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ABSTRACT 

Water quality has become an increasing concern in recent years.  The environmental challenges 
surrounding water quality include the presence of dissolved  metals and their potential impact on 
human health and the environment.  The challenge is exacerbated because many important 
metals have multiple oxidation states, which affect the health and environmental behavior of the 
metal.  Many metals are known carcinogens and increased anthropogenic effects have inexorably 
made metals’ accumulation an imposing threat.  

Analytical instrumentation has advanced in many areas, making it now possible to measure very 
low concentrations of multiple elements in water.  Current interest is determining the chemical 
speciation of metals such as arsenic (As), chromium (Cr) and selenium (Se) which have multiple 
oxidation states in environmental systems.  Conventional protocols involve analysis of filtered 
and acid-preserved samples which measures the total soluble concentration.  However acid 
preservation can affect metal speciation.  The primary objective of this research was to 
investigate non-acid preservatives. 

In this research, experiments were conducted on water samples subjected to different sample 
preservation methods and no preservation as a control.  Metals studied were arsenic (III), arsenic 
(V), chromium (VI), chromium (III), selenium (IV), and selenium (VI). It was hypothesized that 
a non-acid preservation would limit redox reactions that would affect the speciation of these 
metals.  Water samples were collected representing a range of different aqueous conditions and 
subjected to  two alternate preservatives: EDTA+TBAOH and HEPES.  Samples were then 
analyzed by a High-Pressure Liquid Chromatography (HPLC) instrument coupled to an 
Inductively Coupled Plasma Mass Spectrometer (ICP-MS) to determine the concentration of 
species for each element.  Data analysis followed appropriate data quality standards to validate 
the accuracy and precision of all results and analyzed data was evaluated to draw conclusions on 
the preservation techniques used.  Data revealed that the HEPES and EDTA+TBAOH 
preservative were able to preserve most species for at least seven days. 
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INTRODUCTION 

Environmental pollution from metals can occur in one of two ways; erosion of minerals from 
surface deposits or human activity (Nordberg et. al, 2014).  Human activities cover a wide area 
of pollution and can range from the production of plastics, plating, the manufacture of lubricants, 
mining, smelting, fossil fuel combustion, semiconductors, superconductors, and nanotechnology 
(Nordberg et. al, 2014).   More than 700 organic and inorganic pollutants have been identified in 
water in which metals have become a top priority (Ali, 2010).  This is due to their inability to 
biodegrade as well as their carcinogenic and toxic properties (Ali, 2010). 

As early as 370 B.C, Hippocrates documented one of the first known chronic health effects from 
metal poisoning; abdominal colic in a man who extracted metals (Goyer et. al, 1996).  Metals 
can be introduced and recycled within the environment in one of three ways: naturally by 
geologic cycles, naturally by biological cycles, or artificially through human activity (Goyer et. 
al, 1996).  In the case of natural introduction by geological cycles, rainwater dissolves metals 
from smaller pieces of rock and transports them to streams and/or lakes (Goyer et. al, 1996). In 
the case of natural introduction by biological cycles, metals are taken up by plants and animals 
and reintroduced into food chains (Goyer et. al, 1996). 

Many metals can exist in the natural environment in multiple oxidation states that affects their 
physical and chemical behavior, but also their toxicity (Jain et. al, 2000).  For this research a 
method of determining the oxidation states of arsenic, chromium, and selenium as well as 
methods of preserving aqueous samples was investigated.  The oxidation states of arsenic are 
arsenic (III) and arsenic (V), the oxidation states of chromium are chromium (VI) and chromium 
(III) and the oxidation states of selenium are selenium (IV) and selenium (VI).  For each of these 
single elements one of the two species is highly toxic at low levels while the other one is not 
(Heumann, 2004).   

Arsenic (III) is the more toxic form of arsenic due to its ability to affect enzyme activity in the 
body; arsenic (V) has no effect on enzymes (Goyer et. al, 1996).  Eighty to ninety percent of 
arsenic (III) is absorbed by the gastrointestinal tract where cellular mitochondria will begin to 
accumulate arsenic, impairing mitochondrial enzyme function (Goyer et. al, 1996).  In large 
doses ingestion of arsenic will cause death; other acute symptoms include upper respiratory tract, 
gastrointestinal, and cardiovascular effects (Goyer et. al, 1996).  Chronic exposure can lead to 
neurotoxicity of the peripheral and central nervous system, liver injury, cardiovascular disease, 
and cancer (Goyer et. al, 1996). 

Chromium (VI) is the more toxic form of chromium due to its ability to cause cancer at low 
levels (Costa, 1997).  Chromium (VI) has been introduced into water supplies as effluent from 
industrial process such as pigments manufacturing, chrome plating, leather tanning, and as an 
agent added to water-cooled machinery to prevent rusting. (Costa, 1997).  Chromium (VI) can be 
absorbed by the gastrointestinal tract where ten percent of the total concentration ingested will 
remain in the body (Costa, 1997).  Chromium (VI) can accumulate in all tissues, but it has been 
found that higher concentrations occur in the liver, kidneys, and bones (Costa, 1997).  Long term 
exposure to Chromium (VI) has led to higher incidences of “urinary tract, bladder, testes, kidney, 
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prostate, brain, [and] stomach” cancers as well as “Lymphoma, Hodgkins, leukemia, and bone 
cancer” (Costa, 1997).  

Selenium (IV) readily adsorbs into soil where selenium (VI) does not (Goldberg et. al, 2006).  
Selenium (IV) sometimes is present in agricultural waste, so that agricultural return flows may 
contaminate streams (Goldberg et. al, 2006).  Selenium (IV) toxicity comes from an 
overabundance of selenium in the environment, which is taken up by plants, eaten by animals, 
and consumed by humans (Goyer et. al, 1996).  Selenium toxicity is classified by alkali disease 
which is a condition where the amount of selenium in the body exceeds its ability to excrete it 
(Goyer et. al, 1996).  Cases of this disease have been reported in several parts of the world, 
including the United States, and in parts of South Dakota and northern Nebraska (Goyer et. al, 
1996).  Some of the symptoms of alkali disease include poor teeth, jaundice, eruptions of the 
skin, and nail diseases of the fingers and toes (Goyer et. al, 1996). 

Improved analytical technology, which includes the coupling of technologies, knowledge has 
been gained over the last twenty years with respect to metals species and speciation (Heumann, 
2004).  However, despite these advances it is more common to find studies on total metal 
concentration rather than effects of individual species.  In addition to the difficulty of analyzing 
individual species,  is the challenge of sample preservation techniques.  Investigating the effects 
of metal speciation on an organism requires the ability to collect samples and preserve them for 
subsequent analysis while maintaining the original distribution of chemical species in the 
solution. 

The United States Code of Federal Regulations, Title 40, Chapter 1, Subchapter D, Part 136 (40 
CFR 136), corresponds to the protection of environmental water programs by the Environmental 
Protection Agency (EPA) which establishes guidelines and test procedures for the analysis of 
pollutants.  Written within these guidelines are the procedures required for the collection and 
preservation of water samples for metals determination.  The requirement of 40 CFR 136 is to 
preserve samples for metals analysis with nitric acid.  Previous research has shown that the 
addition of nitric acid will affect the oxidation states of arsenic, chromium, and selenium  
making it impossible to determine the original speciation of a preserved sample (Hall, 1999).   

Safe Drinking Water Regulations established by the USEPA are based on  the total concentration 
of metals and most other constituents in solution.  The standards do not consider the chemical 
form that the metal may have (40 CFR 136).  Therefore, this provides very little data on a water 
sample’s level of toxicity, as certain metal species are so toxic at low levels that a total 
concentration provides little to no information on the water body’s actual toxicity (Heumann, 
2004).  Reporting the total concentration of  metals limits our understanding of the health and 
environmental effects of individual species.  Without knowing how much of a sample is toxic or 
non-toxic metal species, reported totals can be grossly inaccurate.  Inaccurate data reduces the 
need to better understand how metals species react and are transported throughout the 
environment.  Current methods for species determination are mostly done in the field (40 CFR 
136).  Review of these methods demonstrates a lot of slow and messy processes that are not 
necessarily representative, therefore, there is a need to advance preservation methods to coincide 
with advanced technology. 



5 
 

Redox reactions are highly prevalent with speciation chemistry (Barber, 2000).  These 
constraints make analyzing these samples very difficult, leading to mistakes and inaccuracies 
that can highly bias data due to the multiple steps required for field analysis.  This calls for a 
need to improve sampling preservation techniques that can stagnant redox reactions and improve 
sample precision and accuracy with respect to elemental species concentration. 

Preservation capable of maintaining the stability and integrity of all metal species in a single 
sample could streamline the analytical process, allowing for the simultaneous analysis of 
multiple species.  By taking a different approach to sampling preservation, in conjunction with 
analytical techniques, more can be understood about the role metal species play in the 
environment.  Expanding preservation research to find solutions capable of stabilizing multiple 
metal species in water samples is a vital step towards the accuracy of results when evaluating 
water quality. 

OBJECTIVES 

The focus of this research study was to evaluate different methods of preserving natural water 
samples containing As, Cr, and Se and to use an advance analytical technique to determine the 
speciation of these metals.  The goal is to work towards an efficient physio-chemical sampling 
protocol, using non-acid preservatives, capable of maintaining the integrity of arsenic, 
chromium, and selenium species in a single sample. A visual representation of each sample, 
subject to varying preservation conditions, will provide a medium for critical assessment. 
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BACKGROUND 

Analytical chemistry emerged as a science in the early 19th century and within one hundred years 
analytical interest would become largely focused on inorganic chemistry (Heumann, 2004).  In 
the early 20th Century the term ‘trace elements’ would become recognized as those elements 
whose concentrations were so low, they were at the threshold of instrument detection (Heumann, 
2004).  Over the next 60 years scientists worked on developing methods to increase sensitivity to 
better detect and determine trace elemental concentrations and by the 1960’s concerns were 
raised about chemical forms of trace elements; technology has been developing and growing 
ever since (Heumann, 2004). 

The International Union of Pure and Applied Chemistry (IUPAC) definition of chemical species 
states: “specific form of an element defined as to isotopic composition, electronic or oxidation 
state, and/or complex or molecular structure (Heumann, 2004).” Throughout corresponding 
literature, metals species have commonly been defined as a difference in oxidation states of the 
same element.  The IUPAC also defines speciation analysis as “analytical activities of 
identifying and/or measuring the quantities of one or more individual chemical species in a 
sample (Heumann, 2004).” 

Preservation 

Throughout preservation literature, a variety of techniques have been employed to preserve metal 
species for later laboratory analysis.  The studies researched conducted multi-element and single 
element analysis.  Nitric acid is the most common preservative used in the preservation of 
metals.  Hence, metal analyses of acid preserved samples can only report their total 
concentration.  Other studies chose to use a variety of dilute acids, while others used 
combinations of organic acids and EDTA, or just EDTA.  Additionally, studies were done to 
separate arsenic species in the field using selective cartridges, as the EPA has a specific sampling 
method for the determination of chromium species (Telliard, 1996), and another study suggested 
that chloride be added to a sample to prevent selenium species conversion (Hill, 1997). 

In a paper by Shafer et. al (2007) details are provided on field procedures used to determine 
arsenic (III) and arsenic (V) individually.  The method uses ion exchange to extract anionic 
As(V)  from a buffered solution leaving uncharged As(III) in solution.  Once it was known how 
much arsenic (III) was in the sample, the concentration of arsenic (V) was determined by a 
simple difference calculation between the total concentration and the arsenic (III) concentration. 

To determine chromium (VI) USEPA “Methods for chemical analysis of water and wastes 
(1979) states that no preservation should be added, the sample should be cooled and stored at 
four degrees centigrade and should be analyzed within 24 hours.  Chromium samples have been 
treated this way since its induction and many sources have used this technique for both 
chromium (III) and chromium (VI) determination (Sun et. al, 2015).  A more recent method, 
USEPA method 1669, chromium (III) and chromium (VI) are separated in the field and the 
samples preserved for subsequent analysis.  The samples are pretreated with iron (III) hydroxide 
to remove Cr(III) as a co-precipitate and filtered with a 0.45 µm filter.  The filter is then stored in 
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1% Ultrapure Nitric Acid.  For chromium (VI) determination an additional sample is taken and 
treated with a 50% NaOH solution (Telliard, 1996).   

The EPA Code of Federal Regulations 40 CFR 136 details the methods and sampling procedures 
required for the proper handling and preservation of water samples prior to sample analysis with 
respect to trace metals.  These procedures require the use of nitric acid which has been shown in 
research studies to affect species stability in water samples.  For example, arsenic (III) will 
oxidize to arsenic (V) (Hall, 1999), selenium (IV) will oxidize to selenium (VI) (Heninger et. al, 
1997), and chromium (VI) will reduce to chromium (III) (Archundia et. al, 1993).  

Past research studies commonly focused speciation analysis on individual elements and their 
corresponding metal species; (Hall, 1999) for As (III/V) and (Heninger et.al 1997) for Se 
(IV/VI).  For chromium, preservation strategies have always treated chromium separately with 
respect to speciation analysis (USEPA 1669).  However, in recent years, more studies have been 
conducted on multi-element species analysis in lieu of single element species analysis.  In a 
study by Sun et. al (2015), information is provided on the preservation and analysis of multiple 
elements where the paper discusses the use of an HPLC-ICP-MS for the simultaneous analysis of 
arsenic, chromium, and cadmium.  Samples for this study followed the preservation requirements 
of the most restrictive metal, which in this case was chromium, samples were collected and 
preserved by cooling to four degrees centigrade and analyzed within 24 hours (Sun et. al, 2015).  
A year later another paper by Wu et. al (2016) also takes on the task of multi-element analysis by 
experimenting with EDTA  and acidification preservatives to simultaneously analyze arsenic, 
antimony, and selenium on an HPLC-ICP-MS.  The purpose of using EDTA as a preservative for 
these species was to reduce the reduction potential of metal species to react with iron and 
manganese hydroxides.  Using the EDTA as a complexing agent to react with iron and 
manganese compounds leads to the conclusion that this will keep additional metal species in 
solution without forming additional metal complexes (Wu et. al, 2016).    

To visualize the different preservation approaches used in the literature, combined with how 
these preservations affected the stability of metal species, a summary of four papers is provided 
in Tables 1-4.  Table 1 looks at Wu et. al (2016) and the effects of EDTA and acidification on 
arsenic, antimony, and selenium species.  Table 2 focuses on selenium storage only and is the 
basis for a paper by Heninger et. al (1997).  Table 3 addresses the effect of acidification on 
arsenic species versus non-acidification in a paper by Hall (1999), and Table 4 summarizes Sun 
et. al (2015), which utilizes refrigeration and analysis within twenty-four hours to test the 
stability of arsenic, chromium, and cadmium species. 
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Bottle Initial pH Preservation Final pH Temperature Light

DI Water Teflon No Data 0.4 mol/L HCl No Data 4
o
C No

DI Water Teflon No Data NaCl No Data 4
o
C No

DI Water Teflon No Data Na2SO4 No Data 4
o
C No

DI Water Teflon No Data 0.4 mol/L H2SO4 No Data 4
o
C No

Results

29% reduction of Se(IV) to Se(VI) in 27 days

No change in species after 35 days

No change in species after 15 days

3.4% reduction of Se(IV) to Se(VI) in 37 days

All samples were spiked at 10 ppb in deionized water

Bottle Initial pH Preservation Final pH Temperature Light As(III) As(V) Se(VI) Se(IV)
Groundwater Polyethylene 6.2 None 6.2 Room Yes Lost Lost No change Lost
River Water Polyethylene 6.2 None 6.2 Room Yes Lost Lost No change Lost
Lake Water Polyethylene 6.2 None 6.2 Room Yes Lost Lost No change Lost

Bottle Initial pH Preservation Final pH Temperature Light As(III) As(V) Se(VI) Se(IV)

Groundwater Polyethylene 6.2 EDTA 6.2 4
o
C No Reduced* No change No change No change

River Water Polyethylene 6.2 EDTA 6.2 4
o
C No No change No change No change No change

Lake Water Polyethylene 6.2 EDTA 6.2 4
o
C No No change No change No change No change

*Reduction occurred after third week of storage

Bottle Initial pH Preservation Final pH Temperature Light As(III) As(V) Se(VI) Se(IV)

Groundwater Polyethylene 6.2 EDTA + Acid 3 4
o
C No No change No change No change No change

River Water Polyethylene 6.2 EDTA + Acid 3 4
o
C No No change No change No change No change

Lake Water Polyethylene 6.2 EDTA + Acid 3 4
o
C No No change No change No change No change

 

Table 1: Summary of As and Se species preserved with EDTA and EDTA + Acid Samples Filtered (Wu et. al,  2016) 

 

  

 

 

 

 

 

 

 

 
Wu, Debo, and Thomas Pichler. "Preservation of co-occurring As, Sb and Se species in water samples with EDTA and acidification." Geochemistry: Exploration, Environment, 
Analysis 16.2 (2016): 117-125. 

 

Table 2: Summary of storage of Selenium solutions for speciation at trace level (Heninger et. al, 1997) 

 

 

 

 
 
 
Heninger, Ingrid, et al. "Storage of aqueous solutions of selenium for speciation at trace level." Fresenius' journal of analytical chemistry 357.6 (1997): 600-610. 
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Bottle Preservation Analysis

Drinking water Polyethylene 4
o
C 24 hours

Surface water Polyethylene 4
o
C 24 hours

Cr(VI) Cr(III)

Samples were filtered with a 0.45 µm filter and all samples were spiked with 5 ppb of analyte to assess recovery

As(III)

95-101(%) 96-99(%) 94-99(%) 92-98(%)

93-108(%) 96-100(%) 93-102(%) 91-97(%)

As(V)

Bottle Initial pH Preservation Final pH Temperature Light
Polyethylene No Data None No Data Room No Data

Polyethylene No Data None No Data 4
o
C No Data

Bottle Initial pH Preservation Final pH Temperature Light
Polyethylene No Data None No Data Room No Data

Polyethylene No Data None No Data 4
o
C No Data

Polyethylene No Data 0.1% Acid No Data Room No Data
Polyethylene No Data 0.1% Acid No Data 4

o
C No Data

Polyethylene No Data 0.4% Acid No Data Room No Data

Bottle Initial pH Preservation Final pH Temperature Light
Polyethylene 7.2 None No Data Room No Data

Polyethylene 7.2 None No Data 4
o
C No Data

Polyethylene 7.2 0.1% HNO3 No Data Room No Data

Polyethylene 8.2 0.1 % HNO3 No Data 4
o
C No Data

Polyethylene 9.2 0.1 % HCl No Data Room No Data

Polyethylene 10.2 0.1 % HCl No Data 4
o
C No Data

As(III) reduction to As(V) within 30 days

Stabilized

Deionized Water

Ottawa River

Clyde Fork
Results

As(III) reduction As(V) within a few weeks

Both species completely stable for 10 days
As(III) reduction to As(V) within 15 days

Stabilized

Results
As(III) reduction to As(V) within one week

As(III) to As(V) is delayed by 6 days

As(III) reduction to As(V) within 2 days
As(III) reduction to As(V) more slowly
Increased oxidation rate

Results
As(V) valence conversion to As(III) in two days

No changes in valence state or total concentration

Table 3: Summary of Arsenic (III) and Arsenic (V) stability in water samples filtered and spiked at 0.5 ppb (Hall et. all, 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Hall, GwendyáE M. "Stability of inorganic arsenic (III) and arsenic (V) in water samples." Journal of Analytical Atomic Spectrometry 14.2 (1999): 205-213 

 

Table 4: Summary of Arsenic(III/V) and Chromium(VI/III) with refrigeration and analysis within 24 hours (Sun et. al, 2015) 

 

 

 

Sun, Jing, et al. "Simultaneous speciation and determination of arsenic, chromium and cadmium in water samples by high performance liquid chromatography with inductively 
coupled plasma mass spectrometry." Analytical Methods 7.6 (2015): 2653-2658
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METHODOLOGY 

Samples were collected in one-liter bottles from surface and ground water sources with varying 
types of water chemistry, preserved in the laboratory, and spiked with 100 µg/L of all six species 
to be studied.  Samples with no preservation were spiked as a control.  The non-acid 
experimental preservations used were Ethylenediaminetetraaceticacid (EDTA) combined with 
Tetrabutylammoniumhydroxide (TBAOH) (this is also referred to as eluent throughout the text) 
and N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES).  Analysis was conducted 
on an HPLC coupled with an ICP-MS for arsenic, chromium, and selenium species 
simultaneously. 

The goal was to collect samples, preserve them with a non-acid preservative capable of 
maintaining pH levels between 6 and 8, spike those samples with 100 µg/L of each elemental 
species, and analyze them over a period of two weeks.  Samples containing no preservative were 
spiked with 100 µg/L of each species as a control.  Once samples were analyzed the data was 
evaluated to determine how well each preservation performed.  Looking at the individual 
concentrations of each species per analysis, the recovery of the 100 µg/L can be determined. 

Preservatives 

Ethylenediaminetetraaceticacid (EDTA) + Tetrabutylammonium Hydroxide (TBAOH) 

Ethylenediaminetetraaceticacid (EDTA) is a chelating agent that forms complexes with cationic 
metals such as Ca2+, Mg2+, Fe2+, Fe3+, Mn2+, and others. Note that EDTA will not form 
complexes with anionic species such as As(III), As(V), Se(IV), Se(VI), and Cr(VI) which are all 
present as oxyanions.  Chelating agents contain carboxylic groups connected to nitrogen, which 
allows for the formation of cation complexes (Kołodyńska, 2012).  Once a metal complex is 
formed it becomes stable and limits reactions between the cation and other constituents in 
solution (Kołodyńska, 2012). 

The chemical structure of EDTA using IUPAC Nomenclature is shown in Figure 1. 

 

 

Figure 1:  Structure of EDTA 
Source: Favre, et. al, 2013 
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The main purpose of Tetrabutylammonium Hydroxide (TBAOH) is its use as an ion pair reagent 
for Cr(III) and Cr(VI) (Neubauer, 2004).  The IUPAC Nomenclature for TBAOH is given in 
Figure 2.  Once EDTA is added to the sample as preservative, Cr(III) will form a complex with 
EDTA resulting in a net negative charge for the species, whereas TBAOH exhibits a net positive 
charge (Neubauer, 2004).  TBAOH is the mobile phase in HPLC chromatography that allows 
separation of Cr(III) and Cr(VI) by the chromatographic column followed by quantitation of Cr 
by ICP-MS. (Neubauer, 2004)  It is hypothesized that as an ion pair reagent TBAOH will help 
aid in the stability of these species for long term storage.  It is also hypothesized that adding the 
TBAOH to the EDTA together as a preservative, will initially form complexes with Cr(III), thus 
withholding it within solution.  Once the sample reaches the analytical column, the Cr(III) 
complex should freely move through the column to achieve chromatographic separation.  
TBAOH is then serving as an intermediate step in stasis prior to analysis.  These conclusions are 
based off information found in documentation by Perkin Elmer, the analytical instrument 
manufacturer (Neubauer et. al, 2003)  

 

 

Fgure 2:Structure of TBAOH 
Source: : Favre, et. al, 2013 
 

The unique properties of EDTA and TBAOH combined was the basis for using this preservative 
as a part of this research study.  It was hypothesized that EDTA will form complexes with the 
metal species studied.  This will immobilize species from rapid chemistry conversion and allow 
for longer storage of speciation samples.  In addition to this, it is also hypothesized that the 
inclusion of TBAOH as an ion pair reagent for chromium will aid in stabilization and separation 
of chromium species, ultimately leading to a reduction in redox potential.  

 

N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPN-2-hydroxyethylpiperazine-N'-
2-ethanesulfonic acid (HEPES) is widely used as a pH buffer in biological applications, because 
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its unique qualities make it a favorable choice for environmental applications when a pH 7 buffer 
is needed.  Nomenclature for HEPES is given in Figure 3.   

 

 

Figure 3:  Structure of HEPES (created using IUPAC Rules) 
Source: : Favre, et. al, 2013 
 

The rationale behind choosing HEPES as a sample preservative is its ability to maintain neutral 
pH.  It was hypothesized that this pH stability will prevent or retard species oxidation conversion 
as those reactions are pH dependent.  In addition to pH stability the HEPES buffer is chemically 
stable and absorbs very little UV and visible light without adding bicarbonate ions (Good, et. al, 
1966), making it an ideal physio-chemical choice for preservation.  

The purpose of a pH buffer is to maintain the pH of samples.  The very low pH and oxidizing 
conditions resulting from conventional sample preservation with HNO3 may lead to dissociation 
of metal-ligand complexes and may also facilitate oxidation reactions, both of which affect the 
speciation of the metal.  The addition of the HEPES buffer has the potential to maintain the pH 
of the solution, with respect to the many water chemistry changes taking place, and 
hypothetically disrupt changes in oxidation states due to shifting pH.   

Good et. al, (1966), suggested basic criteria for buffers used in biological applications which are 
summarized below. 

 The pKa, otherwise known as the midpoint of the buffering range, should be between 6 
and 8  

 The buffer should have maximum water solubility, this will allow the use of higher 
concentrated stock solutions 

 Produce a minimum of salt effects. 
 There should be a minimum influence of buffer concentration, temperature, and ionic 

composition of the medium on the dissociation of the buffer. 
 Complexes formed with cations should be soluble  
 The buffers should be as stable as possible 
 They should not absorb light in the visible or ultraviolet regions of the spectrum.  
 Other properties include acid dissociation at and above neutrality, absence of ultraviolet 

absorption, and resistance to oxidation (Good et. al, 1966). 
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HEPES buffer can maintain a neutral pH, y is, water soluble, does not add any additional 
bicarbonate, is stable, and is a slowly dissociating weak organic acid and has been used a 
preservative in other supporting research.,  This led to the hypothesis that HEPES may be 
effective at preserving the speciation of As, Cr and Se in solution.  No literature could be found 
in support of using a biological buffer as a natural water preservation for trace metal analysis.  

Sample Collection and Preparation 

Samples were collected in 1L polyethylene bottles at the four following sites: University of New 
Mexico ground water well, the Rio Grande River, Soda Dam in the Jemez Mountains upstream, 
and Soda Dam in the Jemez Mountains downstream.  The pH of the samples ranged from 6.97 to 
8.18s.  Samples were stored on ice in Styrofoam coolers with a thermometer that read 0o C until 
returning to the laboratory.  All samples were collected in one day, 50 mL of each sample was 
filtered using a 0.45 µm filter, and all samples were refrigerated at 4o C. Samples were preserved 
within 24 hours of collection.  The non-acid preservatives used were EDTA/TBAOH made by 
combining 146 mg of Ethylenediaminetetraaceticacid (EDTA) at a concentration 0.15mM 
combined with 650 µLTetrabutylammoniumhydroxide (TBAOH) at a concentration of 0.1 mM 
in 50 mL of Methanol in 1 L of deionized water at a pH ranging from 6.9 to 7.0 and N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) commercially purchased.  The pH of 
the EDTA/TBAOH preservative was adjusted using sodium hydroxide as needed. 

Analytical Methods 

All samples were prepared and analyzed on a PerkinElmer Series 200 HPLC and a PerkinElmer 
ELAN DRC II ICP-MS to test arsenic, chromium, and selenium species simultaneously. 
Instrument specifications are outlined in Tables 5 and 6. 
 
Table 5: HPLC Conditions 
 

HPLC SYSTEM PerkinElmer Series 200 Binary Pump, Autosampler and Vacuum 
Degasser 

COLUMN Pecosphere C8; 3 µm particles; 3 cm 

MOBILE PHASE 
0.15 mM TBAOH + 0.1 mM EDTA (potassium salt) + 5% 
methanol

PH 6.9-7.0 
PH ADJUSTMENT Dilute HNO3, NH4OH 
INJECTION VOLUME 100 µL 
FLOW RATE 1.0 mL/min 
AUTO SAMPLER FLUSH 
SOLVENT 

5% methanol 

 
Source: Neubauer, Kenneth R., et al. "Simultaneous arsenic and chromium speciation by HPLC/ICP-MS in environmental 
waters." ICP-OES, ICP-MS (2004): 614. 
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Table 6: ICP-MS Conditions 
 
INSTRUMENT ELAN DRC II (PERKINELMER SCIEX) 
NEBULIZER Meinhard 
SPRAY CHAMBER Quartz Cyclonic 
RF POWER 1600 W 
ANALYTES Cr (m/z 52); AsO (m/z 91); Se(m/z 82) 
REACTION GAS NH3 @ 0.6 mL min 
RPQ 0.45 
DWELL TIME 500 milliseconds per analytes 
ANALYSIS TIME 240 seconds 

Source: Neubauer, Kenneth R., et al. "Simultaneous arsenic and chromium speciation by HPLC/ICP-MS in environmental 
waters." ICP-OES, ICP-MS (2004): 614. 

 
Laboratory Quality Control 
 
Samples submitted for analysis were subjected to quality control measures to determine the 
accuracy and precision of the results.  The quality control used for analysis followed the federal 
compliance regulations of the 40 CFR 136 and the National Environmental Laboratory 
Accreditation Conference (NELAC) Standard ISO Guideline 17025.  Table 7 is a reference 
guide to quality control acronyms. 
 
Table 7:  Reference Guide for the Identification of Quality Control Acronyms 
 
ICBV Initial Control Blank Verification
ICV Initial Calibration Verification
CCV Continuing Calibration Verification
CCB Continuing Control Blank
LRB Laboratory Reagent Blank

 
Table 8 provides an outline of how samples were analyzed with the corresponding quality 
control identified in Table 7. 
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Table 8: Analysis on HPLC-ICP-MS 
 

Instrument Calibration Sample 
ICBV Sample 
ICV Sample 
CCV Sample 
LRB Sample 

Sample Sample 
Sample Sample 
Sample Sample 
Sample Sample 
Sample Sample 
Sample Sample 
Sample CCB 
Sample CCV 
Sample End of Analysis 

 

Experimental Procedures 

Three experiments were conducted on the preserved samples.  At the conclusion of the first  
experiment it was determined that the results had been compromised and a second experiment 
was redesigned .  The second experiment was then conducted with the new experiment 
specifications.  Consequentially, the data for experiment two had unverifiable results, and a third 
experiment was designed to verify unexpected behavior as well as address inconsistencies.  The 
details of each experiment are outlined in the following experiment sections.  Throughout the 
course of the experiments, there were several instances where the HPLC had to be disconnected 
from the ICP-MS to permit analyses by other users.  This may have led to instrument instability.  
Manufacturer recommendations by Perkin Elmer are conclusive upon maintaining instrument 
stability under vacuum when being changed, and there were times where the instrument was not 
allowed a 24-hour stabilization time in between changes prior to analysis.  

***Experiment 1*** 

For this experiment a volume of 20 mL, preservative and sample, were used for analysis. A 
combination of both EDTA+TBOH and HEPES together was experimented with briefly, 
however, it added more complexity that did not add anything additional to the experiments and 
no new information was learned, therefore it was concluded a combination of preservatives 
would not be tested.  Samples were filtered with a 0.45 µm filter prior to being preserved. A 
mixed standard containing all tested species at 1 mg/L was prepared in EDTA/TBAOH solution.  
Preserved samples were spiked with the mixed standard containing all species to a final 
concentration of 100 ug/L; 2 mL of the 1 mg/L solution was added to all prepared samples.  The 
larger spike amount lead to a change in final volume and a dilution factor was calculated for 
application to final data.  Table 9 summarizes how each sample from the four sites was 
prepared; the amount of preservative used, the amount of sample needed to come to a final 
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Preservation 
mL

Sample 
mL

Total 
mL

Spike 
mL

Dilution 
Factor

EDTA+TBAOH (Eluent) 10 10 20 2 1.1
HEPES 2 18 20 2 1.1
Eluent + HEPES 12 8 20 2 1.1
None 0 20 20 2 1.1

volume of 20 mL, the spike amount, and the dilution factor needed for each preservation.  It was 
initially determined that a larger spike volume be used for sample spiking with the expectation 
that it would provide more species stability.  However,  dilution factor had to be used as the 
spike amount changed the final volume of the sample, thus affecting the concentration.  It was 
determined later that this had been done in error and that a much smaller spike amount at a 
higher concentration would be more effective in determining final concentration.  

 

Table 9: Sample preparation by preservative Experiment 1 

 

 

  

 

 
Once samples were preserved and spiked, instrument vials were prepared by adding 0.5 mL of 
sample along with an additional 0.5mL of EDTA/TBAOH (referred to as Eluent throughout the 
text).  Samples were then immediately placed on the HPLC-ICP-MS for analysis.  This 
designates time zero of the experiment.  Samples were placed into the refrigerator until the next 
analysis.  The process was repeated for day 1, 2, 7, and 14.  It was intended to analyze samples at 
30 days, but it was observed that throughout many stages of the analytical process the 
EDTA/TBAOH, which is used as mobile phase of the HPLC and is also being used as a 
preservative of samples, had been used to make the mixed spiking standard and as mentioned 
above, and was also used for preparing samples for sample analysis.  In addition to this 2 mL of 
mixed standard was needed to bring the samples to a 100 ug/L concentration.  Because the 
samples were spiked with a standard that contained one of the preservatives and because the 
samples were also prepared with the intended preservative for analysis, it was concluded that 
samples used for control purposes had been compromised and could not be validated for this 
experiment.   
 
Additionally, another preservation error occurred in the amount of HEPES buffer used to 
preserve samples.  The stock concentration of HEPES buffer is 1M and samples preserved for 
this experiment used 2 mL of HEPES buffer, thus making the concentration of HEPES in 
preserved samples 100mM.  Figures 4, 5, 6, and 7 display chromatograms of As(III), As(V), 
Cr(III), Cr(VI), Se(IV), and Se(VI) with high levels of interference at the 100mM HEPES 
concentration.  Because the HEPES buffer has never been used in this type of application and no 
literature could be found on what the concentration should be for preserving water samples it 
was concluded that the concentration of HEPES buffer should be reduced to 15 mM.  This 
number was chosen arbitrarily based on a paper written by (Vasconcelos, 2002) for biological 
applications.  
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Figure 4:  Soda Dam downstream sample with 100mM HEPES as preservative, spiked at a concentration of 100 µg/L.  As(III) 
and As(V) are highlighted.  

 

 

 

Figure 5:  Soda Dam downstream sample with 100mM HEPES as preservative, spiked at a concentration of 100 µg/L.  Cr(III) 
and Cr(VI) are highlighted. 
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Figure 6:  Soda Dam downstream sample with 100mM HEPES as preservative, spiked at a concentration of 100 µg/L. Se(IV) 
and Se(VI) are highlighted. 

Figure 7 also displays the effect of high concentration HEPES on the Rio Grande River sample 
with regards to Cr(III) and Cr(VI); which displays a more intense level of interference.  

  

Figure 7:  River sample with 100mM HEPES as preservative., spiked at a concentration of 100 µg/L. Cr(III) and Cr(VI) are 
highlighted. 

Because of the issues with adding additional eluent to samples that contained no preservative and 
HEPES buffer and because of the high interference level with high concentration HEPES, this 
experiment was stopped after the 14 days. It was redesigned and then repeated as experiment 2.  

***Experiment 2*** 

Experiment two included field samples as well as 18 mega ohm water and UNM tap water as 
controls.  Out of the two samples collected from the Jemez Mountains, only Soda Dam upstream 
was used for the experiment.  A sample volume of 20 mL was used for preservation and samples 
were filtered with a 0.45 µm filter prior to preservation.  
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Considering the lessons learned from experiment one, the amount of eluent and HEPES used to 
preserve the samples was reduced and the combination of HEPES and eluent was not used.  The 
amount of eluent used to preserve samples was 2mL instead of the 10 mL used in the original 
experiment (see Table 9) and 300 µL of HEPES was used which yielded a final HEPES 
concentration of 15mM. 

In addition to the changes made to sample preservation method, standards of individual species 
were not mixed into a single spiked standard.  Stock standards of each species at 1000 mg/L 
were diluted to 100 mg/L in 18 MΩ water; 40 µL of each 100 mg/L standard was then spiked 
into all samples, yielding a final concentration of 200 ug/L of each individual species per sample 
to be tested.  The reason for this deviation from the originally stated 100 ug/L is simply due to 
calculation error. Samples prepared for analysis on the HPLC-ICP-MS were poured directly into 
sample vials with no additional eluent added. 

New samples were preserved, spiked, and immediately analyzed by HPLC-ICP-MS at time zero.  
Samples were then stored in a refrigerator at 4O C and analyzed on day 1, day 4, day 7, day 14, 
and day 37 to complete the testing.  Even though the test on day 37 deviates from the original 
guidelines of the experiment, the purpose of testing on this day was to determine whether an 
additional two weeks would dramatically affect the results.  However, prior to the samples being 
analyzed at the 14-day mark, it was discovered that the samples had been left on a bench at room 
temperature exposed to light one week prior to the test.  Samples were placed in the refrigerator 
for the remainder of the time, but the data revealed that the samples had indeed been 
compromised with unknown effects.  It was concluded that this data was unreliable and 
inconsistent, thus, a third experiment was designed to address inconsistencies as well as address 
potential mistakes that had been made during spiking and preservation.  The results and the 
discussion of this experiment are discussed in the Results section.  

***Experiment 3*** 

With the goal of reducing error and producing more consistent results experiment 3 reduced the 
number of samples to be analyzed, while maintaining the desired matrix and chemistry effects, 
along with the proper samples needed for a control.    In addition to sample optimization, 
precautions were taken when adding known concentration of species to samples to validate 
whether spiking errors had been made in experiment two.  Several steps were also taken to 
ensure samples receive the absolute minimum light exposure during preservation and analysis.  

Considering that it had been several months since the last samples were collected, it was decided 
that new samples should be collected prior to this experiment.  Samples included 18 MΩ, UNM 
tap water, river water from the Rio Grande river, and surface water downstream from the Soda 
Dam in the Jemez mountains, which is known to have complex chemistry.  Samples collected 
from the river and Soda Dam were stored on ice after collection and remained refrigerated until 
preservation which was completed within 24 hours after sample collection.   

Samples were preserved and prepared using the sample protocol from experiment two.  
Calculation corrections were made to ensure that samples were spiked at the 100 µg/L as 
originally determined.  Additional steps were taken to properly separate spiked samples from 
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non-spiked samples during sample preparation to eliminate potential data inconsistencies from 
human error. 

Once all samples were properly prepared, they were analyzed immediately on the HPLC-ICP-
MS and subsequently thereafter on day 2, day 7, and day 14.  No further sample collection or 
analysis occurred after day 14.  All data and relevant experiment information is presented in 
results. 
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RESULTS 
 
The data and information presented in this section are exclusively the results of experiment two 
and three.  Experiment two identified many of the challenges and inconsistencies produced in the 
data which led to a redesign and experiment 3.  Despite efforts taken to eliminate error, more 
work is needed to refine the preservation method and analytical protocol. 
 
The major ion chemistry was measured for each of the samples prior to preservation and is 
presented in Table 10.  
  
Table 10: ICP results for calcium, potassium, magnesium, and sodium  
 

 
 
 
***Experiment 2 Data*** 
 
It is important to note some anomalies and observations that occurred.  After samples were 
prepared for analysis on day seven, they had been left on a prep bench and not returned to the 
refrigerator until one week later which constituted excessive light exposure.  The sampling 
protocol dictates that samples be refrigerated when not in use.  Additionally, between day 
fourteen and day 37 of analysis, the analysis column on the HPLC was changed, which produced 
unpredictable results for chromium, and it was observed that 18 MΩ and tap water samples did 
not contain some of the species required and it was inconclusive as to whether this had occurred 
due to spiking error. 
 
In lieu of the challenges, the data shows that the HPLC-ICP-MS method and the preservation 
methods used have potential to preserve the speciation of As, Cr and Se and that the species can 
be subsequently determined by HPLC-ICP-MS.  The data are summarized in Figures 8 through 
12. 
 
Arsenic (III) and Arsenic (V) 
 
The graphical data for 18 MΩ water, tap water, UNM well water, Rio Grande River water, and 
Soda Dam water from the Jemez mountains is presented in Figures 8, 9, 10, 11, and 12. 
 
 

Ca mg/L K mg/L Mg mg/L Na mg/L
 18 MΩ water 1.316 0.807 0.058 1.11

Tap Water 34.4 4.637 5.5 33.2
Rio Grande 30.8 3 5.81 22.9
Soda Dam 30.5 12 3.5 69.6
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Figure 8: Graphical representation of As(III) and As(V) with preservatives in 18 MΩ water  
 
 

 
 
Figure 9: Graphical representation of As(III) and As(V) with preservatives in tap water  
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Figure 10: Graphical representation of As(III) and As(V) with preservatives in UNM Well water 
 

 
 
Figure 11: Graphical representation of As(III) and As(V) with preservatives in Rio Grande River water 
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Figure 12: Graphical representation of As(III) and As(V) with preservatives in Soda Dam water of the Jemez Mountains 
 
With the exception of 18 MΩ water and tap water, the surface and ground water samples 
demonstrated that interconversion of As(III) and As(V) did occur.  Table 11 outlines each of the 
samples with preservative and corresponds it to an observed behavior. 
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Table 11: Observed Behavior of As(III) and As(V) in varying water samples and preservatives   

 
 
 
Observed arsenic behavior corresponds to hypothesized conclusions except for the HEPES 
buffer.  It was expected that As(III) would oxidize to As(V) over time and for a majority of 
situations this did occur.  However, in samples with HEPES buffer, arsenic behavior was 
unpredictable.  In 18 Ω Ohm water, As(V) steadily converted to As(III) over time.  In tap water, 
As(III) initially converted to As(V) but after four days that conversion shifted and As(V) began 
to shift to As(III).  In well water, As(V) converts to As(III) and then after day 14 As(III) begins 
to convert to As(V).  In river water, As(V) converted to As(III) initially, then shifted to As(III) to 
As(V) conversion after day seven, which is also the same behavior displayed for As in Soda 
Dam water.  Considering that HEPES buffer has never been used for this type of application and 
that more extensive research on this behavior could not be conducted, the explanation for these 
differences are unknown. 
 
After day 7 analyses of Rio Grande and Soda Dam waters preserved with EDTA/TBAOH 
showed an interesting phenomenon.  After samples were analyzed on day seven, they were left 
on a prep bench for one week exposed to light before being returned to the refrigerator.  When 
samples were analyzed on day fourteen, the graphs show that there was a drop in As(III) 
followed by a commensurate increase in As(V).  In a publication by USGS it is noted that 
“arsenite can be oxidized to arsenate by photolytically produced free radicals; therefore, the 
exposure of the sample to light also should be minimized (Garbarino et. al, 2012).”   
 
In a paper by Zhang et. al, 1999, exposure to light can mediate metal redox reactions in the 
presence of iron. The long exposure to light may have increased the potential for redox reactions 
to occur with iron and could be explored as a potential reason there is such a dramatic shift in 

Species Preservative Water Observed Behavior

As(III) and As(V) None 18 Ω Ohm

Conversion of As(III) to As(V) up until day 14. After day 14 As(III) 

shifts to As(V), however it is back to As(V) to As(III) after 37 days. 

As(III) and As(V) None River Steady conversion of As(III) to As(V) after day one.

As(III) and As(V) None Soda Dam Stable with minimal conversion after day four.

As(III) and As(V) None Tap

As(III) and As(V) None Well Steady conversion of As(III) to As(V) after day four.

Did not contain As(III).  Recovery of As(V) after 37 days is 84%.

As(III) and As(V) Eluent Well Highly stable.  Minimal conversion between As(III) and As(V).

As(III) and As(V) Eluent River Sharp conversion of As(III) to As(V) after day 14.

As(III) and As(V) Eluent 18 Ω Ohm

As(III) and As(V) Eluent Tap Did not contain As(III).  Recovery of As(V) after 37 days is 83%.

Conversion of As(V) to As(III) until day four, after which As(III) 

begins to convert to As(V).

Sharp conversion of As(III) to As(V) after day 14.

Initial conversion of As(V) to As(III) until day 7. After day 7 As(III) 

begins to convert to As(V).

As(III) and As(V) Hepes Tap

Conversion of As(III) to As(V) after day four, however, conversion 

shifts back to As(V) to As(III) after 37 days.

As(III) and As(V) Hepes Well

Initial conversion of As(V) to As(III) until day 14. After day 14 

As(III) begins to convert to As(V).

As(III) and As(V) Eluent Soda Dam

As(III) and As(V) Hepes 18 Ω Ohm Steady conversion of As(V) to As(III) after day one.

As(III) and As(V) Hepes River

Initial conversion of As(V) to As(III) until day 7. After day 7 As(III) 

begins to convert to As(V).

As(III) and As(V) Hepes Soda Dam
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As(III) and As(V) concentration for these samples, although it doesn’t look as if 18 Ω Ohm or 
tap water was affected (Zhang et. al, 1999).  A quote from a publication from USGS regarding 
light exposure states:  
 

“The laboratory arsenic speciation method can be affected by the precipitation of metal 
oxides. Many suboxic or anoxic… samples having arsenic concentrations greater than 
the USEPA 10-μg/L drinking-water standard also can contain substantial concentrations 
of reduced aluminum, iron, or manganese. Oxidation of these metal species during 
sample collection and processing produces metal-oxide precipitates that can sorb 
arsenic, resulting in negatively biased data (Garbarino et. al, 2012).”      

 
Note that tap water, 18 MΩ, and well water had no detectable concentrations of Al, Fe or Mn, 
this could explain why there wasn’t a significant shift in As(III) and As(V) concentrations after 
light exposure.  However, inadvertently exposing the samples to light may have revealed that the 
HEPES buffer is able to resist changes in these conditions.  In a paper written by Zigler et. al, 
1985, HEPES exposed to light will generate hydrogen peroxide.  This powerful oxidant may 
explain this observed behavior. 
 
Chromium (III) and Chromium (VI) 
 
The graphical data for 18 MΩ water, tap water, UNM well water, Rio Grande River water, and 
Soda Dam water from the Jemez mountains is presented in Figures 13, 14, 15, 16, and 17. 
 

 
 
Figure 13: Graphical representation of Cr(III) and Cr(VI) with preservatives in 18 MΩ water  
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Figure 14: Graphical representation of Cr(III) and Cr(VI) with preservatives in tap water  
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Figure 15: Graphical representation of Cr(III) and Cr(VI) with preservatives in UNM Well water  

 
 

 
 
Figure 16: Graphical representation of Cr(III) and Cr(VI) with preservatives in Rio Grande River water  
 
 

 
 
Figure 17: Graphical representation of Cr(III) and Cr(VI) with preservatives in Soda Dam water of the Jemez Mountains 
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Preservation of Cr species could not be achieved by any of the methods investigated in this 
study.  For all samples tested and for all preservatives, Cr(III) converted to Cr(VI).  This likely 
reflects the fact that Cr(VI) is the stable phase of Cr in oxygenated solutions.  The observed 
behavior for each sample and each preservative is outlined in Table 12. 
 
Table 12: Observed Behavior of Cr(III) and Cr(VI) in varying water samples and preservatives    

 
 
 
The initial recovery of Cr(III), at time zero, in many samples was 75%.  This indicates that 
Cr(III) may not have been fully recovered at the time of instrument analysis.  In a publication by 
Perkin Elmer, the instrument manufacturer, it is recommended that mobile phase used for 
optimum Cr(III) and Cr(VI) separation be comprised of 0.6 mM EDTA and 1mM TBAOH 
(Neubauer et. al, 2003).  The mobile phase used for this analysis only consisted of 0.15 mM 
EDTA and 0.1 mM TBAOH which is 4 times less than the optimal EDTA recommended and 10 
times less than the optimal TBAOH recommended.  The reason the concentration of the mobile 
phase is so important is because Cr(III) creates a complex with the EDTA which remains on the 
ion exchange column used for this analysis (Neubauer et. al, 2003).  This complex pairs with the 
dichromate complex of Cr(VI), where the positive hydrocarbons of the TBAOH interact with the 

Cr(III) and Cr(VI) Hepes River

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) Hepes Soda Dam

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) Hepes Tap
Initial low recovery of Cr(III) at time zero but highest of the three preservatives with a 

gradual decline over time. Cr(VI) gradual decline with increase after column change.

Cr(III) and Cr(VI) Hepes Well
Initial Cr(III) recovery low with a steady decline.  Gradual decrease of Cr(VI) until 

column change which shows approximately half of Cr(III) converted to Cr(VI).

Cr(III) and Cr(VI) Eluent Soda Dam

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) Hepes 18 Ω Ohm

Initial Cr(III) recovery low with a steady decline.  Gradual increase 

of Cr(VI), with a significant increase after column change.

Cr(III) and Cr(VI) Eluent Well
Initial Cr(III) recovery low with a steady decline.  Gradual decrease of Cr(VI) until 

column change which shows approximately half of Cr(III) converted to Cr(VI).

Cr(III) and Cr(VI) Eluent River

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) Eluent 18 Ω Ohm

Cr(III) began to slowly increase over time, while Cr(VI) slighly 

decreased. Cr(VI) increased again after column replacement.

Cr(III) and Cr(VI) Eluent Tap

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) None River

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) None Soda Dam

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) None Tap

Initial Cr(III) recovery low with a steady decline.  Gradual decrease 

of Cr(VI) until column change which shows an increase in Cr(VI).

Cr(III) and Cr(VI) None Well
Initial Cr(III) recovery low with a steady decline.  Gradual decrease of Cr(VI) until 

column change which shows approximately half of Cr(III) converted to Cr(VI).

Species Preservative Water Observed Behavior

Cr(III) and Cr(VI) None 18 Ω Ohm

Slow decrese with absence of Cr(III) until column change. After column change, Cr(VI) 

doubled while Cr(III) was detected when it was previously thought to be not spiked in 

error.
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chromium species and separate them during analysis (Neubauer et. al, 2003).  It can be theorized 
that if there is not enough EDTA to form complexes with the amount of Cr(III) in the sample and 
not enough TBAOH in the eluent mix to separate all negatively charged species, then a full 
separation of Cr(III) and Cr(VI) may not occur as there is not enough reagent to fully 
compensate.  This may explain why Cr(III) recovery was lower than expected and continued to 
be low throughout the analysis.   
 
The redox chemistry of Cr can be summarized in a pe-pH diagram (also known as an Eh-pH 
diagram).  This shows that under oxidizing conditions Cr(VI) is stable whereas under reducing 
conditions Cr(III) is the stable oxidation state.  Further, above pH 5, Cr(III) forms an insoluble 
precipitate as Cr2O3(s).  
 
Consequently, research into the solubility of Cr(III) species in water at a pH of seven revealed 
that Cr(III) is soluble and the low recovery of Cr(III) at this pH may have been due to dissolved 
Cr(OH)3(s) species.  Converting the concentration of Cr(III) at 100 µg/L to a molar 
concentration, calculates to a molar concentration of 1x10-5.  In Figure 18 an Eh-pH diagram is 
provided for chromium.    
 

 
 
Figure 18: Eh-pH diagram for Chromium at varying pH and concentration. (Source, Thomson, 2019) 
 
Inadequate chromium separation and the precipitation of Cr(OH)3(s) could account for the loss 
of Cr(III) over the analysis period.  This can be supported by the fact that a few samples, initially 
thought to contain no Cr(III) at all due to spiking errors, suddenly had small recoveries of Cr(III) 
after the column was changed.  In all samples that contained no preservative Cr(III) was either 
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not detected or had very low concentrations by day 14.  However, at day 37, when the analytical 
column was replaced, Cr(III) concentrations became detectable.   
 
In addition to these observed phenomena, it is speculated that for the well, river, and soda dam 
samples conversion of Cr(III) to Cr(VI) occurred.  This is consistent with the redox chemistry 
summarized in Figure 18.  However, Cr(VI) to Cr(III) readily occurs under acidic conditions and 
all the samples tested were not acidic.  In neutral pH situations the proportions of Cr(III) and 
Cr(VI) are dependent on the level of oxygen present in the sample and there are several oxidants 
that can push Cr(III) to oxidize to Cr(VI), although MnO2 is the only one at sufficient levels to 
do so (Barałkiewicz et. al, 2013).  Manganese was not detected in samples, however, a test for 
total manganese was not conducted.  Therefore, manganese cannot be completely ruled out as a 
means of explaining why conversion of Cr(III) to Cr(VI) was observed. 
 
Taking into consideration all observations, it is more feasible that Cr(III) was precipitated as 
Cr(OH)3(s) and dissolved.  This would account for the absence of  Cr(III) recovery in preserved 
samples.  
 
Selenium (IV) and Selenium (VI) 
 
The graphical data for 18 MΩ water, tap water, UNM well water, Rio Grande River water, and 
Soda Dam water from the Jemez mountains is presented in Figures 19, 20, 21, 22, and 23. 
 

 
 
Figure 19: Graphical representation of Se(IV) and Se(VI) with preservatives in 18 Ω Ohm water  
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Figure 20: Graphical representation of Se(IV) and Se(VI) with preservatives in tap water  

 
 
Figure 21: Graphical representation of Se(IV) and Se(VI) with preservatives in UNM Well water  
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Figure 22: Graphical representation of Se(IV) and Se(VI) with preservatives in Rio Grande River water 
 

 
 
Figure 23: Graphical representation of Se(IV) and Se(VI) with preservatives in Soda Dam water of the Jemez Mountains 
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Selenium was the most stable of all the species and did not exhibit evidence of any redox 
reactions affecting the concentrations of Se(IV) or Se(VI).  Both Se(IV) and Se(VI) displayed a 
slow gradual decline over the course of the examination period.  Observed behavior for each of 
the samples and their preservatives are described in Table 13. 
 
Table 13: Observed Behavior of Se(IV) and Se(VI) in varying water samples and preservatives    

 
 
***Experiment 3 Data*** 
 
Incorporating the lessons learned from experiment two, the data from experiment three is much 
more consistent.  Observed behavior in experiment two revealed that what was initially thought 
to be spiking errors was not an error at all, as Cr(III) was not detected in 18 MΩ water without 
preservative and As(III) was not detected in tap water without preservative.  Subsequently, 
spiked and preserved samples did show some recovery in 18 MΩ water and tap water.  This 
observation is important as it reveals that even though the chemistry may not be completely 
understood, the preservation method prevented redox reactions from occurring.  Data is 
presented in this section per preservation type to better understand how the preservation itself 
affected species recovery and analysis. 
 
Samples with No Preservative  
 

Se(IV) and Se(VI) Hepes Soda Dam Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Hepes Well Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Hepes River Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Hepes 18 Ω Ohm

Gradual decrease in both species with a small increase at day 14, 

followed by a consistent decline.

Se(IV) and Se(VI) Hepes Tap Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Eluent River Gradual decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Eluent Soda Dam Gradual decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Eluent Tap Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) Eluent Well Gradual decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) None Soda Dam

Gradual decrease in both species with a small increase at day 14, 

followed by a consistent decline.

Se(IV) and Se(VI) Eluent 18 Ω Ohm Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) None Well

Gradual decrease in both species with a small increase at day 14, 

followed by a consistent decline.

Se(IV) and Se(VI) None River Slow steady decline for both elements with no dramatic shifting.

Se(IV) and Se(VI) None 18 Ω Ohm

Gradual decrease in both species with a small increase at day 14, 

followed by a consistent decline.

Se(IV) and Se(VI) None Tap

Did not contain spike for Se(IV).  Se(VI) saw an increase at day 

fourteen, but declined at day 37.

Species Preservative Water Observed Behavior
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Data presented in this section operates as a control as these are graphs that demonstrate the 
recovery of each elemental species per sample with no preservation used.  This is the recovery of 
all species spiked at the 100 ug/L over the course of 14 days as outlined in the sample protocol 
and serves as a baseline to draw conclusions.  Preservation data for each of the four samples is 
presented in Figures 24, 25, 26, and 27. 
 

Figure 24: Graphical representation of species recovery in 18 MΩ water with no preservative. 

 
 

 
 
Figure 25: Graphical representation of species recovery in tap water with no preservative. 
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Figure 26: Graphical representation of species recovery in river water with no preservative. 
 

 
 
Figure 27: Graphical representation of species recovery in Soda Dam water with no preservative. 
 
As can be seen by the graphs, each of the four samples provides information about its matrix 
chemistry and how it affects species stability.  In 18 MΩ water all species exhibited expected 
behavior except for Cr(III).  Hexavalent Cr recovery was not double the initial spike amount, 
therefore, it has been concluded that no inter species conversion occurred, however, referencing 
the solubility table for Cr(III) at a pH of 7 reveals that Cr(III) is soluble at this pH, which verifies 
why Cr(III) recovery did not occur, and the expected behavior of Cr(VI) was not observed 
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(Barber, 2000).  Not including a preservative allowed wide variation in pH, as the pH of the 18 
MΩ water was measured at 5.07, the pH of tap water was 7.73, the pH of Soda Dam was 6.88, 
and the pH of the river was 8.33.  An additional unexpected phenomenon was the complete 
conversion of As(III) to As(V) which was shown by the recovery of As(V) in the sample.  Data 
presented in the graph shows that As(V) concentrations were double that of what it should have 
been and As(III) was not recovered.   
 
Samples Preserved with HEPES  
 
The following graphs in Figures 28, 29, 30, and 31 display the recovery of species with samples 
that are preserved with the HEPES preservative.  The pH of the samples after the HEPES 
preservative was added is as follows:  18 MΩ water pH was 7.20, tap water pH was 7.24, 
river water pH was 7.23, and Soda Dam water pH was 7.19. 

 
 
Figure 28: Graphical representation of species recovery in 18 MΩ water with HEPES preservative. 
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Figure 29: Graphical representation of species recovery in tap water with HEPES preservative. 

 
 
Figure 30: Graphical representation of species recovery in river water with HEPES preservative. 
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Figure 31: Graphical representation of species recovery in Soda Dam water with HEPES preservative. 
 
Deionized water spiked with Cr(III) in 18 M water, increased  over time as was shown in the 
previous experiments.  At the end of the two-week analysis the pH was tested on each of the 
samples with the 18 M water being at 7.07.  The pH for tap water was 7.24, the pH for river 
water was 7.15 and the pH for Soda Dam water was 7.15.  Although observationally small, the 
pH of the mega ohm water shifted from 7.24 initially to 7.07 which reflects the absence of 
buffering capacity (i.e. alkalinity) in deionized water.  Tap water, river water, and Soda Dam 
water did not show this significant of a pH change where the difference between the three is 0, 
0.08, and 0.03 respectively.  This suggests that although Cr(III) was not detected on the 
instrument where no preservative was used, Cr(III) was indeed present as some other elemental 
species.  The addition of the HEPES buffer and a change in pH over time may have been the 
driving factor for elemental species change, thus allowing it to be detected on the HPLC-ICP-
MS.  As was also seen in tap water, the addition of the HEPES buffer prevented the conversion 
of As(III) to As(V) and produced acceptable recovery.  The chemical explanation is unknown. 
 
Samples Preserved with EDTA/TBAOH (Eluent)  
 
The graphs presented in Figures 32, 33, 34, and 35 represent the data for samples preserved with 
the EDTA/TBAOH preservative.  The pH of samples after the addition of HEPES preservative is 
as follows:  18 MΩ water 6.18, tap water 7.57, river water 7.72 and Soda Dam water 6.65.  At 
the end of the two-week cycle the pH of 18 M water was 4.79, tap water was 7.47, river water 
was 7.72, and Soda Dam water was 7.36. 
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Figure 32: Graphical representation of species recovery in 18 MΩ water with EDTA/TBAOH preservative. 

 

 
 
Figure 33: Graphical representation of species recovery in tap water with EDTA/TBAOH preservative. 
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Figure 34: Graphical representation of species recovery in river water with EDTA/TBAOH preservative. 
 

 
 
Figure 35: Graphical representation of species recovery in Soda Dam water with EDTA/TBAOH preservative. 
 
The behavior of Cr(III) and As(III) with this preservative in 18 MΩ water and tap water are just 
as puzzling as no preservative.  Arsenic (III) in tap water was completely converted as can be 
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seen by the recovery amount of Arsenic (V) in the sample.  Although this data is not what was 
expected, it does suggest confirmation that As(III) was converted to As(V) in tap water with no 
preservative.  In lieu of this information the explanation is unclear.   
 
Chromium (III) in 18 MΩ water also produced puzzling results.  The recovery of Cr(III) over 
time is increasing instead of decreasing while Cr(VI) is not changing.  It is known from the 
literature review that the TBAOH used as part of the preservative forms dichromate from Cr(III) 
to stabilize and aid in the separation of species during analysis.  The increase in Cr(III) 
concentration over time suggests that chromate concentration drops and Cr(III) concentration 
increases as the pH begins to change.  The final pH for 18 MΩ water at the end of the two-weeks 
was dramatically different than when it began.  The initial pH after preservation was 6.18 but 
dropped to 4.79 after the two weeks.   
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DISCUSSION AND CONCLUSIONS 
 
To validate this data and determine its efficacy, it is important to decide whether either of the 
preservations worked better than no preservation at all.  A comparison table that shows the final 
concentration of species on day seven and day fourteen reveals that species remained relatively 
stable until after day seven, where the concentration of species drops approximately 50%.  This 
suggests that the preservatives were able to maintain some level of species stability in 
comparison to no preservation at all for the first seven days.  However, the drop in concentration 
on day fourteen does not have a mass balance, suggesting that day fourteen data was skewed. 
 
Throughout the course of the experiments, the HPLC was disconnected from the ICP-MS several 
times.  It is speculated that skewed data from day fourteen may have been due to instrument bias 
as it had previously been disconnected prior to this analysis.  It is also hypothesized that 
inconsistent instrument analysis was the cause of skewed data and that further experimentation 
may reveal that the preservatives used were still stable by day fourteen.  Table 14 shows how the 
concentrations of analytes changed over the course of the two weeks.  Initial concentration for all 
species was 100 µg/L. 
 
Both preservatives demonstrated the ability to stabilize certain species in certain solutions better 
than no preservative.  Not all species remained equally stable throughout this process, and there 
were certain species that did not show improvement depending on the water source, however, 
each of the preservatives demonstrated potential to stabilize arsenic, chromium, and selenium 
species in multiple medias.  Considering that biological buffer has not been used prior for water 
preservation, further research could lead to a better understanding of how biological buffers 
assist in the stabilization of metal species. 
 
Regarding further research, the TBAOH as part of the EDTA preservative, may need further 
evaluation, and inherently may have caused issues with the chromium species recovery.  In the 
literature, TBAOH is meant to aid in the separation of chromium species during liquid 
chromatographic analysis (Neubauer et. al, 2003), although it is not known exactly how this 
affected species as a preservative.  It is possible that an inadequate amount of TBAOH during 
analysis would inhibit the separation of chromium species, thus leading to under reported 
concentrations, however, it is unknown how or if the TBAOH effects the recovery of other 
species.  Further experimentation is needed to determine whether TBAOH is effective as part of 
the preservative.   
 
The scope of this research does not consider other factors when it comes to species stabilization 
regarding water chemistry and composition.  Any additional research pertaining to the 
preservation techniques of these experiments will need to consider some of these factors to 
determine the viability of either of these preservations for potential use.  In lieu of future 
challenges the data presented in this report offers a segue into a better understanding of how the 
water chemistry of metal species work and can provide insight on how pH buffers can be used 
for preservative applications in the future.   
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Table 14:  Comparison table of species recovery by preservative. 
 

 
 
 
  

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 101.8 99.7 0 108.1 97.7 91.7

Day 14 64.3 66.4 0 87.5 56.4 58.5

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 0.0 208.5 33.2 108.1 37.9 152.7

Day 14 0.0 141.8 19.9 87.8 20.1 96.6

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 106.7 127.5 64.6 115.6 101.3 95.2

Day 14 61.3 70.4 39.0 84.3 58.6 59.4

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 162.4 163.8 69.3 113.8 106.6 98.0

Day 14 83.4 118.4 39.8 86.2 59.5 58.4

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 100.5 93.7 17.0 113.3 100.2 96.4

Day 14 62.2 58.9 20.4 86.0 53.8 57.1

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 107.5 124.1 105.2 112.2 102.1 101.3

Day 14 59.1 68.7 74.7 76.8 55.3 57.2

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 97.0 103.9 74.9 104.0 95.2 94.0

Day 14 59.8 67.4 57.5 82.4 55.5 57.6

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 148.1 145.5 73.7 103.7 105.9 94.3

Day 14 91.6 102.7 56.2 85.4 56.5 58.0

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 105.1 106.0 46.3 110.5 103.8 95.1

Day 14 60.4 64.4 49.4 86.4 56.6 60.4

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 15.4 196.5 80.2 114.1 88.4 106.6

Day 14 8.0 123.9 51.5 82.5 50.3 62.4

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 97.0 102.0 63.5 102.3 107.4 95.9

Day 14 61.4 67.4 37.7 83.0 57.5 57.3

As(III) As(V) Cr(III) Cr(VI) Se(IV) Se(VI)

Day 7 162.5 155.4 82.2 101.5 98.5 96.8

Day 14 100.3 102.8 53.5 82.5 59.4 58.6

Soda Dam Water with EDTA+TBAOH Preservative

Tap Water with HEPES Preservative

River Water with HEPES Preservative

Soda Dam with HEPES Preservative

18 MΩ with EDTA+TBAOH

Tap Water with EDTA+TBAOH Preservative

River Water with EDTA+TBAOH Preservative

18 MΩ Water with No Preservative

Tap Water with No Preservative

River Water with No Preservative

Soda Dam with No Preservative*

18 MΩ Water with HEPES Preservative
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