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ABSTRACT 
 
Hierarchical models are becoming increasingly common in epidemiological and 
psychological research. When analyzing data from such studies, the nested structure of the 
data must be taken into account. Mixed modeling in conjunction with hierarchical mixed 
modeling allows researchers to ask broad questions about the population of interest. 
Modeling under restricted maximum likelihood estimation (REML), as opposed to full 
maximum likelihood estimation (ML), increases the accuracy of estimates for the random 
effects in the model. We use hierarchical mixed modeling under REML estimation to analyze 
which factors increase “community integration”, a concept and a construct developed and 
used in the mental health service sector focusing on bettering the development of personal, 
social, and vocational competency of individuals experiencing homelessness enrolled in 
permanent supportive housing (PHS) programs. “Community integration” takes central 
importance because it has been shown to improve individual quality of life. From increasing 
their chances of finding employment to expanding their social networks in order to lessen the 
psychological trauma of homelessness, tracking community integration is critical to 
understanding the overall experience of homeless individuals. Combining organizational 
research theory and growth modeling theory into a 3-level model illustrates the hierarchy of 
variables affecting the Community Integration Scale (CIS) Psychological score. Individual 
growth trajectories, variation in client growth parameters at each site, and variation between 
sites are represented, respectively, within the first, second, and third levels of the model. For 
individuals experiencing homelessness, CIS Psychological scores increase most drastically 
between intake and 6 months, with few contextual variables affecting this change.  

 
 
Key words: hierarchical model, mixed effects, REML, CIS Psychological score, individual 
growth 
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Chapter 1: Introduction  

1.1 Background 

During the past three years, I was part of the statistical team at the University of New 

Mexico School of Medicine, Department of Psychiatry, Division of Community Behavioral 

Health (CBH). As implied by the name, much of the analyses done and reported by CBH are 

from social and behavioral health science research. I am involved in the Housing Supports, 

Health, and Recovery for Homeless Individuals (HHRHI) project. This project investigates 

community integration among an ethnically diverse population with mental illness or 

substance use disorders who are in a permanent supportive housing program. “Community 

integration” is a concept and a construct developed and used in the mental health service 

sector focusing on bettering the development of personal, social, and vocational competency 

of individuals experiencing homelessness in order to live as independently as possible in 

their own homes and communities (Community Integration and Mental Health). 

A significant part of our work is organization research. Organizational research addresses 

attributes of organizations holistically rather than of the individuals within organizations 

(Raudenbush and Bryk, 2002).  The organizations we consider in this thesis are homeless 

shelters. We use information provided by shelter residents to ascertain information about 



 

 

2 

factors that will better support community integration. We also have collected data on these 

individuals over multiple time points. Thus, theory of individual growth trajectory models is 

also used, to assess how individual growth (development of personal, social, and vocational 

competency) within these shelters are affected, and by which factors. 

Often in such research, there is the time dependence of the data. When this is the case, 

one can measure individual growth over the specified time period (also known in statistics as 

“repeated measures”). In organizational research, both observable and latent parameters are 

used to study growth. In our CBH research, we are interested in the growth of feelings of 

community integration among a study population undergoing a specific treatment. The study 

population comprises individuals experiencing homelessness in New Mexico; the treatment 

is housing in various homeless shelters throughout the duration of the study (almost two 

years). We use a clinically-administered survey to assess which of several factors contribute 

to a feeling of community integration. The survey measures a cumulative “Community 

Integrations Scale” (CIS) score. The results of our research are intended to inform social 

reform policy and programs in New Mexico. We are contributing to a body of research 

focusing on the cultural welfare of homeless communities and individuals around the state. 

Our data consist of nested, time-invariant variables. This structure informs our choice of 

statistical methods, which is known as “hierarchical modeling”. Specifically, time is nested 

in the individuals participating in the study, and individuals, or “clients”, are nested in 

homeless shelters, or “sites.” Hierarchical modeling — also known as multilevel modeling — 

has become a popular statistical tool over the past three decades (Gelman and Pardoe, 2006; 

Raudenbush and Bryk, 2002). Hierarchical linear models (HLM) are a generalization of a 

generalized linear model in which data are nested due to dependencies that are defined a 
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priori (before we observe the measurements) (Gelman 2006). HLMs are popular in many 

disciplines, including social science, education, political science, public health, and sociology 

(Bickel 2007).  

Nested data are often referred to as clustered data because one could take each level of 

the nested data as a cluster, or each individual (observation) as a cluster within time (Huang 

2018). Examples of nested data include children nested within schools, schools nested within 

school districts, patients in a hospital, states in a country, and, often in educational and social 

science research, several observations over time within each person. In our study, we have up 

to three time observations nested within each person and groups of people nested within one 

of three geographically separated sites. Many developmental research data sets collect 

multiple sets of observations on people over a period of time. (Raudenbush and Bryk, 2002).  

There are many forms of nested data and modeling. For example, a Cluster 

Randomization Trial (CRT) considers each time point as a cluster, and clusters are the unit of 

randomization (Austin 2007). Our study does use time-of-survey as a clustering unit, but also 

uses the repeated measures of individuals over time. This means that we have multiple 

measures of a single individual, violating the assumption of observation independence which 

most regression models require (Rutterford et al., 2015), but HLMs take this into 

consideration.  

We have both within-client and within-site dependencies in our study. Failing to consider 

this dependency structure of our nested data would result in erroneous conclusions in 

hypothesis testing and inference (Bickel 2007). Such errors might include under- or over-

estimation of standard errors, causing inflation or deflation (respectively) in Type-1 error for 

regression coefficients. The resultant regression coefficients would, in turn, have larger or 
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smaller confidence intervals or prediction intervals for new observations (McNeish and 

Stapleton, 2016). Statistical simulations have shown that ignoring dependencies in a data sets 

can impact the estimated variances and the available power to detect the treatment of 

covariate effects (Bell et al., 2013).  

Hierarchical linear models are often conceptualized as several regression models 

occurring at different cluster levels. The Interclass Correlation Coefficient (ICC) is 

commonly reported as a measure of how subjects are correlated within a cluster and can help 

answer questions about variance-covariance components such as between-subject and within-

subject variance (Wang, Xie, and Fisher, 2012). We use the ICC to assess the variance at all 

levels: unconditional, time, client, site, and the full level model with all the contextual 

variables from the three levels to see if variance is diminishing when more effects are added. 

1.2 Objective 

The goal of the research presented in this thesis is to provide evidence-based 

recommendations for policies affecting the homeless populations in New Mexico by 

understanding the factors affecting a person’s sense of integration within a community. 

HLMs are used because we are assessing community integration scores over time in 

individuals experiencing homelessness who are in a permanent supportive housing program. 

We use this data to build an HLM by interpreting individuals’ community integration self-

reported score given factors such as support groups, education, income and other common 

factors seen in similar studies.  

This thesis presents a brief discussion on latent variable models, as hierarchical modeling 

is innately latent variable modeling – meaning there are unobserved variables that can be 

detected by their effects on variables that are observable. The data analysis performed was 
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done on data collected at sites (homeless shelters) in New Mexico from 2016-2018 in Santa 

Fe, Bernalillo, and Las Cruces counties. The analyses used the software SAS PROC MIXED 

(SAS/STAT® 14.1 User’s Guide: The MIXED Procedure) to obtain frequentist estimations 

and prediction while using restricted maximum likelihood (REML) instead of full maximum 

likelihood (ML). As such, the predictions and estimations are based on model-based 

imputations, which is a latent measure, but are made through frequentist methodologies. The 

results and implications of our models are assessed and discussed. The attrition of the 

subjects in the sample is discussed in subsequent chapters. Lastly, a discussion on the 

recommendations for policy reform to foster community integration is overviewed. There are 

similarities to previous research considered in this thesis, as well. 

1.3 Literature Review 

Research results support that modest increases in community integration are rooted in 

disability rights, the notion of common citizenship, and was one of the driving forces behind 

deinstitutionalization of people experiencing homelessness (Crisanti et al., 2021). This was 

supported through the observation of individuals recovering from traumatic brain injuries 

(TBIs), serious mental illnesses (SMI) or substance abuse disorders (SUD), and their more 

considerable increase in quality of life when people were living together and being integrated 

into the community (Crisanti et al., 2021). Furthermore, Crisanti et al., (2021) report that the 

absence of social support can be a risk factor for those with PTSD symptoms. Poor health 

status can be exacerbated by people experiencing homelessness, and this population of 

people has increased premature mortality rates of 3 to 4 times that of the general population 

(Crisanti et al., 2021). People experiencing homelessness also tend to have limited social 

networks, and because social functioning and social relationships are tied to health, these 
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relationships are common interest in social and behavioral studies (Umberson and Montez 

2010; Crisanti et al., 2021). 

Wong and Solomon (2002) found that the need for a sense of community was greater 

among women than men and was related to higher personal income and lower depression 

scores. Yanos (2007) found that higher education and length of time in one's current 

residence was associated with better community integration. Baumgartner and Herman 

(2012) found that psychiatric symptoms were negatively related to physical and social 

integration. Community integration has been measured with various instruments using 

numerous variables among different populations, but generally include physical integration, 

social embeddedness, and psychological embeddedness (Wong and Solomon 2002). The 

literature shows a high interest in community integration and in the ties it has to the homeless 

population and their welfare (Crisanti et al., 2021). While the data were recorded for the 

participants, few aspects show an impact on the self-reported CIS scores.  

Multiple regression (MR) is often used to evaluate interactions between variables, test 

hypotheses, and estimate parameters. The use of the techniques in multiple regression has 

recently been extended to hierarchical linear modeling and latent curve analysis (LCA) 

(Preacher et al., 2006). Fitting models with a nested structure, such that each cluster or group 

has its’ own and different regression model, was technically not possible up until about the 

1990s (Raudenbush and Bryk, 2002).  

Since then, computational techniques and software (such as SAS/STATA) have enabled 

the fitting of more complex models (Raudenbush and Bryk, 2002). Hierarchical modeling is 

used when the data is nested, and the parameters themselves are being modeled at each level. 

This means that our data could be fit under Bayesian theories and modeling if desired. In 
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recent decades, many software has been developed to make such analyses more applicable 

and their estimates more reliable (Bickel 2007).  

Generalized linear models are fixed effect models and are known to be the most common 

type model in the social and behavioral sciences (Garson, 2013; Bryk and Raudenbush, 

1987) Mixed models have both random and fixed effects, and the effect is both if they 

contribute to the intercept and covariance structure for that model (Hand et al., 2011). 

Hierarchical linear modeling is a type of linear mixed model focused on the differences 

between groups and within groups. Random intercept models are those where only the 

intercept of the level-1 dependent variable is modeled as an effect of the level-2 grouping 

variable and other level covariates (Christensen et al., 2011). 

Statistical methods make predictions, test hypotheses, and estimate parameters. 

Hierarchical modeling can perform these functions when modeling nested data (Bickle 

2007). If instruments measure what they are designed to measure, then researchers are able to 

address questions about those measures. Our overall level of success depends on the quality 

of our data and the model, and the ability to measure the features in the model accurately. 
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Chapter 2: Methods 

2.1. Measures and sample 

In this section we introduce the study design, participants, and descriptions of the data. 

Data were derived from measures that evaluated the effectiveness of the Substance Abuse 

and Mental Health Services Administration (SAMHSA) and Center for Substance Abuse 

Treatment (CSAT) grant that funded a Permanent Supportive Housing (PSH) program. Three 

of the primary survey instruments were the Community Integration Scale (CIS citation), the 

Post-Traumatic Symptom Checklist - Civilian Version (PCL-C), and the Government 

Performance and Results Act (GPRA) (GPRA Measurement Tools). These surveys were 

collected through face-to-face structured interviews conducted by research assistants. The 

target population included chronically homeless individuals who had a severe mental illness 

(SMI) or a substance use disorder (SUD) diagnosis. Eligible individuals were identified 

through a Coordinated Assessment (Gardner et al., 2010) with a focus on selecting 

individuals with the greatest need due to length of housing instability and behavioral health 

needs. Behavioral health diagnoses were determined by a master-level independent licensed 

counselor through a structured face-to-face clinical interview when participants entered 

services.  



 

 

9 

Participants were enrolled in the evaluation between February 2016 and September 2018. 

They were recruited from three community-based agencies that specialize in providing 

behavioral health services for the homeless in the large metropolitan New Mexico areas: 

Albuquerque, Las Cruces, and Santa Fe. All participants were provided a housing voucher 

from several different state, local, and federal agencies. Of the 453 participants, 370 

completed the intake interview, 286 completed a 6-month interview (77% retention), and 143 

completed a discharge interview (39% retention). 

Individuals that met eligibility requirements needed to provide informed consent. Those 

who did not consent to evaluation and data collection received integration services through 

the provider agencies, but were not considered in evaluation. Baseline interviews were 

completed within one week of enrollment in clinical services. Each participant was to 

complete two follow-up interviews, while the average number of interviews completed was 

2.2. The first follow-up interview was completed at approximately six-months post-baseline. 

A discharge follow-up interview was conducted after a clinician not having any contact with 

the client for 90 days or more. This is, we have a convenience sample based on inclusion 

criteria.  

2.1.1 Variables 

As we are investigating the factors affecting community integration for people 

experiencing homelessness, we aim to gather information on variables that foster these 

individuals’ social, personal and vocational skills while in a permanent supportive housing 

program. The variables collected on these individuals are those that come from the SAMSAH 

survey described above. The analysis conducted throughout the HHRHI project has several 

groups of variables. There are a series of covariates and two response variables. The response 
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variables are the CIS Psychological and Physical scores. The cluster variables (Site, Client, 

Time) account for the nested structure of the observations and are either treated as random 

effects (Site and Person) or longitudinally (Time). The remaining covariates are treated as 

fixed main effects and found through statistical models. 

Covariates were selected based on relevant literature on Community Integration, PSH, 

and clinical insight (Crisanti et al., 2021). Working with subject matter experts (SMEs) is 

crucial in deciding which variables to include in the models built and assessed in this study. 

These variables also happened to have low rates of missing data and had equal weight in their 

factors, so our data subset is balanced well. For example, substance use is commonly 

measured in studies of PSH and was measured in this evaluation but could not be included in 

this analysis, as it is known to be a misreported characteristic. Similarly, housing status is 

another variable commonly included in studies of populations in PSH programs but not 

included here, as individuals were given housing for participating, which is their treatment.  

Cluster Variables 

The repeated measures indicator variable, Time, indicates at what point a client took a 

survey: at intake (Time=0), 6-months (Time=1), and discharge (Time=2). The variable Client 

ID (Client) matches each subject to a set of surveys, and the number of observations per 

client over time could be 1, 2, or 3. The Site variable records the location (homeless shelter) 

where the client was housed: St. Luke’s in Las Cruces, St. Martins in Albuquerque, and Life 

Link in Santa Fe. The Site and Client variables are both indicator variables modeled as 

random effects, while Time is treated as a factor variable modeled as fixed. 

Response Variables 
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The Community Integration Scale (CIS; Goering et al., 2011) was used to derive 

measures of perceived physical and psychological integration. In a larger study, we also 

examined the response variable known as CIS Physical (community integration scale 

physical score) using the same data and variables we used to model CIS Psychological 

(community integration scale psychological score). In this study, we model only the CIS 

Psychological response variable. Both of these variables are discrete and measured on a point 

scale, 0 to 7 for the physical score, and 4 to 20 for the psychological score. The initial 

questions for the psychological score are Likert measured and then converted to a numeric 

variable based on how often one answered 1-5: 1 being “Strongly Disagree” and 5 being 

“Strongly Agree,” where there was an option to “decline” or “do not know,” treated as 

neutral-3. The questionnaires for both measures use the past 30 days for a reference time, and 

higher scores indicate higher self-perception of community integration. The questions asked 

intended to measure how the participant is acting in their broader community on both a 

physical and psychological scale. The questions for the CIS Psychological score summarized 

answers to questions like “Do you know who lives near you, interact with them, feel at home, 

like where you belong?” 

Covariate Variables 

The covariates used are either categorical (factor) or numeric variables. The variables 

treated as numeric are PTSD Score, Health Status, Age, and Income. The factor variables are 

Gender, Ethnicity (Hispanic/non-Hispanic), Education, Mental Health Diagnosis, self-help 

group Attendance, and Interaction with Family or Friends (IFF). Diagnosis is recorded by 

clinical staff based on diagnostic interviews, including five exclusive levels: bipolar disorder, 

PTSD, depressive disorders, schizophrenia spectrum disorders, and a grouped anxiety and 
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“others” category. Education is self-reported and has three levels: less than high school (LT 

HS), high school (HS), and more than high school (MT HS). Ethnicity is dichotomous, 

recorded as 1 for Hispanic and 0 otherwise. Gender is dichotomous, recorded as 1 for male 

and 0 for female. These variables are from the SAMSAH and CSAT dataset and codebook, 

except for Diagnosis, which comes from the clinician. 

The PTSD scale summarizes Likert responses to 17 questions numerically for the 

analysis. PTSD symptom severity is measured by the Post-Traumatic Stress Disorder 

Checklist (Civilian) (PCL-C) (Weathers et al. 1993). The PCL-C checklist is a self-report 

scale that measures core PTSD symptoms in the past month, and each item ranges from 1 

(“Not at all”) to 5 (“Extremely”). Responses to the 17 items were summed to yield a total 

severity score ranging from 17 to 85, where higher scores indicate greater symptom severity. 

The GPRA interview included three questions about participation in recovery-related 

activities, which is the Attend variable in the study. Each question is rated as the number of 

groups attended in the past 30 days: voluntary self-help groups (e.g., Alcoholics 

Anonymous), religious/faith-affiliated recovery self-help groups, and other support/recovery 

groups. Attendances were tallied as a numeric measure of participation in recovery-related 

activities (0, 1, 2, or 3) and treated as a categorical variable in the analysis. 

Overall Health Status was measured by responses to one item which asked: “How would 

you rate your health right now?”. Responses were rated on a five-point Likert scale, ranging 

from 1 (“Poor”) to 5 (“Excellent”) and were then turned into a numeric variable on a 1-to-5 

scale. 

IFF measures the interaction degree with family and friends based on a yes/no question 

that asked: “In the past 30 days, did you have any interaction with family or friends that are 
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supportive of your recovery”, and is treated as a binary factor variable. The recovery aspect 

is that from a SMI or SUD diagnosis.  

2.2 Statistical Methods 

This section describes the statistical methods and theory used to assess the aims of the 

study. We do this to fully understand why and how the analysis uses the modeling scheme 

described in this thesis. An introduction to latent variable modeling and hierarchical 

modeling is discussed. An introduction of the estimator REML and a brief comparison of 

REML to full ML is discussed to understand why such an estimator is used. Other modeling 

designs, such as choice of covariance structure and choosing whether to model variables as 

fixed or random effects, are discussed. Lastly, we review how we handle missing data and 

attrition. 

2.2.1 Hierarchical Mixed Models  

We fit a hierarchical model with mixed effects, so we note that the properties of the fixed 

effects of multiple regression apply to our model, as random effect estimators are a special 

case of fixed effects estimators (Mundlak, 1978). A common way of finding such estimates is 

through what is called Ordinary Least Squares (OLS), a type of linear least-squares method 

for estimating the unknown parameters in linear regression models (White 1980). The fixed 

effects are interpreted similarly to OLS regression coefficients (Bickel 2007). Hierarchical 

linear models are OLS regression-based but violate the independence assumption of the 

errors. We can’t use OLS estimators as we have effects related to each other, i.e., we may 

have effects related to other covariates because of the nested structure of our data. A 

fundamental parameter to estimate is the variance (Christensen 2016), which is one primary 
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use of the hierarchical model so that we understand where the variance in the data is 

explained by the model.  

Hierarchical modeling can be thought of as many regressions over different levels, so it is 

essential to have a baseline understanding of multiple linear regression. Since regressions are 

linear combinations of all the parameters in our model, we assume we have a hierarchical 

linear model (linear in the model parameters, not that the individual growth being studied is 

linear). An everyday use of regression analysis maximizes the likelihood function of our 

probability distribution, given the data, to find estimates of the parameters in our model. 

With hierarchical modeling, we could say something about the effects of say, Clients, even 

though we do not have information about all individuals experiencing homelessness because 

the variance components allow us to predict the likely effect size of non-sample homeless 

individuals. We use the information we obtain from the covariance parameters of these 

individuals experiencing homelessness, to make inferences from the model. We can say the 

same for the Sites. 

Not only do hierarchical models use OLS regression theory, but they also use analysis of 

variance theory for testing the categorical factor effects. The ANOVA's primary purpose is to 

analyze the ratio of variance between groups and within groups, where groups are defined by 

each factor variable in a model (Christensen 2016). The null hypothesis for ANOVA tests is 

that the group means are all equal. This type of analysis tells us the differences between 

group means, which factors are significant, how the factors differ, and whether there are 

further group interactions to be analyzed. This is important in the study to determine which 

factors are contributing to individual growth, over time. We also note that we are treating 
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Time as factor and use the ANOVA to understand where the most significant individual CIS 

Psychological score growth is occurring.  

2.2.1.1 Latent Variable and Growth Modeling Introduction 

As the analysis presented in this thesis focuses on the use of hierarchical modeling for 

individual CIS Psychological score growth, we will describe how latent variable models 

theory is inherent in hierarchical modeling. In the developmental research models and latent 

variable models, the model aims to assess individual growth (Bickel 2007). Latent models 

are a class of multivariate outcome models that are useful when data are incomplete and in 

missing data problems when covariates are missing at random (Raudenbush and Bryk, 2002). 

In our study we have instances where the covariates had missing values. In a latent variable 

model, the complete data are those that are considered as observed and augmented by the 

unobserved (Raudenbush and Bryk, 2002). This unobserved imputed term is the latent 

variable. The observed and incomplete data are used to estimate the association among the 

latent variables (Raudenbush and Bryk, 2002). 

Hierarchical models with data that are longitudinal and time dependent, may be regarded 

explicitly as latent variable models (Raudenbush and Bryk, 2002). Hierarchical models are 

latent variable models, with a specified number of levels. These models represent the 

probability of a given response as a function of characteristics of the item and latent “traits” 

of a person (Raudenbush and Bryk, 2002). This idea of a latent trait can be represented as a 

2-level model where the item responses, traits, are nested within persons (Raudenbush and 

Bryk, 2002). In the 2-level model, the level-1 of the hierarchy represents the associations 

between the observed incomplete data and the complete latent data, and the level-2 model 

describes the distribution of the latent variables (Raudenbush and Bryk, 2002). The observed 
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data is to make inferences about population distributions of latent variables (Raudenbush and 

Bryk, 2002). 

Multiple model-based imputations are a solution to missing data problems and can 

produce realistic standard errors and unbiased inferences about the parameters generating the 

complete data (Raudenbush and Bryk, 2002). Hierarchical models have an advantage in that 

no matter how incomplete the data is of the dependent variable(s), the analysis and 

estimations are not more complicated, as long as the data are missing at random (Maas and 

Snijders, 2003). In this modeling schema, missing observations in the covariates can be 

omitted or imputed and allow the analysis of repeated measured data to be done under less 

strict assumptions on the covariance matrix (Maas and Snijders, 2003). 

When referring to individual growth, we may think of it as a function of another latent 

growth parameter. The use of some observed value can be used to predict status or growth. 

The level-1 model usually is described as a simple linear model for growth: 

     !"# = %&" + %(")#" + *#"   (2.1) 

Where !"# is the growth of individual	, at time -, )#"	is the observed covariates variable. The 

%&" is the initial status of growth of student , at some starting point and %(" is the unit growth 

rate over some time period. The *#" are the level-1 residuals that are assumed normally 

distributed with mean 0 and constant variance ./.  

The level-2 model, models the level-1 parameters; the intercept and often the means, if 

they are random slopes. This means the initial status and rate of growth vary across the 

population of subjects as a function of the covariate and subject-specific random effects. The 

following model describes such a relationship:  
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     %&" = 0&& + 0&()" + 1&"        (2.2) 

     %(" = 0(& + 0(()" + 1("       (2.3) 

where )" is an indicator or dummy variable for some covariate (often gender) and we assume 

the random effects are bivariate normal with variance 2&& and 2(( with covariance 2&(. 

We are using growth modeling as we measure individual growth at different time points 

within different organizations. When measuring growth, it is vital to notice that there will 

often be missing data; for example, students miss class, people miss work, or for whatever 

reason, one is to miss when data is collected. There may be a large amount of missing data at 

different time points being evaluated for different individuals. This creates an unbalanced 

dataset. In general, growth models do not require observations to have complete data for all 

time points, nor do they require the time points to be equally spaced out across observations 

(Bell et al., 2013). However, there must be multiple observations for each subject. Note that 

the models of growth trajectory models look very similar to the latent variable model 

presented in equations 2.1-2.3, above. When the number of observations per individual is 

few, and when the time period is relatively short, linear individual growth models are most 

convenient in estimation and inference (Raudenbush and Bryk, 2002). 

2.2.2 Developing our Hierarchical Model  

The data this hierarchy is modeling is clustered; that is, the dependent variable is 

measured once for each subject, but the subjects themselves are somehow grouped (time 

nested into clients, for example). There is no ordering to the subjects within the group, so 

their responses should be equally correlated. In repeated measures data, the dependent 

variable is measured more than once for each subject. Usually, there is some covariate (often 

called a within-subject factor) that changes with each measurement. These data are 
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longitudinal, as the dependent variable is measured at several time points for each subject. 

We say that our repeated measures data is clustered. 

Repeated measures data has a hierarchical structure, as data collected from multiple 

individuals are nested in time groups or multiple measures across different times are nested 

within individuals. When analyzing data that has a hierarchical structure, standard regression 

techniques will not produce accurate results due to the lack of independent observations 

(Raudenbush and Bryk, 2002). Hierarchical linear models are being used often as a more 

appropriate way to analyze repeated measurements. A hierarchical linear model can be 

expressed as a linear mixed model (LMM). Assumptions are made on the distribution of the 

errors of the model and the covariance matrix of the repeated measurements. The range of 

assumptions can be simple or complex, restrictive, or unrestricted (Raudenbush and Bryk, 

2002). Increasingly complex data calls for increasingly complex models. A linear mixed 

model can be expressed generally as: 

     3 = 456 + 758 + 9     (2.4) 

where y= :(,… , :=  is an >	×1	 vector of observations, 56 is a A	×	1 vector of parameters, 

58 is a B	×	1	 vector of random effects and 9 is a >	×1	vector of errors. 4 is an >	×	A	design 

matrix and 7 is an >	×	B design matrix such that:  

7 =
1 z(( …
1 … …	
1 zD( …

			
z(E
. .
zDE

. 

It is often assumed that 58 ~ Norm(0, G), 9 ~Norm(0, I) such that  58 and 9 are 

uncorrelated. 

LMM’s are best used to assess models that have a continuous outcome. HLMs, also 

called hierarchical mixed models (HMM), extend linear models by adding random effects to 
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control for any heterogeneity observed between clusters while retaining fixed effects of 

primary interest. Note we will continue to refer to our model as a HMM. All hierarchical 

models that have a continuous outcome can be written in the form of LMM-and for the 

analysis presented our outcome is continuous. In the case of the continuous outcomes, HMM 

can be much more general since the matrix Z can be much more general and unique (Hox, 

2002).  

The algorithm for REML can fit the general LMM case, so it also fits the HMM case. 

When Raudenbush and Bryk discuss "HLMs," they are explicit that they mean mixed models 

where the random factors are nested and are not crossed. For simplicity, we will discuss the 

hierarchical model in terms of the full model used in assessment in this chapter, and use the 

reduced inferential model in Chapter 3.  

One can measure the reliability of initial status and change. We first estimate the 

unconditional model to investigate the psychometric characteristics of the estimated 

individual growth parameters. One might falsely conclude that there are no relations when 

there is no measure of reliability. One can also measure the correlation between individual 

change and initial status. There are often negative correlations between initial status and 

growth rates due to measurement errors at the pre-test.  

We begin with an unconditional model; a model with no covariates. In the unconditional 

model, we assess the between-subject variation and to deem that it be large enough to use 

hierarchical modeling. We use these covariance values to calculate the ICC, which tells us 

the amount of between- and within-subject variation. The unconditional model is as follows: 

   JKL_NL!#"O = 0&&& + P&O + Q&O + *#"O,     *&"O~S 0, ./           (2.5) 

0&&& is the overall random intercept and value of the unconditional CIS Psychological score; 



 

 

20 

P&O is the random effect of Client; 

Q&O is the random effect of Site; 

*#"O is the random error effect;  

where - = 0,1,2 for time the survey was taken which corresponds to intake, 6 months, and 

discharge, respectively; 

, = 1O, … , >O clients which there are 370 of them at intake, 286 at 6 months, and 143 at 

discharge; 

V = 1,2,3 for the 3 different sites of homeless shelters in the larger metropolitan New Mexico 

cities. 

If the unconditional model's intercept is significant, we can appropriately assume that 

subjects vary in their growth at initial assessment or intake. The intercept also tells us the 

average value on the outcome at time 0 (intake). 

The three-level hierarchical model with a random intercept we fit is as follows:  

Level-1 Time sub-model:  

JKLNL!#"O = X&YZ + 0([\]^-ℎL-]-`V#"O + 0/a--\>b#"O + 0cKdd#"O + 0eK>fgB\#"O +

0hNiLj#"O + 0k#[\]^-ℎL-]-`V#"O ∗ i,B\#"O + 0m#a--\>b#"O ∗ i,B\#"O + 0n#Kdd#"O ∗

i,B\#"O + 0o#K>fgB\#"O ∗ i,B\#"O + 0p#NiLj#"O ∗ i,B\#"O + 0q#i,B\#"O + *#"O         (2.6) 

where -, ,, V denotes the cluster indices for Time, Client, and Site, respectively;  

X6YZ is a random intercept including the random effects of both Clients and Sites;  

0( is the fixed slope for Health Status; 

0/ is the fixed slope for Attend; 

0c is the fixed slope for IFF; 

0e is the fixed slope for Income; 
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0h is the fixed slope for the grand mean centered PTSD Score; 

0k#through 0p# are the fixed slopes for all the covariates interacting with the Time variable 

where the 0s are expanded below like the 0q#; 

0q#	 is a fixed slope for Time; 

and the error term *#"O, such that  *#"O~S 0, ./ . 

Note: 0q#i,B\#O = 0q(K i,B\ = 1 + 0q/K i,B\ = 2 ;	0q& = 0 

 This model is the full model at the level-1 Time sub-model of the hierarchy. We use this to 

assess how the variables are changing over time. This model has all the time invariant 

variables. We look at each individual main effect, as well as the interaction of the main 

effects with Time. This model is reduced based on AIC and the p-value associated with each 

effect. Following this model, we assess the individual characteristics of the Client level-2 

model in the same way; a full model with contextual variables to the Clients, reduced to a 

model with significant terms and lowest AIC. 

The level-2 model, models the random intercept from the level-1 1 model as it is the only 

parameter permitted to vary. The intercept will be modeled by Client characteristics, also 

determined by the exploratory data analysis and from SMEs opinions.  

Level-2 Client sub-model:  

X6YZ = s66Z + %&(at\"O + %&/u\>b\v"O + %&cwb`f]-,g>"O + 	%&e[,VA]>,fx]-,>g"O +

																																														%&hj,]t>gV,V"O + %&ki,B\#"O + v&"O                                         (2.7)	

where s66Z is the average intercept across level-2 units; 

%&( is the effect of Age;  

%&/is the fixed effect of Gender;  

%&c	is the fixed effect of Education;  
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%&e	is the fixed effect of Hispanic/Latino; 

%&h	is the fixed effect of Diagnosis; 

%&k is the fixed effect of Time; 

and v&"O is the random error.  

We only now model the random intercept from the model that models the random intercept 

for the whole hierarchy. Details of why are again discussed in Chapter 3. 

Level-3 Site sub-model: 	

    s66Z = P&&& + 0&&#i,B\#O + 1&&O (2.8) 

where X666 is the average intercept across level-3 units, 0&&(	is the effect of time in site V, 

and 1&&Ois the unique increment of the intercept associated with level-3 unit	V. 

Note that the random effects 1&&O are constrained to sum to zero. 

We can now put the above three-level multilevel model into an HLM:  

Full Model: Level-1 + Level 2 + Level 3 

JKLNL!#"O = P&&& + 0&&#i,B\#"O + %&(at\"O + %&/u\>b\v"O + %&cwb`f]-,g>"O +

%&e[,VA]>,fx]-,>g"O + %&hj,]t>gV,V"O	 + 0([\]^-ℎL-]-`V#"O + 0/a--\>b#"O +

0cKdd#"O + 0eK>fgB\#"O + 0hNiLj#"O + 0k#[\]^-ℎL-]-`V#"O ∗ i,B\#"O + 0m#a--\>b#"O ∗

i,B\#"O + 0n#Kdd#"O ∗ i,B\#"O + 0o#K>fgB\#"O ∗ i,B\#"O + 0p#NiLj#"O ∗ i,B\#"O +

(1&&O + v&"O + *#"O           (2.9) 

which can be interpreted as the outcome CIS Psychological Score is function of the average 

regression equation plus random error having three components; v&"O	the random effect of 

unit , on the mean, 1&&O the random effect of unit V, and the level-1 error *#"O. HLMs look at 

within- and between- Client and Site variation, where observations of different levels or 

clusters are independent of one another, but observations within clusters or levels are 



 

 

23 

correlated. Higher levels of hierarchical models are also often used. This is, we present a 

growth model that is a three-level hierarchical model. 

2.2.3 Interclass Correlation Coefficient  

We begin by reinstating that the unconditional model in the analysis allows the 

researchers to understand how much and where there is within- and between-subject 

variation through the interclass correlation coefficient. In a growth model, we can say a 

certain amount of variance in growth exists between subjects. ICC can be useful in many 

statistical situations, but especially in hierarchical mixed models (Musca et al., 2011). ICC is 

a statistic that measures the degree of dependence among observations nested within levels 

(Bickel 2007). We can get the proportion of covariates variability that occurs between the 

clients, rather than within the clients, and between the sites, rather than within the sites and if 

observations within groups are dependent (Bickel 2007). We also get the proportion of the 

total variance in the response that is accounted for by the clustering. It can also be interpreted 

as the correlation among observations within the same cluster. Working with more than two 

levels show nesting patterns that we would otherwise not anticipate. We see that increasing 

distance between subjects and grouping variables does not always ensure that groups become 

less homogenous, as seen through a low non-significant ICC (Bickel 2007). If the ICC's 

variance component at the second level is large, this implies that traditional OLS could be 

used (Raundenbush and Bryk, 2002). 

If there is no real correlation among observations within a cluster, the cluster means will 

not differ. It is when some clusters generally have high values, and others have relatively low 

values that the values within a cluster are correlated. That variance parameter estimate is the 

between-cluster variance. The variance of the residuals is the within-cluster variance. Their 
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sum is the total variance in the response that is not explained by a covariate or set of 

covariates. When some clusters generally have high values, and others generally have low 

values (in other words, where there is consistency among a cluster's responses), there is 

variation among the clusters' means. This is the between-cluster variance. The within-cluster 

variance represents how far each point is to the cluster-specific mean. The ratio of the 

between-cluster variance to the total variance is this ICC. 

When there are repeated measures, this ICC measures the dependence through a ratio of 

the level-2 unexplained variance (between individuals) to the level-2 plus level-1 

unexplained variance (between occasions). Thus, having a high ICC reflects that individuals 

are similar over time. The estimated standard errors, the fixed terms (the slopes) in the 

hierarchical model, are used and corrected for this dependence. The "leftover" dependence is 

modeled through random effects. So, the random coefficients for these intercepts are 

permitted to vary across the cross-level interaction terms. 

Another useful reason to calculate ICC is that it can help determine whether a 

hierarchical mixed model is necessary. If the ICC is zero, then the observations within 

clusters are just as similar to observations from different clusters. ICC can be theoretically 

meaningful to understand how much of the overall variation in the response is explained by 

clustering. ICC allows us to see how the between- and within-cluster variances change as 

variables are added to the contextual model. 

Small interclass correlation can substantially deflate standard errors of the regression 

coefficients which tells us about the variance associated with the estimate (Bickel 2007). A 

smaller standard error would indicate more precise estimate of the coefficient and means we 

could inflate the t statistic, meaning we are more likely to find significance if there is 
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significance. LeBreton and Senter (2008) have suggested that an ICC=.05 represents a small 

to medium effect. Bliese (1998) simulated conditions where the within-group ICC was 1%, 

where strong group-level relationships were detected that were not evident in the lower-level 

data. For assessing the reliability of group-level means, ICC <0.40 are poor, 0.40 to 0.75 are 

fair to good, and those >0.75 are excellent (Fleiss, 1986). 

2.2.4 SAS Modeling  

We used the MIXED procedure in SAS in conjunction with REML to fit the data/model. 

The REML criterion itself is optimized by a Newton method where the derivatives from the 

method are obtained by a mixture of implicit differentiation and direct methods (Wood 

2011). The MIXED procedure profiles the likelihood with-respect-to the fixed effects and 

also with respect to the residual variance.  

The covariance parameter estimates are the estimates of the parameters 

in G and R matrices. The G matrix specifies the subject-specific effects, and the R matrix 

specifies residual effects. Wald Z tests of the covariance parameters are computed, and they 

are only valid asymptotically. The asymptotic standard errors are computed from the inverse 

of the second derivative matrix of the likelihood with respect to each of the covariance 

parameters. When there are no missing values, the F tests from the ANOVA will be identical 

to those from a REML analysis.  

The primary assumptions of the analyses performed by PROC MIXED are as follows: the 

data are normally distributed, the data are MAR, the means of the data are linear in terms of a 

particular set of parameters, the variances and covariance’s of the data is in terms of a 

different set of parameters, and they exhibit a covariance structure the procedure can 

estimate. Since normally distributed data can be modeled in terms of their means and 
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variances/covariance, the two sets of parameters in a mixed linear model specify the 

complete probability distribution.  

Typically, in a case of repeated measures, it is appropriate to use autoregressive (AR), 

compound symmetry (CS), or unstructured (UN) variance structures. We use the variance 

covariance (VC) structure and assume that responses over time were independent conditional 

on the covariates. 

 Not only is VC the default in SAS, but it also models a different variance component for 

each random effect or repeated effect. In the analysis presented in this paper, we chose to 

model the X (design matrix for the fixed effects), Z (design matrix for the random effects), G 

(fixed), and R (random) covariance matrices through variance components. Here we see 

correlated errors between time points within subjects. These correlations are presumed to be 

the same over time, regardless of how distant in time, repeated measures are made. So if all 

variables were completely independent of each other and measured on different scales, the 

VC structure is a reasonable pattern. When the data are repeated measures, VC is not always 

the best choice, but our analysis has very few repeated measurements. VC is used as it is one 

of the most common structures that arise from the use of random-effects parameters, which 

are additional unknown random variables assumed to affect the variability of the data. The 

variances of the random-effects parameters become the covariance parameters for this 

particular structure. 

2.2.5 Full Maximum Likelihood and Restricted Maximum Likelihood 

Estimation is often achieved by finding the value of the parameter that maximizes the 

likelihood. Generally, to start evaluating a likelihood function, we partition the function into 

two terms; the mean and variance. In full maximum likelihood estimation, we find a function 
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so that the mean does not depend on variance, and the residual likelihood is that which only 

involves the variance parameter. When using REML, we have one unknown parameter and 

represent the log-likelihood that is free of the mean parameter.  

When there are closed-form solutions to the variance components in linear regression, we 

can remove the bias by multiplying a correction factor, after the estimation process. When 

there are no closed-form solutions, one needs to obtain a bias-free estimation for variances 

through a more general process. This general process is restricted maximum likelihood, 

which is to maximize a modified likelihood function with no mean components (Patterson 

and Thompson, 1971; Harville, 1977) and is an increasingly common method. If one were to 

maximize the likelihood function with mean and variance components where we use the true 

mean to estimate the variance, it is unbiased. So the REML method is used to make the 

maximization process as unbiased as possible.  

If a residual variance is a part of the mixed model, it can usually be profiled out of the 

likelihood. This means solving analytically for the optimal and plugging this expression back 

into the likelihood formula. This reduces the number of optimization parameters by one and 

can improve convergence properties. REML restricts negative estimates of the variance 

components.  

In HLM's, finding the ML (REML) estimates of slope and intercept parameters requires 

one to integrate likelihoods over all possible values of random effects (Bolker et al., 2009).). 

Standard ML estimates the SDs of the random effects assuming the fixed effects are correctly 

specified. REML is a variant that estimates averages over some uncertainty in the fixed-

effect parameters. It uses n-p (n is the sample size, and p is the number of fixed effects: the 

number of betas) to remove the fixed effects in the process. REML is best when trying to 



 

 

28 

model random effects as ML underestimates the random effects SD (Bolker et al., 2009). 

REML is an estimator that estimates the random-effect parameters, such as standard 

deviation (SD), averaged over the values of the fixed effect parameters (Lee and Neldar, 

1996). Estimated SDs for the same model using REML, instead of ML, are generally less 

biased (Lee and Neldar, 1996). ML avoids list-wise deletion of participants with incomplete 

data over time to minimize bias and maximize power (Collins et al., 2012). 

REML takes account of the number of (fixed effects) parameters estimated, losing 1 

degree of freedom for each. This is achieved by applying ML to the least-squares residuals, 

which are independent of the fixed effects. So, to compare models with different fixed 

effects, ML must be used. ML method underestimates the variance parameters because it 

assumes that the fixed parameters are known without uncertainty when estimating the 

variance parameters. Thus, use REML when you are interested in estimating the covariance 

effects. REML uses a mathematical trick to make the estimates for the variance parameters 

independent of the fixed effects' estimates. REML works by first getting regression residuals 

for the observations modeled by the fixed-effects portion of the model, ignoring any variance 

components. ML estimates are unbiased for the fixed effects but biased for the random 

effects, whereas the REML estimates are biased for the fixed effects and unbiased for the 

random effects (Duchateau et al., 1998). 

However, the ML estimator usually has a lower mean-squared error (MSE) than the 

REML estimator. If one wants to be right on average, go with REML, but pay for this with 

greater variability in the estimates. If one wants to be closer to the actual value on average, 

go with ML, but pay for this with negative bias. In the simple case of a constant mean and 

constant variance, ML is dividing SSR with n while REML is dividing SSR by (n-1), so 
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REML is a generalization of this procedure. Biases get smaller for larger sample sizes under 

ML. For small sample sizes, REML is preferred. However, likelihood ratio tests for REML 

require the same fixed effects specification in both models (Lee and Neldar, 1996). 

For mixed models, the likelihood function is the joint density function integrated over the 

random effects. These estimates are biased because they do not account for uncertainty with-

respect to estimates of the means of fixed effects. REML estimates must lie within the 

possible parameter space. The poor behavior of REML estimators seems to be that these 

estimators do not have positive probability, so there is an instantaneous change in RMSE 

behavior between datasets for which REML does not exist and those for which they exist. 

The ML estimator always exists while the REML estimator may not exist with positive 

probability (De Oliveira and Ferreira, 2011; O'Neill 2013). 

Modeling under REML can produce unbiased estimates of covariance parameters while 

the ML estimator is negatively biased. However, the ML estimator more often has a lower 

mean-squared error (MSE) than the REML estimator. If one wants to have more correct 

estimates use the REML estimator, but the trade-off is more considerable variability in the 

estimates. If one wants to be closer to the actual value, and are comfortable with a more 

negative bias, use the ML estimator. ML methods underestimate the variance parameters 

because they assume that the fixed parameters are known without uncertainty when 

estimating the variance parameters. Overall, ML estimates are biased for the variance 

components, while REML estimates are biased for the fixed components. An essential 

strength of using REML is that it gives higher weight to larger groups among factor variables 

(Bickel 2007). 
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2.2.6 Fixed and Random Effects 

Deciding which variables are modeled as fixed or random strongly depends on the 

hypotheses one is testing or questions aiming to be answered. Some common questions are: 

on average, how does individual growth change from intake to discharge, or deciding which 

covariates are related to such growth or change. The mean parameters in the model are 

referred to as fixed-effects parameters and are associated with known covariates and can be 

qualitative (as in the traditional analysis of variance) or quantitative (as in standard linear 

regression). The covariance parameters in the model are the random effects which are these 

larger “subjects” one is interested in One can also think of random effects as those factors 

whose levels are sampled from a larger population or whose interest lies in the variation 

among them rather than the specific effects of each level (Bolker et al., 2009). Effects are 

fixed if they are interesting in themselves and random if there is interest in the underlying 

population (Searle, Casella, and McCulloch 1992). Mixed effect models are those that 

incorporate both fixed and random effects and are hierarchical in that they posit distributions 

for latent, unobserved parameters (Bell, Fairbrother, and Jones, 2019).  

 Fixed effects models control for, or partial out, the effects of time-invariant variables 

with time-invariant effects and this is true whether the variable is explicitly measured or not 

(Beck 2011). Fixed effects are more commonly used in models than random effects, as one 

wants to be able to talk about how each covariate is in itself is affecting the model. An easy 

way to view a fixed effect is that they are constant across individuals, while random effects 

vary. When thinking of the effects in a hierarchical model, fixed effects can be thought of as 

those factors whose interest lies in the specific effects of each level- effects of covariates or 

differences among treatments. The fixed effect assumption is that the individual-specific 
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effects are correlated with the covariates variables. Given the above descriptions and ideas, 

we treat the time variable as fixed, as well as all the covariates in the models. Another reason 

to treat covariates as fixed effects is because they are part of experiments that cannot be 

“added” or “removed” as they are inherent to the study. For example, we treat age as linear, 

so they are fixed. Time-varying covariates are variables whose values can change across 

time. Although the covariates' value changes across time, the parameter value estimating 

each covariate's effect on the dependent variable is assumed to be constant across time. 

The covariance parameters are what distinguishes the mixed linear model from the 

standard linear model. Random effect models assist in controlling for unobserved 

heterogeneity when the heterogeneity is constant over time and not correlated with covariates 

variables (Gormley and Matsa, 2014). The traditional use of random effects is a way to 

correct statistical tests when some observations are correlated. Random effects can be viewed 

as the source of random variation, such as experimental units and can be described as 

covariates variables in which the interest is in making inferences about the distribution of 

values (i.e., the variance among the values of the response at different levels) rather than in 

testing the differences of values between the particular levels. 

We can also think of random effects as a way to combine information from different 

levels within a grouping variable. Random effects are especially useful when we have lots of 

levels, relatively little data on each level, and uneven sampling across levels (Fox et al., 

2015). Conversely, random effects are generally ineffective when the grouping variable has 

too few levels. The simplest way to think of deeming what variable should be treated as 

random is that of a grouping variable or identification variable-such as to indicate the person, 

place or thing, to distinguish itself. This is why Clients and Sites are treated as random in the 
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models. We want to see which and how all the covariates over time among the individuals 

change. All the clients are homeless; we want to make their lives meaningful somewhere 

(site) over time. In this modeling schema, we can talk about individual random effects. 

Inherently people vary from one another so they can be treated as RE.  

In our model, we can partition some of this error and variation into the Site and Client 

levels since time is not equally spaced for all the clients - otherwise, we will see unexplained 

variation. Modeling Clients and Sites as RE is crucial since we aim to make inferences about 

the general homeless population and not just that individual from their sites. This Site 

variable only has three, and time only has three groups. Random effects usually can’t be used 

when the grouping variable has fewer than five levels, and random effects variance estimates 

are unstable with fewer than eight levels (Fox et al., 2015). Again, we use RE to remove 

variation for better prediction, which is conditional on the covariance, so the remaining 

variability is explained in the fixed effects. Random intercepts allow the outcome to be 

higher or lower for each site; random slopes allow fixed effects to vary for each site. We 

usually talk about them in terms of their variability, instead of focusing on them individually. 

In other words, we can now incorporate (instead of ignoring) site-to-site variability in clients' 

growth and improve our ability to describe how fixed effects relate to outcomes. We can also 

talk directly about the variability of random effects, similar to how we talk about residual 

variance in linear models. No general measure of weather variability is large or small exists, 

but subject-matter experts can consider standard deviations of random effects relative to the 

outcomes. 

In a growth study, one would see a model with a random intercept and fixed slope, which 

correspond to parallel lines for different individuals. Mixed effect models include fixed 
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effects (in these cases, estimating the population level coefficients) and random effects (to 

account for individual differences in response to an effect). General categories of mixed-

effects models are repeated measures, longitudinal, hierarchical, or split-plot design 

(Gueorguieva and Krystal, 2004). Mixed-effect models, whether linear or generalized, are 

different in that there is more than one source of random variability. Mixed models can adjust 

for missingness or unknown covariates/predictions that are common to a group of 

observations while not fundamentally changing the statistical inferences.  

SAS will produce standard errors and p-values, that are adjusted so that they account for 

all of the fixed effects in the model as well as the random variability among individuals.  We 

call the variability across individuals’ the residual variance (in linear models, this is the 

estimate of ./, the mean squared error (MSE)). This MSE is the variability that was 

unexplained by the covariates in the model (the fixed effects). 

Mixed models allow us to make a "broad level" inference about the larger population of 

homeless people, which do not depend on a particular site. In repeated measures, where more 

than one measurement is taken on the same individual, the "group" effect is thought of as 

random because we only sample a subset of the entire population of subjects (Fox et al., 

2015). Here, we present a flexible model for repeated measures longitudinal growth data 

within individuals that allows trends over time to incorporate individual-specific random 

effects. These may reflect the timing of growth events and characterize within-individual 

variability, which can be modeled as a function of covariates.  

The fixed portion of the mixed model is doing what a linear model does; it fits an overall 

regression line over time. The coefficient we get for the fixed effects measures the difference 

in their intercepts, and the coefficient for the time measures the difference in their slopes. We 
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measure how much each Site and Client intercept differs from the population average 

intercept, then find the variance of these different measures; the variance estimate for the 

random intercept. If that variance comes out to 0, it indicates that the intercept of time on 

Clients is the same for all Sites—they do not vary from each other. Time in the fixed 

statement measures the overall effect of time on clients across all sites. In the mixed model, 

we would see a different line for each person over time, where we have an overall line that 

people deviate from. 

2.3 Data Attrition Procedure and Results 

The following sections discuss the missing data problems that are in our dataset. We assume 

that our data is missing at random, which is an assumption of PROC Mixed. We use mean 

based imputation to correct for any missing data in our subset. 

2.3.1 Missing Data 

Determining the cause of attrition (response loss through loss of participants) and 

missingness (response loss through loss of information not being recorded) is essential in 

making a complete data subset. We need to assess the response process, the extent to which 

whether respondents understand survey questions to mean what we intend. Three common 

types of missing data are missing completely at random (MCAR), missing at random (MAR), 

and not missing at random (NMAR). Some reasons for missingness might be respondent 

attrition, survey structure, file-matching issues in the merge process, refusal to answer 

sensitive questions, and more. Deciding which missing type the data are can be a difficult 

task. When the missing observations are random, all the time points or "misses" are random 

samples of all participants. When the response process is independent of all variables, then 

the data are MCAR- that is, if the probability of missingness is the same for all units 
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(Raudenbush and Bryk, 2002; Maas and Snijders, 2003). When data are MCAR, there is no 

relationship between the covariates and whether or not the response is measured or not 

measured after controlling for some main effect-or control. To determine or assume if data 

are MCAR is virtually impossible (Raudenbush and Bryk, 2002). 

When data are assumed to be MAR, then the probability of the missing time point is 

independent of the missing data given the observed data- that is, the probability a variable is 

missing depends on the available information (Raudenbush and Bryk, 2002).  This means the 

response process depends on observed but not on unobserved variables. MAR is more 

comfortable to assume as the observed data capture confounding influences, such as 

variables related to both attrition and outcome (Raudenbush and Bryk, 2002).  If data are 

MAR, the estimation of the treatment effect will be unbiased if all the data are used in the 

analysis.  When all of this is true, the use of model-based imputation will ensure ignorable 

missingness (Raudenbush and Bryk, 2002).  Non-ignorable missingness arises when the data 

are not MAR or MCAR. That is, the probability of attrition does not depend on the missing 

value (Raudenbush and Bryk, 2002). Our study's primary goal is to identify which covariates 

affect the CIS scores over time. We only have data on CIS scores for over half (53%) of the 

time we studied. We do not want to throw out half of our data because it does not talk about 

our research question, but rather impute the data.  

An example of MCAR is incompleteness due to randomly failing physical system, and 

examples of MAR are recording failures depending on group or measurement occasion, but 

not otherwise on the (unrecorded) value; and termination of the observations after recording 

a value above or below a given threshold (Little and Rubin, 1989; Schafer, 1997). When data 

is MAR or MCAR valid likelihood-based statistical inference is possible without modeling 
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the response process (Little and Rubin, 1987; Schafer, 1997). If the probability of response 

depends on the unobserved dependent variable (and not only as a function of the covariates), 

the missingness itself is informative, and it is preferable to specify a model that employs this 

information (Christensen et al., 2011). Under MAR, valid inferences can be made based on 

ML estimates of the complete data distribution given the incomplete data (Raudenbush and 

Bryk, 2002). 

2.3.2 Imputation 

Imputation is done by randomly picking a value from a distribution of the variables used. 

SAS PROC MIXED handles missing level combinations of classification variables by 

deleting the fixed-effects parameters corresponding to missing levels to preserve estimability. 

The procedure does not delete missing level combinations for random-effects parameters 

because linear combinations of the random-effects parameters are always estimable 

(SAS/STAT® 14.1 User’s Guide: The MI Procedure). Multiple imputation (MI) is a robust 

and flexible option for handling missing data, so one can assure that the use of multiple 

imputation is reliable. SAS deals with missing data problems through appropriate multiple 

imputation and analytic methods that are most compatible with the analysis. 

Two crucial advantages of multiple imputations are that it incorporates the variability 

introduced by the imputation during variance estimation, and it offers the use of appropriate 

statistical models for generating plausible distributions of values to replace item-missing 

data, not unit missing data (SAS/STAT® 14.1 User’s Guide: The MI Procedure). The number 

of imputations depends on how much data is missing, how many records and variables 

included in imputation models, and other factors, where an iterative process is used to 
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evaluate the number of imputations. There are many ways to impute data and we use mean 

imputation using information from related observations for our data.  

To analyze a full dataset using imputation could have been achieved through SAS PROC 

MI. We did not use this process to deal with the attrition of losing participants over time, as 

we wanted to see what was happening among those who completed the surveys. This way 

produces biased estimates, but any imputation causes biasedness. It is important to note that 

we would produce more biased and unreliable estimates/results if we imputed all the missing 

time points for all clients and covariates where the is data missing due to attrition.  

2.3.3 Application to Our Problem 

Missing data problems are part of many data analyses and especially prevalent in 

longitudinal data sets. For the analysis presented in this paper, we assume that the data is 

MAR. We can assume that Gender, Ethnicity, Education, Diagnosis, Income, and Age are 

recorded for all the people in the survey and do not change in the relative time period (with 

slight but negligible change in Income and Age). We can say the data is missing at random if 

the probability of nonresponse to this question depends only on these other, fully recorded 

variables. When an outcome variable is missing at random, it is acceptable to exclude the 

missing cases (that is, to treat them as NA's), as long as the regression controls for all the 

variables that affect the probability of missingness. Meaning our model needs to have 

included covariates for ethnicity (and others), to avoid nonresponse bias. Both require that 

sufficient information be collected to "ignore" the assignment mechanism (assignment to 

treatment, assignment to nonresponse). 

The numeric covariates Age, Income, Health Status, and PTSD score are all imputed by 

their grand mean, respectfully. Another necessary caution is that Age and time are linked, 
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and if Age is used as a covariate in growth models, it should be treated as time-invariant, e.g., 

age at a fixed point. Rather than replacing each missing value in a dataset with one randomly 

imputed value, it may make sense to replace each with several imputed values that reflect our 

uncertainty about our imputation model. We may want our imputations to reflect not only 

sampling variability but also our uncertainty about the model's estimates. 

Our study has only self-reported data; all the demographic variables and covariates are 

self-reported, except for Diagnosis. Thus, data that we are interested in using are all self-

reports, and when there are many surveys to many people over time, some will not complete 

every survey. For covariates, we miss about 2% of data as most surveys that were taken, 

were completed. We miss data for all time points for each client that did not show up, where 

they completed 1, 2 or 3 surveys. We assume that there are no systematic differences 

between those for whom these data are missing and those for whom these data are present, 

making these data missing at random. The missingness is the same across all clients. The 

missingness in our data is not by survey, as a clinician administered all surveys to each client 

that could be located. NAs exist in the surveys as an option, but each missing point is 

because a client did not show up or could not be located. 

The missingness in the covariate is random, as is the showing up of a client is random. 

We have on average (±5 max per variable) 370 individual client data at intake, 286 at 6-

months, and 143 at discharge. This is the number of clients to report on each survey, not that 

they skipped a question as they were given the survey and asked every question through a 

face-to-face interview done by a clinician assistant. 

As always, we should worry about the MCAR/MAR/MNAR assumptions. The surveys 

we are analyzing are not structurally different from surveys we do not have data on, 
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conditional on the other information we have, assuming that missingness in response data is 

related to individual subjects. It is unlikely that missingness is related to individual 

attendance, conditional on the subject. Each survey is recorded when a clinician assistant can 

go to the shelter, and the client is around to get the survey within an appropriate time frame. 

Since we are making sure to get three survey samples from every subject based on the time 

with the complete response data, we should be able to make the MAR assumption. 

People differ in their commitment to show up for the survey and keeping their 

housing/treatment. It is probably unreasonable to assume that there are no differences 

between clients for whom we have more consistent data and clients for whom we lack 

consistent data. When assuming MAR, we assume that conditional on what we know about 

these clients through our model. There are no systematic differences between treatment 

where we have consistent data and treatment where we do not. Missing data is a common 

complication in data analysis, and dealing with it can be tricky.  

Due to attrition, our data is missing about 22% of participants at 6-months and 62% at 

discharge- meaning 78% of participants at 6-months and 38% of participants at discharge 

completed surveys. For completed surveys, each variable has very few missing data (about 

2.5% max). We are missing data in the sense that we are missing the client survey at some 

point-poor attrition rates are the driving factors in this missing data problem. There are 54 

individuals who have some missing data values. The fully observed data on all variables is 

93.67% of our sample, or 799 individuals are assigned to the complete data group while the 

54 individuals make up 6.33% missing data. We have a total of 74 variables in the reduced 

data set that will be analyzed. Out of the 74 total variables in the data set, 43 (constituting 
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58.1% of the full data set) are continuous variables that makeup 7 of the continuous variables 

needing imputation for the analysis.  

The fully clean and imputed dataset (14 total variables in the model, seven being 

categorical) are a mix of continuous and categorical factor variables, and the missing data 

pattern is still considered monotone. There are 853 total observations. 799 used observations 

and coincidentally 54 subjects who missed at least one survey at intake, 6-months, or 

discharge. The maximum number of observations for each time (intake) is 370, where each 

client, on average, completed 2.22 surveys. Overall, the number of cases lost was about 

31.5% due to attrition and missing data. That is 269 people did not complete a survey at 6-

months or discharge. The valid number of cases with likewise deletion of missing data is 35 

of 269 (13%) missing cases, meaning 35 clients skipped a survey but appeared again later. 

Two hundred thirty-four clients either missed the 6-month follow up or discharge follow-up 

survey (there are 5 cases where the client missed the intake survey but appeared for the 

others). Of the 269 missing cases, 89 clients only completed the intake interview. We now 

understand that the majority of missing data is due to the retention or lack thereof, of clients 

and not missing data in the variables themselves. The analysis used a complete data set of 

799 observations and 15 variables (including the response), with grand mean imputation for 

those with missing values. 

2.4 Why Hierarchical Mixed Modeling  

One of the major features is that the data is nested of time in people the data for time is 

nested within that for people. We found that this clustering is essential in explaining the 

variance in the data and time between and within-clients. The hierarchical model also enables 

decomposition of the variation in these individual growth trajectories into within- and 
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between-level components at each level. We use the entire model and all the information to 

provide each grouping variable with separate predictive equations for specific covariates of 

interest. Without accounting for the nested nature of the data and grouping variables, it is 

possible to lose important information about the data and the effect of variables on outcomes. 

Level 1 sample size is the number of repeated measures occurring within each 

subject/client (Bickle 2007). Using a hierarchy allows us to investigate higher-order 

interactions, such as cross-level interaction terms. In addition, the first level(s) of the 

hierarchical model represents the association between the observed data and the “latent” true 

data (Raudenbush and Bryk, 2002). Using such hierarchical models, we can use contextual 

variables to find explanatory variables we would not have found otherwise - for example: 

how time or age differs and at which points (Bickle 2007). This allows analysts to define 

contextual effects (grouping variable effects) in a more informative way and to answer more 

specific questions relating to each level of a model (Bickle 2007).  

We use mixed modeling so that the use of the random effects permits coefficients to vary 

from context to context and level to level and dependent residuals are accounted for through 

ICC (Bickle 2007). Cross-level interactions, which can be investigated using mixed 

modeling, are a specific type of contextual effect that, when modeled as an upper-level 

variable, moderates the association between lower-level covariates and the outcome variable 

in the overall model (Bickel 2007). These contextual effects also help explain variation in the 

previous level's dependent variable and in random components corresponding to an intercept 

(and slope) that vary from group to group (Bickle 2007). The random effects in the 

hierarchical model make it possible to draw estimates of variance and covariance 

components with unbalanced nested data (Raudenbush and Bryk, 2002). We use these 
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hierarchical models to see if adding contextual variables helps in explaining variance in the 

model; that is as we add variables to the model, is the variance diminishing?  

The question then arises as to why OLS regression cannot be used in such a situation and 

to what exactly these levels are contributing. In short, what are the benefits of using a 

hierarchical model instead of standard OLS techniques? The reasons for such methods are 

many and, in the following passages, we outline those which we found most important.  

For our analysis, we have repeated measures data, which means dependent and similar 

observations as individuals were measured more than once. HMM allows for dependent 

observations, non-independent errors, and can be extended to deal with more complex 

behavior. We see that HMMs add structure to the error terms, which OLS does not. Under 

similar conditions, OLS and HMM will produce the same coefficient estimates because 

violating the assumption of independence does not bias coefficient estimates. They do, 

however, tend to underestimate standard errors, which is no surprise, given that multilevel 

modeling includes least squares regression as a special case. HMMs recognize the existence 

of such data hierarchies by allowing for residual components at each level in the hierarchy. In 

addition, modeling clustered/nested data through an HMM gives them better predictive 

abilities and reveals significant main effects that could not have been found in OLS (Gelman 

2006). 

The feature that distinguishes HMM from an ordinary regression model is the presence of 

two random variables; the measurement level variable and the subject level variable. Instead 

of one general random-effect that captures how each observation deviates from the predicted 

fixed-effects, there are multiple random-effects that illustrate how observations deviate 

within a cluster, and how each cluster deviates from the overall group. Another feature of 
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hierarchical models is their ability to separately estimate the predictive effects of an 

individual covariate and its group-level mean. In a multilevel model, random variables are 

used to model the variation between groups, rather than using dummy variables, which 

would be necessary in ordinary regression models.  

We use the estimated variability for each random-effect to control for variance when 

estimating the significance of our fixed-effects. In this way, we can model our data at the 

observation level (micro-level) and at the cluster level (macro-level). We then add a random-

effect for our “subject”, the clients and sites, which characterizes each participant’s 

idiosyncratic variation from the fixed-effect estimates. The same slope can be assumed for all 

clients, given that each participant's individual differences would only have an effect on the 

intercept, not the slope. Because a different intercept for each participant within the "subject" 

variable must be estimated, it is most effective to use a random-intercepts model. While this 

accounts for the individual by-subject variation, the/our general error term captures the 

random deviations within the same subject, which multiple responses per subject and the 

dependence of each response of the subject's baseline. In order to resolve these random 

deviations, HMMs controls for this within-cluster variance and tests the fixed-effect 

estimates against the remaining between-cluster variance. 

Lastly, HMMs allow for grouping of level-1 outcomes within each successive level. 

Cross-classified data comes from, clients in the same site who may come from different areas 

and clients from the same area but who may go to different sites. By assuming that the 

random effects come from a common distribution, a multilevel model can then share 

information between groups, which improves the predictions for groups that have relatively 

little data. Inclusion of covariates at the group level illustrates the difference in a covariate. In 
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HMM fewer parameters are needed in order to allow the intercepts to vary from subject to 

subject, which contrasts with the need for additional parameters in the dummy variable 

approach. This reduction in the number of parameters is particularly important with more 

complex models and a limited amount of data. We can allow for possible correlation by 

including the average of z	within the group-level regression. Compared with classical 

regression, hierarchical modeling is almost always an improvement, proving helpful for data 

reduction and causal interference, and essential in prediction multilevel modeling. 
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Chapter 3: Analysis 

3.1 Descriptive Statistics 

We first present tables of the demographic statistics for the variables used in the analysis. 

For categorical variables, we desire that each factor is well balanced. We look at how many 

clients are in each homeless shelter and the attrition rate throughout the study. Then we look 

at each covariate and outcome, and their attrition rates.    

The homeless shelter with the most retention and most clients that participated in the 

study is Life Link in Santa Fe, while St. Martin’s, in Albuquerque, NM, had the second most 

participation with the most attrition, as seen in Table 3. 1. The overall trends we see in the 

general demographics from Table 3. 2 are at intake are that about half of the sample is 

Hispanic-Latino, the majority are men, the average age is about 45 years old, and the average 

monthly income is under $1,200. While 40% of participants have more than a high school 

education, those who have less than a high school education or have a high school education 

are each about 30%. Most of the clients are diagnosed, by a clinician, with depression; this 

being the more common diagnosis seen among those experiencing homelessness. The next 

most common diagnosis seen among the clients is post-traumatic stress disorder (PTSD); this 

is also a common disorder among homeless communities across the United States (Crisanti et 
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al., 2021). The range for the PTSD score is from 17-85 points with an average of 49 points 

and most people report having a PTSD score of 49 to 70 points, meaning most people, 

overall, have high PTSD scores. The range for the outcome variable CIS Psychological is 4 

to 20 with an average of 12 points. 

The general trends that we see in the remaining covariates are presented in Table 3. 3. 

During the duration of the study, about half of the clients did not attend church, self-help 

groups, narcotic anonymous or alcoholic anonymous and recovery related activities. More 

than 1/3 of the sample reported that they saw friends or family during the study. The majority 

of people reported good or fair health. Make note that the variables found in the final 

hierarchical model and sub-models are Time, IFF, Health Status, PTSD, Gender, and 

Education. With attrition, the proportions of the covariates are staying about the same 

throughout the duration of the study. The models with these contextual variables are the 

models we make inferences about to propose policy recommendations. We keep only those 

variables that are significant as there is no sufficient evidence to conclude that there is a 

difference in CIS Psychological score by those variables with p-values greater than the 

testing point of an α = 0.05. 

Table 3. 1: Number of Clients at each Site (homeless shelter, in New Mexico cities) 

Time Location 
Intake N=370  

St. Martins(ABQ)=126 (34%) 
Life Link(SF)=152 (41%) 
St. Luke’s(LC)=91 (25%) 

6-months N=286   
St. Martins(ABQ)=101(35%)     
Life Link(SF)=121 (42%) 
St. Luke’s(LC)=64 (23%) 
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Table 3. 2: General demographics 

 
Table 3. 3: Covariate Demographics   

Discharge N=143    
St. Martins(ABQ)=29 (20.5%) 
Life Link(SF)=85 (59%)        
St. Luke’s(LC)=29 (20.5%) 

Time Hispanic Latino Gender Average Age Average Income 
Intake N=370 

 
Yes=173 (47%) 
No=197 (53%) 

N=370 
 
F=151 (41%) 
M=218 (59%) 

N=370 
44.5 years old 

N=370 
$816.15 

6-months N=286 
 
Yes=135 (47%) 
No=151 (53%) 

N=286 
 
F=125 (44%) 
M=161 (56%) 

N=286 
44.5 years old 

N=286 
$974.47 

Discharge N=143 
 
Yes=74 (53%) 
No=69 (47%) 

N=143 
 
F=65 (45%) 
M=78 (55%) 

N=143 
44.9 years old 

N=143 
$1,123.62 

Time Education Diagnosis Health Status  Attend Interact 
Family 
Friends  

Intake N=370 
 
<High School=110 
(29%) 
High School=113 
(31%) 
>High School=147 
(40%) 

N=370 
 
Bipolar=61  
(17%) 
PTSD=86  
(23%) 
Depression=122  
(33%) 
Schizoaffective=34 
(9%) 
Anxiety/Other=67 
(18%) 

N=370 
 
Excellent= 10 
(2%)      
Very Good=38 
(10%)   
Good=106 
(29%)     
Fair=143  
(39%)  
Poor=73 
(20%) 

N=370 
  
0=182 
(49%) 
1=114 
(31%) 
2=62 
(17%) 
3=12 
(3%) 

N=370   
 
Yes=288 
(78%) 
 
No=82 
(22%) 

6-months N=286 
 
<High School=79 
(27.6%)  
High School=80  
(28%) 
>High School=127 
(44.4%) 

N=286  
 
Bipolar=50  
(18%) 
PTSD=67  
(23%) 
Depression=100  
(35%) 

N=286 
 
Excellent= 12 
(4%)      
Very Good=32 
(11%)      
Good=77 
(27%)       

N=286 
   
0=133 
(46%)  
1=99 
(35%) 
2=43 
(15%) 

N=286  
 
Yes=209 
(73%) 
 
No=77 
(27%) 
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In Figure 3.1 we have treated the Site variable as a fixed effect and did a 2-way ANOVA 

of Site and Time to assess if these differences are statistically significant or not. We see that 

overall, the 3 Sites had about the same CIS Psychological score over time, averaging about 

12.5 points. The range at intake, on average, is between 9.5-12.5 points for CIS 

Psychological score. We see that St. Martin has the lowest average score at intake, followed 

by Life Link, and St. Luke’s has the overall highest average. The steepest slope is seen at St. 

Martin’s, meaning that over time, the average CIS Psychological score increased most at this 

site. Both Life Link and St. Luke’s have similar slopes and the general trend is that the CIS 

Psychological score increased over time at both Sites. St. Martins was statistically different 

from both Life Link and St. Luke’s but St. Luke’s and Life Link are not, in these difference 

in scores over time.  Note that Site is not intended as a covariate, but rather the grouping 

variable for the third level of the model associated with the sampling design. We will see that 

the explained variance in the CIS Psychological score is not attributed to grouping at the Site 

level. This graph depicts the results we will see. 

Schizoaffective=32 
(11%) 
Anxiety/Other=37 
(13%) 

Fair=110  
(39%)     
Poor=55  
(19%) 

3=11 
(4%) 

Discharge N=143 
 
<High School=42 
(29.6%)  
High School=35 
(24.4%) 
>High School=66 
(46%) 

N=143   
 
Bipolar=25  
(17%) 
PTSD=39  
(27%) 
Depression=48  
(34%) 
Schizoaffective=17 
(12%) 
Anxiety/Other=14 
(10%) 

N=143 
 
Excellent= 6 
(4%)      
Very Good=21 
(15%)       
Good=38    
(27%)    
Fair=52    
(36%)    
Poor=26  
(18%) 

N=143 
    
0=67  
(47%) 
1=51 
(36%) 
2=20 
(14%) 
3=5 
(3%) 

N=143  
  
Yes=102  
(71%) 
 
No=41 
(29%) 
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Figure 3.1 CIS Psychological score over time among all 3 sites averaged over clients 

3.2 Analysis 

The model in this thesis is an individual growth model and an organizational model in 

that we have time nested in people and people nested in a site, i.e., growth over time of an 

individual within an organization. We also do not have a numerically continuous time 

variable, dictating that there is no true linear or higher-order growth curve, though we 

continue to use growth modeling theory to model the data. We assess the change over time 

by looking at what is happening between each interview time for all the clients in each site. 

Ignoring such a structure can impact estimated variances, inflate Type-I error rates, and the 

statistical power to detect the covariate effects. When not incorporating a nested structure, 

obvious interpretation errors will occur in significance testing, as well (SAS/STAT® 14.1 

User’s Guide: The MIXED Procedure). 
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The differences in intercepts and slopes with few repeated measures suggest a linear 

growth curve is most appropriate (Raudenbush and Bryk, 2002). If there were a true time 

period that was continuous, a polynomial model would fit the data best as we do see 

curvature in the average outcome variable over time (Figure 3.1), and fitting the model with a 

numeric 3-point scale we have a significant quadratic term. As there are three repeated 

measures, we modeled the time measuring points as categorical factor. We did this to see 

where the most change/growth was in the clients over time and to be able to assess whether 

there were differences in CIS Psychological score at the three milestones of the program.  

When there are few observations per individual, say three or four, using hierarchical 

modeling is convenient (Raudenbush and Bryk, 2002). In such a model, there is generally a 

growth rate parameter for each person over the data-collection period which represents the 

expected change during a fixed unit of time. There is an intercept parameter that tells us the 

estimated ability of a person at all other parameters fixed as 0. These growth rate parameters 

and intercept are allowed to vary at the level-2 model, which is a function of measured 

person characteristics. The individuals are the grouping variable and scores are nested within 

these individuals. The individual is at level-2, with the repeated measures at level-1. Since 

we have measures on all variables in the analysis for the specific times, we could use time 

series procedures but we only have three time points, and most often only two, so time series 

procedures are not appropriate to use. We then model the intercept of the level-2 model at the 

level-1 site level as we have modeled the intercept as random so covariates are permitted to 

vary with the intercept at all 1evels.  

Throughout this chapter we will focus on the model building process and analysis for 

only the CIS Psychological score and provide output and estimates for this model, as the 



 

 

51 

same process is done for the CIS Physical score (which is beyond the scope of this thesis but 

was also examined in the broader study). The statistics estimated from this study are not 

intended to be used to infer from the sample to the general population, since we do not have a 

simple random sample or a control group to compare against. Instead we use the results to 

provide policy recommendations for programs such as PSH.  

The analysis consists of a 3-level hierarchical model, where all levels of the model have 

random intercepts and fixed slopes. There is an analysis of the unconditional model, where 

there are only intercept and error terms. Followed by the Level-1 model which is estimating 

the Time invariant variables. Then the Level-2 model, Client, where there are individual 

characteristics in this model. The Level-3 model, Site, where there are no covariates 

associated found to be Site level predictors. Lastly, the full model is assessed, which includes 

all the covariates from all the three sub-level models. 

The model assumptions for model fit are assessed for each of these models, and then the 

results are analyzed. A final presentation of what each of the levels tells us individually and 

together is used to summarize the results. The important information we get from these 

results are in the examination of the variance components at each level. 

3.3 Model building 

In this section we illustrate how and why we chose to model the data with the current 

covariates seen in the inferential (reduced) model. We first discuss variable selection and 

then model selection. After liaising with subject matter experts (SME) on a preliminary 

assessment of the data and hypotheses posed for the analysis, an exploratory data analysis 

was done. The two primary questions of interest were:  

1) Did the CIS Psychological score change over time? 
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2) What factors explained these changes over time?  

The purpose of the exploratory analysis for this thesis is to formulate hypotheses to test 

and understand our data more thoroughly to assess the questions. The first assessment of the 

data was done using OLS procedures; by simple linear regression (SLR) models, and then by 

multiple regression (MR) models. These were done to assess variable and model selection 

before modeling the data in at hierarchical structure and algorithm under REML. 

3.3.1 Variable selection 

First, we examine the data set with epidemiologists and psychologists to select from the 

full set of hundreds of survey questions that were given to the clients during the study to 

fewer than 50 variables. We then created and used this set of about 50 variables to continue 

assessment for model selection. We look at the univariate frequency distributions of these 

variables to check for outliers or see if there are appropriate variable transformations. We 

look at the frequency distributions and tables of the categorical variables to see if such a 

variable had enough variability among its levels to be useful, as unbalanced data can lead to 

more bias in the estimates if not equally weighted (Raudenbush and Bryk, 2002). Next, 

bivariate relationships were assessed to identify nonlinear relationships among the covariates 

and response. This can also be used to identify variable transformations. Bivariate 

relationships between the covariates were looked at through correlation. High correlations 

among covariates causes variance inflation in the estimated regression coefficients of a linear 

model (Christensen, 2016), and we want to check if they have similar explanatory power or 

not. The correlation among the covariates and outcome is to check if the variable is a linear 

predictor of the outcome or not.  
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We checked the collinearity of the variables in the model through a variance inflation 

factor on each level and full model. Collinearity mostly affects model fit and predictability as 

the above estimates are used in such assessments and can be dealt with by combining those 

variables that have high collinearity (Christensen, 2016). After consulting the same subject 

matter experts, we combined variables with similar explanatory power or discarded those 

with “bad data”. These variables were selected as they had little to no missing values in their 

fields, respectively, were well balanced, did not exhibit collinearity with each other, had no 

high correlations among the covariates and outcome, SME knew that these were common 

factors in analyses similar to ours, and were likely going to be found to be meaningful in 

explain our data. Once the data set had near 20 variables we began model building and model 

fitting while cautiously specifying the model with the SMEs so that we were not overfitting a 

model with so many covariates needing assessment. For example, the variable PTSD is 

known to be a robust and reliable measure and would make for a good covariate to be 

checked in our model and that variables like “anxiety” and “depression” should not be treated 

as a covariate but rather a control. 

3.3.2 Model selection 

Model selection helps make an initial “complex” model more simple by removing 

variables that do not explain variation in the response and thus makes interpretation easier. 

Model selection helps to rank a set of candidate statistical models based on information-

theoretic tools such as Akaike information criterion/Bayesian Information Criterion 

(AIC/BIC) or step-wise regression (forward, backward, or both) which uses hypothesis F-test 

statistics (Bolker et al., 2009). Information-theoretic approaches such as AIC and BIC 

measure expected predictive power and the smaller the better the model fit (Christensen, 
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2016). Typically, information-theoretic approaches are preferred to hypothesis testing and are 

most commonly used in model selection and we use the AIC value as indication 

(Christensen, 2016). We are aiming to find a model with the smallest AIC and this was done 

through manual backwards selection. We removed those variables that had large p-values 

(greater than 0.05). As we removed one variable from a model we examined AIC. This was 

done individually for all variables and interactions from the full model discussed in Chapter 

2.   

An important part in statistical analyses is that the covariates are centered or also 

standardized, as centering can decrease standard errors and should be used in hierarchical 

modeling (Bickel, 2007). One can either use group or grand mean centering, and sometimes 

using raw scores is most appropriate (Bickel, 2007). We used grand mean centering for the 

numeric covariates where centering was reasonable, as working with random coefficients and 

hierarchical regression models, grand mean centering of all the independent variables is best 

(Bickel 2007). This is because the intercept and slopes in the level-1 model become the 

outcome of the level-2 model and we have better interpretability and understanding of 

centered variables (Raudenbush and Bryk, 2002). The intercept of the prior level is then the 

expected outcome for a subject whose value on some covariate is equal to the grand mean 

(Raudenbush and Bryk, 2002; Bickel 2007).  

If independent variables change over time, then it is best to center them, otherwise use 

dummy variables to indicate baseline values. When working with categorical variables use 

dummy variables to indicate the true value and there is little need to center these variables 

(Raudenbush and Bryk, 2002; Bickel 2007). The numeric variables Age, Income, and PTSD 

score are grand mean centered. The other covariates, Gender, Ethnicity, Education, Hispanic-
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Latino, and Diagnosis are categorical variables and each has a specified baseline. The 

baseline for Gender is male as we see more male people experiencing homelessness than we 

do females. The baseline for Ethnicity is Hispanic-Latino as the study is done in New Mexico 

and there is a large population of Hispanic-Latino people who are experiencing 

homelessness. The baseline for Education is to be that the client has completed high school, 

as that is a common baseline in epidemiological and behavioral health studies and a general 

expectation for and from the population. The baseline Diagnosis is depression as that is the 

most common in our sample and most well-known to the public and a common diagnosis to 

the public.  

The variable Health Status is treated as a numeric covariates in the models, and is made 

from Likert scale, so it makes no sense to standardize or center this variable. This is because, 

for example, the difference in reporting “agree” and “strongly agree” is the same measure 

difference of “disagree” and “strongly disagree”, and there is no true zero for this variable. 

The variable Interact with Family and/or Friends is a binary variable and treated as a dummy 

variable indicating at “yes”. The variable Attend is modeled as categorical and not centered 

and done to see where the true differences lie in how often one is attending NA, AA, church, 

and/or other self-help groups, and where there are differences.  

Through the model building process, we assess the adequacy of the hierarchical model 

and sub-models. The first model being considered is an unconditional model. Again, we use 

random effects as we have variables describing individuals and these individuals are grouped 

into larger units, each consisting of a number of individuals. We assume that each of these 

groups have different regression models, or an overall regression that each individual will 

differ from. Since these groups are also sampled we assume the intercepts and slopes are a 
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random sample from a population of group intercepts and slopes; this is what a random 

coefficient model does. Since we only have a random intercept model (and sub-models), we 

only have variance components models as some variables are not observed which implies 

they wash out into the error term causing correlation between disturbances (non 

independence). These disturbances have a group and individual component where individual 

components are independent and group components are correlated within groups, some more 

than others. We also only model the parameters associated with the intercept parameters as 

we have a random intercept model. That is the intercept at level-1 is permitted to vary among 

level-2 units and so on. 

To present such a high number of models in the model selection process would 

necessitate the checking and adjustment of each effect in order to account for all changes in 

AIC and p-values. This would result in an excessively large table illustrating AIC values for 

model fit. Table 3.4 demonstrates that the full model is the best in regard to AIC while, in 

addition, containing the most parameters, fixed and random, to explain variance and 

outcome. Make note that there is at least a 4-unit difference in the reduced and full models at 

all levels.  

Table 3.4: AIC of the Full and Reduced model used inferentially  

Model                     AIC Full AIC Reduced 
Unconditional         4456.4 4456.4 
Level-1(Time)        4327.0 4315.5 
Level-2 (Client)  4359.4 4355.7 
Level-3 (Site)          4363.3 4363.3 
Full                          4322.1 4303.9 
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3.4 Assessing Model Fit 

After model selection, we examined the model diagnostics: linear relationships, errors are 

normally distributed, homoscedasticity of errors (or, equal variance around the line), and 

independence of the observations. Diagnostics need to be assessed on all levels, and the full 

model, in the hierarchy. Thus, looking at diagnostic plots and statistics of an unconditional 

model, the level-1 model, level-2 model, level-3 model, and full model with contextual 

covariates included at each level. The models fit were done so in SAS PROC Mixed. We fit 

full models in this procedure that were found from the multiple regression models. 

The diagnostic tools used to assess the quality of model estimation of the data described 

by the model are those tools one uses in standard regression models. Although, these 

diagnostic tools must be adjusted to reflect the dependence introduced by the nested data 

structure. Residual analysis now includes the assessment of distributional assumptions at 

each level of the model. This requires the use of level-dependent residual quantities. 

Similarly, the parameter estimates may be influenced at each level of the model, requiring 

influence diagnostics. The assumptions we the model needs to meet and that need assessment 

are distributional assumptions, covariate structure (handling of such), and metric of outcome 

variable measurement (common survey are all times). The within subject variation of the 

model doesn’t assume uniform data collection designs across subjects but the between 

subject variability can accommodate different covariate structures for all intercepts and 

slopes. Hierarchical modeling doesn’t require the same data collection design for each 

individual but same at each time point is required, which is true in our design, also including 

the same design for all individuals. 
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In hierarchical modeling, using a response that is logistic or continuous among the real 

line is preferred, as it has better interpretability properties and the data can follow a normal 

distribution (Douma and Weedon, 2019). The following diagnostics must all be taken 

cautiously as this data is nested and because we have few cluster units in the sub-models. 

Raudenbush and Bryk (2002) note that homogeneity may cause more bias as the standard 

errors will increase, if there are fewer than 10 units per group. We do not impute values over 

time as there are many lost cases due to attrition.  Again, the main uses of this modeling is 

that it handles unbalanced, nested data well, even with high attrition rates, and allows for 

dependent observations (Raudenbush and Bryk, 2002; Bickel 2007).  

We begin by looking at the correlations between the outcome and all numeric covariates 

to see if the covariate is a good linear predictor or not. All the correlations of the CIS 

Psychological score and covariates are small indicating they are weak linear predictors for 

CIS Psychological score, as seen in Figure 3.2. We see that the overall highest absolute 

correlation is between the outcome, CIS Psychological score, and PTSD, where ρ = 0.22 

which does not cause for concern. This moderate correlation makes sense as the PTSD score 

is a direct measure of mental health in the homeless population (Cirsanti et al., 20121) and 

we are measuring an outcome that is about ones’ mental wellbeing. We see that the highest 

correlation among the numeric predictors is 0.198 which is slightly positive but not large 

enough to assume that the variables are not independent or having similar explanatory power. 

The linear correlation among the rest of the variables is practically null. These variables do 

not need a transformation because they are normally distributed and they are not skewed.  
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Figure 3.2: Correlation Matrix among all numeric variables for all levels in the inferential 

models (Health Status, PTSD Score, Income, Age, and CIS Psychological Score) 

Now assessment of multicollinearity in the model is examined to see if collinearity 

exists or is too large to ignore. We do so by looking at the Variance Inflation Factor (VIF) of 

each model and the variables with the associated model. A general guideline is that a VIF 

larger than 5 or 10 is large, indicating that the model has problems estimating the coefficient. 

However, this in general does not degrade the quality of predictions. If the VIF is larger than 

1/(1 − Ä/), where Ä/ is the multiple R-squared of the regression, then that predictor is more 

related to the other predictors than it is to the response. We compare the model VIF to each 

variable VIF for each model, respectively. We want to see that the variable VIF is lower that 

the model VIF.  
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In Table 3.5 we see that all of the sub-models and full model have VIFs under 2. We 

also see that all the variable VIFs are less than the respective model’s VIF. This suggests that 

there is little collinearity and not high enough to be concerned with estimability problems or 

collinearity problems. The unconditional model cannot be assessed in this way as there are 

no covariates and the level-3 model only has one covariate so there are no issues with 

variables being too linear with each other.  

Table 3.5: Model VIF to assess collinearity for all levels of the hierarchy 

Model  Model VIF Variable VIF  DF 

Level-1  1.184133 Time:                   1.026390       

PTSD:                  1.052575         

IFF:                      1.016602        

Health Status:      1.044364          

2 

1 

1 

1 

Level-2  1.113958 Time:                  1.004980   

Gender:               1.004618      

Education:          1.007011          

2 

1 

2 

Level-3  N/A (only one 

covariate) 

  

Full Model  1.211974 Time:                  1.031372       

Gender:               1.018078          

Education:           1.028969   

Health Status:      1.051597  

IFF:                      1.031058          

PTSD Score:       1.065457   

2 

1 

2 

1 

1 

1 
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Now we assess diagnostics to validate the assumptions on the residuals of the models and 

diagnose any influential observations. To check for normality and equal variance, there are a 

set of common diagnostic plots that can help assess these assumptions; qq-plot, residual vs. 

fitted, box plots for equal variance, added variable plots, and histograms of the residuals. It is 

also important to check for influential observations by looking at Cook’s distance and 

leverage plots for the fixed and random portions of the model.  

The major difference in the assumptions in OLS and in hierarchical modeling is that the 

errors are permitted to vary in the hierarchical models, because the error terms are more 

complex as they depend on each other (Bickel 2007). Observations within one cluster tend to 

be more alike with each other compared to observations within other clusters, violating a 

well-known regression assumption of observation independence (Cohen, Cohen, West, & 

Aiken, 2003). In our case, the errors for one individual might also be dependent. The errors 

are dependent within each site because errors are common to every client within the same 

site. This is also true as errors are dependent within each client within the repeated measures. 

We can loosen the constraints on the errors having common variance. This is because the 

errors measured at each level are then represented in a final model where there is a 

dependence on the covariate, which vary across sites and we exhibit the same behavior at the 

time and client levels.  

In the mixed model, the validity and tenability of the assumptions pertain to both the 

structural and random components. For the structural part of the model, a properly specified 

model is that there the outcome is a linear function of the regression coefficients. 

Misspecification of the structural part of the models happens when at least one component in 

the error terms are associated with at least one other covariate in the model (Raudenbush and 
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Bryk, 2002). These specification and misspecifications, in a hierarchical model occur and 

must be validated at each level of the model. Misspecification at one level can affect the 

results at another, and because of correlated errors, we see that one equation can bias the 

estimates in another equation at other levels (Raudenbush and Bryk, 2002). Misspecification 

most often occurs when level-1 covariates are related to the outcome or other covariates, and 

are dropped, leading to inflated bias of the fixed effect coefficients (Raudenbush and Bryk, 

2002). Thus, level-2 and higher level fixed effect estimates will be biased (Raudenbush and 

Bryk, 2002). The misspecification of models can be assessed through covariance testing 

where we want to see that the covariance among all the estimates and errors are zero 

(SAS/STAT® 14.1 User’s Guide: The MIXED Procedure). If there are strong correlations 

among covariates (confounding variables), and is ignored, estimation of each level in the 

hierarchy will have bias in the estimates and this bias depends on the predictive power of that 

confounder (Raudenbush and Bryk, 2002). Formally, we assume the following:  

1) Each error, for the purpose of this thesis, εÇÉÑ, is independent and normally distributed 

with mean 0 and variance ./ for every level-1 unit - within each level-2 unit , and 

every level-2 unit , within each level-3 unit V. 

That is *#"O~,,b	S(0, ./) 

2) The level-1 covariates are independent of *#"O 

That is JgÖ )Ü#"O, *#"O = 0	∀	-, where )Ü#"O represents each A covariate 

3) The random errors at level-2 and level-3 are multivariate normal, each with mean 0 

and some variance 2ààà and some covariance among the random elements 2âââ.	The 

random error vector is independent among the second and third level units. That is the 

random error vectors among the client level-2 units are independent normally 
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distributed with mean 0 and the random error terms among the site level-3 units are 

independent and normally distributed with mean 0.  

4) The set of level-2 covariates are independent of every error term at level-2 and the set 

of level-3 covariates are independent of every error term of the level-3. That is the 

covariance between the covariates of each level with their errors is 0.  

5) The errors of level-1 and level-2 are independent, the errors of level-2 and level-3 are 

independent. That is the covariance of the level and subsequent levels is 0. 

6) All the covariates at each level are not correlated with the random effects at all other 

levels. 

Note that assumptions 2, 4, and 6 are about the relationships between the variables 

included in the structural portion of the model (the design matrices) and their error terms. 

Their tenability affects the bias in estimating the multilevel intercept and slopes at further 

levels (Raudenbush and Bryk, 2002). Assumptions 1,3 and 5 are on the random error terms 

and their tenability affects the consistency of the estimates of the standard errors in the 

multilevel intercept and slopes at further levels; the accuracy in estimating variances, slopes, 

hypothesis test and confident intervals (Raudenbush and Bryk, 2002). One way to deal with 

heteroscedastic and autocorrelation is by selecting how to model covariance structure (Bickel 

2007). 

When thinking of these assumptions in terms of our analysis, we assume the following:  

1) Conditional on the time invariant variables, the within-client errors are normal and 

independent with mean 0 for each client and equal variance across clients. 

Conditional on the client level variables, the within-site errors are normal and 

independent with mean 0 in each site and equal variance across sites.  
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2) The time invariant covariates of CIS Psychological Score growth at level-1 are 

independent of the error term. All the excluded covariates are not correlated 

outcomes.  

3) The residuals of Client effects are assumed to be bivariate normal with respective 

variance and covariances. The residuals of Site effects are assumed to be multivariate 

normal with respective variance and covariances. 

4) The effect of whatever client and site covariates are excluded from the model for the 

intercept for time invariant covariates slopes are independent of the covariates in the 

client and site level models.  

5) The error at level-1 is independent of the residual client effects. The error at level-2 is 

independent of the residual site effects. 

6) The covariates of the time varying model that are excluded are relegated to the error 

term at level-1, are independent of the level-2 covariates in the model. The covariates 

of the client level model that are excluded are relegated to the error term at level-2 are 

independent of the level-3 covariates in the model. Also, whatever client level 

covariates are uncorrelated with time invariant covariates and site level covariates is 

uncorrelated with client level covariates.  

Assumptions 1, 2, 3 and 4 can be assessed by examining the data and residuals at each 

individual level. Assumptions 5 and 6 are concerned with cross-level associations and need 

closer examination through time series procedures and likelihood ratio tests. We also assume 

that the growth parameters vary across individuals (client covariates vary). We need to check 

that the fixed effect is significant and slope heterogeneity tested through likelihood ratio test, 

chi-square and by reliability of each parameter. When reliabilities are small the variances are 
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likely to be close to 0 causing numerical difficulties as we are near the boundary of the 

parameter space (Raudenbush and Bryk, 2002).  

To check for independence, a time series analysis may be appropriate, check rational 

subgroups of the residuals and see if there are clear different subgroups-and if so, then the 

residuals are not independent. If one can get a control chart and randomly group the residuals 

and find the groups look the same, then they are independently distributed. We also plot 

residuals against any time variables and any factors or regressors, where a pattern that is not 

random suggests lack of independence.  

Presented in Table 3.6 is a summary of diagnostic statistics for the models. We use the 

Anderson-Darling (AD) test to determine that the sample of data is drawn from a normal 

distribution with the null hypothesis that the data is normally distributed. As the p-value is 

near 0 for levels-2 and -3, we reject the null, suggesting that the data is not normally 

distributed at these levels. The level-1 and full model meet the normality assumption from 

the AD test. The power transformation from the Box-Cox for all the models was suggested to 

be just above 1, and seen in Figure A.8 in the Appendix, no transformation for the response 

variable would be helpful in meeting the normality assumption. The standard square-root and 

log transformations we looked at for the response variable, but those did not help, either. We 

see that the p-value for the AD-test of normality is increasing with a more complex model. 

Table 3.6: Model Diagnostic Statistics for all Levels of the Hierarchy 

Model  Anderson Darling (AD)  AD P-Value Box-Cox 

Unconditional  4.326 9.49e-11 1.07 

Level-1 0.41889 0.3266 1.07 

Level-2 0.74808  0.05127 1.07 



 

 

66 

Level-3 1.956 5.478e-05 1.07 

Full Model 0.26911  0.6799 1.07 

 

The reliabilities, seen in Table 3.7, of the level-1 coefficients are most important to us 

as reliabilities will be close to 1 when the group means vary substantially across level-2 units 

or if the sample size is large (Raudenbush and Bryk, 2002). This measure is defined as the 

parameter variance divided by the parameter variance plus the error variance. The most 

reliably measure is PTSD and the least reliable measure is IFF, for the level-1 model. 

Generally, we want the reliability to be at least 0.10, and only Time and Health Status meet 

that criterion. For the level-2 and level-3 model Time is the only moderately reliable 

measure. The full model has Time, Health Status and PTSD as reliable measures.  

Table 3.7: Reliability of each parameter for each level for independence assessment  

Variable [Model] Reliability 

Time [1] 0.17 

Health Status [1] 0.10 

IFF [1] 0.023 

PTSD [1] 0.963 

Time [2] 0.17 

Gender [2] 0.025 

Education [2] 0.07 

Time [3] 0.17 

Time [Full] 0.18 

Health Status [Full] 0.10 
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IFF [Full] 0.022 

PTSD [Full] 0.963 

Gender [Full] 0.025 

Education [Full] 0.07 

 

3.4.1 Model ICC for Diagnostics and Variance Beak-down 

First we look at the covariance values of the unconditional model to calculate the 

unconditional ICC and examine how the variance is being distributed between- and within- 

clients and sites. There are two unconditional ICCs for this model, as there are three levels in 

the model. We assess these two ICCs separately and then we can add these values to get a 

grand unconditional model ICC. We get these variance estimates from the covariance 

parameter estimates, seen in Table 3.9. 

  The between groups variability is defined as between group (clients OR site 

variability)/[total variability (within clients variance(residual) + between clients within sites 

variance + between site variance)]. We first look at the between client variability which is 

KJJ" =
äã
å

(äçåéäã
åéäèå)

= c./khh
c./khhé&.(mmeé(/.ehe(

= 0.205.       (3. 1) 

This means that 79.5% of the variability in CIS Psychological score occurs within clients, 

while 20.5% occurs between clients. We note that between clients’ variance is statistically 

significant, so the ICCÉ	is statistically significant. This means that at least a 2-level 

hierarchical model is necessary. We next look at the between site variability which is 

 ICCÑ =
íìå

(íìåéíî
åéíïå)

= &.(mme
c./khhé&.(mmeé(/.ehe(

= 0.0112.       (3. 2) 
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Meaning that 1.12% of the variance in CIS Psychological score occurs between sites, leaving 

98.98% of the variance is explained within the sites. We note that the between site variance is 

not statistically significant, meaning ICCÑ is not statistically significant. This tells us that 

adding a third level to the hierarchy adds no power in the distribution of residual variance 

and that a 2-level model is sufficient. 

 We can now calculate how similar clients within the same site are like each other. We 

divide the between-clients-within-sites variance by the sum of the between-clients-within-

sites and between-sites variance:  

ICCÉÑ =
íî
å

(íìåéíî
å)
= c./khh

c./khhé&.(mme
= 0.9485        (3. 3) 

meaning that 94.85% of the between-clients variance in CIS score occurs across sites. 

Similarly, if we want to know the total amount of variance at each time point that is due to 

grouping within clients and sites, we add the between-clients-within-sites variance and 

between sites variance divided by total variance:  

    ICCÇ =
íî
åéíìå

(íìåéíî
åéíïå)

= c./khhé&.(mme
c./khhé&.(mmeé(/.ehe(

= 0.2166    (3. 4) 

, meaning 21.66% of the total variability in CIS Psychological score is due to time being 

grouped in clients and in sites. We note that most of the variability due to grouping occurs at 

the client level. We also note that about 5.2% of variability exists between-sites and is not 

significant. This means that only a 2-level model is needed. We use the site level model as 

we are at the cut off and just about 5% and we are wanting to consider the fact that people are 

nested within site, which may account for some of the homogeneity in the models. We note 

that sites were not randomly assigned also suggesting that a third level may be inappropriate. 

Very weak ICC can substantially deflate standard errors of regression coefficients and 

multilevel coefficients will have larger standard errors (Bickel 2007). 
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The ICC for the conditional models, level-1, level-2, level-3, and full model are 

calculated the same way. We just need to make note of the variance explained (the residual 

variance and covariance parameter estimates decreasing or increasing). Table 3.8 shows the 

ICC for these models; the ICC for clients (KJJ"), site (KJJO) and a grand ICC (KJJ#). We see 

that overall the site level model offers no help in partitioning the variance into the site 

random effect. The most variance within-subjects is explained in the client level.  

Table 3.8: Model ICCs 

Model  öõõY öõõZ öõõú 

Level-1 0.270 0.020 0.289 

Level-2 0.294 0.011 0.304 

Level-3 0.304 0.010 0.314 

Full Model  0.253 0.020 0.273 

 

3.4.2 Visual Diagnostic Assessment  

This section describes the model diagnostic visual tests. We go through the same 

assumption checking and diagnostics for all models. The figures referred to in the section can 

be found in the Appendix, at the end of the document. 

In Figure A.1 of the unconditional model normality diagnostics we see that there are 

strong deviations from normality in the Quantile plot and in the residual histogram. This is 

common for an unconditional model of nested data (Bickel 2007). We are not concerned with 

these diagnostics as much as we are for the level-1 to -3 and the full model. As such, we will 

not discuss the diagnostics of the unconditional model too thoroughly. We note that the 

variance between sites and their means are not too different seen in the box plots in Figure 
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A.2. We note that there is random noise in the time series plots indicating that there is 

evidence of independence in the residuals, and that there are no influential points with high 

leverage in either the fixed effects or random effects seen in Figure A 4 to Figure A.7. 

We use the Anderson-Darling (AD) test to determine that the sample of data is drawn 

from a normal distribution with the null hypothesis that the data is normally distributed. As 

the p-value is near 0, we reject the null, suggesting that the data is not normally distributed. 

The test supports the diagnostic plots, that the CIS Psychological score is not normally 

distributed amongst the residuals in the unconditional model. These diagnosits lead us to look 

at transformations in the response, and re-assess normality to asuure that infrences and 

estimates will be as unbiased and best as can be predicted, under correct model assumptions. 

The standard square- root transformation and log transformations were checked, as well. 

There we no transformations that fixed high tails in the errors. The power transformation plot 

for the unconditional model, level-1 model, level-2 model, level-3 model and full model 

looks the same. This is because the response variable needs no power transformation as 

guided by a Box-Cox test, with a power of 1.0707 and the interval is just beyond 1 for all 

levels in the hierarchy. This means that no transformation would normalize the data for any 

of the models.  

Next, we will take a look at the level-1 diagnostics for the model. This model includes 

four covariates that are understood to be time-invariant, Health Status, PTSD and Interact 

with family and Friends. In Figure A.9 we see that there are no large tails in the histogram or 

in the Quantile plot. This is because our scale for the response variable is a discrete point 

scale from 4 to 20 and made form Likert data. There are no extreme deviations from 

normality in our level-1 model as there are small amounts of residuals under the diagonal in 
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the Quantile plot, and these tails are short. In Figure A.10 we see that the raw distribution of 

the CIS Psychological Score for all people in the three sites has about equal variance, this is 

also found in Figure A.11 of the residuals of the CIS Psychological  Score for all clients in all 

three sites. In both Figure A.12 and Figure A.13 we see that there is random noise for the raw 

CIS Psychological Score and for the residuals of the level-1 model, meaning that the 

variables are independently normally distributed.  

From Figure A.14 we do not see influential points in the fixed or random effects. Points 

that would cause concern are those that are well above 2 in the Cook’s D plots and well 

above or below 1 in the covariance ratio plot also if |JûüÄ]-,g − 1| > cÜ
=
	(SAS/STAT® 

14.1 User’s Guide: The MIXED Procedure). Thus, we do not delete any observation as there 

is no concern of inflation of standard errors from leverage points. There are plots of the fitted 

versus the standardized residuals that show independence of the residuals.  

Figure A.15, Figure A.16, and Figure A.17 also show that there are no points that are 

strongly influential and could be influencing the assumption of normality or not. These plots 

also show that there are no transformations needed amongst the covariates that would greatly 

change the non-violation of the normality assumption.  

Next we assess the model assumptions for the level-2 model, which models the person 

level contextual variables. This model has two variables that pertain to the clients, Gender 

and Education, but are not time-invariant. The only parameter in this models that changes 

with time is Time itself, and of course the error. Again, we examine any extreme and or 

influential observations, normality of errors, constant error variance, multicollinearity, non-

linearity, independence of errors, and transformations in covariates. The plots to most 

consider are the histogram of residuals and the Quantile plot in Figure A.18, seeing that there 
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are some deviations from normality. All other plots are similar in their interpretation to the 

plots for the level-1 model in that they are within the constraints of the assumptions. See 

Figure A. 19 to Figure A. 26 for visual assessment of the level-2 model. 

Next we examine the model fit of the level-3 model; the site level, where there is only the 

Time covariate. Again, we examine the same set of plots for the same set of assumptions as 

previously stated. We see that the p-value for the AD-test of normality is decreasing with a 

less complex model, suggesting the residuals are not normally distributed. This is seen in 

Figure A. 27, as there are strong deviations from normality in the histogram and from the 

points being far from the diagonal (normal) line in the Quantile plot. All other plots are 

interpreted just like for level-1 and level-2 where there are no other notable deviations in 

equal variance or independence of the errors. There are no transformations for the Time or 

response variables that would help ease the violations of normality in this level, seen in 

Figure A. 28 to Figure A. 35.  

Finally, we assess the model fit of the full model. The full model includes all the 

contextual variables from each level. That is, we include the level-1 covariates, the level-2 

covariates and the level-3 covariates. We do not “double” covariates if they show up in more 

than one model, like Time, as it is a covariate for all levels as we are asses growth over time.  

Again, we examine any extreme and or influential observations, normality among errors, 

constant variance, multicollinearity, non-linearity, independence of errors, added-variable 

plots for transformations in covariates and transformation in the response.  

In Figure A. 36 we see that the histogram shows very little deviations form normality. 

The Quantile plot for our full model looks as good as one could get. There are very few 

points under the diagonal, and the overwhelming majority of points fall on the diagonal. The 
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Fitted versus Residual plot shows no clear pattern other than a flat line at 0, meaning no 

transformation of the response is necessary.  

In the boxplot figures for this model, there is about equal variances for all the sites of all 

the clients, and the means of the CIS Psychological Score in the sites are about the same seen 

in Figure A. 37 and Figure A. 38. The time series plots indicate that the residuals and raw 

score are i.i.d, seen in Figure A. 39 and Figure A. 40. In Figure A. 41 until Figure A. 44 we 

see that there are no extreme influential points in the model for all the variables and show 

that there are no need for transformations in any of the covariates or in the response variable. 

Overall, we have a well fit final model and have met the model assumptions.  

3.5 Results 

Interpreting the results from hierarchical models is more complex than when interpreting 

results from OLS regression analysis. In the models, we have both fixed and random effects, 

as well as both numerical and categorical variables. Had all the variables in the models been 

numeric, interpretations could have been more simple. The primary use of the level-1, level-2 

and level-3 models is to assess the variance. We will note the fixed effect parameters in these 

models as well as the differences in the factor levels, but their values at sub-levels are not as 

important as the output of the covariance parameters. The importance of the fixed effects 

comes in when we interpret the final full level model, which includes all the covariates.  

3.5.1 Unconditional Model to match output  

We first assess the fully unconditional model, where no covariate variables. This model 

represents how much variation in the CIS Psychological score is allocated across the three 

different levels; time, client and site. The unconditional model is as follows  

       JKL_NL!#"O = 0&&& + P&O + Q&O + *#"O,     *&"O~S 0, ./       (3. 5) 
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0&&& is the overall random intercept and value of the unconditional score; 

P&O is the random effect of Client;  

Q&O is the random effect of Site;      

*#"O is the random error effect; 

- = 1"O, 2"O, 3"O for time of survey that correspond to intake, 6 months, discharge, 

respectively for each client , in shelter V; 

, = 1,… , >O clients which there are 370 of them at intake (286 at 6 months and 143 at 

discharge) in shelter V; 

V = 1,2,3 for the 3 different locations of homeless shelters in the larger metropolitan New 

Mexico cities. 

*Note that the estimate is the Variance not Standard Deviation as we would assume as the 

estimate come from a Normal distribution.  

Table 3.9 : Covariance Parameter Estimates for the Unconditional Model  

Cov Parm Subject Estimate 
Standard 

Error Z Value Pr > Z 

Intercept Site 0.1774 0.2559 0.69 0.2441 

Intercept Client 3.2655 0.8094 4.03 <.0001 

Residual Time  12.4541 0.8627 14.44 <.0001 
 
 

The null hypothesis for the covariance parameters is that the variance is equal to zero 

([&:	./ = 0). When the p-value for the covariance estimate is smaller than the testing point, 

¢ = 0.05, we reject the null hypothesis concluding the variance is not equal to zero. The 

estimate for the covariance parameter for the RE of Site is the smallest and statistically non-

significant. This means this random intercept is not explaining the variance in the model. 
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Thus, Sites do not vary from one another. About 1/4th (3.27) of the variance is explained at 

the Client level, so modeling the clients as a RE is important as clients do statistically vary 

from one another. The most variance in the unconditional model is being explained through 

the residuals. Meaning that other treatments or covariates may explain the variance in the 

model. The total variance for the unconditional model is 15.897. 

Table 3.10 : Solution for Fixed Effects for the Unconditional Model  

Effect Estimate Standard Error DF t Value Pr > |t| 

Intercept 12.0169 0.2914 2 41.24 0.0006 
 

The estimate for the intercept from the fixed portion of this model is 12.017 points, which 

is the average score for all individuals for the CIS Psychological score. Note that the 

intercept is significant at an α = 0.05 level as its p-value is less than α. The intercept is 

meaningful as the physical score has a range of [4,20] ∈ R. On average, the CIS 

Psychological score would start at 12.02 with some error. The confidence intervals in 

hierarchical models what include random coefficients are calculated by the intercept value-

t_0.05*SE to intercept value+t_0.05*SE. As these intercepts are permitted from group to 

group, we describe this 95% range slightly differently. The 95% confidence interval for the 

intercept parameter is: 

95%CI(β&): 11.446 ≤ β0 ≤ 12.588.  

Where one interpretation is that we are 95% certain, the population intercept for the 

unconditional model is between [11.5,12.6], and note that the estimated intercept (mean CIS 

Psychological Score) is 12.02 which is contained in the interval. The intercept parameter in 

mixed models is a mixed component itself as it is a combination of the fixed intercept plus 

random variability from group to group. We can interpret this intercept in that the random 
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component variance for intercept is normally distributed, we know 95% of the distribution is 

included in the interval. If this interval was wider, we may be concerned and adding 

contextual variables, cross-level interactions, could narrow this interval (Bickel 2007). 

3.5.2 Level-1 Model: Repeated Measures- Time Level  

This model has covariates that are time-invariant; Time, Health Status, IFF and PTSD 

Score. There are no other covariates in this model. This is a random intercept model with 

fixed effects on all the covariates (slopes). The variable time and IFF are being modeled as 

categorical as there are only 3 points of repeated measured and 2 factors in IFF. This so that 

we can distinctly see what is happening, on average, over time for all clients; seen through 

difference of least squares estimates. Health Status and PTSD score are numeric covariates. 

The model is as follows:  

CKLNL!#"O = X6YZ + 0([\]^-ℎL-]-`V#"O + 0/Kdd#"O + 0cNiLj#"O + 0ei,B\#"O + *#"O					(3. 6) 

X6YZ is the random intercept- the initial status of client is, that is, the expected outcome for 

that client at intake (Time=0), when IFF=0, Health Status is its grand mean and PTSD is its 

grand mean and includes the random effect for client and site; 

0(	is the score for client is when they have the average health status; 

0/ is the score for client is when they saw friends and family;  

0c	is the score for client is when they have the average PTSD score; 

0e is the score for client is during the study time period; 

and	*#"O is random error.  

Table 3.11 : Covariance Parameter Estimates for the Level-1 Model  

Cov Parm Subject Estimate Standard Error Z Value Pr > Z 

Intercept Site 0.2664 0.3476 0.77 0.2217 
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Cov Parm Subject Estimate Standard Error Z Value Pr > Z 

Intercept Client 3.6581 0.7100 5.15 <.0001 

Residual Time 9.6562 0.6741 14.32 <.0001 
 

We first note that the total variance has decreased to 13.5807 from 15.897. This means 

that adding the fixed effects Time, IFF, PTSD, and Health Status variables, partitioned some 

of the variance into clients over time. We see that the residual variance decreased and the 

clients’ covariance estimate increased. Again, we see that the RE for site is statistically non-

significant, while the intercept for clients is.  

We can again use the covariance parameter estimates to look at the conditional ICC. We 

can see if the variability between groups in reduced or not. The between sites variability is 

now 1.96% and between client variability is now 26.9% with the inclusion of the fixed 

covariates. Including the contextual cross level interaction terms in multilevel regression 

equation has produced a slightly higher proportion of variability between groups. This may 

lead us to not use these contextual variables.  

We see from the ANOVA Table 3.12 that Time, IFF and Health Status and PTSD are 

statistically significant fixed effect in the level-1 model. As there are variables treated as 

categorical, we need to see where the significant differences lie among the 3 time points 

(repeated measures), and between the 2 levels of IFF. First, in Table 3.13 we see the that 

from the fixed effects, the intercept is significant and that time 1 (6-months) is statistically 

different from intake and that time 2 (discharge) is statistically significant from intake. In 

Table 3.14, we are able to see the actual estimates for each time point.  

These averages are the averages of the 3 time points over all other variables where the 

numeric variables are set equal to 0 and the categorical variables are averaged over all the 
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categories. The least squares estimators handle unbalanced categories and average over any 

and all the categories, without weighting the categories which may cause some biased 

estimates as the SE will increase for the smallest of the categories. We see that all the time 

points are significant in the model and that the biggest difference is between intake and 6-

moths followed by intake and discharge. The smallest difference is from 6-months to 

discharge and is statistically non-significant. These pairwise differences are seen in Table 

3.15. 

In Table 3.13 we see that both 6-months and discharge times are significantly different 

from intake. We note that from intake to 6-months has a larger increase on one’s overall CIS 

Psychological score than from intake to discharge. We see that since “5” being the most-poor 

health, that this negative in front of health status means that for every point increase in 

Health Status, CIS Psychological score decreases by 0.0552 points. Those who did not see 

friends or family have a decrease in score by 1.07 points and those who have higher PTSD 

scores lower their CIS score by 0.039 points. This is of course while all other terms are held 

constant. 

Table 3.12 : ANOVA Table of the Fixed Effects for the Level-1 Model: Type 3 Tests of Fixed 

Effects 

Effect Num DF Den DF F Value Pr > F 

Time 2 403 40.76 <.0001 

IFF 1 403 14.43 0.0002 

Health Status 1 403 16.92 <.0001 

PTSD Score 1 403 20.28 <.0001 
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Table 3.13 : Solution for Fixed Effects for the Level-1 Model  

Effect IFF Time Estimate Standard Error DF t Value 
Pr > 

|t| 

Intercept     13.3065 0.6072 2 21.91 0.0021 

Time: 6-
months 

  1 2.1527 0.2545 403 8.46 <.0001 

Time: 
Discharge 

  2 1.9578 0.3272 403 5.98 <.0001 

Time: 
Intake 

  0 0 . . . . 

IFF No   -1.0697 0.2816 403 -3.80 0.0002 

IFF Yes   0 . . . . 

Health 
Status 

    -0.5518 0.1342 403 -4.11 <.0001 

PTSD Score     -0.03892 0.008642 403 -4.50 <.0001 
 
Table 3.14 : Least Squares Means Estimates for the Level-1 Model Categorical variables  

Effect IFF Time Estimate Standard Error DF t Value 
Pr > 

|t| 

Time: 6-
months 

  1 12.9477 0.3728 403 34.73 <.0001 

Time: 
Discharge 

  2 12.7528 0.4256 403 29.97 <.0001 

Time: Intake   0 10.7950 0.3556 403 30.36 <.0001 

IFF No   11.6303 0.3870 403 30.06 <.0001 

IFF Yes   12.7001 0.3530 403 35.98 <.0001 
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 Table 3.15 : Difference of Least Squares Means Estimates for the Level-1 Model 

Categorical variables 

Effect IFF Time IFF Time Estimate 
Standard 

Error DF t Value Pr > |t| 

Time   1   2 0.1949 0.3346 403 0.58 0.5607 

Time   1   0 2.1527 0.2545 403 8.46 <.0001 

Time   2   0 1.9578 0.3272 403 5.98 <.0001 

IFF No   Yes   -1.0697 0.2816 403 -3.80 0.0002 
  
3.5.3 Level-2: Client/Persons level 

Again, in this model we have mixed effects as we have random intercept and fixed effects 

in the covariates variables of the model (fixed slopes).  

CKLNL!#"O=s6YZ + %&(u\>b\v"O + %&/wb`f]-,g>"O + %&ci,B\#"O + v&"O                   (3. 7) 

s66Z is the random intercept- the initial status of client is, that is, the expected outcome for 

that client at intake (Time=0), when education is level is high school and gender is male and 

includes the random intercepts for client and site; 

%&( is the fixed estimate for Gender; 

%&/ is the fixed estimate for Education; 

%&c is the fixed estimate for Time; 

and	v&"O is random error. 

Table 3.16 : Covariance Parameter Estimates for the Level-2 Model  

Cov Parm Subject Estimate 
Standard 
Error 

Z 
Value Pr > Z 

Intercept Site 0.1514 0.2304 0.66 0.2555 

Intercept Client 4.2434 0.7925 5.35 <.0001 
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Cov Parm Subject Estimate 
Standard 
Error 

Z 
Value Pr > Z 

Residual Time 10.0504 0.7123 14.11 <.0001 
 

Seen in Table 3.16, the total variance in the level-2 persons’ level is 14.4452, which is a 

1-unit increase from the time level model. Most of the explained variance is from the random 

effect of clients and is a significant effect. We note that the variance in this model is more 

than the variance in the more complex model. This model is explaining more variance than 

the unconditional model. We again look at the conditional ICC, where 1.0% of the variance 

in CIS Psychological score is between sites and 29.4% is between clients. Clients are still a 

significant RE.  

We see in   , that of the Fixed Effects for the Level-2 Model: Type 3 Tests of Fixed 

Effects we see that Time, Gender, and Education are significant fixed effects in the model. 

Make note that Education is marginally significant, but when removing this effect, the AIC 

value increased more than 4 units. Thus, keeping Education in the model as the primary 

indication for model fit is smallest AIC.  

Table 3. 17: ANOVA table of the Fixed Effects for the Level-2 Model: Type  Tests of the 

Fixed Effects  

Effect Num DF Den DF F Value Pr > F 

Time 2 404 52.54 <.0001 

Gender 1 404 4.18 0.0417 

Education 2 404 2.65 0.0718 
Table 3.18 shows that females and males do statistically differ in their CIS 

Psychological score. We see that having a higher education (MT HS) is statistically different 

from only having a HS education. Having a higher education increases ones CIS 
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Psychological score by 0.9581 points. Table 3.19 tells us the estimate, again, on average over 

all other variables, for each factor in each variables in the model. In Table 3.20 we see that, 

again, HS and MT HS differ and Genders differ and all other differences are not significant. 

Table 3.18 : Solution for Fixed Effects: Level-2 Model  

Effect Gender Time Education Estimate 
Standard 

Error DF t Value 
Pr > 

|t| 

Intercept       9.9877 0.4224 2 23.65 0.0018 

Time: 6-
months 

  1   2.4528 0.2567 404 9.55 <.0001 

Time: 
Discharge 

  2   2.2664 0.3325 404 6.82 <.0001 

Time: 
Intake 

  0   0 . . . . 

Gender Female     0.6478 0.3170 404 2.04 0.0417 

Gender Male     0 . . . . 

Education: 
MT HS 

    1 0.8988 0.3911 404 2.30 0.0220 

Education: 
LT HS 

    2 0.3820 0.3533 404 1.08 0.2802 

Education: 
HS 

    3 0 . . . . 

 

Table 3.19 : Least Squares Means: Estimates for the Level-2 Model Categorical variables 

Effect 
Gende
r 

Tim
e 

Education
1 

Estimat
e 

Standar
d 

Error DF 
t Valu

e 
Pr > 

|t| 

Gender Female     12.6355 0.3114 40
4 

40.58 <.000
1 

Gender Male     11.9877 0.3382 40
4 

35.45 <.000
1 
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Effect 
Gende
r 

Tim
e 

Education
1 

Estimat
e 

Standar
d 

Error DF 
t Valu

e 
Pr > 

|t| 

Education
: MT HS 

    1 12.7835 0.3679 40
4 

34.75 <.000
1 

Education
: LT HS 

    2 12.2667 0.3321 40
4 

36.94 <.000
1 

Education
: HS 

    3 11.8847 0.3650 40
4 

32.56 <.000
1 

Time: 6-
months 

  1   13.1914 0.3190 40
4 

41.36 <.000
1 

Time: 
Discharge 

  2   13.0049 0.3831 40
4 

33.94 <.000
1 

Time: 
Intake 

  0   10.7386 0.3014 40
4 

35.63 <.000
1 

 
Table 3.20 : Difference of Least Squares Means: Estimates for the Level-2 Model categorical 

variables 

Effect 
Gen
der 

Ti
me 

Educat
ion 

Gen
der 

Ti
me 

Educat
ion 

Estim
ate 

Stand
ard 

Error 
D
F 

t Val
ue 

Pr > 
|t| 

Gende
r 

Fema
le 

    Male     0.647
8 

0.3170 40
4 

2.04 0.04
17 

Educat
ion 

    MT HS     LT HS 0.516
8 

0.3658 40
4 

1.41 0.15
86 

Educat
ion 

    MT HS     HS 0.898
8 

0.3911 40
4 

2.30 0.02
20 

Educat
ion 

    LT HS     HS 0.382
0 

0.3533 40
4 

1.08 0.28
02 

Time   1     2   0.186
5 

0.3419 40
4 

0.55 0.58
57 

Time   1     0   2.452
8 

0.2567 40
4 

9.55 <.00
01 
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Effect 
Gen
der 

Ti
me 

Educat
ion 

Gen
der 

Ti
me 

Educat
ion 

Estim
ate 

Stand
ard 

Error 
D
F 

t Val
ue 

Pr > 
|t| 

Time   2     0   2.266
4 

0.3325 40
4 

6.82 <.00
01 

 
3.5.4 Level-3 Model: Site   

We now model the final level of the hierarchy as this is the corset grouping variable 

assumed in the data. There are 2 random effects in the intercepts and 1 fixed effect for the 

slope of the time variable.  

CKLNL!#"O = P&&& + 0&&#i,B\#O + 1&&O  (3. 8) 

where X666 is the average intercept across level-3 units; 

0&&#	is the effect of time in site s; 

1&&O is the unique increment of the intercept associated with level-3 unit	s. 

Table 3.21 : Covariance Parameter Estimates for the Level-3 Model  

Cov Parm Subject 
Estimat

e 
Standard 

Error Z Value Pr > Z 

Intercept Site 0.1458 0.2286 0.64 0.2618 

Intercept Client 4.4366 0.7900 5.62 <.0001 

Residual Time  10.0238 0.7044 14.23 <.0001 
 
 

In the level-3 model there is a total variance of 14.6064 (Table 3.21), which is slightly 

more than the level-2 model and more than the level-1 but less than the unconditional model. 

This means, so far, that the level-1 model is explain the most variability. We see again that 

time is a significant covariate and that time 0 and 1 are significantly different and that 0 and 2 

are significantly different. We see that in Table 3.24 there is the highest, on average, score at 
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6-months. The difference in score from 6-months to discharge is slightly different (0.1743) 

but that difference is not significantly different.   

We again look at the conditional ICC, where 1.0% of the variance in CIS Psychological 

score is between sites 30.4% is between clients. Note that Clients are still a significant RE, 

while Sites are not. 

Table 3.22 : ANOVA of the Fixed Effects for the Level-3 Model: Type 3 Tests of Fixed Effects  

Effect Num DF Den DF F Value Pr > F 

Time 2 406 52.46 <.0001 
 
Table 3.23 : Solution for Fixed Effects for the Level-3 Model  

Effect Time Estimate 
Standard 

Error DF t Value Pr > |t| 

Intercept   10.7935 0.2969 2 36.36 0.0008 

Time: 6-months 1 2.4418 0.2562 406 9.53 <.0001 

Time: Discharge 2 2.2675 0.3320 406 6.83 <.0001 

Time: Intake 0 0 . . . . 

Table 3.24 : Least Squares Means: Estimates for the Level-3 Model categorical variables 

Effect Time Estimate 
Standard 

Error DF t Value Pr > |t| 

Time: 6-months 1 13.2353 0.3142 406 42.12 <.0001 

Time: Discharge 2 13.0610 0.3792 406 34.44 <.0001 

Time: Intake 0 10.7935 0.2969 406 36.36 <.0001 
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Table 3.25 : Difference of Least Squares Means: Estimates for the Level-3 Model categorical 

variables 

Effect Time Time Estimate 
Standard 

Error DF t Value Pr > |t| 

Time 1 2 0.1743 0.3417 406 0.51 0.6102 

Time  1 0 2.4418 0.2562 406 9.53 <.0001 

Time  2 0 2.2675 0.3320 406 6.83 <.0001 

 

3.5.5 Full Model: Time, Client, and Site level covariates included  

Finally, we present the full model. This includes all the covariates from all 3 levels of the 

hierarchy. 

JKLNL!#"O = P&"O + 0&&#i,B\#"O + %&(u\>b\v&"O + %&/wb`f]-,g>&"O +

																				0([\]^-ℎL-]-`V#"O + 	0/Kdd#"O + 0cNiLj#"O + (1&&O + v&"O + *#"O)      (3. 9) 

where  P&"O	is the score when all other covariates are set to their averages or baselines (the 

intercept) and includes the random effects of both Client and Site;  

0&&# is the FE estimate for Time; 

%&( is the FE estimate for Gender; 

%&/ is the FE estimate for Education; 

0( is the FE estimate for Health Status; 

β/ is the FE estimate for IFF; 

βc is the FE estimate for grand mean centered PTSD Score; 

and v&"O	the random effect of unit , on the mean, 1&&O the random effect of unit V, and the 

level-1 error *#"O.  
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In Table 3.26 the total variance for the full model is 13.341, where the most explained 

variance comes from the random effect of clients within sites. We see that the residual 

variance is the second smallest in this model, where level-1 has the smallest residual variance 

by 1/100th of a unit point. We note that the site level variance estimate is largest in this model 

but is not a significant random effect. Below we see that all the covariates (fixed effects) are 

significant, noting that Education is marginally significant. When we removed this effect, the 

AIC was larger, thus we keep it in the full and final model. We again look at the conditional 

ICC, where 2.0% of the variance in cis score is between sites 25.3% is between clients. 

Clients are still a significant RE. We use a combination of the fixed effects estimates from 

Table 3.27 and the difference in least squares means to make our inferences about for the full 

model. 

Table 3.26 : Covariance Parameter Estimates for the Full Model  

Cov Parm Subject Estimate 
Standard 

Error Z Value Pr > Z 

Intercept Site 0.2680 0.3449 0.78 0.2186 

Intercept Client 3.3694 0.7051 4.78 <.0001 

Residual Time 9.7036 0.6827 14.21 <.0001 
 
 

 In Table 3.27 we see that all the variables in the model are significant, except for 

education, which is marginally significant. We further investigate how these variables are 

contributing to the CIS Psychological score. From the fixed effect solutions in Table 3.28 we 

want to take note of the estimates and p-values of the numeric covariates, Health Status and 

PTSD Score. Each 1-unit increase in Health Status corresponds, on average to a 0.5625-point 

decrease in the CIS Psychological score. This makes sense as better Health Status is rated 
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lower, and worse Health Status is rated higher. For each 1-point increase in PTSD Score, on 

average the CIS Psychological score decrease by 0.03889-points. This again makes sense that 

there is a decrease as a higher PTSD score means worse and we expect the change to be this 

small as the PTSD score scale is 17 to 85, while the response is a 0 to 20 scale. 

We now interpret the categorical variables in how they differ from one another. As seen 

in Table 3.29, those who interact with their family and friends have a 1-point higher score on 

average, than those who do not, and the difference is statistically significant. Females have 

on average, a 0.5 point higher CIS Psychological score than males, and the difference is 

statistically significant. 

 The following interpretations are on those statistics and estimates found in Table 3.29 

and Table 3.30. Those with more than a high school experience have the highest on average 

score, and the difference in CIS Psychological score for those who have more than a high 

school education and those who have less than a high school education is 0.829 points. That 

is, those who have a more than less than high school education has a 0.829 point higher CIS 

Psychological score, and is statistically significant. The difference in CIS Psychological 

score for those who have more than a high school education and those who have a high 

school education is 1.154 points. That is, those who have a more than a high school 

education has a 1.154 point higher CIS Psychological score, and is statistically significant. 

The difference in CIS Psychological score for those who have less than a high school 

education and those who have a high school education is 0.325 points. That is, those who 

have a more than a high school education has a 0.325 point higher CIS score, and is not 

statistically significant. 
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We now examine what is happening over time, when including all the covariates 

variables, on average. The score at intake is the smallest averaged over all the variables, 

whole the CIS score at 6-months is the largest on average of over all the variables. The 

difference if CIS score from intake to 6-months is 2.158 and is statistically significant. That 

is, that from intake to 6-months the CIS score increase by 2.158 points. The difference if CIS 

score from intake to discharge is 1.949 and is statistically significant. That is, that from 

intake to discharge the CIS score increase by 1.949 points. The difference if CIS score from 

6-month to discharge is 0.209 and is NOT statistically significant. That is, that from intake to 

discharge the CIS score decreases by 0.209 points. These results are congruent with Figure 

3.1.  

Table 3.27 : ANOVA table of the Fixed Effects for the Full Model: Type 3 Tests of Fixed 

Effects 

Effect Num DF Den DF F Value Pr > F 

Time 2 401 40.62 <.0001 

IFF 1 401 17.23 <.0001 

Health Status 1 401 17.82 <.0001 

PTSD Score 1 401 20.39 <.0001 

Gender 1 401 3.26 0.0717 

Education 2 401 5.09 0.0066 
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Table 3.28 : Solution for Fixed Effect of the Full Model  

Effect 
Gende
r 

IF
F 

Educatio
n 

Tim
e 

Estimat
e 

Standar
d 

Error DF 
t Valu

e 
Pr > 

|t| 

Intercept         12.5870 0.6700 2 18.79 0.002
8 

Time: 6-
months 

     1 2.1579 0.2550 40
1 

8.46 <.000
1 

Time: 
Discharge 

      2 1.9485 0.3276 40
1 

5.95 <.000
1 

Time: 
Intake 

      0 0 . . . . 

IFF   No     -1.1676 0.2813 40
1 

-4.15 <.000
1 

IFF   Ye
s 

    0 . . . . 

Health 
Status 

        -0.5625 0.1332 40
1 

-4.22 <.000
1 

PTSD 
Score 

        -
0.03889 

0.00861
2 

40
1 

-4.52 <.000
1 

Gender Female       0.5415 0.2999 40
1 

1.81 0.071
7 

Gender Male       0 . . . . 

Educatio
n: MT HS 

    1   1.1540 0.3724 40
1 

3.10 0.002
1 

Educatio
n: LT HS 

    2   0.3249 0.3367 40
1 

0.96 0.335
2 

Educatio
n: HS 

    3   0 . . . . 
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Table 3.29 : Least Squares Means: Estimates for the Full Model categorical variables 

Effect 
Gende
r 

IF
F 

Education
1 

Tim
e 

Estimat
e 

Standar
d 

Error DF 
t Valu

e 
Pr > 

|t| 

IFF   No     11.5372 0.3880 40
1 

29.74 <.000
1 

IFF   Ye
s 

    12.7048 0.3545 40
1 

35.84 <.000
1 

Gender Female       12.3917 0.3641 40
1 

34.04 <.000
1 

Gender Male       11.8503 0.3860 40
1 

30.70 <.000
1 

Educatio
n: MT 
HS 

    1   12.7820 0.4075 40
1 

31.37 <.000
1 

Educatio
n: LT HS 

    2   11.9529 0.3831 40
1 

31.20 <.000
1 

Educatio
n: HS 

    3   11.6280 0.4082 40
1 

28.48 <.000
1 

Time: 6-
months 

      1 12.9101 0.3743 40
1 

34.50 <.000
1 

Time: 
Discharge 

      2 12.7007 0.4267 40
1 

29.76 <.000
1 

Time: 
Intake 

      0 10.7522 0.3572 40
1 

30.10 <.000
1 
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Table 3.30 : Difference of Least Squares Means: Estimates for the Full Model categorical 

variables 

Effect 
Gen
der 

IF
F 

Educa
tion 

Ti
me  

Gen
der 

IF
F 

Educa
tion 

Ti
me  

Esti
mate 

Stan
dard 
Erro
r DF 

t V
alu
e 

Pr 
>|t| 

IFF   N
o 

      Y
es 

    -
1.167
6 

0.28
13 

40
1 

-
4.1
5 

<.00
01 

Gende
r 

Fem
ale 

      Male       0.541
5 

0.29
99 

40
1 

1.8
1 

0.07
17 

Educa
tion 

    MT 
HS 

      LT HS   0.829
1 

0.34
87 

40
1 

2.3
8 

0.01
79 

Educa
tion 

    MT 
HS 

      HS   1.154
0 

0.37
24 

40
1 

3.1
0 

0.00
21 

Educa
tion 

    LT HS       HS   0.324
9 

0.33
67 

40
1 

0.9
6 

0.33
52 

Time        1       2 0.209
4 

0.33
48 

40
1 

0.6
3 

0.53
22 

Time        1       0 2.157
9 

0.25
50 

40
1 

8.4
6 

<.00
01 

Time        2       0 1.948
5 

0.32
76 

40
1 

5.9
5 

<.00
01 

 
We now put all the information together in Table 3.31, Table 3.32 and Table 3.33 that 

break down inferential statistics for model selection and for variance explanation of the 

hierarchical model. As deviance is a measure of error, we are looking for smaller deviance 

difference. The smaller the better, meaning one model (the conditional model is preferred to 

the unconditional model). We, as always want a smaller AIC value and larger Ä/	value. 

Looking at Table 3.30 there are multiple measures to assess model fit. We can see that the 

full model [5] is best besides the unconditional model based on Ä/, which is not the primary 
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statistic we use to assess model fit. The R/	value is a summary statistic calculated by dividing 

the sum of residual and intercept for the conditional model by the sum of residual and 

intercept for the null model, subtracting the result from 1 and multiplying the result by 100 

(Bickel). We also note that the full model is explaining more variance than any other model. 

If we base our decision on deviance difference, we see that the level-3 model or model 4 is 

the best model.  The deviance statistic is calculated as the AIC values of the null model 

(unconditional model) minus the AIC of the conditional model. We use the AIC values of the 

null model and AIC values of all the conditional models –levels 1,2,3 and full- to calculate 

the deviance statistics. Overall, the full model is the best model for this data. This conclusion 

is supported by first off, the model diagnostics in previous sections of the chapter, from 

having the smallest AIC and largest R/, and importantly explain (capturing) the most 

variance in the data.  

We see overall that the models are explaining the variance differently. Certain models are 

accounting for significant portions of the variance and more so than others but that doesn’t 

mean that including contextual variables were a waste of degrees of freedom. We have 

significant fixed effects in our models, so the benefit we get is equal to the cost of these 

degrees of freedom. In Table 3.32 and Table 3.33 we want to see that adding contextual 

variables is aiding in explaining the variance. We see that the model with the least residual 

variance is the level-1 model but close to that of the full level model. This means that adding 

in fixed effects helped to partition the variance in the fixed and random effects.  

Table 3.31 : Model Selection Criterion Table for all 5 Models in this Thesis 

Model                  
[ # ] 

AIC I™ Deviance  Significant 
Parameters 

Total 
Variance 
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Unconditional       
[1] 

4456.4 84.103% NA  3 15.8970 

Level-1(Time)      
[2] 

4315.5 14.57% 141.1  6 13.5807 

Level-2 
(Client)                     
[3] 

4355.2 9.13% 101.2 5 14.4452 

Level-3 (Site)        
[4] 

4363.3 8.12% 93.1 3 14.6064 
 

Full                        
[5] 

4303.9 16.08% 152.9  8 13.3410 

 
 
Table 3.32: CIS Psychological Score: Random Intercept with Three Levels; Estimates of 

Covariance Parameters- A Level-by-Level breakdown of variance explained  

Random Effect  Variance Component  DF Wald Z P-value 

Level-1 

Variance 

    

    Residual (εÇÉÑ)          9.6562 403         14.32 <.0001 

Level-2 

Variance  

    

    Client (r&ÉÑ)         4.2434 404          5.35 <.0001 

    Site (r(ÉÑ)         0.1514 404          0.66 0.2555 

Level-3 

Variance  

    

     Client (u&&Ñ)         4.4366 406          5.62 <.0001 

     Site (uÇ&Ñ)         0.1458 406          0.64 0.2618 
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Table 3.33: CIS Psychological Score: Random Coefficient with Three Levels; Random 

Intercept for all levels; Estimates of Covariance Parameters- A complete breakdown  

Parameter Estimate Std. Error Wald Z Sig. Level 

Unconditional Model      

Site intercept variance 0.1774 0.2559 0.69 0.2441 

Client intercept variance 3.2655 0.8094 4.03 <.0001 

 Residual Variance  12.4541 0.8627 14.44 <.0001 

Level-1 Model      

Site intercept variance 0.2664 0.3476 0.77 0.2217 

Client intercept variance 3.6581 0.7100 5.15 <.0001 

 Residual Variance 9.6562 0.6741 14.32 <.0001 

Level-2 Model      

Site intercept variance 0.1514 0.2304 0.66 0.2555 

Client intercept variance 4.2434 0.7925 5.35 <.0001 

 Residual Variance 10.0504 0.7123 14.11 <.0001 

Level-3 Model      

Site intercept variance 0.1458 0.2286 0.64 0.2618 

Client intercept variance 4.4366 0.7900 5.62 <.0001 

Residual Variance 10.0238 0.7044 14.23 <.0001 

Full Model      

Site intercept variance 0.2680 0.3449 0.78 0.2186 

Client intercept variance 3.3694 0.7051 4.78 <.0001 

 Residual Variance 9.7036 0.6827 14.21 <.0001 
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It is important to note that these effects cannot necessarily be interpreted causally for 

observational data from a non-random sample from the population of interest. We could have 

found misleading conclusion and find contextual effects where none necessarily exist. We 

might have found that group-level correlations can be mistakenly attributed to individual-

level causes, but our setting is slightly different in that both individual- and group-level data 

are available. 

The Full Hierarchy of the Reduced Inferential Model 

Level – 1: Time level with time varying covariates, random intercept and fixed slopes  

CKLNL!#"O = X6YZ + 0([\]^-ℎL-]-`V#"O + 0/Kdd#"O + 0cNiLj#"O + 0ei,B\#"O + *#"O 

       (3. 10) 

where	-, ,, V	denotes	the	cluster	indices	for	Time,	Client,	and	Site,	respectively;	

X6YZ	is	a	random	intercept,	where	there	are	2	components	making	up	this	estimate-that	

of	the	random	intercept	for	Client	and	random	intercept	for	Site;	

0(	to	0e	are	fixed	slopes,	respectively;	

*#"O	the	error	term,	such	that		*#"O~S 0, ./ .	

Level- 2: Client level with person characteristic covariates, random intercept and fixed slopes 

Here we only model the level-1 intercept at level-2 with covariates as we have a random 

intercept only model; this will apply to the level-3 models as well: 

             X6YZ = s66Z + %&(u\>b\v"O + %&/wb`f]-,g>"O + %&ci,B\#"O + v&"O               (3. 11) 

s66Z is the average intercept across level-2 units; 

%&( to %&c	are the fixed slopes; 

v&"O is the random error. 
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Level- 3: Site level with no covariates other than time, random intercept and fixed slopes 
 
               s66Z = P&&& + 0&&#i,B\#O + 1&&O                     (3. 12) 
                
P&&&	is the average intercept across level-3 units; 

0&&#	is the effect of time in site V; 

1&&O	is the unique increment of the intercept associated with level-3 unit	V. 

Full Model: All covariates from all levels, random intercept and fixed slopes  

 
CKLNL!#"O = P&&&+0&&#i,B\#"O + %&(u\>b\v&"O + %&/wb`f]-,g>&"O +

															0([\]^-ℎL-]-`V#"O + 0/Kdd#"O + 0cNiLj#"O + (1&&O + v&"O + *#"O)	 			(3. 13)	

 
which can be interpreted as the outcome CIS Psychological Score is function of the average 

regression equation plus random error having three components; v&"O is the random effect of 

unit , on slope, 1&&O	is the random effect of unit V, and the level-1 error *#"O. The estimates for 

this model are those found from the solution for fixed effect parameters in Table 3.28, Table 

3.29, and Table 3.30. 
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Chapter 4: Discussion  

4.1 What we learned from data and model 

 The findings from this study support that individuals experiencing homelessness with 

better-reported health status have higher community integration scores. Further, this study 

supports Yanos (2007) that those experiencing homelessness who have a higher education 

have higher community integration scores than those with lower educational attainment. We 

also found that those with higher PTSD scores had lower community integration scores, 

which is similar to those findings from Baumgartner and Herman (2012). We relate that 

those who interact with their family and friends increased their feeling of connectedness in 

their communities. 

Implications are that those with better social networks and lower rates of PTSD felt better 

in their communities. We also found that those who attend more self-help groups and 

churches didn’t predict CIS Psychological growth. We did not find supporting evidence that 

there were any discrepancies between women and men with depression who have higher 

income tied to higher community welfare. We found that women had higher CIS 

Psychological while averaged over other significant factors in this study. Overall, we found 
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that better all-around welfare for the homeless community creates higher rates of community 

integration. 

We see that those who have higher self-reported physical and psychological health have 

higher CIS Psychological scores at baseline. When there are self-help groups (i.e. alcoholic 

anonymous) and churches for individuals experiencing homelessness to attend at least once a 

month, they have a higher CIS Physical integration score, but there was no significant 

increase in the CIS Psychological score for any amount of attendances through the duration 

of the study. Allowing individuals to congregate with family and friends also increases these 

CIS scores. These increases in the CIS scores are seen to increase over time from intake to 6-

months, while homeless individuals are housed. We note that those with higher educational 

attainment after high school increases CIS Psychological score more than those with less 

than a high school education. Thus, for those who are experiencing homelessness and who 

have permanent housing, we know which factors are influencing their self-reported CIS 

Psychological scores.  

4.2 Limitations and Future work   

Inference is only as good as how well your model fits the data, and how well the data is 

measured. Random sampling is important for inference from a sample to a population. In this 

observational study, we had no random design or control group, and our sample was not a 

random sample since the data is self-reported and survey data. A nonrandom sample may 

produce bias. Another source of bias is that self-reported data can produce inaccuracies from 

social desirability (Larson 2019). The data are also unbalanced, and there are attrition issues 

where the sample size decreases over time. Unbalanced data and time-varying covariates 

variables allure one to use HLMs to make accurate estimates and predictions, as OLS would 
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produce inefficient estimates of fixed effects. As there is no cross-validation to assess if the 

analysis results could be generalizable to an independent dataset, we cannot use our model as 

a predictive model, which is one of the main goals in any statistical analysis. 

A significant limitation to the analysis in this paper is that the time variable is not 

continuous, limiting the assessment of growth over time. We treat the variable as a 

categorical to assess what is happening between the repeated measures.  

Another major limitation of this study is that the level-1 and level-3 models clusters were 

few. There are only three repeated measures and only three sites where we are grouping the 

data. Bickel suggests at least a 20/20 rule, meaning 20 observations in 20 cluster. 

Raudenbush and Bryk (2002) suggests that even 12 observations in a clustering group are 

small, and we have some number of observations in 3 clusters (91, 126 and 52, for example 

at intake). Small clustering units can impact biases and estimation in any direction in all 

levels of the hierarchical model. When modeling the variance components under REML 

when the number of subjects per group is few, there are higher biases (Stalter 2018). Slater 

also found that, in general, higher biases were found when the ICC was large. However, we 

do not see extremely high ICC in the unconditional or conditional models. 

The work we’d consider to further this study would be to implement the suggested 

changes to the program, so there is more accessibility. This could give us an indication if the 

PSH program is improving the feeling of higher community integration and social 

embeddedness for those experiencing homelessness.  Other work could include sensitivity 

analyses of a few types. One might be to run the analysis with a different covariance 

structure, like AR(1) or unrestricted to see the actual differences in the inferential statistics. 

One might be tempted to run the models under ML, but again, we have random effects and 
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under ML these effects would be negatively biased. So you may trade precision and bias in 

that analysis. If there was an indicator for who the interviewers were for the surveys, we 

could possibly use that as a grouping variable and random effects or a level of itself. Adding 

levels to a multilevel model does become statistically cumbersome and needs to be well 

thought out, especially when higher levels in the model could give little to no information to 

the researcher and you could over scope the task at hand (Bickel 2007). 
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Chapter 5: Conclusion 

5.1 Analytical Conclusion  

The overall takeaway from the analysis of growth in community integration score(s), 

psychological (and physical), in those experiencing homelessness, is that the CIS 

Psychological score increases most between intake and 6-months, with no measurable change 

thereafter. As we do not have a control group of those with treatment (housing) we cannot 

directly say that supporting permanent housing allows these individuals to feel better in their 

psychological and physical welfare. We now understand that there are essential factors that 

contribute to the well beings of homeless communities in New Mexico. From the results of 

the analysis we suggest social and policy reform to better support permanent housing 

communities.  

That is the implication from the results of this analysis to the policy recommender and 

practitioners is that among people experiencing homelessness enrolled our program for 

permanent housing, more attention is needed for those with lower education, little to no 

access to physical and mental health professionals, no common place for external support 

from family and friends, and for men more so than for women. To support better facilities 

and housing, we recommend that there is better access to those experiencing homelessness. 
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Having better access to health facilities, mental and physical, could influence a more 

excellent feeling of belonging and integration. Having access to at least one self-help group, 

like churches, libraries, and areas of the congregation could further influence a feeling of 

belonging and integration. Finding ways to educate or foster education could result in a 

higher feeling of community integration. Most importantly, these increases of CIS scores are 

attributed to the amount of time those experiencing homelessness who were in permanent 

supportive housing. This is only until 6-months into the program, so after their CIS score 

growth is level, these individuals may be improving in other vocational and social ways that 

are more stable.  

5.2 Statistical Modeling Conclusion  

Statistical analyses are driven by questions, hypotheses, and the extent of the quantity and 

quality of the data. The analysis presented in this paper used hierarchical mixed models, 

which allows for technically accurate estimation and modeling of nested data. Using this 

technique, we could contextually break down the model into sub-models, to explain how and 

where the variance is explained. For instance, we can ask how variables measured at one 

level affect relationships occurring at other levels. 

A researcher has to make many model specification decisions to draw the best inference 

from the data. In a hierarchical framework, the following are specifications that one must 

consider to model the data accurately: selecting appropriate contextual covariates, 

determining if the ICC is high enough to warrant several appropriate levels, deciding which 

components are to be modeled as fixed or random (vary across higher levels), and 

determining the structure to model the variance-covariance components (Bickel 2007). The 

model validity is more complex in hierarchical modeling, and we relax the independent and 
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constant-variance assumptions, allowing correlated errors with non-constant variance. 

Allowing relaxed assumptions from the GLM accounts for the nested structure of the data. 

Using mixed models allows us to use random effects to account for correlated residuals. 

The random portion of mixed models allows for individual effects (such as, random variation 

across individuals). Using mixed-effects allows us to assume that there is more than one 

source of random variability in the data. To more accurately estimate the covariance 

parameters, we use REML instead of the more common ML estimator. There are specific 

ways to model the variance components in different statistical software. As we modeled the 

data in SAS PROC Mixed, we use the "variance components" method, over say, AR(1), or 

UN structures. The use of VC is because our data was survey data from selected individuals 

at non-random sites.  
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Appendix: Model Diagnostic Figures  

 
Unconditional Model  

 

 
Figure A.1: Residual Distributional Diagnostics for the Unconditional Model-These 

diagnostics show that the unconditional model does not follow a normal curve; that is, the 

residuals are not normally distributed with mean zero and equal variance. We see this in the 

large deviations from the normal blue curve in the histogram and outliers in the quantile 

plot.  
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Figure A.2: Box plots of the response, CIS Psychological score, among the three different 

sites-This diagnostic plot shows that the 3 sites are distributed differently in how the boxes 

are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same. Although, we would say they exhibit equal variance.  

 
Figure A.3: Box plots of the residuals for the model among the three different sites-This 

diagnostic plot shows that the 3 sites are distributed differently in the residuals in how the 

boxes are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same, with equal variance. 
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Figure A 4: Time Series plot of the response of clients within sites- This diagnostic plot 

shows independence among the CIS Psychological score. We see that there is random noise, 

an indication of independence in the model.  

 
Figure A.5: Time Series plot of the residuals of clients within sites- This diagnostic plot 

shows independence among the CIS Psychological residuals. We see that there is random 

noise, an indication of independence in the residuals. 
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Figure A.6: REML Distance plot of the full data set- This plot is used to diagnose overall 

influence points. There are no high influence points from the fixed effects.   

 
Figure A.7 Cook’s Distance For Fixed Effects and Influential points for Random Effects. 

There are no high influential observations in the fixed or random effects.  
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Figure A.8: Box-Cox plot for the the Level-1 Model; all levels of the model including the 

unconditional through to the full model all have a lambda (power) value of about 1 with 

narrow bands; this is not the exact plot for each level of the model as they all have different 

residual values but they all exhibit a similar look with similar axis values. This means no 

power transformation in the outcome would result in bettering the normality assumption.  
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Level-1 Model 

 

 
Figure A.9: Residual Distributional Diagnostics for the Unconditional Model- The scatter 

plot shows independence in the residuals; the histogram shows normality in the distribution 

of the residuals; the qq-plot looks like there is normality in the residuals, with few off 

diagonal points. 

 
Figure A.10: Box plots of the response, CIS Psychological score, among the three different 

sites- This diagnostic plot shows that the 3 sites are distributed differently in how the boxes 
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are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same. These show equal variance.  

 
Figure A.11 : Box plots of the residuals for the model among the three different sites- This 

diagnostic plot shows that the 3 sites are distributed differently in the residuals in how the 

boxes are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same, with equal variance. 

 
Figure A.12: Time Series plot of the response of clients within sites- there is random noise in 

this plot of the outcome, meaning that we can assume there is independence in the variable.   
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Figure A.13 : Time Series plot of the residuals of clients within sites- there is random noise 

in this plot of the outcome residuals, meaning that we can assume there is independence in 

the residuals.    

 

Figure A.14: Cook’s Distance for Fixed Effects and Influential points for Random Effects- 

There are no high influential observations in the fixed or random effects. 
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Figure A.15 : Level-1 Residuals vs Leverage points- There are no high leverage points that 

cause concern for removing of an observation.  

 

Figure A.16: Leverage plots of the numeric predictors in the Level-1 model- these variables 

are not needing an transformation or seem to be linearly dependent among the covariates.. 
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Figure A.17: Added Variable plots for the level-1 predictors- these variables are not needing 

an transformation or seem to be linearly dependent with the predictor. 
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Level-2 Model 

 

 
Figure A.18: Residual Distributional Diagnostics for the Level-2 Model- The scatter plot 

shows independence in the residuals; the histogram shows normality in the distribution of the 

residuals; the qq-plot looks like there is normality in the residuals, with few off diagonal 

points. This model exhibits more deviance from normality than the level-1 model.  

 
Figure A. 19: Box plots of the response, CIS Psychological score, among the three different 

sites- This diagnostic plot shows that the 3 sites are distributed differently in how the boxes 

are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same. These show equal variance.   
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Figure A. 20: Box plots of the residuals for the model among the three different sites- This 

diagnostic plot shows that the 3 sites are distributed differently in the residuals in how the 

boxes are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same, with equal variance. 

 
Figure A. 21: Time Series plot of the response of clients within sites- There is random noise 

in this plot of the outcome, meaning that we can assume there is independence in the 

variable.   
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Figure A. 22: Time Series plot of the residuals of clients within sites there is random noise in 

this plot of the outcome residuals, meaning that we can assume there is independence in the 

residuals.   

 

 
Figure A. 23: Cooks Distance For Fixed Effects and Influential points for Random Effects- 

There are no high influential observations in the fixed or random effects.  
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Figure A. 24: Level-2 Residuals vs Leverage points- There are no high leverage points that 

cause concern for removing of an observation.   

 
Figure A.25: Level-2 Leverage plots for all the predictors- This plot shows there are no 

linear dependencies in the variables for this model.  
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Figure A. 26: Level-2 predictors Added variable plots- This plot shows that there are no 

linear dependencies among the outcome and covariates. 
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Level-3  

 
 

 
Figure A. 27: Distributional Diagnostics for the Level-3 Model- The scatter plot shows 

independence in the residuals; the histogram shows deviations from normality in the 

distribution of the residuals; the qq-plot looks like there is again, deviations from normality 

in the residuals, with many off diagonal points. This model exhibits more deviance from 

normality than the level-1 model, and level-2 model.  

 

 
Figure A. 28: Box plots of the response, CIS Psychological score, among the three different 

sites-This diagnostic plot shows that the 3 sites are distributed differently in how the boxes 
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are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same. These show equal variance.  

 
Figure A. 29: Box plots of the residuals for the model among the three different sites- This 

diagnostic plot shows that the 3 sites are distributed differently in how the boxes are of 

different sizes, but that the mean CIS Psychological score for all three sites are roughly the 

same. These show equal variance in the residuals.   

 
Figure A. 30 : Time Series plot of the response of clients within sites- There is random noise 

in this plot of the outcome, meaning that we can assume there is independence in the 

variable.    
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Figure A. 31: Time Series plot of the residuals of clients within sites- There is random noise 

in this plot of the outcome residuals, meaning that we can assume there is independence in 

the residuals.    

 
Figure A. 32: Cooks Distance For Fixed Effects and Influential points for Random Effects- 

There are no high influential observations in the fixed or random effects.   
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Figure A. 33: Level-3 Residuals vs Leverage points- There are no high leverage points that 

cause concern for removing of an observation. 

 

 
Figure A. 34: Level-3 Leverage plots for all the predictors- This plot shows there are no 

linear dependencies in the variables for this model. 
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Figure A. 35: Added Variable plots for the level-3 Model- This plot shows that there are no 

linear dependencies among the outcome and covariates. 

  

−0.4 −0.2 0.0 0.2 0.4 0.6

−5
0

5

new_time1 | others

ci
s_

ps
yc

h 
 | 

ot
he

rs

−0.2 0.0 0.2 0.4 0.6

−1
0

−5
0

5

new_time2 | others

ci
s_

ps
yc

h 
 | 

ot
he

rs

Level−3 Added Variable Plots



 

 

125 

Full model 

 

 
Figure A. 36: Distributional Diagnostics for the Full Model Residuals- This is the model of 

primary interest where we really care about model fit. We see that this model fits the data 

well as there is no clear pattern in the scatter plot, normality in the histogram, and the qq-

plot has very few off diagonal points.  

 
Figure A. 37: Box plots of the response, CIS Psychological score, among the three different 

sites- This diagnostic plot shows that the 3 sites are distributed differently in how the boxes 

are of different sizes, but that the mean CIS Psychological score for all three sites are 

roughly the same. These show equal variance. 
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Figure A. 38: Box plots of the residuals for the model among the three different sites- This 

diagnostic plot shows that the 3 sites are distributed differently in how the boxes are of 

different sizes, but that the mean CIS Psychological score for all three sites are roughly the 

same. These show equal variance among the residuals. 

 
Figure A. 39: Time Series plot of the response of clients within sites- There is random noise 

in this plot of the outcome, meaning that we can assume there is independence in the 

variable. 
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Figure A. 40 : Time Series plot of the residuals of clients within sites- There is random noise 

in this plot of the outcome residuals, meaning that we can assume there is independence in 

the residuals.    

 
Figure A. 41: Cooks Distance For Fixed Effects and Influential points for Random Effects- 

There are no high influential observations in the fixed or random effects.   
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Figure A. 42: Full Model Residuals vs Leverage points- There are no high leverage points 

that cause concern for removing of an observation. 

 

 
Figure A. 43: Full Model Leverage plots for all the predictors- This plot shows there are no 

linear dependencies in the variables for this model.  
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Figure A. 44: Added Variable plots for the Full Model- This plot shows that there are no 

linear strong dependencies among the outcome and covariates. 
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