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Abstract

When developing a system, considering system performance from a user perspective

can be done through operational testing—assessing the ability of representative users

to accomplish tasks with the system in operationally representative environments.

This critical process can be expensive and time-consuming. We show how to leverage

an existing design of experiments (DOE) process to construct a Bayesian adaptive

design. This method allows for interim analyses using predictive probabilities to

stop testing early for success or futility. Furthermore, operational environments

are directly used in product evaluation. Representative simulations demonstrate

reductions in necessary test events. Next, priors are built using developmental testing

data. The novel proposal for creating priors using developmental testing data allows

for more flexibility than the current process and demonstrates it is possible to get

more precise parameter estimates. The methods presented will allow future testing

to be conducted in less time and at less expense, on average.
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Chapter 1

Introduction

Deliver performance at the speed of relevance. Success no longer goes to

the country that develops a new technology first, but rather to the one

that better integrates it and adapts its way of fighting. Current processes

are not responsive to need; the Department [of Defense] is over-optimized

for exceptional performance at the expense of providing timely decisions,

policies, and capabilities to the warfighter.

- Jim Mattis, Summary of the 2018 National Defense Strategy of the

United States of America: Sharpening the American Military’s Competi-

tive Edge (2018)

In order to maintain a competitive edge, it is imperative that the warfighter ob-

tain new systems in a timely manner. Without efforts to “modernize our military

to make it fit for our time, we will rapidly lose our military advantage, resulting

in a Joint Force that has legacy systems irrelevant to the defense of our people”

(Mattis 2018). Our goal in this dissertation is to leverage existing information, such

as observations seen during system testing or seen in previous system testing, to

make quicker decisions about whether a new system would provide needed capabili-
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Chapter 1. Introduction

ties to the warfighter. We propose accomplishing this through interim analysis and

informative priors, in an effort to make those decisions effectively and efficiently.

The U.S. DoD procures these new systems through through a highly regulated

acquisition process established and overseen by the U.S. Congress (Test and Evalu-

ation Management Guide 2005). The DoD’s acquisition process requires thorough

testing of a system to ensure that engineering specifications are met for the system

and that users can perform their intended mission with the system, ultimately evalu-

ating whether a system is mission capable or not before employing it in its expected

operational environment. These technical specifications and performance attributes

are referred to as requirements, which testers use to define response variables of inter-

est to evaluate (Joint Chiefs of Staff 2018). This formal test and evaluation process

ensures the DoD procures systems that the warfighters needs and can use. While

this test and evaluation process has many parts, we will consider two overarching

phases: developmental testing (DT) and operational testing (OT).

The first governmental testing of a system is DT. The primary goal of DT is

to determine if a system can obtain established technical requirements. Generally

evaluating distinct characteristics of the system itself, DT “assesses if and how the

system works” (National Research Council 1998). To accomplish this, DT is largely

conducted in laboratories or in controlled environments, and experts are the system

operators (Test and Evaluation Management Guide 2005). Early in DT a system

is often still undergoing development, in part to identify problems early; therefore,

testing of components or sub-systems may occur. As DT continues, and the system

under test matures, prototypes (or even production representative systems) may be

evaluated (Test and Evaluation Management Guide 2005). Information and insights

gained during this testing can drive system fixes and upgrades, resulting in a system

that evolves throughout the course of DT.

After DT establishes that a system meets DoD’s technical specifications, the sys-

2



Chapter 1. Introduction

tem under test proceeds to OT. In this phase, the focus is on mission accomplishment

in the system’s anticipated operational environment; operational testers evaluate a

production representative system to determine if users can accomplish their intended

missions while employing the system (Kendall 2015). OT “assesses when and where

the system will work” (National Research Council 1998). Given this difference in

focus, the requirements that are evaluated in OT are usually different from the re-

quirements evaluated in DT; therefore, it is possible for response variables of interest

in DT to become latent variables or no longer be of interest in OT. OT seeks to evalu-

ate a system’s performance under a multitude of diverse operational conditions (e.g.,

weather, time of day), so as to assesses the impact of those conditions on mission

accomplishment. This is achieved by testing in operationally realistic environments

with operationally representative users of the system. Unlike the system experts

used in DT, the system operators in OT have only had training on using the specific

system that is representative of the training personnel expected to employ the sys-

tem in future real-world operations would have (Test and Evaluation Management

Guide 2005). This difference, in addition to the complexity of an uncontrolled oper-

ational environment, can increase the variability seen in system performance within

OT relative to DT. Ultimately, OT attempts to replicate real-world operations to the

maximum extent possible to ensure decision makers have operationally representative

information about a system to make determinations about procurement.

To better illustrate DT and OT, consider a hypothetical trucking company that

wants to procure a cellphone for their drivers to use as a business phone on the road.

DT might begin with evaluating required engineering specifications for a component:

for instance, testing might occur on the processor to ensure that the material used

meets durability and thickness specifications. As DT progresses, testers might use

a cellphone prototype to evaluate how long the battery lasts when the phone was

turned on. If the battery life did not meet specifications, the phone could be re-

engineered to include a new battery. Perhaps later still, an expert might test the

3



Chapter 1. Introduction

camera-memory interface to ensure the phone can store pictures in the memory and

be accessed later. The phone would also be tested to determine if it can operate with

other external systems. One such example would be to ascertain if the phone could

sync to a truck via a bluetooth connection or a cable connection.

After the conclusion of DT, the cellphone would proceed to OT to evaluate the

phone’s ability to support mission accomplishment when employed by real-world

users. To facilitate this, OT might evaluate operational requirements by giving the

phone to a truck driver to operate. One evaluation could be to determine if a driver

could use a map application while driving in conjunction with a making a hands-free

phone call. Another may be attempting to download a map, and then use it in a

location with no service. Other requirements would include how helpful customer

service was in trouble-shooting an issue that arose with the phone, or how long the

battery lasted when 12 internet tabs were open and applications were running in the

background while in and out of roaming service. Furthermore, a determination could

be made regarding how resilient the phone was to a driver tossing it into a bag or

dropping it on the ground accidentally throughout the day.

Similar to a phone that will not provide connectivity in a no-coverage area but

can still accomplish daily needs, OT must carefully consider if the user can still

accomplish a mission at an adequate level, even should all requirements not be fully

met (especially if those requirements are not obtainable, such as in a no-coverage

area). This is an assessment that OT is uniquely able to provide, supplying decision

makers with critical information about a system. Conducting an operational test to

obtain this operationally representative information is resource intensive; however,

it is an expense that is justified, given the impact of the data (National Research

Council 1998). Without these insights, any problems with a system may not be

found until it is employed in the operational environment—potentially endangering

both lives and mission accomplishment.

4
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In 1998, the National Research Council found that the use of statistics in test

and evaluation “differ[ed] substantially from best practice, to the detriment of effec-

tive operational test and evaluation” and concluded that state-of-the-art statistical

methodologies would enhance testing within the DoD. In 2010, the Director of Oper-

ational Test and Evaluation in the Office of the Secretary of Defense published DoD

guidance which echoed the need to expand the use of statistics in test and evaluation.

It detailed the need for defensible and technically adequate tests, concentrating on

design of experiments (DOE) as one such statistical method to support OT (Director

Operational Test and Evaluation 2010; Freeman and Warner 2018; R. T. Johnson

et al. 2012). Using DOE ensures testers collect the right amount of data, in the

appropriate places, to characterize a system’s performance across operational condi-

tions and make objective conclusions based on the data obtained (Montgomery 2012;

Freeman and Warner 2018). DOE is also critical in creating operational tests that

make best use of limited resources (R. T. Johnson et al. 2012).

With the amount of resources driven by time and cost constraints, limited re-

sources, however, can lead to an operational test that gathers insufficient informa-

tion to make a definitive conclusion with a reasonable degree of certainty (National

Research Council 1998; National Research Council 1994; National Research Council

2004). To address this issue, it has been recommended that all available informa-

tion be used in OT—such as information from DT (National Research Council 1998;

National Research Council 2004; National Research Council 1994). However, as can

be seen in the hypothetical example, there are many differences between what DT

and OT evaluate. For a system proceeding through the phases of the acquisition

process, these differences can result in related, but not identical (or, more generally,

exchangeable), data. While the relatedness of the data implies that DT could inform

OT in some manner, the potential for non-exchangeable data presents challenges—

even if DT and OT are interested in the same response variable. These challenges

include:

5



Chapter 1. Introduction

– OT is conducted in operationally realistic environments with operational users;

DT need not be conducted in such a manner, and can be conducted in controlled

or artificial environments using experts in a system.

– OT uses an production representative system; DT can use system components

or early, less mature, versions of a system.

– OT focuses on evaluating whether a user can accomplish a mission while using

a system; DT focuses on evaluating whether system specifications have been

met.

– It is possible that DT, especially later in system development, can be conducted

in a way that minimizes the effect of the differences created by the above chal-

lenges. However, even if DT and OT are conducted in the same environment,

with the same system, and evaluate the same response variable, the strictly

controlled manner in which a system is employed in DT could result in differ-

ent outcomes than in OT, where operationally representative users employ the

system as they see fit.

These challenges highlight differences in environment, system maturity, test focus,

and system employment—differences that must be considered before using DT data

to inform OT, to ensure that conclusions about a system are made using infor-

mation that is representative of how a system is expected to perform in an oper-

ational environment. Recognizing that certain DT information may be beneficial

in OT, the DoD’s current OT framework has a process for qualifying appropri-

ate non-OT data for use in OT. “For data to be qualified for OT, the data must

have been collected using production representative equipment, with representa-

tive operational users, employing operational [tactics, techniques, and procedures

(TTPs)]” (Department of the Navy 2019). While this is one step towards incorpo-

rating DT information, these restrictive conditions still prevent the use of all relevant

6
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information that DT could provide. This can leave operational testers spending lim-

ited resources to capture OT data that might be unnecessary, which can result in

allocating resources in a sub-optimal manner or in having insufficient data at the

end end of testing to evaluate a system.

Bayesian methods are ideal for scenarios in which there is insufficient informa-

tion available from a test, as all information thought to be relevant can be easily

incorporated into analysis. By incorporating additional information into an analy-

sis, the standard deviation for model parameter estimates can be improved, making

it possible for conclusions to be made with the degree of certainty required when

there is limited data (National Research Council 1994). However, prior to 2015, “no

one [had] yet capitalized on the knowledge that can be gained when one properly

combines information across all of these test venues” (Dickinson et al. 2015). Dick-

inson et al. (2015) present a case study for combining DT data into OT through

Bayesian methods, leveraging consistent data collection across both test phases and

commonalities within a family of similar systems, and demonstrate that it is possible

to get more precise model parameter estimates than when using OT data alone. Al-

ternatively, previous information can also be incorporated into a Bayesian analysis

through prior distributions, as was done by Dewald et al. (2016). By using summary

statistics from previous computer experiments to create a prior for a live test, they

highlight how Bayesian methods can improve the DoD’s current OT framework by

allowing for the possibility of improved precision of model parameter estimates.

Combining information across test phases can address the case when OT alone is

insufficient to make a definitive conclusion with a reasonable degree of certainty. By

allowing information to be combined, an additional question can be considered—do

testers know enough about the system from relevant, previous testing that the opera-

tional test design can be reduced? Given “the high cost of many weapon systems, and

the substantial cost of testing them, even modest improvements in operational test-

7
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ing by using the most appropriate statistical methods can lead to more efficient use

of public funds and considerable improvements in reliability and effectiveness of the

systems deployed” (National Research Council 1998). One statistical method that

could be used to allow for more efficient use of funds is to incorporate interim analysis

into OT, with the intent to stop OT early if enough information has been obtained to

make decisions about system procurement. Not only is combining other information

into analysis foundational to the Bayesian framework, but “Bayesian inferences are

more flexible [than frequentist methods] in that they can be updated continually as

data accumulate”, making interim analysis a natural fit within a Bayesian analysis

(D. A. Berry 1993). Finally, as will be discussed in Chapter 2, OT already uses

informal methods to incorporate subject matter expert (SME) opinion into test de-

sign (National Research Council 2004); the Bayesian framework not only formalizes

this process, but it extends the process to allow for all relevant information to be

incorporated.

These concepts lay the foundation for the overarching proposition of this research:

moving the DoD’s current OT framework from a frequentist paradigm into a Bayesian

paradigm, introducing adaptive testing principles into OT, and incorporating DT

information into OT in order to make OT more effective and efficient. Chapter

2 begins with an overview of the current OT framework, followed by a simulated

example that will be used throughout this research. The Bayesian framework is then

overlaid on the OT paradigm. Furthermore, the operational environment is directly

incorporated into the evaluation of a system. The chapter concludes with using

the previously introduced simulated example to implement the proposed method.

Chapter 2 ultimately proposes a way in which Bayesian methods can be employed

the OT environment.

Chapter 3 begins with a literature review of specific work within clinical trials

using predictive probability. Chapter 2 is then leveraged to develop a method for

8



Chapter 1. Introduction

adaptive OT that permits stopping test early, allowing for effective and efficient

use of test resources. This section broadens the clinical trials work to OT and

extends that work to a fully Bayesian method for a continuous response with an

ANOVA structure. Chapter 3 concludes with the simulated example, demonstrating

the utility of the method. The adaptive methods proposed in this chapter provide a

novel approach to accomplishing OT, allowing for more efficient use of resources.

Chapter 4 begins with an in-depth discussion of priors. Having established a

method for adaptive OT in the previous chapter, a novel method for using DT

information to create informative priors for OT is then presented. By incorporating

DT information, it is possible to get smaller standard deviations for model parameter

estimates, which allows for stopping OT earlier than in previous chapters. Chapter

4 proposes a new informative prior that appropriately accounts for the differences

between DT and OT, and is more suitable for use in OT than previously proposed

priors.

Chapter 5 will summarize what the previous chapters accomplished and discuss

areas for future research. The framework presented in this research allows opera-

tional testers to capitalize on additional statistical capabilities to further enhance

the effectiveness and efficiency of OT. In addition to greater flexibility within test-

ing, Bayesian methods more directly answers the question that OT seeks to address:

will the user be able to accomplish the mission while using the system under test?

9



Chapter 2

Operational Testing from a

Bayesian Perspective

Chapter 2 proposes transitioning the Department of Defense’s (DoD) current op-

erational testing (OT) paradigm into a Bayesian framework and introduces a method

for directly incorporating the operational environment in analysis. Section 2.1 intro-

duces the current OT paradigm and a simulated example that will be used throughout

this research. Section 2.2 then shifts the OT paradigm into a Bayesian framework,

proposing a new approach to measure evaluation and providing the groundwork for

using adaptive testing principles in OT (Chapter 3). Section 2.3 implements the

proposed process using the simulated example, and compares the results to the re-

sults from the current process in Section 2.1. A review of pertinent concepts within

the Bayesian framework for the methods presented in this and later chapters can be

found in Appendix A.
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2.1 Department of Defense’s Current Operational

Testing Framework

Before shifting to a Bayesian perspective, the current process is introduced. This

section provides a brief overview of the current OT process, followed by a simulated

example implementing this process. In Section 2.3, results from this section will be

compared against the results from the proposed method of this chapter For a more

detailed discussion of requirement creation and development in a DoD context, see

the Joint Chiefs of Staff’s Manual for the Operation of the Joint Capabilities Integra-

tion and Development System (2018), here after referred to as the JCIDS Manual.

For a more detailed discussion of the test design and system evaluation process, see

the Department of the Navy’s Operational Test Director’s Manual (2019), hereafter

referred to as the OTD Manual.

2.1.1 Creating an Operational Test and Evaluating a Mea-

sure

Recall from Chapter 1 that requirements are technical specifications and perfor-

mance attributes used to evaluate a system. Requirements are foundational to the

acquisition process—they define what the warfighter needs, which creates a frame-

work for DT and OT efforts. Requirements detail, among other things, a response

variable for a task or attribute of a system and a related response threshold value. Re-

sponse threshold values “represent the value below which [system] performance would

require reevaluation of military utility” in the defined mission area (JCIDS Manual).

When evaluating a system, requirements are used to establish (what testers refer to

as) measures. A single measure is the combination of a function of a response (re-

ferred to as a parameter of interest and represented by φ) and an associated response
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threshold value (represented by φ0).

In addition to being the foundation for a system’s evaluation, requirements are

also the foundation for statistical test designs within OT. Requirements that are

deemed critical inform the selection of response variables for experimental designs (a

single operational test program may be made up of multiple experimental designs,

but this research will focus on one critical response variable and the associated ex-

perimental design to illustrate our proposed methods). After using requirements to

choose a response variable, testers select factors and levels that are judged to be

operationally relevant to the response (OTD Manual). Following the classical de-

sign of experiments (DOE) process, factors that are recordable are conditions that

may have an effect on the response variable, but may be uncontrollable during test

execution (e.g., weather). Design factors are factors that are ultimately selected

to influence the test design (Montgomery 2012). Augmenting the classical DOE

process, OT evaluates the selected factors and levels to understand their potential

impact on a response variable during the test design process. First, the potential

effect that changing from one level of a factor to another level might have on the

response variable is examined and categorized as high, medium, or low. Next, the

anticipated likelihood of encountering a given level in the system’s operating environ-

ment is examined and quantified. This process is referred to as factor prioritization

(OTD Manual).

Using the results from factor prioritization, an experimental design can be cre-

ated, based on guidance in the OTD Manual. Test designs are constructed so all

main effects and two-way interactions can be identified, with 80% power and a con-

fidence level of 80% (OTD Manual). However, to calculate power, an appropriate

effect size must be selected. This may be determined by subject matter experts

(SME) input or through considering historical data; regardless of how it is selected,

the effect size should have practical meaning for a system and its intended mission

12
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(OTD Manual). After an operational test is completed and data are obtained, the

most granular piece of system evaluation begins—evaluating measures.

To evaluate a measure, operational testers frequently combine information from

different operational environments (i.e., different factors and levels) into a summary

statistic that estimates a parameter of interest. Selecting a grand mean to estimate

the parameter of interest is a common choice in OT (National Research Council 1998;

Freeman and Warner 2018). By using a summary statistic, evaluating a measure is

based on the entire space, as defined by the factors and levels, rather than group

means. After obtaining test data, the parameter of interest, φ, is calculated and

compared to the threshold value, φ0. If φ ≥ φ0, the measure is evaluated as met ; if

φ < φ0, the measure is evaluated as not met.

This research assumes that the current design process is robust enough to evaluate

a system under test; furthermore, the methods proposed in this research focus on

the most granular evaluation that occurs within OT—evaluating a single (critical)

measure as met (i.e., concluding φ ≥ φ0) or not met (i.e., concluding φ ≤ φ0). The

complete system evaluation (evaluating if the system is mission capable) is an area

for future work, and discussed further in Chapter 5.

2.1.2 Simulated Example: Electric-Semi Truck

To illustrate the current OT process, recall the hypothetical example about the

truck company who wanted to procure cellphones, illustrating the differences be-

tween DT and OT; we will continue to use this company to illustrate the concepts

presented throughout this research, but through the procurement of a different sys-

tem. In Section 2.3, the results from this section will be compared to the results from

our proposed method. This hypothetical company’s mission is to transport products,

both regionally and across-country, on a pre-specified timeline. The CEO recently
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announced an initiative to become a “green company,” and a cornerstone of that ini-

tiative was to transition their 600+ diesel semi-trucks into a more environmentally-

friendly fleet. After conducting an assessment of the infrastructure across the coun-

try, the company determined that it could support a fully electric semi-truck opera-

tion. The company intends to acquire the selected electric semi-truck by mirroring

the DoD acquisition process.

This electric semi-truck example is a simulated example; by using simulated data,

various distributions of the response can be considered, providing insights into how

the method performs across a range of possible scenarios. The OT data generation

processes for this example can be found in Appendix B; true parameter values are

shown to compare with results, but are not used in the method itself. The simulated

response values are based on publicly-proposed ranges for vehicles of a similar class

being put forward by companies currently developing such a vehicle.

Beginning the OT process, company representatives, truck drivers, and other

SMEs met to determine which established electric semi-truck requirements were ap-

propriate for OT to evaluate. Requirements included topics such as training require-

ments for maintainers and truck operators, hardware requirements for connecting

to charging stations, software requirements for the electric engine and dashboard,

and many other requirements. This example focuses on one critical requirement in

particular: “The average range of an electric semi-truck on one charge should be at

least 400 miles.”

Using this requirement, the response variable “mean number of miles traveled”

was selected as the basis for an experimental design, and factors and levels that

were operationally relevant for the response variable were selected (see Table 2.1).

Operationally, wind is a factor that is classified as uncontrollable—therefore, wind

is not randomized within the experimental design, but will be measured during the

test. Wind is also an example of a factor that encompasses many aspects—aspects
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such as direction and strength of the wind. The test team determined that binning

numbers from the Beaufort Scale (Encyclopaedia Britannica 2017) was similar to the

information available during an operational employment of the electric semi-truck

and defined the following levels:

– Good: Beaufort Numbers 0-3 in any direction and 4-6 in tail wind direction

– Moderate: Beaufort Numbers 4-6 in head wind and cross wind direction

– Poor: Beaufort Number of 7 or higher

After determining the factors and levels, the test team accomplished factor

prioritization. The potential effect of changing the level (e.g., moving from hilly to

flat terrain would highly impact the response) was determined and can be found in

Table 2.1. Next, the anticipated likelihood of encountering each level in Table 2.1

was evaluated. For example, for every nine routes the company had, four of their

routes were in hot climates and five were in moderate climates. Similar assessments

were made for all other factors and levels and can be found in Table 2.1.

Factor Levels Effect Likelihood
Terrain Hilly High 50%

Flat 50%
Temperature Hot (>70◦F) Medium 4/9

Moderate (70◦-50◦F) 5/9
Wind Good Medium 1/3

Moderate 1/3
Poor 1/3

Payload Type Refrigerated High 50%
Non-Refrigerated 50%

Weight Heavy (≥40k lbs) High 50%
Light (<40k lbs) 50%

Table 2.1: Factor Prioritization for Electric Engine
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After factor prioritization, an experimental design could be selected. Using the

statistical analysis software package Minitab, testers selected a 24 full factorial with

five replicates that included main effects and two-way interactions (excluding wind)

for the experimental design, resulting in 80 test events. This design has a power of

80%, with an 80% confidence level, to detect a difference of 50 miles with a standard

deviation of 100 miles.

Finally, for the requirement used in this example, the test team determined one

measure to be the following: φ is the mean number of miles traveled and φ0 = 400

miles. Comparing the resulting φ to φ0 would determine if the system met the

measure or not: if φ ≥ φ0, the test team would evaluate the measure as met; if

φ < φ0, they would evaluate it as not met and a discussion of the impact on the

mission would ensue.

The test was then executed as designed, without any missing or censored data;

after all the data were obtained, measures were evaluated. To highlight how the

evaluation of the identified measure changes depending on different distributions of

the response, 21 data sets were generated as described in Appendix B. Results for the

identified measure using the current OT process are presented in Table 2.3 (Section

2.3), after all components of the proposed method have been introduced; however,

for the 21 data sets generated, all 21 would evaluate the measure as met under the

current OT paradigm. Therefore, all would lead to the conclusion that the electric

semi-truck’s average range on one charge was greater than 400 miles.
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2.2 Operational Testing within a Bayesian Frame-

work

Having introduced key concepts within the current OT process, this section de-

tails how to shift the OT paradigm into a Bayesian paradigm. As previously high-

lighted, this research assumes the process outlined in Section 2.1 develops an ade-

quate test to evaluate system performance; as such, this section lays the groundwork

for efficiencies that can be gained in the current process by shifting from a frequentist

perspective to a Bayesian perspective.

From the Bayesian perspective, this chapter provides the ability for testers to

calculate the direct probability of φ obtaining φ0 (i.e. Prφ|X(φ ≥ φ0); in contrast

to the indirect probabilities in a frequentist analysis, i.e., p-values) (S. M. Berry et

al. 2011; D. A. Berry 1993). Consider testing the hypothesis: H0 : φ ≥ φ0 versus

H1 : φ < φ0. Bayesian inference can provide the direct probability, Prφ|X(φ ≥ φ0),

after a test has been completed and some data, X, have been obtained—that is to

say, the probability that φ is greater than or equal to φ0, given X. In contrast,

frequentist methods are indirect probabilities. Statistical tests, such as z-tests or

t-tests, are used to calculate a p-value (or compared against a similarly computed

critical value) to determine if H0 should be rejected or should fail to be rejected.

The interpretation of a p-value is the probability of obtaining a result as extreme or

more extreme than the results obtained, assuming H0 is true—a statement that can

be confusing to non-statisticians, and is often (incorrectly) interpreted as the more

understandable Bayesian direct probability (D. A. Berry 1993). Shifting OT into a

Bayesian framework not only allows for direct probabilities to be calculated, it also

provides the foundation for this research—exploring more efficient OT practices. In

Chapter 3, predictive probabilities are used to consider stopping an operational test

early, based on interim results. Chapter 4 incorporates developmental testing (DT)
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information, which is disparate from OT information but still related. Both chapters

are a byproduct of the shift to a Bayesian perspective presented in this chapter.

This section proposes augmentations and additions to the current process to

support a Bayesian analysis, while still seeking to leverage the current process to the

greatest extent possible. The section begins with augmenting the current OT process,

followed by a method for explicitly analyzing data from an operational perspective.

It concludes with how to evaluate a measure in a Bayesian analysis.

2.2.1 Augmenting the Current Test Design Process

While the current OT process does not require the construction of a statistical

model to evaluate a measure (especially if a grand mean is used), the underlying

structure of the test design process can be seen through the lens of an ANOVA model

for the response, where each factor level (and two-way interaction) corresponds to a

parameter in the model. Explicitly using an ANOVA model provides a framework for

understanding factors and levels, and their impact on the response variable. Using

a reference cell model, the following model form is proposed:

y{h}p = µ{h} + ε{h}p

where {h} represents the set of indices for the parameters in the model, µ{h} is a

linear combination of main effects and interactions defined by {h}, and p represents

the replicate of the observation. We will use H to indicate the space of all allowable

sets of indices, such that each h is an element of H. For example, consider a two-way

ANOVA model (each factor having two levels) with the response variable yijp|µij, τ ;

then µij = η + αi + βj + (αβ)(ij) for i = 1, 2 and j = 1, 2. In this example, η is

the baseline parameter representing the first level of each factor. The constraints

of this reference cell model are all model parameters at the first level, or with at

least one factor at the first level for interactions, are equal to 0. This provides
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the interpretation of α2 as the change in the group mean from µ11 to µ21; that is,

µ21 − µ11 = α2. Assuming that the errors are iid and normally distributed with a

mean of 0 and a variance of 1
τ

(where τ is referred to as the precision), the distribution

of the response within each group (as defined by the factors and levels) can be written

as

y{h}p|µ{h}, τ
iid∼ N

(
µ{h},

1

τ

)
.

In the Bayesian framework, each parameter in the model is considered random

and unknown; therefore, all model parameters require prior distributions. After the

completion of factor prioritization, discussions that inform and result in prior selec-

tion for the model parameters should be held—a natural extension of the current

process that determines whether varying the levels of a factor potentially cause a

high, medium, or low effect on the response. While Chapter 4 addresses the use of

informative priors using DT information, Chapters 2 and 3 use independent refer-

ence priors. Instead of diffuse reference priors that strive to provide no information

about model parameters (and can cause computational issues, as will be addressed

in Chapter 4), reference priors that incorporate information about the bounds of the

physical world (also known as weakly informative priors) ensure that the resulting

posterior distribution is reasonable (Gelman et al. 2014). Section 2.3 will demon-

strate how these priors can be developed, with the simplifying assumption that the

priors on the model parameters are all mutually independent.

After defining an ANOVA model and selecting priors, a likelihood for the data to

be obtained can be defined. Letting ξ represent the collection of model parameters

and Y represent the set of observations, the form of the likelihood is:

L(ξ, τ |Y ) =
∏
h∈H

f(y{h}p|ξ, τ).

Given the prior for the model parameters and the likelihood for the data, the posterior

then has the form:
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p (ξ, τ |Y ) ∝ L (ξ, τ |Y ) p (ξ, τ)

=
[ ∏
h∈H

f(y{h}p|ξ, τ)
]
p(ξ, τ).

The shift to a Bayesian perspective, as proposed in this section, has augmented

rather than altered the current process; therefore, this proposal will result in selecting

the same experimental design as the current test design process. While the method

presented in this chapter can be used with any experimental design, this is not the

case for the adaptive OT method described in Chapter 3. Experimental designs

that can benefit from both methods include fully randomized designs (e.g., factorial

designs and optimal designs) and designs that block on replicates.

2.2.2 Analysis using an Operational Perspective

As discussed in Section 2.1, it is not uncommon in OT to choose a grand mean of

the response as the parameter of interest. Within an ANOVA framework (whether

used implicitly or explicitly), however, this choice can be problematic. Averaging

across factor levels assumes both an ordering of levels and a linear relationship be-

tween those levels and the response, neither of which is implicit in the ANOVA

framework. This would have the effect of evaluating a measure in an operational

environment that may not exist. Averaging across factor levels also has the effect

of artificially reducing operational variability (see Figure 2.1): if a system performs

well above φ0 in one operational environment and just below φ0 in all others, it is

possible to evaluate the measure as met when using a grand mean, even if φ0 would

not be met in most operational environments. Similarly, if a system performs just

above φ0 in most environments and well below φ0 in one, it is possible to evaluate

the measure as not met when using a grand mean.
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In contrast, “mission sets” (a combination of factor levels) that represent opera-

tional environments are proposed, providing a method to obtain a summary statistic

based on performance across operational environments without artificially reducing

the operational variance. This is accomplished by considering the joint distribution

of mission sets and mission means, and then marginalizing over mission sets to ob-

tain a mixture distribution of mission means. This grounds measure evaluations in

actual results from representative operational environments, and prevents the previ-

ously addressed problems that can arise when the variability is artificially reduced.

We refer to this method as the Bayesian mission mean approach. At the end of

the next sub-section, once all components of the proposed method in this chapter

have been introduced, equations (2.1)–(2.3) demonstrate the difference between a

frequentist grand mean approach, a Bayesian grand mean approach, and a Bayesian

mission mean approach.

Mission sets are drawn based on the anticipated likelihood of encountering lev-

els established during factor prioritization. These mission sets do not represent the

space of all mission sets, but rather those used to evaluate the system. In an ANOVA

model, to construct a single mission set, one level from each factor is drawn from a

corresponding categorical distribution; the number of categories (k) in the categorical

distribution is defined by the number of levels for the given factor, and the probabil-

ities (p1, . . . , pk) are defined by anticipated likelihood of encountering each level. For

example, consider a factor with two levels (e.g. αi, i = 1, 2); the index defining which

level is included in a mission set would be drawn from a Cat(2, p1, p2). An example

relating mission sets to an operational environment is presented in Section 2.3.

Incorporating mission sets into the analysis provides a novel way of conducting

OT when the parameter of interest is a summary statistics that will be used to eval-

uate a measure. By approaching analysis over the marginalized mission sets, the

operational environment is defined more rigorously and provides more actionable in-
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formation. When using a grand mean, the small variance of φ masks the complexity

of the operational environment. Using the marginalized mission space provides more

information about the variability in the parameter of interest within the operational

environments the system will be used in. By accounting for the range of possible

outcomes, the operational environment is being explicitly used to evaluate system

performance—and therefore explicitly used to make decisions about system procure-

ment. This more rigorous definition of the operational environment more closely

aligns with the goal of OT: determining if the user can accomplish the mission when

employing the system in an operational environment.

2.2.3 Operational Testing using Bayesian Analysis

Finally, the shift to a Bayesian perspective allows testers to calculate the direct

probability of the parameter of interest obtaining the threshold value, Prφ|X(φ ≥ φ0),

after a test has been completed and some data, X, have been obtained. To obtain

this probability, first a joint posterior distribution is numerically approximated using

traditional MCMC sampling methods in software such as R or OpenBUGS and then

mission sets are drawn. Once the mission sets and the posterior distribution on

the model parameters are obtained, they can be used to induce a distribution on φ.

This is accomplished by using the mission sets to mix the mission means from the

posterior distribution. This induced distribution can then be used to calculate the

direct probability that the parameter of interest is greater than the threshold value

across all mission sets. Given this, a certainty threshold value (θT ) is selected; θT is

a probability which is used to express how much certainty is required before stating

that φ > φ0. Instead of the current practice of comparing φ to φ0, this method uses

θT to re-define how how a measure is evaluated:
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– If Prφ|X(φ ≥ φ0) > θT , the measure would be evaluated as met.

– If Prφ|X(φ ≥ φ0) ≤ θT , the measure would be evaluated as not met.

Using this construct, equations (2.1) - (2.3) demonstrate the difference between

a grand mean (GM) approach and a mission mean (MM) approach. Let ȳ =
∑n
i=1 yi
n

(the mean of the data) and let σ be the standard deviation of the data. Let µj

be a normally distributed random variable that represents the mean for the jth

mission set, j = (1, . . . ,m), and let pj be the probability of seeing the jth mission

set (
∑m

j=1 pj = 1). Finally, let δ be a vector from a Multinomial(1, p1, · · · , pm−1),

where δj is the jth element of δ. Equation (2.1) is a frequentist evaluation of the

grand mean, using a traditional statistical test (instead of simply ȳ > φ0); equation

(2.2) is a Bayesian evaluation of the grand mean; and equation (2.3) is a Bayesian

evaluation of the mission mean:

ȳ − φ0
σ√
n

> z1−θT (2.1)

Pr(φGM > φ0) ≥ θT (2.2)

Pr(φMM > φ0) ≥ θT (2.3)

where φGM =
∑m

j=1 µjpj and φMM =
∏m

j=1 µ
δj
j . Therefore, φGM is a weighted average

of random variables and φMM is a random selection of random variables.

2.3 Electric Semi-Truck Example from a Bayesian

Perspective

In this section, the electric semi-truck example will be explored from a Bayesian

perspective, evaluating the electric semi-truck using the Bayesian mission mean

method. Overlaying the Bayesian framework on the current process, an ANOVA
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model with main effects and two-way interactions (excluding wind) is selected and

explicitly used. Table 2.2 updates Table 2.1, accordingly, and defines the ANOVA

model parameters. The ANOVA model is then:

yijklmp = µijklm + εijklmp



i = 1, 2

j = 1, 2

k = 1, 2, 3

l = 1, 2

m = 1, 2

p = 1, . . . , 5

where

µijklm = η+αi+βj+ωk+γl+δm+(αβ)ij+(αγ)il+(αδ)im+(βγ)jl+(βδ)jm+(γδ)lm

and p represents the replicate. Furthermore, using a reference cell model, η is the

baseline parameter representing the first level of each factor. The constraints of this

reference cell model are all model parameters at the first level, or with at least one

factor at the first level for interactions, are equal to 0. Assuming that the errors

are iid and normally distributed with a mean of 0 and a variance of 1
τ

(where τ is

referred to as the precision), the distribution of miles traveled within each group can

be written as

yijklmp|µijklm, τ
iid∼ N

(
µijklm,

1

τ

)
.

Next, independent Normal priors that took into account the plausible range of

parameter values were selected. For example, without data relating to the electric

semi-truck, testers believed changing the baseline parameter (η) from hilly terrain

(i = 1) to flat terrain (i = 2) would increase the average number of miles traveled

by 50 miles. They further determined that it was unrealistic to expect an increase of

more than 250 miles, given this change. For this example, placing a variance of 1002
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on the distribution of the flat terrain parameter, α2, would result in an approximate

95% Normal interval of change-in-average-miles-traveled from -150 (two standard

deviations below the mean of 50) to 250 (two standard deviations above the mean).

Testers believed that a change outside of this span was extremely unlikely; therefore,

they selected an independent Normal(50, 1002) prior for α2. Similar assessments were

made for each unconstrained model parameter and the selected priors can be found

in Table 2.2. None of the means for these priors are 0, which reflects the belief that

these factor levels have an effect on the response variable—the reason these factor

levels were selected. Furthermore, 0 is contained in either two standard deviations

below or above the mean, allowing for the possibility that the model parameters may

not be significant, or may have a different direction then believed. Model parameters

that are constrained to 0 result in priors that are degenerate at 0, which can be seen

in Table 2.2.

Factor Levels Effect LoE* MP* Prior

Terrain Hilly High 50% αi Pr(α1 = 0) = 1
Flat 50% p(α2) ∼ N(50, 1002)

Temperature Hot Medium 4/9 βj Pr(β1 = 0) = 1
Moderate 5/9 p(β2) ∼ N(50, 502)

Wind Good Medium 1/3 ωk Pr(ω1 = 0) = 1
Moderate 1/3 p(ω2) ∼ N(−25, 502)
Poor 1/3 p(ω3) ∼ N(−50, 502)

Payload Refrigerated High 50% γl Pr(γ1 = 0) = 1
Type Non-Refrigerated 50% p(γ2) ∼ N(100, 1002)
Weight Heavy High 50% δm Pr(δ1 = 0) = 1

Light 50% p(δ2) ∼ N(100, 1002)

* Likelihood of Encountering (LoE) and Model Parameter (MP)

Table 2.2: Factor Prioritization for Electric Engine

Given that the electric semi-truck had proceeded to an operational test, testers

believed that a mean of 400 miles (the threshold) would be reasonable for the baseline
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parameter (η, which represents hilly terrain, hot temperature, good wind, refriger-

ated payload type, and heavy weight); they also found it extremely unlikely that the

engine could travel 600 miles on one charge in the baseline case. Therefore, a Nor-

mal(400, 1002) prior was selected for η. This places 95% of the probability between

200 and 600 miles. Additionally, a Normal(0, 1002) prior was selected for all two-way

interactions to allow for two-way interactions to increase the response, decrease it, or

have no effect on it. Finally, a Gamma(0.0001, 0.0001) reference prior was selected

for the precision, τ .

As changes to the current process did not influence the experimental design se-

lection, the same 24 full factorial with five replicates from Section 2.1.2 was selected.

Additionally, a certainty threshold of θT = 0.8 was selected.

At the end of test execution, a posterior distribution is obtained. For each MCMC

draw from the posterior distribution of model parameters, a mission set is also drawn,

as discussed in Section 2.2.2. For instance, to obtain the terrain index, i, for a

mission set: i is drawn from a Cat(2, 0.5, 0.5) distribution, where obtaining a 1

would correspond to a hilly terrain (α1) and a 2 would correspond to a flat terrain

(α2). To demonstrate how this relates to an operational environment, consider if the

only two factors were terrain (hilly and flat) and temperature (moderate and hot).

If the drawn mission set is flat / hot, this representation could correspond to an

operational environment in Florida, for example.

After inducing a distribution on the mean miles traveled and marginalizing over

the mission sets, Prφ|X(φ ≥ 400) can be calculated and compared to θT = 0.8

to evaluate the measure. The posterior distributions using the 21 data sets were

calculated using a Gibbs sampler in R, with 80,000 posterior samples (after examining

the trace plots, and removing the burn-in samples). Results from the analysis for

each data set can be found in Table 2.3, along with the results from the current OT

process described in Section 2.1.2.
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Proposed Method: Current Method:
Bayesian Mission Mean Grand Mean

Data Set η Prφ|X(φ ≥ 400) Measure is... Mean Measure is...
1 343 0.7856 Not Met 481.46 Met
2 345 0.7968 Not Met 483.46 Met
3 347 0.8059 Met 485.46 Met
4 349 0.8134 Met 487.46 Met
5 351 0.8212 Met 489.46 Met
6 353 0.8302 Met 491.46 Met
7 355 0.8380 Met 493.46 Met

(a) Error Transformation 1 (Smallest Variance)

Proposed Method: Current Method:
Bayesian Mission Mean Grand Mean

Data Set η Prφ|X(φ ≥ 400) Measure is... Mean Measure is...
8 343 0.7812 Not Met 480.51 Met
9 345 0.7879 Not Met 482.51 Met
10 347 0.7959 Not Met 484.51 Met
11 349 0.8018 Met 486.51 Met
12 351 0.8096 Met 488.51 Met
13 353 0.8172 Met 490.51 Met
14 355 0.8248 Met 492.51 Met

(b) Error Transformation 2

Proposed Method: Current Method:
Bayesian Mission Mean Grand Mean

Data Set η Prφ|X(φ ≥ 400) Measure is... Mean Measure is...
15 343 0.7802 Not Met 479.42 Met
16 345 0.7885 Not Met 481.42 Met
17 347 0.7916 Not Met 483.42 Met
18 349 0.7998 Not Met 485.42 Met
19 351 0.8062 Met 487.42 Met
20 353 0.8123 Met 489.42 Met
21 355 0.8195 Met 491.42 Met

(c) Error Transformation 3 (Largest Variance)
* Error Transformation definitions are in Appendix B.

Table 2.3: Bayesian Mission Mean Approach for Various ηs and Error Transforma-
tions, Compared to a Grand Mean Approach
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Using the current grand mean method, all 21 data sets resulted in the measure

being evaluated as met; in contrast, only 12 data sets result in the measure being

evaluated as met when using the Bayesian mission mean method. This is due to

the current grand mean method artificially reducing the variability of actual perfor-

mance in operational environments. In contrast to the grand mean, by marginalizing

over the mission space, the Bayesian mission mean method takes into account the

operational variability and restricts the evaluation focus to system performance in

the operationally representative environments where testing is conducted. To illus-

trate this, consider Figure 2.1. For ease of comparison, we are showing the Bayesian

grand mean and Bayesian mission mean because they are both functionals of the

same unknown model parameters. The frequentist grand mean is a functional of the

data, and less directly comparable.

Figure 2.1: Data Set 2 Densities for φGM and φMM

While model parameter estimates are not the focus of our method for evaluating

measures, should knowing their values be a secondary objective, they can still be

obtained. An example of model parameter estimates is provided in Table 2.4. This

table also gives the reader a sense of how the priors, posteriors, and true values relate.
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It can be seen that, although the posteriors remain somewhat diffuse, the true values

are all within a central 95% probability interval on the posterior.

Model Value for Data Prior Posterior Prior Posterior
Parameter Generation E(·)* E(·)* sd(·)* sd(·)*

η 347 400 352.75 100 18.82
α2 50 50 60.07 100 21.30
β2 15 50 15.49 100 19.73
ω2 0 −25 −6.62 50 15.27
ω3 −5 −50 −4.01 50 12.93
γ2 75 100 66.27 100 21.08
δ2 50 100 56.92 100 21.66

(αβ)(22) 10 0 −12.61 100 21.16
(αγ)(22) 50 0 38.54 100 21.69
(αδ)(22) 25 0 17.15 100 22.22
(βγ)(22) 50 0 65.56 100 21.23
(βδ)(22) 25 0 15.80 100 21.32
(γδ)(22) 25 0 22.22 100 23.22

τ See Appendix B 1 0.0004142 100 0.0000707

* E(·) is the expectation of the model parameter and sd(·) is the standard deviation.

Table 2.4: Model Parameter Estimates with n = 80 Observations for Data Set 3

An advantage of this method, in addition to evaluating the measure over the

marginalized mission sets, is that further information can be provided regarding spe-

cific mission sets. Therefore, not only does this method address the goal of OT,

but it can also be used to inform planning by users in the operational environment.

For instance, if the transport company’s logistical division wanted more informa-

tion about the operational environment represented by the baseline parameter for

planning purposes, this method can address that question. Instead of randomly gen-

erating mission sets over the space of mission sets, the baseline mission would be

used for every posterior draw already obtained.
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Mission Set* Posterior Expectation Posterior Standard Prφ|X(φ > 400)
of µijklm Deviation

{11111} 352.75 18.82 0.0063
{22111} 415.71 19.10 0.7955
{12112} 440.97 19.76 0.9808
{12311} 364.24 19.66 0.0355
{22222} 691.55 19.81 >0.9999†

* A mission set is defined by the indices of µ in the ANOVA model, {ijklm}.
† Computationally, this is numerically indistinguishable from 1, but not actually 1.

Table 2.5: Subset of Mission Set Estimates for Data Set 3

Implementing this method for planning purposes, Table 2.5 provides a subset of

mission sets and the posterior expectation of the number of miles traveled from the

corresponding induced distribution; this table also highlights that not every posterior

expectation need be above 400 miles for the measure to be evaluated as met.
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Adaptive Operational Testing

By shifting to a Bayesian Framework in Chapter 2, testers were able to obtain

direct probabilities, instead of indirect probabilities. In addition to providing direct

probabilities, the Bayesian framework also allows for predictive probabilities, which

can be obtained from a predictive distribution of future observations, given the data

already obtained. A predictive distribution is a distribution of unobserved future

observations, given the observations already seen; after obtaining the predictive dis-

tribution, estimates of interest can be calculated, to include predictive probabilities.

For example, the probability that a future observation will exceed a given value when

it has yet to be seen can be calculated within a Bayesian framework. Frequentists

can provide a point estimate for a future observation, or a prediction interval for

that point estimate, but “[p]robabilities of future observations are not possible in a

formal frequentist approach” (D. A. Berry 1993).

Furthermore, the Bayesian paradigm provides a flexible approach to analysis,

which frequentist methods require more effort to achieve. Within the Bayesian

framework, the constant updating of information is easily accomplished. As data

accumulates, inferences can be updated and new conclusions can be made; therefore,
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each new data point is an update to the current belief. As a result, interim results

can then become final results at any time during a test. Within the frequentist

paradigm, conducting interim analysis with intent to stop test early requires adjust-

ments to p-values; this is not the case for conducting Bayesian interim analysis. In

a Bayesian analysis, inferences are not affected by interim analyses or the reason a

test was stopped as a result of the likelihood principle and the lack of dependence on

an experimental design (D. A. Berry 1993; Zang and Lee 2014; D. A. Berry 1987).

This flexibility in Bayesian analysis provides a natural framework for allowing op-

erational testers to answer the question “how much testing is enough?” during test

execution. If the question is satisfactorily answered earlier in testing, stopping the

test would provide both cost and schedule savings. The idea of constant updating in

the Bayesian framework can be expressed in the following manner:

...Bayesian inference is not merely data analysis. Bayes’ theorem is a

formalism for learning: that’s what I thought before, this is what I just

saw, so here’s what I now think—and I may change my views tomorrow.

- Donald A. Berry, A Case of Bayesianism in Clinical Trials (1993)

This idea is not only a central tenet of Bayesian statistics, but it is also the underlying

concept of a military theory for decision making: John Boyd’s “OODA Loop”.

As described by Hammond, Boyd considered the OODA Loop (short for the Ob-

serve, Orient, Decide, Act Loop) to be “a composite of how we think and learn, the

source of who we are, and the potential we possess. . . a shorthand for life itself,

a model for how we think” (Boyd 2018). The OODA Loop—the iterative process

of folding new information into a constantly updated view of the world from which

actions and feedback naturally flow—is not limited to a military training, but is now

taught across a variety of professions (Boyd 2018). The loop begins with “obser-

vation”: assessing the current environment. Next, “orientation” considers previous
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experience (traditions, education, personal experiences, etc.), and synthesizes it with

the information obtained from observation. This allows for various courses of action

to be established. A “decision” is then made regarding which course to select, based

on some set of decision criteria (e.g., which course of action has the least risk).

Finally, “act” implements the course of action decided upon. In its typical represen-

tation (which is considered an over-simplification, c.f. Hammond’s Appendix on the

OODA Loop, Boyd 2018), the OODA Loop is presented in a circular pattern—each

piece of the loop feeding the next, until act ultimately feeds into observation and the

loop begins again (Boyd 2018). While the OODA Loop was originally conceptualized

for tactical and strategic engagements, it can also be seen as an analytical tool (Boyd

2018). When used in this manner, Bayesian methods can be seen as the statistical

manifestation of the OODA Loop. An experiment is observed and data are obtained

(such as in operational testing (OT)); next, a prior based on an individual’s beliefs

(such as the belief that developmental testing (DT) data is commensurate with OT

data) is then synthesized with the experimental data (orientation), which allows for

a decision to be made about what that synthesis means (e.g., is the system mis-

sion capable?; is more testing required?). Having decided, an action is then taken

(e.g., procure the system; accomplish more testing). Therefore, not only does the

Bayesian perspective provide statistical capabilities that are absent in the current

OT paradigm, it also aligns with an important military theory for decision making.

Having transitioned to a Bayesian framework, Section 3.1 begins with a literature

review of specific work within clinical trials using predictive probability. Section 3.2

broadens this clinical trial work to OT and extends that work to a fully Bayesian

method for a continuous response with an ANOVA structure. This section develops

a method for adaptive OT by considering the case where interim data are obtained

and consideration can be given to stopping a test early. Using the electric semi-truck

example, Section 3.3 implements the proposed method.
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3.1 Clinical Trials

Bayesian methods have become increasingly popular in clinical trials due to the

flexibility and natural interpretation of the analysis such methods provide (D. A.

Berry 1993; Zang and Lee 2014; M. Liu and Dressler 2018). This section focuses on

the second of three phases in clinical trials, phase II, where the goal is to understand

if the drug is effective—typically by comparing a binary response to a standard

(be it the current standard of effectiveness, or historical standards) (Zang and Lee

2014; Yin, N. Chen, and Lee 2012). During a trial, monitoring incoming data with

the intent of deciding whether sufficient information has been obtained to make

such comparisons before the end of a trial is referred to as interim analysis and is

considered an adaptive testing method. One method for employing Bayesian interim

analysis within clinical trials is to incorporate predictive probabilities of eventual

trial success.

Lee and D. D. Liu (2008) discuss how interim analysis can use predictive proba-

bilities to end trials early when the response is binomial. With increasing interest in

Bayesian adaptive methods in trials, the on-going multi-drug trial I-SPY 2 (Barker

et al. 2009) and a completed drug trial adding trastuzumab to chemotherapy (D. A.

Berry 2005) are two examples of clinical trials with binomial responses that have suc-

cessfully incorporated predictive probabilities. Furthermore, the latter trial validated

the utility of Bayesian predictive probability within a frequentist design framework

(D. A. Berry 2006).

Geisser and W. Johnson (1994) detail how predictive probabilities can be used in

interim analysis when the response is continuous, but discuss the computational dif-

ficulty and ultimately offer distributional approximations instead. Dmitrienko and

Wang (2006) explore a continuous response for a clinical trial that compares two

treatments. However, they acknowledge that their work is not a fully Bayesian ap-
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proach, and state that “a fully Bayesian solution in the case of normally distributed

[responses] is extremely complex from a computational perspective and will be dif-

ficult to use in practice.” Recent work by M. Liu and Dressler (2018) extend Lee

and D. D. Liu’s work to a simple case with a single treatment where a closed-form

solution can be obtained for a continuous response. Furthermore, they state that

more research is required for posterior distributions that do not have a closed-form.

Zhou et al. (2018) outline a general framework for predictive probability when a

closed-form solution is not available, but acknowledge the computational complexity

and do not implement the framework. Our understanding of what Zhou et al. and

M. Liu and Dressler are describing is that they are using the term “closed-form” to

describe a recognizable distribution.

The method presented in this chapter leverages this work with predictive prob-

abilities in clinical trials to stop drug trials early—specifically, Lee and D. D. Liu’s

work with predictive probabilities. The traditional Bayesian goal of a phase II clini-

cal drug trial is to determine whether the probability of the response rate, p, being

greater than some hypothesized value, p0, is above some pre-defined probability

threshold, θT . When interim data can be obtained, a new goal can be established,

answering the question: how likely is it that a conclusive statement will be made at

the end of the trial, given the data that have already been seen.

Within the Bayesian framework, predictive probabilities for future observations

are a natural way to decide if a test should be stopped early. In this framework, “we

can condition on future results, evaluate their consequences, and average with respect

to these probabilities” (D. A. Berry 1993). Therefore, decisions to stop test can be

based on the predictive probability of a successful completion of the trial (PP ). Lee

and D. D. Liu (2008) suggest the use of probabilities θL and θU to decide whether a

trial should be stopped or not. If PP is less than θL, the trial can be stopped early

because testers are confident they would make an assessment of drug futility at the
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end of the trial. If PP is greater than θU , similarly the trial can be stopped early

because they are confident they would make an assessment of drug efficacy at the

end of the trial. If PP is between θL and θU , the trial continues because there is not

enough data to make a conclusion regarding the drug (Lee and D. D. Liu 2008).

At some intermediate point during a drug trial, let x be the number of successful

responses that have been obtained and Y be the number of successful responses that

have yet to be obtained. Then PP can be written as:

PP = PrY |x(Y : Pr(p > p0|x, Y ) > θT ) (3.1)

= E{I[Pr(p > p0|x, Y ) > θT ]|x} (3.2)

(Lee and D. D. Liu 2008). Considering the right hand side of equation (3.1), p > p0

is the inequality that determines if the response rate, p, is greater than the response

rate the drug must obtain to be considered effective, p0. Pr(p > p0|x, Y ) expresses the

probability of this inequality being true, given the data that have and have not seen,

which is then used to conduct a statistical test against a probability threshold, θT .

Finally, the probability of a trial being a success is calculated. This statistical test is

reminiscent of the one used in Chapter 2 to evaluate the measure; however, not all

observations have been observed for this statistical test. Therefore, the probability

of a test being a success (the expectation of Y over the predictive distribution of

Y |x) is calculated.

To illustrate PP , a graphical representation has been developed and can be found

in Figure 3.1, derived from an example by Lee and D. D. Liu (2008). In the example,

the goal is to determine if Pr(p > 0.6|x, Y ) > θT . No more than 40 patients will

be seen, of which 23 have already been seen and 16 have had a successful response;

therefore, x = 16 and Y ∈ (0, 1, . . . , 17). The prior on p is Beta(0.6, 0.4) and Y |p

is Bin(17, p). When Y is univariate (or a univariate summary can be obtained), its

joint posterior with the response rate can be graphically represented. The diagonal
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solid line is the (1−θT )th quantile of the posterior distribution of p|Y , conditional on

each possible Y . The horizontal dashed line represents when p = p0. The intersect

of the solid and dotted line provides a cutoff value for Y ; Y ’s greater than this cutoff

value represent the Y values for which the (1 − θT )th quantile of the distribution is

greater than p0. Finally, the shaded portion indicates those values of Y that would

result in a favorable conclusion about the test if they were seen. The probability

under this shaded portion—the probability for Y under its predictive distribution,

see equation (3.1)—corresponds to the probability that a favorable test result would

be found if the test was run through completion. Note that in Figure 3.1 Y can only

take on integer values; the density curves displayed are an artifact of the plotting

method in R, and were maintained to help visualize the relative density around each

integer value of Y .

Figure 3.1: Graphical Representation of PP , θT = 0.1
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3.2 Adaptive Operational Testing

There are many differences between clinical trials and OT that must be addressed

in order to implement PP in OT. One difference is that the data from OT can have

a diverse set of distributions for responses and priors that are appropriate, unlike the

binomial distribution with a beta prior that typically works well for the commonly

used binary response in phase II clinical trials (Zang and Lee 2014; Yin, N. Chen,

and Lee 2012; Thall et al. 2007). While this makes OT flexible, it also makes it more

complex. Additionally, a fully Bayesian approach to a continuous response with

an ANOVA structure leads to a more complex sampling process, where covering

the space of possible outcomes becomes more challenging. Furthermore, phase II

clinical drug trials are inherently comparative in nature and are interested in how

effective a drug is for specific patient and disease profiles. This is in contrast to this

research, which uses an experimental design to then characterize the performance of a

system across factors and levels. The proposed method addresses the aforementioned

differences and extends the clinical trial work with predictive probability into the OT

framework.

In developing a method for adaptive OT, the same test planning process as de-

tailed in Section 2.2.2–2.2.4 is used. Next, PP is incorporated. The analogous

equations to (3.1) and (3.2) from Section 3.1 for OT with a continuous response are:

PP = PrY |X(Y : Pr(φ > φ0|X, Y ) > θT ) (3.3)

= E{I[Pr(φ > φ0|X, Y ) > θT ]|X}, (3.4)

where X is the set of responses that have been obtained and Y is the set of responses

that have yet to be obtained.

Tolerance parameters for stopping test early, θL and θU , are also incorporated,

providing an avenue for testers to determine if they have enough data to make con-

clusions about a measure without completing every test event (Lee and D. D. Liu
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2008). If PP is less than θL, the test can be stopped early because testers are con-

fident they would evaluate the measure as not met at the end of the test. If PP is

greater than θU , similarly the test can be stopped early because they are confident

they would evaluate the measure as met at the end of the test. If PP is between

θL and θU , the test continues because there is not enough data to make a conclusion

regarding the measure (Lee and D. D. Liu 2008).

Testers should choose levels for θL and θU based on their tolerance for incorrectly

accepting or rejecting a system, and those values may vary between systems depend-

ing on the consequences for stopping a test incorrectly. For instance, consider body

armor; due to the life-saving nature of the system, the consequences for accepting

the system incorrectly may outweigh the consequences for rejecting the system incor-

rectly. Tests in such an instance may only be allowed to stop when testers become

confident that the system will not obtain the threshold value, but will not be stopped

early otherwise. Therefore, to evaluate a measure as met, it would require the full

experimental design to be accomplished; however, not all runs would need to be ac-

complished to evaluate the measure as not met. In this instance, θU would be set to

1. While rare that θL would be set to 0 or θU would be set to 1 in OT, it is important

to weigh the pros and cons of the potential decision before test execution.

After establishing θL and θU , the number of observations required to be seen

before calculating PP (referred to as nf ) should be established. While PP can be

calculated starting at nf = 0, if it is calculated when only a few observations have

been obtained, it is possible to make the wrong decision due to a lack of information

(Lee and D. D. Liu 2008). Furthermore, it is known that using reference priors

can result in high stopping rates that may be undesirable for testing (Saville et al.

2014). Due to these issues, we do not recommend using nf = 0 when using references

priors. Instead, we recommend choosing nf by considering both the coverage of level

combinations and the number of observations informing the posterior for each model
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parameter before calculating PP , which can be done by looking at the design matrix.

For example, nf could be the number of observations after at least four observations

for each parameter in the model have been observed with at least 80% of the linear

combinations having been seen. Therefore, nf will be a function of the order in which

test events are run based on the randomized design matrix; two different randomized

design matrix under the same experimental design will often give two different nfs.

As the criterion for decisions about a measure is based on a summary of performance

across the linear combinations, not all linear combinations have to be seen before

calculating PP because of the linear structure of the model. PP can be calculated

as long as enough information has been obtained for the model parameters and the

linear combinations are sufficiently covered to reduce collinearity between parameter

estimates (as frequently occurs with D-optimal designs). This method provides an

efficient use of test resources when decisions are based on a summary across the

group means; this in turn allows testers to estimate the group means well enough to

make a decision without expending additional resources to focus on estimating the

group means with high precision.

After establishing θL, θU , and nf , testing begins and PP can be calculated after

nf observations are obtained. Of note, the frequency of interim analysis does not

need to be done at regular intervals. Furthermore, while PP can be calculated after

every new observation, given computational requirements of the method, it may

only be practical to do interim analysis and calculate PP after sets of observations

have been obtained. Finally, the frequency of obtaining interim data, as well as the

precision of that data, will be defined by the system and the data collection process.

After comparing PP to θL and θU , a decision to stop testing early or not can be

made. If PP never allows the test to stop early, and all observations are seen, the

analysis returns to using posterior probability (Chapter 2) and Prφ|X(φ ≥ φ0) > θT

is used to evaluate the measure.
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A flow chart of this method can be found in Figure 3.2. In this flow chart, let n

be the total number of test events from an experimental design and let nobs be the

number of observations that have been seen (nobs ≤ n). Shaded boxes are the end

points of the method.
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Figure 3.2: Adaptive Operational Testing Process
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Using posterior probability in the case where all the data have been obtained

(Chapter 2) can be done using traditional sampling methods; the sampling method

required to obtain PP is more complex. In contrast to a Gibbs sampler (or

Metropolis-within-Gibbs sampler), a two-stage sampling method is required. The

sampling method proposed in this section aligns with Zhou et al.’s general framework

(Zhou et al. 2018), and provides a concrete process for practitioners to implement.

Traditionally, the interest is in a sample from the joint posterior distribution of Y

and the model parameters; however, incorporating θT in PP necessitates sampling

from a conditional distribution of model parameters, given Y , for each possible Y

yet to be seen. Therefore, the nested sampler determines the conditional posterior

distribution of the model parameters, given Y , and the outside sampler determines

the marginal posterior distribution of Y (also commonly called the predictive distri-

bution for Y ). While this is a non-traditional sampling method, this approach still

provides a sample from the joint posterior distribution of Y and the model param-

eters, as the joint posterior distribution is proportional to product of the marginal

posterior distribution of Y and the conditional posterior distribution of the model

parameters given Y . This construct requires careful consideration when choosing

how many Y s should be sampled and how many conditional posterior samples for

that Y need to be obtained to avoid overly burdensome computational requirements

while still covering the space of model parameters and possible Y s adequately.

The algorithm for this process can be seen in Figure 3.3. In this algorithm,

let ξ represent the set of K model parameters and ξk represent the kth parameter

(k = 1, . . . , K). Let Y be the set of unseen observations and let φ be the parameter

of interest, which is a function of the response. Let i be the ith iteration from the

outer sampler and bi be the number of burn-in samples for the outer sampler; then

i = 1, . . . , bi + ni. Finally, let j be the jth iteration from the nested sampler and bj

be the number of burn-in samples for the nested sampler; then j = 1, . . . , bj + nj.
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Figure 3.3: Two-Stage Sampling Algorithm
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3.3 Electric Semi-Truck Example

Returning to the electric semi-truck example, the same set-up and experimental

design is used as in Section 2.3.2. Additionally, tolerance values of θL = 0.05 and

θU = 0.95 were selected after testers considered the implications of the choice.

Finally, PP would be calculated starting at nobs = 45 (where 45 > nf ). Then, PP

for this example is:

PP = PrY |X(Y : Pr(φ ≥ 400|X, Y ) > 0.80)

= E{I[Pr(φ ≥ 400|X, Y ) > 0.80]|X}.

Once nobs = 45, testers calculated PP . Selecting the means of the prior distri-

butions to initialize each model parameter, let µ
(0)
ijklm represent the ANOVA model

with the initialized model parameters and τ (0) represent the initialized precision.

Beginning with the outer sampler, the remaining 35 future observations (the set of

remaining y
(1)
ijklmps) were then sampled from a N

(
µ

(0)
ijklm,

1
τ (0)

)
based on the remain-

ing rows within the design matrix. These observed and sampled responses make up

all 80 runs for the experimental design, which are then used in the nested sampler

to obtain the conditional posterior distribution of the model parameters, given the

observations that have and have not been seen.

For each draw from the conditional posterior distribution of model parameters,

a mission set is also drawn, as detailed in Chapter 2. Using the mission sets and the

conditional posterior distribution of model parameters, a distribution can be induced

on the mean number of miles traveled on one charge. After marginalizing over the

mission sets, the Prφ|X(φ ≥ 400) > 0.80 can be calculated and stored for the set of

y
(1)
ijklmps sampled. This conditional posterior is also used to update the outer sampler

and generate a new set of 35 future observations (the set of remaining y
(2)
ijklmps) from

a N
(
µ

(1)
ijklm,

1
τ (1)

)
. After obtaining a sufficient sample from both distributions, PP is

calculated and compared to θL and θU to determine if testing could stop early.
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PP was calculated in R using the two-stage sampling algorithm detailed in Fig-

ure 3.3, based on nj = 18, 000 nested samples and ni = 1, 000 outer samples (after

examining both ACF and trace plots, and removing burn-in samples). To illustrate

how this method works for different distributions of response (which alters the dis-

tribution of φ), results from the interim analysis for different data sets can be found

in rows three through five of Table 3.1 and in Figures 3.4–3.6. The narrow range

for η in Table 3.1 will be addressed later in this sub-section. Furthermore, the table

contains PP for nobs = 45, 60, and 75 to compare how the choice of θL and θU can

change decisions. For example, if θU = 0.99 instead, Data sets 4 and 12 would no

longer be able to stop testing after nobs = 45. Additionally, Table 3.1 highlights that

the number of observations required before a test can be stopped depends on the

variability within the data. Data set 4 and 11 were generated from the same true

model parameters, but the variance was higher for data set 11; data set 4 can be

stopped early, but data set 11 requires seeing all observations before a conclusion

can be made.
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At nobs = 45 (with θL = 0.05 and θU = 0.95), data sets 1, 2, 8, 9, 15, 16, and

17 demonstrate tests which could be stopped early with confidence that the electric

semi-truck would fail to obtain a mean number of miles traveled on one charge greater

than 400 miles at θT = 0.8. Data sets 4, 5, 6, 7, 12, 13, 14, and 21 demonstrate

tests which could be stopped early with confidence that the electric semi-truck would

obtain the threshold at θT . Data sets 3, 10, 11, 18, 19, and 20 demonstrate tests

which require more testing at nobs = 45.

Data sets 10, 11, 18, and 19 demonstrate tests which would require accomplish-

ing all test events before evaluating the measure. These data sets would require

calculating Prφ|X(φ ≥ 400) and comparing that to θT = 0.8 at the end of the test

to evaluate the measure. This would be done as detailed in Section 2.3.2, and the

results of Section 2.3.2 can be seen in the sixth row of Table 3.1.

It is worth noting that using PP (in this example) results in decisions to stop a

test early, except for when the posterior probability is very close to 0.8—that is to

say, when the (1 − θ)th quantile for the distribution of φ is very close to φ0. This

narrow range of η values was chosen because slightly larger or smaller values of η

resulted in PP s that were all <0.0001 or >0.9999. Outside of a narrow range for η,

the method provides conclusive results in our simulation; it is only in this narrow

range that PP s may determine more testing is required.
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Chapter 4

Developing Informative Priors

from Developmental Testing

Chapter 2 presented a method for transitioning the current operational testing

(OT) paradigm into a Bayesian framework; Chapter 3 leveraged this method to cre-

ate a dynamic operational test, allowing for the possibility to stop OT early and save

resources. Chapter 4 presents a method that allows for further resources to be saved,

extending Chapters 2 and 3, by proposing a novel method for incorporating devel-

opmental testing (DT) information into OT. A strength of the Bayesian paradigm is

that it allows for the explicit use of all available information—to include subject mat-

ter expert (SME) opinion. While frequentists are constrained to only including data

in an analysis (that is to say, only including things that can be observed), Bayesians

can easily consider both data and SME opinion, or any other related information

that could be constructed. This can be accomplished through the development and

use of priors (D. A. Berry 1993; S. M. Berry et al. 2011; R. Christensen et al. 2011).

Section 4.1 is a review of priors that relate to this research, and Section 4.2

proposes a novel prior for incorporating DT data into OT. Finally, Section 4.3 im-
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plements this prior using the electric semi-truck example, and examines how the

prior influences conclusions about a measure when using predictive probability (PP )

and posterior probability. For a method to be effective, the interim analysis must

be accomplished in a timely manner so that decision makers can make an informed

decision about stopping a test without prolonging OT. Therefore, an overarching

theme of this chapter is that DT information should be incorporated into OT via a

computationally efficient method—one that can be used multiple times over a short

period of time to support a decision (such as employing interim analysis in OT to

inform a decision to stop testing or not).

4.1 Priors

From a Bayesian perspective, every parameter in a data model is unknown and

requires an associated prior distribution. Prior distributions represent an individ-

ual’s beliefs about model parameters, quantifying the uncertainty surrounding those

parameters. As R. Christensen et al. (2011, hereafter referred to as BIDA) discuss,

prior distributions do not necessarily exhibit the true nature of parameters; rather,

they exhibit an individual’s understanding of those parameters. As such, priors are

not perfect representations of nature (nor do they need to be perfect representations

of an individual’s beliefs). Instead, priors are a means of incorporating key informa-

tion about model parameters into a statistical analysis (BIDA). Examples include

the relative information included in a prior (discussed in Sections 4.1.1–4.1.6) and

the support of model parameters. The posterior distribution for model parameters

cannot have support outside the support of the priors; therefore, it is imperative that

prior distributions have a reasonable support. The support of the priors should also

mimic the support of model parameters as much as possible. If the support for the

priors is too narrow, the posterior distribution may not capture all relevant features
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of the model parameters. On the other hand, if the support for the priors is too wide,

it can lead to computational inefficiencies and take longer to obtain the stationarity

required for conducting appropriate inferences.

As Bayesian inference depends on the posterior distribution, which depends on

prior distributions, prior distributions affect Bayesian inferences (S. M. Berry et

al. 2011, hereafter referred to as BAMCT). However, despite this, “two reasonably

open-minded people will eventually come to agree if both are exposed to the same

data and use Bayes’ Theorem” (BAMCT). Moreover, “even investigators with wildly

dissimilar prior beliefs can ultimately come to agreement once sufficient data have

been accumulated” (BAMCT). As such, the influence a prior has on the posterior

distribution tends to decrease as the sample size increases and overwhelms prior

information. However, the cost of increasing the sample size must be weighed against

the risk of making decisions that depend too heavily on prior information (BAMCT).

Not only does this highlight the importance of sample sizes, but this also highlights

the importance of sensitivity analysis—evaluating the effect that changing priors has

on conclusions. Frequently, sensitivity analysis is accomplished by comparing results

based on an informative prior (see Sections 4.1.3–4.1.6) to those based on a reference

prior (see Sections 4.1.1–4.1.2).

Another key concept related to priors is conjugate priors, which are used through-

out this research. A conjugate prior is obtained when, “... in terms of θ, the prior

density p(θ) has the same functional form as the sampling density f(y|θ) so that,

after applying Bayes’ Theorem, the posterior has the same functional form as the

prior” (BIDA). For example, a Bin(n, θ) data model’s conjugate prior on θ is a beta

distribution, resulting in a beta posterior distribution. When sampling methods use

conjugate priors (such as in this research), the computational efficiency often in-

creases relative to the use of non-conjugate priors. However, as BIDA discuss, the

convenience of using conjugate priors must be counterbalanced against selecting a
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prior that accurately reflects the prior beliefs about parameters.

The remainder of this section is dedicated to discussing the amount of information

contained in different types of priors related to this research. It begins with priors

that strive to provide no information (reference priors) and builds up to priors that

contain available information (informative priors).

4.1.1 Reference Priors

Reference priors (also known as convenience priors or noninformative priors) at-

tempt to incorporate no prior information. While it is never possible to incorpo-

rate no prior information, reference priors are easily overwhelmed by the data, and,

therefore, they have minimal influence on the posterior distribution (BIDA). Three

commonly used types of reference priors are flat priors, improper priors, and Jeffreys’

priors (although these types of priors are not necessarily mutually exclusive priors).

Flat priors are priors with the form p(θ) = k, for some constant k. Improper priors

are priors that do not have a closed and bounded support, integrating to infinity.

Jeffreys’ priors are proportional to the square root of the Fisher information (BIDA).

“Bayesians use flat or otherwise improper [reference] priors in situations where prior

knowledge is vague relative to the information in the likelihood, or in settings where

we want the data (and not the prior) to dominate the determination of the posterior”

(BAMCT). Reference priors, therefore, attempt to demonstrate a lack of knowledge

surrounding model parameters.

While reference priors may be convenient, they can cause inferential issues. As

Gelman et al. (2014, hereafter referred to as BDA) discuss, care needs to be taken

when using improper priors, as they are not guaranteed to result in a proper pos-

terior distribution that integrates to one. Additionally, an improper prior can place

a majority of the prior probability in strange locations. For example, the Beta(0,0)
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improper prior places most of the prior probability on values close to 0 and 1—some-

thing that does not reflect the desire to demonstrate little prior knowledge about a

parameter that lives between 0 and 1. Furthermore, improper priors are an example

of a computationally inefficient prior, as too wide of a support can allow the sam-

pling method to wander through the support of the prior for a non-trivial amount

of time before it arrives in the stationary posterior distribution. In addition to these

issues, flat priors also look different under parameter transformation. Consider the

univariate parameter, θ, whose support is the entire real line; a uniform flat prior on

θ will not result in a uniform flat prior on θ2. This is an issue, as the same amount

of prior information should be reflected in both θ and θ2. Therefore, any prior that

strives to provide no information about a parameter should also provide no informa-

tion about a transformation of that parameter (Raiffa and Sclaifer, 1961, as cited

in BIDA). In contrast, Jeffreys’ priors are invariant under transformation (BDA).

However, when “[u]sing Jeffreys’ priors, models with proportional likelihoods lead to

different inferences (because they have different priors) so the likelihood principle is

violated. Similarly, stopping rules can change statistical inferences so the stopping

rule principle is violated” (BIDA). Given that the likelihood principle and stopping

rule principle are foundational to Bayesian inference, this creates problems from a

foundational perspective.

As addressed in Section 3.2, it is known that using reference priors can result

in high stopping rates for the methods presented in this research, which may be

undesirable for testing (Saville et al. 2014). Therefore, careful consideration must

be given when employing the methods presented in this research and using reference

priors. How reference priors are used in this research will be addressed in Section 4.2.
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4.1.2 Weakly Informative Priors

Instead of reference priors that strive to provide no information about the pa-

rameters, BDA suggest priors that incorporate an understanding of the physical

limitations of the parameters. A prior that is designed to consider bounds of the

physical world ensures that the resulting posterior distribution is reasonable, while

still remaining vague enough to use for convenience (BDA). Such a prior distribu-

tion is referred to as a weakly informative prior distribution. Weakly informative

priors provide minimal information about parameters, while avoiding computational

issues and resulting in a reasonable posterior distribution. BDA provide the follow-

ing reasons for why weakly informative priors might be used: “to describe the model

more conveniently; because it may be difficult to express knowledge accurately in

probabilistic form; to simplify computations; or perhaps to avoid using a possibly

unreliable source of information.” Weakly informative priors demonstrate that there

is always some information available about parameters—even if that information

simply limits the range of values which a parameter can reasonably take on (BDA,

BIDA). For example, the discussion for creating priors in Section 2.3.1 resulted in

weakly informative priors. Consider the baseline parameter, η, for the reference cell

model. A Normal(400, 1002) prior on η was selected because it placed 95% of the

probability between 200 and 600 miles. By focusing on predicting what η could look

like in the extremes, priors were created that placed a majority (95%) of the prob-

ability on reasonable values η could take on, while still allowing for a small chance

(5%) of extremely unlikely values. While BDA refers to these types of priors as

weakly informative priors, BIDA refers to these types of priors as reference priors;

this research adopts the BIDA nomenclature, referring to them as reference priors in

practice as well.

Although weakly informative priors do not have some of the problems other

reference priors have, they also do not make full use of the information available. As
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BDA details, a weakly informative prior “is set up so that the information it does

provide is intentionally weaker than whatever actual prior knowledge is available.”

4.1.3 Power Priors

As discussed in Chapter 1, OT alone may not provide enough data to make con-

clusive decisions; in such circumstances, formally eliciting and incorporating prior in-

formation is an important advantage of the Bayesian framework (BAMCT). Weakly

informative priors and reference priors, while convenient, do not provide the advan-

tage of augmenting small data sets with other relevant information. When historical

data from a previous similar experiment are available, the data can be used to create

an informative prior for the current experiment. A traditional approach for directly

incorporating historical data into a Bayesian analysis is to use the posterior distribu-

tion of the historical experiment as the prior for the current experiment (Duan, Ye,

and Smith 2006). However, this approach assumes that the data from the historical

experiment and the current experiment are exchangeable—an assumption that may

be difficult to satisfy (Duan, Ye, and Smith 2006). In contrast to this approach,

Ibrahim and M.-H. Chen (2000) proposed a power prior. In cases where the histori-

cal data are similar, but not fully commensurate, analysts may wish to account for

this by down-weighting the influence of the historical data on posterior distribution

(Neelon and O’Malley 2010). For example, data from a drug trial in New York may

inform a trial of the same drug in San Francisco; however, population differences may

drive a desire to down-weight the New York trial information. Similarly, operational

testers may wish to down-weight incorporated DT data to account for differences be-

tween OT and DT (e.g., differences in testing environment or system employment).

This is the key concept of power priors—the influence of historical data on posterior

is controlled by raising the likelihood for the historical data to a power between 0

and 1. Power priors are beneficial in that they formalize a way for incorporating
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potentially dissimilar historical data into the current experiment, thereby creating

an informative prior that does not assume the historical and current data are ex-

changeable. As such, Ibrahim and M.-H. Chen (2000) describe how a power prior can

be seen as a generalization of the usual Bayesian updating methods. Furthermore,

it has been shown that power priors (as originally proposed) are an optimal class

of informative priors—optimal in that they minimize the Kullback-Leibler (KL) di-

vergence between the posterior resulting from not incorporating historical data and

the posterior resulting from pooling the historical and current data (Ibrahim, M.-H.

Chen, Gwon, et al. 2015; Ibrahim, M.-H. Chen, and Sinha 2003).

To form a power prior, let Y0 be the set of responses from the historical experi-

ment, and let X0 be the corresponding design matrix; further, let D0 = (Y0, X0, n0).

The likelihood function for the historical data is L(θ|D0), where θ is the set of model

parameters. Similarly, let Y be the set of responses from the current experiment,

X be the corresponding design matrix, and D = (Y,X, n). The likelihood function

for the current data is L(θ|D). The power prior assumes that all parameters are

the same between the historical and current data model (an assumption that will be

relaxed later).

When there is historical data, D0, from a previous experiment, the power prior is

p(θ|D0, a0) ∝ (L(θ|D0))a0p0(θ),

“where 0 ≤ a0 ≤ 1 is a [fixed] scalar parameter and p0(θ) is the initial prior for θ

before the historical data D0 is observed” (Ibrahim, M.-H. Chen, Gwon, et al. 2015;

Ibrahim and M.-H. Chen 2000). The fixed a0 controls how influential the historical

data is on the posterior distribution. To illustrate this, take p0(θ) ∝ 1 (a flat prior);

a0 would then drive the shape (informativeness) of the prior. The power prior would

be a fully informative prior when a0 = 1 (i.e., fully pooling historical and current

data); a flat prior when a0 = 0 (i.e., no historical information is incorporated); and

something between a flat and fully informative prior when 0 < a0 < 1 (i.e., historical
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information is down-weighted). “One of the main roles of a0 is that it controls the

heaviness of the tails of the prior for θ. As a0 becomes smaller, the tails of [the prior]

becomes heaver” (Ibrahim, M.-H. Chen, Gwon, et al. 2015).

The role of a0 can be more easily understood through the following example:

suppose the historical data are n0 random observations (y0i, i = 1, . . . , n0) from a

Normal(0, 0.138) distribution. Furthermore, suppose that the mean is unknown, the

precision is known (where 1
τ

= σ2), and p0(µ) ∝ 1. The power prior for this construct

would be

p(µ|τ,D0, a0) ∝ (L(µ|τ,D0))a0p0(µ)

∝
[(

τ

2

)n0
2

exp

(
− τ

2

n0∑
i=1

(y0i − µ)2

)]a0
(1)

=

(
τ

2

)n0a0
2

exp

(
− τa0

2

n0∑
i=1

(y0i − µ)2

)

=

(
τ

2

)n0a0
2

exp

(
− τa0

2

(
n0(ȳ0 − µ)2 +

n0∑
i=1

(y0i − ȳ0)2

))
∝ exp

(
− τa0n0

2
(ȳ0 − µ)2

)
Therefore, when p0(µ) ∝ 1 and τ is known, p(µ|τ,D0, a0) ∼ Normal

(
ȳ0,

1
τa0n0

)
.

As such, “a0 can be interpreted as a precision parameter for the historical data”

(Ibrahim, M.-H. Chen, Gwon, et al. 2015). Alternatively, “[b]ecause 0 ≤ a0 ≤ 1,

we might also think of a0n0 as the ‘effective’ number of historical controls being

incorporated into our analysis” (Hobbs et al. 2011). While this interpretation of a0

breaks down for other distributions (e.g. consider if τ was unknown—this would re-

sult in a normal-gamma distribution, where three of the four distribution parameters

depended on a0, multiplied by 2−(
n0a0

2
)), it providers the reader with some intuition

for how a0 is impacting the prior. This impact can be seen visually for this example

in Figure 4.1, which demonstrates how the shape (informativeness) of p(µ|τ,D0, a0)

changes based on different values of a0. Ultimately, p(µ|D0, a0) → p0(µ) as a0 → 0,
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which is a flat prior for this example.
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Figure 4.1: How the Shape of the Likelihood Changes for Normal(0,1) Data Based
on a0

When a0 is fixed, methods such as eliciting subject matter expert (SME) opinion

or model selection methods are recommended for selecting a0, in conjunction with

a sensitivity analysis on a0 (Ibrahim, M.-H. Chen, and Sinha 2003; Ibrahim, M.-H.

Chen, Gwon, et al. 2015). Additionally, a fixed a0 leads to more computationally

efficient MCMC sampling methods, such as a Gibbs sampler (Ibrahim, M.-H. Chen,

Gwon, et al. 2015). While the sampling method itself maybe computationally effi-

cient, the added burden of selecting a fixed a0 and conducting sensitivity analysis on

a0 may make the entire process unsuitable for interim analysis within a short amount

of time. Furthermore, the risk of selecting a0 incorrectly (specifically, picking a0 to be
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closer to 1 than the data would suggest) can lead to dire outcomes: should a system

be accepted that only met requirements by allowing dissimilar DT information to

influence the posterior, the system may fail in the field, possibly to the detriment of

the mission and lives. Therefore, in spite of the benefits of a fixed a0, we prefer to

consider a random a0.

While the originators of the power prior and their coauthors continue to recom-

mend that a0 be taken as fixed (M.-H. Chen, Ibrahim, Amy Xia, et al. 2014; Ibrahim,

M.-H. Chen, Gwon, et al. 2015), a joint power prior was also introduced by Ibrahim

and M.-H. Chen (2000) which allowed for a random a0:

p(θ, a0|D0) = (L(θ|D0))a0p0(θ)p0(a0),

where p0(a0) is the initial prior on a0. When the historical data and the current data

are found to be dissimilar, a0 creates a more diffuse prior to ensure the support is

appropriate for the current data—thereby decreasing the influence that the historical

data has on the posterior. Alternatively, when the historical data and the current

data are found to be similar, a0 does not need to create a diffuse prior to maintain the

appropriate support—thereby allowing the historical data to have a larger influence

on the posterior distribution. Therefore, a random a0 can be seen as an indirect

measure of the commensurability of the two data sets. Recall from Chapter 1 that

Dewald et al. (2016) presented a method for creating priors based on summary

statistics from previous simulations. While they did not use a power prior, their

method also involved down-weighting the information in the prior by a specified

weight; however, they suggested that, while more complex, the weight could have

been selected based on the data by means such as a joint power prior.

One criticism of the joint power prior is that it violates the likelihood principle,

since multiplying the likelihood function by a constant would change the joint prior

(Duan, Ye, and Smith 2006). The next section introduces a variant of the joint power

prior that avoids violating the likelihood principle, while maintaining a random a0.
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4.1.4 Normalized Power Priors

In 2006, Duan, Ye, and Smith proposed the normalized power prior (NPP), which

has the following form:

p(θ, a0|D0) = C

[
(L(θ|D0))a0p0(θ)∫
(L(θ|D0))a0p0(θ)dθ

]
p0(a0)IA(a0), (4.1)

where

IA(a0) =

1, if a0 ∈ A

0, otherwise

As in the joint power prior, p0(θ) and p0(a0) are initial priors. Additionally, C is a

normalizing constant and A is the region of a0 such that:

A =

{
a0 : 0 <

∫
Θ

(L(θ|D0)a0)p0(θ)dθ <∞
}
.

While the initial assumption of a NPP is that 0 ≤ a0 ≤ 1, the region A may further

restrict a0 (as will be seen in Section 4.6.7).

One criticism of NPP is that the “formulation is even more computationally

extensive than the joint power prior formulation for models other than normal linear

regression models since for most non-normal models, an analytical evaluation of the

integral [in equation (4.1)] is not available, which poses a huge challenge in sampling

from the resulting posterior distribution and computing the posterior quantities of

interest” (Ibrahim, M.-H. Chen, Gwon, et al. 2015). Furthermore, even when the

integral in equation (4.1) is tractable, the full conditionals are not guaranteed to

be recognizable distributions. Such cases would require a sampling method such as

Metropolis-within-Gibbs, which is less efficient than a Gibbs sampler. The potential

for NPP to be computationally inefficient will be re-considered in Section 4.2.

Another criticism of NPP is that it may overly down-weight historical data when

the current and historical data are not approximately the same (Ibrahim, M.-H.
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Chen, Gwon, et al. 2015; Neelon and O’Malley 2010). However, for an appropriate

study goal, this does not invalidate NPP. If the goal of the study is to only incorporate

historical data when it is approximately the same as the current data, NPP can be

a reasonable choice for a prior (Neelon and O’Malley 2010). Connected with this

criticism is the informativeness of the prior on a0; because of the tendency to overly

down-weight historical information, a fairly informative prior on a0 is required to

bound a0 away from 0 and allow for sufficient borrowing (Neelon and O’Malley 2010;

Hobbs et al. 2011). “In fact, under a flat Beta(1, 1) prior on [a0], the marginal

posterior for [a0] is flat for two identical [historical and current] datasets regardless

of the sample sizes” (Hobbs et al. 2011). This criticism will be re-considered in

Section 4.3.

While NPP incorporates a random a0 without violating the likelihood principle,

an assumption of NPP, joint power priors, and power priors is that all model pa-

rameters are the same between the historical and current data model. This is an

unsuitably restrictive assumption that would make NPP difficult to use in practice

for incorporating DT information into OT.

4.1.5 Partial Borrowing Power Priors

Another variant of the power prior is the partial borrowing power prior (PBPP).

PBPP not only allows for the historical data model to be a subset of the current

data model parameters, but also allows for additional model parameters (such as

nuisance parameters or covariates) unique to the historical data model and current

data model (Ibrahim, M.-H. Chen, Xia, et al. 2012; Ibrahim, M.-H. Chen, Gwon,

et al. 2015). A special case of PBPP is when the parameters in the historical data

model are a strict subset of the parameters in the current data model, as is assumed

in this research. For more information about the general case, see Ibrahim, M.-H.
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Chen, Xia, et al. 2012, Ibrahim, M.-H. Chen, Gwon, et al. 2015, and Psioda and

Ibrahim 2019.

Before presenting the special case of PBPP (hereafter referred to as PBPP for

simplicity), additional notation must be defined. The set of model parameters, θ,

is partitioned into two pieces: the set of model parameters that are common to the

historical and current data models (θ0), and the set of model parameters that are

only in the current data model (θ1). Therefore, θ = (θ0,θ1). The PBPP, as first

proposed, is an extension of the power prior and has the following form:

p(θ|a0, D0) = p(θ0,θ1|a0, D0)

∝ (L(θ0|D0))a0p0(θ0,θ1)

(Ibrahim, M.-H. Chen, Xia, et al. 2012; Psioda and Ibrahim 2019). When

p0(θ0,θ1) = p0(θ0)p0(θ1), the PBPP can be rewritten as

p(θ0,θ1|a0, D0) ∝ (L(θ0|D0))a0p0(θ0,θ1)

= (L(θ0|D0))a0p0(θ0)p0(θ1)

= p(θ0|a0, D0)p(θ1), (4.2)

where p(θ0|a0, D0) is a power prior and p(θ1) is an independent prior.

It is worth noting that the DT model parameters being a subset of OT model

parameters is not the only construct that could be considered. Hobbs et al. (2011)

describe how NPP does not directly measure the commensurability between the his-

torical and the current data. Therefore, they proposed commensurate power priors,

which assume two different parameters in the historical data and the current data.

While such a prior may be reasonable, it would require an extensive understand-

ing of how to model DT information, which is beyond the scope of this research.

While PBPP is still restrictive (and a simplistic representation of DT), PBPP is

more flexible than NPP. After establishing a method under this simplifying assump-

tion, future work will explore more complex modeling assumptions. Although less
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restrictive than NPP, PBPP incorporates a fixed a0; the next section extends PBPP

to incorporate a random a0.

4.1.6 Normalized Partial Borrowing Power Prior

In 2015, Ibrahim, M.-H. Chen, Gwon, et al. stated that PBPP could be adapted

in many ways—to include using NPP instead of a power prior in equation (4.2).

Using NPP would extend the original PBPP to a PBPP with a random a0 that does

not violate the likelihood principle. Under this construct, the power prior in equation

(4.2) would be changed to the NPP from equation (4.1), resulting in

p(θ0,θ1, a0|D0) ∝ p(θ0, a0|D0)p(θ1)

= C

[
(L(θ0|D0))a0p0(θ0)∫

(L(θ0|D0))a0p0(θ0)dθ0

]
p0(a0)IA(a0)p(θ1). (4.3)

This research refers to a PBPP that uses NPP as a normalized partial borrowing

power prior (NPBPP). The NPBPP in equation (4.3) has only been used in literature

on one occasion: M.-H. Chen, Ibrahim, Lam, et al. (2011). In a medical device trial

that was comparing a control device to a new device, M.-H. Chen, Ibrahim, Lam, et

al. (2011) used NPBPP to only borrow historical information for the control device,

as no historical data for the new device was available.

As will be shown in (and to compare with) Section 4.2, a prior based on condi-

tional probability could be used instead of p0(θ0,θ1) = p0(θ0)p0(θ1) in equation (4.2):

p(θ0,θ1, a0|D0) ∝ (L(θ0|D0))a0p0(θ0,θ1)p0(a0)

= (L(θ0|D0))a0p0(θ0)p(θ1|θ0)p0(a0)

= p(θ0, a0|D0)p(θ1|θ0), (4.4)
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where p(θ0, a0|D0) is a NPP. This variation has not been used in literature; how-

ever, it can ensure a certain amount of conjugacy in some cases, as will be seen in

Section 4.1.7.

Recall that the current OT construct qualifies non-OT data for use if the data

meets certain conditions—conditions that ensure non-OT data are exchangeable with

OT data. These restrictive conditions can result in disregarding beneficial function-

ally representative non-OT data. Using NPBPP aligns with the intent of the current

OT construct for qualifying non-OT data, without being as restrictive—functionally

representative DT data can be incorporated into NPBPP and down-weighted by a0

depending on the degree of similarity between the two data sets. We define function-

ally representative data to be data from a meaningfully similar and mature system in

DT that provides information about OT model parameters, but that was collected in

an environment that was not fully operationally representative. By only considering

a mature system that is meaningfully the same as OT as it relates to a given measure,

the risk that DT data could be disinformative for OT is reduced. Furthermore, given

that the system is meaningfully the same, we assume that the variance parameter

( 1
τ
) is the same in both DT and OT. This assumption does not imply that the spread

of the OT responses compared to the spread of the DT responses will be the same;

rather, it implies that the errors around the fitted values have equal variance in both

OT and DT. While it can still be argued that DT has a smaller variance than OT,

we contend that the apparently smaller variance is artificially created by the more

controlled DT environment. It appears smaller, but it is not truly smaller because

(by assumption) the system should be meaningfully the same in DT as in OT. This

assumption is further examined in Section 4.3. Furthermore, recall from Chapter 1

that OT and DT may be interested in different requirements. It is worth noting that

the NPBPP construct does not assume that the measure being evaluated (or the

requirement that measure is derived from) in OT is the same as in DT. The NPBPP

construct only assumes that the response variable is the same in OT and DT.
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4.1.7 Normalized Partial Borrowing Power Prior - Normal

Linear Regression Model

Finally, we give a summary of what this looks like for a normal linear regres-

sion model, which relates to the construct for the electric semi-truck example. As

highlighted in Section 4.1.4, even when attention is restricted to normal linear re-

gression models with tractable integrals in equation (4.1), NPP (and, by extension

NPBPP) may result in the need for a computationally inefficient sampling method.

This section will shown that, under a DT / OT construct, using NPBPP will result

in the need for a computationally inefficient Metropolis-within-Gibbs sampler. First,

the previously introduced notation is adjusted to reflect an ANOVA model (using a

reference cell model set-up) for a DT / OT construct in generality. Let θ0 = (β0, τ),

where β0 = (β01, . . . ,β0p0)
′ are the p0 model parameters that are common to both

the DT and the OT data models. Similarly, let θ1 = β1, where β1 = (β1, . . . ,βp1)
′

are the p1 model parameters that are only in OT data model. The likelihood func-

tion for the DT data (D0) is then L(β0, τ |D0); the likelihood function for the OT

data (D) is L(β, τ |D), where β = (β1,β0). Having partitioned β into two pieces,

the design matrix for OT, X, can be partitioned as well. X can be rewritten as

X = [X1, X2], where the columns of X1 correspond to parameters that are in β1 and

columns of X2 correspond to parameters that are in β0. It is important to note that

the entries in X2 are the values from OT, not DT. With this partition, Xβ can be

rewritten as follows:

Xβ = [X1, X2]

β1

β0

 = X1β1 +X2β0

Finally, X0 is the design matrix for DT.

Following Duan, Ye, and Smith (2006), it is assumed that, given β, D0 and D are

independent random samples from normal distributions. The following multivariate
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normal data models can then be used for OT and DT, respectively:

D|β, τ ∼ N (Xβ, τ−1In)

D0|β0, τ ∼ N (X0β0, τ
−1In0)

where In0 is a n0 × n0 identity matrix and In is a n× n identity matrix. Then,

L(β,τ |D)

= (2π)−
n
2 (det(τ−1In))−

1
2 exp

(
− 1

2

(
(Xβ − Y )′(τ−1In)−1(Xβ − Y )

))
For a n× n matrix, A, and a scalar value, c, the det(cA) = cn det(A):

= (2π)−
n
2

(
τ−n det(In)

)− 1
2

exp

(
− 1

2

(
(Xβ − Y )′(τ−1In)−1(Xβ − Y )

))
= (2π)−

n
2 (τ)

n
2 exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))

Similarly, L(β0, τ |D0) is

L(β0, τ |D0) = (2π)−
n0
2 (τ)

n0
2 exp

(
− τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))

Finally, (L(β0, τ |D0))a0 is

(L(β0, τ |D0))a0 = (2π)−
n0a0

2 (τ)
n0a0

2 exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))

For consistency and comparison purposes, the same initial priors are used here as

are used in Section 4.2 (where more detail for why these initial priors were selected

can be found):

• β1|τ ∼ N (µ1, τ
−1Λ−1

1 ) for some positive definite Λ1

• p0(β0) ∝ 1

• τ ∼ Gam(α0, γ0), using the shape / rate parameterization
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• a0 ∼ Beta(1, 1)

Note that these initial priors assume p0(β0, τ) = p0(β0)p0(τ). With this set-up, it

can be shown that the NPBPP from equation (4.4) is

p(β0,β1, τ,a0|D0)

= p(β0, τ, a0|D0)p0(β1|τ)

= C

[
(L(β0, τ |D0))a0p0(β0)p0(τ)∫ ∫

(L(β0, τ |D0))a0p0(β0)p0(τ)dβ0dτ

]
p0(a0)IA(a0)p0(β1|τ)

= C(2π)−
p0
2 (det((X ′0X0)−1))−

1
2 (a0)

p0
2
γα0n

0n

Γ(α0n)
(τ)(

n0a0
2

+α0)−1

× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
× exp(−γ0τ)(2π)−

p1
2 (τ)

p1
2 (det(Λ−1

1 ))−
1
2

× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
IA(a0),

where

A =


[
p0−2α0

n0
, 1
]

for α0 <
p0
2

[0, 1] for α0 ≥ p0
2

α0n =
n0a0 − p0

2
+ α0

γ0n =
a0

2
(M0Y0 − Y0)′(M0Y0 − Y0) + γ0

Therefore, when α0 <
p0
2

, a0 will borrow at least some information from the historical

data because the lower bound for a0 will no longer be 0. Using this NPBPP, the

posterior is:
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p(β0,β1, τ, a0|D0, D)

∝ L(β, τ |D)p(β0,β1, τ, a0|D0)

= (2π)−
n
2 (τ)

n
2 exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
C(2π)−

p0
2

× (det((X ′0X0)−1))−
1
2 (a0)

p0
2
γα0n

0n

Γ(α0n)
(τ)(

n0a0
2

+α0)−1

× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
exp(−γ0τ)

× (2π)−
p1
2 (τ)

p1
2 (det(Λ−1

1 ))−
1
2

× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
IA(a0).

This posterior distribution does not result in a recognizable distribution; instead, full

conditionals can be used to sample from the posterior. First, the following parameters

are defined:

Λ0f = (X ′2X2) + a0(X ′0X0)

µ0f = Λ−1
0f

(
X ′2Y −X ′2X1β1 + a0X

′
0Y0

)
Λ1f = (X ′1X1) + Λ1

µ1f = Λ−1
1f

(
X ′1Y −X ′1X2β0 + Λ1µ1

)
γf =

1

2

[
(Xβ − Y )′(Xβ − Y ) + a0(X0β0 − Y0)′(X0β0 − Y0)

+ (β1 − µ1)′(Λ−1
1 )−1(β1 − µ1)

]
+ γ0

αf =
n+ n0a0 + p1

2
+ α0.

The full conditionals (see Appendix C for the derivations) for this posterior distri-

bution are:

β0|β1, τ, a0, D0, D ∼ N (µ0f , τ
−1Λ−1

0f )
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β1|β0, τ, a0, D0, D ∼ N (µ1f , τ
−1Λ−1

1f )

τ |β0,β1, a0, D0, D ∼ Gam(αf , γf ),

and

p(a0|β0,β1, τ,D0, D)

∝ a
p0
2

0

γα0n
0n

Γ(α0n)
(τ)(

n0a0
2

+α0)−1IA(a0) exp

(
− a0τ

2
(X0β0 − Y0)′(X0β0 − Y0)

)
The full conditional for a0 will not result in a recognizable distribution, which can

be seen when considering the term γα0n
0n . Furthermore, when both β0 and τ are

random, the full conditional for a0 will not be recognizable, even if other initial

priors are considered. Therefore, a computationally inefficient Metropolis-within-

Gibbs sampler would be required.

4.2 A Novel Approach Based the Partial Borrow-

ing Power Prior

When conducting interim analysis in an operational test, any computational in-

efficiencies can preclude a method from being suitable. To address this issue, a new

prior is proposed that is both computationally efficient and maintains a random β0

and τ in the DT and OT data models.

4.2.1 The Conditional Normalized Partial Borrowing Power

Prior

Recall, from equation (4.4), that NPBPP has the form

p(θ0,θ1, a0|D0) ∝ p(θ0, a0|D0)p(θ1|θ0),
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where p(θ0, a0|D0) is a NPP. An alternative way to look at this equation is to consider

p(θ0, a0|D0) a joint prior on (θ0, a0), which happens to be a NPP. However, this is

not the only way to construct a prior on (θ0, a0). To illustrate this, consider a

Normal(µ, 1
τ
), data model, where both µ and τ are unknown. One option for a prior

is a joint prior on (µ, τ), such as the reference prior p(µ, τ) = 1
τ

(BIDA). Another

option is a set of conjugate priors, such as

µ|τ ∼ N

(
µ0,

1

ω0τ

)
τ ∼ Gam

(
a

2
,
b

2

)
(BIDA). This set of conjugate priors is a result of conditional probability, which

states that p(µ, τ) = p(µ|τ)p(τ). Returning to equation (4.4), instead of a joint prior

on (θ0, a0), a prior based on conditional probability could be used. By partitioning

θ0 into (θ01,θ02), where the prior on θ01 is conditioned on θ02, equation (4.4) can

then be re-written as:

p(θ0,θ1, a0|D0) ∝ p(θ0, a0|D0)p(θ1|θ0)

= p(θ01,θ02, a0|D0)p(θ1|θ0)

= p(θ01, a0|θ02, D0)p(θ02|D0)p(θ1|θ0). (4.5)

This research proposes the following priors for equation (4.5): p(θ01, a0|θ02, D0) is a

NPP, p(θ02|D0) is an appropriate prior on θ02, and p(θ1|θ0) remains the conditional

prior on θ1. This proposed prior is referred to as a conditional normalized partial

borrowing power prior (CNPBPP), and has the following form:

p(θ0,θ1, a0|D0)

∝ p(θ01, a0|θ02, D0)p(θ02|D0)p(θ1|θ0)

= C

[
(L(θ01|θ02, D0))a0p0(θ01|θ02)∫

(L(θ01|θ02, D0))a0p0(θ01|θ02)dθ01

]
p0(a0)IA(a0)p(θ02|D0)p(θ1|θ0)

(4.6)
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Using the same set-up as in Section 4.1.7, the following will demonstrate that

using CNPBPP can be more computationally efficient than using NPBPP. As in

Section 4.1.7, let θ0 = (β0, τ), where β0 = (β01, . . . ,β0p0)
′; and let θ1 = β1, where

β1 = (β1, . . . ,βp1)
′. The likelihood function for the DT data is L(β0, τ |D0) and

for the OT data is L(β, τ |D). Let X0 be the DT design matrix, and let X be the

OT design matrix; X can be rewritten as X = [X1, X2], where the columns of X1

correspond to parameters that are in β1 and columns of X2 correspond to parameters

that are in β0. Finally, let θ01 = β0, and θ02 = τ . Given β, D0 and D are assumed

to be independent random samples from normal distributions:

D|β, τ ∼ N (Xβ, τ−1In)

D0|β0, τ ∼ N (X0β0, τ
−1In0)

where In0 is a n0 × n0 identity matrix and In is a n× n identity matrix.

Using the same initial priors as in Section 4.1.7,

• β1|τ ∼ N (µ1, τ
−1Λ−1

1 ) for some positive definite Λ1

• p0(β0|τ) ∝ 1

• τ ∼ Gam(α0, γ0), using the shape / rate parameterization

• a0 ∼ Beta(1, 1)

The prior on β1 and the prior on a0 were selected to ensure conjugacy for the set-

up presented here. The prior on β0|τ was taken to be a flat prior, as is done in

many applications for a power prior (Ibrahim, M.-H. Chen, Gwon, et al. 2015).

As highlighted in Section 4.1.1, reference priors such as this can be problematic for

Bayesian inference; however, the power prior construct updates the initial prior for β0

with historical data to create an informative prior. Therefore, while the initial prior
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on β0 is a reference prior, the final prior on β0 will be an informative prior (when a0 6=

0), thereby alleviating the problems that can arise when reference priors are used.

Furthermore, this research assumes p(τ |D0) = p(τ) (in equation (4.5), p(θ02|D0) =

p(θ02))—a prior that balances a representation of prior beliefs with convenience.

Finally, as in Chapters 2 and 3, it is assumed that the priors on the model parameters

are independent; therefore, p(β1|β0, τ) = p(β1|τ). These assumptions were also

implicit in Section 4.1.7, for consistency and comparison purposes. While the prior

on β0 and τ from Section 4.1.7 was written as “p0(β0, τ) = p0(β0)p0(τ)”, note that

the p0(β0, τ) = p0(β0|τ)p0(τ) construct used here will result in the same expression

of prior beliefs about β0, since p0(β0|τ) ∝ 1 does not depend on τ .

With this set-up, it can be shown that CNPBPP from equation (4.6) is

p(β0,β1, τ, a0|D0)

= C

[
(L(β0|τ,D0))a0p0(β0|τ)∫

(L(β0|τ,D0))a0p0(β0|τ)dβ0

]
p0(a0)IA(a0)p(τ |D0)p(β1|β0, τ)

= C

[
(L(β0|τ,D0))a0p0(β0|τ)∫

(L(β0|τ,D0))a0p0(β0|τ)dβ0

]
p0(a0)IA(a0)p(τ)p(β1|τ)

∝ C(2π)−
p0
2 (τ)

p0
2 a

p0
2

0 (det((X ′0X0)−1))−
1
2

× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
IA(a0)

× (2π)−
p1
2 (det(τ−1Λ−1

1 ))−
1
2

× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
× γα0

0

Γ(α0)
(τ)α0−1 exp(−γ0τ),

where A = [0, 1]. This allows a0 to control the borrowing of information from DT

as much or as little as the data suggests, regardless of the hyperparameters selected

for the prior on τ ; this is in contrast to NPBPP, whose region A depends on the
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hyperparameter α0. The posterior is then

p(β0,β1, τ, a0|D0, D)

∝ L(β, a0|D)p(β0,β1, τ, a0|D0)

∝ (2π)−
n
2 (τ)

n
2 exp

(
− τ

2
(Xβ − Y )′(Xβ − Y )

)
(2π)−

p0
2 (τ)

p0
2 a

p0
2

0

× (det((X ′0X0)−1))−
1
2 IA(a0)(2π)−

p1
2 (τ)

p1
2

× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
× (det(Λ−1

1 ))−
1
2 exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
× γα0

0

Γ(α0)
(τ)α0−1 exp(−γ0τ)

As this does not result in a recognizable distribution, full conditionals can be used

to sample from the posterior. First, the following parameters are defined:

Λ0c = (X ′2X2) + a0(X ′0X0)

µ0c = Λ−1
0c

(
X ′2Y + a0X

′
0Y0 −X ′2X1β1

)
Λ1c = (X ′1X1) + Λ1

µ1c = Λ−1
1c

(
X ′1Y −X ′1X2β0 + Λ1µ1

)
αc =

1

2

(
n+ p

)
+ α0

γc =
1

2

[
(Xβ − Y )′(Xβ − Y ) + a0(X0β0 −M0Y0)′(X0β0 −M0Y0)

+ (β1 − µ1)′(Λ−1
1 )−1(β1 − µ1)

]
+ γ0

The full conditionals (see Appendix E for the derivations) are:

β0|β1, τ, a0, D0, D ∼ N (µ0c, τ
−1Λ−1

0c )

β1|β0, τ, a0, D0, D ∼ N (µ1c, τ
−1Λ−1

1c )

τ |β0,β1, a0, D0, D ∼ Gam(αc, γc)
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a0|β0,β1, τ,D0, D

∼ TruncGam

(
p0

2
+ 1, 2τ−1

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

)−1

, 0, 1

)

Unlike NPBPP, the full conditional for a0 is a recognizable distribution (while a

truncated gamma is not a commonly used distribution, it is still a known distribution

that is easy to sample from; see Nadarajah and Kotz 2006). Therefore, a more

computationally efficient Gibbs sampler can be used to sample from the posterior

distribution, allowing for quicker interim analysis when incorporating DT information

into OT.

4.2.2 Comparing Conditional Normalized Partial Borrowing

Power Prior to Normalized Partial Borrowing Power

Prior

While the purpose of full conditionals is to sample from the posterior distribution

conditionally and iteratively, they are also a way to understand how model param-

eters are being updated. Therefore, the full conditionals when using CNPBPP and

the full conditionals when using NPBPP can be compared to understand how the

two priors influence the posterior.
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As can be seen in Table 4.1, the full conditionals for β0 and β1 are the same,

conditioned on τ and a0, regardless of whether NPBPP or CNPBPP was used. There-

fore, the full conditionals for β0 and β1 are informing the posterior in the same way,

conditioned on τ and a0 being the same.

The differences in full conditionals for τ are driven solely by whether τ was

integrated out of the denominator of the NPP (as in NPBPP) or not (as in CNPBPP).

Of note, consider the rate parameter for the two gamma distributions in Table 4.1

(referred to previously as γf and γc). R. Christensen (2020) show that

(X0β0−Y0)′(X0β0−Y0) = (X0β0−M0Y0)′(X0β0−M0Y0)+(M0Y0−Y0)′(M0Y0−Y0),

where M0 is the perpendicular projection operator on C(X0). Furthermore,

(M0Y0 − Y0)′(M0Y0 − Y0) is the sum of squares error for Y0 (SSE0). Therefore,

a0(X0β0−Y0)′(X0β0 − Y0)

= a0(X0β0 −M0Y0)′(X0β0 −M0Y0) + a0(M0Y0 − Y0)′(M0Y0 − Y0)

= a0(X0β0 −M0Y0)′(X0β0 −M0Y0) + a0(SSE0)

Therefore, using Table 4.1, γc = γf − 1
2
(a0×SSE0); that is to say, the rate parameter

for the full conditional on τ when using CNPBPP is the rate parameter for the

full conditional on τ when using NPBPP minus one-half of a down-weighted sum of

squares error for Y0.

Finally, the full conditionals for a0 are different by design. How the full condi-

tionals for τ and a0 affect the (small-sample) posterior can be seen visually when

considering a specific example, and can be found in Section 4.3 for the electric semi-

truck example.

The full conditionals show that the (small-sample) posterior distribution will be

different when using NPBPP compared to CNPBPP. However, any reasonable prior

should lead to the same posterior inference when enough data from OT has been
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obtained (BIDA). Therefore, asymptotically and conditioned on a0, the influence of

these two priors on the posterior should decrease as the amount of OT data increases

(BDA). This is an informal result (for constructs that satisfy the assumptions) of

the Bernstein-von Mises theorem: “in large samples the effect of the prior density π

disappears: ‘the data overwhelms the prior’ ” (Johnstone 2010). Therefore, the influ-

ence of the prior on the marginal posteriors of β0, β1, and τ is typically diminished

as the sample size increases.

Now consider a0. When a0 = 1, DT data and OT data are fully pooled; as

the amount of OT data increases, DT data will eventually be overwhelmed by OT

data. Since a0 is bounded between 0 and 1, this will hold for any value a0 takes on,

with enough OT data. When a0 is fixed, it is likely that the two posteriors would,

asymptotically, be the same. However, when a0 is not fixed, no amount of OT data

will ever fully overwhelm the prior on a0. This can be seen when considering the

full conditional for a0—which does not directly get updated by the OT data, Y , but

only by the DT data, Y0. While the full conditional for a0 will update as more OT

data are obtained (due to being conditioned on β0 and τ which are updated by the

OT data), the prior will not be fully overwhelmed and will exert some influence on

the posterior. Asymptotic equivalence and the properties of a0 and τ when using

NPBPP compared to using CNPBPP are areas of further exploration. However, even

for small samples, CNPBPP remains a valid alternative to NPBPP.

4.3 Implementing the Process

This section considers the case where DT information is both available and incor-

porated into OT through CNPBPP. This section also compares CNPBPP to NPBPP

when all operational test events have been completed. As was done for the OT data

sets used in Chapters 2 and 3, simulated data sets, with various distributions of the
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DT response, were generated to provide insight into how CNPBPP performs across

a range of possible scenarios.

Extending the electric semi-truck example from Chapters 2 and 3, consider a

(well-designed) developmental test in which data was collected on the number of

miles traveled on one charge, and that the DT model parameters were a subset of

the OT model parameters. The DT data that was deemed functionally representa-

tive for inclusion in the CNPBPP had the following set-up: an electric semi-truck

with a refrigerated payload type and a heavy weight was used in good weather to ac-

complish a 22 full factorial test design with five replicates where the only two factors

considered were terrain and temperature (defined the same as in OT). Therefore, let

β1 = (ω2, ω3, θ2, γ2, αθ(22), αγ(22), βθ(22), βγ(22), θγ(22)) and let β0 = (η, α2, β2, αβ(22)).

The DT data model is then:

y0ijp = η + αi + βi + αβ(ij) + ε0ijp

While a DT set-up at the hardest levels of the system is unlikely to be encountered

in practice, this construct was assumed for consistency with previous chapters, so

that direct comparisons can be made and to ensure that the model parameters have

the same interpretation (specifically, so that η had the same interpretation).

Having established the data model, the initial priors are selected. Following

Section 4.2.1, the initial priors are:

• β1|τ ∼ N (µ1, τ
−1Λ1) where µ1 = (−25,−50, 100, 100, 0, 0, 0, 0, 0) and

Λ1 = 1
n
(X ′1X1)

• p0(β0|τ) ∝ 1

• τ ∼ Gam(0.0001, 0.0001)

• a0 ∼ Beta(1, 1)
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The prior on β1|τ is a unit information prior developed by Kass and Wasserman

(1995)—a special case of the g prior with a strength of one prior observation centered

at µ1 (Liang et al. 2008). Further, µ1 was selected to be the mean of the weakly

informative priors selected in Chapters 2 and 3.

For this chapter, a subset of the 21 OT data sets from Chapters 2 and 3 are

used—specifically data sets 1, 2, 3, 10, and 11. These data sets were selected based

on the results from Chapter 3. Recall that OT data set 1 ended OT early based on

PP for all nobs, evaluating the measure as not met. OT data set 2 was selected for

similar reasons; however, if PP was only calculated when nobs = 60 and 75 then OT

would not have ended early based on PP . OT data set 3 ended OT early based on

PP , evaluating the measure as met. Both OT data set 10 and 11 were unable to

end test early based on PP , requiring all test events to be accomplished. However,

using OT data set 10 resulted in evaluating the measure as not met using posterior

probability while using OT data set 11 resulted in evaluating the measure as met.

These data sets provide an avenue for examining how edge cases are affected by

different DT data sets when testing can end early using PP (either for evaluating

the measure as met or evaluating it as not met) and when testing requires all test

events to be seen (either ultimately evaluating the measures as met or evaluating it

as not met).

The following provides a description of the DT data sets used in this chapter.

DT data set 1 was created in the same manner as the corresponding OT data set.

For example, OT data set 2 was created using Appendix B with η = 345 and OT

data set 3 was created with η = 347; therefore, DT data set 1 for OT data set 2

was also created using η = 345 while DT data set 1 for OT data set 3 was created

using η = 347. DT data set 2 was created in the same manner as the corresponding

OT data set, but increased η by 5. Therefore, DT data set 2 for OT data set 2

was created using η = 350. DT data set 3 was created in the same manner as the
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corresponding OT data set, but increased η by 150. DT data set 4 was created to

examine how changing the true parameter values for α2 and β2 (while maintaining

the same sum of the two parameters) would affect the analysis. In all OT data sets,

α2 = 50 and β2 = 15; in every DT data set 4, α2 = 75 and β2 = −10. Therefore,

when both α2 and β2 are observed (or, when neither are observed) the expectation

should be the same for OT and DT; furthermore, in a balanced design (such as is

presented here), the expectation of the average miles traveled should be the same.

Finally, DT data set 5 was created in the same manner as the corresponding OT

data set (as in DT data set 1); however, a smaller standard deviation was used for

DT data set 5 compared to the corresponding OT data set. Using notation from

Appendix B, DT data set 5 was generated by b = 1 and s = 0 (when paired with

OT data sets 1, 2, and 3) or b = 50 and s = 0 (when paired with OT data sets

10 and 11), compared to the OT data sets that was generated by b = 50 / s = 2

and b = 100 / s = 9 respectively. DT data set 1 was selected to explore how much

information would be borrowed from DT in the (unlikely) case where DT and OT

data are exactly the same. DT data set 4 was selected to provide insights into how

sensitive CNPBPP is to a change in the sign of a parameter when the expectation

remained largely the same compared to OT. Finally, DT data sets 2, 3, and 5 were all

selected to explore how robust CNPBPP is to deviations in assumptions that could

occur in practice. Given that DT is more controlled than OT, DT can see better

system performance than OT—DT data set 2 is the case where DT data is slightly

better than in OT; DT data set 3 is the case where DT data is much better than in

OT; and DT data set 5 is the case where the variance is artificially reduced in DT

compared to OT.

The results for each data set combination can be found in Tables 4.2 and 4.3,

as well as in Figures 4.2–4.6. PP was calculated in R using the same two-stage

sampling algorithm detailed in Chapter 3, and was also based on nj = 18, 000 nested

samples and ni = 1, 000 outer samples (after examining both ACF and trace plots,
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and removing burn-in samples, as well as for comparison purposes with Chapters 2

and 3). Recall from Chapter 3 that nf is the number of observations required to be

seen before calculating PP . Chapter 3 discussed that it was possible to make the

wrong decision due to a lack of information when nf = 0 if reference priors are used;

as such Chapter 3 considered nobs = 45, 60, 75, as is done in Table 4.2 for comparison

purposes. When using CNPBPP, selecting nf > 0 ensures that OT data is obtained,

and the analysis is not completely driven by DT data. Finally, recall from Chapter

3 that θU = 0.95 and θL = 0.05.

As can be seen in Tables 4.2 and 4.3, for any result at a given nobs, the posterior

expectation of a0 is consistent within an OT data set and DT data set paring. This

demonstrates that conducting interim analysis, when all observations have not been

seen, does not influence the posterior expectation of a0. This implies that a0 behaves

consistently within our proposed method.

Table 4.2 contains results for OT data sets 1, 2, and 3, which were generated

using the smallest error transformation. In Chapter 3, OT data set 1 would have

allowed for testing to end after nobs = 45, evaluating the measure as not met using

PP ; Table 4.2a demonstrates that OT data set 1 would still allow for testing to be

ended early and evaluate the measure as not met using PP at nobs = 45 for every

DT data set, with the exception of DT data set 3. The PP for DT data set 3

paired with OT data set 1 is much higher than the other pairings, requiring all test

events to be seen before evaluating the measure. This illustrates that when prior

data is incorporated into analysis that is dissimilar, more testing may be required

compared to using weakly informative priors. In Table 4.2b, using DT data sets 1

or 4 results in the same conclusion about the measure as using weakly informative

priors in Chapters 2 and 3, demonstrating the same borderline conclusion about the

measure. However, DT data sets 2 and 3 are examples of better performance in DT

than OT, influencing conclusions. While DT data set 2 has more influence on the
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posterior analysis, DT data set 3 has a much better system performance than OT—

which in-turn has a greater influence on the PP , in spite of a small a0. Considering

Table 4.2c, all operational tests are allowed to stop much earlier when using DT

information, compared to when using weakly informative priors.

Next, consider Table 4.3, where OT data sets 10 and 11 have a larger error

transformation compared to Table 4.2. In Chapter 3, OT data set 10 required seeing

all test events before testers could make a conclusion about the measure (not met)

when using a weakly informative prior; in Table 4.3a, using any of the DT data sets

as a prior would allow testers to end an operational test early, with similar outcomes

as in Table 4.2a. Similarly, in Chapter 3, OT data set 11 required seeing all test

events before testers could make a conclusion about the measure when using a weakly

informative prior; while evaluated as met, the posterior probability was very close to

θT . In Table 4.3b, using DT data sets 1 and 3, testers can end OT early based on

PP ; alternatively, DT data sets 2, 4, and 5 do not allow for ending OT early based

on PP . This implies that our proposed method for using PP (and using CNPBPP)

will result in ending OT early when the posterior probability is not very close to θT .

Additionally, consider a0 in Tables 4.2 and 4.3 for DT data set 3. Note that in

Table 4.2, when the smallest error transformation is used to generate the data sets,

a0 is approximately 0.04 for any nobs or OT data set. In Table 4.3, when a larger error

transformation is used to generate the data sets, a0 increases to approximately 0.3.

While not shown, when using the data sets with the largest error transformation, a0

continues to increase (to approximately 0.5). As the OT data becomes more diffuse,

DT data set 3 becomes more commensurate with (less disinformative relative to) the

OT data set it is paired with, which in-turn increases a0. However, we do not see

this increase in a0 for any other DT data sets, which is due to increasing the errors

surrounding the fitted values without also scaling the fitted values when generating

the data sets.
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Chapter 4. Developing Informative Priors from Developmental Testing

As discussed in Chapter 2, model parameter estimation is not a focus of the

methods presented here. However, the standard deviation of those model parameter

estimates is an important aspect of being able to make decisions about a measure.

Recall from Chapter 3 that the sampling method for PP requires a two stage sam-

pling method, where the nested loop ultimately calculates Pr(φ ≥ φ0|X, Y ) ≥ θT

and the outer loop samples from the predictive distribution of Y . When the stan-

dard deviation of model parameter estimates decrease, it corresponds to seeing less

varied posterior draws for the model parameters. This decreases the variation seen

in the Y s drawn in the outer loop of the sampling method, resulting in less varied

data being seen in the nested loop. The conditional draws in the nested loop then

more accurately estimate the (1 − θT ) quantile, which in term produces a more ac-

curate PP . As PP less becomes influenced by the variability in the nested loop’s

conditional draws, quicker decisions (i.e., decisions made about a measure based on

fewer observational units) can be made. This can be seen in Table 4.4b for OT data

set 3. When a0 allows for more borrowing of DT information (i.e. DT data sets

1, 2, 4, and 5), the posterior standard deviation for model parameters decreases.

Alternatively, when a0 does not allow for more borrowing of DT, as in DT data

set 3, the posterior standard deviation is comparable to using weakly informative

priors. Therefore, compared to weakly informative priors, using CNPBPP allows for

the possibility that the posterior standard deviation can be smaller when the data

is commensurate, while not increasing the standard deviation when the data is not

commensurate. This ultimately allows PP to be more accurate, which, and as Table

4.2c demonstrates, leads to making quicker decisions.
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Chapter 4. Developing Informative Priors from Developmental Testing

Model True WIP* CNPBPP Using DT Data Set...
Parameter Value 1 2 3 4 5

η 347 352.75 349.54 350.30 363.89 349.61 350.99
α2 50 60.07 53.15 54.03 58.55 62.02 58.28
β2 15 15.49 11.04 14.03 9.44 6.51 12.32
ω2 0 −6.62 −0.47 −2.11 −8.82 0.34 −2.28
ω3 −5 −4.01 2.12 1.05 −4.81 1.68 0.43
γ2 75 66.27 66.43 65.70 54.91 64.75 64.47
δ2 50 56.92 59.65 58.60 47.15 58.25 57.48

(αβ)(22) 20 −12.61 −1.32 −2.71 −10.92 −12.25 −6.89
(αγ)(22) 50 38.54 41.27 40.85 39.43 39.17 39.25
(αδ)(22) 25 17.15 16.54 16.90 18.07 14.13 15.48
(βγ)(22) 50 65.56 67.04 65.30 70.46 73.64 67.83
(βδ)(22) 25 15.80 13.89 12.41 18.62 20.48 14.91
(γδ)(22) 25 22.22 19.12 21.50 32.22 18.09 22.26
τ † — 0.414 0.470 0.473 0.446 0.480 0.480
a0 NA NA 0.640 0.656 0.042 0.692 0.695

(a) Posterior Expectation for Model Parameters

Model WIP* CNPBPP Using DT Data Set...
Parameter 1 2 3 4 5

η 18.82 14.97 14.83 19.69 14.66 14.59
α2 21.30 17.90 17.75 21.07 17.34 17.52
β2 19.73 17.80 17.64 21.13 17.47 17.35
ω2 15.27 13.93 13.79 15.61 13.72 13.66
ω3 12.93 11.91 11.77 13.02 11.76 11.69
γ2 21.08 19.10 18.97 21.27 18.88 18.85
δ2 21.66 19.33 19.27 21.83 19.08 18.99

(αβ)(22) 21.16 19.77 19.58 21.48 19.23 19.15
(αγ)(22) 21.69 19.54 19.50 21.04 19.28 19.41
(αδ)(22) 22.22 20.09 19.95 21.66 19.76 19.83
(βγ)(22) 21.23 19.71 19.55 21.16 19.32 19.39
(βδ)(22) 21.32 19.73 19.63 21.25 19.52 19.43
(γδ)(22) 23.22 20.75 20.68 23.30 20.57 20.42
τ † 0.0707 0.0747 0.075 0.0738 0.0758 0.076
a0 NA 0.2323 0.2288 0.0289 0.2178 0.2162

(b) Posterior Standard Deviation for Model Parameters
* WIP is the Weakly Informative Prior used in Chapters 2 and 3
† For ease of display, results for τ are multiplied by 1, 000; see Appendix B for the trans-
formation on τ to obtain the true value.

Table 4.4: Posterior Expectations and Standard Deviations for Model Parameter
Based on n = 80 Observations for OT Data Set 3
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As discussed in Section 4.1.4, Neelon and O’Malley (2010) suggest that using a

NPP (which is incorporated into CNPBPP) would need a fairly informative prior

on a0 to bound a0 away from 0, due to the tendency of NPP to overly down-weight

historical information. While the research area of OT is unlikely to find issue with a

prior that overly down-weights DT data, other areas of research may be interested in

the use of a more informative prior on a0. Previously, it was stated that the Beta(1,1)

prior on a0 used thus far was selected to ensure conjugacy; alternatively, a choice of

Beta(d, 1) for any d > 0 could have been selected while retaining recognizable full

conditionals. Tables 4.5 and 4.6 demonstrate how a0 changes with the choice of d—

specifically, how the posterior expectation of a0 increases as its prior becomes more

informative. Therefore, as the prior on a0 becomes more informative, CNPBPP is

able to incorporate more DT data. As demonstrated in Table 4.5, this will further

decrease the posterior standard deviation of the model parameters, when the data

is commensurate. However, if the data is not commensurate, as is shown in Table

4.6, posterior standard deviations can become worse. Furthermore, if the prior on

a0 is too strong and there is limited OT data, the differences between the two data

sets cannot overwhelm the prior on a0. As can be seen in Table 4.6, this can create

a disinformative prior, and lead to misplaced confidence in a system obtaining the

required threshold. Therefore, even though a Beta(1, 1) prior on a0 my overly down-

weight historical information, we contend that a Beta(1, 1) prior is better for use in

OT than a stronger prior that may become disinformative.
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Chapter 4. Developing Informative Priors from Developmental Testing

Finally, Table 4.7 and Figures 4.7–4.10 compares the difference in posterior prob-

abilities and a0 when using CNPBPP and using NPBPP. For any OT data set, DT

data sets 1, 2, 4, and 5 have posterior probabilities for CNPPBP that are within

0.002 of the posterior probabilities for NPBPP (in no consistent direction). Of the

25 data combinations considered in this table, only one data set combination results

in an inconsistent evaluation between the two methods (OT data set 2 with DT data

set 2). This demonstrates that it is likely that the more computationally efficient

CNPBPP will largely lead to the same conclusions regarding measure evaluation as

NPBPP, unless the posterior probability is very close to θT .

In all cases, DT data set 5 for all OT data sets demonstrates that NPBPP is more

sensitive to deviations in τ than CNPBPP; however, that sensitivity to deviations in

τ decreases as the the variance in the errors increases (i.e. a0 is approximately 0.23

under a small variance using error transformation 1, but 0.47 under a larger variance

using error transformation 2). As a0 is not as driven by τ in CNPBPP, a0 is not

as sensitive to deviations in τ compared to the a0 when using NPBPP. Therefore,

given the OT and DT data sets were generated from the same true model parameters

(except τ), CNPBPP is more robust to deviations in modeling assumptions about τ

than NPBPP.

Furthermore, by considering DT data set 3 for all OT data sets, Table 4.7a

demonstrates that NPBPP can lead to a more disinformative prior because the

Gamma(0.0001, 0.0001) prior on τ restricts a0 so that a0 ∈ [0.2, 1]—this is in con-

trast to CNPBPP, which allows for a0 ∈ [0, 1]. For this example, the shape must be

greater than or equal to 2 before a0 ∈ [0, 1] for NPBPP. Alternatively, as can be seen

in Table 4.7b, as the variance in the errors increases, a0 becomes less sensitive to

the deviations in the DT data set when using NPBPP compared to using CNPBPP.

This indicates that CNPBPP may not only be more robust in cases where τ differs

in DT and OT, but also when the true model parameters differ in DT and OT.
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OT DT CNPBPP CNPBPP NPBPP NPBPP
Data Set Data Set Prφ|X(φ > φ0) a0 Prφ|X(φ > φ0) a0

1 0.7847 0.6419 0.7861 0.7298
2 0.7894 0.6537 0.7896 0.7393

1 3 0.8000 0.0425 0.8338 0.2848
4 0.7854 0.6922 0.7841 0.7603
5 0.7933 0.6950 0.7919 0.2312
1 0.7968 0.6418 0.7956 0.7272
2 0.8005 0.6542 0.7994 0.7398

2 3 0.8088 0.0424 0.8432 0.2832
4 0.7959 0.6930 0.7955 0.7564
5 0.8040 0.6938 0.8030 0.2314
1 0.8078 0.6400 0.8059 0.7285
2 0.8088 0.6558 0.8085 0.7381

3 3 0.8180 0.0424 0.8523 0.2844
4 0.8053 0.6921 0.8070 0.7585
5 0.8123 0.6953 0.8129 0.2312

(a) Error Transformation 1 (Small Variance)

OT DT CNPBPP CNPBPP NPBPP NPBPP
Data Set Data Set Prφ|X(φ > φ0) a0 Prφ|X(φ > φ0) a0

1 0.7857 0.6475 0.7834 0.7256
2 0.7898 0.6514 0.7878 0.7284

10 3 0.8375 0.2917 0.8600 0.5298
4 0.7864 0.6612 0.7887 0.7354
5 0.7901 0.6761 0.7902 0.4722
1 0.7932 0.6473 0.793 0.7226
2 0.7943 0.6509 0.7954 0.7284

11 3 0.8443 0.2951 0.8667 0.5331
4 0.7952 0.6601 0.7968 0.7356
5 0.7970 0.6788 0.7994 0.4703

(b) Error Transformation 2 (Larger Variance than in Error Transformation 1)
* Definitions for Error Transformations 1 and 2 can be found in Appendix B.

Table 4.7: Comparison of Posterior Probability Results Using CNPBPP versus
NPBPP
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Figure 4.9: Posteiror Probabilities
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Figures 4.11 and 4.12 show the marginal posterior distribution for a0 and τ when

using a Gamma(0.0001, 0.0001) prior on τ when DT data and OT data are the same

(i.e. considering DT data set 1). With this paring, CNPBPP is less likely to borrow

from DT than NPBPP, but the marginal posterior for τ are relatively similar.
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Figure 4.11: Marginal Posterior for a0 comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 1 when the Initial Prior on τ was a Gamma(0.0001, 0.0001)
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Figure 4.12: Marginal Posterior for τ comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 1 when the Initial Prior on τ was a Gamma(0.0001, 0.0001)

96



Chapter 4. Developing Informative Priors from Developmental Testing

Now consider when DT data is much better than OT data (i.e. considering DT

data set 3). Figures 4.13 and 4.14 show the marginal posterior distribution for a0 and

τ when using a Gamma(0.0001, 0.0001) prior on τ . With this paring, CNPBPP is

still less likely to borrow from DT than NPBPP, but the restriction NPBPP puts on

a0 is clearly seen. Furthermore, the marginal posteriors for τ are no longer similar.
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Figure 4.13: Marginal Posterior for a0 comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 3 when the Initial Prior on τ was a Gamma(0.001, 0.0001)

2e−04 3e−04 4e−04 5e−04 6e−04 7e−04 8e−04 9e−04

0
20

00
40

00
60

00

N = 80000   Bandwidth = 6.953e−06

D
en

si
ty

CNPBPP
NPBPP

Figure 4.14: Marginal Posterior for τ comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 3 when the Initial Prior on τ was a Gamma(0.0001, 0.0001)

97



Chapter 4. Developing Informative Priors from Developmental Testing

Alternately, consider when DT data and OT data are not the same, but the prior

on τ is a Gamma(2, 0.0001) which allows a0 to have the same support when using

CNPBPP or NPBPP (a0 ∈ [0, 1]). Figures 4.15 and 4.16 show the marginal posterior

distribution for a0 and τ . With this prior, CNPBPP is still less likely to borrow from

DT than NPBPP, but is now comparable to NPBPP. Furthermore, the marginal

posteriors for τ are more similar than when using τ ∼ Gamma(0.0001, 0.0001).
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Figure 4.15: Marginal Posterior for a0 comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 3 when the Initial Prior on τ was a Gamma(2, 0.0001)
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Figure 4.16: Marginal Posterior for a0 comparing NPBPP vs CNPBPP for OT Data
Set 2 and DT Data Set 3 when the Initial Prior on τ was a Gamma(2, 0.0001)
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Ultimately, the decision to use CNPBPP or NPBPP relates to foundational issues,

whether computational efficiency is required, and how robust the method needs to

be. For the purposes of this research, using an NPBPP would require selecting prior

on τ that ensures a0 ∈ [0, 1]. If such a selection were not made, NPBPP can lead to

a disinformative prior, and adversely affect measure evaluation. However, that selec-

tion must be counter-balanced against the implication of the selected prior on τ—as

p0 increases, a more informative prior on τ is required to ensure a0 ∈ [0, 1]. Further-

more, NPBPP will not result in full conditionals that are fully recognizable, resulting

in a more computationally inefficient sampling method. Alternatively, CNPBPP uses

conditional probability to ensure that full conditionals are recognizable; therefore,

not only does CNPBPP allow for a0 ∈ [0, 1] for normally distributed data regard-

less of the initial prior on τ , but it also ensures computational efficiency. Given

that CNPBPP has protection built in against being a disinformative prior without

creating a more informative prior on τ , is more computationally efficient, is robust

to assumptions about τ , and does not result in substantial differences in measure

evaluation, we believe CNPBPP is a more appropriate prior for OT.
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Discussion and Future Work

This research has demonstrated how the proposed methods can improve the effec-

tiveness and efficiency of operational testing by stopping test early with confidence

and incorporating developmental testing (DT) information into operational testing

(OT) through the use of informative priors, providing both cost and schedule savings.

Chapter 2 transitioned the OT paradigm into a Bayesian framework, and introduced

mission sets; in doing so, Chapter 2 provided a means for using Bayesian methods

within OT. Chapter 2 demonstrated that using the marginalized mission space pro-

vided more information about the variability in the parameter of interest among the

operational environments in which the system will be used, finding that fewer systems

should obtain φ0 than would be considered met in the current OT paradigm. Incor-

porating mission sets into an analysis provides a novel way of conducting operational

testing when summary statistics are used to evaluate a measure. By marginalizing

over the mission space, the Bayesian mission mean method takes into account the

variability in performance among operational environments. In contrast, when using

a grand mean, the small variance of φGM masks the complexity of the operational

environment; therefore, decisions made based on the grand mean are more sensitive

to outliers in performance among the mission sets.
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Next, Chapter 3 broadened the work in phase II clinical trials to the OT paradigm

and extended that work to a fully Bayesian method for a continuous response with

an ANOVA structure—a structure that is common to OT. In doing so, we created a

method using predictive probabilities (PP ) that could be used in OT to end testing

early. Incorporating PP into OT provides testers a way to make conclusions about

a measure during an operational test and saving test runs. While constraints still

exist for using predictive probabilities for interim analysis with continuous responses,

the computational power has greatly increased since Geisser and W. Johnson (1994),

and to a lesser degree since Dmitrienko and Wang (2006), which allowed for a fully

Bayesian solution to this problem. Although the computational power has increased,

the complexity of this computation, as acknowledged by Zhou et al. (2018), still re-

mains. To both support efficient computations and limit further complexity than

was already introduced by using an ANOVA structure for the continuous response,

conjugate priors were used. Using a non-conjugate prior for η was also explored;

however, the method became impractical for practitioners due to the extra com-

putational power required. More efficient sampling methods may be possible that

would allow for efficient sampling when using non-conjugate priors for a continuous

response, and is an area for further research.

Finally, Chapter 4 introduced the novel conditional normalized partial borrowing

power prior (CNPBPP) and provided a way to incorporate potentially dissimilar

DT data into OT through use of CNPBPP. This new informative prior will give

testers the ability to appropriately incorporate DT information that is currently

not considered. The example used in this research demonstrated that it is possible

that CNPBPP is less likely to borrow from DT information than NPBPP, which

is a benefit for this area of research. This prior, based on conditional probability,

is computationally more efficient than the previously proposed normalized partial

borrowing power prior (NPBPP). Furthermore, by incorporating DT information,

it is possible to get more precise estimates of model parameters, which can allow
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for stopping OT earlier than when using reference priors. Finally, CNPBPP has

protections in place to mitigate the risk of DT data creating a disinformative prior,

as a0 will always be allowed to be between 0 and 1.

While Tables 2.3, 3.1, 4.2, and 4.4 demonstrate the utility of the methods pre-

sented in this research, further work would be needed to evaluate type I and II error

rates with a high degree of precision. Due to computational constraints, this was

not explored; however, such work could involve a grid search to select θL and θU

such that the error was controlled, as employed by Lee and D. D. Liu (2008). An-

other limitation with this method is the lack of access to DT data (National Research

Council 1998). If DT data is unavailable, the methods presented in Chapters 2 and 3

can still be used, with the option of developing informative priors from subject mat-

ter expert (SME) opinion instead of reference priors (see Bedrick, R. Christensen,

and W. Johnson 1996 for how this can be accomplished). Finally, as highlighted

by Dickinson et al. (2015), the analysis employed within the current OT paradigm

can be easily accomplished in Excel. To calculate the PP s in Chapters 3 and 4, a

custom sampler was developed in R for the specific electric semi-truck example—a

requirement that is considerably more complex than the current process. Even if

an operational tester were familiar with R and Bayesian methods, an R package (or

package in any software) would not currently be available to implement the two-stage

sampling method used in Chapters 3 and 4 (whether DT is included or not). In order

to mitigate this limitation to a degree, it is our intention to develop an R package to

make the method more accessible to practitioners.

There are four main avenues we intend to pursue in future work. The first is

to consider incorporating DT information that does not mirror OT. One extension

would be to assume that DT models what OT considers to be latent or nuisance

parameters, or that DT considers a different set of (related) parameters than OT.

Another extension would be to consider a case where DT collects information on
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a response variable that is related to a response variable in OT, but is not the OT

response variable. Both of these extensions would be less restrictive than the method

presented in Chapter 4.

Another avenue for future work reconsiders the treatment of factors and levels

in the current OT paradigm. While also assumed in this research, it is unlikely

that the factors affecting the response are independent (an assumption shared by

the current OT paradigm); by designing an experiment for the selected factors and

levels, and asking experts questions about the response for test runs (instead of the

narrow focus of a single level), a better understanding of how these factors and levels

create the mission space will be obtained. This can then be leveraged to develop a

mission set that incorporates the complex nature of the operational environment of,

e.g., Florida—rather than assuming independent factors and levels.

This research explored one option for adaptive testing—interim analysis. How-

ever, there are other adaptive methods that could also be incorporated. As addressed

in Chapter 1, it is important to make efficient use of public funds. Chapters 3 and 4

provide a way to allow for cost savings, but this method can be extended to a fully

adaptive test. Future work intends to explore how saved resources (either range time

or physical test resources) can be re-allocated to other areas of testing that require

more data.

Finally, as previously discussed, this method looks at the most granular evalu-

ation within the OT framework—evaluating a single measure. Within the current

OT paradigm, measures are grouped under critical operational issues (COIs), where

COIs are developed from overarching themes that arise from the collections of re-

quirements associated with a system. These COIs will ultimately be resolved as met

or not met, and the collection of COI evaluations inform the decision at the system

level (mission capable or not). Currently, this process is a subjective roll-up. In

such a case, where decisions involve multiple measures, future work to address this
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problem would involve the application of statistical decision theory. This could be

accomplished by reducing the collection of measures into a univariate summary φ∗

through a well-specified utility function expressing the importance of each measure

to the overall decision of whether or not to approve the system. A threshold φ∗0 could

then be specified for φ∗, and predictive probabilities could be obtained. With these

lines of effort, it is possible to continue providing efficiencies within OT, making

effective use of limited testing resources.
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Appendix A

Overview of Bayesian Statistics

This appendix reviews pertinent concepts within the Bayesian framework for the

methods presented in Chapters 2–4. The discussion in this appendix is derived from

R. Christensen et al. (2011), where a more detailed discussion of these, and other,

concepts can be found. The structure and form of the data to be collected, given

the model parameter(s), is described through the data model (or density). The data

model is a joint distribution between all observations within the data set, conditioned

on the model parameters. Within the Bayesian framework, every parameter in a data

model is unknown and has a prior distribution associated with it that is developed

independently of the data to be collected. This prior distribution is used to quantify

the uncertainty surrounding a given model parameter and represents an individual’s

beliefs about the model parameter. Therefore, priors are a means of incorporating

key information about the model parameter into a statistical analysis. For example,

consider binomial the data model Bin(n, θ); a natural prior choice for θ would be a

Beta(a, b) distribution, where a and b are selected such that the distribution reflects

prior beliefs about θ. A more detailed discussion of priors will be given in Section

4.1.
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Given the data model, prior distribution(s), and data, Bayes’ Theorem can be

used to create a posterior distribution. The posterior distribution is foundational for

Bayesian inference, representing an updated belief about parameters based on the

observed data. Using Bayes’ Theorem, the posterior distribution is:

p(θ|Y ) =
f(Y |θ)p(θ)∫
f(Y |θ)p(θ)dθ

=
f(Y |θ)p(θ)
f(Y )

∝ f(Y |θ)p(θ).

Often, the calculus to obtain a posterior distribution is intractable; therefore,

numerical approximations, such as Markov chain Monte Carlo (MCMC), are often

used in practice. “The idea of Markov chain Monte Carlo is to define a sequence of

random vectors θ1, θ2, θ3, . . . in which the distribution of θk near the beginning of

the sequence can be just about anything but in which the distribution will eventually

settle down to the posterior distribution” (BIDA). Therefore, once the Markov chain

converges to the posterior distribution, it will remain in the posterior distribution

due to stationarity. Under some mild conditions and with a sufficiently large k, the

θk’s from a MCMC sampler will come from the posterior distribution. These θk

(also referred to as samples, posterior draws, or MCMC draws) can then be used to

numerically approximate the posterior distribution, and estimate functionals of that

distribution (such as expectations, quantiles, etc).

Two common MCMC methods are a Gibbs sampler and a Metropolis-within-

Gibbs sampler. “Gibbs sampling is a method for constructing a Markov chain that is

extremely useful when one can isolate the conditional distribution of each parameter

given all the other parameters”, which is referred to as a full conditional (BIDA).

Fundamentally, a Gibbs sampler will iteratively sample from each full conditional to

wander into the posterior distribution. When these full conditionals are recognizable

distributions that are easy to sample from (e.g. normal distribution, beta distri-
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bution), a Gibbs sampler will be computationally efficient. When one or more of

the full conditionals are not recognizable, a more computationally inefficient method

must be used. A Metropolis-within-Gibbs sampler is one such method. Metropolis-

within-Gibbs is a “hybrid sampler that replaces a sample from a full conditional [in a

Gibbs sampler] with one step of the Metropolis algorithm” when the full conditional

is not recognizable (BIDA). This replacement step is more computationally complex

than sampling from a known distribution, and ultimately runs slower than a Gibbs

sampler (i.e. is more computationally inefficient).

Once a posterior distribution is obtained, various estimates of interest (e.g., point

or interval estimate for a parameter) can be calculated. For instance, the posterior

mean is

E(θ|y) =

∫
θp(θ|y)dθ.

Probabilities such as Pr(θ > c|Y ), where c is a constant, can also be calculated:

Pr(θ > c|Y ) =

∫ ∞
c

p(θ|Y )dθ.

When the posterior distribution is obtained through numerical approximations, the

posterior samples can be used to numerically approximate the estimates of interest.

For example, the posterior mean can be numerically approximated by taking the

mean of the posterior samples (after removing the burn-in samples).

As alluded to previously, when using MCMC methods, there is no guarantee that

the chain will begin in the posterior distribution; instead, it may take time before

it converges to the posterior (as, subject to some common regularity conditions, it

is guaranteed to eventually do). Therefore, the samples obtained before converging

to the posterior distribution (referred to as burn-in samples) are removed, ensuring

that all posterior inferences are made using samples from the posterior distribution.

The number of burn-in samples can be determined visually by looking at trace plots

and noting where convergence seems to have occurred.
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Finally, Bayesian inference allows for the calculation of predictive distributions

and predictive probabilities. The predictive distribution for a future observation(s),

ỹ, given the past observations is:

fp(ỹ|Y ) =

∫
fp(ỹ|θ)p(θ|Y )dθ.

Using the predictive distribution, estimates of interest can be found in the same

manner described for the posterior distribution. An advantage of the predictive

density is that one can calculate the predictive probability of various estimates of

interest. For example, if the interest is in the probability that the next observation

will be less than or equal to 5 given what has been observed, the predictive probability

is:

Pr[ỹ ≤ 5|Y ] =

∫ 5

−∞
fp(ỹ|Y )dỹ.

Instead of considering Pr[ỹ ≤ 5|y], one could consider Pr[ỹ ≤ 5|θ]—the probability

that the next observation will be less than or equal to 5, given the parameter. Chris-

tensen, et al. (2011) show that the posterior mean of the probability that ỹ ≤ 5 is

the same as this predictive probability. That is to say,

E[Pr(ỹ ≤ 5|θ)|y] ≡ Pr[ỹ ≤ 5|y] =

∫ 5

−∞
fp(ỹ|y)dỹ.

A more detailed discussion of predictive probability will be given in Chapter 3.
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Method for Generating Simulated

Operational Testing Data

This appendix details the simulation method used to generate the OT data for the

electric semi-truck example in Chapters 2–4. The simulation method first generates

group means; then applies a transformation to standard normal errors to obtain new

errors; and, finally, creates the responses by adding the transformed error to the

group means.

To present this simulation method, the following outlines how data set 4 was

generated. Let X be the randomized design matrix for a 24 full factorial experimental

design with five replicates; the columns of X relate to model parameters and the rows

correspond to test events. The rows of X are indexed by i, i = 1, . . . , 80; when i is

used in other notation, it represents that the notation corresponds to the ith row of

X. Let β be a 13× 1 column vector of the true model parameter values (as defined

in Table 2.4): β′ = [349, 50, 15, 0,−5, 75, 50, 10, 50, 25, 50, 25, 25]. Let µ be a 80 × 1

column vector of true group means associated with each test event, and let µi be the

ith element of µ. Then, µ is obtained through µ = Xβ.
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Next, standard errors are generated and then transformed. Let ε be a 80 × 1

column vector of standard normal errors, where εi represents the ith element of

ε. It was reasonable to assume that a mean-variance relationship would exist for

electric semi-truck travel distances on a fixed amount of charge; additionally, this

relationship could be used to determine how the method worked when data weren’t

perfectly generated for the evaluation model. To accomplish this, let s = 2 and a be

the following column vector: a′ = [0, s2, s, 0, 0, s, s2, 0, 0, 0, 0, 0, 0]. The mean-variance

relationship is then created by obtaining the column vector Xa. Furthermore, let

b = 50, which provides a baseline change for this transformation of ε, and let J1
80b

be a 80 × 1 column vector containing the value b in every row. Let ε represent

the transformed ε and let εi be the ith element of ε. The transformation (using

element-wise matrix multiplication) is then applied to ε in the following manner:

ε = ε ◦ (J1
80b + Xa). Finally, the ith response for data set 4, yi, is defined by

yi = µi + εi.

The simulation method presented above was used to generate each data set, using

different η values and different transformations of ε. For comparison purposes, the

same X and ε were used for each data set. In this paper, data sets were developed

from a combination of seven different ηs and three different transformations of ε

(defined by the values s and b take on). The η value used in a given data set

can be found in Table 3.1. Transformation 1 (data sets 1 – 7) used s = 2 and

b = 50; transformation 2 (data sets 8 - 14) used s = 3 and b = 100; and, finally,

transformation 3 (data sets 15 - 21) used s = 4 and b = 150. These transformations

create three different variance structures (or, alternatively, precision structures) for

the data sets, while the different values of η shift distribution of the data.

In Section 4.3, not all observations were seen when calculating PP . To mimic

what the practitioner would see during test execution, the observations yet to be

seen were removed from the data set. For example, when n0 = 75, the last five
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observations of each data set (yi, i = 76, . . . , 80 for each data set) were removed. As

described in the paper, the remaining values to be seen (e.g. the last five that had

now been removed from the data set) would then be imputed by the outside sampler

to implement the method.

111



Appendix C

Full Conditionals using Normalized

Partial Borrowing Power Priors

This appendix contains the derivations for the full conditionals presented Section

4.1.7. The full conditional for β0|β1, τ, a0, D0, D is:

p(β0|β1, τ, a0, D0, D)

∝ exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
Using the Proof from Theorem 2.2.1 in R. Christensen (2020):

= exp

(
− τ

2

(
(Xβ −MY )′(Xβ −MY )

))
× exp

(
− τ

2

(
(MY − Y )′(MY − Y )

))
× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
× exp

(
− a0τ

2

(
(M0Y0 − Y0)′(M0Y0 − Y0)

))
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where M = X(X ′X)−1X ′ and M0 = X0(X ′0X0)−1X ′0

∝ exp

(
− τ

2

(
(Xβ −MY )′(Xβ −MY )

))
× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
= exp

(
− τ

2

(
(Xβ −MY )′(Xβ −MY )

))
× exp

(
− 1

2
(β0 − β̂0h)

′Σ−1
0 (β0 − β̂0h)

)
where β̂0h = (X ′0X0)−1X ′0Y0, and Σ−1

0 =′0 X0

Using results from Appendix D,

= exp

(
− τ

2

(
(X2β0 +M22X1β1 −M22Y )′(X2β0 +M22X1β1 −M22Y )

+ ((I −M22)X1β1 −M21Y )′((I −M22)X1β1 −M21Y )

))
× exp

(
− 1

2
(β0 − β̂0h)

′Σ−1
0 (β0 − β̂0h)

)
where M22 = X2(X ′2X2)−1X ′2

∝ exp

(
− τ

2
(X2β0 +M22X1β1 −M22Y )′(X2β0 +M22X1β1 −M22Y )

)
× exp

(
− 1

2
(β0 − β̂0h)

′Σ−1
0 (β0 − β̂0h)

)
= exp

(
− 1

2

(
(β0 − β̂0)′Σ−1

2 (β0 − β̂0)

))
× exp

(
− 1

2
(β0 − β̂0h)

′Σ−1
0 (β0 − β̂0h)

)
where β̂0 = (X ′2X2)−1X ′2Y − (X ′2X2)−1X ′2X1β1 and let Σ−1

2 = τ(X ′2X2)

= exp

(
− 1

2

(
(β0 − β̂0)′Σ−1

2 (β0 − β̂0) + (β0 − β̂0h)
′Σ−1

0 (β0 − β̂0h)

)
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Using Proposition 2 (Sum of two quadratic forms in x) from Rosenberg n.d.:

= exp

(
− 1

2

(
(β0 −O−1

0 b0)′O0(β0 −O−1
0 b0)− b′0O−1

0 b0 +R0)

)

where O0 = τ

(
(X ′2X2) + a0(X ′0X0)

)
, b0 = τ

(
(X ′2X2)β̂0 + a0(X ′0X0)β̂0h

)
,

and R0 = τ

(
β̂
′
0(X ′2X2)β̂0 + a0β̂

′
0h(X

′
0X0)β̂0h

)

∝ exp

(
− 1

2

(
(β0 −O−1

0 b0)′(O−1
0 )−1(β0 −O−1

0 b0)

))
This the kernel of a normal distribution. Then, β0|τ, a0, D0 ∼ N (µ0f , τ

−1Λ−1
0f ),

where

Λ0f = (X ′2X2) + a0(X ′0X0) and µ0f = O−1
0 b0 = Λ−1

0f

(
X ′2Y −X ′2X1β1 + a0X

′
0Y0

)
.

Next, the full conditional for β1|β0, τ, a0, D0, D is:

p(β1|β0, τ, a0, D0, D)

∝ exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
Using the Proof from Theorem 2.2.1 in R. Christensen (2020):

= exp

(
− τ

2

(
(Xβ −MY )′(Xβ −MY )

))
× exp

(
− τ

2

(
(MY − Y )′(MY − Y )

))
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
∝ exp

(
− τ

2

(
(Xβ −MY )′(Xβ −MY )

))
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× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
Using the same process as in Appendix D, but using the perpendicular projection

operator onto C(X1) instead,

= exp

(
− τ

2

(
(X1β1 +M1X2β0 −M1Y )′(X1β1 +M1X2β0 −M1Y )

+ ((I −M1)X2β0 −M2Y )′((I −M1)X2β0 −M2Y )

))
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
where M1 = X ′1(X ′1X1)−1X ′1

∝ exp

(
− τ

2

(
(X1β1 +M1X2β0 −M1Y )′(X1β1 +M1X2β0 −M1Y )

))
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
= exp

(
− 1

2
(β1 − β̂1)′Σ−1

1 (β1 − β̂1)

)
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
where β̂1 = (X ′1X1)−1X ′1Y − (X ′1X1)−1X ′1X2β0 and let Σ−1

1 = τ(X ′1X1)

= exp

(
− 1

2

(
(β1 − β̂1)′Σ−1

1 (β1 − β̂1) + (β1 − µ1)′(τΛ1)(β1 − µ1)

))
Again using Proposition 2 (Sum of two quadratic forms in x) from Rosenberg (n.d.):

= exp

(
− 1

2

(
(β1 −O−1

1 b1)′O1(β1 −O−1
1 b1)− b′1O−1

1 b1 +R1)

)

where O1 = τ
(
X ′1X1 + Λ1

)
, b1 = τ

(
(X ′1X1)β̂1 + Λ1µ1

)
,

and R1 = τ
(
β̂
′
1(X ′1X1)β̂1 + µ′1Λ1µ1

)
,

∝ exp

(
− 1

2

(
(β1 −O−1

1 b1)′(O−1
1 )−1(β1 −O−1

1 b1)

)
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This is the kernel of a normal distribution: β1|β0, τ, a1, D0, D ∼ N (µ1f , τ
−1Λ−1

1f ),

where µ1f = Λ−1
1f

(
X ′1Y −X ′1X2β0 + Λ1µ1

)
and Λ1f = (X ′1X1) + Λ1.

Next, the full conditional for τ |β0,β1, a0, D0, D is:

p(τ |β0,β1, a0, D0, D)

∝ (τ)
n
2 (τ)(

n0a0
2

+α0)−1 exp(−γ0τ) exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
× (τ)

p1
2 exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
= (τ)(

n+n0a0+p1
2

+α0)−1 exp(−γ0τ) exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
× exp

(
− τ
(

1

2
(β1 − µ1)′(Λ−1

1 )−1(β1 − µ1)

))
= (τ)(

n+n0a0
2

+α0)−1 exp

(
− τ
(

1

2

[
(Xβ − Y )′(Xβ − Y )

+ a0(X0β0 − Y0)′(X0β0 − Y0) + (β1 − µ1)′(Λ−1
1 )−1(β1 − µ1)

]
+ γ0

))
Let αf = n+n0a0+p1

2
+ α0 and

γf = 1
2
[(Xβ−Y )′(Xβ−Y )+a0(X0β0−Y0)′(X0β0−Y0)+(β1−µ1)′(Λ1)(β1−µ1)]+γ0

= (τ)αf−1 exp(−γfτ)

This is the kernel of an inverse gamma distribution. Therefore,

τ |β0,β1, a0, D0, D ∼ Gam(αf , γf ).
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Finally, the full conditional for a0|β0,β1, τ,D0, D:

p(a0|β0,β1, τ,D0, D)

∝ (a0)
p0
2
γα0n

0n

Γ(α0n)
(τ)(

n0a0
2

+α0)−1IA(a0)

× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))
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Appendix D

Separating Out β0

This appendix contains the derivations for separating (Xβ −MY )′(Xβ −MY )

into two terms—one term that is independent of β0 and one term that depends on

β0. The results form this appendix are then used in Appendix C to obtain the full

conditionals when using a normalized partial borrowing power prior.

(Xβ −MY )′(Xβ −MY ) =

(
[X1, X2]

[
β1

β0

]
−MY

)′(
[X1, X2]

[
β1

β0

]
−MY

)
= (X1β1 +X2β0 −MY )′(X1β1 +X2β0 −MY )

= (X2β0 +X1β1 −MY )′(X2β0 +X1β1 −MY )

First, consider (X2β0 +X1β1−MY ). Let C(·) represent a column space. M , the

ppo onto the C(X), can then also be partitioned. Consider that C(X) = C(X1, X2).

Let M22 be the ppo onto the C(X2); that is, M22 = X2(X ′2X2)−1X ′2. Consider the

following, as shown in R. Christensen (2020):

X1 = IX1

= (I −M22 +M22)X1
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= (I −M22)X1 +M22X1

Then, C(X) = C((I − M22)X1,M22X1, X2). Since M22 projects into C(X2),

C(M22X1, X2) = C(X2). Then, C(X) = C((I −M22)X1, X2). M is then the ppo

onto C(X) = C((I −M22)X1, X2), with (I −M22)X1 and X2 orthogonal. Therefore,

by Theorem B.45, M is the sum of the ppos for subspaces C((I−M22)X1) and C(X2)

(R. Christensen 2020):

M = (I −M22)X1(X ′1(I −M22)X1)−1X ′1(I −M22) +M22

= M21 +M22

Then,

(X2β0+X1β1 −MY )

= (X2β0 +M22X1β1 + (I −M22)X1β1 −MY )

= (X2β0 +M22X1β1 + (I −M22)X1β1 −M21Y −M22Y )

= ((X2β0 +M22X1β1 −M22Y ) + ((I −M22)X1β1 −M21Y ))

= ((X2β0 +M22X1β1 −M22Y ) + ((I −M22)X1β1 −M21Y ))

Let A = (X2β0 +M22X1β1 −M22Y ) and B = ((I −M22)X1β1 −M21Y ). Then,

= (A+B)

Similarly, (X2β0 +X1β1 −MY )′ = (A+B)′ = (A′ +B′). Therefore,
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(Xβ−MY )′(Xβ −MY )

= (X2β0 +X1β1 −MY )′(X2β0 +X1β1 −MY )

= (A′ +B′)(A+B)

= (X2β0 +M22X1β1 −M22Y )′(X2β0 +M22X1β1 −M22Y )

+ (X2β0 +M22X1β1 −M22Y )′((I −M22)X1β1 −M21Y )

+ ((I −M22)X1β1 −M21Y )′(X2β0 +M22X1β1 −M22Y )

+ ((I −M22)X1β1 −M21Y )′((I −M22)X1β1 −M21Y )

However, the cross-product terms are 0:

(X2β0+M22X1β1 −M22Y )′((I −M22)X1β1 −M21Y )

= ((X2β0)′ + (M22X1β1)′ − (M22Y )′)((I −M22)X1β1 −M21Y )

= (X2β0)′(I −M22)X1β1 − (X2β0)′M21Y

+ (M22X1β1)′(I −M22)X1β1 − (M22X1β1)′M21Y

− (M22Y )′(I −M22)X1β1 + (M22Y )′M21Y )

M21 and M22 are ppos, so they are idempotent and symmetric. (I −M22) is also a

ppo, so idempotent and symmetric.

= β′0X
′
2(I −M22)X1β1 − β′0X

′
2M21Y + β′1X

′
1M22(I −M22)X1β1

− β′1X
′
1M22M21Y − Y ′M22(I −M22)X1β1 + Y ′M22M21Y )

Because M22 ⊥ (I − M22) and M22 ⊥ M21, that means M22(I − M22) = 0 and

M22M21 = 0. Also, X ′2(I −M22) = 0, which also means X ′2M21 = 0, by definition.

= 0
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Similarly,

((I −M22)X1β1−M21Y )′(X2β0 +M22X1β1 −M22Y )

= ((X2β0 +M22X1β1 −M22Y )′((I −M22)X1β1 −M21Y ))′

= 0

Therefore,

(Xβ −MY )′(Xβ −MY )

= (X2β0 +M22X1β1 −M22Y )′(X2β0 +M22X1β1 −M22Y )

+ ((I −M22)X1β1 −M21Y )′((I −M22)X1β1 −M21Y )
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Appendix E

Full Conditionals using

Conditional Normalized Partial

Borrowing Power Priors

This appendix contains the derivations for the full conditionals presented Sec-

tion 4.2. Beginning with the full conditional for β0|β1, τ, a0, D0, D:

p(β0|β1,τ, a0, D0, D)

∝ exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− a0τ

2

(
(X0β0 − Y0)′(X0β0 − Y0)

))

This is the same as in Appendix C; then, β0|τ, a0, D0 ∼ N (µ0c, τ
−1Λ−1

0c ), where

Λ0c = (X ′2X2) + a0(X ′0X0) and µ0c = O−1
0 b0 = Λ−1

0c

(
X ′2Y −X ′2X1β1 + a0X

′
0Y0

)
.
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Next, the full conditional for β1|β0, τ, a0, D0, D:

p(β1|β0,τ, a0, D0, D)

∝ exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)

This is the same as in Appendix C; then, β1|β0, τ, a1, D0, D ∼ N (µ1c, τ
−1Λ−1

1c ),

where µ1c = Λ−1
1c

(
X ′1Y −X ′1X2β0 + Λ1µ1

)
and Λ1c = (X ′1X1) + Λ1.

Next, the full conditional for τ |β0,β1, a0, D0, D:

p(τ |β0,β1, a0, D0, D)

∝ (τ)
n
2 exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
(τ)

p0
2

× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
(τ)

p1
2

× exp

(
− 1

2
(β1 − µ1)′(τ−1Λ−1

1 )−1(β1 − µ1)

)
× (τ)α0−1 exp(−γ0τ)

Recall: p = p0 + p1.

= (τ)
n+p
2

+α0−1 exp

(
− τ

2

(
(Xβ − Y )′(Xβ − Y )

))
× exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
× exp

(
− τ

2
(β1 − µ1)′(Λ−1

1 )−1(β1 − µ1)

)
exp(−γ0τ)

= (τ)
n+p
2

+α0−1 exp

(
− τ
[

1

2

(
(Xβ − Y )′(Xβ − Y )
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+ a0(X0β0 −M0Y0)′(X0β0 −M0Y0)

+ (β1 − µ1)′(Λ−1
1 )−1(β1 − µ1)

)
+ γ0

])
Let and αc = 1

2
(n+ p) + α0 and

γc = 1
2

(
(Xβ − Y )′(Xβ − Y ) + a0(X0β0 −M0Y0)′(X0β0 −M0Y0)+

(β1 − µ1)′(Λ1)(β1 − µ1)

)
+ γ0

= (τ)αc−1 exp(−γcτ)

This is the kernel of an inverse gamma distribution, using the shape and rate pa-

rameterization. Therefore, τ |β0,β1, a0, D0, D ∼ Gam(αf , γf ).

Finally, the full conditional for a0|β0,β1, τ,D0, D:

p(a0|β0,β1, τ,D0, D)

∝ a
p0
2

0 exp

(
− a0τ

2

(
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
IA(a0)

= a
(
p0
2

+1)−1

0 exp

(
− a0

(
τ

2
(X0β0 −M0Y0)′(X0β0 −M0Y0)

))
IA(a0)

This is the kernel of a truncated gamma distribution (TG), with the shape and rate

parameterization. The R package “TruncatedDistributions” can sample from a TG,

but uses the shape / scale parameterization. Note, however, that the scale is equal

to 1/rate. Therefore, using the shape / scale parameterization

a0|β0,β1, τ,D0, D ∼ TG

(
p0

2
+1, 2τ−1

(
(X0β0−M0Y0)′(X0β0−M0Y0)

)−1

, 0, 1

)
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