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Abstract

The present work offers an investigation of dynamics and stability of nonlinear waves

in Hamiltonian systems. The first part of the manuscript discusses the classical

problem of water waves on the surface of an ideal fluid in 2D. We demonstrate how

to construct the Stokes waves, and how to apply a continuation method to find waves

in close vicinity to the limiting Stokes wave. We provide new insight into the stability

of the Stokes waves by identifying previously inaccessible branches of instability in

the equations of motion for the fluid. We provide numerical evidence that pairs of

unstable eigenvalues of linearized dynamical equations appear as a result of collision

of pairs of neutrally stable eigenvalues at extrema of the Hamiltonian. Moreover, we

find that eigenvalues of the linearized problem that become unstable follow a self–
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similar law as they approach the instability threshold, and a power law is suggested

for unstable eigenvalues in the immediate vicinity of the limiting wave.

A related problem of formation of Stokes waves from a generic plane wave is

considered. It is determined that over long time a plane wave tends to a solution

that is effectively described by a Stokes wave with a perturbation moving in the

opposite direction to the Stokes wave. This perturbation to the Stokes wave may

be described by an effective Hamiltonian, that has quadratic and cubic terms with

respect to the perturbations.

A train of Stokes waves can be studied assuming a slowly–varying envelope, with

dynamics of the envelope subject to the nonlinear Schrödinger equation (NLSE).

In the second part of the present work we provide comparison of two numerical

methods to solve NLSE. The first one is the standard second order split-step method

based on an operator splitting approach. The second method is the Hamiltonian–

conserving method referred to as the Hamiltonian integration method (HIM). HIM

allows exact conservation of the Hamiltonian and wave action but requires implicit

time stepping. We find that the NLSE can benefit from the Hamiltonian–conserving

method compared to the split step method in particular for such solutions as the

Akmediev and the Kuznetsov–Ma solitons as well as multisoliton solutions. We find

that numerical error for HIM is systematically smaller than for the split-step scheme

for the same timestep. At the same time, one can take orders of magnitude larger

timesteps in HIM, compared to split step, while still ensuring numerical stability.

We propose the Hamiltonian–conserving method for the Majda–Maclaughlin–Tabak

(MMT) model, which is a generalization of NLSE.
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Chapter 1

Introduction

1.1 Free Surface Water Waves in Ideal Fluid

The motion and nature of water waves is a subject that is both interesting and

puzzling. This topic is considered a classical problem and has been investigated

and developed for at least a century and a half. For example, as Sir George G.

Stokes described in the introduction to the 1847 paper [2], a ship’s trajectory is

directly affected by the velocity of water waves. If ocean waves can be treated as

oscillatory waves and their velocity measured, then the trajectory of the ship can be

approximated. Sir George G. Stokes in the work [2] (also published in [3]) studied

waves that propagate with constant velocity without change of form in an ideal

(incompressible and inviscid) 2-dimensional fluid with potential flow. These waves

are often referred to as Stokes waves or progressive waves. The height H of the Stokes

wave is defined to be the distance between the trough and the crest of the wave, and

the ratio between the height and wave length L is called steepness s = H/L. In

the original work [2], Stokes developed a method that expands free-surface water

waves in power series of the amplitude of the progressive wave referred to as Stokes’
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Chapter 1. Introduction

expansion. It was shown by Nekrasov [4] that expansion in small amplitudes is indeed

convergent. This approach works well in the case of waves with small amplitudes,

and it was shown that Stokes waves are periodic surface waves. In 1925, Levi-Cevita

proved existence of such waves in the paper [5]. However as amplitudes of Stokes

waves increase, the series might not converge or converges slowly. It was proposed by

Stokes in [2], [6] that progressive waves have a maximum or limiting height, and he

argued that the angle at the summit of the limiting wave should be 2π
3

. This result has

been rigorously proved in the works of Plotnikov [7] and Amick et al [8] independently

of each other. The Stokes expansion does not work for the limiting wave due to there

being a stagnation point at the crest of the wave. So, it was suggested by Stokes

in [6] to switch to conformal variables instead to study progressive waves with large

heights. In 1968 Zakharov in the work [9], found that surface elevation and velocity

potential at the surface are canonical Hamiltonian variables. Series expansion of

Hamiltonian in canonical variables has been used later to construct reduced models

for free surface waves.

In 1893 Mitchel in [10] numerically computed waves with large height and got that

the limiting steepness should be 0.142. Stokes waves have been computed by many

authors: Grant [11], Schwartz [12], Williams [13], [14], Maklakov [15], Gandzha and

Lukomsky [16], Dyachenko et al [17], [18], Lushnikov et al [19], and many more.

Equations in physical variables require the normal derivative of the velocity po-

tential at the free surface to be known. The normal derivative can be computed

by applying the Dirichlet to Neumann operator to surface potential. However, the

Dirichlet to Neumann operator is represented by an infinite series in powers of steep-

ness, and may converge slowly or does not converge for waves with large steepness.

New implicit equations of motion in conformal variables were constructed separately

by Ovsyannikov [20] and Dyachenko et al [21]. These equations are computed in

the lower complex half plane, and the Dirichlet to Neumann operator is transformed

2



Chapter 1. Introduction

into the Hilbert operator. In these equations, a time-dependent conformal trans-

formation maps the half-strip in w plane ((u, v) ∈ [−π, π] × (−∞, 0]) into the area

(x, y) ∈ [−π, π]× (−∞, η] in the physical plane occupied by the fluid, as can be seen

in the figure 1.2 where x is the horizontal component, y is the vertical component,

and t is time. The function y = η(x, t) represents the free surface of the fluid, and the

line v = 0 is mapped into the fluid surface. These equations in conformal variables

are further simplified in the work of Dyachenko [22]. We use these equations to study

evolution of periodic progressive waves and their stability.

The stability of periodic gravity progressive waves in deep water with small

amplitudes were studied in the works of Benjamin [23], Benjamin and Feir [24],

Lighthill [25] and Whitham [26]. Benjamin and Feir found that waves with weak

nonlinearity (small amplitude waves) are unstable to long-wave perturbations. This

modulational instability is often referred to as Benjamin-Feir or subharmonic insta-

bility. In the work [27], Longuet-Higgins looked at superharmonic instability of the

Stokes wave. Here we refer to superharmonic perturbation as a perturbation having a

smaller wave length than the original Stokes wave. The stability of progressive waves

was considered as a function of wave steepness. Longuet-Higgins was able to compute

waves only up to the steepness H/L = 0.13. He showed that the waves remain stable

with respect to superharmonic perturbations, but he proposed that the instability

occurs at the steepness H/L ≈ 0.1387. Tanaka in the work [28], computed that

instability develops at the steepness H/L = 0.1366, and one unstable mode appears.

He stated that the first maximum of the total energy is attained at the steepness

at which the first superharmonic instability occurs. The kinetic, potential and total

energy of Stokes waves were studied in the works of Longuet-Higgins [29], Longuet-

Higgins and Fox [30] and Longuet-Higgins and Dommermuth [31]. In the work [1],

Tanaka and Longuet-Higgins found that as steepness of the Stokes wave increases

past H/L = 0.1366 a second unstable mode appears. It is natural to assume that

as we approach the limiting Stokes waves, more unstable modes would appear. The

3



Chapter 1. Introduction

stability of Stokes waves were further studied in the works of Longuet-Higgins and

Cokelet [32], Bridges [33], and many others.

1.2 Hamiltonian Integration Method

If we consider the envelope approximation description for a moving train of Stokes

waves in the ocean, we will get the nonlinear Schrödinger equation often referred to

as NLSE (Zakharov et al [34]).

It is one of the most common nonlinear partial differential equations in mathemat-

ical and theoretical physics (Sulem and Sulem [35]). Although, it can be considered

as a natural generalization of a classical Schrödinger equation in quantum mechanics

(Landau [36]), NLSE has a more general range of applications. NLSE naturally ap-

pears if one considers envelope dynamics of a quasi–monochromatic nonlinear wave

that was studied by Zakharov et al in [37]. In quantum mechanics a version of NLSE

is called a Gross–Pitaevskii equation [38] which describes a Bose-Einstein condensate

for short-range interactions of particles.

A classical example of NLSE application is the dynamics of optical pulses in an

optical fiber. The time evolution of the envelope of an optical pulse in a fiber is

well approximated by NLSE, including the description of very long, transoceanic

optical communication lines, see e.g. Agrawal [39], Lushnikov [40]. Langmuir waves

in plasmas are described by NLSE as well, for example in the works of Zakharov [41],

and Silantiev et al [42]. In the paper [43] Dysthe, uses NLSE and its modifications

to describe dynamics of quasi-monochromatic ocean waves. The analysis of NLSE

offers a possible explanation to the mystery of the appearance of rogue waves [44].

These and many other applications require numerical simulation of NLSE or its

modifications, and the natural question that arises is what is an efficient method to

do that.

4



Chapter 1. Introduction

There are many techniques that can be applied in the simulation of NLSE: the

Crank-Nicholson scheme (Crank-Nicholson [45], Taha and Ablowitz [46]), the hop-

scotch method (Greig and Morris [47]), the Ablowitz–Ladik scheme (Ablowitz and

Ladik [48], [49]), the pseudo–spectral split-step method (Tappert [50], Taha and

Ablowitz [46]), the Hamiltonian preserving method (Dyachenko et al [51]), and many

others. The de facto standard method of integration of NLSE was proposed by Tap-

pert [50]. Taha and Ablowitz studied its performance in the article [46]. The split-

step method is based on the Strang’s operator splitting approach [52] combined with

a pseudo-spectral method. The stability of the split-step method has been recently

studied in the work of Lakoba [53] and references therein. The split-step method can

be constructed to any order of accuracy, in this work we consider the second order

symmetrized split-step (SS2) method.

In 1992, Dyachenko et al in the article [51] proposed a new method for simulation

of NLSE. It was used to study wave or optical turbulence in two–dimensional NLSE,

however it passed largely unnoticed by a wide audience. Recent papers such as Chen

et al [54] and Gong et al [55] describe somewhat similar numerical methods. We refer

to the numerical method from [51] as the Hamiltonian integration method (HIM)

and study it in our paper Semenova et al [56]. It is based on discrete Hamilton’s

equations, and this method conserves the numerical Hamiltonian and the optical

power (also called the number of particles or wave action) exactly (up to any desired

accuracy in exact arithmetic). In finite precision arithmetic, the error in conservation

of Hamiltonian is due to round-off errors inherent to specific finite precision floating

point representation.

The Hamiltonian–preserving numerical schemes can be derived for other systems

by using the discrete Hamilton’s equations. As an example, in the recent work

of Korotkevich et al [57] on numerical simulations of nonlinear water waves, a

Hamiltonian–preserving scheme was described. There are similarities between HIM
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and the symplectic methods like those presented in Yoshida [58]. HIM is a com-

pletely self–contained method which can be derived for other Hamiltonian systems

having canonical symplectic structure. For example, we have done it for the Majda,

McLaughlin, and Tabak (MMT) model [59] which is a widely used generalization of

NLSE.

We compare the HIM and SS2 numerical methods by performing a set of simula-

tions with various initial conditions. In these experiments we observe that in some

scenarios the HIM method outperforms SS2 when very high accuracy is not essen-

tial. The SS2 method requires a stringent condition on the time step for stability,

whereas HIM is an implicit method and as such allows the time step to be a hundred

times larger. Our observations illustrate that the HIM method might be the method

of choice for efficient simulations of interaction of solitons, where a tight balance

between nonlinearity and dispersion occurs.
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Chapter 1

Equations of Motion

1.1 Problem Formulation

We consider an ideal 2-dimensional fluid located under a free-surface represented by

a 1-dimensional curve y = η(x, t). The fluid is acted upon by the force of gravity and

the effects of surface tension and atmospheric pressure are neglected. The velocity

field of the fluid in Eulerian coordinates is denoted by v(x, y, t) that varies in space

and time, where (x, y) and t are the spatial and temporal variables respectively. The

fluid is inviscid and incompressible, and its flow is potential with the velocity po-

tential Φ(x, y, t) and v = ∇Φ. Incompressibility implies that Φ satisfies the Laplace

equation:

∇ · v = ∇ · ∇Φ = ∆Φ = 0. (1.1)

The kinematic and dynamic boundary conditions at the free surface are:

∂η

∂t
= −∂Φ

∂x

∂η

∂x
+
∂Φ

∂y

∣∣∣∣
y=η(x,t)

(1.2)(
∂Φ

∂t
+

1

2
(∇Φ)2

)∣∣∣∣
y=η(x,t)

+ gη = 0, (1.3)
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Chapter 1. Equations of Motion

Figure 1.1: Half-strip in w plane ((u, v) ∈ [−π, π]× (−∞, 0]) into the area in (x, y)
plane under the free-surface η(x, t). The line v = 0 is mapped into the fluid surface.

where g is the acceleration of gravity. The fluid depth can be chosen arbitrarily,

and we consider infinite fluid depth. At the bottom, the fluid is motionless, and

Φ(x, y, t)|y=−h = 0 as h→∞. We consider a free surface y = η(x, t) that is periodic

in the x variable, and the same for the velocity potential Φ.

The equations (1.2)–(1.3) are the boundary conditions for Laplace equation (1.1)

that must be solved in order to determine the normal component of velocity at the

surface. Because the fluid domain is varying in time, the Laplace equation must be

solved in a spatial domain that varies in time. Fortunately we can map this domain

into one that is fixed in time by employing a time–varying conformal map.

1.2 Conformal Map

We consider a time-dependent conformal map z(w, t) = x(w, t) + iy(w, t) with w =

u+ iv. It maps the half-strip [−π, π]× (−∞, 0] of the complex plane w into the area

in the (x, y) plane occupied by a single period of the fluid domain. The line v = 0

is mapped into the fluid surface and its shape has a parametric representation given

9



Chapter 1. Equations of Motion

by:

x(u, t) = u+ x̃(u, t), y = y(u, t), (1.4)

where x̃ is a deviation from the identity transformation and x̃(u, t) and y(u, t) are

2π–periodic functions of u. All variables are transformed to be dimensionless.

1.3 Equations of Motion in Conformal Domain

The implicit equations of motion in conformal variables on the real line w = u, v = 0

were derived from the equations (1.2)–(1.3) by Ovsyanikov [20] and later indepen-

dently by Dyachenko et al [21]. It is convenient to introduce the potential on the

free surface ψ(x, t) = Φ|y=η(x,t) and the implicit equations have the form:

ytxu − xtyu = −Ĥψu (1.5)

yuψt − ytψu + gyyu = −Ĥ(xuψt − xtψu + gyxu) (1.6)

where Ĥ denotes a circular Hilbert transform given by the formula:

Ĥf(u) =
1

2π
p.v.

∫ π

−π
f(u′) cot

(
u′ − u

2

)
du′, (1.7)

where p.v. denotes the Cauchy principal value integral. We assume that f(u) is a

2π periodic function (like y(u) and x̃(u)), and it has Fourier series representation

f(u) =
∑
fke

iku. In Fourier space, the operator (1.7) corresponds to multiplication

of Fourier coefficients of the function f(u) by i sign k, and has the following form,

(Ĥf)k = i sign(k)fk. (1.8)

Equations (1.5)–(1.6) can be rewritten in explicit form as was done in Dyachenko

10
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et al [21], [60] (also published in Zakharov et al [61]):

yt = (yuĤ − xu)
Ĥψu
|zu|2

, (1.9)

ψt + gy =
Ĥ
(
ψuĤψu

)
|zu|2

+ ψuĤ

(
Ĥψu
|zu|2

)
. (1.10)

Since z(u, t) is analytic in C−, its real and imaginary parts are related by the Hilbert

transform:

y = Ĥx̃, x̃ = −Ĥy, (1.11)

where x̃(u, t) = x(u, t)− u and z̃(u, t) = z(u, t)− u.

In the paper [22], Dyachenko introduced new variables:

R =
1

zu
and V =

iΠu

zu
(1.12)

with V being the complex velocity and Π = ψ + iĤψ being the complex potential.

The equations (1.9)–(1.10) can be reformulated into:

Rt = i (URu − UuR) , (1.13)

Vt = i (UVu −RBu) + g(R− 1), (1.14)

Here U and B are the expressions:

U = P̂ (V Q̄2 + V̄ Q2), B = P̂
∂

∂u
(V V̄ ) (1.15)

where bar means complex conjugation and P̂ = 1+iĤ
2

is a projector generating a

function analytic in the lower complex half-plane. In Fourier space, the operator P̂

is a Fourier multiplier given by the formula:

P̂k =
1− sign k

2
=


1, k < 0

1
2
, k = 0

0, k > 0

(1.16)
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which amounts to zeroing out the positive Fourier coefficients and multiplication of

the zero Fourier coefficient by half. These equations can be extended to include

surface tension by introducing Q =
√
R:

Qt = i

(
UQu −

1

2
QUu

)
, (1.17)

Vt = i
(
UVu −BQ2

)
+ g(Q2 − 1)− 2σRP̂

∂

∂u

(
QuQ̄− Q̄uQ

)
, (1.18)

where σ is the surface tension coefficient. In our simulations we assume that σ = 0

(surface tension is negligible).

1.4 Numerical Method

An explicit 6th order Runge-Kutta method is used to evolve the equations (1.17)–

(1.18) in time. The projection operator P̂ and spatial derivatives are computed in

Fourier space, and it is convenient to use a uniform grid in u to have access to the fast

Fourier transform. We use a plane wave as an initial condition for equations (1.17)–

(1.18) and evolve it for long time (10 or more periods). Results of these computations

are described in the chapter “Spontaneous Formation of Stokes Waves from Plane

Waves”.

1.5 Conserved Quantities

Free–surface hydrodynamics is a Hamiltonian system, with the Hamiltonian in phys-

ical variables given by,

H =
1

2

∫ π

−π

∫ η(x,t)

−h
(∇Φ)2 dydx+

g

2

∫ π

−π
η2dx (1.19)

We use eqations (1.9) – (1.10) in free-surface variables, and we need to transform the

Hamiltonian to be defined on the surface. Note that variable x depends on u and

12
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dx = xudu, so the potential energy has the form:

U =
g

2

∫
η2dx =

g

2

∫
y2xudu (1.20)

To modify the kinetic energy over the domain D = (x, y) ∈ [−π, π]× (−h, η(x)], we

use Green’s identity:

K =
1

2

∫ ∫
D

(∇Φ)2 dydx

=
1

2

∫
∂D

Φ (∇Φ · dΓ)− 1

2

∫ ∫
D

Φ∇2Φdxdy

=
1

2

∫ π

−π
(ΦΦy) |y=−hdx+

1

2

∫ η(π)

−h
(ΦΦx) |x=πdy

+
1

2

∫
ψ (∇Φ · n) |y=η(x)dl −

1

2

∫ η(−π)

−h
(ΦΦx) |x=−πdy

=
1

2

∫ π

−π
ψ (Φxyu − Φyxu) |v=0du.

We write Φx and Φy in terms of Φu and Φv to get the kinetic energy in terms of

surface variables (as derived by Dyachenko et al in [60] and later described in details

by Dyachenko et al in [18]),

K = −1

2

∫ π

−π
ψĤψudu. (1.21)

The Hamiltonian in free-surface variables is given by,

H = K + U = −1

2

∫
ψĤuψ du+

g

2

∫
y2xu du, (1.22)

where ψ = Φ|y=η(x,t), z = x+ iy.

The momentum of the solution is a conserved quantity and is given by the fol-

lowing expression:

P =

∫ π

−π

∫ η(x,t)

−∞
Φxdx = −

∫ π

−π
ψyu du. (1.23)

The Hamiltonian H and the momentum P are important parts of discussion in

chapters “Spontaneous Formation of Stokes Waves from Plane Waves” and “Stability

of Stokes Waves”.
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Chapter 2

Stokes Waves

Stokes waves are nonlinear periodic traveling progressive waves on the surface of an

ideal fluid. The height of a Stokes wave H is the distance between crest and trough,

and the steepness is the ratio of height H over a wavelength L. Stokes waves can be

parametrized by their steepness H/L.

Figure 2.1: A Stokes wave is a nonlinear periodic traveling wave on the surface of
an ideal fluid. The height H is the distance between crest and trough, and L is the
wavelength.

To find a Stokes wave, we need to assume that the solution of (1.5) – (1.6)

14
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propagates with constant speed c. We consider ψ and z as functions of one variable

u− ct,

z(u, t) = u+ z̃(u− ct), (2.1)

ψ(u, t) = ψ(u− ct) (2.2)

with ψ and z̃ being periodic functions. We note that c = c̃/c0 where c̃ is in physical

units and c0 =
√
g/k with k = 2π/L to make speed dimensionless.

This change of variables corresponds to transformation to the moving frame of

reference u − ct → u. Functions ψ(u) and z̃(u) are periodic with period 2π. In

this fame of reference, we place the crest of a Stokes wave at u = 0, so the wave is

symmetric in u relative to the origin. This implies that y(u) is an even function, and

due to (1.11) x̃(u) should be an odd function. We also need x̃(u) to be a periodic

function, and thus x̃ (±π) = 0. So we get that η (x (±π) , t) = η (±π, t), and Stokes

waves have the same spatial period in conformal (u as in (2.1)) and physical (x as in

η(x− ct)) variables.

From equation (1.5), we obtain expressions cy = Ĥψ and ψ = −cĤy. We

eliminate ψ from equation (1.6) and derive an integro–differential equation for Stokes

waves,

−c2yu + gyyu + gĤ[y(1 + x̃u)] = 0. (2.3)

We define the operator k̂ = − ∂
∂u
Ĥ and apply Ĥ to the equation (2.3) to get the

equation (obtained by Babenko [62] and later independently rederived in Dyachenko

et al [17]) for y(u),(
c2k̂ − 1

)
y −

(
k̂y2

2
+ yk̂y

)
= 0. (2.4)

We note that the total mass of fluid should be conserved. This means that mean ele-

vation of the free surface should be zero, and the expression
∫ π
−π y(x)dx =

=
∫ π
−π y(u)xudu = 0 needs to be satisfied.
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2.1 Computing Stokes Waves via Newton Conju-

gate Gradient Method

We use the Newton conjugate gradient (Newton-CG) method (Yang [63], [64]) to

solve the equation (2.4). This method was implemented by Dyachenko et al in [17] to

compute Stokes waves, and consists of two stages: linearization of (2.4) and solution

of the resulting linear system via the conjugate gradient (CG) method.

We define the operator L̂ of the equation (2.4) to be,

L̂y ≡
(
c2k̂ − 1

)
y −

(
k̂y2

2
+ yk̂y

)
= 0. (2.5)

We linearize it around the nth approximation yn,

L̂yn + L̂1δy = 0 (2.6)

with L̂1 = −M̂δy −
(
k̂ [ynδy] + ynk̂δy + δyk̂yn

)
and M̂ = 1− c2

g
k̂.

We solve the linear system (2.6) for δy via the CG method (e.g. Schewchuk et

al [65]) and then get the n+ 1st approximation,

yn+1 = yn + δy. (2.7)

Note that the monotonic convergence is guaranteed only for positive definite ma-

trices in the CG method. Even though the operator L̂1 is indefinite, the Newton-CG

method converges from our experience at least for some range of initial conditions.

16



Chapter 3

Spontaneous Formation of Stokes

Waves from Plane Waves

In this chapter, we find how trains of Stokes waves may form in deep water. In

order to do that we consider evolution of a plane wave for long time (10 or more

periods) to get numerical solutions resembling a Stokes wave. These solutions travel

at almost constant speed and their shape resembles Stokes waves superposed with a

perturbation moving in the opposite direction to the Stokes wave.

3.1 Initial Condition

We would like to understand how a generic plane wave will converge to a nearly

coherent train of periodic traveling Stokes waves. For that, we use the conformal

variables approach (1.17)–(1.18), and consider an initial condition in the form of a
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Figure 3.1: Initial condition (3.1)–(3.2) with A = 0.1 and cinit = 1. On the vertical
axis we plot y(u), and on the horizontal axis we plot x(u).

plane wave,

z(u) = u+ iAe−iu + iy0 and zu = 1 + Ae−iu (3.1)

Πu = cinit(zu − 1) (3.2)

where A is the amplitude, cinit is the initial speed and y0 = −iA2

2
is chosen so that∫ π

−π ydx = 0 or the free surface’s mean elevation is zero. The velocity cinit is a

parameter chosen between 1 and 2. The speed of a Stokes wave is larger than 1, and

we want initial conditions to have velocities similar to those of Stokes waves. An

example of such an initial condition is presented in the Figure 3.1 with A = 0.1 and

cinit = 1.

We evolve plane waves (3.1)–(3.2) and produce solutions that have shapes similar

to Stokes waves as can be seen in the Figure 3.2. It appears that there is some

perturbation on the top of the numerical solution that moves in the opposite direction

to the wave. So, we seek a Stokes wave that best matches the numerical solution.

We define the speed of the numerical solution and look for the Stokes wave with
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Figure 3.2: We show the free surface of the numerical solution (yellow line) and
Stokes wave (blue line). Three panels correspond to different time slots: (left panel)
t = 164.99, (center) t = 168.44, and (right) t = 171.89.

the same speed. To define the speed, we track the location of the maximum elevation,

xmax, of the numerical solution as a function of time. We do a least squares fit of

xmax(t) to a linear function whose slope gives the speed of the numerical solution.

We choose a window in time so that the least–square relative error is of the order

10−7 or better. For initial speeds 1 ≤ cinit ≤ 2, we are getting the speeds of numerical

solutions that are between 1.00516 and 1.0092, consistent with the range of velocities

typically found in Stokes waves.

We study if the numerical solution indeed approaches a Stokes wave with some

noise and decompose the numerical solution in a sum of a Stokes wave zS,ΠS, and

the remainder which we denote by δz and δΠ:

z(u, t) = zS + δz, (3.3)

Π(u, t) = ΠS + δΠ. (3.4)

3.2 Stokes Wave and Perturbation

It is a nontrivial question how to split the solution into a Stokes wave, and into the

remainder. Our initial attempt is to track the maximum peak of the free–surface in
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time. Given the time series for the position of the crest of the numerical solution:

umax(t) = arg max
u

y(u, t), (3.5)

xmax(t) = x(umax(t), t), (3.6)

we find the average speed cs by the formula:

cs =
1

T

∫ T

0

xmax(t) dt. (3.7)

where T is the averaging time which is typically of the order of 600 (∼ 100 periods of

Stokes wave). Given the value cs, we find an associated Stokes wave with the same

speed of propagation, and mark this wave as the “background” solution, zS and ΠS.

We would like to note that the choice of the background may not necessarily be

optimal, and we also try to determine the propagation speed from minimizing the

time–average of the mixed term (described in the next section “Energy Balance”) of

the Hamiltonian.

3.3 Energy Balance

We split Hamiltonian and momentum into a pure Stokes part, a mixed term and

the remainder. The main idea of this splitting is to see if the remainder is almost

decoupled from the background Stokes wave.

3.3.1 The Hamiltonian

The Hamiltonian (1.22) is split into the sum of three terms:

H = HS +Hmt +Hrm. (3.8)
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Here,

HS = KS + US = −1

2

∫
ψSĤuψ

S du (3.9)

+
g

2

∫ (
yS
)2
(

1− Ĥuy
S
)
du, (3.10)

gives the energy of just the Stokes part of the solution. The Hmt is the mixed energy

that measures the cross interaction of the Stokes wave with the solution remainder:

Hmt = −2

∫ (
Ĥuψ

S
)
δψ du (3.11)

+ g

∫ (
yS − ySĤuy

S − Ĥu

(
yS
)2
)
δy − 2ySδyHuδy du. (3.12)

The Hrm is the remainder term that governs the motion of the remainder in the

potential of the Stokes wave and is split into quadratic and cubic parts:

Hrm = Hrm2 +Hrm3. (3.13)

The quadratic term gives the dispersion relation of the linear waves on the back-

ground of the Stokes solution, and the cubic term captures the nonlinearity in the

remainder:

Hrm2 = −1

2

∫
δψĤuδψ +

g

2

∫
(δy)2 (1− Ĥuy

S) du (3.14)

Hrm3 = −g
2

∫
Ĥu (δy)2 δy du. (3.15)

3.3.2 The Momentum

Similarly to the Hamiltonian, we can split the momentum (1.23) as follows:

P = P S + Pmt + Prm, (3.16)
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where:

P S =

∫
ψSySu du =

1

c
KS (3.17)

Pmt =

∫ (
δψySu + ψSδyu

)
du =

1

c

∫ ((
Ĥuψ

S
)
δψ + c2

(
Ĥuy

S
)
δy
)
du (3.18)

Prm =

∫
δψδyu du (3.19)

We now return to the question of splitting the solution into the Stokes wave

and the remainder. The idea is to choose the Stokes wave in such a way that the

time–averages of the mixed terms Hmt and Pmt are the smallest.

3.3.3 Simulations

In this section, we demonstrate results that show the balance of the terms in the

Hamiltonian and momentum of the full numerical solution.

We evolve initial conditions (3.1)–(3.2) with A = 0.1 and cinit = 1 until time

t = 600. After computing the speed of the solution and finding a Stokes wave with

the same velocity, we split our solution in the form (3.3)–(3.4). In Figure 3.3, we

show the mixed term (blue line) and remainder term (green line) of the Hamiltonian

(left panel) and momentum (right panel) with their corresponding average values.

We see that the mixed terms in the Hamiltonian and momentum behave similarly,

and their time averages are not close to zero. They are of the same order as time

averages for the remainder terms of the Hamiltonian and momentum. We assume

time averages ofHmt, Pmt are not close to zero due to the way we find the background

Stokes wave.

Let us consider the mixed terms in the Hamiltonian and momentum more closely.

We split the Hmt and Pmt into terms that depend on δy and δΨ. In the Figure 3.4, we

plot δy (magenta line) and δΨ (yellow line) terms of the Hamiltonian and momentum
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Figure 3.3: The mixed term and the remainder term for the Hamiltonian and mo-
mentum for the initial speed cini = 1 and the time averages.

for the mixed terms and zoom into time interval 450 ≤ t ≤ 470. The average values

of the δy and δΨ terms are close to each other (dark red line), and both contribute

to the average values of mixed terms. By changing the background Stokes wave, we

may make these averages become zero.

Other choices of initial data yield qualitively similar results.
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Figure 3.4: The mixed term of the Hamiltonian and momentum for the initial con-
stant cini = 1 and their time averages.
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3.4 Change of Coordinate System

Despite there being no criterion for wave breaking, it is observed that large amplitude

solutions tend to develop overhanging shapea and break in numerical simulations.

Therefore, we consider a small amplitude plane wave to prevent the solution from

wave breaking. We consider a simulation with amplitude A = 0.099875 and velocity

cinit = 1.005. In this simulation, we start with the initial speed that matches the

speed of a small amplitude Stokes wave. The solution is evolved until much longer

times (t = 5000) and its velocity is cs = 1.00516 which is matched to a corresponding

Stokes wave. We notice that the Stokes wave with cs has non zero values for the

averages of mixed terms for Hamiltonian and momentum similar to results of previous

section. The potential energy of the Stokes wave does not explicitly depend on its

velocity, and the mixed term of the potential energy of the numerical solution is

matched to a potential energy of some Stokes wave. This way we find the Stokes

wave that corresponds to the average value of the mixed term of potential energy

being zero. Moreover, the average of mixed terms of kinetic energy and momentum

also end up being close to zero. The best match was the Stokes wave with H/L =

0.0316130972106355 and velocity cs = 1.004944. This velocity however does not

match the one we found via the least squares method, and the waves move away

from each other as time grows. This results in the average values of the integrals

varying on a long time scale. In order to make the numerical solution and the chosen

Stokes wave travel at the same speed, we go to a moving frame of reference. To do

so, we apply Fourier transform to zS(u, t) to evolve the Stokes in time with velocity

cs = 1.00516. Our conjecture is that the reference frame of the system moves with

the velocity corresponding to the difference between the Stokes velocity 1.004944 and

computed solution velocity cs = 1.00516.

For the above initial condition and Stokes wave, the average value of both mixed

terms in the Hamiltonian and the momentum are close to zero. We also find that
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Figure 3.5: (left) The mixed terms of the Hamiltonian and momentum. (right) The
remainder terms of the Hamiltonian and momentum.

the remainder terms are larger than the mixed terms as shown in the Figures 3.5

and 3.6. In the Figure 3.7, we plot Hmt and Pmt (red and green lines respectively)

and remainder terms Hrm, Prm (blue and yellow lines respectively) as functions of

initial speeds. As the speed increases the absolute values of remainder terms increase

and the values of mixed terms stay close to zero.

This work is far from being complete and the final goal would be to write equations

for the remainder to understand if the remainder gets absorbed into the background

of a Stokes wave solution at long time.
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Figure 3.6: (left) Mixed terms of kinetic and potential energy and the average of total
energy. (right) Remainder terms of kinetic and potential energy and the average of
total energy.
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Figure 3.7: Average of the Hamiltonian and momentum mixed terms (red and green
lines respectively) and remainder terms (blue and yellow lines respectively) as func-
tions of initial speed. As speed increases the absolute value of the remainder terms
increases and the value of mixed terms stay close to zero.
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Chapter 4

Stability of Stokes Waves

In this chapter, we study superharmonic instabilities of Stokes waves. We use the

ratio of crest-to-trough height, H, to wavelength, L as a definition of wave steepness.

The method of frozen coefficients to study eigenvalues of the linearized equations

does not provide conclusive results. It was stated by Longuet-Higgins [27] that

Stokes waves remain stable with respect to superharmonic perturbations up to the

steepness H/L = 0.1387 when the Stokes wave speed c(H/L) passes through the

first extremum. In 1983 Tanaka [28] showed that the first instability appears at

a steepness H/L = 0.1366 when the Hamiltonian H has its first extremum. We

solve the eigenvalue problem numerically and for the first time we get to the third

unstable eigenmode and predict apperance of new modes at steepness corresponding

to extrema of the Hamiltonian confirming previous observations of Longuet-Higgins

and Tanaka [1] in the process.
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4.1 Method of Frozen Coefficients

4.1.1 Linearization Around a Stokes Wave Solution and

Method of Frozen Coefficients for ψ and y

We look at a linearization of the general time-dependent equations around a Stokes

wave solution:

yt = (yuĤ − xu)
[

1

|zu|2
Ĥψu

]
(4.1)

and

ψt = ψuĤ

[
1

|zu|2
Ĥψu

]
+

1

|zu|2
Ĥ
[
ψuĤψu

]
− gy, (4.2)

where g is free-fall acceleration.

We write y = y + δy and ψ = ψ + δψ where y and ψ on the right side are the

pure Stokes wave solution, and δy and δψ are small perturbations. The linearization

of the equations (4.1)–(4.2) leads to the following system for δy and δψ:

δyt =(δyuĤ + Ĥ[δyu])

[
1

|zu|2
Ĥψu

]
+ (yuĤ − xu)

[
1

|zu|2
Ĥδψu

]
−

− (yuĤ − xu)

[
(Ĥψu)

|zu|4
(
−2xuĤ∂uδy + 2yu∂uδy

)]
(4.3)

δψt =δψuĤ

[
1

|zu|2
Ĥψu

]
+ ψuĤ

[
1

|zu|2
Ĥδψu

]
−

− ψuĤ

[
(Ĥψu)

|zu|4
(
−2xuĤ∂uδy + 2yu∂uδy

)]
−

− −2xuĤ∂uδy + 2yu∂uδy

|zu|4
Ĥ
[
ψuĤψu

]
+

+
1

|zu|2
Ĥ
[
δψuĤψu

]
+

1

|zu|2
Ĥ
[
ψuĤδψu

]
− gδy. (4.4)
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The equations (4.3) and (4.4) are written in vector form with a 2 × 2 operator

matrix as follows:

Qt = M̂Q, Q ≡

δy
δψ

 , (4.5)

where

M̂ =

M̂11 M̂12

M̂21 M̂22

 (4.6)

and

M̂11q =
(

(∂uq)Ĥ + [Ĥ∂uq]
)[ 1

|zu|2
Ĥψu

]
−

− (yuĤ − xu)

[
(Ĥψu)

|zu|4
(
−2xuĤ∂uq + 2yu∂uq

)]
,

M̂12q =(yuĤ − xu)
[

1

|zu|2
Ĥ∂uq

]
,

M̂21q =− ψuĤ

[
(Ĥψu)

|zu|4
(
−2xuĤ∂uq + 2yu∂uq

)]
−

− −2xuĤ∂uq + 2yu∂uq

|zu|4
Ĥ
[
ψuĤψu

]
− gq,

M̂22q =(∂uq)Ĥ

[
1

|zu|2
Ĥψu

]
+ ψuĤ

[
1

|zu|2
Ĥ(∂uq)

]
+

1

|zu|2
Ĥ
[
(∂uq)Ĥψu

]
+

+
1

|zu|2
Ĥ
[
ψuĤ(∂uq)

]
. (4.7)

Instead of working directly with the matrix operator (4.7), we linearize it over y

and ψ keeping only the linear terms (but notice that xu = 1 − Ĥyu which implies

that 1
|zu|2 = 1 + 2Ĥyu +O(y2

u)) which means that we assume that we linearize about
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a weakly nonlinear solution (like a Stokes wave far from the limiting wave). The

linearization then gives

M̂11q = −(∂uq)ψu − (Ĥψu)Ĥ∂uq,

M̂12q = −yu∂uq − Ĥ∂uq − (Ĥyu)Ĥ∂uq,

M̂21q = −gq,

M̂22q = −2(∂uq)ψu + Ĥ
[
(∂uq)Ĥψu + ψuĤ(∂uq)

]
. (4.8)

It is immediately seen from Eq. (4.8) that M̂ is not self-adjoint with respect to the

scalar product

〈f ,g〉 ≡
π∫

−π

gT f du, (4.9)

where f and g are two arbitrary vector functions.

We consider the full equations (4.7) and study their stability via the method of

frozen coefficients. We treat terms in (4.7) independent of q as constants or frozen co-

efficients and approximate expressions of the form Ĥ[f(ψu, yu)qu] by Ĥ[f(ψu, yu)qu] =

−eiku|k|f(ψu, yu)qk where we assume that q ∝ eλteikuqk and f(ψu, yu) are arbitrary

functionals of ψu and yu. Equations (4.7) are transformed into,

e−ikuM̂11q = qk

(
ikĤ − |k|

)[ 1

|zu|2
Ĥψu

]
+ qk

(Ĥψu)

|zu|4
2|k||A|2,

e−ikuM̂12q = qk
|k|Ā
|zu|2

,

e−ikuM̂21q = qk
2|k|A
|zu|4

{
−ψui sign(k)(Ĥψu)− Ĥ

[
ψuĤψu

]}
− gqk,

e−ikuM̂22q = qk

(
ikĤ − |k|

)[ 1

|zu|2
Ĥψu

]
− 2ikqkψu

1

|zu|2
,

(4.10)

where

|k|A ≡ (xu|k|+ ikyu) = |k|(xu + i sign(k)yu) and |A|2 = |zu|2 (4.11)
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As a result, we can express the linearized problem (4.5) in the following form,

λ

 δyk

δψk

 =

M̂11 M̂12

M̂21 M̂22

 δyk

δψk

 . (4.12)

We consider two cases, when g = 0 and g 6= 0. In the case when g = 0, by

evaluating the determinant of (4.12) we get the following expression,

λ =
(

ikĤ − |k|
)[ 1

|zu|2
Ĥψu

]
+
|k||A|2Ĥψu
|zu|4

− ikψu
|zu|2

±

√
−|k|2

(
−|A|4(Ĥψu)2 + 2|A|2Ĥ

[
ψuĤψu

]
|zu|2 + ψ2

u|zu|4
)

|zu|4

= ikĤ

[
1

|zu|2
Ĥψu

]
− ikψu
|zu|2

, (4.13)

i.e. λ is purely imaginary. To compute (4.13) we used equations (4.11) and the

following identity,

−(Ĥψu)
2 + 2Ĥ

[
ψuĤψu

]
+ ψ2

u = 0 (4.14)

which is obtained from the properties of the Hilbert transform.

In the case g 6= 0, the expression for λ has the form,

λ = ikĤ

[
1

|zu|2
Ĥψu

]
− ikψu
|zu|2

±

√
−Āg|k|
|zu|2

, (4.15)

i.e. λ is not purely imaginary. We see that Re(λ) ' ± sign(k)yu
2

√
g|k| for waves with

small steepness and the real part of λ is small.

If we want to compute growth rates of Stokes waves in the moving frame of

reference (y(u, t) = y(u − ct) and ψ(u, t) = ψ(u − ct)), we need to consider q ∝

eλteik(u−ct)qk. Then the expression of λ for any choice of g becomes,

λ = ikc+ ikĤ

[
1

|zu|2
Ĥψu

]
− ikψu
|zu|2

±

√
−Āg|k|
|zu|2

, (4.16)

and the only difference is the addition of the term ick to the imaginary part of λ.
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4.1.2 Linearization and Method of Frozen Coefficients for R

and V Variables

We consider the Dyachenko equations (1.13)–(1.14),

∂R

∂t
= i (URu −RUu) ,

U = P̂−(RV̄ + R̄V ), B = P̂−(|V |2),

∂V

∂t
= i [UVu −RBu] + g(R− 1),

Similarly to the ψ, y variables, we express R and V as a sum of a pure Stokes wave

solution R, V and δR, δV as small perturbations, R = R + δR and V = V + δV .

We write the linearization of equations (1.13)–(1.14) and get the following system

for δR and δV ,

∂δR

∂t
= i (δURu + UδRu − δRUu −RδUu) , (4.17)

δU = P̂−(δRV̄ +RδV̄ + δR̄V + R̄δV ), δB = P̂−(δV V̄ + V δV̄ ), (4.18)

∂δV

∂t
= i [δUVu + UδVu − δRBu −RδBu] + gδR. (4.19)

We study the stability of solutions of equations in R and V variables by assuming

that δR, δV ∝ eλteiku with k < 0 (requirement of analyticity in C−) and |k| � 1.

Equations (4.17)–(4.19) are transformed into

λδRk =i([δRkV̄ + R̄δVk]Ru + ikUδRk − δRkUu − ikR[δRkV̄ + R̄δVk]−

R[δRkV̄u + R̄uδVk]) ' i
(
ikUδRk − ikR[δRkV̄ + R̄δVk]

)
, (4.20)

λδVk =i
[
(δRkV̄ + R̄δVk)Vu + ikUδVk − δRkBu − ikR(δVkV̄ )−R(δVkV̄u)

]
+

gδRk ' i
[
ikUδVk − ikR(δVkV̄ )

]
+ gδR, (4.21)

where

δU ' δRV̄ + R̄δV, δB = δV. (4.22)
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In matrix form the above equations can be written as,

λ

 δRk

δVk

 =

−k(U −RV̄ ) −k|R|2)

g −k(U −RV̄ )

 δRk

δVk

 , (4.23)

and eigenvalues have the form,

λ = k(−U +RV̄ )±
√
gk|R|2. (4.24)

We recall that we linearized R and V about Stokes waves, and use properties of Stokes

waves to simplify and study the expression (4.24). From the property Πu = c(zu−1),

we get that

V = i
Πu

zu
= i

c(zu − 1)

zu
= ic(1−R),

U = P̂ (RV̄ + R̄V ) = icP̂ (−(R− 1) + (R̄− 1)) = −ic(R− 1) = V,

RV̄ − U = −P̂ (RV̄ + R̄V ) +RV̄ = ic(|R|2 − 1),

Bu = c2P̂ (|1−R|2)u.

(4.25)

The expression for the Stokes wave growth rate follows from (4.24) and (4.25),

λ = ick(|R|2 − 1)±
√
gk|R|2. (4.26)

We see that λ is purely imaginary for k < 0, and it has no instability for any g.

In the moving frame of reference (R(u, t) = R(u− ct) and V (u, t) = V (u− ct)),

we consider δR, δV ∝ eλteik(u−ct)δRk, δVk and the expression for λ changes to,

λ = ikc+ ick(|R|2 − 1)±
√
gk|R|2. (4.27)

The only difference is the addition of the term ick to the imaginary part of λ.

4.1.3 Next Order in k for Arbitrary Nonlinearity for ψ, y

and R, V

We consider the next order in k for ψ, y and R, V , and use equations (4.5)–

(4.7) and equations (4.17)–(4.19) respectively. We compute expressions of the form
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Ĥ[f(ψu, yu)qu] for y and ψ equations as,

Ĥ[f(ψu, yu)qu] = eikui sign(k)f(ψu, yu)[ikqk + (qk)u] =

= −|k|eikuf(ψu, yu)

[
qk −

i sign(k)

|k|
(qk)u

]
, (4.28)

where as before we assume that f(ψu, yu) are the arbitrary functional of ψu and yu

and q = eλteikuqk(u). We omit derivations here and provide the resulting expressions

for λ,

λ ' ick + ikĤ

[
1

|zu|2
Ĥψu

]
− ikψu
|zu|2

± |k|1/2
√

(Ĥψuu + i sign(k)ψuu)2ψu − (xu − i sign(k)yu)g|zu|2. (4.29)

We see that λ is not purely imaginary for both cases g 6= 0 and g = 0 in the next

order of approximation.

Similarly, we consider the next order in k for equations (4.20)–(4.21) in R and V

variables. In those equations, we consider all terms including ones with O(k0). The

corresponding eigenvalues have the following form,

λ = ick+ick(|R|2−1)±
√

2ic2kRR̄u(1− |R|2) +
( g
R

+ ic2R̄Ru

)
k|R|2+O(k0). (4.30)

We conclude that the expression under the square root in equation (4.30) has an

imaginary component thus λ has a nonzero real part with both signs, i.e. this

equation indicates instability.

In Figure 4.1, we show the real part of the eigenvalue (4.29) and (4.30) as a

function of u for fixed k = −5000 computed using the method frozen coefficients.

There are three panels in the Figure 4.1, the left panel corresponds to a small Stokes

wave with velocity c = 1.001, the center panel amounts to a Stokes wave with

c = 1.026, and the right panel shows a result for the steepest Stokes wave (among

these three) with c = 1.09289. The blue color shows results for ψ, y variables and the

green color corresponds to R, V variables, and the solid and dotted lines correspond
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Figure 4.1: In all three panels, we present the real part of eigenvalues vs u with
k = −5000. The eigenvalue in z, ψ variables corresponding to (4.29) are in blue
and the eigenvalues in R, V variables corresponding to equation (4.30) are in green.
The solid line corresponds to one branch and the dotted to the other. (Left) Stokes
wave with c = 1.001; (Center) Stokes wave with c = 1.026; (Right) Stokes wave with
c = 1.09289

to the two branches of the eigenvalue. We see that the real part of the eigenvalues

grows with increase in steepness of Stokes waves.

From the theory of frozen coefficients, the next order correction in k gives little

insight into stability of Stokes waves. Instead, an accurate portrayal of eigenvalues

behaviour can be found by numerically solving the linearized operator.

Table 4.1: Mean values of real part of eigenvalues from the figure 4.1

Mean of real part of eigenvalues c = 1.001 c = 1.026 c = 1.09289
z, ψ variables, (solid) branch −1.6× 10−16 3.9× 10−15 8.2× 10−15

z, ψ variables, (dotted) branch −2.9× 10−16 −1.4× 10−15 −3.1× 10−15

R, V variables, (solid) branch −2.2× 10−17 −4.6× 10−16 −2.4× 10−15

R, V variables, (dotted) branch 2.2× 10−17 4.6× 10−16 2.4× 10−15
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4.2 Numerical Solution of Eigenvalue Problem

In this section, we linearize the equations of motion and solve the associated eigen-

value problem numerically for superharmonic instability of Stokes waves.

4.2.1 Extrema of Hamiltonian of Stokes Waves

It is known that integral quantities associated with the Stokes solution oscillate as a

function of wave steepness in the vicinity of the limiting Stokes wave. It is convenient

to use the ratio of crest-to-trough height, H, to wavelength, L, as a definition of wave

steepness

s = H/L. (4.31)

Following the asymptotic theory of Longuet-Higgins and Fox [30] and Longuet-

Higgins and Dommermuth [31], we may identify the extremal points of the Hamilto-

nian as Stokes waves approach the wave of greatest height.

The asymptotic theory ([30], [31]) provides formulae for Stokes wave speed, and

total energy, H, in the vicinity of limiting wave:

c2(ε) =
g

k

(
1.1931− 1.18ε3 cos(2.143 ln ε+ 2.22)

)
, (4.32)

H(ε) =
g

k

(
0.07286− 0.383ε3 cos(2.143 ln ε+ 1.59)

)
, (4.33)

where ε provides a different parameterization of the Stokes wave family. It is defined

as follows:

ε2 =
kq2

2g
, (4.34)

where k is the wavelength, and q is the velocity of a fluid particle located at the

crest of the wave measured in the reference frame moving with the speed c. We may
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n H
L

(Simulation) H (Simulation)
1 1.366035366678e-01 4.651771802692e-01
2 1.407965842848e-01 4.577057808638e-01
3 1.410496267216e-01 4.577972786501e-01
4 1.410627373980e-01 4.577961527320e-01

Table 4.2: Extrema of Hamiltonian and corresponding steepness values from the
numerical computations.

n H
L

(LH) H (LH)
1 1.36258683901074e-01 4.64823018228553e-01
2 1.40827871097976e-01 4.57706391816943e-01
3 1.41061656416396e-01 4.57793945537506e-01
4 1.41074235010001e-01 4.57792868390338e-01

Table 4.3: Predictions of Longuet-Higgins (LH) theory first improve with proximity
to the limiting wave, but lack of significant digits in the formula (4.33) results in loss
of accuracy close to the limiting wave.

differentiate the formula (4.33) with respect to ε to determine the extrema points of

Hamiltonian:

∂H
∂ε

= 0, when tan (2.143 ln ε+ 1.59) = 1.4, (4.35)

the theoretical predictions improve with proximity of the limiting wave, however

more digits are required for accurate approximation close to the limiting wave.

4.2.2 Linearization Around Stokes Wave in a Moving Frame

of Reference

The equations (1.13)–(1.14) can be linearized around a Stokes solution of arbitrary

height to determine the spectrum of the linearized operator. This investigation was

studied in the works Longuet-Higgins [27], Tanaka [28] and Longuet-Higgins and

Tanaka [1], and has led to the conclusion that Stokes waves become linearly unstable
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due to appearance of real eigenvalues at extremal points of the Hamiltonian.

The linearization around the Stokes solution is written in the moving frame,

where the Stokes wave is a stationary solution. In the frame moving with speed c

the unknown functions are dependent on u − ct and given by R(u, t) = R(u − ct, t)

and V (u, t) = V (u− ct, t). The equations of motion now have the form:

Rt = (c+ iU)Ru − iUuR, (4.36)

Vt = (c+ iU)Vt − iBuR + g(R− 1). (4.37)

To find the linearization operator we consider:

R(u, t) = R(u) + δR, and V (u, t) = V (u) + δV, (4.38)

where R(u) and V (u) are independent of time in a frame moving with the crest of

the Stokes wave and correspond to the Stokes wave solution. The functions δR and

δV are assumed small and are time–dependent. The linearization operator is found

by substitution of the equations (4.38) into equations (4.36)–(4.37) and yields:

∂δR

∂t
= i [δURu + (U − ic) δRu − δRUu −RδUu] , (4.39)

∂δV

∂t
= i [δUVu + (U − ic) δVu − δRBu −RδBu] + gδR, (4.40)

where δU and δB are given by:

δU = P̂−(δRV̄ +RδV̄ + δR̄V + R̄δV ), δB = P̂−(δV V̄ + V δV̄ ). (4.41)

The perturbations δR and δV are written in the form:

δR(u, t) = eλtδRλ(u) + eλ̄tδRλ̄(u), (4.42)

δV (u, t) = eλtδVλ(u) + eλ̄tδVλ̄(u), (4.43)

where λ is a complex constant, and λ̄ is its complex conjugate. The eigenvalue prob-

lem is found by substitution of these formulas into linearized equations for Rt (4.39)
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and collecting terms with exponentials eλt and eλ̄t:

λδRλ = i [δUλRu + (U − ic)(δRλ)u − δRλUu −R(δUλ)u] , (4.44)

λδR̄λ̄ = −i
[
δŪλ̄R̄u + (Ū + ic)(δR̄λ̄)u − δR̄λ̄Ūu − R̄(δŪλ̄)u

]
, (4.45)

and similarly for the equation for Vt (4.40) and collecting terms at the respective

exponentials:

λδVλ = i [δUλVu + (U − ic)(δVλ)u − δRλBu −R(δBλ)u] + gδRλ, (4.46)

λδV̄λ̄ = −i
[
δŪλ̄V̄u + (Ū + ic)(δV̄λ̄)u − δR̄λ̄B̄u − R̄(δB̄λ̄)u

]
+ gδR̄λ̄. (4.47)

and

δUλ = P̂−(δRλV̄ +RδV̄λ̄ + δR̄λ̄V + R̄δVλ), (4.48)

δŪλ̄ = P̂+(δR̄λ̄V + R̄δVλ + δRλV̄ +RδV̄λ̄), (4.49)

δBλ = P̂−(δVλV̄ + V δV̄λ̄), (4.50)

δB̄λ̄ = P̂+(δV̄λ̄V + V̄ δVλ), (4.51)

The resulting eigenvalue problem is posed for a vector of four functions,

δf =
(
δRλ, δR̄λ̄, δVλ, δV̄λ̄

)T
.

The eigenvalue problem is solved numerically, and we discuss the details of the im-

plementation in the section “Numerical Method”.

4.2.3 Main Results

The works by Tanaka [28], and Longuet-Higgins and Tanaka [1] demonstrated that

eigenvalues become unstable at the extrema of the Hamiltonian, H as a function of

H/L, where H is given by the formula:

H =
1

2

∫
ψk̂ψ du+

g

2

∫
y2xu du, (4.52)
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and observed two unstable eigenmodes associated with the first two extrema of H.

Further approach to the limiting wave is difficult because of the slow convergence rate

of Fourier coefficients of the Stokes wave. We have solved the eigenvalue problem as-

sociated with linearization of the dynamical equations of motion on the background

of a collection of Stokes waves that are in close vicinity to the limiting wave, confirm-

ing the numerical observations of Longuet-Higgins and Tanaka [1]. In the Figure 4.2,

we show the square of the first (left panel) and second (right panel) unstable eigen-

values as a function of H/L. In both panels we include data for the first and second

unstable eigenvalues (blue squares) from Longuet-Higgins and Tanaka [1]. We zoom

into regions where λ2
1, λ

2
2 cross the horizontal axis and switch sign from negative

to positive. We include data points below zero to show that unstable eigenmodes

switch form being purely imaginary to real. In the zoomed plots, we fit the numer-

ical data around the instability threshold to a function f(H/L) = a(H/L − Hn/L)

where for the first unstable eigenvalues a = 21.5956, H1/L = 0.136603552635709,

and a = 407.643, H2/L = 0.140796170578837 for the second unstable eigenvalue. We

get that the first 6 decimal digits of H1/L and H2/L match the positions of Hamil-

tonian extrema (by comparing results from the table 4.2) and confirm numerical

observations of Longuet-Higgins and Tanaka [1].

We were able to solve the eigenvalue problem for Stokes waves around the third

extremum of the Hamiltonian as well. In the left panel of Figure 4.3, we show the

third unstable eigenvalue and zoom into the region where λ2
3 intersects the horizontal

axis. We fit the data around the third instability threshold to a function f(H/L) =

a(H/L − H3/L) with a = 7800, H3/L = 0.141049633798808. The first 6 digits of

s3 = H3/L match the position of the second maximum of H, and thus it confirms

that unstable eigenmodes occur at extrema of the Hamiltonian.

We have found that unstable eigenvalues appear as a result of collision of a

pair of imaginary eigenvalues at the origin in the complex plane. The right panel
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Figure 4.2: (Left) The square of first eigenvalue λ2
1(H/L) to cross the instability

threshold at H/L = 0.1366035 when Hamiltonian goes through the first extremum.
The eigenvalues computed in present work (orange circles), the numerical data of
the work [1] (blue squares) and numerical fit of the data (green line). (Right) The
square of the second eigenvalue λ2

2(H/L) that becomes unstable at the value of
H/L = 0.1408279 when H goes through a second extremum, the numerical data of
the work [1] and numerical fit of the data (green line).

of Figure 4.3 illustrates a snapshot of the smallest magnitude eigenvalues of the

linearized operator as they cross zero to collide and produce unstable eigenmodes

near the first extremum of the Hamiltonian in the vicinity of the limiting wave.

We plot real and imaginary parts of eigenvalues on the vertical and horizontal axes

respectively. Green, yellow and red circles represent eigenvalues that correspond to 3

different steepnesses. Blue pentagons show purely imaginary stable eigenvalues that

are motionless with respect to change of steepness s. The direction in which unstable

eigenmodes move as s grows toward the limiting Stokes wave is shown by the arrows.

We found that all eigenvalues that become unstable follow the same curve after a

proper normalization. In Figure 4.4, we plot the first (green circles), second (yellow

triangles) and third (blue triangles) eigenvalues and data from Longuet-Higgins and

Tanaka [1], normalizing the horizontal variable to smax−s
smax−sn , where smax is the steepness
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Figure 4.3: (Left) The square of the third eigenvalue to cross the instability threshold
at H/L = 1.410496 at the third extremum of the Hamiltonian. Circles are numerical
solutions of eigenvalue problem, and solid line is a fit to power law. (Right) A snap-
shot of eigenvalues near the origin for a linearization just after the second extremum
of the Hamiltonian, H. It shows that there are two kinds of eigenvalues, the ones
that are sensitive to small changes in H/L (red, yellow and green), and the ones
that remain stationary (cyan). It is evident that more eigenvalues are moving to the
origin to collide and produce more unstable eigenmodes.

of the limiting Stokes wave, and sn with n = 1, 2, 3 is the steepness of the Stokes

waves at the extremum in the Hamiltonian.

4.2.4 Numerical Method

We solve the eigenvalue problem given by the equations (4.44)–(4.47). The back-

ground Stokes wave is computed numerically in quadruple precision using the

Newton-CG method (Dyachenko et al [17]). The functions R(u) and V (u) are rep-

resented by Fourier series in q, that is related to u as described by Lushnikov et al

in [19] by the means of formula:

tan
u

2
= l tan

q

2
, (4.53)
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where l is a parameter chosen in such a way so the decay rate of Fourier coefficients

is the fastest. We use a uniform grid for q, so that we may use fast Fourier transform

(FFT) to apply the linearized operator efficiently to the basis of complex exponen-

tials. A uniform grid in q translates to a highly concentrated grid in u, so that the

singularity of the Stokes wave is resolved accurately. After a Stokes wave has been

found, we solve the eigenvalue problem for the linearized problem, which may be

written in matrix form as follows:

Âδf = λδf , (4.54)

where Â is a 4× 4 operator matrix. It can be reduced to a matrix of coefficients A

by applying Â to the standard Fourier basis in q.

The eigenvalue problem is solved by means of shift–and–invert technique (see

Saad [66]). We consider the modified eigenvalue problem:

(A− σI)−1x = νx (4.55)

where σ is a guess chosen such that σ 6= λ, and eigenvalues have the form,

νj =
1

λj − σ
. (4.56)

These eigenvalues have the largest magnitude when λk is closest to σ. We use

ARPACK subroutine [67], [68] (which is based on the Arnoldi method (Arnoldi [69],

Trefethen and Bau [70])) to get νj. Once we find νj, we can recover λj = σ + 1
νj

of

the original eigenvalue problem. Currently, we use LU factorization for A− σI, but

we want to improve to a matrix–free implementation of the eigenvalue solver.
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Conclusion of Part I

We computed the first three unstable eigenmodes of linearization operator of Stokes

Waves, and demonstrated that they occur for steepnesses that correspond to the

extrema of the Hamiltonian verifying and extending observations of Longuet-Higgins

and Tanaka [1]. We see that unstable eigenvalues appear as a result of collision of

a pair of imaginary eigenvalues at the origin in the complex plane. Our conjecture

based on the results in Figure 4.4 is that all eigenvalues (that turn into unstable

eigenvalues) lie on a single curve after a change of variable from steepness (4.31)

s to smax−s
smax−sn where smax is the steepness of the limiting Stokes wave, and sn (with

n = 1, 2, 3) is the steepness of Stokes waves at extrema in the Hamiltonian. Our

simulations suggest a power law for λ2
n ∼ 1

smax−s in the vicinity of the limiting wave

for all n, but further analytical work is required to develop a theory that would

explain these observations.

Computation of Stokes waves near the third extremum becomes tedious, and nu-

merical solution of the eigenvalue problem becomes numerically costly. The present

approach can be improved by employing the conformal map suggested in Hale and

Tee [71], so that many more extrema can be resolved. The present approach can
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be extended to Stokes waves with constant vorticity where the conformal variable

approach has been discovered in the work Dosaev et al [72]. It is worthwhile to

mention that a problem of stability of Stokes waves is of particular importance in

the subharmonic context (Benjamin and Feir [24]), however a different approach has

to be developed. In order to consider subharmonic perturbations, the problem has

to be considered on an infinite line rather than periodic interval which is outside of

the scope of the present work.

For a generic plane wave we have found that the question of formation of a

Stokes wave to be quite complicated. Long time dynamics of a plane wave results in

a solution that may be represented as a Stokes wave with a significant perturbation.

However, the splitting of the solution into a Stokes wave and the perturbation is

nontrivial. We have found that matching the potential energy of the Stokes wave to

the time–averaged potential energy of the solution is the best criterion. We plan to

study the Hamiltonian of the perturbation, and determine the equations of motion

for the perturbation. The question of whether the perturbations are absorbed into

the Stokes wave remains open.
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Chapter 1

Introduction

1.1 Problem Formulation

As was mentioned before, NLSE is one of the most important equations describing

nonlinear waves. In the part II, we present the work published in our paper Semenova

et al [56].

Let us consider NLSE in its simplest form (rescaling of coordinate, time, and

amplitude can bring NLSE into this form without loss of generality):

iΦt + Φxx + γ|Φ|2Φ = 0, (1.1)

where Φ(x, t) is a complex function, γ = ±1 denotes the focusing and defocusing

NLSE respectively, and subscript denotes partial derivative with respect to x and t.

The latter equation is solved on an interval x ∈ [−L,L] subject to periodic boundary

conditions, and t ∈ [0, T ]. We consider NLSE in one spatial dimension, although both

methods (HIM and SS2) are applicable to any dimensions (for example, HIM was

originally formulated for a 2D problem in Dyachenko et al [51]).
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1.2 Constants of Motion

The Hamiltonian H and the number of particles N given by:

H =

∫ (
|Φx|2 −

γ

2
|Φ|4

)
dx and N =

∫
|Φ|2 dx, (1.2)

are conserved quantities for (1.1). We integrate over one spatial period [−L,L] and

drop the integration limits for brevity. The NLSE is an integrable system (Shabat

and Zakharov [73]), and it has infinitely many nontrivial integrals of motion, that

may be used to track accuracy of a numerical simulation. We consider the first two

nontrivial integrals of motion, that are given by Shabat and Zakharov [73], Novikov

et al [74]:

C4 =

∫ [
ΦΦ̄xxx +

3γ

2
ΦΦ̄x|Φ|2

]
dx, (1.3)

C5 =

∫ [
|Φxx|2 +

γ2

2
|Φ|6 − γ

2

(
|Φ|2x

)2 − 3γ|Φ|2|Φx|2
]
dx. (1.4)

We denote them C4 and C5 because the first three are trivial integrals of motion: the

number of particles N , the Hamiltonian H (1.2), and the momentum.

1.3 Exact Solutions of NLSE

Shabat and Zakharov show in [73] that NLSE has soliton solutions, and when the

equation (1.1) is considered on an infinite spatial interval, it may be solved by means

of the inverse scattering transform. We use solutions of NLSE that decay at x→ ±∞,

such as N -soliton solutions derived by Shabat and Zakharov in [73], and they may

be used on a periodic interval when the magnitude of |Φ| is close enough to zero

at the endpoints x = ±L. In this work we consider the case when γ = 1 in the

equation (1.1).
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The one-soliton solution is given by the formula:

Φ =

√
2λei(

1
2
vx+(λ− 1

4
v2)t+Φ0)

cosh
[√

λ (x− vt− x0)
] , (1.5)

where x0, and v are the constants that determine the initial position and the propaga-

tion speed of the soliton, and the constants λ and Φ0 determine the soliton amplitude

and the initial phase respectively.

Another exact solution of (1.1) on infinite line is the two-soliton solution which

can be obtained by the dressing method [75] and is given by the formula:

Φ =

[
1 +

eη2+η̄2(p1 − p2)2

2(p1 + p̄2)2(p2 + p̄2)2

]
eη1 +

[
1 +

eη1+η̄1(p1 − p2)2

2(p̄1 + p2)2(p1 + p̄1)2

]
eη2

D
, (1.6)

where D has the form:

D = 1 +
eη1+η̄1

2(p1 + p̄1)2
+

eη2+η̄2

2(p2 + p̄2)2
+

eη1+η̄2

2(p1 + p̄2)2
+

eη̄1+η2

2(p̄1 + p2)2
+

+
eη1+η̄1+η2+η̄2|p1 − p2|4

4(p1 + p̄1)2(p2 + p̄2)2|p1 + p̄2|4
(1.7)

and η1,η2 are determined by the expression:

η1,2 = p1,2 x+ ip2
1,2 t+ a1,2, (1.8)

here p1,2 and a1,2 are complex constants. The width and the propagation speed of

solitons are defined by the real and the imaginary parts of p1 and p2 respectively.

The initial positions of the first and second soliton are described by a1 and a2.
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Description of Numerical Methods

We describe two numerical methods the second order Split Step method (SS2) and

the Hamiltonian integration method (HIM) that we later compare in the chapter

“Numerical Methods Performance”.

2.1 Numerical Solution on Periodic Interval

We use Fourier series to approximate Φ(x, t) on the periodic interval x ∈ [−L,L]

using a pseudo spectral approach by means of the discrete Fourier transform (DFT)

that is computed using the fast Fourier transform library FFTW [76]. In physical

space we use a uniform grid,

xj =
2L

N
j − L where j = 0, . . . N − 1 (2.1)

to discretize the interval [−L,L]. We introduce a grid function,

Φn
j = Φ(xj, n∆t), (2.2)

where ∆t is an elementary time step.
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2.2 Split Step Method

In the SS2 method, the linear and nonlinear terms of (1.1) are treated separately in

a style of Strang splitting [52].

We define L̂ = i∂2/∂x2 to be the operator for the linear term and N̂ = iγ|Φ|2

represent the operator for the nonlinear term of the equation (1.1), and it can be

rewritten as Φt(x, t) = (L̂+N̂)Φ(x, t). This equation has the formal solution Φ(x, t+

∆t) = e(L̂+N̂)∆tΦ(x, t) on a time step ∆t. In the SS2 method (Taha and Ablowitz [46])

we approximate the exponential term by the product of separate exponents:

e(L̂+N̂)∆t = eL̂
∆t
2 eN̂∆teL̂

∆t
2 +

∆t3

12
{[L̂, [N̂ , L̂]] +

1

2
[N̂ , [N̂ , L̂]]}+ . . . , (2.3)

that is accurate up to third order in time. This is a special case of application of the

Campbell-Baker-Hausdorff formula (Varadarajan [77]). By doing this, the evolution

of the linear part and nonlinear part on the step ∆t can be carried out separately.

In the context of NLSE this is particularly attractive because both evolutions can

be carried out analytically. We note that the linear PDE iΦt = −Φxx, can be solved

exactly in the Fourier domain:

Φk(t+ ∆t) = e−ik
2∆tΦk(t), (2.4)

where Φk(t) denotes the Fourier coefficient, corresponding to wavenumber k, of

Φ(x, t). The nonlinear part of (1.1) given by iΦt = −γ|Φ|2Φ is an ODE, and can be

solved exactly:

Φ(x, t+ ∆t) = eiγ|Φ|
2∆tΦ(x, t). (2.5)

Equations (2.4) and (2.5) give us explicit expressions for eL̂ and eN̂ correspond-

ingly. The only complexity is that these two exact solutions are given in Fourier

and coordinate spaces which requires switching between them in order to represent

eL̂
∆t
2 eN̂∆teL̂

∆t
2 in (2.3) consecutively.
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Chapter 2. Description of Numerical Methods

In a similar manner one may construct higher order split step methods, by alter-

nating linear and nonlinear steps. The SS2 method is stable if the condition,

∆t ≤ ∆x2

π
(2.6)

described in Weideman and Herbst [78] is satisfied.

One can note that both steps (linear and nonlinear) in SS2 methods are per-

forming only a rotation of phase, so conservation of the number of particles N is an

intrinsic property of the method.

2.3 Hamiltonian Integration Method

The main feature of the HIM method (introduced in Dyachenko et al [51]) is its exact

conservation of the Hamiltonian, H, and number of particles, N . This is achieved

by requiring that the difference in H (and N ) on subsequent time steps vanishes,

the details of the derivation of HIM are given in Appendix B.1. HIM is an implicit

scheme:

i
Φn+1
j − Φn

j

∆t
= −

[
Φn+1
j + Φn

j

]
xx

2
−

(Φn+1
j + Φn

j )(|Φn+1
j |2 + |Φn

j |2)

4
. (2.7)

where Φn
j is a grid function defined in (2.2). Equation (2.7) implicitly defines the

solution at the subsequent time steps and is solved by means of fixed point iterations.

In Fourier space the formula (2.7) transforms into the following expression:

Φ̂n+1
k − Φ̂n

k = −ik
2∆t

2
(Φ̂n+1

k + Φ̂n
k) +

i∆t

4
F̂
[
(Φn+1 + Φn)(|Φn+1|2 + |Φn|2)

]
, (2.8)

where Φ̂n
k = F̂ [Φn] is the k-th Fourier coefficient of the grid function Φn

j . Following

the work of Korotkevich et al [57], the linear part of the equation (2.8) can be resolved

for Φ̂n+1
k which yields:

Φ̂n+1
k =

1− ik2∆t
2

1 + ik
2∆t
2

Φ̂n
k + i

∆t

4(1 + ik
2∆t
2

)
F̂
[
(Φn+1 + Φn)(|Φn+1|2 + |Φn|2)

]
. (2.9)
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We solve the equation (2.9) by fixed point iterations:

Φ̂n+1,s+1
k =

1− ik2∆t
2

1 + ik
2∆t
2

Φ̂n
k +

i∆t

4(1 + ik
2∆t
2

)
F̂
[
(Φn+1,s + Φn)(|Φn+1,s|2 + |Φn|2)

]
,

(2.10)

where s denotes the iteration number and Φ̂n+1,0
k = Φ̂n

k . The expression (2.10) is

iterated until the residual condition:∥∥∥Φ̂n+1,s+1
k − Φ̂n+1,s

k

∥∥∥
2

=

√∑
k

∣∣∣Φ̂n+1,s+1
k − Φ̂n+1,s

k

∣∣∣2 ≤ ε , (2.11)

is satisfied. In this formula ‖·‖2 denotes the l2 norm on [−L,L], and ε is the tolerance

for fixed point iterations. The initial values Φn+1,0 are computed using one step of

Forward Euler. From the paper [51], the fixed point iterations of HIM converge when

the following condition is satisfied,

∆t <
2√

3 max
j

(|Φn
j |

2)
. (2.12)

Derivation of this condition is given in Appendix B.2.

For the time step that satisfies the above condition, the fixed point iterations

typically converge in 4 to 6 steps with the tolerance ε ≤ 10−11.
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Physical Units Relevant to Optical

Fiber

We would like to estimate the characteristic time of a simulation that corresponds to

the dynamics of a pulse in a physically realistic fiber. In order to do so we consider

a trans–Atlantic fiber described in the reference paper [40] by Lushnikov subject to:

iAz −
1

2
β2Aττ + σ1|A|2A = 0 . (3.1)

We use the values for β2 = −20 ps2 km−1 (the group velocity dispersion) and σ1 =

1.3× 10−3 km−1mW−1 (the strength of nonlinearity for a fiber) provided in [40].

The dimensionless NLSE given by (1.1) must be rewritten in the original dimen-

sional units. To do that, we consider dimensional units:

z = lt, τ =
x

ω0

, and A = A0Φ. (3.2)

The derivatives with respect to t and x are given by the formulas:

∂t = l∂z and ∂x =
1

ω0

∂τ , (3.3)
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Chapter 3. Physical Units Relevant to Optical Fiber

and the resulting equation in the dimensional units transforms into:

iAz +
1

ω2
0l
Aττ +

|A|2A
A2

0l
= 0. (3.4)

We compare the two equations (3.1) and (3.4) and get that:

β2

[
ps2

km

]
=
−2

ω2
0l
, (3.5)

σ1

[
1

km mW

]
=

1

A2
0l
, (3.6)

where A0 = 1 mW1/2. By using the equations (3.5)–(3.6) and the parameters β2 and

σ1 from the reference paper [40], we find that l ≈ 769 km, ω2
0 = 1.3× 10−4 ps−2. We

see that it is necessary to simulate the fiber until the dimensionless time tmax ≈ 13 in

order to mimic a 104 km fiber. The nonlinear time is then given by tNL = π
|Φ|2 = π

2|λ|

which in physical units corresponds to zNL = tNLl.
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Hamiltonian Integration Method

for MMT Model

In 1997 a new model of one-dimensional dispersive wave turbulence was introduced

by Majda, McLaughlin, and Tabak [59]. The MMT equation has the form:

iψt = |∂x|αψ + γ|∂x|−β/4
(
||∂x|−β/4ψ|2|∂x|−β/4ψ

)
, (4.1)

and it can be considered as a generalization of NLSE. Here α > 0 and β are real

parameters. This model describes a Hamiltonian system with H given by:

HMMT =

∫ (
||∂x|α/2ψ|2 +

γ

2
||∂x|−β/4ψ|4

)
dx. (4.2)

The MMT conserves the number of particles N (wave number) similar to NLSE.

For α = 2 and β = 0 MMT is almost identical to NLSE. A derivative ∂x is replaced

by a nonlocal operator |∂x| in the kinetic energy (4.2), which results in the opposite

sign in front of the linear term of (4.1). The MMT model is widely used (see e.g.

Zakharov et al [79], Lee et al [80], Rumpf and Newell [81]) for investigation of the

wave turbulence theory Zakharovs et al [82] for 2D hydrodynamics with a 1D free

surface. We use the same approach as in Appenidx B.1 to the MMT equation and
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Chapter 4. Hamiltonian Integration Method for MMT Model

get the following numerical scheme for HIM:

i
ψn+1
j − ψnj

∆t
=
|∂x|αψn+1

j + |∂x|αψnj
2

+ (4.3)

+ γ|∂x|−β/4
(
|∂x|−β/4ψn+1

j + |∂x|−β/4ψnj
2

||∂x|−β/4ψn+1
j |2 + ||∂x|−β/4ψnj |2

2

)
.

Similarly to NLSE, the Hamiltonian HMMT and the number of particles NMMT are

conserved exactly. Solving for ψn+1
j in the linear part of (4.3) and applying the same

approach as in Appendix B.2, we get the following convergence condition:

∆t <
2

|γ|
√

3k
β/2
max max

j
(||∂x|−β/4Φn

j |2)
, (4.4)

where kmax is the maximum of the absolute value of wave number. If β = 0, the

condition for ∆t coincides with the convergence condition (2.12) of HIM for NLSE.

59



Chapter 5

Numerical Methods Performance

In this chapter, various N -soliton (N = 1, 2, 3) intial conditions are considered:

one soliton, two–soliton and three–soliton solutions. We compare the HIM and SS2

numerical methods by performing a set of experiments with these various initial

conditions.

We note that in exact arithmetic, HIM conserves the Hamiltonian H and number

of particles N up to any precision governed by the tolerance threshold chosen for

fixed point iterations, and SS2 conserves the number of particles exactly by the

construction of the method. However, in double precision the error in conservation

of H and N is due to round-off errors inherent to floating point arithmetic. So, the

round-off error accumulates in time and causes the number of particles for SS2 and

HIM, and the Hamiltonian for HIM to change gradually for all initial conditions.
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Figure 5.1: (Stationary one-soliton solution on a fully resolved grid) (Left) Conver-
gence rate of numerical methods, HIM (green) and SS2 (red). Both methods have
second order convergence, but L∞ error in solution is about one order smaller for
HIM compared to SS2 for the same time steps. (Right) Error in conserved quanti-
ties: number of particles N (solid), Hamiltonian H (dotted), and C5(dash-dotted)
for various time steps. When time step is larger than the stability condition of SS2,
errors in H and C5 start to grow. For HIM, the error is dominated by accumulation
of round-off errors and is smaller by several orders of magnitude compared with SS2.

5.1 Stationary One-Soliton Solution

In this simulation we check the convergence rate of HIM and SS2 by running a

sequence of simulations with various time steps. As the initial condition we consider

a one-soliton solution (1.5) with the following parameters:

λ = 2, and Φ0 = x0 = v = 0. (5.1)

We run the simulation on a fully resolved (highest harmonics are of round-off level)

uniform grid of N = 2048 grid points, and L = 25π. The tolerance for HIM iterations

is set to ε = 10−15 and simulation time is T = 5. The convergence of both methods

is demonstrated in Figure 5.1. We omit C4 in the Figure 5.1 because this quantity

is identically zero for a stationary one-soliton solution. The error in the integrals

of motion for the SS2 method is dominated by accumulation of round-off errors for
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Chapter 5. Numerical Methods Performance

small ∆t, and by the order of method for large ∆t as shown in the Figure 5.1. The

critical value of ∆t for which the transition occurs is close to the stability condition

of SS2 method.

5.2 Moving One-Soliton Solution

In these simulations we investigate how the traveling speed v of the one-soliton

solution (1.5) affects the accuracy of both numerical methods. It is known that

dispersion of waves by the SS2 method is identical to the dispersion of NLSE, while

from (2.9) it follows that the dispersion of HIM is only accurate up to third order in

k2∆t. We expect that for a sufficiently large time step the travel speed of the soliton

will deviate from its true value. We show the results of the simulations with various

travel speeds in Figure 5.2. The initial data for these simulations is given by (1.5)

with parameters:

λ = 2, and Φ0 = x0 = 0, and v ∈ [0, 5]. (5.2)

The computational box size is L = 25π and the number of grid points is N = 2048.

The tolerance for HIM iterations is ε = 10−14 and the simulation time is T = 100.

The time step for both methods is set to be ∆t = 0.5∆x2

π
.

It should be noted, that soliton velocity is given in dimensionless units. In the

left panel of Figure 5.2, we observe that the error in the solution has no dependence

on travel speed of the soliton for the SS2 method. For HIM, the error in the solution

depends on travel speed which is due to the inexact dispersion relation of HIM

method:

ωHIM(k) =
i

∆t
ln

1− ik2∆t
2

1 + ik
2∆t
2

= k2

(
1− k4∆t2

12
+ . . .

)
, (5.3)

where ωHIM(k) is the angular frequency of the k–th Fourier harmonic.
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Figure 5.2: (Moving one-soliton solution on a fully resolved grid) (Left) The max-
imum absolute error of the solution at time T = 100 as a function of propagation
speed of the soliton. The SS2 method (red) has no dependence of the error on travel
speed of the soliton because it naturally captures the dispersion relation of NLSE,
while HIM (green) has dispersion relation accurate up to ∆t3. (Center) The error
in integral quantities, N (solid), and H (dotted) is about seven orders of magni-
tude smaller than the error in the solution. (Right) The error in integral quantities,
C4 (solid), and C5 (dotted) is about seven orders of magnitude smaller than the error
in the solution. For travel speed v ≤ 3 HIM and SS2 give comparable accuracy in C4

and C5, but HIM behaves worse as soon as v is larger than 3.

In the center panel, we look at the absolute error in integral quantities, N and

H. It is about seven orders of magnitude smaller than the error in the solution.

On the right panel, we consider the absolute error in integral quantities, C4 and C5.

Similarly to N and H, it is about seven orders of magnitude smaller than the error

in the solution. We notice that for travel speed v ≤ 3, HIM and SS2 give comparable

accuracy in C4 and C5, but the error in HIM becomes larger as soon as v gets larger

than 3. We see dips in the error of integral quantities as a function of speed. The

magnitude of the dips is about one order, and it has no correlation to the error in

solution, which is significantly larger. Note that the error in the solution does not

always correlate with the error in integral quantities.
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5.3 Stationary Two-Soliton Solution

In this simulation we demonstrate the difference between SS2 and HIM when the

initial data is a two-soliton solution with the following set of parameters:

p1 = 2.0 and p2 = 1.9

a1 = 60 + i = −ā2. (5.4)

The simulation time is T = 5, the solution is underresolved on a grid with N = 1024

points. The computation box is x ∈ [−L,L] where L = 25π. The time step is ∆t =

0.5∆x2

π
. It is typical to have the solution not resolved to round–off error in long and/or

multichannel simulations of light pulses propagating in optical fibers. A smaller

number of Fourier harmonics implies faster computations. For this experiment, the

smallest amplitudes were of the order 10−8.

We present the results of the simulation in Figures 5.3 - 5.4. At the time T = 5,

the background radiation around the stationary solitons emitted in SS2 is several or-

ders of magnitude larger than for HIM. The SS2 method radiates waves continuously

over the course of the simulation, while the HIM emits localized small amplitude per-

turbations that travel in the computational box and are reflected and transmitted

through the stationary solitons.

In the course of simulation we observe that the error in H and C5 is one to two

orders of magnitude smaller in HIM than in SS2. The number of particles is better

conserved by SS2 and the error is two orders of magnitude smaller.

5.4 Interaction of Two-Solitons

In this section, we study the dynamics of the two-soliton solution (1.6). We present

parameters of simulations in sections 5.4.1 - 5.4.3, and discuss results of simulations
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Figure 5.3: (Stationary Two-Soliton Solution on Unresolved Grid) 2D plots of abso-
lute value of the solution |Φ(x, t)| of NLSE with HIM method (left) and SS2 method
(right) with x on horizontal axis and t on vertical. The SS2 method radiates waves
continuously over the course of the simulation, while the HIM emits localized small
amplitude perturbations that travel in the computational box and are reflected and
transmitted through the stationary solitons. At the time T = 5, the background ra-
diation around the stationary solitons emitted in SS2 is several orders of magnitude
larger than for HIM.

in the section 5.4.4. We use a periodic box with L = 25π and N = 4096 grid

points for fully resolved simulations and N = 1024 for unresolved simulations. The

time step is ∆t = 0.8∆x2

π
< ∆x2

π
to satisfy the stability condition (2.6) in all three

simulations. The HIM iterations tolerance is ε = 10−12.

5.4.1 Collision with Stationary Soliton

The initial condition is given by the two-soliton solution formula (1.6) where one of

the solitons is moving towards the other soliton which is at rest. The simulation time

is T = 50, and over the course of simulation two solitons interact once. We present

the results of the simulation in the Figures 5.5 - 5.7.

The parameters for this two–soliton solution are given by:

p1 = 1.2 and p2 = 1.3 + i

a1 = 2.5 + i and a2 = 65 + i. (5.5)
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Figure 5.4: (Stationary two-soliton solution on underresolved grid) Conserved inte-
grals in a simulation with initial data (5.4). (Left) The number of particles (solid)
and the Hamiltonian (dotted) computed via SS2 (red) and HIM (green). (Right)
The integrals C4(solid) and C5 (dotted) via SS2 (red) and HIM (green).

5.4.2 Headon Collision of Solitons

The initial condition is given by the two-soliton solution formula (1.6) with solitons

moving toward each other. The final time of the simulation is T = 45, and two

solitons interact once. We present the results of the simulation in Figures 5.8 - 5.10.

The parameters for this simulation are the following:

p1 = 1.2− 0.5i and p2 = 1.3 + i

a1 = −20 + i and a2 = 60 + i. (5.6)
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Figure 5.5: (Collision with stationary soliton) (Top) Numerical solution for HIM
(left) and SS2 (right) methods on a fully resolved grid N = 4096. (Bottom) Numer-
ical solution for HIM (left) and SS2 (right) methods on an underresolved grid with
N = 1024.

5.4.3 Collision with Pursuing Soliton

The initial condition is given by the two-soliton solution formula (1.6) with one

soliton pursuing another soliton. The final time of simulation is T = 54. The

pursuing soliton overtakes and interacts with the slower soliton once. The results of

this simulation are presented in the Figures 5.11 - 5.13, and parameters of the initial

condition are as follows:

p1 = 1.7 + 0.5i and p2 = 1.9 + i

a1 = 50 + i and a2 = 110 + i. (5.7)
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Figure 5.6: (Collision with stationary soliton on a fully resolved grid) (Left) Error in
the solution in L∞-norm as a function of time step in double-logarithmic scale shows
second order convergence in ∆t. (Right) Absolute error as a function of time, the
solitons interact at approximately t = 25. The error vs time is close to a straight
line before and after the collision. Its slope, m, changes from m = 6.35 × 10−7 to
m = 7.00× 10−7 for HIM method, and from m = 8.85× 10−7 to m = 1.10× 10−6 for
SS2. During collision, the phase of the solution changes rapidly and numerical errors
grow faster than during soliton propagation. The error in the phase is observed to
contribute to the change of the slope of the error after collision.

5.4.4 Results of the Simulations

In the latter sequence of three simulations involving two-soliton collision, we found

that the radiation level in the SS2 simulation has been consistently higher than in

simulations with the HIM method. In both methods we observe that conservation

of integrals of motion H, N , C4 and C5 does not imply highly accurate solution in

L∞-norm. In all the cases we found that the HIM method gives smaller L∞ error in

the solution by a factor of at least 1.5-2 with the same time step. In order to compute
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Figure 5.7: (Collision with stationary soliton on a fully resolved grid) The conserved
quantities plotted as a function of time over the course of the simulation, note that
SS2 demonstrates a strong peak in error in H at the time of solitons interaction.
After the moment of interaction the C4, and the C5 exhibit jump and increase in
error with in SS2 and HIM.

the L∞ error we use the exact solution given by the formula (1.6). The simulation

time is chosen so that there is a single collision in the periodic box [−L,L]. The

formula (1.6) gives a solution on an infinite line, whereas the simulation is performed

on a periodic box and thus the simulation time must not exceed the time it takes

the solitons to reach the boundary of the box. Moreover, the soliton must still be

exponentially small near the end of the box, so that the comparison with the exact

formula is applicable. During collision, the phase of the solution changes rapidly and

numerical errors grow faster than during soliton propagation. The error in the phase

is observed to contribute to the change of the slope of the error after collision.

Despite the L∞ error of the solution not being smaller than 10−5, we observe that

the integrals of motion H, N are conserved up to 5×10−10. Nevertheless, at the time
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Figure 5.8: (Headon collision of solitons) (Top) Numerical solution for HIM (left) and
SS2 (right) methods on a fully resolved grid N = 4096. (Bottom) Numerical solution
for HIM (left) and SS2 (right) methods on an underresolved grid with N = 1024.

of collision we find that ∆H experiences a jump up to 5 orders of magnitude in the SS2

method, while in HIM it is conserved by construction of the method. Both methods

exactly conserve N aside from accumulation of round-off errors over the course of

simulations. The two nontrivial integrals of motion, C4 and C5 are not conserved

exactly, nevertheless we observe that until the time of collision these quantities vary

only in 9-th decimal place. After the collision these values demonstrate a large jump

(up to four orders of magnitude) in both methods. Unlike the Hamiltonian, H, in the

SS2 method, these integrals do not revert to their original values after the collision.

5.5 Three Solitons Interaction Simulation

It is known that solitons of the NLSE interact as particles, and interchange mo-

menta during collision [74]. The details of the process can be complicated, but once
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Figure 5.9: (Headon collision of solitons on a fully resolved grid) Error in L∞-norm of
the solution vs time computed for SS2 (red) and HIM (green) methods. The collision
occurs at the time approximately t = 21 where we observe a spike in the error. The
error vs time is close to a straight line before and after collision. Its slope, m changes
from m = 8.85× 10−7 to m = 1.5× 10−6 for SS2 method, and from m = 6.3× 10−7

to m = 8.3× 10−7 for HIM method.

the solitons move sufficiently far from each other, they behave like separate pulses

propagating without change of shape.

In dimensionless units the one–soliton solution is given by (1.5). For this simu-

lation, the initial condition is the sum of three distinct one–soliton solutions:

Φ(x, t = 0) = Φ1 + Φ2 + Φ3, (5.8)

where Φ1,2,3 are given by (1.5) with the following set of parameters:

λ1 = 2.4, λ2 = 2.9, λ3 = 3.2, (5.9)

v1 = 0, v2 = 0, v3 =
2

3
, (5.10)

x0,1 = 40, x0,2 = −20, x0,3 = −60, (5.11)

and zero initial phases. This set of parameters gives us two stationary solitons and

one moving. To make sure that we use an approximation of a three-soliton solution
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Figure 5.10: (Headon collision of solitons on a fully resolved grid) The conserved
quantities (left) ∆N (solid), ∆H (dotted), and (right) ∆C4 (solid), and ∆C5 (dotted)
as a function of time over the course of the simulation with HIM (green) and SS2
(red). Note that SS2 demonstrates a strong peak in error in H at the time of soliton
interaction. After the interaction time the C4, and the C5 exhibit large error with
both SS2 and HIM.

on a periodic boundary, we make the overlap between solitons about 10−16 and at

the boundary |Φ(x, t = 0)| ≈ 10−16.

After using the formulas (3.2), we translate this initial data to dimensional units.

In the dimensional units the characteristic widths, τc, and amplitudes, A, are given

by:

τc =
1

ω0

√
λ
≈ 50 ps

A =
√

2λA0 ≈ 2.5 mW1/2

and the value of λ varies from approximately is 2.4 to 3.2. Whereas in the original

paper [40] the parameters of Gaussian pulses at the end of the fiber vary in amplitude
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Figure 5.11: (Collision with pursuing soliton) (Top) Numerical solution for HIM (left)
and SS2 (right) methods on a fully resolved grid with N = 4096 points. (Bottom)
Numerical solution for HIM (left) and SS2 (right) methods on an underresolved grid
with N = 1024 points.

from approximately 1.0− 2.2 mW1/2 and have characteristic widths 10− 20 ps.

The nonlinear time is given by tNL = π
|Φ|2 = π

2|λ| ≈ 0.5 which in physical units

corresponds to zNL = tNLl ≈ 377 km. If a transatlantic fiber is considered, this

amounts to approximately 26tNL. We will illustrate the performance of HIM and

SS2, on a time scale of 400tNL ≈ 200 which is still physically relevant.

The solution is computed on a grid of N = 4096 points (which corresponds to

fully resolved spectrum of the solution) with L = 25π. The fixed point iterations

tolerance is ε = 10−12 for the HIM method. The time step for the split step method is

chosen to be ∆tSS2 = 0.8∆x2

π
. During simulation time t = 200 the numerical solitons

interact two times.

In this simulation the results are presented in Figure 5.14, we take ∆tHIM =

64∆tSS2, and due to the larger time step the HIM computation time is approximately
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Figure 5.12: (Collision with pursuing soliton on a fully resolved grid) Error in the
solution vs time for SS2(red) and HIM(green) methods in the simulation with one
soliton pursuing the other. The time of collision is approximately t = 28. We observe
that the slope, m of the straight line of error vs time changes at the collision for both
methods. In SS2 it changes from m = 1.26 × 10−5 to m = 1.5 × 10−6, and in HIM
the slope changes from m = 6.3× 10−6 to m = 7.12× 10−6.

5.76 times faster. It takes 27.15 seconds for HIM, and 156.45 seconds for SS2 to

complete the computation on Intel Core I7-6700HQ CPU with frequency 2.6 GHz

and 8 GB RAM in Matlab on a single thread.

The amplitude of radiation in the tails of solitons is about 10−7 for SS2, and 10−4

for HIM while the time step for HIM is 64 times larger than for SS2. This time

step allows HIM to accurately depict the positions of the interacting solitons: at

the final time the discrepancy in the location of stationary solitons is less than ∆x.

Moreover, if the time step for HIM is increased to 128∆tSS2 then the discrepancy

in the location is still below 2∆x and CPU time is 21.30 seconds on a single thread

(7.35 times faster than SS2). We note that the amplitude of radiation in the tails of

the solitons scales as ∆t2 for both methods. In exact arithmetic and infinitely small

∆t the magnitude of the solution in these regions is exponentially small.

In Figure 5.15, we illustrate the conservation of integrals of motion by showing
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Figure 5.13: (Collision with pursuing soliton on a fully resolved grid) The error in
conserved quantities (left) ∆N (solid), ∆H (dotted), and (right) ∆C4 (solid), and
∆C5 (dotted) as a function of time over the course of the simulation with HIM (green)
and SS2 (red). Note that SS2 demonstrates a strong peak in error in H at the time
of soliton interaction. After the interaction time the C4, and the C5 exhibit large
error with both SS2 and HIM.

the difference between the Hamiltonian, the number of particles, and the integrals

C4 and C5 at time t and their values at the initial time. We note that the number of

particles varies no more than 10−7 for HIM, and less than 10−8 for SS2. The value

of the Hamiltonian varies no larger than 10−7 for HIM, however for SS2 it varies

significantly at the time of soliton interaction. We note however, that the accuracy

of the actual solution is not representative of these number, and the pointwise error

of the numerical solution can be much larger. The integral C4 is equal to zero in

this example, and is not presented in the figure, but the integral C5 is not zero. It

experiences jumps at the time of soliton interactions, and is conserved up to 10−2 in

the HIM method due to the much larger time step, ∆tHIM = 64∆tSS2.
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Figure 5.14: (Left) Soliton solution for SS2 (red) with ∆tSS2 = 0.8∆x2

π
and HIM

(green) ∆tHIM = 64∆tSS2. (Right) Soliton solution for SS2 (red) with ∆tSS2 = 0.8∆x2

π

and HIM (green) ∆tHIM = 128∆tSS2.
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π
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and HIM (green) with ∆tHIM = 128∆tSS2.
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Chapter 6

Multi Soliton and Breather Type

Solutions

6.1 Initial Condition in the Form of A sech

In the set of simulations below, we use the function A sech x√
2

with A ∈ N as an initial

condition. These types of initial conditions are proposed in the paper of Satsuma

and Yajima [83]. The case A = 1 corresponds to one stationary soliton solution (1.5).

We investigate the condition A = 2. For this case, the solution of NLSE has the

form [83],

Φ(x, t) = 4e
−it
2

cosh
(

3x√
2

)
+ 3e−4it cosh

(
x√
2

)
cosh

(
4x√

2

)
+ 4 cosh

(
2x√

2

)
+ 3 cos(4t)

. (6.1)

This solution is periodic in time with period tp = 4π. The equation (6.1) reduces to

Φ(x, 0) = 2 sech( x√
2
) when t = 0. We use it as the initial condition.

The simulation is performed on N = 2048 grid points and interval [−L,L] with

L = 12π. The time of simulation is T = 40π = 10tp, and time step for both methods
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is ∆t = 0.8
π

∆x2. The tolerance for HIM iterations is chosen to be ε = 10−13.

In Figure 6.1, we plot the L∞ norm of the error in the solution (left panel) and

maximum of the absolute value of the solution (right panel). The L∞ error in the

solutions grows with time for both methods. The error is smaller by about one

order of magnitude in HIM compared to SS2. The maximum of absolute value of the

solution has 10 repetitions in both methods, and this corresponds to the behaviour of

the exact solution. The absolute value of the solution is about 2 orders less accurate

in SS2 compared to HIM.

We show the absolute value of the difference between values of the integrals of

motion at time t = 0 and all subsequent times, in the Figure 6.2. Both methods

conserve N equally well. The Hamiltonian is conserved by HIM up to 10−9 and by

SS2 up to 10−4. There are spikes in ∆H from 5 · 10−9 up to 10−4 in the SS2 method.

The constant of motion C4 is preserved up to 10−12 by HIM and 10−10 by SS2. HIM

conserves C5 up to 10−8 whereas for SS2 there are spikes in ∆C5 from 10−8 up to

10−4.

6.2 Kuznetsov-Ma Soliton Solution

Kuznetsov-Ma soliton solution (Kuznetsov [84], Ma [85], Kibler et al [86]) of NLSE

has the form,

Φ(x, t) = eit
[
1 +

2(1− 2a) cosh(bt) + ib sinh(bt)√
2a cos(wx)− cosh(bt)

]
(6.2)

where b =
√

8a(1− 2a), w = 2
√

1− 2a. It is a periodic function of time with period,

tp =
2π√

8a(2a− 1)
. (6.3)

The expression (6.2) (taken from Kibler et al [86]) represents the Kuznetsov-Ma

soliton solution when the parameter a > 1
2
.

79



Chapter 6. Multi Soliton and Breather Type Solutions

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0  20  40  60  80  100  120

M
ax

|φ
-φ

ex
|

time

SS2
HIM

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  2  4  6  8  10  12
M

ax
|φ

|
time

SS2
HIM

Exact solution

Figure 6.1: (Simulation of initial condition 2 sech x√
2

on a fully resolved grid) (Left)
The maximum absolute error of the solution as a function of time. The HIM method
(green) is about 1 order more accurate than SS2 method (red). (Right) Maximum
of the absolute values of solution. Exact solution (black dotted line) oscillates with
period (6.2).

We study the case a = 1. Parameters of the numerical simulation that we use

are N = 1024 grid points and box size [−L,L] with L = 12π. The evolution time

is chosen to be 10 time periods of the solution T = 7 π√
2
, and the time step is

∆t = 0.8
π

∆x2 for both methods. The tolerance for HIM iterations is chosen to be

ε = 10−13.

In the Figure 6.3, we plot the L∞ error in the solutions (left panel) and maximum

of absolute value of the solution (right panel) as functions of time. The error in the

solution grows with time, and it is larger in SS2 compared to HIM. We see that the

SS2 method loses accuracy in the solution at earlier times (approximately t ≈ 13)

than HIM (approximately t ≈ 15). If we consider the transatlantic fiber, then the

final time of computations needs to be approximately t ≈ 13, and HIM produces
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Figure 6.2: (Simulation of initial condition 2 sech x√
2

on a fully resolved grid) (Left)

The error in integral quantities, N (solid), and H (dotted) is about seven orders
of magnitude smaller than the error in the solution. (Right) The error in integral
quantities, C4 (solid), and C5 (dotted). The errors in H and C5 are represented by
dark red dotted lines for SS2. We omit the details of these curves, but we see that
they vary from about 10−9 to 10−4 for Hamiltonian and about 10−8 to 10−4 for C5.

more accurate results up to this time.

In the Figure 6.4, we show the absolute error in conserved quantities N , H (left

panel) and C4, C5 (right panel). Both methods conserve the number of particles,

N . The accuracy in the Hamiltonian, H, is about 6 orders of magnitude different

between SS2 and HIM. Similarly,the difference between SS2 and HIM in ∆C5 is about

6 orders of magnitude at early times but grows to 2 orders of magnitude at the end

of the simulation. The integral C4 = 0 and is conserved by both methods well.
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Figure 6.3: (Kuznetsov-Ma soliton solution on a fully resolved grid) SS2 starts to
noticeably deviate at about time 12 and HIM at approximately time 14 (Left) The
maximum absolute error of the solution as a function of time. The HIM method
(green) is about 1 order more accurate than SS2 method (red).
(Right) Maximum of the absolute values of solution. Exact solution (black dotted
line) oscillates with period (6.2).

6.3 Akhmediev Breather

Akhmediev breather is the solution of NLSE that is periodic in space and localized

in time. The formula (6.2) describes the Akhmediev breather solution when the

parameter a < 1
2
.

We take a = 1
4

and run simulations on the interval [−L,L] with L = 2π and

N = 128 grid points. The tolerance for HIM iterations is chosen to be ε = 10−13.

The time step for both of methods is ∆t = 0.8
π

∆x2.

The final time of the simulation is taken to be t = 100. We zoom into the time

interval t ∈ [0, 30] in the Figure 6.5. We show the L∞ error in the solution (left panel)
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Figure 6.4: (Kuznetsov-Ma soliton solution on a fully resolved grid) (Left) The error
in integral quantities, N (solid), and H (dotted) is about seven orders of magnitude
smaller than the error in the solution. (Right) The error in integral quantities,
C4 (solid), and C5 (dotted).

and maximum absolute value of the solution (right panel) as functions of time. SS2

stops producing correct solution at about time t ≈ 15 while the error in the solution

is approximately 10−6 for HIM at that time. The error in the HIM starts to grow

from about time t ≈ 17 and reaches the same order as SS2 at approximately time

t ≈ 30. On the right panel, we see that the maximum of absolute value of the exact

solution approaches a constant while solutions from SS2 and HIM have repetitive

behaviour in time. Initially numerical solutions approach the same constant value as

the exact solution, but as time increases they start to diverge from it.

For the simulation time t = 100, there are oscillations in numerical solutions that

appear and disappear in time that can be seen in the Figure 6.6. If we look at the L∞
error in the solution (left panel), we see that the error in the solution decreases as the
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Figure 6.5: (Akhmediev soliton solution on a fully resolved grid until time t = 30)
(Left) The maximum absolute error of the solution as a function of time. The error
in the SS2 method (red) grows starting from small values of time, and in HIM
(green) stays at about 10−6 until about time 18. (Right) Maximum of absolute value
of solution as a function of time. Exact solution (black dotted line) approaches a
constant as time goes to infinity. SS2 (red) and HIM (green) have oscilations during
simulations that deviate from the exact solution with repietition.

solution approaches the exact solution during the oscillations. The same behaviour

is seen in the maximum absolute value of the solution as a function of time (right

panel).

In the Figure 6.7, we show the absolute error in constants of motion N , H (left

panel) and C4, C5 (right panel). SS2 conserves N and C4 with good accuracy. It

conserves H and C5 up to 10−5, and the absolute error in both of these quantities

oscillates. HIM conserves all 4 constant of motion N , H, C4, C5 up to 10−11–10−12.
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Figure 6.6: (Akhmediev soliton solution on a fully resolved grid until time t = 100)
(Left) The maximum absolute error of the solution as a function of time. (Right)
Maximum of absolute value of solution as a function of time. Exact solution (black
dotted line) approaches a constant as time goes to infinity. SS2 (red) and HIM
(green) have a couple of oscillations in the solution.
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Figure 6.7: (Akhmediev soliton solution on a fully resolved grid) (Left) The error in
integral quantities, ∆N (solid), and ∆H (dotted) as a function of time. The error in
H is about 5 orders of magnitude is smaller in HIM compared to SS2, and equivalent
in both methods for N . (Right) The conserved quantities quantities ∆C4 (solid), and
∆C5 (dotted) as a function of time. The error in C5 is several orders of magnitude
smaller in HIM. The error in C4 is comparable in both methods.
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Conclusion of Part II

We performed a detailed comparison of two algorithms for simulation of NLSE:

Hamiltonian integration proposed in Dyachenko et al [51] and the widely used second

order split-step method. In all cases the Hamiltonian integration demonstrates better

conservation of the Hamiltonian at the time of soliton collision. The other constants

of motion N , C4 and C5 are conserved better by HIM when the time step is the

same or slightly larger than the one used for the split-step method. However, if the

time step is increased several orders of magnitude, the accuracy of conservation of

integrals of motion in HIM may be lower. On the other hand, the pointwise error

between the numerical solution and analytic formula is significantly larger than the

variation of conserved quantities, which means that integrals of motion reflect the

quality of the solution rather poorly. In experiments we observe this error to be

about 10−2-10−3 in the maximum norm. For this reason a criterion of convergence

of fixed point iterations by the number of particles or Hamiltonian, that was used in

the original paper [51], is suboptimal, and it is more accurate to control convergence

of the residual (2.11) as proposed in this work.

However, if the primary goal is to accurately portray the interaction of solitons
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over the physically relevant time, such as propagation distance in an optical fiber,

it is significantly more advantageous to use the HIM method with a large time step

rather than the SS2 method which requires smaller time steps to satisfy the stability

criterion. Violation of the stability criterion for SS2 results in complete disintegra-

tion of the solution for long time simulations (Lakoba [87]). In our simulations for

400 nonlinear times, the time step for HIM is about 64–128 times larger than the

instability criterion for SS2. However, in a simulation for significantly longer time it

may lead to accumulation of errors in positioning of the solitons (jitter). For example

if one simulates for 4000 nonlinear times, the inaccuracy in the soliton position is

about 10∆x, and in order to keep the soliton positioning accuracy at ∆x one would

need to decrease the time step for HIM which results in smaller gains in computation

time.

The accurate portrayal of soliton interactions is crucial for the simulation of

interactions in a soliton gas Zakharov [88], Agafontsev and Zakharov [89], Turitsyn

et al [90, 91], or the fast developing field of integrable turbulence (Zakharov and

Ostrovsky [37]). Both SS2 and HIM approaches are well suited for this. At the same

time, the split-step method is simpler to implement and is more efficient memory-

wise. In addition, the split-step method is explicit, whereas HIM is an implicit

method.

As a summary, the Hamiltonian integration method is recommended for simula-

tions requiring accurate description of soliton-soliton interactions or other subtle non-

linear phenomena in Hamiltonian systems especially when computation time is of the

essence. Relevance of fast computational algorithms for optical problems can be illus-

trated by the papers Lushnikov [40] and Korotkevich and Lushnikov [92] where a mas-

sively parallel algorithm for a modification of NLSE was proposed and implemented.

For multidimensional turbulence (for instance Falkovich and Vladimirova [93]), the

split-step scheme of order two, and higher order split step methods (Yoshida [58],
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Chung and Lushnikov [94]) can be an approach of choice.
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A Free Surface Hydrodynamics, Stokes Waves

B Comparison of Split-Step and Hamiltonian Integration for Nonlin-

ear Schrödinger Equation
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Appendix A

Free Surface Hydrodynamics,

Stokes Waves

In this Appendix we give an outline of steps to derive the dynamical equations (1.5)–

(1.6) that were omitted in Dyachenko et al [21] and described in detail (for the

periodic boundary conditions) in the paper by Dyachenko et al [18].

A.1 Derivation of Implicit Equations of Motion

In the work [9], Zakharov showed that potential flow of an ideal fluid with a free

surface is governed by the canonical Hamiltonian system for surface elevation and

velocity potential at the surface:

∂η

∂t
=
δH
δψ

,
∂ψ

∂t
= −δH

δη
. (A.1)
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A.1.1 Change of Variables in Lagrangian

We outline steps to derive the implicit equations at a free surface in conformal vari-

ables. From equations (A.1), we consider extremum of the action:

S =

t2∫
t1

Ldt. (A.2)

with the constrained Lagrangian:

L =

π∫
−π

ψ
∂η

∂t
dx−H +

π∫
−π

(y − y0 − Ĥx̃)fdu. (A.3)

We see that the first integral is in the x variable and should be converted into u. To

do that, we consider the transformation (x, t)→ (u, τ) where τ = t and as described

in Dyachenko et al [18] it can be shown that,

∂η

∂t
= yτ − yu

xτ
xu
. (A.4)

So, we use the change of variables dxdt = dudτxu and the expression (A.4) to find

that:∫ ∫
ψ
∂η

∂t
dxdt =

∫ ∫
ψ

(
yτ − yu

xτ
xu

)
xududτ =

∫ ∫
ψ(yτxu−yuxτ )dudτ. (A.5)

So by substituting the expression (A.5) together with τ = t into (A.3) we get that

the constrained Lagrangian in the u variable has the form,

L =

π∫
−π

ψ(ytxu − yuxt)du+
1

2

π∫
−π

ψĤψudu−
g

2

π∫
−π

y2xudu (A.6)

+

π∫
−π

(y − y0 − Ĥx̃)fdu,

where f is the Lagrange multiplier.
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A.1.2 Variations of Action

We use the Hamilton’s least action principle to get the implicit equations (1.5)–

(1.6). We take the variational derivative of S with respect to ψ and the condition

δS/δψ = 0 to get,

δS
δψ

= ytxu − yuxt −
δH
δψ

= 0 (A.7)

where δH
δψ

= δK
δψ

because only the kinetic term of the Hamiltonian depends on δψ.

Equation (A.7) transforms into the expression (1.5),

ytxu − yuxt = −Ĥψu. (A.8)

Now, we take the variational derivatives of S with respect to y and x and use

conditions δS/δx = 0, δS/δy = 0 to get the following expressions:

δS
δy

= −∂t(ψxu) + ∂u(ψxt)− gyxu + f = 0, (A.9)

ψtxu − ψuxt + gyxu = f, (A.10)

and

δS
δx

= ∂t(ψyu)− ∂u(ψyt) +
1

2
g∂u(y

2) + Ĥ = 0, (A.11)

ψtyu − ψuyt + gyyu = −Ĥf. (A.12)

From equations (A.10)–(A.12), we get that f = Ĥ (ψtyu − ψuyt). So, the second

implicit equation (1.6) has the form,

ψtxu − ψuxt − Ĥ (ψtyu − ψuyt) + g
[
yxu − Ĥyyu

]
= 0 (A.13)
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Appendix B

Hamiltonian Integration Method

for Nonlinear Schrödinger

Equation

In this Appendix we provide steps of derivations that we were omitted in the paper

Dyachenko et al [51].

B.1 Derivation of HIM method for NLSE

We consider the equation (1.1) where γ = 1 and with the Hamiltonian (1.2). Let

Hn =
∫ (
|Φn

x|2 −
γ
2
|Φn|4

)
be the discretized in time Hamiltonian at the n-th time

step. We consider the change of Hamiltonian after one time step ∆t:

∆H = Hn+1 −Hn = I1 + I2, (B.1)

where I1 :=
∫

(|Φn+1
x |2 − |Φn

x|2) dx and I2 := γ
∫ (

1
2
|Φn|4 − 1

2
|Φn+1|4

)
dx. We consider

I1 and I2 separately.

94



Appendix B. Hamiltonian Integration Method for Nonlinear Schrödinger Equation

By addition and subtraction to I1 of the following terms, 1
2
Φn
xΦ̄n+1

x and 1
2
Φn+1
x Φ̄n

x,

under the integral sign, combining terms and using integration by parts, one gets:

I1 = −1

2

∫ (
Φ̄n+1
xx ∆Φ + Φn

xx∆Φ̄ + Φn+1
xx ∆Φ̄ + Φ̄n

xx∆Φ
)
dx,

here we have introduced ∆Φ = Φn+1 − Φn.

By addition and subtraction to I2 of the four following terms, γ
2
|Φn+1|2ΦnΦ̄n+1,

γ
2
|Φn+1|2Φn+1Φ̄n, γ

2
|Φn|2Φn+1Φ̄n and γ

2
|Φn|2ΦnΦ̄n+1, under the integral sign and com-

bining terms, we arrive at

I2 = −γ
4

∫ (
∆Φ(Φ̄n+1 +Φ̄n)(|Φn+1|2 + |Φn|2)+∆Φ̄(Φn+1 +Φn)(|Φn+1|2 + |Φn|2)

)
dx.

After combining the like terms, we arrive at the formula

∆H =
1

2

∫
[∆Φ

(
−Φ̄n+1

xx − Φ̄n
xx −

γ

2
(Φ̄n+1 + Φ̄n)(|Φn+1|2 + |Φn|2)

)
+

∆Φ̄
(
−Φn+1

xx − Φn
xx −

γ

2
(Φn+1 + Φn)(|Φn+1|2 + |Φn|2)

)
]dx. (B.2)

If we divide (B.2) by ∆t and require that the first and second expressions in square

brackets are equal to i∆Φ̄
∆t

and −i∆Φ
∆t

correspondingly, then ∆H vanishes. We note

that:

iΦt =
δH
δΦ̄

iΦ̄t = −δH
δΦ

.

We get the following numerical scheme in time:

i
Φn+1 − Φn

∆t
= − [Φn+1 + Φn]xx

2
− γ(Φn+1 + Φn)(|Φn+1|2 + |Φn|2)

4
. (B.3)

B.2 Derivation of the stability condition

In order to solve the equation (1.1) one can use the iteration scheme (2.10):

Φn+1,s+1
k =

1− ik2∆t
2

1 + ik2∆t
2

Φn
k +

i∆tγ
4

1 + ik2∆t
2

F̂
[
(|Φn+1,s|2 + |Φn|2)(Φn+1,s + Φn)

]
. (B.4)
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We consider Φn+1,s+1 = Φn+1
0 + δΦs+1 and Φn+1,s = Φn+1

0 + δΦs where Φn+1
0 is the

exact solution at the (n+ 1)-st time step. Let’s keep only terms linear in δΦs+1 and

neglect terms with small scale perturbations δΦs:

δΦs+1
k =

i∆tγ
4

1 + ik2∆t
2

[
2|Φn+1

0 |2 + |Φn|2 + ΦnΦ̄n+1
0

]
δΦs

k+

+
i∆tγ

4

1 + ik2∆t
2

[
(Φn+1

0 )2 + ΦnΦn+1
0

]
¯δΦs
k (B.5)

Therefore, we can compose the following system of linear equations:δΦs+1
k

δΦ̄s+1
k

 = A

 δΦs
k

δΦ̄s
k,


and

A =

c [2|Φn+1
0 |2 + |Φn|2 + ΦnΦ̄n+1

0

]
c
[
(Φn+1

0 )2 + ΦnΦn+1
0

]
c̄
[
(Φ̄n+1

0 )2 + Φ̄nΦ̄n+1
0

]
c̄
[
2|Φn+1

0 |2 + |Φn|2 + Φ̄nΦn+1
0

]
 (B.6)

where c =
iγ∆t

4

1+ ik2∆t
2

We need the matrix A to be a contracting map. As a result, we

require its determinant to be smaller than 1. From | det(A)| < 1, we can get the

condition for the convergence of the HIM iterations:

∆t <
2

|γ|
√

3 max(|Φn|2)
(B.7)
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