conjugate prior since both the prior and posterior of s are Gamma distributions.

This is not to say that the prior for s must be a Gamma distribution. This is just

the choice of prior for s in this paper, and others may be used.

5.2 Metropolis-Hastings Sampler

The Gibbs sampler in the previous section assumes a fixed θ. The Metropolis-

Hastings sampler [10][11] assumes a fixed s. Suppose then that we have a fixed value

for s and a posterior for θ.

π(θ|s, g) ∝ πdsd(g|θ, s)πprior(θ)

Given a sample value of θ, call it θ(i), the goal is to generate a new sample, θ(i+1).

Generate a candidate sample θ̃ by sampling from a proposal distribution q(θ(i), θ̃)

from the current sample θ(i).
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Chapter 5. Numerical Algorithm

We then accept this candidate sample with probability [11]:

α=
π(θ̃|s,g)q(θ(i),θ̃)

π(θ(i)|s,g)q(θ̃,θ(i))
=

πdsd(g|θ̃,s)πprior(θ̃)q(θ
(i),θ̃)

πdsd(g|θ
(i),s)πprior(θ

(i))q(θ̃,θ(i))
(31)

This still leaves the choice of prior and proposal distributions. The choice of prior

is often left up to experts for the specific problem since we want an expert to decide

what we already know about the parameter θ. Sometimes nothing may be known

about the prior distribution of θ. This is called a non-informative prior and would

mean that πprior(θ) = 1. As for the proposal distribution of θ̃, a Gaussian random

walk is often used and will be used in the examples in chapter 6:

θ̃ ∼ Normal(θ(i),Σ) (32)

where Σ is the covariance matrix. In the MH-within-G algorithm, the covariance

matrix has a noticeable affect on the posterior and is often changed multiple times to

see what works best for a given problem. Note here that if the proposal distribution

is symetric (i.e. q(θ(i), θ̃) = q(θ̃,θ(i))), the terms with q cancel out in the α ratio

and we are left with [10]:

α =
πdsd(g|θ̃,s)πprior(θ̃)

πdsd(g|θ
(i),s)πprior(θ

(i))

Symmetric proposals will be used in the examples in this paper so that this simplified

α may be used.
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Chapter 5. Numerical Algorithm

5.3 The Algorithm: Metropolis-Hastings-within-

Gibbs in the DSD-Bayesian Framework

1. Initialization: Select an initial starting point (θ(0), s(0)) and set i = 0.

2. Normalize: Select a normalization protocol to ensure that signals f and g are

consistent with the definition of probability distributions.

3. Gibbs Sampler : Generate s(i+1) from the posterior π(s|θ(i), g) with Gamma dis-

tribution

s(i+1) ∼ Gamma(a∗, b∗), a∗ = a+ 1, b∗ = b+ ddsd(f(θ
(i)), g)

4. Metropolis-Hastings Sampler : Follow steps i-iii to generate θ(i+1):

i. Sample a candidate θ̃ from the proposal distribution q(θ(i), θ̃)

ii. Compute the ratio:

α(θ(i), θ̃)=
πdsd(g|θ̃,s)πprior(θ̃)q(θ

(i),θ̃)

πdsd(g|θ
(i),s)πprior(θ

(i))q(θ̃,θ(i))

iii. Set

θ(i+1) =





θ̃, Unif(0, 1) ≤ α(θ(i), θ̃)

θ(i), otherwise

5. Iterate: Increment i by 1 and go to step 3.
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Chapter 6

Numerical Examples from Seismic

Inversion

This section will explore several examples that implement the above DSD-Bayesian

framework. These examples exist in the form of wave propagation, something seen

in applications like seismic inversion. These examples serve to show the accuracy of

this Bayesian framework and to compare it to both a Wasserstein framework and

Gaussian framework.

6.1 Problem Formulation

All the examples in this section will use the same general one-dimensional source

inversion problem. This problem is of similar form to an example in [1], allowing for

a direct comparison to work in [1]. This problem has a wave pulse that propagates

at a constant speed. The main difference in each example will be the noise seen in

the example. This will allow for direct comparison based on noise complexity as well

as show the benefits of the DSD framework.
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Chapter 6. Numerical Examples from Seismic Inversion

Suppose we have the Cauchy problem for the one-dimensional wave equation

utt(t, x)− uxx(t, x) = 0, t ∈ [0, T ], x ∈ R (33)

u(0, x) = h(x; x0, a), ut(0, x) = 0 (34)

With initial data

h(x; x0, a) = a(e−100(x−x0−0.5)2 + e−100(x−x0)2 + e−100(x−x0+0.5)2) (35)

This initial data acts as a source creating an initial wave pulse with given am-

plitude a and initial starting location x0. The solution to this problem is given by

d’Alembert’s formula [1]

u(t, x; x0, a) =
1
2
h(x− t; x0, a) +

1
2
h(x+ t; x0, a) (36)

6.2 Example 1: Known Posterior

This first example will show the accuracy of the DSD framework. Suppose that both

the amplitude a and initial position x0 are treated as parameters in our Bayesian

framework. That is to say that θ = (θ1, θ2) where θ1 = x0 and θ2 = a are both

unknown parameters. Suppose that we also have Nr = 7 recievers each collectiong

data located at 7 different positions:

x1 = −3, x2 = −2, x3 = −1, x4 = 0, x5 = 1, x6 = 2, x7 = 3

where each reciever is located at xr with r = 1, ..., Nr and records noisy discrete-time

data g(tk, xr) over the time interval [0, T ] at N discrete time levels tk = (k−1)∆t with

∆t = T/(N − 1) and k = 1, ..., N . Let f(tk, xr;θ) be the corresponding simulated
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Chapter 6. Numerical Examples from Seismic Inversion

signal for a given θ computed using f(tk, xr;θ) = u(t, x; θ1, θ2). Now, define the fixed

parameter:

θ∗ = (θ∗1, θ
∗
2), θ∗1 = 0.1, θ∗2 = 5

and generate synthetic data g(tk, xr) so that the posterior of θ is known. This is

done by first generating a true posterior distribution for θ.

πposterior(θ1|g) = Norm(θ∗1, 0.001), πposterior(θ2|g) = Norm(θ∗2, 0.01)

Define θ̂1 and θ̂2 so that:

θ̂1 ∼ Norm(θ∗1, 0.001) and θ̂2 ∼ Norm(θ∗2, 0.01)

Now, sample values for θ̂1 and θ̂2 with r = 1, ..., Nr and k = 1, ..., N to produce

g(tk, xr) = f(tk, xr; θ̂1
(rk)

, θ̂2
(rk)

)

where each θ̂1
(rk)

∼ Normal(θ∗1, 0.001) and θ̂1
(rk)

∼ Normal(θ∗2, 0.01). This allows us

to test the accuracy of the DSD Bayesian framework since we can directly compare

the results from the DSD framework to the true posteriors. Note that the data in

this problem is two dimensional. This means that when storing the data g(tk, xr)

into a vector g, we store it by defining

g = (g(t1, x1), g(t2, x1), ..., g(tN , x1), g(t1, x2), g(t2, x2), ..., g(tN , x2), ..., g(tN , xNr
))

so that we translate the two dimensional data into a vector. This same procedure is
done with f . This means that vectors f and g have n = N ×Nr entries.
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Chapter 6. Numerical Examples from Seismic Inversion

Figure 6.1: Observed signals with known posterior, recorded at seven receivers

Here are the following computations that were employed along with the DSD-Bayesian
algorithm:

•Likelihood : πdsd(g|θ) = s[exp(−sddsd(f(θ), g))] (from equation 29)

•Priors : θ1 ∼ Unif(−3, 3), θ2 ∼ Unif(3, 7), s ∼ Gamma(1200, 2)

•Initial Data: θ
(0)
1 = 0.6, θ

(0)
2 = 3, s(0) = 70

•Proposal : θ̃ ∼ Normal(θ(i),Σ) with covariance matrix Σ = diag(0.005, 0.005).

Now, the DSD-Bayesian algorithm is ran with M = 500000 iterations and remove
the first Mb = 250000 samples in the burn-in period. A thinning period of Mt = 4 is
used. That is to say that every 4th is kept, and the rest are discarded.
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Chapter 6. Numerical Examples from Seismic Inversion

Figure 6.2: Approximate vs. true posteriors for θ1 and θ2. Appoximate posteriors
found using DSD-Bayesian algorithm and are labeled MCMC (for Markov Chain
Monte Carlo).

As seen in Figure 6.2, the approximate posterior converges to the true posterior.

The error between the approximate and true posteriors can be measured using the

Wasserstein distance, since this is a measure of dissimilarity between two probability

distributions. The Wasserstein distance between the true and approximate posteriors

for θ1 is 8.9198×10−4 and the Wasserstein distance between the true and approximate

posteriors for θ2 is 1.446 × 10−2. Now, we can measure the Wassertein distance for

different values of M to get an idea about convergence. In Figure 6.3 we see how the

Wasserstein distance between the true and approximate posteriors for θ2 decrease

with a larger number of iterations, M . In Figure 6.3 a plot of O(1/M2) is shown to

give context to this convergence.

26



Chapter 6. Numerical Examples from Seismic Inversion

Figure 6.3: Wasserstein distance for the approximate vs true posteriors of θ2 with
varying number of iterations, M . MCMC solutions found using DSD-Bayesian frame-
work.

6.3 Example 2: Additive Gaussian Noise with Un-

known Phase and Amplitude

This example will compare the DSD framework to both the Wasserstein and Gaus-

sian framework. This example will illustrate the advantage that optimal transport

based Bayesian frameworks have over the standard Gaussian framework for problems

involving additive Gaussian noise structures. Suppose that both amplitude a and ini-

tial position x0 are treated as parameters in our Bayesian framework. That is to say

that θ = (θ1, θ2) where θ1 = x0 and θ2 = a are both unknown parameters. Suppose

we have Nr = 7 receivers each collecting data located at 7 different positions:

x1 = −3, x2 = −2, x3 = −1, x4 = 0, x5 = 1, x6 = 2, x7 = 3
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where each reciever is located at xr with r = 1, ..., Nr and records noisy discrete-time

data g(tk, xr) over the time interval [0, T ] at N discrete time levels tk = (k−1)∆t with

∆t = T/(N − 1) and k = 1, ..., N . Let f(tk, xr;θ) be the corresponding simulated

signal for a given θ computed using f(tk, xr;θ) = u(t, x; θ1, θ2). Now, define the fixed

parameter:

θ∗ = (θ∗1, θ
∗
2), θ∗1 = 0, θ∗2 = 5

and generate synthetic data g(tk, xr) by polluting f(tk, xr;θ
∗) with an additive Gaus-

sian noise:

g(tk, xr) = f(tk, xr;θ
∗) + ǫrk, ǫrk ∼ Normal(0, 0.1)

Figure 6.4: Observed signals with additive Gaussian noise, recorded at seven receivers
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Here are the following computations that were employed along with the DSD-Bayesian

algorithm:

•Likelihood : πdsd(g|θ) = s[exp(−sddsd(f(θ), g))] (from equation 29)

•Priors : θ1 ∼ Unif(−3, 3), θ2 ∼ Unif(3, 7), s ∼ Gamma(15000, 0.3)

•Initial Data: θ
(0)
1 = 0.6, θ

(0)
2 = 3, s(0) = 70,

•Proposal : θ̃ ∼ Normal(θ(i),Σ) with covariance matrix Σ = diag(0.00001, 0.00001)

Now, the DSD-Bayesian algorithm is ran with M = 50000 iterations and remove the
first Mb = 25000 samples in the burn-in period. A thinning period of Mt = 2 is used.
That is to say that every 2nd entry is kept, and the rest are discarded.

Figure 6.5: Trace and Histograms for θ1 and θ2 found using DSD-Bayesian framework
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This same test is also ran using the Wasserstein quasi-likelihood and Gaussian likeli-
hood (see figures 6.6 and 6.7). It is clear that the DSD and Wasserstein frameworks
performed much better than the Gaussian framework. This is seen in the fact that
the Gaussian framework produced posteriors that converge to incorrect values for θ1
and θ2. As stated in [1], the reason that this occurs is because the Gaussian frame-
work produces many local minima, meaning that the Bayesian framework may fall
into a false minimum and converge to an incorrect posterior. This is also what is
seen in Figure 6.8 which shows that for this example the L2 (or Gaussian) likelihood
produces many extrema.

Figure 6.6: Trace and Histograms for θ1 and θ2 found using Wasserstein-Bayesian
framework. As seen in this figure as well as Figure 6.5, it is clear to see that the
Wasserstein and DSD frameworks are converging to the same posterior because the
histograms are centered at nearly the same values and the spread of these histograms
are also similar.
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Figure 6.7: Trace and Histograms for θ1 and θ2 found using Gaussian-Bayesian frame-
work. As clearly seen in the figures, the posteriors found from this Gaussian-Bayesian
framework converged to incorrect values of θ1 and θ2.
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Figure 6.8: Surface plots of DSD (left), Wasserstein (right), and L2 (bottom) likeli-
hoods for example 2. This shows that the L2 likelihood did not stay convex and that
the optimal transport quasi-likelihoods did.
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Chapter 7

Conclusion

Presented in this paper is a Bayesian framework based on Debiased Sinkhorn Di-

vergence. This framework is based closely on the Wasserstein-Bayesian framework

presented in [1], and preforms similarly in Example 2. The DSD-Bayesian frame-

work allows for statistical independence, allowing for a more robust mathematical

framework for Bayesian inversion for problems that do not involve statistical in-

dependence. This framework also has a computational time benefit over a higher

dimensional Wasserstein framework, since Sinkhorn Divergence is a low cost regular-

ized Wasserstein distance. This framework is well suited for inversion problems that

involve phase shift, phase dilation, and amplitude change such as seismic events or

other signal analysis problems.
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