University of New Mexico UNM Digital Repository

Regulatorily Completed

Sandia National Labs/NM Technical Reports

9-1-2005

Justification for Class III Permit Modification September 2005, DSS Site 1084, Operable Unit 1295, Building 6505 Septic System at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl_complete

Recommended Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification September 2005, DSS Site 1084, Operable Unit 1295, Building 6505 Septic System at Technical Area III." (2005). https://digitalrepository.unm.edu/snl_complete/172

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 2/2)

Summary of Data Used for NFA Justification

- Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, gross alpha/beta activity, and radionuclides by gamma spectroscopy.
- There were VOCs detected at the 19 sites, SVOCs were detected at 15 of the sites, PCBs were detected at 9 sites, and cyanide was identified at 14 of the sites. HE compounds were detected at one of the sites (AOC 1113)
- Barium was detected at concentrations above the background value at six sites. Chromium and arsenic were detected at concentrations above background values at five sites. Silver was detected at concentrations above the background value at three sites, lead was detected above the background value at two sites, and mercury was detected above the background value at one site. No other metals were detected above background concentrations.
- Uranium-235 was detected at an activity slightly above the background activity at 5 of the 19 sites and, although not detected, the MDA for U-235 exceeded the background activity at 14 sites and the MDA for U-238 exceeded the background activity at one site. Gross alpha activity was slightly above background activity at five of the 19 sites, and gross beta activity was above the background activity at one site.
- All confirmatory soil sample analytical results for each site were used for characterizing that site, for performing the risk screening assessment, and as justification for the NFA proposal for the site.

Recommended Future Land Use

This work supported by the

United States Department of Energy under contract DE-AC04-94185000

Industrial land use was established for these 19 AOC sites.

Results of Risk Analysis

- Risk assessment results for industrial and residential land-use scenarios are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process."
- Because COCs were present in concentrations greater than background-screening levels or because constituents were present that did not have background-screening numbers, it was necessary to perform risk assessments for these all of these AOCs. The risk assessment analysis evaluated the potential for adverse health effects for industrial and residential land-use scenarios.
- The maximum concentration value for lead was 22.2 J mg/kg at AOC 1081 and 11.9 mg/kg at AOC 1087: these exceed the background value of 11.8 mg/kg. The EPA intentionally does not provide any human health toxicological data on lead; therefore, no risk parameter values could be calculated. The NMED guidance for lead screening concentrations for construction and industrial land-use scenarios are 750 and 1,500 mg/kg, respectively. The EPA screening guidance value for a residential land-use scenario is 400 mg/kg. The maximum concentration for lead at these two sites are less than all the screening values; therefore, lead was eliminated from further consideration in the human health risk assessment for each
- The non-radiological total human health HIs for 18 of the 19 AOCs are below NMED guidelines for a residential land-use scenario.
- For four sites, the total estimated excess cancer risks are at or slightly above the residential land-use scenario guideline. However, the incremental excess cancer risk values for these four sites are below the NMED residential land-use scenario guideline.
- For one of the 19 sites (AOC 1081), the total HI and the estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario due to elevated levels of arsenic and silver. However, the total HI and estimated excess cancer risk values are below the NMED guidelines for the industrial land-use scenario.
- The total human health TEDEs for industrial land-use scenarios ranged from 0.001 to 0.46 mrem/yr, all of which are substantially below the EPA numerical guideline of 15 mrem/yr. The total human health TEDEs for residential land-use scenarios ranged from 0.0052 to 0.12 mrem/yr, all of which are substantially below the EPA numerical guideline of 75 mrem/yr. Therefore, these AOCs are eligible for unrestricted radiological release.
- Using the SNL predictive ecological risk and scoping assessment methodologies, it was concluded that a complete ecological pathway for each of 18 of the sites was not associated with the respective COPELs for that site. Thus, a more detailed ecological risk assessment to predict the level of risk was not deemed necessary for these sites.
- Ecological risks associated with AOC 1084 were predicted incorporating potential receptors and site-specific COPECs. The HQ values predicted were less than one, with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52%) of the HQ values. Therefore, ecological risks associated with this site are expected to be low.
- In conclusion, human health and ecological risks are acceptable for 18 sites for a residential land-use scenario and for all 19 for an industrial land-use scenario per NMED guidance. Thus, 18 of these sites are proposed for CAC without institutional controls, and one site (AOC 1081) is proposed for CAC with institutional controls.

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

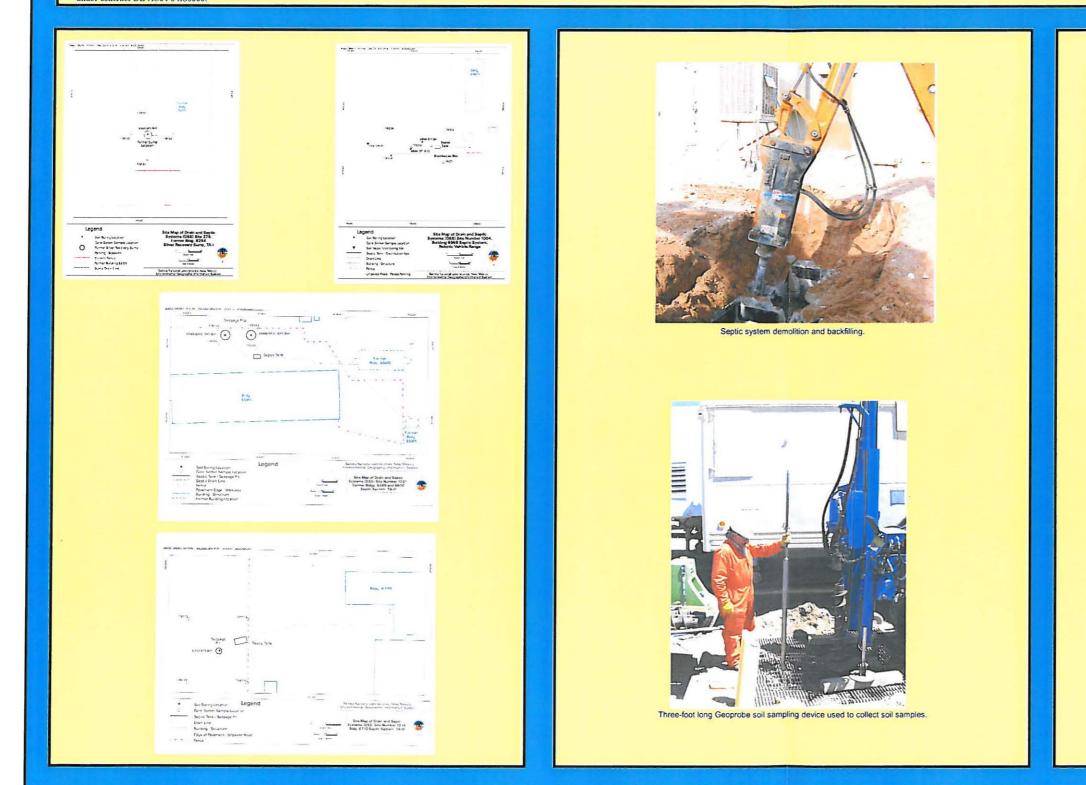
		Residential Land-Use Scenario		
AOC Number	Site Name	Total Hazard Index	Excess Cancer Risk	
276	Former Bldg 829X Silver Recovery Sump	0 27	2E-5 Total ^a /3.95E-6 Incrementa	
1004	Bldg 6969 Septic System	0.08	2E-6 Total	
1031	Former Bldgs. 6589 and 6600 Septic System	0.25	1E-5 Total ^a /2.55E-6 Incremental	
1034	Bldg 6710 Septic System	0.00	2E-9 Total	
1035	Bldg 6715 Septic System	0.04	3E-9 Total	
1036	Bldg 6922 Septic System	0.26	1E-5 Total ^a /8.35E-7 Incremental	
1052	Bldg 803 Seepage Pit	0.00	2E-6 Total	
1078	Bldg 6640 Septic System	0.27	1E-5 Total ² /3.72E-7 Incremental	
1079	Bldg 6643 Septic System	0.00	3E-8 Total	
1080	Bldg 6644 Septic System	0.00	4E-8 Total	
1084	Bldg 6505 Septic System	0.08	None	
1087	Bldg 6743 Seepage Pit	0.00	4E-9 Total	
1092	MO 228-230 Septic System	0.06	None	
1098	TA-V Plenum Rooms Drywell	0.03	3E-7 Total	
1102	Former Bldg 889 Septic System	0.00	IE-10 Total	
1104	Bldg 6595 Seepage Pit	0.00	2E-6 Total	
1113	Bldg 6597 Drywell	0.14	1E-7 Total	
1120	Bldg 6643 Drywell	0.12	1E-6 Total	
NMED Gu	idance for Residential Land Use	< 1	<1E-5	
AOC		Indus	trial Land-Use Scenario	
Number	Site Name		Excess Cancer Risk	

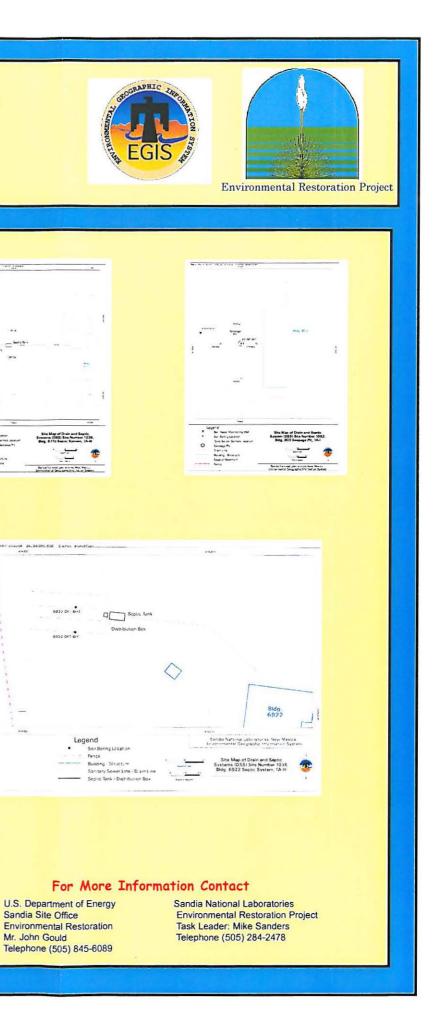
AOC		Industrial Land-Use Scenario		
Number	Site Name		Excess Cancer Risk	
1081	Bldg 6650 Septic System	0.39	5E-6 Total	
NMED Guidance for Industrial Land Use		<]	<1E-5	

Maximum value exceeds NMED guidance for specified land-use scenario, therefore, incremental values are shown

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

For More Information Contact


U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089


Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

Drain and Septic Systems (DSS) Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035 1036, 1052

This work supported by the United States Department of Energy under contract DE·AC04:94185000.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 1/2)

This work supported by the United States Department of Energy under contract DE-AC04-94I85000.

Site History

Drain and septic system site histories for the 19 AOCs are as follows:

4OC Number	Site Name	Location	Year Building and System Built	Year Drain or Septic System Abandoned	Year(s) Septic Jank Effluent Sampled	Year Septic Tank Pumped For the law Time
276	1 otmer Bidg 829X Silver Recovery Sump	14.1	1048 1973	1994	No septic tank at this site	NA
1004	Bldg 6969 Septic System	Robotic Vehicle Range	1985	System is active	Periodically since 1992	Perindically
1031	Former Bidgs 6589 and 6600 Septic System	TAIII	1967	1991 (septic tank and seepage pits backfilled in 2002)	1992, 1094 1992, 1094	1996
1014	Bidg 6710 Septic System	TA-NI	1958	Farly 1990s	1990 1991,	1996
1035	Bldg 6715 Septic System	TA-IB	1962	Farly 1990s	1990-1991.	4991
1036	Bidg 6922 Septie System	1 A III	1955	1991	1990 1991. 1992, 1995 2005	2005
1052	Bidg 803 Seepage Pit	14-1	1957	Luknown	No septic tank at this site	NA
1078	Bldg 6640 Septic System	ТАШ	1959	1901:	1990-1991	Unknown (backfilled n 1991)
1079	Bldg 6643 Septic System	тали	1989	1901	1000 1001 1003 1004 2005	2005
1080	Bldg 6644 Septic System	LA-III	1989	1991	1993-1091	1996
1081	Bldg 6650 Septic System	TA JIL	1967 (Southern System) Early 1980s (northern system)	1601	(992-1995 (stuth septic tank) 2004 (north septic tank)	1996 (south septe tank 1 nktivitii (netth septe tank)
1084	Bldg 6505 Septic System	TA-III	1454	1661	10001001	Unknown thackfulied before 20(0)
1087	Bldg 6743 Seepage Pit	11.11	1967	2004 2005	No septic tank at this sate	NA
092	MO 228-230 Septic System	1A III	1988	1001	1990 1991	Unknown (baskfilled before 2007))
099	TA-V Plenum Rooms Drywell	14-1	1958	Latis 1990s	No septic tank at this site	NA
102	Former Bldg 889 Septic System	fA I	Early 1950s	Early 1990s	1993 1996	Unknown (removed prior to 1990)
104	Bldg 6595 Scepage Pit	TAV	1966	Larly 1990s	No septic tank, at this site	NA .
113	Bldg 6597 Drywell	IAV	1971	Prior to 2002	Ne septic tank at this site	NA
120	Bldg 6643 Drywell	ТАШ	1080	1601	No septic tank	NA

Depth to Groundwater

Depth to groundwater at these 19 AOCs is as follows:

AOC Number	Site Name	Location	Groundwater Depth (ft bgs)
276	Former Bldg 829X Silver Recovery Sump	TA-1	555
1004	Bldg 6969 Septic System	Robotic Vehicle Range	548
1031	Former Bldgs. 6589 and 6600 Septic System	TA-III	486
1034	Bldg 6710 Septic System	TA-III	470
1035	Bldg 6715 Septic System	TA-III	470
1036	Bldg 6922 Septic System	TA-III	490
1052	Bldg 803 Seepage Pit	TA-I	552
1078	Bldg 6640 Septic System	TA-III	476
1079	Bldg 6643 Septic System	TA-III	487
1080	Bldg 6644 Septic System	TA-III	480
1081	Bldg 6650 Septic System	TA-III	480
1084	Bldg 6505 Septic System	TA-III	508
1087	Bldg 6743 Seepage Pit	TA-III	461
1092	MO 228-230 Septic System	TA-III	488
1098	TA-V Plenum Rooms Drywell	TA-V	509
1102	Former Bldg 889 Septic System	TA-I	535
1104	Bldg 6595 Seepage Pit	TA-V	507
1113	Bldg 6597 Drywell	TA-V	515
1120	Bldg 6643 Drywell	TA-III	483

Constituents of Concern

- VOCs
- SVOCs PCBs
- HE Compounds
- Metals
- Cyanide
- Radionuclides

Investigations

- NMED.

The years that site-specific characterization activities were conducted and soil sampling depths at each of these 19 AOC sites are as follows:

-	
AOC Number 276	Site Forme 829X 1
1004	Recove Bldg 6 Septic
1031	Forme: 6589 a
1034	Septic Bldg to Septic
1035	Bldg 6 Septic
1036	Bldg 6 Septic
1052	Bldg 8 Seepag
1078	Bldg 6 Septic
1079	Bldg 6 Septic
1080	Bldg 6 Septic
1081	Bldg 6 Septic
1084	Bldg 6
1087	Septic Bldg 6 Septic
1092	MO 22

1092	NIC) 22
	Septic 1
1098	TA-V F
	Rooms
1102	Former
	889 Sc
	System
1104	Bldg 6
	Seepag
1113	Bldg 6
	Drywel
1120	Bldg 66

Mr. John Gould

A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil vapor samplers, and soil borings.

Ten of the 19 AOCs were selected by NMED for passive soil-vapor sampling to screen for VOCs; no significant VOC contamination was identified at any of the ten sites.

Soil samples were collected from directly beneath drainfield drain lines, seepage pits, and drywells to determine if COCs were released to the environment from drain systems.

Four of the sites were selected by NMED for active soil vapor sampling to screen for VOCs. Each of the active soil-vapor monitoring wells was 150 ft deep with vapor sampling ports at 5, 20, 70, 100, and 150-ft bgs. The VOC concentrations were significantly lower than the 10 ppmv action level established by

Name	Buried Components (Drain Lines, Drywells) Located With a Backhoe	Soil Sampling Beneath Drainlines. Seepage Pits. Drywells	Type(s) of Drain System, and Soil Sampling Depths (ft bgs)	Passive Soil Vapor Sampling	Active Soil Vapo Monitor Well Installation and Sampling
r Bldg Silver Srv Sump	Nene	1994, 2002	Silver Recovery Sump 8, 13	2002	None
969 System	2002	2002	Drainfield 8_13	2002	2003
Bldgs nd 6600 System	2002	2002	Seepage Pits, 15, 20	2002	None
710 System	None	2002	Scepage Pit 14, 19	2002	Nene
715 System	None	2002	Scepage Pit 11, 16	2002	None
922 System	1007	1998, 1999	Dramfield 5, 10	None	None
03 c Pit	None	2002	Seepage Pit 22, 27	2002	2003
640 System	2002	2002	Drainfield 5, 10	None	None
543 System	2002	2002	Dramfield 11, 16	None	None
644 System	2002	20012	Dramfield Borchole 1 & 2 & 5 10 Borchole 3 = 6, 11	None	None
650 System	2003 (nerth septic tank)	2002	South seepage pit 10, 12, 15, 17 North seepage pit 10, 12, 15, 17, 20, 24 25	2002	2003
505 System	2002	2002	Drainfield 3, 8	21812	None
43 System	None	2002	Scepage Pit 8, 13	2002	None
8-230 System	2002/2003	2002	Drainfield 6,11	None	2003
lenum Drywell	None	2002	Drywell 10, 15	None	Noac
Bidg	1999 2002	2002	Seepage Pit 25:30	None	None
s95 e Pit	None	2002	Seepage Pit 11 16	None	None
597 1	2002	2002	Drywell 5, 10	None	None
ыз 1	2002	2002	Drywell 8 13	2002	None

For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Telephone (505) 845-6089

Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

Sandia National Laboratories Sandia National Laboratories Justification for Class III Permit Modification September 2005 DSS Site 1084 Operable Unit 1295 Building 6505 Septic System at Technical Area III

CAC (SWMU Assessment Report) Submitted September 2004 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

CAC

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

SEP 1 7 2004

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Solid Waste Management Unit (SWMU) Assessment Reports and Proposals for Corrective Action Complete for Drain and Septic Systems (DSS) Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120 at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518. These documents are compiled as DSS Round 6 and No Further Action (NFA) Batch 24.

This submittal includes descriptions of the site characterization work and risk assessments for the above referenced DSS Sites. The risk assessments conclude that for these sites: (1) there is no significant risk to human health under either the industrial or residential land-use scenarios; and (2) that there are no ecological risks associated with these sites.

Based on the information provided, DOE and Sandia are requesting a determination of Corrective Action Complete without controls for these DSS sites.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely, Multiant Patty Wagner Fa

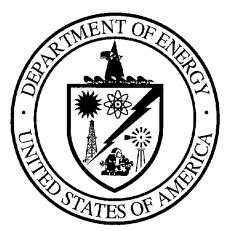
Patty Wagne Manager

Enclosure

Mr. J. Bearzi

cc w/enclosure:

L. King, EPA, Region 6 (Via Certified Mail) W. Moats, NMED-HWB (via Certified Mail) M. Gardipe, NNSA/SC/ERD C. Voorhees, NMED-OB


cc w/o enclosure: K. Thomas, EPA, Region 6 F. Nimick, SNL, MS 1089 D. Stockham, SNL, MS 1087 B. Langkopf, SNL, MS 1087 M. Sanders, SNL, MS 1087 R. Methvin, SNL MS 1087 J. Pavletich, SNL MS 1087 A. Villareal, SNL, MS 1035 A. Blumberg, SNL, MS 1035 A. Blumberg, SNL, MS 1089 ESHSEC Records Center, MS 1087

Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR CORRECTIVE ACTION COMPLETE DRAIN AND SEPTIC SYSTEMS SITE 1084, BUILDING 6505 SEPTIC SYSTEM

September 2004

United States Department of Energy Sandia Site Office

TABLE OF CONTENTS

LIST LIST	OF TAE	ILES NEXES	BREVIATIONS	v vii			
1.0	INTR	ON	1-1				
2.0	DSS	SITE 108	4: BUILDING 6505 SEPTIC SYSTEM	2-1			
	2.1 2.2		ary scription and Operational History				
		2.2.1 2.2.2	Site Description Operational History				
	2.3	Land U 2.3.1 2.3.2	se Current Land Use Future/Proposed Land Use	2-7			
3.0	INVE	INVESTIGATORY ACTIVITIES					
	3.1 3.2 3.3 3.4	Investig Investig Investig 3.4.1	ary gation 1—Septic Tank Sampling gation 2—Backhoe Excavation gation 3—Passive Soil-Vapor Sampling Passive Soil-Vapor Sampling Methodology	3-1 3-1 3-2 3-2			
	3.5	3.4.2 Investig	Soil-Vapor Survey Results and Conclusions				
		3.5.1 3.5.2 3.5.3	Soil Sampling Methodology Soil Sampling Results and Conclusions Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results	3-3			
	3.6 3.7	Investig Site Sa	ation 5—Geoprobe™ Exploration mpling Data Gaps	.3-23 .3-23			
4.0	CONC	EPTUAL	_ SITE MODEL	4-1			
	4.1 4.2 4.3	Environ	and Extent of Contamination mental Fate sessment	4-1			
		4.3.1 4.3.2	Summary Risk Assessments				

TABLE OF CONTENTS (Concluded)

	4.4	4 Baseline Risk Assessments		
		4.4.1 4.4.2	Human Health Ecological	
5.0			ATION FOR CORRECTIVE ACTION COMPLETE WITHOUT ETERMINATION	5-1
	5.1 5.2	Rationa Criterio	le 1	5-1 5-1
6.0	REFE	RENCES		6-1

٠

LIST OF FIGURES

Figure

2.2.1-1	Location Map of Drain and Septic Systems (DSS) Site Number 1084, Bldg. 6505 Septic System, TA-III	2-3
2.2.1-2	Site Map of Drain and Septic Systems (DSS) Site Number 1084, Bldg. 6505 Septic System, TA-III	2-5
3.5-1	Collecting soil samples with the Geoprobe™ from beneath DSS Site 1084, Building 6505 Septic System drainfield. View to the northeast. August 20, 2002	3-5
3.6-1	Using the Geoprobe™ to determine the location of the DSS Site 1084 septic tank, which was located beneath the asphalt pavement. View to the northeast. December 4, 2003	3-25
3.6-2	Location of the DSS Site 1084 septic tank under the asphalt parking lot, as determined by Geoprobe™ borings. The tank was found filled with dirt. View to the east. December 4, 2003	3-27
4.2-1	Conceptual Site Model Flow Diagram for DSS Site 1084, Building 6505 Septic System	4-3

.

This page intentionally left blank.

LIST OF TABLES

Table

3.5-1	Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1084, Building 6505 Septic System Soil Samples
3.5.2 - 1	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, VOC Analytical Results, August 2002 (Off-Site Laboratory)3-8
3.5.2-2	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, VOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-9
3.5.2-3	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, SVOC Analytical Results, August 2002 (Off-Site Laboratory)
3.5.2-4	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, SVOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-12
3.5.2-5	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, PCB Analytical Results, August 2002 (Off-Site Laboratory)3-14
3.5.2-6	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, PCB Analytical MDLs, August 2002 (Off-Site Laboratory)3-15
3.5.2-7	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, HE Compound Analytical Results, August 2002 (Off-Site Laboratory)
3.5.2-8	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, HE Compound Analytical MDLs, August 2002 (Off-Site Laboratory)
3.5.2-9	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Metals Analytical Results, August 2002 (Off-Site Laboratory)
3.5.2-10	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Metals Analytical MDLs, August 2002 (Off-Site Laboratory)3-18
3.5.2-11	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical Results, August 2002 (Off-Site Laboratory)
3.5.2-12	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, August 2002 (Off-Site Laboratory)

ι,

LIST OF TABLES (Concluded)

Table

3.5.2-13	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, August 2002 (On-Site Laboratory)	3-20
3.5.2-14	Summary of DSS Site 1084, Building 6505 Septic System, Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results, August 2002 (Off-Site Laboratory)	3-22
4.2-1	Summary of Potential COCs for DSS Site 1084, Building 6505 Septic System	4-5
4.3.2-1	Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1084, Building 6505 Septic System Carcinogens	4-7

LIST OF ANNEXES

Annex

- A DSS Site 1084 Septic Tank Sampling Results
- B DSS Site 1084 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results
- C DSS Site 1084 Soil Sample Data Validation Results
- D DSS Site 1084 Risk Assessment

This page intentionally left blank.

ACRONYMS AND ABBREVIATIONS

AOP	Administrative Operating Procedure
BA	butyl acetate
bgs	below ground surface
CAC	Corrective Action Complete
COC	constituent of concern
DSS	Drain and Septic Systems
EB	equipment blank
EPA	U.S. Environmental Protection Agency
ER	Environmental Restoration
FIP	Field Implementation Plan
GS	Gore-Sorber™
HE	high explosive
HI	hazard index
HQ	hazard quotient
HWB	Hazardous Waste Bureau
KAFB	Kirtland Air Force Base
MDA	minimum detectable activity
MDL	method detection limit
mrem	millirem
NFA	no further action
NMED	New Mexico Environment Department
OU	Operable Unit
PCB	polychlorinated biphenyl
RCRA	Resource Conservation and Recovery Act
RPSD	Radiation Protection Sample Diagnostics
SAP	Sampling and Analysis Plan
SNL/NM	Sandia National Laboratories/New Mexico
SVOC	semivolatile organic compound
SWMU	Solid Waste Management Unit
TA	Technical Area
TB	trip blank
TEDE	total effective dose equivalent
TOP	Technical Operating Procedure
TOP	Technical Operating Procedure
VOC	volatile organic compound
yr	year(s)

This page intentionally left blank.

1.0 INTRODUCTION

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field-verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of

other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).

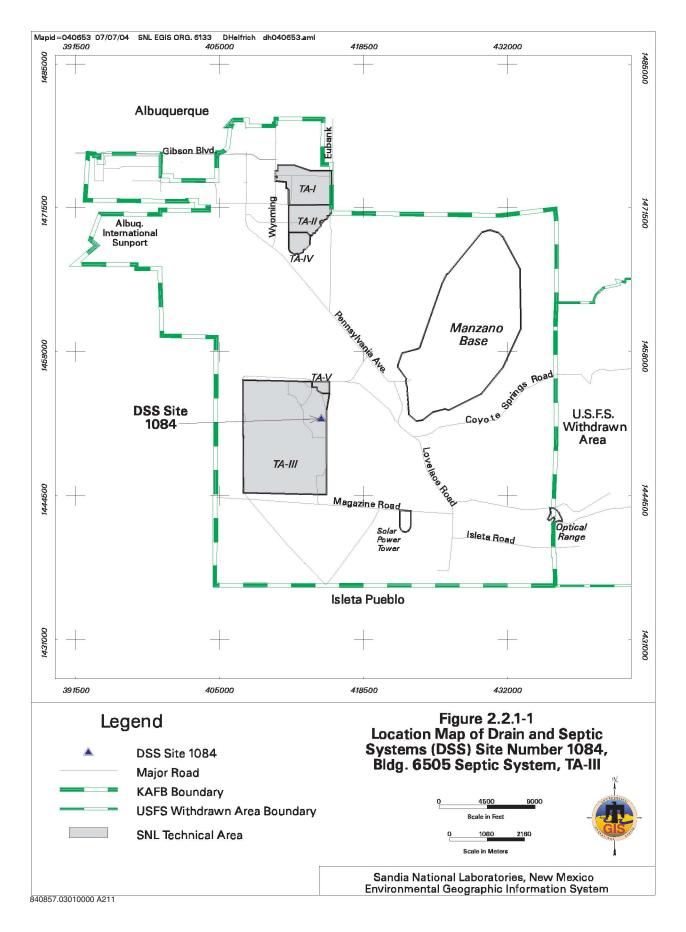
2.0 DSS SITE 1084: BUILDING 6505 SEPTIC SYSTEM

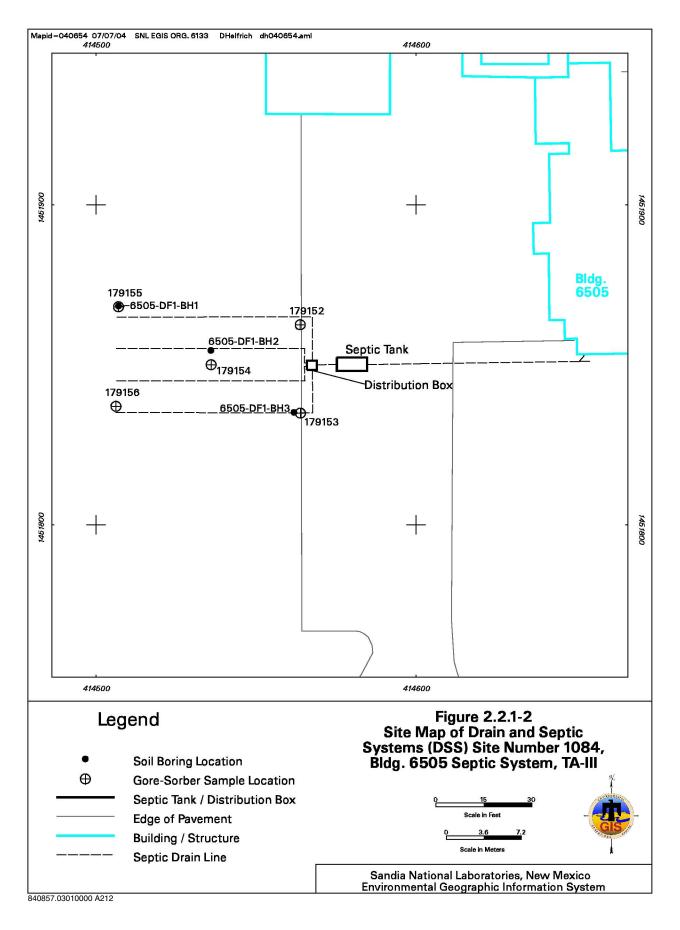
2.1 Summary

The SNL/NM ER Project conducted an assessment of DSS Site 1084, the Building 6505 Septic System. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report provides documentation that the site was specifically characterized, that no significant releases of contaminants to the environment occurred via the Building 6505 Septic System, and that it does not pose a threat to human health or the environment under either the industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment, and septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for DSS Site 1084 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, a determination of Corrective Action Complete (CAC) without controls (NMED April 2004) is recommended for DSS Site 1084 based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk.

2.2 Site Description and Operational History


2.2.1 Site Description


DSS Site 1084 is located in SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (Figure 2.2.1-1). The site is located approximately 3,400 feet southeast of the entrance to TA-III and is about 80 feet west of the corner of Building 6505 (Figure 2.2.1-2). The abandoned septic system consisted of a 325-gallon septic tank and distribution box that emptied to a 30-foot-long drain line with four branching laterals, each 60 feet long (Figure 2.2.1-2). Construction details are based upon engineering drawings (SNL/NM April 1955), site inspections, backhoe excavations, and Geoprobe[™] exploration of the system. The system received discharges from Building 6505, approximately 80 feet to the east.

The surface geology at DSS Site 1084 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1084, and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic conductivities (SNL/NM March 1996). Site vegetation primarily consists of desert grasses, shrubs, and cacti.

This page intentionally left blank.

The ground surface in the vicinity of the site is flat to very slightly sloping to the west. The closest drainage lies approximately 0.9 miles south of the site and terminates in a playa just west of KAFB. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,433 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 508 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production wells to DSS Site 1084 are KAFB-4, approximately 3.4 miles to the northwest, and KAFB-11, approximately 3.6 miles to the northeast. The nearest groundwater monitoring well is the Mixed Waste Landfill Well MWL-BW1, approximately 3,000 feet west of the site.

2.2.2 Operational History

Available information indicates that Building 6505, currently known as the Thermal Spray Research Lab, was constructed in 1954 (SNL/NM March 2003), and it is assumed the septic system was constructed at the same time. Because operational records are not available, the site investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations.

In June 1991, Building 6505 was connected to an extension of the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1084 is industrial.

2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1084 is industrial (DOE et al. September 1995).

This page intentionally left blank.

3.0 INVESTIGATORY ACTIVITIES

3.1 Summary

Five assessment investigations have been conducted at this site. In late 1990 or early 1991, waste characterization samples were collected from the septic tank (Investigation 1). In March 2002, a backhoe was used to physically locate the buried drainfield drain lines (Investigation 2). In April 2002, a passive soil-vapor survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soil around the drainfield) (Investigation 3). In August 2002, six subsurface soil samples were collected from three borings in the drainfield area (Investigation 4). In December 2003, a Geoprobe™ was used to locate the septic tank and determine the contents of the tank (Investigation 5). Investigations 2, 3, 4, and 5 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

In late 1990 or early 1991, as part of the SNL/NM Septic System Monitoring Program, an aqueous sample was collected from the Building 6505 septic tank (SNL/NM April 1991). The aqueous samples were analyzed at an off-site laboratory for semivolatile organic compounds (SVOCs), oil and grease, phenolic compounds, metals, gross beta activity, and uranium-238. The analytical results are presented in Annex A. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release.

3.3 Investigation 2—Backhoe Excavation

On March 11, 2002, a backhoe was used to determine the location, dimensions, and average depth of the DSS Site 1084 drainfield system. Excavation began in the vicinity of the drainfield drain lines. The drainfield was found to have four laterals, arranged as shown on Figure 2.2.1-2, with an average drain line trench depth of 3 feet bgs. The north drain line was followed east to the point where it continued under the paved asphalt area (Figure 2.2.1-2). The backhoe work was stopped at this point in order to prevent damage to the asphalt pavement. No visible evidence of stained or discolored soil or odors indicating residual contamination was observed during the excavation. No samples were collected during the backhoe excavation at the site.

3.4 Investigation 3—Passive Soil-Vapor Sampling

In late April 2002 and early May 2002, a passive soil-vapor survey was conducted in the Building 6505 Septic System area. This survey was required at this site by NMED/HWB regulators and was conducted to determine whether significant VOC contamination was present in the soil at the site.

3.4.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber[™] (GS) passive soil-vapor survey is a qualitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. The technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil vapor chemistry over a two- to three-week period rather than at one point in time.

Each GS soil-vapor sampler consists of a 1-foot-long, 0.25-inch diameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 3-foot-deep by 1.5-inch-diameter borehole was drilled with the GeoprobeTM. A sample identification tag and location string were attached to the GS sampler and lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1-foot of the borehole, from the cork to the ground surface, was backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for the VOCs of interest are reported as mass (expressed in micrograms) of the individual VOCs absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

3.4.2 Soil-Vapor Survey Results and Conclusions

A total of five GS passive soil-vapor samplers were placed in the drainfield area of the site (Figure 2.2.1-2). Samplers were installed at the site on April 29, 2002, and were retrieved on May 14, 2002. Sample locations are designated by the same six-digit sample number both on Figure 2.2.1-2 and in the analytical results tables presented in Annex B.

As shown in the analytical results tables in Annex B, the GS samplers were analyzed for a total of 30 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and transdichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 17 individual or groups of VOCs were detected in the GS samplers installed at this site. The analytical results indicated there were no areas of significant VOC contamination at the site that would require additional characterization.

3.5 Investigation 4—Soil Sampling

Once the system drain lines were located, soil sampling was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED. On August 20, 2002, soil samples were collected from three drainfield boreholes. Soil boring locations are shown on Figure 2.2.1-2. Figure 3.5-1 shows soil samples being collected at DSS Site 1084. A summary of the boreholes, sample depths, sample analyses, analytical methods, laboratories, and sample date is presented in Table 3.5-1.

3.5.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals. In drainfields, the top of the shallow interval started at the bottom of the drain line trenches, as determined by the backhoe excavation, and the lower (deep) interval started at 5 feet beneath the top of the upper interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter GeoprobeTM sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3 or 4 feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon[®] film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

3.5.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1084 are presented and discussed in this section.

<u>VOCs</u>

VOC analytical results for the six soil samples and one duplicate soil sample collected from the three drainfield boreholes are summarized in Table 3.5.2-1. Method detection limits (MDLs) for the VOC soil analyses are presented in Table 3.5.2-2. One VOC, 2-butanone, was detected in the 3-foot-bgs sample and the duplicate sample from BH2 and in the 8-foot-bgs samples from

This page intentionally left blank.

Figure 3.5-1 Collecting soil samples with the Geoprobe[™] from beneath DSS Site 1084, Building 6505 Septic System drainfield. View to the northeast. August 20, 2002

Table 3.5-1 Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1084, Building 6505 Septic System Soil Samples

Sampling Area	Number of Borehole Locations	Top of Sampling Intervals in Each Borehole (ft bgs)	Total Number of Soil Samples	Analytical Parameters and EPA Methods ^a	Analytical Laboratory	Date Samples Collected
Drainfield	3	3, 8	6 +1 Duplicate	VOCs EPA Method 8260	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	SVOCs EPA Method 8270	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	PCBs EPA Method 8082	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	HE Compounds EPA Method 8330	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	RCRA Metals EPA Methods 6000/7000	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	Hexavalent Chromium EPA Method 7196A	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	Total Cyanide EPA Method 9012A	GEL	08-20-02
	3	3, 8	6 +1 Duplicate	Gamma Spectroscopy EPA Method 901.1	RPSD	08-20-02
	3	3, 8	6 +1 Duplicate	Gross Alpha/Beta Activity EPA Method 900.0	GEL	08-20-02

^aEPA November 1986.

- = Below ground surface. bgs
- = Drain and Septic Systems. DSS
- EPA = U.S. Environmental Protection Agency.
- = Foot (feet). ft
- = General Engineering Laboratories, Inc. GEL
- ΗE = High explosive(s).
- PCB = Polychlorinated biphenyl. RCRA = Resource Conservation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- = Volatile organic compound. VOC

Table 3.5.2-1 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, VOC Analytical Results August 2002 (Off-Site Laboratory)

			VOCs	
			(EPA Method 8260 ^a)	
Sample Attributes			(µg/kg)	
Record		Sample		
Number ^b	ER Sample ID	Depth (ft)	2-Butanone	
605649	6505-DF1-BH1-3-S	3	ND (3.74)	
605649	6505-DF1-BH1-8-S	8	ND (3.74)	
605649	6505-DF1-BH2-3-S	3	25.5	
605649	6505-DF1-BH2-3-DU	3	9.98	
605649	6505-DF1-BH2-8-S	8	12.7	
605649	6505-DF1-BH3-3-S	3	ND (3.74)	
605649	6505-DF1-BH3-8-S	8	9.35	
Quality Assurance/Quality Control Sample (µg/L)				
605649	6505-DF1-TB°	NA	ND (2.31)	

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

°ER sample ID reflects the final site for VOC samples included in this shipment.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- MDL = Method detection limit.
- μg/kg = Microgram(s) per kilogram.
- μg/L = Microgram(s) per liter.
- NA = Not applicable.
- ND () = Not detected above the MDL, shown in parentheses.
- S = Soil sample.
- TB = Trip blank.
- VOC = Volatile organic compound.

Table 3.5.2-2 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, VOC Analytical MDLs August 2002 (Off-Site Laboratory)

[EPA Method 8260 ^a		
	Detection Limit		
Analyte	(µg/kg)		
Acetone	3.45-3.59		
Benzene	0.441-0.459		
Bromodichloromethane	0.48-0.5		
Bromoform	0.48-0.5		
Bromomethane	0.49-0.51		
2-Butanone	3.67-3.82		
Carbon disulfide	2.31–2.41		
Carbon tetrachloride	0.48-0.5		
Chlorobenzene	0.402-0.418		
Chloroethane	0.794-0.827		
Chloroform	0.51-0.531		
Chloromethane	0.363-0.378		
Dibromochloromethane	0.49-0.51		
1,1-Dichloroethane	0.461-0.48		
1,2-Dichloroethane	0.422-0.439		
1,1-Dichloroethene	0.49-0.51		
cis-1,2-Dichloroethene	0.461-0.48		
trans-1,2-Dichloroethene	0.52-0.541		
1,2-Dichloropropane	0.471-0.49		
cis-1,3-Dichloropropene	0.422-0.439		
trans-1,3-Dichloropropene	0.245-0.255		
Ethylbenzene	0.373-0.388		
2-Hexanone	3.7–3.85		
Methylene chloride	1.32–1.38		
4-Methyl-2-pentanone	3.95–4.11		
Styrene	0.382-0.398		
1,1,2,2-Tetrachloroethane	0.892-0.929		
Tetrachloroethene	0.373-0.388		
Toluene	0.333-0.347		
1,1,1-Trichloroethane	0.52-0.541		
1,1,2-Trichloroethane	0.529-0.551		
Trichloroethene	0.441-0.459		
Vinyl acetate	1.75–1.82		
Vinyl chloride	0.549-0.571		
Xylene	0.382-0.398		

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

- μ g/kg = Microgram(s) per kilogram.
- VOC = Volatile organic compound.

BH2 and BH3. This compound was not detected in the associated trip blanks (TBs). It is a common laboratory contaminant and may not indicate soil contamination at this site.

SVOCs

SVOC analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-3. MDLs for the SVOC soil analyses are presented in Table 3.5.2-4. No SVOCs were detected in any of the soil samples collected from the site.

PCBs

Polychlorinated biphenyl (PCB) analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-5. MDLs for the PCB soil analyses are presented in Table 3.5.2-6. One PCB, Aroclor-1260 was detected in the 8-foot-bgs sample from borehole BH2.

HE Compounds

High explosive (HE) compound analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-7. MDLs for the HE soil analyses are presented in Table 3.5.2-8. No HE compounds were detected in the soil samples collected from the site.

RCRA Metals and Hexavalent Chromium

Resource Conservation and Recovery Act (RCRA) metals and hexavalent chromium analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-9. MDLs for the metals in soil analyses are presented in Table 3.5.2-10. Barium and chromium were detected above the NMED-approved background in the 3-foot-bgs and the 8-foot-bgs samples, respectively, from borehole BH3.

Total Cyanide

Total cyanide analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-11. MDLs for the cyanide soil analyses are presented in Table 3.5.2-12. Cyanide was detected in the 3-foot-bgs samples from boreholes BH2 and BH3 and in the 8-foot-bgs samples from boreholes BH1, BH2, and BH3.

Radionuclides

Analytical results for the gamma spectroscopy analysis of the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-13. No

Table 3.5.2-3

Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, SVOC Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		SVOCs
Record		Sample	(EPA Method 8270 ^a)
Numberb	ER Sample ID	Depth (ft)	(µg/kg)
605649	6505-DF1-BH1-3-S	3	ND
605649	6505-DF1-BH1-8-S	8	ND
605649	6505-DF1-BH2-3-S	3	ND
605649	6505-DF1-BH2-3-DU	3	ND
605649	6505-DF1-BH2-8-S	8	ND
605649	6505-DF1-BH3-3-S	3	ND
605649	6505-DF1-BH3-8-S	8	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

DU = Duplicate sample.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

μg/kg = Microgram(s) per kilogram.

ND = Not detected.

S = Soil sample.

SVOC = Semivolatile organic compound.

Table 3.5.2-4 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8270ª
	Detection Limit
Analyte	(μg/kg)
Acenaphthene	8
Acenaphthylene	16.7
Anthracene	16.7
Benzo(a)anthracene	16.7
Benzo(a)pyrene	16.7
Benzo(b)fluoranthene	16.7
Benzo(g,h,i)perylene	16.7
Benzo(k)fluoranthene	16.7
4-Bromophenyi phenyl ether	34
Butylbenzyl phthalate	28.7
Carbazole	16.7
4-Chlorobenzenamine	167
bis(2-Chloroethoxy)methane	12.3
bis(2-Chloroethyl)ether	37.3
bis-Chloroisopropyl ether	11
4-Chloro-3-methylphenol	167
2-Chloronaphthalene	13.7
2-Chlorophenol	15.3
4-Chlorophenyl phenyl ether	19.7
Chrysene	16.7
o-Cresol	26
Dibenz[a,h]anthracene	16.7
Dibenzofuran	17
1,2-Dichlorobenzene	10
1,3-Dichlorobenzene	11.3
1,4-Dichlorobenzene	15.7
3,3'-Dichlorobenzidine	167
2,4-Dichlorophenol	20.7
Diethylphthalate	17.7
2,4-Dimethylphenol	167
Dimethylphthalate	18.3
Di-n-butyl phthalate	24
Dinitro-o-cresol	167
2,4-Dinitrophenol	167
2,4-Dinitrotoluene	25.3
2,6-Dinitrotoluene	33.3
Di-n-octyl phthalate	30.3
Diphenyl amine	22.3
bis(2-Ethylhexyl) phthalate	30
Fluoranthene	16.7
Fluorene	4
Hexachlorobenzene	20

Refer to footnotes at end of table.

.

Table 3.5.2-4 (Concluded) Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8270 ^a
	Detection Limit
Analyte	(μg/kg)
Hexachlorobutadiene	12.7
Hexachlorocyclopentadiene	167
Hexachloroethane	22
Indeno(1,2,3-cd)pyrene	16.7
Isophorone	16
2-Methylnaphthalene	16.7
4-Methylphenol	33.3
Naphthalene	16.7
2-Nitroaniline	167
3-Nitroaniline	167
4-Nitroaniline	37
Nitrobenzene	20.3
2-Nitrophenol	17
4-Nitrophenol	167
n-Nitrosodipropylamine	22.7
Pentachlorophenol	167
Phenanthrene	16.7
Phenol	12.7
Pyrene	16.7
1,2,4-Trichlorobenzene	12.7
2,4,5-Trichloropheno	17.3
2,4,6-Trichlorophenol	27.3

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

 $\mu g/kg = Microgram(s) per kilogram.$

SVOC = Semivolatile organic compound.

AL/9-04/WP/SNL04:r5658.doc

Table 3.5.2-5 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, PCB Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		PCB (EPA Method 8082ª) (µg/kg)
Record		Sample	
Numberb	ER Sample ID	Depth (ft)	Aroclor-1260
605649	6505-DF1-BH1-3-S	3	ND (1)
605649	6505-DF1-BH1-8-S	8	ND (1)
605649	6505-DF1-BH2-3-S	3	ND (1)
605649	6505-DF1-BH2-3-DU	3	ND (1)
605649	6505-DF1-BH2-8-S	8	1.8 J (3.33)
605649	6505-DF1-BH3-3-S	3	ND (1)
605649	6505-DF1-BH3-8-S	8	ND (1)

Note: Values in **bold** represent detected analytes. ^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J () = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.
- MDL = Method detection limit.
- μg/kg = Microgram(s) per kilogram.
- ND () = Not detected above the MDL, shown in parentheses.
- PCB = Polychlorinated biphenyl.
- S = Soil sample.

Table 3.5.2-6 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, PCB Analytical MDLs August 2002 (Off-Site Laboratory)

Analyte	EPA Method 8082 ^a Detection Limit (μg/kg)
Aroclor-1016	1
Aroclor-1221	2.82
Aroclor-1232	1.67
Aroclor-1242	1.67
Arocior-1248	1
Aroclor-1254	0.5
Aroclor-1260	

^aEPA November 1986.

DSS = Drain and Septic Systems.

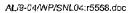
EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

µg/kg = Microgram(s) per kilogram.

PCB = Polychlorinated biphenyl.

Table 3.5.2-7 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, HE Compound Analytical Results August 2002 (Off-Site Laboratory)


	Sample Attributes		HE
Record		Sample	(EPA Method 8330 ^a)
Number ^b	ER Sample ID	Depth (ft)	(μg/kg)
605649	6505-DF1-BH1-3-S	3	NDH
605649	6505-DF1-BH1-8-S	8	NDH
605649	6505-DF1-BH2-3-S	3	NDH
605649	6505-DF1-BH2-3-DU	3	NDH
605649	6505-DF1-BH2-8-S	8	NDH
605649	6505-DF1-BH3-3-S	3	ND H
605649	6505-DF1-BH3-8-S	8	NDH

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).

- H = The holding time was exceeded for the associated sample analysis.
- HE = High explosive(s).
- ID = Identification.
- μ g/kg = Microgram(s) per kilogram.
- ND = Not detected.
- S = Soil sample.

Table 3.5.2-8

Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, HE Compound Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8330 ^a Detection Limit
Analyte	(µg/kg)
2-Amino-4,6-dinitrotoluene	18.1
4-Amino-2,6-dinitrotoluene	34.1
1,3-Dinitrobenzene	34.1
2,4-Dinitrotoluene	55
2,6-Dinitrotoluene	48
НМХ	48
Nitrobenzene	48
2-Nitrotoluene	24
3-Nitrotoluene	24
4-Nitrotoluene	24
RDX	48
Tetryi	22.1
1,3,5-Trinitrobenzene	29
2,4,6-Trinitrotoluene	48

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HE = High explosive(s).

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

MDL = Method detection limit.

 $\mu g/kg \approx Microgram(s) per kilogram.$

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

Tetryl = Methyl-2,4,6-trinitrophenylnitramine.

Table 3.5.2-9 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Metals Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes			Metals (EPA Method 6000/7000/7471A ^a) (mg/kg)							
Record Number ^b	ER Sample ID	Sample Depth (ft)	Arsenic	Barium	Cadmium	Chromium	Chromium (VI)	Lead	Mercury	Selenium	Silver
605649	6505-DF1-BH1-3-S	3	2.84	82.3 J	0.145 J (0.485)	12.8 J	ND (0.0533)	3.99	0.00331 J (0.00951)	ND (0.393 J)	ND (0.0876)
605649	6505-DF1-BH1-8-S	8	3.36	96.5 J	0.19 J (0.463)	10.4 J	0.0578 J (0.0963)	5.13	0.00253 J (0.0086)	ND (0.15 J)	ND (0.0835)
605649	6505-DF1-BH2-3-S	3	3.15	103 J	0.208 J (0.495)	10.1 J	ND (0.0517)	5.75	0.00416 J (0.00929)	ND (0.401 J)	ND (0.0893)
605649	6505-DF1-BH2-3-DU	3	3.17	137 J	0.197 J (0.472)	9.17 J	ND (0.0536)	4.86	0.00928	ND (0.153 J)	ND (0.0851)
605649	6505-DF1-BH2-8-S	8	3.16	63.3 J	0.223 J (0.472)	10.8 J	ND (0.0519)	6.31	0.0164	0.315 J (0.472)	0.35 J (0.472)
605649	6505-DF1-BH3-3-S	3	3.88	411 J	0.199 J (0.45)	9.02 J	ND (0.0533)	4.79	0.00752 J (0.00972)	ND (0.146 J)	ND (0.0813)
605649	6505-DF1-BH3-8-S	8	3.11	73.8 J	0.222 J (0.467)	20.2 J	ND (0.0522)	5.76	0.00415 J (0.00858)	ND (0.151 J)	ND (0.0843)
Backgrou Supergro	und Concentration—Sou pup ^c	thwest Area	4.4	214	0.9	15.9	1	11.8	<0.1	<1	<1

Note: Values in **bold** exceed background soil concentrations.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cDinwiddie September 1997.

- BH = Borehole.
- DF = Drainfield.
- = Drain and Septic Systems. DSS
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- = Analytical result was qualified as an estimated value. J
- J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- = Not detected above the MDL, shown in parentheses. ND() S
 - = Soil sample.

Table 3.5.2-10 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Metals Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 6000/7000/7471Aª Detection Limit
Analyte	(mg/kg)
Arsenic	0.186-0.204
Barium	0.0601-0.066
Cadmium	0.0431-0.0473
Chromium	0.145-0.16
Chromium (VI)	0.0517-0.0536
Lead	0.256-0.281
Mercury	0.000844-0.000956
Selenium	0.146-0.401
Silver	0.0813-0.0893

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

Table 3.5.2-11 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		Total Cyanide
Record]	Sample	(EPA Method 9012A ^a)
Number ^b	ER Sample ID	Depth (ft)	(mg/kg)
605649	6505-DF1-BH1-3-S	3	ND
605649	6505-DF1-BH1-8-S	8	0.0782 J (0.278)
605649	6505-DF1-BH2-3-S	3	0.0725 J (0.25)
605649	6505-DF1-BH2-3-DU	3	ND
605649	6505-DF1-BH2-8-S	8	0.0718 J (0.227)
605649	6505-DF1-BH3-3-S	3	0.102 J (0.227)
605649	6505-DF1-BH3-8-S	8	0.125 J (0.25)

Note: Values in **bold** exceed background soil concentrations. ^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J() = The reported value is greater than or equal to the MDL but is less than the practical guantitation limit, shown in parentheses.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- ND = Not detected.
- S = Soil sample.

Table 3.5.2-12

Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 9012A ^a
	Detection Limit
Analyte	(mg/kg)
Total Cyanide	0.0381-0.0466

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

 $mg/kg \approx Milligram(s)$ per kilogram.

Table 3.5.2-13 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results August 2002 (On-Site Laboratory)

	Sample Attributes		Activity (EPA Method 901.1 ^a) (pCi/g)							
Record		Sample	Cesium-	137	Thorium-232		Uranium-235		Uranium-238	
Number ^b	ER Sample ID	Depth (ft)	Result	Error ^c	Result	Error ^c	Result	Errorc	Result	Error ^c
605640	6505-DF1-BH1-3-S	3	ND (0.0265)		0.488	0.246	ND (0.198)		ND (0.625)	
605640	6505-DF1-BH1-8-S	8	ND (0.0268)		0.661	0.319	ND (0.207)		ND (0.654)	
605640	6505-DF1-BH2-3-S	3	ND (0.0318)		0.734	0.353	ND (0.243)		ND (0.747)	
605640	6505-DF1-BH2-3-DU	3	ND (0.0298)		0.719	0.347	ND (0.228)		ND (0.718)	
605640	6505-DF1-BH2-8-S	8	ND (0.0302)		0.757	0.362	0.101	0.182	ND (0.715)	
605640	6505-DF1-BH3-3-S	3	ND (0.0269)		0.526	0.266	_ND (0.204)		ND (0.67)	
605640	6505-DF1-BH3-8-S	8	ND (0.0339)		0.694	0.337	ND (0.196)		ND (0.5)	
Background Activity—Southwest Area		st Area	0.079	NA	1.01	NA	0.16	NA	1.4	NA
Supergro	pup ^d		<u> </u>				<u> </u>	100 - Taura		

Note: Values in **bold** exceed background soil activities.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

°Two standard deviations about the mean detected activity.

^dDinwiddie September 1997.

- BH = Borehole.
- DF = Drainfield,
- DSS = Drain and Septic Systems.
- = Duplicate sample. DU
- EPA = U.S. Environmental Protection Agency.
- = Environmental Restoration. ER
- ft = Foot (feet).
- = Identification. ID
- MDA = Minimum detectable activity.
- = Not applicable. NA
- ND () = Not detected above the MDA, shown in parentheses.
- ND () = Not detected, but the MDA (shown in parentheses) exceeds background activity.
- pCi/g = Picocurie(s) per gram. S
 - = Soil sample.
 - = Error not calculated for nondetect results.

activities above NMED-approved background levels were detected in any sample analyzed. However, although not detected, the minimum detectable activity (MDA) for most of the uranium-235 analyses exceeded the respective background activity because the standard gamma spectroscopy count time for soil samples (6,000 seconds) was not sufficient to reach the NMED-approved background activity established for SNL/NM soil. Even though the MDA values may be slightly elevated, they are still very low, and the risk assessment outcome for the site is not significantly impacted by their use.

Gross Alpha/Beta Activity

Gross alpha/beta activity analytical results for the six soil samples and one duplicate soil sample collected from the drainfield boreholes are summarized in Table 3.5.2-14. No gross alpha or beta activity was detected above the New Mexico-established background levels (Miller September 2003) in any of the samples. These results indicate no significant levels of radioactive material are present in the soil at the site.

3.5.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS Project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicate, equipment blank (EB), and TB samples. Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 site samples. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch. No EB samples were collected at this site.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all the samples in that batch. No VOCs were detected in the TB for DSS Site 1084 (Table 3.5.2-1).

As shown in Tables 3.5.2-1, 3.5.2-3, 3.5.2-5, 3.5.2-7, 3.5.2-9, 3.5.2-11, 3.5.2-13, and 3.5.2-14, to assess the precision and repeatability of sampling and analytical procedures, duplicate soil samples (designated 'DU') were collected and analyzed at the on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, total cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity.

As shown in Tables 3.5.2-3, 3.5.2-5, 3.5.2-7, 3.5.2-9 and 3.5.2-13, no SVOCs, PCBs, HE compounds, hexavalent chromium, or elevated radionuclides were detected in the primary or the duplicate samples from the 3-foot-bgs interval in borehole BH2.

As shown in Table 3.5.2-1, the 2-butanone concentration in the primary sample was 2.5 times that in the duplicate sample from the 3-foot-bgs interval in borehole BH2.

Table 3.5.2-14 Summary of DSS Site 1084, Building 6505 Septic System Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results August 2002 (Off-Site Laboratory)

Sample Attributes			Activity (EPA Method 900.0 ^a) (pCi/g)			
Record		Sample	Gross Alpha		Gross Beta	
Number ^b	ER Sample ID	Depth (ft)	Result	Error ^c	Result	Error ^c
605649	6505-DF1-BH1-3-S	3	5.5 J	1.74	17.8	1.87
605649	6505-DF1-BH1-8-S	8	14.6 J	4.57	20.8	1.81
605649	6505-DF1-BH2-3-S	3	8.29 J	2.02	19.4	1.88
605649	6505-DF1-BH2-3-DU	3	6.83 J	2.21	17.9	1.95
605649	6505-DF1-BH2-8-S	8	9.49 J	2.3	20.5	2.04
605649	6505-DF1-BH3-3-S	3	10.5 J	2.33	17.2	1.7
605649	6505-DF1-BH3-8-S	8	11.9 J	2.28	17.5	1.78
Background Activity ^d		17.4	NA	35.4	NA	

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

°Two standard deviations about the mean detected activity.

^dMiller September 2003.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J = Analytical result was qualified as an estimated value.
- NA = Not applicable.
- pCi/g = Picocurie(s) per gram.
- S = Soil sample.

As shown in Table 3.5.2-9, metals concentrations in the primary and duplicate samples from the 3-foot-bgs interval in borehole BH2 compared as follows:

- · Arsenic, barium, cadmium, chromium, and lead concentrations were comparable.
- The mercury concentration in the duplicate sample was 2.25 times the concentration in the primary sample.
- Hexavalent chromium, selenium, and silver were not detected in either the primary or the duplicate samples.

As shown in Table 3.5.2-11, cyanide was detected in the primary sample but not in the duplicate sample.

As shown in Table 3.5.2-13, detected activities of the radionuclides by gamma spectroscopy were comparable in the primary and duplicate samples.

As shown in Table 3.5.2-14 gross alpha/beta activity results for the primary and duplicate samples are comparable.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). Annex C contains the data validation reports for the samples collected at this site. The data are acceptable for use in this request for a determination of CAC without controls.

3.6 Investigation 5—Geoprobe™ Exploration

On December 4, 2003, a Geoprobe[™] was used to locate the septic tank beneath the asphalt pavement west of Building 6505 (Figure 3.6-1). Eleven boreholes were drilled within the assumed vicinity of the septic tank as shown on engineering drawings. The septic tank was located and it was determined that the tank had been abandoned and backfilled with dirt at some point after the samples were collected from the tank in late 1990 or early 1991 (Figure 3.6-2).

3.7 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1084.

This page intentionally left blank.

Figure 3.6-1

Using the Geoprobe[™] to determine the location of the DSS Site 1084 septic tank, which was located beneath the asphalt pavement. View to the northeast. December 4, 2003



Figure 3.6-2

Location of the DSS Site 1084 septic tank under the asphalt parking lot, as determined by Geoprobe[™] borings. The tank was found filled with dirt. View to the east. December 4, 2003

4.0 CONCEPTUAL SITE MODEL

The conceptual site model for DSS Site 1084, the Building 6505 Septic System, is based upon the COCs identified in the soil samples collected from beneath the drainfield at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1084 are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, and radionuclides. No SVOCs or HE compounds were detected in any of the soil samples collected at this site. The VOC, 2-butanone, was detected in four of the seven samples collected from the site. PCBs were detected in one sample, and cyanide was detected in five samples collected from the site. Barium and chromium were each detected in one sample above the NMED-approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils (Dinwiddie September 1997). Hexavalent chromium was detected in one sample but not above the NMED-approved maximum background concentration. When a metal concentration exceeded its maximum background screening value, ¹ it was considered further in the risk assessment process.

None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. However, the MDA values for most of the uranium-235 analyses exceeded the corresponding background activity. Finally, no gross alpha/beta activity was detected above the New Mexico-established background levels.

4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system and drainfield. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the drainfield (Figure 4.2-1). The depth to groundwater at the site (approximately 508 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion on the fate and transport of COCs at DSS Site 1084.

Table 4.2-1 summarizes the potential COCs for DSS Site 1084. All potential COCs were retained in the conceptual model and were evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1084 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The

This page intentionally left blank.

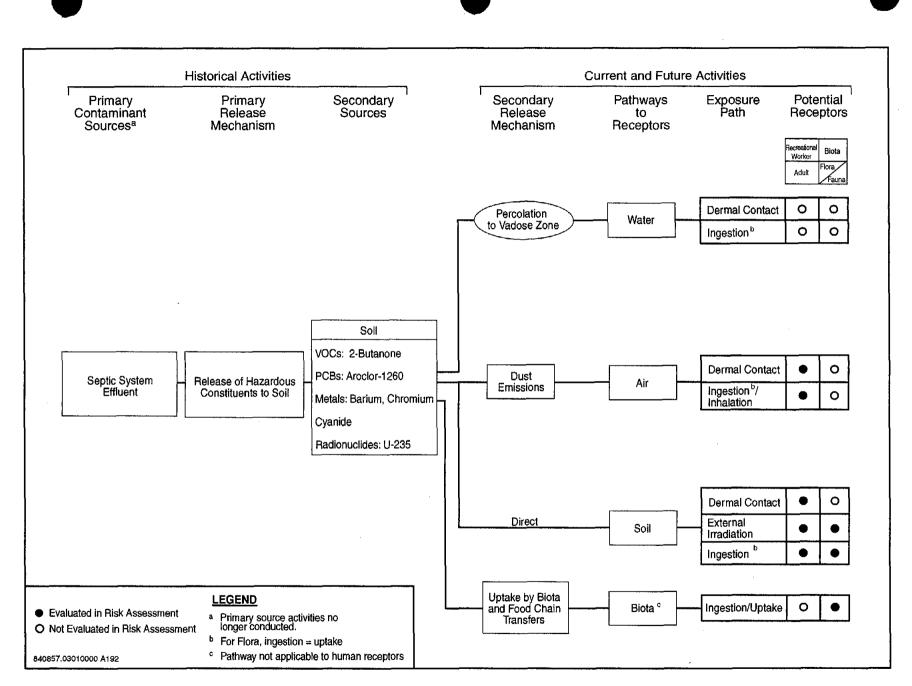


Figure 4.2-1

Conceptual Site Model Flow Diagram for DSS Site 1084, Building 6505 Septic System

4-3

AL/9-04/WP/SNL04:r5558.doc

Table 4.2-1 Summary of Potential COCs for DSS Site 1084, Building 6505 Septic System

		Number	COCs Detected or with Concentrations Greater than Background or Nonquantified	Maximum Background Limit/Southwest Area Supergroup ^b	Maximum Concentration ^c (All Samples)	Average Concentration ^d	Number of Samples Where COCs Detected with Concentrations Greater than Background or Nonquantified
COC Type		Samples ^a	Background	(mg/kg)	(mg/kg)	(mg/kg)	Background ^e
VOCs		7	2-Butanone	NA	0.0255	0.0090	4
SVOCs		7	None	NA	NA	NA	None
PCBs		7	Aroclor-1260	NA	0.0018 J	0.0007	1
HE Compounds		7	None	NA	NA	NA	None
RCRA Metals		7	Barium	214	411 J	138.1	1
		7	Chromium	15.9	20.2 J	11.8	1
Hexavalent Chromium		7	None	NA	NA	NA	None
Cyanide		7	Cyanide	NC	0.125 J	0.0697	5
Radionuclides	Gamma Spectroscopy	7	U-235	0.16	ND (0.243)	NC ^f	6
(pCi/g)	Gross Alpha	7	None	NA	NA	NA	None
<u> </u>	Gross Beta	7	None	NA	NA	NA	None

^aNumber of samples includes duplicates and splits.

^bDinwiddie September 1997.

^cMaximum concentration is either the maximum amount detected, or for radionuclides, the greater of either the maximum detection or the maximum MDA above background.

^dAverage concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect results, divided by the number of samples.

eSee appropriate data table for sample locations.

^fAn average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy.

- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- HE = High explosive(s). J = Analytical result w
 - = Analytical result was qualified as an estimated value.
- MDA = Minimum detectable activity.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- NA = Not applicable.

- NC = Not calculated.
- ND () = Not detected above the MDA shown in parentheses.
- PCB = Polychlorinated biphenyl.
- pCi/g = Picocurie(s) per gram.
- RCRA = Resource Conservation and Recovery Act.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.

Potential biota receptors include flora and fauna at the site. Major exposure routes for biota include direct soil ingestion, ingesting COCs through food chain transfers, and direct contact with COCs in soil. Annex D provides additional discussion of the exposure routes and receptors at DSS Site 1084.

4.3 Site Assessment

Site assessment at DSS Site 1084 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex D discusses the risk assessment performed for DSS Site 1084 in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1084 poses no significant threat to human health under either the industrial or residential land-use scenarios. Ecological risks are expected to be very low.

4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risk at DSS Site 1084. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1084 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because 2-butanone, PCBs (Aroclor-1260), barium, chromium, cyanide, and uranium-235 are present above background levels, have nonquantified background levels, or have MDA values above background levels, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex D provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1084 is 0.01 for the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.01. There is no quantifiable excess cancer risk for DSS Site 1084 COCs for an industrial land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. There is no

estimated incremental excess cancer risk for DSS Site 1084. Both the incremental HI and excess cancer risk are below NMED guidelines.

The HI calculated for the COCs at DSS Site 1084 is 0.08 for the residential land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.04. There is no excess cancer risk for DSS Site 1084. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. There is no incremental excess cancer risk are below NMED guidelines.

For the radiological COCs, one of the constituents, uranium-235, had MDA values greater than the corresponding background values. The incremental total effective dose equivalent (TEDE) and corresponding estimated cancer risk from radiological COCs are much lower than the EPA guidance values; the estimated TEDE is 1.2E-2 millirem (mrem)/year (yr) for the industrial land-use scenario. This value is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding incremental estimated cancer risk value is 1.4E-7 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional controls is 3.1E-2 mrem/yr with an associated estimated excess cancer risk of 4.0E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1084 is eligible for unrestricted radiological release.

The incremental nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	0.00E+0	1.4E-7	1.4E-7
Residential	0.00E+0	4.0E-7	4.0E-7

Table 4.3.2-1

Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1084, Building 6505 Septic System Carcinogens

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997b) also was performed as set forth by the NMED Risk-Based Decision Tree in the "RPMP [RCRA Permits Management Program] Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex D, Sections IV, VII.2, and VII.3). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.

Table 18 of Annex D presents the results of the ecological risk assessment. Ecological risks associated with DSS Site 1084 were estimated through a risk assessment that incorporates site-specific information when available. All hazard quotient (HQ) values predicted at this site were less than 1 with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52 percent) of the HQ values. Therefore, ecological risks associated with this site are expected to be low.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1084 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that ecological risks at DSS Site 1084 are expected to be low, a baseline ecological risk assessment is not required for the site.

5.0 RECOMMENDATION FOR CORRECTIVE ACTION COMPLETE WITHOUT CONTROLS DETERMINATION

5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, a determination of CAC without controls is recommended for DSS Site 1084 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.
- None of the COCs warrant ecological concern after conservative exposure assumptions are analyzed.

5.2 Criterion

Based upon the evidence provided in Section 5.1, a determination of CAC without controls (NMED April 2004) is recommended for DSS Site 1084. This is consistent with the NMED's NFA Criterion 5, which states, "the SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

This page intentionally left blank.

6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shephard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment for Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, "List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program." July 8, 1996.

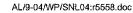
Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB, September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Gore, see Gore, W.L. and Associates.

Gore, W.L. and Associates (Gore), June 2002. "Gore-Sorber Screening Survey Final Report, Non-ER Drain and Septic, Kirtland AFB, NM," W.L. Gore Production Order Number 10960025, Sandia National Laboratories/New Mexico, June 6, 2002


IT, see IT Corporation.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding "State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples." September 12, 2003.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2002.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

New Mexico Environment Department (NMED) March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED) April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act, § 74-4-10," New Mexico Environment Department, Santa Fe, New Mexico. April 29, 2004.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), April 1955. SNL/NM Facilities Engineering Drawing 67800 showing the Building 6505 Septic System, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 1991. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Results for Detected Parameters, Technical Area III and Coyote Canyon Test Field, April 1991," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

AL/9-04/WP/SNL04:r5558.doc

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories/New Mexico.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997a. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997b. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C. This page intentionally left blank.

ANNEX A DSS Site 1084 Septic Tank Sampling Results

4-17-91

Results of Septic tank sampling conducted between 12/18/90 and I 1/8/91 for buildings noted.

pppione

Nick Durand,

For your information.

David Dionne

4-17-91

TABLE 2

SUMMARY OF ANALYTICAL RESULTS FOR DETECTED PARAMETERS TECHNICAL AREA III AND COYOTE CANYON TEST FIELD SEPTIC TANK SAMPLING

BUILDING 6505

SAMPLE NUMBERS SNLA004839, SNLA004840

Parameters		Results	Units
SEMIVOLATILE ORGANICS			· · · ·
4-Methylphenol*		67	μg/l
INORGANICS			
Oil and Grease	•	1.6	mg/l
Phenolics		0.38	mg/l
METALS			· · · ·
Barium		0.32	mg/l
Cadmium		0.014	mg/l
Chromium		0.014	mg/l
Copper	**	1.4	mg/l
Lead		0.14	mg/l
Manganese		0.16	mg/l
Mercury		0.0016	mg/l
Selenium		0.0057	mg/i
Silver		0.021	mg/l
Zinc		4.2	ˈmg/l
RADIOLOGICAL			
Gross Beta	-	25	pCi/l
Uranium 238		1.1	pCi/l

*Not on total toxic organic list

Project No. 301181.26.01 FEG-BB.027

ANNEX B DSS Site 1084 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

1 of 6

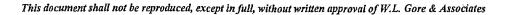
GORE-SORBER[®] Screening Survey Final Report

Non-ER Drain & Septic Kirtland AFB, NM

June 6, 2002

Prepared For: Sandia National Laboratories Mail Stop 0719, 1515 Eubank, SE Albuquerque, NM 87123

W.L. Gore & Associates, Inc.


Written/Submitted by: Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by: Jim E. Whetzel, Project Manager

Analytical Data Reviewed by: Jim E. Whetzel, Chemist

Jim Whetzel fim Whit-

I:\MAPPING\PROJECTS\10960025\020606R.DOC

eative Technologie Worldwide

> ASIA • AUSTRALIA • EUROPE • NORTH AMERICA GORE-SORBER and PETREX are registered service marks of W. L. Gore & Associates, Inc.

GORE-SORBER[®] Screening Survey Final Report

REPORT DATE: June 6, 2002

AUTHOR: JWH

SITE INFORMATION

Site Reference:Non-ER Drain & Septic, Kirtland AFB, NMCustomer Purchase Order Number:28518Gore Production Order Number:10960025Gore Site Code:CCT, CCX

FIELD PROCEDURES

Modules shipped: 142
Installation Date(s): 4/23,24,25,26,29,30/2002; 5/1,6/2002
Modules Installed: 135
Field work performed by: Sandia National Laboratories

Retrieval date(s): 5/8,9,10,14,15,16,21/2002 # Modules Retrieved: 131 # Modules Lost in Field: 4 # Modules Not Returned: 1 Exposure Time: ~15 [days] # Trip Blanks Returned: 3 # Unused Modules Returned: 3

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002@1:30PM By: MM Chain of Custody Form attached: $\sqrt{}$ Chain of Custody discrepancies: None Comments: Modules #179227, -228, and -229 were identified as trip blanks. Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field. Module #179231 was not returned. Modules #179230, 232, and -233 were returned unused.

GORE-SORBER[®] Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing $5\mu g$ BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Instrument ID: #2 Chemist: JW

Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1) **Deviations from Standard Method:** None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly.

Module #179101, no identification tag was returned with this module.

GORE-SORBER[®] Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

General Comments:

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.

GORE-SORBER[®] Screening Survey Final Report

Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:

- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: <u>123456</u>S.D represents module #<u>123456</u>).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour mapping was performed. Larger and more comprehensive soil gas surveys may be warranted at the individual sites where elevated soil gas levels were observed.

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER[®] Screening Survey Final Report

KEY TO DATA TABLE Non-ER Drain & Septic, Kirtland AFB, NM

	non-ER brain & Septic, Kit tand Arb, tun
UNITS	
μg	micrograms (per sorber), reported for compounds
MDL	method detection limit
bdl	below detection limit
nd	non-detect
ANALYTES	
BTEX	combined masses of benzene, toluene, ethylbenzene and total xylenes
	(Gasoline Range Aromatics)
BENZ	benzene
TOL	toluene
EtBENZ	ethylbenzene
mpXYL	m-, p-xylene
oXYL	o-xylene
C11,C13&C15	combined masses of undecane, tridecane, and pentadecane (C11+C13+C15)
011,01200012	(Diesel Range Alkanes)
UNDEC	undecane
TRIDEC	tridecane
PENTADEC	pentadecane
TMBs	combined masses of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene
135TMB	1,3,5-trimethylbenzene
124TMB	1,2,4-trimethylbenzene
ct12DCE	cis- & trans-1,2-dichloroethene
t12DCE	trans-1,2-dichloroethene
c12DCE	cis-1,2-dichloroethene
NAPH&2-MN	combined masses of naphthalene and 2-methyl naphthalene
NAPH	naphthalene
2MeNAPH	2-methyl naphthalene
MTBE	methyl t-butyl ether
11DCA	1,1-dichloroethane
CHC1 ₃	chloroform
111TCA	1,1,1-trichloroethane
12DCA	
	1,2-dichloroethane carbon tetrachloride
CC1 ₄	
TCE	trichloroethene
OCT	octane
PCE	tetrachloroethene
CIBENZ	chlorobenzene
14DCB	1,4-dichlorobenzene
BLANKS	
TBn	unexposed trip blanks, travels with the exposed modules
1.011	unexposed mp oranks, travers with the exposed modules

TBn method blank unexposed trip blanks, travels with the exposed modules QA/QC module, documents analytical conditions during analysis

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

APPENDIX A:

1. CHAIN OF CUSTODY 2. DATA TABLE

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER[®] Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # _10960025

W. L. Gore & Associates, Inc., Survey Products Group 100 Chesapeake Boulevard • Elkion, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

nstructions: Customer must complete ALL shaded	l cells R
Lustomer Name: SANDIA NATIONAL LABS Site	e Name: NON-ER DEAIN+ SEPTIC
ACCOUNTS PAYABLE MS0154 Site	e Address: KIVL 2ND AFB, NM
P.O.BOX 5130	KIRTLAND
ALBUQUERQUE NM 87185 U.S.A. Pro	oject Manager: MIKE SANDERS
	stomer Project No.:
	stomer P.O. #: 28518 Quote #: 211946
Serial # of Modules Shipped # o	of Modules for Installation <u>135</u> # of Trip Blanks <u>7</u>
# 179087 - # 179144 # 179087 - # 179734 Tot	tal Modules Shipped: 142 Pieces
	tal Modules Received: 142 Pieces
	tal Modules Installed: 135 Pieces
	rial # of Trip Blanks (Client Decides) ' #
	171227 # #
- # # - # #	# #
# - # # - # #	# #
# - # # #	# #
# - # # #	# #
# - # # #	# #
Prepared By: Allower 17.1- #	# #
Verified By: Mary and Worghi #	# .#
Installation Performed By:	stallation Method(s) (circle those that apply):
	ide Hammer Hammer Drill Auger
Company/Affiliation: <u>SNC/NM</u> Oth	her: GESPRUBE
Installation Start Date and Time: 4/23/02 108/57	: AM PM
Installation Complete Date and Time: 5/6/02 109401	: AND PM
Retrieval Performed By: To	tal Modules Retrieved: Pieces
Name (please print): GIUSERT QUINTANA To	otal Modules Lost in Field: Pieces
	otal Unused Modules Returned: Pieces
Retrieval Start Date and Time: 5/8/02 / /	: AM PM
Retrieval Complete Date and Time: / /	: AM PM
Relinquished By Date Time Re	eceived By: Mike Sander Date Time
	ffiliation: Sandia/ER 3-6-02
	eceived By: Date Time
	ffiliation:
	eceived By: Merifleree Marchie Date Time
	ffiliation: W.L. Oore & Associates, Inc. 517-02 14:00

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

GORE-SORBER[®] Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # _____10960025_

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkton, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Customer Name: SANDIA NATIONAL LABS NON-ER DUAIN+ SEPTIC Site Name: ACCOUNTS PAYABLE MS0154 KIVL 2ND AFB, NM Site Address: Address: KIRTLAND P.O.BOX 5130 ALBUQUERQUE NM 87185 U.S.A. Project Manager: MIKE SANDERS 505-284-3303 Customer Project No.: Phone: 505-289-2616 Customer P.O. #: 28518 Quote #: 211946 FAX: Serial # of Modules Shipped # of Modules for Installation 135 # of Trip Blanks 7 # 179087 # 179144 #179152 * #179187 Total Modules Shipped: 142 Pieces 42 # 179233 Total Modules Received: Pieces # 179150 #179188 + #1792263 35 Total Modules Installed: #..... Pieces <u>.</u> # # Serial # of Trip Blanks (Client Decides) # # -# # # # 179728 # # . # # # # # #10/0229 # Olysome 17h Prepared By: # ¥ # Verified By: Merylane # Installation Performed By: Installation Method(s) (circle those that apply): Name (please print): GILISTAT QUINTANA Slide Hammer Hammer Drill Auger Other: GESPRUBE Company/Affiliation: <u>SNC/NM</u> Installation Start Date and Time: 4/23/02 AM PM 108151 Installation Complete Date and Time: 5/6/02 109401 AM) PM **Retrieval Performed By:** Total Modules Retrieved: Pieces Name (please print): GILBERT QUINTANA Total Modules Lost in Field: Pieces SNL/NM Company/Affiliation:1_ 鳄子 Total Unused Modules Returned: . - Pieces Retrieval Start Date and Time: 5/8/02 ł 1 AM PM Retrieval Complete Date and Time: 1 I AM PM Relinquished By _____ Received By: Mike, Sanders Date Time Date Time Affiliation: Sandia: 3-4-0717:00 Affiliation: W.L. Gore & Associates, Inc. 6133 3-7-02 "nquished By ______Alana ARila Date Received By: Time Date Time iation: _____Sandia N.L.V 5-21-02 0935 Affiliation:-Received By: Maryline kelinguished By __ Date Time Date Time Affiliation-Affiliation: W.L. Gore & Associates, Inc. 5-24-02 (3)3

Instructions: Customer must complete <u>ALL</u> shaded cells

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 8R.8 1/08/01

		R [®] Screening	-	SITE NAME & LOCATION											
nstal	lation and	Retrieval Log													
· · ·						· •				.					
	_of _4		I							[
JINE #	MODULE #	INSTALLATION DATE/TIME	RETRIEVAL DATE/TIME	HYDR HYDR	ENCE OF OCARBO OCARBO	NS (LPH)	MODL WA' (check	TER	COMMENTS						
-				LPH	ODOR	NONE	YES	NÔ							
3.	179129	4/25/02 1428	5-10-02,1047						1026/650-6	5-3					
4.	179130		5-10-02, 10 51						¥						
5.	179131	1442	5-10-02 1053						1025/6501-	7					
16.	179132	1444	, <u> </u>							2					
17.	179133		5-10-02, 11:06]						3					
48.	179134	4/26/02 0905	5-10-02 12.47						1093/6584-	1					
49.	179135	0914	+12.54							4					
50.	179136	093	05-10-02 1305				-			Z					
51.	179137	093								3					
52.	179138	094							¥	5					
53.	179139	1018	5-10-02, 1322		1		1		1031/6600-	2					
54.	179140	/024		1	_		1		171	NMA					
55.	179141	1030	while a summer subscription of the subscriptio	1.	1					4					
56.	179142		3 5-10-02,1343		1		1		1 V	1					
57.	179143		5-10-02, 11:36		•			1.	276/829X-	2					
	179144-	1147		1	- <u> </u>					3					
	179150	1150		1	1					4					
<u>β0.</u>	179151		5-10-02, 11:54	<u>+</u>		f		1							
61.	179152		45-14.02,09:42	†	1	-			1004/6505-						
62.	179153	082		+		-		·	1	5					
63.	179154	082		+	<u>+</u>			1		53					
64,	179155	090		-	1			1		2					
65.	179156		5-14-02 10:21	<u> </u>					T V	4					
66.	179157		0 05-14-02 0919	,†		1			1083/6570-	4					
67.	179158					1		·	V===/1==10=	1-1					
68.	179159	Of the second se		-				·	+	2					
69.	179160	614				+	-			3					
70.	179161		0 05-14-02,1025					+	1032/6610-						
71.	17.9162	110					-	<u> </u>	1054 0010-						
72.	179163	111						<u> </u>		4					
73.	179164	111		+				+	╉──┿╋───╼	3					
74.	179165		······································												
75.	179166	112		+				+	+	5					
	and the second		6 05-14-02 11:03	┉┼╌╌╌╼╍				╉╍╌──	+ 110	6					
76.	179167		205-14-02,11:06					 	1120/6643-	<u> </u> Z					
<u>77.</u>	179168	12						<u> </u>		234					
78.	179169	123	the second s	-			_	+	· [-14					
79.	179170		1205-14-02 11:32	· 		-			¥	11					
٩٥.	179171		20 5-14-02-0844						1034/6710-	NWA					
<u></u>	179172		5 0912	_					· · · · · · · · · · · · · · · · · · ·	3					
	179173		2 0851							2					
	179174	134	10 1 0855						<u> </u>						
84_	179175	Y 142	3 5-14-02, 0814		}				1035/6715-	¥ -					

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 29R.1 6/13/0J

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

Г	DATE	SAMPLE		۲ ۲				· · · · ·			1		
	ANALYZED	NAME	BTEX. ua	BENZ, ug	TOL. uq	EtBENZ, ug	mpXYL, ug	oXYL, ug	C11, C13, &C15, ug	UNDEC, ug	TRIDEC, ug	PENTADEC, ug	TMBs, ug
H	ANALIZED	MDL=		0.03	0,02	0.01	0.01	0.01		0.02	0.01	0.02	
ŀ	5/21/2002	179125	0.10	nd	0.08	nd	0.02	nd	0.05	0.04	0.01	bdl	0.00
F	5/21/2002	179126	0.00	nd	ind	nd	bdl	nd	0.04	0.03	0.02	bdl	0.00
ŀ	5/21/2002	179127	0.09	nd	0.05	nd	0.02	0.01	0.04	0.04	bdl	bdl	0.00
ŀ	5/21/2002	179128	0.07	nd	0.05	nd	0.02	nd	0.08	0.04	0.01	0.03	0.00
ŀ	5/21/2002	179129	0.02	nd	nd	nd	0.02	nd	0.06	0.03	0.03	bdl	0.00
ŀ	5/21/2002	179130	0.21	nd	0.15	nd	0.04	0.02	0.15	0.07	0.03	0.05	0.00
ŀ	5/21/2002	179131	nd	nd	nd	nd	nd	nd	0.07	0.04	0.01	0.02	nd
ŀ	5/21/2002	179132	nd	nd	nd	nd	nd	nd	0.05	bdl	0.02	0.02	0.00
ŀ	5/21/2002	179133	0.08	nd	0.08	nd	nd nd	nd	0.19	0.04	0.09		nd
ł	5/21/2002	179134	nd	nd	nd	nd	nd	nd	0.05	0.03	0.02		0.00
ľ	5/21/2002	179135	0.11	nd	0.10	nd	0.01	nd	0.16	0.04	0.04		0.00
F	5/21/2002	179136	0.09	nd	0.09	nd	nd	nd	0.04	0.02	0.01	bdl	
ſ	5/21/2002	179139	nd	nd	nd	nd			0.68	0.07	<u>0.10</u>		0.00
T T	5/21/2002	179142	0.11	nd	0.07	nd	0.03		0.25	0.12	0.07	0.06	0.00
Ī	5/21/2002	179143	nd	nd	ind	nd	nd		0.07	0.03	0.02	the second se	
f	5/21/2002	179144	0.17	nd	0.09	0.02	0.05		0.08	0.04	0.01	0.02	0.00
ľ	5/21/2002	179150	0.40	nd	0.19	0.04	0.13		0.07	0.05	and the second sec	bdl	
	5/21/2002	179151	nd	nd	nd	nd			0.03	0.03	bdl		
10	5/28/2002	179152	0.09	nd	0.05	nd			0.19				0.08
12	5/28/2002	179153	0.13		0.08	nd			0.13				0.13
	5/28/2002	179154	nd		nd	nd			0.11	0.02		0.07	0.00
2	5/28/2002	179155	nd		nd	nd nd							0.00
100	5/28/2002	179156	nd		nd	nd	· · · · · · · · · · · · · · · · · · ·			0.15		0.06	
	5/28/2002	179157	nd	······	nd	nd				0.04			a second s
[5/28/2002	179158	0.01	nd	nd	nd			1	0.05		0.05	
[5/28/2002	179159	0.00		nd					0.03		0.03	
{	5/28/2002	179160	nd	the second se	nd	nd					0.02		
	5/28/2002	179161	0.00						and the second s				
	5/28/2002	179162	0.01	nd									
	5/28/2002	179163	0.01	nd									
	5/28/2002	179164	0.02										
[5/28/2002	179165	nd		nd								
	5/28/2002	179166	0.00						and the second se			bdl	
	5/28/2002	179167	nd										
	5/28/2002	179168	0.04			nd							
	5/28/2002	179169	nd										
	5/28/2002	179170	0.03		<u></u>								
	5/28/2002	179171	nd	nd	nd	nd	nc nc	l nd	0.04	0.03	0.02	bd	0.00

No mdl is available for summed combinations of analytes. In summed

columns (eg., BTEX), the reported values should be considered

ESTIMATED if any of the individual compounds were reported as bdl.

CCT_CCXrpt

5/30/2002 Page: 2 of 12

.

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

Г	SAMPLE	······································											
	NAME	124TMB, ug	135TMB, ug	ct12DCE, ug	t12DCE, ug		NAPH&2-MN, ug						
	MDL=	0.03	0.02		0.14	0.03		0.01	0.02	0.04	0.04	0.02	0.02
	179125	bdl	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
-	179126	bdl	nd	nd	nd	nd	0.00	nd	bdi	nd	nd	nd	nd
F	179127	nd	bdl	nd	nd	nđ	0.00	nď	bdl		nd	nd	nd
F	179128	bdl	nd	nd	nd	nd	0.00	nd	bdl		nd	nd	nd
	179129	bdl			nd		0.00	nd	bdi			nd	nd
	179130	bdl		the second se	nd		0.00	nd	bdl				nd
	179131	nd		the second se	nd		0.00	nd	bdl	nd	{	nd	nd
Г	179132	bdl					0.00			nd		bdl	nd
	179133	nd		nd			nd	nd	and the second second	nd	4	nd	nd
	179134	bdl	the second se		nd	the second s	0.00	the second se	bdl	nd	the second s	nd	nd
Г	179135	bdl		nd			0.02	0.02	bdl	nd		nd	nd
Γ	179136	bdl		<u> nd</u>			0.00		bdl	nd		nd	nd
	179139	bdl					0.00	nd	bdl	nd		nd	nd
	179142	bdl		and the second			<u>, 0.01</u>	0.01	bdl	nd		nd	nd
Ľ	179143	nd					0.00	nd	bdi	nd		nd	
	179144	bdl		the second se	the second se		0.00	nd	bdl			nd	The second s
	179150	bdl		nd	and the second se		0.02	0.02	bdl	nd	the second s	bdl	nd
	179151	bd	nd	the second s		and the second se		nd				bdl	
	179152	0.06	the second s	A construction of the second s		the second s		0.05	0.06	the second se		nd	
L	179153	0.09						the second s	and the second se	nd nd		the second se	nd
	179154	bd					0.04			nd		the second s	nd
λ	179155	bdl		the second se			0.00						
4	179156	bd		the second se						the second se			
L	179157	bd		the second s									
Ļ	179158	. bd	And the second s				a second s						
Ļ	179159	bd		and the second se								the second se	
+	179160	bd	and the second se					0 nd 0.05					
┟	179161	nd		the second se				the second s					
Ļ	179162	bd					the second se						
-	179163	bd							and the second se			2	
F	179164	bd		the second se									
-	179165	bd			the second s				the second se				
F	179166	bd	the second se										
Ļ	179167	bd	the second se	the second se		· · · · · · · · · · · · · · · · · · ·		and the second division of the second divisio					· · · · · · · · · · · · · · · · · · ·
Ļ	179168	bd									the second s		
4	179169	no			and the second se								
Ļ	179170	bd								and the second se		the second se	
	179171	bd	l bd	l no	i nd	nd	0.08	0.03	0.05	i nd	l nd	nd	nd

No mdl is available for summed combinations of analytes. In summed

555 1084

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

Г	SAMPLE				······································			
	NAME	TCE, ua	OCT. ua	PCE, ua	14DCB. uq	CHCI3, ua	CCI4, ua	CIBENZ, ug
F	MDL=	0.02	0.02	0.01	0.01	0.03	0.03	0.01
F	179125	0.03	nd	1.24	nd	nd	nd	nd
F	179126	nd	nd	0.52	nd	nd	nd	nd
F	179127	nd	nd	0.55	nd	nd	nd	nd
F	179128	nd	nd	nd	nd	nd	nd	nd
t	179129	nd	nd	0.01	nd	nd	nd	nd
ľ	179130	nd	0.12	0.02	nd	nđ	nd	nd
Ī	179131	nd	nd	nd	nd	nd	nd	nd
f	179132	nd	nd	0.75	nd	nd	nd	nd
Ī	179133	nd	nd	0.18	nd	nd	nd	nd
Γ	179134	nd	nd	0.33	nd	nd	nd	nd
Γ	179135	nd	nd	0.38	bdl	nd	nd	nd
[179136	nd	nd	0.65	nd	0.05	nd	nd
[179139	nd	nd	0.14	nd	nd nd	nd	nd
[179142	nd	0.12	0.42	nd	nd	nd	nd
- [179143	0.41	nd	0.25	nd	nd	nd	nd
ſ	179144	0.84	0.13	0.21	nd	nd	nd	nd
	179150	2.50	0.14	0.18	bdl	nd	nd	nd
	179151	0.71	nd	0.32	nd	nd	nd	nd
6	179152	nd	nd	0.06	0.02	nd	nd	nd
5	179153	nd	nd	0.03	nd	0.08	nd	nd
	179154	nd	nd	nd	nd	nd	nd	nd
<u>ò</u>	179155	nd	nd	nd	nd	nd	bdl	nd
	179156	nd	nd	nd	nd	nd	nd	nd
ন্হ	179157	nd	nd	0.38	nd	nd	nd	nd
	179158	nd	nd	0.56	nd	<u>, nd</u>	nd	nd
L	179159	nd	nd	0.60	nd	nd	nd	nd
L	179160	nd	nd	0.37	nd	nd	nd	nd
	179161	nd	nd	nd	nd	nd	nd	nd
	179162	nd	nd	bdl	nd	nd	nd	nd
	179163	nd	nd	nd	nd	nd	nd	nd
E	179164	nd	nd	0.01	nd	nd	nd	nd
Ĺ	179165	nd	nd	nd	nd	nd	nd	nd
[179166	nd	пd	nd	nd	nd	nd	nd
Γ	179167	nd	nd	nd	nd	nd	nd	nd
	179168	nd	nd	nd	nd	nd	bdl	nd
Γ	179169	nd	nd	nd	nd	nd	nd	nd
Г	179170	nd	nd	nd	nd	nd	пd	nd
	179171	nd	nd	nd	nd	nd	nd	nd

5/30/2002 Page: 10 of 12 No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

ANNEX C DSS Site 1084 Soil Sample Data Validation Results

CONTRACT LABORATORY ANALVER DECHEST AND CHAIN OF CLISTODY

							CONTR									0
int	emai Lab			A	NAL	YS	SIS REQUE	ST A	ND (CHAIN	OF C	USTO)Y	1 •	Page <u>1</u> 0	
Ba	tch No.					•	SMO Use	•				•		AR/COC	605	5649
De	pt. No./Mail Stop;	6135/1089		Date Samp	les Ship	ped	1: 8/22/02		Project/	Task No.:	······································	_7223.02	.03.02	- Weste Characterisation	her.	· 1
Pr	ject/Task Manager:	Mike Sanders Collin	`	Carrier/Wa			11714		SMO A	uthorizatio	n: lan 1	wat		-Send preliminary/copy re	purt to:	
Pr		DSS soil sampling		Lab Contac	z:	E	die Kent 803-556-81	71	Contraç	t#:_PO 2	1671			`		ļ
Re	cord Center Code:	ER/1295/DSS/DAT		Lab Destina	ation:	G	EL		1	a rate	adad &	ratto c	ndu	Released by COC No.:_		
ျပ	gbook Ref. No.:	ER 090		SMO Contac	t/Phone:	P	am Puissant/505-84	4-3185			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Validation Required	· .	
Se	rvice Order No.	CF032-02		Send Report	to SMO:	W	endy Palencia/505-	844-3132	2					B渊 To:Sandia National Labs (Ac	counts Payat	ile)
L	ocation	Tech Area				1. i								P.O, Box 5800 MS 0154		ļ
B	ilding 6505	Room]		•	Reference	e LOV(a	availal	ble at S	MO)			Albuquerque, NM 87185-0	154	
		ER Sample ID o	x	Pump	ER Sit	e	Date/Time(hr)	Sample	Co	ntainer	Preserv-	Collection	Sample	Parameter & Metho	bd	Lab Sample
s	mple NoFraction	Sample Location D	etail	Depth (ft)	No	<u>ال</u>	Collected	Matrix	Type	Volume	ative	Method	Туре	Requested		ID
╸	059673-001	6505/1084-DF1-BH1-	7 -S	3'		8	20-02/0830	S	AS	4oz	4c	G	SA	VOC (8260B)	<u> </u>	
•	059674-001	6505/1084-DF1-BH1-	s-s	8	P.		0845	s	AS	4oz	4c	- G	SA	VOC (8260B)		
•,	059673-002	6505/1084-DF1-BH1-	<u>3-s</u>	3'	\square		0835	S	G	500ml	4c	G	SA	see below for parameter	<u>+</u>	
ا∙	059674-002	6505/1084-DF1-BH1-	8-s	8'			0850	s	G	500mi	4c	G	SA	see below for parameter		
∘₊∟	059675-001	6505/1084-DF1-BH2-	3-DU	3'	\square		0935	S	AS	4oz	4c	G	SA	VOC (8260B)		
,	059675-002	6505/1084-DF1-BH2-	3-DU	3'	Ш	:	0940	s	G	500ml	4c	G	ŞĄ	see below for parameter	,	
▶	059676-001	6505/1084-DF1-BH2-	<u>3-s</u>	3'	ЦЦ		0935	s	AS	4oz	4c	G	SA	VOC (8260B)		
•	059677-001	6505/1084-DF1-BH2-	8 -s	8'			0950	s	AS	4oz	4c	G	SA	VOC (8260B)		
ᡧ	059676-002	6505/1084-DF1-BH2-	<u>3s</u>	3'			0940	s	G	500ml	4c	G	SA	see below for parameter		
	059677-002	6505/1084-DF1-BH2-	_	3'	14	4	0955	s	G	500ml	4c	G	SA	see below for parameter		
	MMA		Ref.				ample Tracking		Smo U	<u></u>	Special ins				Abnorma	
	imple Disposal	Return to Client		Disposal by I		- i	ate Entered(mm/dd	/yy)	œla	9/02 3	1 –	2 Yes 🛛			Conditio	
	urnaround Tim		Norm		Rush	E	intered by:		AC.	Y	Level C Pa		Ve:		Receipt	
R	eturn Samples By:			of Rush:	·		· · · · · · · · · · · · · · · · · · ·	QC inits		<u>BK</u>	*Send repo		X	SVOC (8270C)		
	<i>.</i> _	Name	SI	gnature	Init	_	Company/Organ			llular	Mike San			PCBs(8082)Cr6+(7197)		
	ample	J.Lee	$\mathcal{L}\mathcal{H}$	224	20		Veston/6135/505-		9		Dept6135			HE(8330	· ·	Lab Use
· 17	eam	W.Gibson		ample			ADM/6135/505-84	4			Phone/50	5-284/2478	3	Total Cyanide(9010)	:	
IN	embers	G.Quintana	yelle	finter	4.27	P S	shaw/6135/505-28	<u>34-3309</u>	_		1			RCRA Metals(6020,7000		
					<u> </u>	_	· · · · · · · · · · · · · · · · · · ·				1 ·			7471)		•
Ļ					<u> </u>				1.2.2		A	t as separa		Gross alpha/beta (900)		
	Relinquished by	1130,29		Org. /. 13			22-02 Time/01-		the second se	quished b	У	·····	Org,	Date	Tim	
	Received by	the dyalger	27	Org. 2.2-	Date	σ	122/02 Time 102	2	÷	eived by			Org.	Date	Time	
	Received by	and deal of	<u> </u>	Org. 3/2 Org.	<u>J Date</u> Date		Doloo Time 105	0		quished b eived by	<u>y</u>		Org. Org.	Date Date	 Time	
	Relinquished by			Org.	Date		Time			quished b			Org.	Date	 Tim	The second s
-	Received by			Org.	Date		Time			eived by			Org.	Date	Time	
<u> </u>									10			· · · · · · · · · · · · · · · · · · ·	~.8.			

OFF-SITE LABORATORY Analysis Request And Chain Of Custody (Continuation)

AR/COC-6056 7220.02.03.02 Project Name: Project/Task Manger: Project/Task No.: Location Tech Area **Reference LOV (available at SMO)** Building Room Lab use Lab Sample Sample No-ER Sample ID or Beginning ER Date/Time (hr) Sample Container Preserv-Collection Sample Parameter & Method D Depth (ft) Site No Requested Fraction Sample Location detail Collected Matrix Type Volume ative Method Type 6505/1084-DF1-BH3-3 VOC (8260B) 059678-001 7 S AS 4oz 4c G SA 8-20-02 INSE 8' 059679-001 6505/1084-DF1-BH3-8-S S AS G SA VOC (8260B) 4oz 4c los A 3' 6505/1084-DF1-BH3-3-S S G 500ml G see below for parameter 059678-002 4c SA loin 8 6505/1084-DF1-BH3- 75 S G 500ml 4c G SA see below for parameter 059679-002 8. 025 VOC (8260B) 059680-001 6505/1084-DF1-BH3-TB DIW G 3x40ml HCL G ΤB 1030 Abnormal Conditions on Receip) Sector Sector Recipientinitiels

Page 2 of

RECORDS CENTER CODE: ER/1295/DSS/DAT

SMO ANALYTICAL DATA ROUTING FORM PROJECT/TASK: 7223_02.03.02 PROJECT NAME: DSS Soil Sampling ORG/MS/CF0#: 6133/1089/CF032-02 SNL TASK LEADER: Collins SAMPLE SHIP DATE: 8100 SMO PROJECT LEAD: EDD PRELIM DATE ARCOC LAB FINAL DATE EDD ON Q BY LAB ID 605649 Х GEL 65936A 9/27/2002 Х JAC 605650 65936B 9/27/2002 Х Х JAC 605651 65936C 9/27/2002 Х Х JAC 9/27/2002 Х Х JAC 605655 65936D et als Alson Made March Carlos NAME DATE CORRECTIONS REQUESTED/RECEIVED: requisited 10.07-02 rec'd 10.09.02 4986 PROBLEM #: **REVIEW COMPLETED BY/DATE:** ID. 10.07-02 FINAL TRANSMITTED TO/DATE: 10.07-02 SENT TO VALIDATION BY/DATE: 10/14/02 **RUSH VALIDATION REQUIRED EST. TAT:** VALIDATION COMPLETED BY/DATE: ÅΣ 10.23.02 TO ERDMS OR RECORDS CENTER BY/DATE: Kavanaul 11/4/02 COMMENTS: NOV 2 5 2002

Validated Dy: & Mal

	000-002 85007NDa=3p7-EH1-12-8	000-002 0500/f028-SP2-811-7-8	387-002 858871029-897-8411-19-S	005-002 0510/1028-5P1-8H1-14-8	004-002 00101002-0P1-BH1-17-5	2003-002 0010/1022-097-0H1-12-8	1002-002 631911022-OF1-811-7-5	551-002 001001002-00F1-8H1-2+5	579-002 05051084-01F1-8H3-8-5	1078-002 00051188-0;F1;BH3-5-8	777-022 4508/1084-DF1-2942-5-8	878-002 0008108-0F1-845-8-5	1075-b02 8005/1084-071-1842-5-04	1074-02 65051064-061-0H1-0-S	50073402 000611084-0F1-18H15-3-8		50039-007 05007028-8P2-EB	10030-000 8000/1023-0P3-EB	54035-002 056071023-052-285	524-403 55601123-592-13	528-001 000071028-0P2-03	1080-001 058071021-8P2-8H1-18 P2	1005-001 001071022-88-1-8H1-T0 P2	253880-001 6500/1084-DF1-813-73 P2	All VQC(#256) corepounde BVDC 117-61-7 (bis(2-othymexyl)ehtheuse)
								 		L						-		-			<u> </u>		-	 	PCB
			~ 				ļ	-		┡						 		 	 	-				┞	11097-89-1 (grocior=1254)
_	E	-		5	٤	E	E	٤	E	E	٤	vtn	E	E	٤	-		-			-	-	┡─	-	475-45-8 (tetryf)
	UJ, A	Ĕ	MY Second	W.A	₩,×	2.3	Ę,	5	E X	2	μ,×	>	nt v	Ę	W: ^		-	+	-						Mistain .
_	zv'r	۲. ۲	2V T	247		2VT	24.4	2	24.1-	2	1.2	241	24.7	24.2	7.N2	┝─		-		-	┢╸	┢	$\left\{ - \right\}$	-	7440-39-3 (bertum)
	2 1.85	N	1 1 E	2	2 1. 2	1.18	N		2	-	2 J. 82	7	2 ,84	2	2 1.03	┢─	-			┢		-	\square	-	7440-43-9 (cadmhim)
	5				- -	Ē	-	-		4	-	-	-	-		┢─	1,8,84	┢	i i		┢╴	┢			7440-47-3 (chromium)
	1. 1. 1.	E.B.	26 7	5- 18- 18-	15. 18	<u>د</u> 8	5.88	E	E	E	<u>ب</u> ۲	5	E.B	1.00	E,W		Ë	\vdash	╞─	┢	T				7782-49-2 (selenium)
		-					Ē			Ē				Ē			£,88								7440-22-4 (ailver)
																	E.83								7439-97-6 (merouty)
																							·		General Chamistry
_					_					÷.	ر. 1	8 .		1 ,1											5955-70-0 (lotal cyanida)
																		표							18540-29-9 (hexavalant chromium)
÷.,						Ŀ	L																		Radiochemistry
	775	772 0	1/2	1/2	24	2	2	¥.	5 N	ž	J.S.	1,72.0	7.42	245	1.12				•						70543-50-0 (gross alights)
	0-00-00	0-99960	0-10990	0.00		- CEREM	9-28-000	D-Lagon	0-SLONG	9-11-0	199817-0	169878-0	100076-0	39674-0	D-C/allo		L	L		L	ļ				
	02 9990	02 6580	02 0000	62 66 10	R2 8610	12 98 10	17. 18. 18. 18.				02 65 05	02 8500	12 0590	02 9605	02 0595										
	110214-555	110218-6P	H028-85	1028-SF	1022-84	MOD2-SF	1022-01	192.0	1084-04	104-01	NOB4-DI	1064-04	MON4-01	ND64-DP	1084-06										
	000000-002 00001123-5272-0H1+12-S-RE	0000000 100000000000000000000000000000	167-002 00001023-301-8H1-19-S-RE	800-002 00101020-SP1-811-14-8-RE	184-082 85101082-851-841-17-8-RE	1000-002 (0404)33-394-844-12-6-4E	SUBDE OUZ DEVOYOLE-OFT-EN 1-3-5-RE	300001-002 8810102_0F1-8811-2-8-18	1999775-002 0805/1084-0F1-2H5-8-B-RE	199571-002 980571084.0F1-845-5-5-RE	089617-002 (\$8059/084-DF1-84Q-8-8-RE	9675-012 65001064-DF1-3912-5-6-RE	000076-002 00001004-0F1-042-3-0/L-RE	059074-002 96001044-0F1-3H1-8-8 RE	031673-002 656011084-DF1-8115-3-5-RE										
	16-RE	6-72E	H8.RE	HORE	-S-RE	A CAR	& RE	.		4			DU-RE		\$RE										
																							·	ſ	
	UJ. HT	UJ, HT	W, HT	£.H	۳.H	UJ, HT	W, MT	5.15	ш,нт	Щ, H	W, HT	UJ, HT	Ш, нт	UJ, HT	UU, HT									-	All HE (8330) compounds

Semple Findinge Summary

Defa: 10/23/02

İ

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE:	October	23, 2002
-------	---------	----------

TO: File

FROM: Linda That

SUBJECT: Radiochemical Data Review and Validation - SNL Site: DSS soil sampling ARCOC 605649 605650 605651 605655 GEL SDG # 65936 and 65944 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with approved procedures using method EPA 900 (Gross Alpha/Beta). Problems were identified with the data package that resulted in the gualification of data.

Batch 198983 soils

The MS/MSD %R for gross alpha (73/68%) was < QC acceptance criteria (75– 125%). All associated sample results were > MDA and will be qualified "J, A2".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: All samples were analyzed within the prescribed holding times and properly preserved.

Calibration

All Analyses: The case narrative stated the instruments used were properly calibrated.

Blanks

No target analytes were detected in the method blank at concentrations > the associated MDAs. The equipment blank (65944-012) had a nonvolatile beta value > MDA. However, all associated sample results were > 5X the EB value; thus no data will be qualified.

Matrix Spike (MS) Analysis

The MS/MSD analyses met all QC acceptance criteria except as mentioned above in the summary section and as follows:

Batch 198970 water

The MS/MSD was performed on a sample of similar matrix from another SNL SDG. No data will be gualified as a result.

Laboratory Control Sample (LCS) Analysis

The LCS analyses met all QC acceptance criteria.

Replicates

The replicate analyses met all QC acceptance criteria.

Tracer/Carrier Recoveries

No tracer/carrier required.

Negative Bias

All sample results met negative bias QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

Other QC

A field duplicate and equipment blank (EB) was submitted on the ARCOC. There are no "required" validation procedures for assessing a file duplicate. No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE: 10/18/02

TO: File

FROM: Linda Thai

SUBJECT: Organic Data Review and Validation - SNL Site: DSS soil sampling ARCOC # 605649, 605650, 605651, 605655 GEL SDG # 65936 and 65944 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 8260A/B (VOC), 8270C (SVOC), 8082 (PCBs) and 8330 (HEs). Problems were identified with the data package that resulted in the qualification of data.

VOC - Batch 197301 water

No MS/MSD or replicate sample was performed for the batch. All associated sample results will have the "P2" descriptor added due to lack of precision information.

SVOC - Batch 196776 water

Bis (2-ethylhexyl) phthalate was detected in the method blank (MB) at a value > DL but < RL. Sample 65944-006 (equipment blank) had a bis(2-ethylhexyl) phthalate value > DL, < RL and < 10X the MB value and will be qualified "U, B" at the RL.

PCB - Batch196833 soil

Sample 65936-028 had an aroclor 1254 value > DL but < RL. The RPD (34%) between the primary and confirmation column was > QC acceptance criteria (25%). The highest detected result is reported and will be qualified "J".

HE - Batch 196863 soil

The LCS %R for tetryl (51%) was < QC acceptance criteria (65-124%). All associated samples were non-detect for tetryl and will be gualified "UJ, A".

HE -- Batch 201462 soil

Samples 65936 –016 thru -030 required reanalysis due to a QC failure. Both sets of data are on the Certificate of Analysis and both sets of data will be validated. The reanalysis was out of holding time. The reanalysis calibration, sample and QC data are provided. All associated sample results were non-detect and will be qualified "UJ, HT".

HE - Batch 201060 water

Sample 65944-008 (equipment blank) was reanalyzed at more than 2X the method specified holding time. Both sets of data are on the Certificate of Analysis and both sets of data will be validated. The reanalysis calibration, sample and QC data are provided. The associated sample results were non-detect and will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analysis</u>: The samples were properly preserved and analyzed within the method prescribed holding time except as mentioned above in the summary section.

<u>VOC</u> – Batch 197301 water: It should be noted that, according to the sample receipt and review form, sample 65944-001 was received with a little headspace. It is not known what affect this will have on the data; thus no data will be qualified.

Calibration

<u>All Analysis</u>: All initial and continuing calibration acceptance criteria were met with the exception of the following:

VOC-Batch 196955 soil

The CCV had a %D >20% but < 40% with a positive bias for dibromochloromethane (23%). The associated sample results were non-detect for dibromochloromethane and are therefore unaffected by a positive bias. No data will be qualified.

VOC-Batch 197301 water

The CCV had a %D >20% but < 40% with a negative bias for cis-1,3-dichloropropene (24%) and trans-1,3-dichlorpropene (25%). The associated sample results were non-detect for cis-1,3-dichloropropene and trans-1,3-dichloropropene and no data will be gualified.

SVOC – Batch 196839 soil

The initial calibration had a correlation coefficient >0.9 but <0.99 for 2-nitrophenol and 4chlorophenyl-phenylether. The associated sample results were non-detect and no data will be qualified.

The CCV had a %D > 20% but < 40% with a negative bias for 3,3'-dichlorobenzidine (23%) and 4-chloroaniline (26%). The associated sample results were non-detect and no data will be qualified.

The CCV had a %D > 20% but < 40% with a positive bias for several compounds (see DV worksheet). The associated sample results were non-detect and therefore unaffected by a positive bias; thus no data will be qualified.

SVOC - Batch 196776 water

The CCV had a %D > 20% but < 40% with a negative bias for 2,4-dimethylphenol (25%). The associated sample results were non-detect and no data will be qualified.

<u>Blanks</u>

<u>All Analysis</u>: All method blank, equipment blank and trip blank acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC

Trip blanks 65944-003 and -005 had toluene values > DL but < RL. The associated sample results were non-detect and no data will be qualified.

Surrogates

All Analysis: All surrogate acceptance criteria were met.

Internal Standards (ISs)

All Analysis: All internal standard acceptance criteria were met.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

<u>All Analysis</u>: All MS/MSD acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC-Soils

It should be noted that the sample used for the MS/MSD was of similar matrix from SNL SDG 65745. No data will be qualified as a result.

SVOC - Batch 196839 soil and 196776 water

Several compounds (see DV worksheet) had $\Re R < QC$ acceptance criteria (75 – 125%). Using professional judgment, no data will be qualified.

Several compounds (soils only - see DV worksheet) had RPDs > QC acceptance criteria (20%). Using professional judgment, no data will be gualified.

HE - Batch 201462 soil

It should be noted that the sample used for the MS/MSD was of similar matrix from SNL SDG 65475. No data will be qualified as a result.

<u>HE</u> – Batch 196860 and 201060 water No MS/MSD was extracted with these batches. An LCS/LCSD was extracted and passed all QC acceptance criteria for accuracy and precision.

Laboratory Control Samples (LCS/LCSD) Analysis

<u>All Analysis</u>: The LCS acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC - Soils and Waters

It should be noted that no compound was associated with internal standard 1,4dichlorobenzene-d4. No data will be qualified as a result.

VOC - Waters

The LCS acceptance criteria were met by the successful analysis of a second source CCV.

SVOC - Soils and Waters

It should be noted that no compound was associated with internal standard perylene-d12. No data will be qualified as a result.

HE - Batch 201462 soil

The %R for 4-amino-2,6-dinitrotoluene (74%) was < QC acceptance recovery (79 – 130%). The MS/MSD %R for 4-amino-2,6-dinitrotoluene was in criteria, and using professional judgment no data will be qualified.

HE - Batch 196860 and 201060 water

An LCS/LCSD was extracted and passed all QC acceptance criteria for accuracy and precision

Detection Limits/Dilutions

All Analysis: All detection limits were properly reported. Samples were not diluted.

SVOC – Batch 196776 water It should be noted that 500ml was used for the MS/MSD extraction (DF=2X).

Confirmation Analyses

VOC and SVOC: No confirmation analyses required.

<u>PCB</u>: All confirmation acceptance criteria were met except as mentioned above in the summary section.

HE: The sample results were non-detect and therefore no confirmation analysis was required.

Other QC

<u>VOC</u>: A trip blank, equipment blank and a field duplicate were submitted on the ARCOC. There are no "required" validation procedures for a field duplicate.

<u>SVOC, PCB and HE</u>: An equipment blank and field duplicate was submitted on the ARCOC. There are no "required" validation procedures for a field duplicate. No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE: 10/23/02

TO: File

FROM: Linda Thal

SUBJECT: Inorganic Data Review and Validation - SNL Site: DSS soil sampling ARCOC # 605649, 605650, 505651, 605655 GEL SDG # 65936 and 65944 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 6010 (ICP-AES metals), SW-846 7470/1 (Hg), SW-846 9012A (total CN) and SW-846 7196A (hexavalent chromium).

Problems were identified with the data package that resulted in the qualification of data.

ICP-AES -- Metals soils

Cadmium was detected in the continuing calibration blank (CCB) at a value > DL but < RL. All associated sample results for cadmium (excluding sample 65936-024 and – 029) had cadmium values < 5X the CCB value and will be qualified "J, B3".

Selenium was detected in the CCB at a negative value, with an absolute value > DL but < RL. Sample 65936-020, -25, -27, -28 and --30 had selenium values > DL but < 5X the CCB value and will be qualified "J, B3". All remaining samples had selenium values that were non-detect and will be qualified "UJ, B3"

The MS %R for barium (134%) was > QC acceptance criteria (75-125%). All associated sample results were > RL and will be gualified "J, A2".

The replicate RPD for chromium (46%) was > QC acceptance criteria (20%). All associated sample values for chromium were > 5X RL and will be qualified "J".

ICP-AES - Metals water

Barium was detected in the method blank (MB), and chromium in the MB and CCB at values greater than the DL but < RL. The sample results were < 5X the blank values and will be gualified "J, B" for barium and "J, B, B3" for chromium.

Silver was detected in the initial calibration blank (ICB) at a negative value, with an absolute value > DL but < RL. The sample result was non-detect and will be qualified "UJ, B3".

<u>HG</u> – water

Mercury was detected in the CCB at a negative value, with an absolute value > DL but < RL. The sample result was non-detect and will be qualified "UJ, B3".

Total Cyanide - soil

The MB had a value > DL but < RL. Samples 65936-017, -019, -020, -021 and --022 results were > DL but < 5X the MB value and will be qualified "J, B".

Hexavalent Chromium - water

Sample 65944-010 (equipment blank) was run after the method specified hold time had expired but within 2X the method specified hold time. The sample result was non-detect and will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: The samples were analyzed within the prescribed holding time and properly preserved except as mentioned above in the summary section.

Calibration

All Analyses: The initial and continuing calibration data met QC acceptance criteria.

<u>Blanks</u>

All Analyses: All blank criteria were met except as mentioned above in the summary section and as follows:

ICP-AES - Metals soils

Chromium and barium were detected in the EB (65944-011) at a value > DL but < RL. All associated sample results were > 5X the EB value and will not be qualified.

Cadmium was detected in the CCB at a value > DL but < RL. Sample 65936-024 and -029 had cadmium values > 5X the CCB value and will not be gualified.

ICP-AES - Metals water

Lead, silver and selenium were detected in one or more of the blanks at values > DL but < RL. The sample results for lead and selenium were non-detect and will not be qualified. The sample result for silver was non-detect and is qualified due to a negative value observed in the ICB. The silver result will not be further qualified.

<u>Total Cyanide - soil</u>

The MB had a value > DL but < RL. Samples 65936-016, -018, -023 through -030 results were non-detect and will not be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analyses

<u>All Analyses</u>: The LCS met QC acceptance criteria. No LCSD was performed. No data will be qualified as a result.

Matrix Spike (MS) Analysis

<u>All Analyses</u>: The MS met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES - Metals water

The sample used for the MS was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

<u>HG</u> – soils

The sample used for the MS was of similar matrix from SNL SDG 65745. No data will be qualified as a result.

HG - water

The sample used for the MS was of similar matrix from SNL SDG 65748. No data will be qualified as a result.

Total Cyanide - water

The sample used for the MS was of similar matrix from SNL SDG 66197. No data will be qualified as a result.

Replicate Analysis

<u>All Analyses</u>: The replicate analysis met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES - Metals water

The sample used for the replicate was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

<u>HG</u> – soils

The sample used for the replicate was of similar matrix from SNL SDG 65745. No data will be qualified as a result.

HG - water

The sample used for the replicate was of similar matrix from SNL SDG 65748. No data will be qualified as a result.

Total Cyanide - water

The sample used for the replicate was of similar matrix from SNL SDG 86197. No data will be qualified as a result.

ICP Interference Check Sample (ICS)

ICP-AES soils and water. The ICS-AB met QC acceptance criteria.

All Other Analyses: No ICS required.

ICP Serial Dilution

ICP-AES soils and water: The senal dilutions met QC acceptance criteria except as follows:

ICP-AES - Metals water

The sample used for the serial dilution was of similar matrix from SNL SDG 66619. No data will be qualified as a result.

All Other Analyses: No serial dilutions required.

Detection Limits/Dilutions

All Analyses: All detection limits were properly reported.

<u>ICP-AES soils</u>: All samples were diluted 2X. Sample 65936-016 and -019 were diluted 5X for selenium.

All Other Analyses: No dilutions were performed.

Other QC

<u>All Analyses</u>: A field duplicate and equipment blank was submitted on the ARCOC. No field blank was submitted on the ARCOC.

The ARCOC requests metals analysis by method SW-846 6020 (ICP-MS).

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Data Validation Summary

Site/Project: 055 5011 Sampling Project/Task #: 7223.02 03.02	# of Samples: 30/12 Matrix: Soils / Aqueous
AR/COC #: 605649, -50, -81, -55	Laboratory Sample IDs: $65936 - 001 + 10 - 030$
Laboratory: GAL	65944 - 001 thru 012
Laboratory Report #: 65936	

		·			Analy	/sis		· · · · ·		
QC Element		Org	anics			Inor	ganics	· · ·		Hexanater
	VOC	SVOC	Pesticide/ PCB	HPLC (HE)	ICP/AES	GFAA/ AA	CVAA (Hg)	CN	RAD	Other
1. Holding Times/Preservation	V	~	V	US, HT	\checkmark		1	V	V	UJ HT
2. Calibrations	r	~	V	~	\checkmark		V	V	v	V
3. Method Blanks	V	1 UB	1	~	J, UJ, 83 J, UJ, 8, 8	90	V U3,83	JBV	V	V
4. MS/MSD	V P2	V	v .	V	J,AL V		V	~	J,AZ/	V
5. Laboratory Control Samples	1	V	~ -	UJAV	~		V	r	V	V
6. Replicates					JV		V	レ	V	V
7. Surrogates	v	V	~	~					Kartor militi	NA
8. Internal Standards		V								
9. TCL Compound Identification	1	V				$C_{i} \in \mathcal{A}_{i}$				
10. ICP Interference Check Sample					~					
11. ICP Serial Dilution					\checkmark					
12. Carrier/Chemical Tracer Recoveries									NA	
13. Other QC	TB EB/	EB DUP	* 50	FB DUP/	FB	•	DUP FB	DUP FB	DUP FB	DUP EB

Estimated τ -Not Detected U ≖

Check (√) = Acceptable Shaded Cells = Not Applicable (also "NA")

NP

Other: #PCB

Not Detected, Estimated UJ =

R = Unusable Not Provided ".J"

Continuation

Reviewed By:

X mae

Date: 10.23.02

B-12

Sample ID	Analytical Method	Hoiding Time Criteria	Days Holding Time was Exceeded	Preservation Criteria	Preservation Deficiency	Comments				
5936 - 086 Hrv -	SW-846 - 8830 030 - RA	14 days	14 28 daugs	NĄ	NA	All reputs qualifie				
5936 - 066 Hrv -	5W816 - 8330	7 days	IS LT He days	NA	NA	VJ, HT				
944 - 010	SW-846-71964	dy hours	Thors 50m	ni ma	NA	VJ, HT				
			· · · · · · · · · · · · · · · · · · ·							
	-									

8-13

X/hal Reviewed By:

Date: 10.23.02

Semivolatile Organics

Page 2 of 3

roject:		AR/	/CC	ж#:_	60264	<u>9</u>	51	0,-	51	· <u> </u>	. 53	5																	<u> </u>
atory: _	<u> </u>				eport #:						<u></u>		# of S	iam:	ples:					M	strix:								
BNA	CAS #	NAME	T C L	Min. RF	Intercept	Calli RF	o. j	Callt RSD R ²	¥	CCV %D	MB	etho Iank		3 L	CSD	LCS RPD	MS	MS	D.	MS RPD	Fiel Dug RPI	. []		Jip. nks	Fie Blai				•
					1 2	>.05	2	<20% 0.99	2	20%	1	9		2			1 2	1	2	1 2					L				
3 BN	100-01-6	4-Nitroaniline		0.01			$\overline{\mathcal{A}}$	\checkmark		<u> </u>	λ	<u>/</u> v	1	1	γÀ						MA		N		N	A			
3 🗛	100-02-7	4-Nitrophenol	Π	0.01						13 ⁵				\mathbf{T}				1	$\overline{\mathbf{V}}$	$\sqrt{}$									
3 BN	83-32-9	Acomphthene	Π	0.90			Π							Ł			11		2	VV									
3 BN	208-96-8	Acenaphthylene	Π	0.90			Π		Π					Τ			l.												
4 BN	120-12-7	Anthracene	Π	0.70										T															
5 BN	56-55-3	Benzo(a)anthracene	Π	0.80			Π		Π					Ι	ľ							Ι							
6 BN	50-32-8	Benzo(a)pyrene	Π	0.70		11	$\overline{\mathcal{A}}$		Λ					Γ															
6 BN	205-99-2	Benzo(b)fluoranthene	Π	0.70										Τ	Ì														
6 BN	191-24-2	Benzo(g,h,i)perylene	Π	0.50		11	\checkmark			5					1														
6 BN	207-08-9	Benzo(k)fluoranthene	Π	0.70			1			/						Γ						ļ							
2 BN	111-91-1	bis(2-Chloroethoxy)methane	Π	0.30			Τ	•	П	7																			
1 BN	111-44-4	bis(2-Chloroethyl)ether	Π	0.70						5 ¹⁴			·	ŀ														·	
I BN	108-60-1	bis(2-chloroisopropyl)ether		0.01						23													4						
5 BN	117-81-7	bis(2-Ethylhexyi)phthalate		0.01	\checkmark		\checkmark			V		2.	11										J.,	585		<u></u>		U, B at	Rh.(
5 BN	85-68-7	Butylbenzylphthalate		0.01			1				Π												l	/				7	
4 BN	86-74-8	Carbazole		0.01					Π							1							• •						
5 BN	218-01-9	Chrysene		0.70					11		Π					Λ													
6 BN	53-70-3	Dibenz(a,h)anthracene		0.40	VV	1				-μ ⁶	1					11													
3 BN	132-64-9	Dibenzofuran	Ш	0.80			\square			1						11													
3 BN	84-66-2	Dicthylphthalate		0.01																									
3 BN	131-11-3	Dimethylphthalate		0.01							Π			T		Π													
4 BN	84-74-2	Di-n-butyiphthalate		0.01					1		Π			Γ		\square													
6 BN	17-84-0	Di-n-octylphthalate		0.01			\checkmark	1			Π					\prod													· .
4 BN	206-44-0	Fluoranthene	П	0.60					Π		Π			Τ															
3 BN	86-73-7	Fluorene	\parallel	0.90	1	V		K.			Π																		
4 BN	118-74-1	Hemchlorobenzene		0.10					\square		Ш			X				43		VV	1								
2 BN	87-68-3	Hexachlorobutadiene	\square	0.01				<u>k</u>	П					ił				35		VV	$1 \square$								
3 BN	77-47-4	Hexachlorocyclopentadiene	\downarrow	0.01		11			\downarrow																				_
1 BN	67-72-1	Hexachloroethane	11	0.30								IT	1V	'X			40/	37/	1	VV	1 1				1	1	1		

Comments:

11 70

		Semivo	latile Organics																					P	age 3 of 3	k -
S	ite/Pro	ject:			AR/COC	#:60;	5649	-	50)	5	<u>/</u>	- 5	БВ	atch #s	l:							·			
			· · · · · · · · · · · · · · · · · · ·			y Report #									of San	ples:				Matr	ix:					
IS	BNA	CAS #	NAME	701	Min. RF	intercept	Calib. RF	Cal RS R	ib. D/ 2	CC\ %0		Meti	hod nk s	LCS	LCS D	LCS RPD	MS	NSD	MS RPD	Field Dup RPD		Equip. Slanks	Field Blanki			
			; La sina da seconda da				>.05	<20 0.5	1%7 99	20%	6	1	ට	v a		·	1 2	12	12		1				_	
б.	BN	193-39-5	Indeno(1,2,3-cd)pyrene	\mathbb{V}	0.50	VV	\vee		\checkmark	کہنے	4	1	\checkmark		NA		[NA		$\overline{\mathbf{V}}$	NA			
2	BN	78-59-1	Isophorone	Π	0.40			<u>[]</u>		\mathbf{V}	П															
2	BN	91-20-3	Naphthalene	Π	0.70			Π			П	Ţ	. [$\left[\right]$						-		*			
2	EN	98-95-3	Nitrobenzene	Π	0.20		II – T	Π	Т		Π		T	111		[.	2 74	54	$\overline{}$		Т			Т		
4	BN	86-30-6	N-Ninosodiphenylamine (1)		0.01			[[Π				Ţ						T					
1	BN	621-64-7	N-Nitroso-di-propylamine		0.50			\prod	Т		Π	ľ		VV			11	VV	VV	•	Т			T		
4	A	87-86-5	Pentachiorophenol		0.05	V		1			Π	-		11		Λ		VV			Τ					
4	BN	85-01-8	Phenanthrese	\prod	0.70			11			Π	T	T	[\prod	}	1								
1	A	108-95-2	Phenol	ΤT	0.80			Π			П	1		1/1		\Box	VV	VV	VV							
5	BN	129-00-0	Pyrone	TT	0.60		Π	Π	T		TT	T	T	1		\Box		VV				<u> </u>			-	
			Dipheny Jamene	TT	1	1		Π	T		11	1	T	1				1	l					1		7
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Τ	T	1		Π			TT	1					1				T			1		7

Surrogate Recovery Outliers

Sample	SMC 1	SMC 2	SMC 3	SMC 4	SMC 5	SMC 6	SMC 7	SMC 8
IN CRIT	4UA							
L								
SMC To Missisher	16 (DDD		\$140.3.3.1			ST 6	1 2 Trees	والمحج وأشيك

SMC 1: Nitrobeuxcae-d5 (BN) SMC 4: Phenol-d6 (A) SMC 7: 2-2-Chlorophenol-d4 (A) SMC 2: 2-Fluerobiphenyl (BN) SMC 5: 2-Fluorophenol (A) SMC 8: 1,2-Dichlorobenzme-d4 (BN)

SMC 3: p-Terphenyl-d14 (BN) SMC 6: 2,4,6-Tribromophenol (A)

Internal Standard Outliers

Sample	15 1-area	I\$ 1-R T	15 2-ares	15 2-RT	15 3-area	15 J-RT	18 4-area	18 4-RT	18 5-araa	IS 5-RT	is 6-area	IS G-RT
IN CRIT	CR/A											
			ļ					-				
IS 1: 1.4-Dicblorok	1: 1.4-Dichlorobenzene-d4 (BN)				BN	15.3	Account	ene dità (R	N)			

IS 4: Photathrene-d10 (BN)

IS 5: Chrysene-d12 (BN)

IS 6: Perylens-d12 (BN)

Comments: Pyride

on

no ac

Page 3 of 3

NOT TAL not validated

PCBs (SW 846 - Method 8082)

15

Site/Proje	oct: <u>DJJ</u> JO	11	Jamp/	AR/CO	C#: 605	649	- 50) -	51 -	55	Labora	itory San	aple ID:	1: <u>6</u>	5936 -	016 th	10 - 030	<u>i</u>
	Y: CEL															007 (E		•
Methods:	<u></u>	46	80	62				./							, 9			·
# of Sam	# of Samples: 15 4 / Matrix: <u>Soll</u> 4 EB								Batch	#8:	7683	3 (1	011)	/967	69 (mo)			
CAS #	Name	T C	Intercept	Calib RSD / R ²	CCV %D	Meth Blan		LCS	LCSD	LC8 RPD	MS	MSD	1	l ppin l	Equip. Bienka	Fleid Blanks		astroad that a the second
and degrame with		Ľ		<20%/0.99	20% 2	<u> </u>	21	1.2		20%	1 2	12	120%2					
	Aroclor-1016	Ц	NA		<u> </u>	V	$ \checkmark $		NA				· ·	V	<u> </u>	NA		
	Aroclor-1221	Ш				V	~							\mathbf{X}	<u> </u>			
11141-16-5	Aroclor-1232					V	V							Y.				
53469-21-9	Arocior-1242			VV		r	V			Ň				Y	V			
12672-29-6	Aroclor-1248			$\sqrt{1}$		V	V			$\left[\right]$				~	V			
11097-69-1	Aroclor-1254	Π		V V	\checkmark	V	V							V	V			
11096-82-5	Aroclor-1260	Π		VV	$\overline{\checkmark}$	V	V	1 1				V V	レマ	\checkmark	~			
		П								·			1					
		Γ							•		[
								· · · · ·				[[

Sampie	SMC % REC	SMC RT	Sample	SMC % REC	SMC RT
IN CRITERIA					

Confirmation

65936-028 1254 34%	
The highest deserd repair a repared, & will	be qualified

Comments: 196769 The long muetion When had a 1016 CCV 720°10. As The sample was NO, this would have no impact on the data and long municipality not recessary.

NO RAW DATA !

* * T

Allac

Reviewed By:

Date: 10. 21.02

High Explosives (SW 846 Method 8330)

Site/Proje	а: <u>DJJ SOII Sampi</u> y: <u>GF</u> L	ling	AR/COC #	:_6	056	N9 -	50 -	<u>[]</u>	-55	-	Labora	atory	San	nple	Шs	:	h	59	36	0	16	the	<u>) - (</u>	30	
Laborator	Y: CEL	J	Laboratory	Repo	rt #:	65	936			_															
	SW- 846			-		-				-															
					.,					_									_			10			
# of Sam	bles: <u>15</u>	Matri	ix:	301	15				~~~~~	-	Batch	#s: _	19	68	6	5	ĸ	<u>e</u> o	20	146	2	(30	·m)		
CAS #	NAME]]	Intercept	Cur		CCV ND	Metho Bienia		LCS	Τ.		LC RF	8	MS		MBI	5	MS RPC		Field. Dup.		ulp. Inks		eid nics	
		i	-	1.9	92	120%2	U	2	1		ಎ	20	%	1	2	<u>/</u>	<u>z</u> [/20%	2	rpo		U		U	
2691-41-0	HMX		NQ	\checkmark	\mathbf{V}	V V		\mathbf{N}	V		V.	N	A	Ζ.	\square	\sqrt{v}	\angle	\checkmark)	Ζ	V		V	1	'A	
121-82-4	RDX							Π						1	Ι										
99-35-49	1,3,5-Trinitrobenzene							\square							\Box										
99-65-0	1,3-dinitrobenzene																								
98-95-3	Nitrobenzene								65-12	4)															
479-45-8	Tetryl			Π				П	51	1	5														
118-96-7	2,4,6-trinitrotoluene								V	Τ					1										
35572-78-2	2-amino-4,6-dinitrotoluene									1/1	19-123	V)			П										l
19406-51-0	4-amino-2,6-dinitrotoluene			П						· ·	74						Π								
121-14-2	2,4-dinitrotoluene										V						Π								
606-20-2	2,6-dinitrotoluene																								
88-72-2	2-nitrotoluene														П										
99-99-0	4-nitrotoluene							T							Π										
99-08-1	3-nitrotoluene											Γ					Π								
78-11-5	PETN									Τ															
												1													
																			T						
		T		T			1			T		T													

SMC %REC	SMC RT	Sample	SMC %REC	SMC RT
2JA				

Confirmatio	m
-------------	---

Sample	CAS #	RPD > 25%	Sample	CAS #	RPD > 25%
NA					

Solids-to-aqueous conversion:

 $mg/kg = \mu g/g$: [($\mu g/g$) x (sample mass {g} / sample vol. {ml}) x (1000 ml / 1 liter)] / Dilution Factor = $\mu g/l$ Reviewed By:

Comments: 201462 MS/MJD 65745 JNX 504

, ,

All samples 196863 - Torry / UJ, A 201462 - All LOKYDOURDO UJ, HT

Date: <u>/0.2</u> /	. QJ
---------------------	------

WJ 2 0+2

			LCS RPD /20%	MS	MSD	MS RPD 20%	Field. Dup. RPD	Equip. Blanks U	Field Blanks U	
			Ϋ́Υ	NA		2070				
				$\frac{1}{1}$	A company of the local division of the local		NA	NA	NA	
									1-24-	
				\mathbf{T}	1					
				\uparrow	1				1	
				<u> </u>	1				1	
				1	\mathbf{N}	,				
				T	I:\					
		Π								
						$\left \right\rangle$				
						$ \rangle$				
			<u> </u>	<u> </u>	<u></u>	ļ		L		
				┢───	ļ	 	 '	<u> </u>		
					<u></u>	 	└── ′	Ļ	- 	└─── ├ ──
			+		_	 	ļ	<u> </u>		<u> </u>
		<u> </u>		1	1	L		L	/	L
			_		2010	60) 4		and l) used b
RT	SMC R1		Comme	ents:	19686	,0 N	10 M	is/huso.	ASILOSO) used b
		-			A Clinks	ine é	t or	euron		
		-1			10004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>p</i> 1	CO4017		
<u>.</u>					Pa		.			
	<u></u>	 _			reque	, red	XI .	shew	6W 196	859
> 25%	RPD > 25	%				¢ cc	NS	for 1	96860	
								:	- - ,	
> 25%	RPD > 25	×				Reques	Requested \$ cc	Requested XT & CCV3	Requested XT sheer & CCV3 for 1	Requested XT shear for 196. & CCVS for 196860.

WS 🔶 a

Inorganic Metals

Site/Projec	я: <u>О</u>)	<u>s s</u> c	<u>511 Sc</u>	anpla	9 AR/CO	DC #: _ 60	0564	9, -50	0, -51	-53	Labora	tory San	aple IDs:		,593	6-016	thru	-030	>	
Laboratory	r: (GET			Labora	tory Repor	t #:	6593	6											
Methods:		560 - 6	846	7471	(149) 6	010	(mea	u)											
# of Samp	les:	<u> </u>	<u>5 15</u>	Mat	rix:	Soil	<u>ا</u>				Batch	#s: _/	9774	5 (H	ī.)	/ ;	96732	(Meta	<u>(u</u>	
					ugle						Eleme									
CAS #/ Analyte	TAL	ICV	ccv	ІСВ	ССВ	Method Blanks	LCS	LCSD	LCSD RPD	MS Q	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dilu- tion	S S S S	65944- Equip. Rinaks	Field Blanks	Field DUP RPD	
7429-90-5 Al								NA		1	NA							NA		
7440-39-3 Be	V	¥	V	V				1		134	<u> </u>		V	V	V_	00032	9 mg/l			
7440-41-7 Be 7440-43-9 Cd				V	0.517	V			<u> </u>	+			NA		NA					
7440-43-9 Ca		Y		<i>V</i>	V.3//			+-	· · · ·					<u> </u>	-""	<u> </u>			+ +	
7440-47-3 Cr	~~	1/	17		V	V		<u>├-\</u>	· · · · ·				46%			. 000L	2/ mg/L			
7440-48-4 Co			t	·····						- ×				V					† • • • • • • •	
7440-50-8 Cu																				
7439-89-6 Fc]				
7439-95-4 Mg			<u> </u>									<u> </u>								
7439-96-5 Mn			L					\downarrow							Į	1				
7440-02-0 Ni			į.,		ļ			tt-	<u> </u>	<u> </u>	- +			<u> </u>	Į	ļ			i	
7440-09-7 K								┝		<u> </u>			+							
7440-22-4 Ag 7440-23-5 Na					-149			┝		$+ \vee -$	ļ		NA	K	NA	<u> </u>				
7440-23-3 NE							<u> </u>	<u> </u>	<u> </u>	+		<u>h</u>							{	
7440-66-6 Zn							<u> </u>	<u>†</u>	ħ	+	<u> </u>	h	†		†	<u> </u>		w	} ────∱	
								<u>+</u>	<u>₩</u>			\square			<u> </u>	<u> </u>			† · · ·	
7439-92-1 Pb	V		V	V		~		†	1	12		1/		1/		1	~			
7782-49-2 Se	V	\checkmark	V	1	30	V.	V	1	1	1V		11	NA		NA	1				
7440-38-2 As	V	V	V	V			V			IV					NA	I I	V			
7440-36-0 Sb		1						<u> </u>												
7440-28-0 T1			<u> </u>	 	ļ		ļ		<u>↓_</u>	. 	ļ	<u>↓ </u>	ļ		 	<u> </u>				
	h		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	ļ	ļ	<u> </u>							+	i
7439-97-6 Hg			<u></u> V						╂───┼──	$\downarrow \checkmark$	 	+ +	NA			<u> </u>				ļ
Cyanide CN	<u> </u>	├ ───		 			+	┨	┼	+	<u> </u>	<u>}</u> }-	┨─────		ł	 				
Cyshing CH		+	<u> </u>	<u> </u>	+			 	+			+	+	1	<u> </u>					
	(<u> </u>				<u> </u>	┼───	+ +	1	<u> </u>		<u> </u>			 			ff	
	1		+	t				t	<u>├ </u>	+	<u> </u>				1	<u>†</u>			╉╼╼╼┥	
		t	1	!	1		1	1		V V			¥——		1				1	
Notes: Shaded	rows an	RCRAn	netals. Sol	ikis-to-sq	ucous con	version: m	; / kg = μį	5/g: [(µg)	/g) x (sam	ple mass	{g} / samp	ole vol. {n	ni}) x (100	0 ml / 1 li	ter)] / Dil	ution Factor	=µg/1			·

Comments: Hg Dup/Ms SMA 65745 ASI solls dx Sa 16 \$19 R se SX O SA 754 R CC.

٠.

Reviewed By: <u>XIUU</u> 3) <u>54</u> 20 CCB - 2.0 Ug/l ^{9/17} 14 514 17 & 18 - 2.68Ug/l ^{9/10} 14 9/1 Date: 10.21.02 SE & ng - NO SA 21 -> 30 3 $^{\textcircled{1}}$ 9/,, B-14 3A 17 \$ 18 SE -2.52ug ' SA 16 & 19 -1.66 ug/2 9/10

WS 2 of 2

Inorganic Metals

# of Sampl	es:	1		Mat	rix:	60. Nguer	<u>w</u>	<u> </u>			Batch #	#s: <u>/9</u>	7121	(49)		19996	9 (mer	a/s)		
						Mg/e					Eleme			<u> </u>					ug/6	ž.
CAS #/ Analyte	TAL	ю	ccv	ісв		Method Blanks	LCS	LCSD	LCSD RPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dila- tion	Fleid Dup. RPD	Equip. Bianks	Field Blanks	SX DL	3X B
29-90-5 Al																	·····			
49-39-3 Ba	V	\checkmark				.00025		NA	ļ		NA			V	\mathbf{V}	NA	<u>NA</u>	NA	ļ	·0012
40-41-7 Be								┣-\	 	<u> </u>			NA	V	A/A	<u></u>		┟───┤੶━╸		45X
40-43-9 Cat 40-70-2 Ca				<u> ~ _</u>	<u> </u>			<u> </u>	<u> </u>	V.	- <u>\</u>		114	<u> </u>	NA	┉╍┼─╌┨		├ ── } ──	<u> </u>	<u> </u>
40-47-3 Cr	12	-77		112	00104	· 000867	V		1				NA	V	NA					J.B.
40-48-4 Co														<u>5</u>						
0-50-8 Cu				1																
89-89-6 Fe																				
9-95-4 Mg								-												<u> </u>
89-96-5 Mn		<u> </u>	ļ	_				↓			/								ļ	
10-02-0 Ni			}	}	+			<u>}'</u>	¥									┇		
40-09-7 K 40-22-4 Ag	$\left \cdot \right $	V				· 00085			<u> </u>			<u>}</u>	NA		NA			 	NO =	÷
10-23-5 Na			- - -	1	F	1 10002	-V	<u> </u>	₩			1	111	<u> </u>	NH		· · · · · · · · · · · · · · · · · · ·	┝╼─┼──	UT, B3	╂
10-62-2 V				+	<u> </u>				\uparrow			- \						┼╼╍╴┼╍╸	+	
10-66-6 Zn					h				11										†	<u>†</u>
			1		1															
9-92-1 Pb	\mathbf{V}		V.		100/95	1 00259	V						NA	V	NA					NON
2-49-2 Se		1	V.		. 00317		V			K			NR	V	NA					NO N
40-38-2 As					ļ			ļ					V		NA				· /	<u>1 </u>
40-36-0 Sb	<u> </u>		ļ	+	<u> </u>	ļ		 	+-+		<u>.</u>							+ -	<u> </u>	<u> </u>
40-28-0 Ti	<u> </u>	I	<u> </u>						+									<u> </u>	+	
39-97-6 Hg	17		1.7	1.	FORDOLS	1.7		<u> </u>		1VV	· .		NA					<u></u> ╡╍╍╍ <u></u> ┥╍╍	NO =	+
	-×		<u></u>	+	-	<u>y</u>	<u> </u>	<u> </u>	+	YV V			110					┟╌╌╍╚╍═	W,B3	+
yanide CN		1	<u> </u>		1			+	+	+			[• • • •	+
			<u>} </u>		1				t									t	1	+
		L	L		I.	[I		T	<u> </u>									
				1																
	l	L	L	1	1	version: mg		<u> </u>	1									l		

B-14

Site/Project: 055 5011 Sampling AR/COC #: 605649 -50 -51 -5	J Laboratory Sample IDs: <u>65936 - 016 +hrv - 030 (Soils)</u>
Laboratory: <u>CFA</u> Laboratory Report #: <u>25936</u>	65944 - 010, -009 (88)
Methods: <u>SW-844 9012A (7 cv) 7196A (16x Cr)</u>	1975)0 (prep - 8/29) 196887 (prep 8/29)
# of Samples: 15 / Matrix: 501/5 88	Batch #s: 197511 (soil TCN) 196888 (soil G 6)

							ng/kg				QC E	lemer	it							
CAS#	Analyte Soils	T A L	ICV	ccv	ICB	ССВ	Method Blanks	LCS	LCSD	LCSD RPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dile- tion	Field Dup. RPD	Equip. Bianks	Field Blanks	ng,
	Total CN		V	~	V	V	0.0869 ₅	~~	NA	NA	V /	NA	IYA	NA	NA	NA	v	NO	NA	0.43
	Itex avak Chromium		V.	r	r	~	V	V	NÞ	N/H	V.V.	NA	NA	NA	NA	NA	v	NO	NA	
¥	H20 (88)																			
	Total		\checkmark	\checkmark	\checkmark	~	~	\checkmark	NA	NA	V	NA		NA						
	Hexander: Chromiu		~	v	V	1	V	~	NA	NA	76	NA		NA						
												122% er cn.								
											(75 -	125%	or	Crikes	a')					
mments: B =	659 W Y -	- C	09	(701a	, or)	Met	hod g	90101 9012A	S (рнф) (Ф)	/	9920	o prej	0 9/0. 13 days	4 5)	/	99201	4	al 9/2	, 25- #	
	6594A	- (010	(0.)	Mest	rod 7	196 A		19	6733	(Anal	. ⁸ /2 16	3) .15	6	11 or	8/2	Q @ 8.	25 H	+7" >7
_	4 ₂ 0 —	~		~~ i	(). 1	07				n	eviewe	xd By:			X	11.0	0		Date: <u>/0</u>	220

S\$ O , 17, -019, -020, -021, -022, ∠ SX MB ralue

F

Radiochemistry

Site/Project:	DSS	Soil a	Sampling AR/COC #:_	605649,-50	-51, -55	Laboratory Sample IDs:	65936 -016	thru - 030	soils
Laboratory:	-		Laboratory Re	- /	- 		65944 - 012		
Methods:	EPA	900	(Gross A/B)						
# of Samples:	15	Ę	/ Matrix: Jo//J	# Anvenu:	s (EB)	Batch #s: _/98983	(soils)	198970 /	(0,0)

								QC Element					
Analyte	Method Blanks	LCS	MS	Rep RER	Equip. Blanks	Field Dap. RER	Field Blanks	Sample ID	Isotope	IS/Trace	Sample ID	Isotope	IS/Trac
Criteria	U	20%	25%	<1.0	U	<1.0	υ	NA		50-105			50-105
H3													1
U-238		}											{
U-234											(Z	
U-235/-236													
Th-232		T											{
Th-228			}	1		1							
Th-230			75-1	25%)]								
Pu-239/-240			<u> </u>										
Gross Alpha 🗸 🗸	\sim	\mathbf{V}	73 /68	Y.	NO	\checkmark	NA						
Nonvolatile Beta 🗸	\checkmark		$\nabla $		0.448	\checkmark	NR						
Ra-226					7 MBA								
Ra-28		[1							
Ni-63		[5X = 2.2	¥							
Gamma Spec. Am-241						l			\boldsymbol{X}				
Gamma Spec. Cs-137													1.
Gamma Spec. Co-60		[
Gross Alpha	- V	IV.	1VV	$\overline{\mathbf{V}}$	NA	NA	NA						}
Nonvolunie Beta	-1/		VV	1	1	1	1					7	1

Parameter	Method	Typical Tracer	Typical Carrier
Iso-U	Alpha spec.	U-232	NA
Iso-Pu	Alpha spec.	Pu-242	NA
Iso-Th	Alpha spec.	Th-229	NA
Am-241	Alpha spec.	Am-242	NA
Sr-90	Beta	Y ingrowth	NA
Ni-63	Beta	NA	Ni by ICP
Ra-226	Deamination	NA	NA
Ra-226	Alpha spec,	Ba-133 or Ra-225	NA
Ra-228	Gamma spec.	Ba-133	NA

Gamma spec. LCS contains: Am-241, Cs-137, and Co-60

Comments: H20 - 65919 - Dup/ms

Gross & All derects J, Az All SA 7 SX EB. Non relative B

allal

Reviewed By: B-16

Date: 10.23.02

Soils

FB

Contract Verification Review (CVR)

Project Leader	Collins	Project Name	DSS Soil Sampling	Case No.	7223_02.03.02
	605649, 650, 651, 655	Analytical Lab	GEL	SDG No.	65936A, B, C, D

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?		Resc	sived?
No.	ltem	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	X				
1.4	Preservative correct for analyses requested	X	:			
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	×				
1,7	Date samples received	X				
1.8	Condition upon receipt information provided	X		605649-one vial received w/ headspace, was not used for analyses		

2.0 Analytical Laboratory Report

Line		Com	Hete?		Resc	sived?
No.	ltem	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided (if requested)	X				
2.5	Detection limits provided; PQL and MDL (or IDL), MDA and Lc	X				
2.6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X				
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	×				
2.10	Narrative provided	X				
2.11	TAT met	X				[
2.12	Hold times met		X	tetryl re-extracted and re-analyzed out of holding limits for HE analysis		
2.13	Contractual qualifiers provided	X			1	1
2.14	All requested result and TIC (if requested) data provided	X			-	<u> </u>

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

3.0 Data Quality Evaluation	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	-	NO	IT HO, Sample ID NO./Flaction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2 Quantitation limit met for all samples	X		
 3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples 		X	tetryl re-extracted and analyzed out of holding time for HE analysis
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	X		
c) Matrix spike recovery data reported and met		×	HE MS recovery data not within SNL contractual limits but within GEL acceptance limits; NPN MS not within SNL limits but within GEL acceptance limits; barium not within acceptance limits; alpha MS recovery failed low
 3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples 	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples	X	1	
3.5 Blank data a) Method or reagent blank data reported and met for all samples		x	bis(2-Ethylhexyl)phthalate detected in SVOC method blank; banum, chromium, lead, silver detected in RCRA metals DI water method blank; cyanide detected in method blank
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	toluene detected in VOC trip blank; barium, detected in RCRA metals DI water equipment blank
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical); "H"-analysis done beyond the holding time	x		
3.7 Narrative addresses planchet flaming for gross alpha/beta	×		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	×		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

item	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)			· · · · · · · · · · · · · · · · · · ·
a) 12-hour tune check provided	x		
b) Initial calibration provided	X		
c) Continuing calibration provided	x		
· · · · · · · · · · · · · · · · · · ·			
d) Internal standard performance data provided	x		
e) Instrument run logs provided	x		
4.2 GC/HPLC (8330 and 8010 and 8082)			
a) Initial calibration provided	X		
		<u> </u>	
b) Continuing calibration provided	X		
c) Instrument run logs provided	X		
4.3 Inorganics (metals)			
a) Initial calibration provided	x		
b) Continuing calibration provided	X		
c) ICP Interference check sample data provided	×		
d) ICP serial dilution provided	X		
e) Instrument run logs provided	X	+	
4.4 Radiochemistry		<u> </u>	
a) Instrument run logs provided	x		

Contract Verification Review (Concluded)

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
059687-001	VOC	incorrect sample ID/Client Description (page 51): correct ID is 6560/1028-SP1-BH1-19S
059639-007	RCRA Metals	missing reviewed by signature (page 242)
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
Were deficiencies unresolved? (Ye	No No	
Based on the review, this data package	is complete. Yes	No
If no, provide: nonconformance report o	r correction request numb	er 4886 and date correction request was submitted: 10/07/02
Reviewed by:	Date:	10/07/02 Closed by: 10-09-02

ANNEX D DSS Site 1084 Risk Assessment

TABLE OF CONTENTS

Ι.	Site De	scription	and History	D-1
II.	Data Qu	uality Ob	jectives	D-1
III.	Determ	ination o	f Nature, Rate, and Extent of Contamination	D-5
	III.1		ction	
	III.2	Nature	of Contamination	D-5
	III.3	Rate of	Contaminant Migration	D-5
	111.4	Extent of	of Contamination	D-6
IV.	Compa	rison of (COCs to Background Screening Levels	D-6
V.			port	
VI.	Human	Health F	Risk Assessment	D-12
	VI.1	Introduc	ction	D-12
	VI.2	Step 1.	Site Data	D-12
	VI.3		Pathway Identification	
	VI.4	Step 3.	Background Screening Procedure	D-13
		VI.4.1	Methodology	D-13
		VI.4.2	Results	D-13
	VI.5	Step 4.	Identification of Toxicological Parameters	D-17
	VI.6	Step 5.	Exposure Assessment and Risk Characterization	D-17
		VI.6.1	Exposure Assessment	D-19
		VI.6.2	Risk Characterization	D-19
	VI.7		Comparison of Risk Values to Numerical Guidelines	
	VI.8	Step 7.	Uncertainty Discussion	D-22
	VI.9	Summa	ry	D-23
VII.	Ecologi	cal Risk	Assessment	D-24
	VII.1	Introduc	ction	D-24
	VII.2	Scoping	g Assessment	D-24
		VII.2.1	Data Assessment	D-25
		VII.2.2	Bioaccumulation	D-25
		VII.2.3	Fate and Transport Potential	D-25
			Scoping Risk-Management Decision	
	VII.3	Risk As	sessment	D-25
		VII.3.1	Problem Formulation	D-26
		VII.3.2	Exposure Estimation	D-27
		VII.3.3	Ecological Effects Evaluation	D-28
		VII.3.4	Risk Characterization	D-32
		VII.3.5	Uncertainty Assessment	D-32
		VII.3.6	Risk Interpretation	D-35
			Risk Assessment Scientific/Management Decision Point	
VIII.	Referer	nces		D-35
Арре	endix 1			D-41

This page intentionally left blank.

LIST OF TABLES

Table	Pa	ge
1	Summary of Sampling Performed to Meet DQOs)-2
2	Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1084)-3
3	Summary of Data Quality Requirements for DSS Site 1084)-4
4	Nonradiological COCs for Human Health Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K _{ow} D)-7
5	Nonradiological COCs for Ecological Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K _{ow})-8
6	Radiological COCs for Human Health Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value and BCF)-9
7	Radiological COCs for Ecological Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value and BCF	10
8	Summary of Fate and Transport at DSS Site 1084D-	11
9	Toxicological Parameter Values for DSS Site 1084 Nonradiological COCs D-	18
10	Toxicological Parameter Values for DSS Site 1084 Radiological COCs Obtained from RESRAD Risk CoefficientsD-	19
11	Risk Assessment Values for DSS Site 1084 Nonradiological COCsD-	20
12	Risk Assessment Values for DSS Site 1084 Nonradiological Background Constituents D-	20
13	Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1084, Building 6505 Septic System Carcinogens D-	24
14	Exposure Factors for Ecological Receptors at DSS Site 1084D-	29
15	Transfer Factors Used in Exposure Models for COPECs at DSS Site 1084D-	30
16	Media Concentrations for COPECs at DSS Site 1084D-	30
17	Toxicity Benchmarks for Ecological Receptors at DSS Site 1084D-	31

LIST OF TABLES (Concluded)

Table	F	Page
18	HQs for Ecological Receptors at DSS Site 1084	D-33
19	Total Dose Rates for Deer Mice Exposed to Radionuclides at DSS Site 1084	D-34
20	Total Dose Rates for Burrowing Owls Exposed to Radionuclides at DSS Site 1084	D-34
21	HQs for Ecological Receptors Exposed to Background Concentrations at DSS Site 1084	D-35

LIST OF FIGURES

Figure		Page
1	Conceptual Site Model Flow Diagram for DSS Site 1084, Building 6505 Septic System	D-15

DSS SITE 1084: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1084, the Building 6505 Septic System, at Sandia National Laboratories/New Mexico (SNL/NM), is located in Technical Area-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE). The septic system consisted of a 325-gallon septic tank connected to a drainfield consisting of four 60-foot-long drain lines. Available information indicates that Building 6505 was constructed in 1954 (SNL/NM March 2003), and it is assumed that the septic system was also constructed at that time. By June 1991, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1084 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic system at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for the possible COCs that may have been released during facility operations.

The ground surface in the vicinity of the site is flat or slopes slightly to the west. The closest drainage lies south of the site and terminates in the playa just west of KAFB. No springs or perennial surface-water bodies are located within the near vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface is flat or slopes gently to the west. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1084 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1084 lies at an average elevation of approximately 5,433 feet above mean sea level. The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 508 feet below ground surface (bgs). Groundwater flow is thought to be west in this area (SNL/NM March 2002). The nearest groundwater monitoring well is approximately 3,000 feet west of the site. The nearest production wells are northwest and northeast of the site and include KAFB-4 and KAFB-11, which are approximately 3.4 and 3.6 miles away, respectively.

II. Data Quality Objectives

The Data-Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), identified the site-specific sample locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1084 was effluent discharged to the environment from the drainfield at this site.

DSS Site 1084 Sampling Area	Potential COC Source	Number of Sampling Locations	Sample Density (samples/acre)	Sampling Location Rationale
Soil beneath the septic system drainfield	Effluent discharged to the environment from the drainfield	3	NA	Evaluate potential COC releases to the environment from effluent discharged from the drainfield

Table 1Summary of Sampling Performed to Meet DQOs

COC = Constituent of concern.

DQO = Data Quality Objective.

DSS = Drain and Septic Systems.

NA = Not Applicable.

The soil samples were collected at three locations across DSS Site 1084 with a Geoprobe[™] from two 3- or 4-foot-long sampling intervals at each boring location. Drainfield sampling intervals started at 3 and 8 feet bgs in each of the three drainfield borings. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

The soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site SNL/NM Radiation Protection Sample Diagnostic (RPSD) Laboratory. Table 3 summarizes the analytical methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

Table 2
Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1084

Sample Type	VOCs	SVOCs	PCBs	HE	RCRA Metals	Hexavalent Chromium	Cyanide	Gamma Spectroscopy Radionuclides	Gross Alpha/Beta
Confirmatory	3	3	3	3	3	3	3	3	3
Duplicates	1	1	1	1	1	1	1	1	1
EBs and TBs ^a	1	0	0	0	0	0	0	0	0
Total Samples	5	4	4	4	4	4	4	4	4
Analytical Laboratory	GEL	GEL	GEL	GEL	GEL	GEL	GEL	RPSD	GEL

^aTBs for VOCs only. DSS = Drain and Septic Systems.

EΒ

= Equipment blank.= General Engineering Laboratories, Inc. GEL

ΗE = High explosive(s).

PCB = Polychlorinated biphenyl. QA/QC = Quality assurance/quality control. RCRA = Resource Conservation and Recovery Act. RPSD = Radiation Protection Sample Diagnostics Laboratory.

SVOC = Semivolatile organic compound.

= Trip blank. ΤВ

= Volatile organic compound. VOC

RISK ASSESSMENT FOR DSS SITE 1084

Analytical			
Method ^a	Data Quality Level	GEL	RPSD
VOCs	Defensible	3	None
EPA Method 8260			
SVOCs	Defensible	3	None
EPA Method 8270			
PCBs	Defensible	3	None
EPA Method 8082			
HE Compounds	Defensible	3	None
EPA Method 8330			
RCRA Metals	Defensible	3	None
EPA Method 6000/7000			
Hexavalent Chromium	Defensible	3	None
EPA Method 7196A			
Total Cyanide	Defensible	3	None
EPA Method 9012A			
Gamma Spectroscopy	Defensible	None	3
Radionuclides			
EPA Method 901.1			
Gross Alpha/Beta Activity	Defensible	3	None
EPA Method 900.0			

Table 3Summary of Data Quality Requirements for DSS Site 1084

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

^aEPA November 1986.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- QA/QC = Quality assurance/quality control.
- RCRA = Resource Conversation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

QA/QC samples were collected during the sampling effort according to the Environmental Restoration (ER) Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only) and one set of field duplicate samples. No significant QA/QC problems were identified in the QA/QC samples.

All of the soil sample results were verified/validated by SNL/NM according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1084 request for a determination of Corrective Action Complete (CAC) without controls. The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The

gamma spectroscopy results are presented in the CAC proposal. The reviews confirmed that the analytical data are defensible and therefore acceptable for use in the request for a determination of CAC without controls. Therefore, the DQOs have been fulfilled.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1084 is based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive soil-vapor sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1084, which is presented in Section 4.0 of the associated request for a determination of CAC without controls. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1084 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and potential degradation products at DSS Site 1084.

III.3 Rate of Contaminant Migration

The septic system at DSS Site 1084 was deactivated in 1991 when Building 6505 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the septic system at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system was discontinued has been predominantly dependent upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted at the site are adequate to characterize the rate of COC migration at DSS Site 1084.

III.4 Extent of Contamination

Subsurface soil samples were collected from boreholes drilled at three locations beneath the effluent release area (the drainfield) at the site to assess whether releases of effluent from the septic system caused any environmental contamination.

The soil samples were collected at sampling depths starting at 3 and 8 feet bgs in the drainfield area. Sampling intervals started at the depths at which effluent discharged from the drainfield drain lines would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS-type sites at SNL/NM. The soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Screening Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1084 request for a determination of CAC without controls describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs evaluated in this risk assessment include all detected organic, inorganic, and radiological COCs for which samples were analyzed. When the detection limit of an organic compound is too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound is retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation uses only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 through 7.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs are evaluated. The nonradiological COCs included in the risk assessment consist of both inorganic and organic compounds.

Tables 4 and 5 list the nonradiological COCs for the human health and ecological risk assessments at DSS Site 1084, respectively. Tables 6 and 7 list the radiological COCs for the human health and ecological risk assessments, respectively. All tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4 discusses the results presented in Tables 4 and 6; Sections VII.2 and VII.3 discuss the results presented in Tables 5 and 7.

V. Fate and Transport

The primary releases of COCs at DSS Site 1084 were to the subsurface soil resulting from the discharge of effluent from the Building 6505 septic system. Wind, water, and biota are natural mechanisms of COC transport from the primary release point; however, because the discharge was to subsurface soil, none of these are considered to be of potential

Table 4 Nonradiological COCs for Human Health Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K

сос	Maximum Concentration (All Samples) (mg/kg)	SNL/NM Background Concentration (mg/kg)ª	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (Maximum Aquatic)	Log K _{ow} (for Organic COCs)	Bioaccumulator? ^b (BCF>40, Log K _{ow} >4)
Inorganic	1	Γ				
Arsenic	3.88	4.4	Yes	44 ^c	-	Yes
Barium	411 J	214	No	170 ^d	-	Yes
Cadmium	0.223 J	0.9	Yes	64 ^c	-	Yes
Chromium, total	20.2 J	15.9	No	16 ^c	-	No
Chromium VI	0.0578 J	1	Yes	16 ^c	-	No
Cyanide	0.125 J	NC	Unknown	NC	-	Unknown
Lead	6.31	11.8	Yes	49 ^c	-	Yes
Mercury	0.0164	<0.1	Yes	5,500 ^c	—	Yes
Selenium	0.315 J	<1	Yes	800 ^e	—	Yes
Silver	0.35 J	<1	Yes	0.5 ^c	-	No
Organic	·	•				
2-Butanone	0.0255	NA	NA	1 ^f	0.29 ^f	No
PCBs, total	0.0018 J	NA	NA	31,200 ^c	6.72 ^c	Yes

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

^aDinwiddie September 1997, Southwest Area Supergroup.

^bNMED March 1998.

^cYanicak March 1997.

^dNeumann 1976.

eCallahan et al. 1979.

- ^fHoward 1990.
- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- = Drain and Septic Systems. DSS
- J = Estimated concentration. K_{ow}
 - = Octanol-water partition coefficient.
- = Logarithm (base 10). Log
- = Milligram(s) per kilogram. mg/kg

NA = Not applicable. NC = Not calculated. = New Mexico Environment Department. NMED = Polychlorinated biphenyl. PCB SNL/NM = Sandia National Laboratories/New Mexico. = Information not available. _

AL/9-04/WP/SNL04:rs5558.doc

9/10/2004

Table 5 Nonradiological COCs for Ecological Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K

сос	Maximum Concentration (Samples < 5 ft bgs) (mg/kg)	SNL/NM Background Concentration (mg/kg) ^a	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (Maximum Aquatic)	Log K _{ow} (for Organic COCs)	Bioaccumulator? ^b (BCF>40, Log K _{ow} >4)
Inorganic					-	
Arsenic	3.88	4.4	Yes	44 ^c	-	Yes
Barium	411 J	214	Νο	170 ^d	-	Yes
Cadmium	0.208 J	0.9	Yes	64 ^c	-	Yes
Chromium, total	12.8 J	15.9	Yes	16 ^c	-	No
Chromium VI	0.0268 ^e	1	Yes	16 ^c	_	No
Cyanide	0.102 J	NC	Unknown	NC	-	Unknown
Lead	5.75	11.8	Yes	49 ^c	_	Yes
Mercury	0.0093	<0.1	Yes	5,500 ^c	—	Yes
Selenium	0.201 ^e	<1	Yes	800 ^f	-	Yes
Silver	0.0447 ^e	<1	Yes	0.5 ^c	-	No
Organic						
2-Butanone	0.0255	NA	NA	1 9	0.29 ^g	No

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

^aDinwiddie September 1997, Southwest Area Supergroup.

^bNMED March 1998.

^cYanicak March 1997.

^dNeumann 1976.

eValue is the greater of either the maximum detection or one-half of the highest detection limit.

^fCallahan et al. 1979.

- ^gHoward 1990.
- = Bioconcentration factor. BCF
- = Below ground surface. bgs
- COC = Constituent of concern.
- DSS = Drain and Septic Systems. ft
 - = Foot (feet).
- = Estimated concentration. J
- K_{ow} = Octanol-water partition coefficient.

= Logarithm (base 10). Log mg/kg = Milligram(s) per kilogram. = Not applicable. NA NC = Not calculated. = New Mexico Environment Department. NMED SNL/NM = Sandia National Laboratories/New Mexico. = Information not available.

Table 6 Radiological COCs for Human Health Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value and BCF

coc	Maximum Activity (All Samples) (pCi/g)ª	SNL/NM Background Activity (pCi/g) ^b	Is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (Maximum Aquatic)	ls COC a Bioaccumulator?⁰ (BCF >40)
Cs-137	ND (0.034)	0.079	Yes	3,000 ^d	Yes
Th-232	0.757	1.01	Yes	3,000 ^e	Yes
U-235	ND (0.243)	0.16	No	900 ^e	Yes
U-238	ND (0.747)	1.4	Yes	900 ^e	Yes

Note: Bold indicates COCs that exceed background screening values and/or are bioaccumulators.

^aValue is the greater of either the maximum detection or the highest MDA.

^bDinwiddie September 1997, Southwest Area Supergroup.

°NMED March 1998.

^dWhicker and Schultz 1982.

^eBaker and Soldat 1992.

- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- MDA = Minimum detectable activity.
- ND () = Not detected above the MDA, shown in parentheses.
- **ND**() = Not detected but the MDA (shown in parentheses) exceeds background activity.
- NMED = New Mexico Environment Department.
- pCi/g = Picocurie(s) per gram.
- SNL/NM = Sandia National Laboratories/New Mexico.

D-9

Table 7 Radiological COCs for Ecological Risk Assessment at DSS Site 1084 with Comparison to the Associated SNL/NM Background Screening Value and BCF

сос	Maximum Activity (Samples < 5 ft bgs) (pCi/g)ª	SNL/NM Background Activity (pCi/g) ^b	Is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (Maximum Aquatic)	ls COC a Bioaccumulator?⁰ (BCF >40)
Cs-137	ND (0.032)	0.079	Yes	3000 ^d	Yes
Th-232	0.734	1.01	Yes	3000 ^e	Yes
U-235	ND (0.243)	0.16	No	900 ^e	Yes
U-238	ND (0.747)	1.4	Yes	900 ^e	Yes

Note: Bold indicates COCs that exceed background screening values and/or are bioaccumulators.

^aValue is the greater of either the maximum detection or the highest MDA.

^bDinwiddie September 1997, Southwest Area Supergroup.

°NMED March 1998.

^dWhicker and Schultz 1982.

^eBaker and Soldat 1992.

- BCF = Bioconcentration factor.
- bgs = Below ground surface. ft
 - = Foot (feet).
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- MDA = Minimum detectable activity.
- ND() = Not detected, above the MDA, shown in parentheses.
- ND() = Not detected but the MDA (shown in parentheses) exceeds background activity.
- = New Mexico Environment Department. NMED
- pCi/g = Picocurie(s) per gram.
- SNL/NM = Sandia National Laboratories/New Mexico.

RISK ASSESSMENT FOR DSS SITE 1084

significance as transport mechanisms at this site. Because the septic system is no longer active, additional water infiltration is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1084, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 508 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1084 include both inorganic and organic constituents. The inorganic COCs include both radiological and nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-life of the radiological COC (U-235), the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms are expected to result in significant losses or transformations of the inorganic COCs.

The organic COCs at DSS Site 1084 are limited to 2-butanone and PCBs. Organic constituents may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of 2-butanone through volatilization is expected to be minimal.

Table 8 summarizes the fate and transport processes that can occur at DSS Site 1084. COCs at this site include organic analytes as well as radiological and nonradiological inorganic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low, and loss through decay of the radiological COC is insignificant because of its long half-life.

Transport and Fate Mechanism	Existence at Site	Significance
Wind	Yes	Low
Surface runoff	Yes	Low
Migration to groundwater	No	None
Food chain uptake	Yes	Low
Transformation/degradation	Yes	Low

Table 8Summary of Fate and Transport at DSS Site 1084

DSS = Drain and Septic Systems.

VI. Human Health Risk Assessment

VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

Step 1.	Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.
Step 2.	Potential pathways are identified by which a representative population might be exposed to the COCs.
Step 3.	The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.
Step 4.	Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.
Step 5.	Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide.
Step 6.	These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED, and the DOE to determine whether further evaluation and potential site cleanup are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.
Step 7.	Uncertainties of the above steps are addressed.

VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1084. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1084 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated soil. No water pathways to the groundwater are considered; depth to groundwater at DSS

Site 1084 is approximately 508 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual site model flow diagram for DSS Site 1084.

Pathway Identification

Nonradiological Constituents	Radiological Constituents
Soil ingestion	Soil ingestion
Inhalation (dust)	Inhalation (dust)
Dermal contact	Direct gamma

VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

VI.4.1 Methodology

Maximum concentrations of nonradiological COCs were compared to the approved SNL/NM maximum screening levels for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Section VI.6.2. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or did not have either a quantifiable or calculated background screening level were considered in further risk assessment analyses.

For the radiological COCs that exceed the SNL/NM background screening levels, background values were subtracted from the individual maximum radionuclide concentrations. Those that do not exceed these background levels are not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have background screening values and were detected above the analytical minimum detectable activity (MDA) are carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

VI.4.2 Results

Tables 4 and 6 show DSS Site 1084 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, two constituents were measured at a concentration greater than their background screening values. One constituent does not have a quantified background screening concentration; therefore, it is unknown whether this COC exceeds the background value. Two constituents are organic compounds that do not have corresponding background screening values.

This page intentionally left blank.

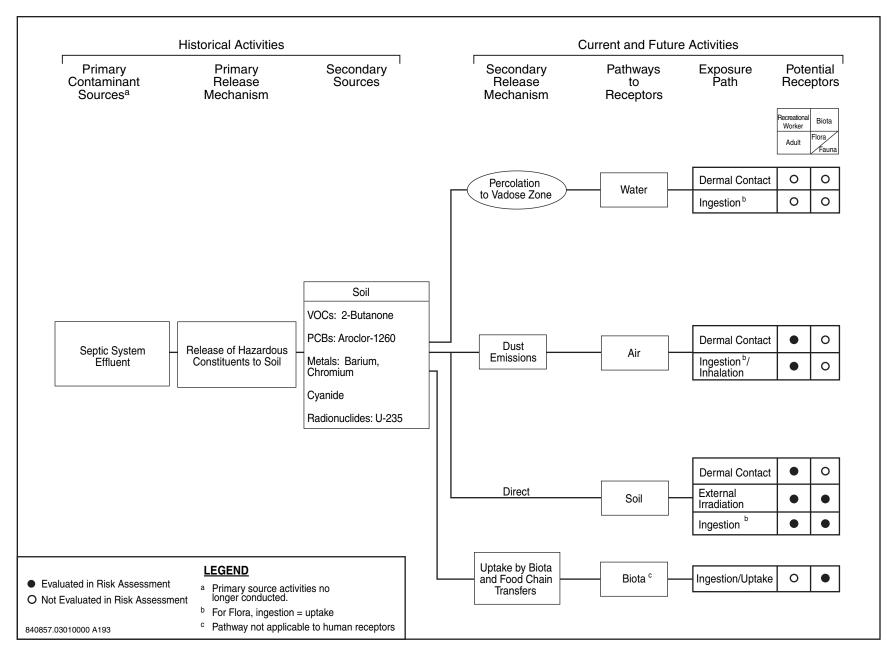
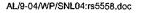


Figure 1 Conceptual Site Model Flow Diagram for DSS Site 1084, Building 6505 Septic System

RISK ASSESSMENT FOR DSS SITE 1084

The maximum concentration value used for total PCBs is the greater of either the maximum detection or one-half of the highest detection limit, which is 0.0018 J milligrams (mg)/kilogram (kg). This concentration is less than the EPA screening level of 1 mg/kg (Title 40, Code of Federal Regulations, Part 761). Because the maximum concentration used for PCBs at this site is less than the screening value, PCBs are eliminated from further consideration in the human health risk assessment.

For the radiological COCs, one constituent (U-235) had an MDA value greater than the background screening level. The greater of either the maximum detection or the highest MDA is conservatively used in the risk assessment.


VI.5 Step 4. Identification of Toxicological Parameters

Tables 9 and 10 list the COCs retained in the risk assessment and provide the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 9 were obtained from the Integrated Risk Information System (IRIS) (EPA 2003), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), and the Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways are the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA 1988).
- DCFs for surface contamination of the site were taken from DOE/EH-0070, "External Dose-Rate Conversion Factors for Calculation of Dose to the Public" (DOE 1988).
- DCFs for volume contamination (exposure to contamination deeper than the immediate surface of the site) were calculated using the methods discussed in "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil" (Kocher 1983) and in ANL/EAIS-8, "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil" (Yu et al. 1993b).

VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for the industrial and residential land-use scenarios. The incremental TEDE and incremental estimated cancer risk are provided for the background-adjusted radiological COCs for both industrial and residential land-use scenarios.

COC	RfD _O (mg/kg-d)	Confidencea	RfD _{inh} (mg/kg-d)	Confidence ^a	SF _o (mg/kg-d) ⁻¹	SF _{inh} (mg/kg-d) ⁻¹	Cancer Class ^b	ABS
Inorganic								
Barium	7E-02°	M	1.4E-4 ^d	-			D	0.01e
Chromium	1.5E+0°	L		_		_	D	0.01°
Cyanide	2E-2°	M	_	-		_	D	0.1 ^e
Organic							· · · · · · · · · · · · · · · · · · ·	
2-Butanone	6E-1°	L	2.9E-1°	L		-	D	0.1e

 Table 9

 Toxicological Parameter Values for DSS Site 1084 Nonradiological COCs

^aConfidence associated with IRIS (EPA 2003) database values. Confidence: L = low, M = medium.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003):

D = Not classifiable as to human carcinogenicity.

°Toxicological parameter values from IRIS electronic database (EPA 2003).

^dToxicological parameter values from HEAST (EPA 1997a).

eToxicological parameter values from NMED (December 2000).

DSS

EPA

IRIS

RfD_{inh}

RfD

SFinh

SF

- ABS = Gastrointestinal absorption coefficient. COC = Constituent of concern.
 - = Drain and Septic Systems.
 - = U.S. Environmental Protection Agency.
- HEAST = Health Effects Assessment Summary Tables.

= Integrated Risk Information System.

- mg/kg-d = Milligram(s) per kilogram-day. mg/kg-d⁻¹ = Per milligram per kilogram-day.
- NMED = New Mexico Environmental Department.
 - = Inhalation chronic reference dose.
 - = Oral chronic reference dose.
 - = Inhalation slope factor.
 - = Oral slope factor.
 - = Information not available.

Table 10
Toxicological Parameter Values for DSS Site 1084 Radiological COCs
Obtained from RESRAD Risk Coefficients ^a

сос	SF _o (1/pCi)	SF _{inh} (1/pCi)	SF _{ev} (g/pCi-yr)	Cancer Class ^b
U-235	4.70E-11	1.30E-8	2.70E-7	A

^aYu et al. 1993a.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

- 1/pCi = One per picocurie.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- g/pCi-yr = Gram(s) per picocurie-year.
- SF_{ev} = External volume exposure slope factor.
- SF_{inh}° = Inhalation slope factor.
- SF₀ = Oral (ingestion) slope factor.

VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used to calculate intake values and subsequent HI and excess cancer risk values for the individual exposure pathways. The appendix shows parameters for both industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), as well as other EPA and NMED guidance documents. The parameters reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For the radiological COCs, the coded equations provided in RESRAD computer code are used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a). Although the designated land-use scenario for this site is industrial, risk and TEDE values for a residential land-use scenario are also presented.

VI.6.2 Risk Characterization

Table 11 shows an HI of 0.01 for the DSS Site 1084 nonradiological COCs and no estimated excess cancer risk. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 12 shows an HI of 0.00 and no estimated excess cancer risk for the DSS Site 1084 associated background constituents under the designated industrial land-use scenario.

	Maximum Concentration		Land-Use ario ^a	Residential Land-Use Scenario ^a	
COC	(All Samples) Hazard (mg/kg) Index		Cancer Risk	Hazard Index	Cancer Risk
Inorganic				,, ", ",	
Barium	411 J	0.01	_	0.08	-
Chromium	20.2 J	0.00	_	0.00	_
Cyanide	0.125 J	0.00	_	0.00	-
Organic	· · ·			· · · · · · · · · · · · · · · · · · ·	
2-Butanone	0.0255	0.00	-	0.00	-
Т	otal	0.01	_	0.08	_

Table 11 **Risk Assessment Values for DSS Site 1084 Nonradiological COCs**

^aEPA 1989.

COC = Constituent of concern.

= Drain and Septic Systems. DSS

= U.S. Environmental Protection Agency. EPA

= Concentration was qualified as an estimated value. J

mg/kg = Milligram(s) per kilogram.

= Information not available.

Table 12

Risk Assessment Values for DSS Site 1084 Nonradiological Background Constituents

	Background		Land-Use nario ^b	Residential Land-Use Scenario ^b	
coc	Concentration ^a (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Barium	214	0.00	-	0.04	_
Chromium	15.9	0.00	-	0.00	-
Cyanide	NC	_	_		-
Total		0.00	_	0.04	

^aDinwiddie September 1997, Southwest Area Supergroup. ^bEPA 1989.

COC = Constituent of concern.

= Drain and Septic Systems. DSS

= U.S. Environmental Protection Agency. EPA

mg/kg = Milligram(s) per kilogram.

NČ = Not calculated.

= Information not available.

For the radiological COC, contribution from the direct gamma exposure pathway is included. For the industrial land-use scenario, a TEDE is calculated for an individual on the site, which results in an incremental TEDE of 1.2E-2 millirem (mrem)/year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997b), an incremental TEDE of 15 mrem/yr is used for the probable land-use scenario (industrial in this case); the calculated dose value for DSS Site 1084 for the industrial land-use scenario is well below this guideline. The estimated excess cancer risk is 1.4E-7.

The HI is 0.08 with no estimated excess cancer risk for the nonradiological COCs under the residential land-use scenario (Table 11). The numbers in the table include exposure from soil ingestion, dermal contact, and dust inhalation. Although the EPA (1991) guidelines generally recommend that inhalation not be included in a residential land-use scenario, this pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be present in predominantly residential areas. Based upon the nature of the local soil, other exposure pathways are not evaluated (see Appendix 1). Table 12 shows an HI of 0.04 and no estimated excess cancer risk for the associated background constituents at DSS Site 1084 under the residential land-use scenario.

For the radiological COC, the incremental TEDE for the residential land-use scenario is 3.1E-2 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1084 for the residential land-use scenario is well below this guideline. Consequently, DSS Site 1084 is eligible for unrestricted radiological release as the residential land-use scenario resulted in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 4.0E-7. The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18, "Establishment of Cleanup Levels for CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] Sites with Radioactive Contamination" (EPA 1997b). This summation is tabulated in Section VI.9, "Summary."

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluates the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.01 (lower than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). There is no excess cancer risk. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determines risks by evaluating background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background concentrations are assumed to have a hazard quotient (HQ) of 0.00. The incremental HI is 0.01 and there is no estimated incremental cancer risk for the industrial land-

use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs considering an industrial land-use scenario.

For the radiological COC under the industrial land-use scenario, the incremental TEDE is 1.2E-2 mrem/yr, which is significantly lower than EPA's numerical guideline of 15 mrem/yr (EPA 1997b). The incremental estimated excess cancer risk is 1.4E-7.

For the nonradiological COCs under the residential land-use scenario, the calculated HI is 0.08, which is below the numerical guidance. There is no excess cancer risk. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental HI is 0.04 and there is no estimated incremental cancer risk for the residential land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under a residential land-use scenario.

The incremental TEDE for a residential land-use scenario from the radiological component is 3.1E-2 mrem/yr, which is significantly lower than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 4.0E-7.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1084 is based upon an initial conceptual model that was validated with sampling conducted at the site. The sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). The DQOs contained in these two documents are appropriate for use in risk screening assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk screening assessment at DSS Site 1084.

Because of the location, history, and future land use, there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Based upon the COCs found in near-surface soil and the location and physical characteristics of the site, there is low uncertainty in the exposure pathways relevant to the analysis.

An RME approach is used to calculate the risk assessment values. Specifically, the parameter values in the calculations are conservative and calculated intakes may be overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 9 shows the uncertainties (confidence levels) in nonradiological toxicological parameter values. There is a mixture of estimated values and values from the IRIS (EPA 2003), HEAST (EPA 1997a), and the Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), the Risk Assessment Information System (ORNL 2003) or the EPA regions (EPA 2002a, EPA 2002b, EPA 2002c).

Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Risk assessment values for the nonradiological COCs are within the acceptable range for human health under both the industrial and residential land-use scenarios compared to established numerical guidance.

For the radiological COCs, the conclusion of the risk assessment is that potential effects on human health for both industrial and residential land-use scenarios are within guidelines and represent only a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

VI.9 Summary

DSS Site 1084 contains identified COCs consisting of some inorganic and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site include soil ingestion, dermal contact, and dust inhalation for chemical COCs and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways are applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the industrial land-use scenario the HI (0.01) is significantly lower than the accepted numerical guidance from the EPA. There is no estimated excess cancer. Thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.01, and there is no incremental excess cancer risk for the industrial land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the residential land-use scenario the HI (0.08) is also below the accepted numerical guidance from the EPA. There is no estimated excess cancer risk. Thus, excess cancer risk is below the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 0.04 and there is no incremental excess cancer risk for the residential land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the residential land-use scenario.

The incremental TEDE and corresponding estimated cancer risk from the radiological COC are much lower than EPA guidance values. The estimated TEDE is 1.2E-2 mrem/yr for the industrial land-use scenario, which is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997b). The corresponding incremental estimated cancer risk value is 1.4E-7 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional control is 3.1E-2 mrem/yr with an associated risk of 4.0E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1084 is eligible for unrestricted radiological release.

The summation of the nonradiological and radiological carcinogenic risks is tabulated in Table 13.

Table 13Summation of Incremental Radiological and Nonradiological Risks fromDSS Site 1084, Building 6505 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	0.00E+0	1.4E-7	1.4E-7
Residential	0.00E+0	4.0E-7	4.0E-7

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of this risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1084. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological assessment that corresponds with that presented in EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment. Initial components of NMED's decision tree (a discussion of DQOs, data assessment, and evaluations of both bioaccumulation and fate and transport potential) are addressed in previous sections of this report. Following the completion of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary. If deemed necessary, the scoping assessment proceeds to a risk assessment whereby a more quantitative estimate of ecological risk is conducted. Although this assessment is conservative in the estimation of ecological risks, ecological relevance and professional judgment are also used as recommended by the EPA (1998) to ensure that predicted exposures of selected ecological receptors reflect those reasonably expected to occur at the site.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data and a comparison of maximum detected concentrations to background concentrations, examination of bioaccumulation potential, and fate and transport potential. The scoping risk-management decision (Section VII.2.4) summarizes the scoping results and assesses the need for further examination of potential ecological impacts.

RISK ASSESSMENT FOR DSS SITE 1084

VII.2.1 Data Assessment

As indicated in Section IV (Tables 5 and 7), constituents in the soil within the 0- to 5-foot depth interval that are identified as COPECs for this site include the following:

- Barium
- Cyanide
- 2-Butanone
- U-235

VII.2.2 Bioaccumulation

Among the COPECs listed in Section VII.2.1, the following are considered to have bioaccumulation potential in aquatic environments (Section IV, Tables 5 and 7):

- Barium
- U-235

However, as directed by the NMED (March 1998), bioaccumulation for inorganic constituents is assessed exclusively based upon maximum reported bioconcentration factors (BCFs) for aquatic species. Because only aquatic BCFs are used to evaluate the bioaccumulation potential for metals, bioaccumulation in terrestrial species is likely to be overpredicted.

VII.2.3 Fate and Transport Potential

The potential for the COPECs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 8 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COPECs at this site. Degradation, transformation, and radiological decay of the COPECs are also expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it is concluded that complete ecological pathways may be associated with this site and that COPECs also exist at the site. As a consequence, a detailed ecological risk assessment is deemed necessary to predict the potential level of ecological risk associated with the site.

VII.3 Risk Assessment

As concluded in Section VII.2.4, both complete ecological pathways and COPECs are associated with this site. The ecological risk assessment performed for the site involves a quantitative estimate of current ecological risks using exposure models in association with exposure parameters and toxicity information obtained from the literature. The estimation of potential ecological risks is conservative to ensure that ecological risks are not underpredicted. Components within the risk assessment include the following:

- Problem Formulation—sets the stage for the evaluation of potential exposure and risk.
- Exposure Estimation-provides a quantitative estimate of potential exposure.
- Ecological Effects Evaluation—presents benchmarks used to gauge the toxicity of COPECs to specific receptors.
- Risk Characterization—characterizes the ecological risk associated with exposure of the receptors to environmental media at the site.
- Uncertainty Assessment—discusses uncertainties associated with the estimation of exposure and risk.
- Risk Interpretation—evaluates ecological risk in terms of HQs and ecological significance.
- Risk Assessment Scientific/Management Decision Point—presents the decision to risk managers based upon the results of the risk assessment.

VII.3.1 Problem Formulation

Problem formulation is the initial stage of the risk assessment that provides the introduction to the risk evaluation process. Components that are addressed in this section include a discussion of ecological pathways and the ecological setting, identification of COPECs, and selection of ecological receptors. The conceptual model, ecological food webs, and ecological endpoints (other components commonly addressed in an ecological risk assessment) are presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998) and are not duplicated here.

VII.3.1.1 Ecological Pathways and Setting

DSS Site 1084 is less than 1 acre in size. The site is located in an area dominated by grassland habitat. The site is unpaved and open to use by wildlife. No threatened or endangered species exist at this site (IT February 1995), and no surface-water bodies, seeps, or springs are associated with the site.

Complete ecological pathways may exist at this site through the exposure of plants and wildlife to COPECs in the soil. It is assumed that direct uptake of COPECs from soil is the major route of exposure for plants and that exposure of plants to wind-blown soil is minor. Exposure modeling for the wildlife receptors is limited to the food and soil ingestion pathways and external radiation. Because of the lack of surface water at this site, exposure to COPECs through the ingestion of surface water is considered insignificant. Inhalation and dermal contact also are considered insignificant pathways with respect to ingestion (Sample and Suter 1994). Groundwater is not expected to be affected by COCs at this site.

VII.3.1.2 COPECs

Discharge of waste water from the septic system of Building 6505 is the primary source of COPECs at DSS Site 1084. All COPECs identified for this site are listed in Section VII.2. The COPECs include both radiological and nonradiological analytes. The analytes were screened against background concentrations and those that exceeded the approved SNL/NM background screening levels (Dinwiddie September 1997) for the area are considered to be COPECs. All organic analytes detected in the soil and inorganic analytes with uncertain background levels are retained as COPECs. Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment as set forth by the EPA (1989). In order to provide conservatism, this ecological risk assessment is based upon the maximum soil concentrations of the COPECs measured in the upper 5 feet of soil at this site. Tables 5 and 7 present the maximum concentrations and activities for the COPECs.

VII.3.1.3 Ecological Receptors

A nonspecific perennial plant is selected as the receptor to represent plant species at the site (IT July 1998). Vascular plants are the principal primary producers at the site and are key to the diversity and productivity of the wildlife community associated with the site. The deer mouse (*Peromyscus maniculatus*) and the burrowing owl (*Speotyto cunicularia*) are used to represent wildlife use. Because of its opportunistic food habits, the deer mouse is used to represent a mammalian herbivore, omnivore, and insectivore. The burrowing owl represents a top predator at this site. The burrowing owl is present at SNL/NM and is designated a species of management concern by the U.S. Fish and Wildlife Service in Region 2, which includes the state of New Mexico (USFWS September 1995).

VII.3.2 Exposure Estimation

For the nonradiological COPECs, direct uptake from the soil is considered the only significant route of exposure for terrestrial plants. Exposure modeling for the wildlife receptors is limited to food and soil ingestion pathways. Inhalation and dermal contact are considered insignificant pathways with respect to ingestion (Sample and Suter 1994). Drinking water is also considered an insignificant pathway because of the lack of surface water at this site. The deer mouse is modeled under three dietary regimes: as an herbivore (100 percent of its diet as plant material), as an omnivore (50 percent of its diet as plants and 50 percent as soil invertebrates), and as an insectivore (100 percent of its diet as soil invertebrates). The burrowing owl is modeled as a strict predator on small mammals (100 percent of its diet as deer mice). Because the exposure in the burrowing owl from a diet consisting of equal parts of herbivorous, omnivorous, and

insectivorous deer mice would be equivalent to the exposure consisting of only omnivorous deer mice, the diet of the burrowing owl is modeled with intake of omnivorous mice only. Both species are modeled with soil ingestion comprising 2 percent of the total dietary intake. Table 14 presents the species-specific factors used in modeling exposures in the wildlife receptors. Justification for use of the factors presented in this table is described in the ecological risk assessment methodology document (IT July 1998).

Although home range is also included in this table, exposures for this risk assessment are modeled using an area use factor of 1.0, implying that all food items and soil ingested come from the site being investigated. The maximum COPEC concentrations measured in the upper 5 feet of soil are used to conservatively estimate potential exposures and risks to plants and wildlife at this site.

For the radiological dose-rate calculations, the deer mouse is modeled as an herbivore (100 percent of its diet as plants), and the burrowing owl is modeled as a strict predator on small mammals (100 percent of its diet as deer mice). Both are modeled with soil ingestion comprising 2 percent of the total dietary intake. Receptors are exposed to radiation both internally and externally from U-235. Internal and external dose rates to the deer mouse and the burrowing owl are approximated using modified dose-rate models from the DOE (1995) as presented in the ecological risk assessment methodology document for the SNL/NM ER Project (IT July 1998). Radionuclide-dependent data for the dose-rate calculations were obtained from Baker and Soldat (1992). The external dose-rate model examines the total-body dose rate to a receptor residing in soil exposed to radionuclides. The soil surrounding the receptor is assumed to be an infinite medium uniformly contaminated with gamma-emitting radionuclides. The external dose-rate model is the same for both the deer mouse and the burrowing owl. The internal total-body dose-rate model assumes that a fraction of the radionuclide concentration ingested by a receptor is absorbed by the body and concentrated at the center of a spherical body shape. This provides for a conservative estimate for absorbed dose. This concentrated radiation source at the center of the body of the receptor is assumed to be a "point" source. Radiation emitted from this point source is absorbed by the body tissues to contribute to the absorbed dose. Alpha and beta emitters are assumed to transfer 100 percent of their energy to the receptor as they pass through tissues. Gamma-emitting radionuclides transfer only a fraction of their energy to the tissues because gamma rays interact less with matter than do beta or alpha emitters. The external and internal dose-rate results are summed to calculate a total dose rate from exposure to U-235 in soil.

Table 15 provides the transfer factors used in modeling the concentrations of COPECs through the food chain. Table 16 presents maximum concentrations in soil and derived concentrations in tissues of the various food chain elements that are used to model dietary exposures for each of the wildlife receptors.

VII.3.3 Ecological Effects Evaluation

Table 17 shows benchmark toxicity values for the plant and wildlife receptors. For plants, the benchmark soil concentrations are based upon the lowest-observed-adverse-effect level (LOAEL). For wildlife, the toxicity benchmarks are based upon the no-observed-adverse-effect level (NOAEL) for chronic oral exposure in a taxonomically similar test species. Sufficient toxicity information was not available to estimate the LOAELs or NOAELs for some COPECs.

Table 14Exposure Factors for Ecological Receptors at DSS Site 1084

Receptor Species	Class/Order	Trophic Level	Body Weight (kg) ^a	Food Intake Rate (kg/day) ^b	Dietary Composition ^c	Home Range (acres)
Deer Mouse (Peromyscus maniculatus)	Mammalia/ Rodentia	Herbivore	2.39E-2 ^d	3.72E-3	Plants: 100% (+ Soil at 2% of intake)	2.7E-1ª
Deer Mouse (Peromyscus maniculatus)	Mammalia/ Rodentia	Omnivore	2.39E-2 ^d	3.72E-3	Plants: 50% Invertebrates: 50% (+ Soil at 2% of intake)	2.7E-1°
Deer Mouse (Peromyscus maniculatus)	Mammalia/ Rodentia	Insectivore	2.39E-2 ^d	3.72E-3	Invertebrates: 100% (+ Soil at 2% of intake)	2.7E-1°
Burrowing owl (Speotyto cunicularia)	Aves/ Strigiformes	Carnivore	1.55E-1 ^f	1.73E-2	Rodents: 100% (+ Soil at 2% of intake)	3.5E+1 ⁹

^aBody weights are in kg wet weight.

^bFood intake rates are estimated from the allometric equations presented in Nagy (1987). Units are kg dry weight per day.

^cDietary compositions are generalized for modeling purposes. Default soil intake value of 2 percent of food intake.

^dSilva and Downing 1995.

eEPA (1993), based upon the average home range measured in semiarid shrubland in Idaho.

^fDunning 1993.

^gHaug et al. 1993.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- kg = Kilogram(s).

AL/9-04/WP/SNL04:rs5558.doc

COPEC	Soil-to-Plant Transfer Factor	Soil-to-Invertebrate Transfer Factor	Food-to-Muscle Transfer Factor
Inorganic			
Barium	1.5E-1ª	1.0E+0 ^b	2.0E-4°
Cyanide	0.0E+0°	0.0E+0°	0.0E+0°
Organic ^d	• • • • • • •		
2-Butanone	2.6E+1	1.4E+1	3.7E-8

 Table 15

 Transfer Factors Used in Exposure Models for COPECs at DSS Site 1084

^aBaes et al. 1984.

^bDefault value.

^cNo data found for food chain transfers of cyanide; however, because of its high metabolic activity, cyanide is assumed not to transfer in the food chain.

^dSoil-to-plant and food-to-muscle transfer factors from equations developed in Travis and Arms (1988). Soil-to-invertebrate transfer factors from equations developed in Connell and Markwell (1990). All three equations based upon relationship of the transfer factor to the Log K_{ow} value of compound.

COPEC = Constituent of potential ecological concern.

- DSS = Drain and Septic Systems.
- K_{ow} = Octanol-water partition coefficient.
- Log = Logarithm (base 10).

Table 16 Media Concentrations^a for COPECs at DSS Site 1084

COPEC	Soil (Maximum) ^a	Plant Foliage ^b	Soil Invertebrate ^b	Deer Mouse Tissues ^c
Inorganic				
Barium	4.1E+2 ^d	6.2E+1	4.1E+2	
Cyanide	1.0E-1 ^d	0.0E+0	0.0E+0	0.0E+0
Organic				
2-Butanone	2.6E-2	6.7E-1	3.5E-1	5.8E-8

^aIn milligrams per kilogram. All biotic media are based upon dry weight of the media. Soil concentration measurements are assumed to have been based upon dry weight. Values have been rounded to two significant digits after calculation.

^bProduct of the soil concentration and the corresponding transfer factor.

^cBased upon the deer mouse with an omnivorous diet. Product of the average concentration ingested in food and soil times the food-to-muscle transfer factor times a wet weight-dry weight conversion factor of 3.125 (EPA 1993).

dEstimated value.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

AL/9-04/WP/SNL04:rs5558.doc

 Table 17

 Toxicity Benchmarks for Ecological Receptors at DSS Site 1084

		Mammalian NOAELs			Avian NOAELs		
COPEC	Plant Benchmark ^{a,b}	Mammalian Test Species ^{c,d}	Test Species NOAEL ^{d,e}	Deer Mouse NOAEL ^{e,f}	Avian Test Species ^d	Test Species NOAEL ^{d,e}	Burrowing Owl NOAEL ^{e,g}
Inorganic							
Barium	500	rat ^h	5.1	10.5	chicken	20.8	20.8
Cyanide	-	rat ⁱ	68.7	126	-	_	<u> </u>
Organic				· · · · · · · · · · · · · · · · · · ·	*		· · · · · · · · · · · · · · · · · · ·
2-Butanone		rat	1771	3464	_	-	

^aln mg/kg soil dry weight.

^bEfroymson et al. 1997.

^cBody weights (in kg) for the NOAEL conversion are as follows: lab mouse, 0.030; lab rat, 0.350; oldfield mouse, 0.014 (except where noted). ^dSample et al. (1996), except where noted.

eln mg/kg body weight per day.

Based upon NOAEL conversion methodology presented in Sample et al. (1996), using a deer mouse body weight of 0.0239 kg and a mammalian

scaling factor of 0.25.

⁹Based upon NOAEL conversion methodology presented in Sample et al. (1996). The avian scaling factor of 0.0 was used, making the NOAEL independent of body weight.

^hBody weight: 0.435 kg.

Body weight: 0.273 kg.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

kg = Kilogram(s).

- mg/kg = Milligram(s) per kilogram.
- NOAEL = No-observed-adverse-effect level.
 - Insufficient toxicity data.

D-31

RISK ASSESSMENT FOR DSS SITE 1084

The benchmark used for exposure of terrestrial receptors to radiation is 0.1 rad/day. This value has been recommended by the International Atomic Energy Agency (IAEA 1992) for the protection of terrestrial populations. Because plants and insects are less sensitive to radiation than vertebrates (Whicker and Schultz 1982), the dose of 0.1 rad/day should also protect other groups within the terrestrial habitat of DSS Site 1084.

VII.3.4 Risk Characterization

Maximum concentrations in soil and estimated dietary exposures are compared to plant and wildlife benchmark values, respectively. Table 18 presents the results of these comparisons. HQs are used to quantify the comparison with benchmarks for plant and wildlife exposure.

The only HQs that exceed unity are associated with barium for the deer mice. Because of a lack of sufficient toxicity information, the HQ for plants could not be determined for cyanide and 2-butanone. Similarly for the burrowing owl, HQs could not be determined for cyanide and 2-butanone. As directed by the NMED, HIs are calculated for each of the receptors (the HI is the sum of chemical-specific HQs for all pathways for a given receptor). Total HIs are greater than unity for both the omnivorous and insectivorous deer mice, with a maximum HI of 6.2 for the insectivorous deer mouse.

Tables 19 and 20 summarize the internal and external dose-rate model results for U-235 for the deer mouse and burrowing owl, respectively. The total radiation dose rate to the deer mouse is predicted to be 6.6E-6 rad/day and that for the burrowing owl is 5.0E-6 rad/day. These dose rates for the deer mouse and the burrowing owl are lower than the benchmark of 0.1 rad/day.

VII.3.5 Uncertainty Assessment

Many uncertainties are associated with the characterization of ecological risks at DSS Site 1084. These uncertainties result from assumptions used in calculating risk that may overestimate or underestimate true risk presented at the site. For this risk assessment, assumptions are made that are more likely to overestimate exposures and risk rather than to underestimate them. These conservative assumptions are used to be more protective of the ecological resources potentially affected by the site. Conservatisms incorporated into this risk assessment include the use of maximum analyte concentrations measured in soil samples to evaluate risk, the use of wildlife toxicity benchmarks based upon NOAEL values, and the incorporation of strict herbivorous and strict insectivorous diets for predicting the extreme HQ values for the deer mouse. Each of these uncertainties, which are consistent among each of the site-specific ecological risk assessment methodology document for the SNL/NM ER Program (IT July 1998). It should be noted that of the three COPECs, the maximum concentrations of cyanide and barium are estimated values.

Uncertainties associated with the estimation of risk to ecological receptors following exposure to U-235 are primarily related to those inherent in the radionuclide-specific data. Radionuclide-dependent data are measured values that have their associated errors. The dose-rate models used for these calculations are based upon conservative estimates of receptor shape, radiation absorption by body tissues, and intake parameters. The goal is to provide a realistic

COPEC	Plant HQ	Deer Mouse HQ (Herbivorous)	Deer Mouse HQ (Omnivorous)ª	Deer Mouse HQ (Insectivorous)ª	Burrowing Owl HQ
Inorganic					
Barium	8.2E-01	1.0E+0	3.6E+0	6.2E+0	4.5E-2
Cyanide		2.5E-6	2.5E-6	2.5E-6	
Organic					
2-Butanone		3.0E-5	2.3E-5	1.6E-5	
Hlp	8.2E-01	1.0E+0	3.6E+0	6.2E+0	4.5E-2

^aBold values indicate the HQ or HI exceeds unity.

^bThe HI is the sum of individual HQs.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

HI = Hazard index.

HQ = Hazard quotient.

= Insufficient toxicity data available for risk estimation purposes.

D-33

AL/9-04/WP/SNL04:rs5558.doc

	Maximum Activity	Total Dose
Radionuclide	(pCi/g)	(rad/day)
U-235	ND (0.243)	6.6E-6
Total Dose		6.6E-6

Table 19 Total Dose Rates for Deer Mice Exposed to Radionuclides at DSS Site 1084

DSS = Drain and Septic Systems.

MDA = Minimum detectable activity.

ND () = Not detected above the MDA, shown in parentheses.

pCi/g = Picocurie(s) per gram.

Table 20 Total Dose Rates for Burrowing Owls Exposed to Radionuclides at DSS Site 1084

Radionuclide	Maximum Activity (pCi/g)	Total Dose (rad/day)
U-235	ND (0.243)	5.0E-6
Total Dose		5.0E-6

DSS = Drain and Septic Systems.

MDA = Minimum detectable activity.

ND () = Not detected above the MDA, shown in parentheses.

pCi/g = Picocurie(s) per gram.

but conservative estimate of a receptor's internal and external exposure to radionuclides in soil. The dose estimates are conservatively based upon the MDA of U-235, which was not detected at the site.

In the estimation of ecological risk, background concentrations are included as a component of maximum on-site concentrations. Conservatisms in the modeling of exposure and risk can result in the prediction of risk to ecological receptors when exposed at background concentrations. As shown in Table 21, HQs associated with exposures to background are greater than 1.0 for barium. It is therefore likely that the actual risks from barium at DSS Site 1084 are overestimated by the HQs calculated in this assessment because of conservatisms incorporated into the exposure assessment and in the toxicity benchmarks for this COPEC. In the case of barium, exposure to background concentrations may account for the majority (52 percent) of the HQ values shown in Table 18.

Table 21
HQs for Ecological Receptors Exposed to Background Concentrations at DSS Site 1084

		Deer Mouse	Deer Mouse	Deer Mouse	Burrowing
		HQ	HQ	HQ	Owl
COPEC	Plant HQ	(Herbivorous)	(Omnivorous) ^a	(Insectivorous) ^a	HQ
Barium	4.3E-1	5.4E-1	1.9E+0	3.2E+0	2.3E-2

^aBold values indicate the HQ exceeds unity.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

HQ = Hazard quotient.

VII.3.6 Risk Interpretation

Ecological risks associated with DSS Site 1084 are estimated through a risk assessment that incorporates site-specific information when available. All HQ values predicted for the COPECs at this site are found to be less than unity with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52 percent) of the HQ values.

Analysis of the uncertainties associated with these predicted values indicate that they are more likely to overestimate actual risk rather than underestimate it. Based upon this final analysis, the potential for ecological risks associated with DSS Site 1084 is expected to be very low.

VII.3.7 Risk Assessment Scientific/Management Decision Point

After potential ecological risks associated with the site have been assessed, a decision is made as to whether the site should be recommended for CAC without controls or whether additional data should be collected to more thoroughly assess actual ecological risk at the site. With respect to this site, ecological risks are predicted to be very low. The scientific/management decision is to recommend this site for CAC without controls.

VIII. References

Baes, III, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor, 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture," ORNL-5786, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Connell, D.W., and R.D. Markwell, 1990. "Bioaccumulation in the Soil to Earthworm System," *Chemosphere*, Vol. 20, Nos. 1-2, pp. 91-100.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

Dunning, J.B., 1993. CRC Handbook of Avian Body Masses, CRC Press, Boca Raton, Florida.

Efroymson, R.A., M.E. Will, G.W. Suter, II, and A.C. Wooten, 1997. "Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants: 1997 Revision," ES/ER/TM-85/R3, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

EPA, see U.S. Environmental Protection Agency.

Haug, E.A., B.A. Millsap, and M.S. Martell, 1993. "Speotyto cunicularia Burrowing Owl," in A. Poole and F. Gill (eds.), *The Birds of North America*, No. 61, The Academy of Natural Sciences of Philadelphia.

Howard, P.H., 1990. Volume II: "Solvents," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc., Chelsea, Michigan.

IAEA, see International Atomic Energy Agency.

International Atomic Energy Agency (IAEA), 1992. "Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards," *Technical Report Series* No. 332, International Atomic Energy Agency, Vienna, Austria.

IT, see IT Corporation.

IT Corporation (IT), February 1995. "Sensitive Species Survey Results, Environmental Restoration Project, Sandia National Laboratories/New Mexico," IT Corporation, Albuquerque, New Mexico.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Kocher, D.C., 1983. "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil," *Health Physics,* Vol. 28, pp. 193–205.

Nagy, K.A., 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds," *Ecological Monographs*, Vol. 57, No. 2, pp. 111–128.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," *NCRP Report* No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," *in* New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

ORNL, see Oak Ridge National Laboratory.

Oak Ridge National Laboratory (ORNL), 2003. "Risk Assessment Information System," electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sample, B.E., and G.W. Suter, II, 1994. "Estimating Exposure of Terrestrial Wildlife to Contaminants," ES/ER/TM-125, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sample, B.E., D.M. Opresko, and G.W. Suter, II, 1996. "Toxicological Benchmarks for Wildlife: 1996 Revision," ES/ER/TM-86/R3, Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Sample Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories/New Mexico, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Silva, M., and J.A. Downing, 1995. CRC Handbook of Mammalian Body Masses, CRC Press, Boca Raton, Florida.

SNL/NM, See Sandia National Laboratories, New Mexico.

Travis, C.C., and A.D. Arms, 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation," *Environmental Science and Technology*, Vol. 22, No. 3, pp. 271-274.

U.S. Department of Energy (DOE), 1988. "External Dose-Rate Conversion Factors for Calculation of Dose to the Public," DOE/EH-0070, Assistant Secretary for Environment, Safety and Health, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1995. "Hanford Site Risk Assessment Methodology," DOE/RL-91-45 (Rev. 3), U.S. Department of Energy, Richland, Washington.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1988. "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1993. "Wildlife Exposure Factors Handbook, Volume I of II," EPA/600/R-93/187a, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997a. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997b. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1998. "Guidelines for Ecological Risk Assessment," EPA/630/R-95/002F, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 2002a. "Region 6 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.

9/10/2004

U.S. Environmental Protection Agency (EPA), 2002b. "Region 9 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.

U.S. Environmental Protection Agency (EPA), 2002c. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.

U.S. Environmental Protection Agency (EPA), 2003. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington, D.C.

U.S. Fish and Wildlife Service (USFWS), September 1995. "Migratory Nongame Birds of Management Concern in the United States: The 1995 List," Office of Migratory Bird Management, U.S. Fish and Wildlife Service, Washington, D.C.

USFWS, see U.S. Fish and Wildlife Service.

Whicker, F.W., and V. Schultz, 1982. *Radioecology: Nuclear Energy and the Environment*, Vol. 2, CRC Press, Boca Raton, Florida.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

Yu, C., A.J. Zielen, J.J. Cheng, Y.C. Yuan, L.G. Jones, D.J. LePoire, Y.Y. Wang, C.O. Loureiro, E. Gnanapragasam, E. Faillace, A. Wallo III, W.A. Williams, and H. Peterson, 1993a. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD," Version 5.0. Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois.

Yu, C., C. Loureiro, J.J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace, 1993b. "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil," ANL/EAIS-8, Argonne National Laboratory, Argonne, Illinois.

APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous, radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- Ingestion of contaminated soil

9/10/2004

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- · Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different landuse scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following five potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- · Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

Industrial	Recreational	Residential
Ingestion of contaminated drinking water	Ingestion of contaminated drinking water	Ingestion of contaminated drinking water
Ingestion of contaminated soil	Ingestion of contaminated soil	Ingestion of contaminated soil
Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)
Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only
External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces

 Table 1

 Exposure Pathways Considered for Various Land-Use scenarios

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS Il projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

$$= C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
(1)

where;

C = contaminant concentration (site specific) CR = contact rate for the exposure pathway EFD= exposure frequency and duration BW = body weight of average exposure individual AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimate dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_{s} = \frac{C_{s} * IR * CF * EF * ED}{BW * AT}$$

where:

- ۱ Č = Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)
- Č_s = Chemical concentration in soil (mg/kg) IR = Ingestion rate (mg soil/day)
- CF = Conversion factor (1E-6 kg/mg)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_{s} = \frac{C_{s} * IR * EF * ED * \left(\frac{1}{VF} or \frac{1}{PEF}\right)}{BW * AT}$$

where:

- I_s = Intake of contaminant norm contaminant C_s = Chemical concentration in soil (mg/kg) = Intake of contaminant norm contaminant C_s = Chemical concentration in soil (mg/kg) = Intake of contaminant from soil inhalation (mg/kg-day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- VF = soil-to-air volatilization factor (m³/kg)
- PEF = particulate emission factor (m³/kg)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Soil Dermal Contact

$$D_{a} = \frac{C_{s} * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

- D_a = Absorbed dose (mg/kg-day) C_s = Chemical concentration in soil (mg/kg) CF = Conversion factor (1E-6 kg/mg)
- SA = Skin surface area available for contact (cm²/event)
- AF = Soil to skin adherence factor (mg/cm²)
- ABS= Absorption factor (unitless)
- EF = Exposure frequency (events/year)

AL/9-04/WP/SNL04:rs5558.doc

9/10/2004

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{BW * AT}$$

where:

- = Intake of contaminant from water ingestion (mg/kg/day) l Č
- = Chemical concentration in water (mg/liter [L])
- IR = Ingestion rate (L/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{BW * AT}$$

where:

- = Intake of volatile in water from inhalation (mg/kg/day)
- = Chemical concentration in water (mg/L)
- K'' = volatilization factor (0.5 L/m³)
- $IR_i = Inhalation rate (m³/day)$
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1x10-5 and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs. based upon the selected land-use scenarios for nonradiological and radiological COCs,

respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			
······		8.7 (4 hr/wk for	
Exposure Frequency (day/yr)	250 ^{a,b}	52 wk/yr) ^{a,b}	350 ^{a,b}
Exposure Duration (yr)	25 ^{a,b,c}	30 ^{a,b,c}	30 ^{a,b,c}
·····	70 ^{a,b,c}	70 Adult ^{a,b,c}	70 Adult ^{a,b,c}
Body Weight (kg)		15 Child ^{a,b,c}	15 Child ^{a,b,c}
Averaging Time (days)			
for Carcinogenic Compounds	25,550 ^{a,b}	25,550 ^{a,b}	25,550 ^{a,b}
(= 70 yr x 365 day/yr)			
for Noncarcinogenic Compounds	9,125 ^{a,b}	10,950 ^{a,b}	10,950 ^{a,b}
(= ED x 365 day/yr)			
Soil Ingestion Pathway			
Ingestion Rate (mg/day)	100 ^{a,b}	200 Child ^{a,b}	200 Child ^{a,b}
		100 Adult ^{a,b}	100 Adult ^{a,b}
nhalation Pathway			
		15 Child ^a	10 Child ^a
Inhalation Rate (m ³ /day)	20 ^{a,b}	30 Adult ^a	20 Adult ^a
Volatilization Factor (m ³ /kg)	Chemical Specific	Chemical Specific	Chemical Specific
Particulate Emission Factor (m ³ /kg)	1.36E9ª	1.36E9 ^a	1.36E9 ^a
Nater Ingestion Pathway			
	2.4 ^a	2.4ª	2.4ª
Ingestion Rate (liter/day)			
Dermal Pathway			
		0.2 Child ^a	0.2 Child ^a
Skin Adherence Factor (mg/cm ²)	0.2ª	0.07 Adult ^a	0.07 Adulta
Exposed Surface Area for Soil/Dust		2,800 Child ^a	2,800 Child ^a
(cm²/day)	3,300ª	5,700 Adult ^a	5,700 Adulta
Skin Adsorption Factor	Chemical Specific	Chemical Specific	Chemical Specific

 Table 2

 Default Nonradiological Exposure Parameter Values for Various Land-Use Scenarios

^aTechnical Background Document for Development of Soil Screening Levels (NMED 2000). ^bRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

^cExposure Factors Handbook (EPA August 1997).

ED = Exposure duration.

- EPA = U.S. Environmental Protection Agency.
- hr = Hour(s).

kg = Kilogram(s).

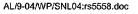
- m = Meter(s).
- mg = Milligram(s).
- NA = Not available.
- wk = Week(s).
- yr = Year(s).

Parameter	Industrial	Recreational	Residential	
General Exposure Parameters		_•		
Exposure Frequency	8 hr/day for 250 day/yr	4 hr/wk for 52 wk/yr	365 day/yr	
Exposure Duration (yr)	25 ^{a,b}	30 ^{a,b}	30 ^{a,b}	
Body Weight (kg)	70 Adult ^{a,b}	70 Adult ^{a,b}	70 Adult ^{a,b}	
Soil Ingestion Pathway				
Ingestion Rate	100 mg/day ^c	100 mg/day ^c	100 mg/day ^c	
Averaging Time (days) (= 30 yr x 365 day/yr)	10,950 ^d	10,950 ^d	10,950 ^d	
Inhalation Pathway				
Inhalation Rate (m ³ /yr)	7,300 ^{d,e}	10,950°	7,300 ^{d,e}	
Mass Loading for Inhalation g/m ³	1.36 E-5 ^d	1.36 E-5 ^d	1.36 E-5 ^d	
Food Ingestion Pathway				
Ingestion Rate, Leafy Vegetables (kg/yr)	NA	NA	16.5 ^c	
Ingestion Rate, Fruits, Non-Leafy Vegetables & Grain (kg/yr)	NA	NA	101.8 ^b	
Fraction Ingested	NA	NA	0.25 ^{b,d}	

Table 3Default Radiological Exposure Parameter Values for Various Land-Use Scenarios

^aRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991). ^bExposure Factors Handbook (EPA August 1997).

^cEPA Region VI guidance (EPA 1996).


^dFor radionuclides, RESRAD (ANL 1993).

eSNL/NM (February 1998).

- EPA = U.S. Environmental Protection Agency.
- g = Gram(s)
- hr = Hour(s).
- kg = Kilogram(s).
- m = Meter(s).
- mg = Milligram(s).
- NA = Not applicable.
- wk = Week(s).
- yr = Year(s).

References

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

DOE and USAF, see U.S. Department of Energy and U.S. Air Force.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment," Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force. U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.

RSI

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

APR 7 2008

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi,

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Quality Control (QC) Report, and copies of gamma spectroscopy analytical results for the entire Drain and Septic Systems (DSS) project, in response to the New Mexico Environment Department Request for Supplemental Information: Environmental Restoration Project SWMU Assessment Reports and Proposals for Corrective Action Complete: Drain and Septic Systems Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120, (DSS Round 6); September 2004, Environmental Restoration Project at Sandia National Laboratories, New Mexico, EPA ID No. NM589011518, dated January 14, 2005.

One hardcopy (consisting of seven volumes) will be delivered to Will Moats (NMED), and an electronic CD will be sent by certified mail to you and Laurie King (EPA).

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner Manager

Enclosure

Mr. J. Bearzi

APR 7 2005

cc w/ enclosure: W. Moats, NMED-HWB (via Certified Mail) L. King, EPA, Region 6 (Via Certified Mail) M. Gardipe, NNSA/SC/ERD J. Volkerding, DOE-NMED-OB

cc w/o enclosure: D. Pepe, NMED-OB J. Estrada, NNSA/SSO, MS 0184 F. Nimick, SNL, MS 1089 R. E. Fate, SNL, MS 1089 M. J. Davis, SNL, MS 1089 D. Stockham, SNL, MS 1087 B. Langkopf, SNL, MS 1087 P. Puissant, SNL, MS 1087 M. Sanders, SNL, MS 1087 A. Blumberg, SNL, MS 0141

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 1 of 7 Master Index

and

Field Duplicate Relative Percent Difference Tables

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories/New Mexico Drain and Septic Systems Project Quality Control Report April 2005

In response to the New Mexico Environmental Department (NMED) request for supplemental information dated January 14, 2005, the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) project is providing a complete set of laboratory analytical quality control (QC) documentation for approximately 1,200 soil and associated field blank and duplicate samples collected at the SNL/NM Drain and Septic System (DSS) sites from 1998 to 2002.

The documentation set is comprised of seven report binders. The first binder contains a master index sorted by DSS Site number, and then by analytical parameter. The master index also includes the site names, binder number in which the pertinent QC information can be found for any individual sample, Analytical Request/Chain of Custody (AR/COC) numbers, ER sample IDs, ER sample numbers, sample collection dates, sample matrix, analytical laboratory, and the laboratory analytical batch number for these DSS samples. The first binder also contains tables of calculated relative percent differences (RPDs) for primary and field duplicate sample pairs collected at the DSS sites from 1998 to 2002.

Binders 2 through 5 include the detailed QC information for General Engineering Laboratories (GEL). Binder 6 includes the same type of information for the ER Chemistry Laboratory (ERCL). Binders 2 through 6 include general narratives which address condition on receipt at the laboratory, and sample integrity issues (proper preservation, shipping, AR/COC, etc.). Technical narratives are also provided for each analytical method used. These narratives address holding time and any other specific QC method conformance issues. QC summaries are included for each QC batch. These include the result data and applicable calculations (percent recovery, RPD) for analytical blanks, spikes, and replicates. Finally, Binder 7 includes both complete gamma spectroscopy data documentation, and the associated batch QC from the SNL Radiation Protection Sample Diagnostic (RPSD) Laboratory. For each data set indicated by the AR/COC number, an individual cross reference summary sheet is provided.

Site #	Site Name	Binder #	COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-001	03-SEP-02	SOIL	VOA-8260	GEL	200753
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059786-001	03-SEP-02	SOIL	VOA-8260	GEL	200753
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-001	03-SEP-02	SOIL	VOA-8260	GEL	200753
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-002	03-SEP-02	SOIL	Cr+6	GEL	200893
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	Cr+6	GEL	200893
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	Cr+6	GEL	200893
1083	Bldg. 6570 SS	Volume 7	605747	6570/1083-DW1-BH1-14-S	059785-003	03-SEP-02	SOIL	GAMMA SPEC	RPSD	201248
1083	Bldg. 6570 SS	Volume 7	605747	6570/1083-DW1-BH1-9-DU	059858-001	03-SEP-02	SOIL	GAMMA SPEC	RPSD	201248
1083	Bldg. 6570 SS	Volume 7	605747	6570/1083-DW1-BH1-9-S	059784-003	03-SEP-02	SOIL	GAMMA SPEC	RPSD	201248
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-002	03-SEP-02	SOIL	TOTAL-CN	GEL	201253
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	TOTAL-CN	GEL	201253
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	TOTAL-CN	GEL	201253
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-002	03-SEP-02	SOIL	GROSS-A/B	GEL	201305
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	GROSS-A/B	GEL	201305
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	GROSS-A/B	GEL	201305
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	PCB-8082	GEL	203080
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	PCB-8082	GEL	203080
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-002	03-SEP-02	SOIL	HE-8330	GEL	200966, 203692
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	HE-8330	GEL	200966, 203692
1083	Bidg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	HE-8330	GEL	200966, 203692
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-14-S	059785-002	03-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-DU	059787-001	03-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317
1083	Bldg. 6570 SS	Volume 4	605667	6570/1083-DW1-BH1-9-S	059784-002	03-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bidg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	PCB-8082	GEL	196833
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	BNA-8270	GEL	196839
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bidg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	HE-8330	GEL	196863

Site #	Site Name	Binder #	COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	HE-8330	GEL	196863
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	Cr+6	GEL	196888
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-001	20-AUG-02	SOIL	VOA-8260	GEL	{196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bidg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-001	20-AUG-02	SOIL	VOA-8260	GEL	196955
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-TB	059680-001	20-AUG-02	AQUEOUS	VOA-8260	GEL	197301
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	TOTAL-CN	GEL	197511
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bidg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	GROSS-A/B	GEL	198983
1084	Bidg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH1-3-S	059673-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH1-8-S	059674-003	20-AUG-02	SOIL.	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH2-3-DU	059675-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH2-3-S	059676-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH2-8-S	059677-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH3-3-S	059678-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 7	605640	6505/1084-DF1-BH3-8-S	059679-003	20-AUG-02	SOIL	GAMMA SPEC	RPSD	201181
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-3-S	059673-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1084	Bidg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH1-8-S	059674-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-DU	059675-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-3-S	059676-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745

DRAIN AND SEPTIC SYSTEMS PROJECT QC MASTER INDEX

Site #	Site Name	Binder #	COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH2-8-S	059677-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1084	Bldg, 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-3-S	059678-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1084	Bldg. 6505 SS	Volume 3	605649	6505/1084-DF1-BH3-8-S	059679-002	20-AUG-02	SOIL	RCRA METALS	GEL	196732, 197745
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	BNA-8270	GEL	200259
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	BNA-8270	GEL	200259
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-001	06-SEP-02	SOIL	VOA-8260	GEL	200753
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-001	06-SEP-02	SOIL	VOA-8260	GEL	200753
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	Cr+6	GEL	200895
1086	Bldg. 6523 \$\$	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	Cr+6	GEL	200895
1086	Bldg. 6523 SS	Volume 7	605747	6523/1086-SP1-BH1-10-S	059793-003	06-SEP-02	SOIL	GAMMA SPEC	RPSD	201248
1086	Bldg. 6523 SS	Volume 7	605747	6523/1086-SP1-BH1-15-S	059794-003	06-SEP-02	SOIL	GAMMA SPEC	RPSD	201248
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	TOTAL-CN	GEL	201253
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	TOTAL-CN	GEL	201253
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	GROSS-A/B	GEL	201305
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	GROSS-A/B	GEL	201305
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	PCB-8082	GEL	203080
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	PCB-8082	GEL	203080
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	HE-8330	GEL	200966, 203692
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	HE-8330	GEL	200966, 203692
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-10-S	059793-002	06-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317
1086	Bldg. 6523 SS	Volume 4	605668	6523/1086-SP1BH1-15-S	059794-002	06-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317
1087	Bldg. 6743 SP	Volume 7	605732	6743/1087-SP1-BH1-13-S	059853-003	17-SEP-02	SOIL	GAMMA SPEC	RPSD	201315
1087	Bldg. 6743 SP	Volume 7	605732	6743/1087-SP1-BH1-8-S	059852-003	17-SEP-02	SOIL	GAMMA SPEC	RPSD	201315
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	PCB-8082	GEL	203015
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	PCB-8082	GEL	203015
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	BNA-8270	GEL	203051
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	BNA-8270	GEL	203051
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	GROSS-A/B	GEL	203332
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	GROSS-A/B	GEL	203332
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	Cr+6	GEL	203665
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	Cr+6	GEL	203665
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-001	17-SEP-02	SOIL	VOA-8260	GEL	203934
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-001	17-SEP-02	SOIL	VOA-8260	GEL	203934
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	ISOIL	HE-8330	GEL	204142
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	HE-8330	GEL	204142
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	TOTAL-CN	GEL	204703
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	TOTAL-CN	GEL	204703
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-13-S	059853-002	17-SEP-02	SOIL	RCRA METALS	GEL	203818, 203489
1087	Bldg. 6743 SP	Volume 4	605674	6743/1087-SP1-BH1-8-S	059852-002	17-SEP-02	SOIL	RCRA METALS	GEL	203818, 203489
1089	Bidg. 6734 SP	Volume 7	605732	6734/1089-SP1-BH1-14-S	059855-003	17-SEP-02	SOIL	GAMMA SPEC	RPSD	201315
1089	Bldg. 6734 SP	Volume 7	605732	6734/1089-SP1-BH1-9-S	059854-003	17-SEP-02	SOIL	GAMMA SPEC	RPSD	201315
1089	Bldg. 6734 SP	Volume 4	605674	6734/1089-SP1-BH1-14-S	059855-002	17-SEP-02	SOIL	PCB-8082	GEL	203015

,

Acronym List

GEL	= General Engineering Laboratory.
ERCL	= Environmental Restoration Chemistry Laboratory.
mg/kg	= milligram per kilogram.
NC	= Not calculated for nondetected results.
ND	= Not detected.
PCB	= Polychlorinated biphenyls.
pCi/g	= picocurie(s) per gram.
RPD	= Relative percent difference and is calculated as:
	(x1 - x2 / ((x1 + x2)/2)) x 100.
	Where:
	x1 = concentration detected in the primary sample
	x2 = concentration detected in the duplicate environmental sample.
RPSD	= Radiation Protection and Sample Diagnostics Laboratory
SVOC	= Semivolatile organic compounds.
µg/kg	= microgram per kilogram.
VOC	= Volatile Organic Compounds.

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for VOC Soil Samples Collected in August 2002

	6505-DE1-BH2:3-S Primary Sample (GEL)	6505-DF1-BH2/3-DB Buplicate Sample (GEU)	
Parameter 1. 1. 1992 The Avenue	standy damper(deer, see	μg/kg	
Acetone	ND	ND	NC
Benzene	ND	ND	NC
Bromodichloromethane	ND	ND	NC
Bromoform	ND	ND	NC
Bromomethane	ND	ND	NC
2-Butanone	25.5	9.98	87.49
Çarbon disulfide	ND	ND	NC
Carbon tetrachloride	ND	ND	NC
Chlorobenzene	ND	ND	NC
Chloroethane	ND	ND	NC
Chloroform	ND	ND	NC
Chloromethane	ND	ND	NC
Dibromochloromethane	ND	ND	NC
1,1-Dichloroethane	ND	ND	NC
1,2-Dichloroethane	ND	ND	NC
1,1-Dichloroethene	ND	<u></u>	NC
cis-1,2-Dichloroethene	ND	ND	NC
trans-1,2-Dichloroethene	ND	ND	NC
1,2-Dichloropropane	ND	ND	NC
cis-1,3-Dichloropropene	ND	ND	NC
trans-1,3-Dichloropropene	ND	ND	NC
Ethyl benzene	ND	ND	NC
2-Hexanone	ND	ND	NC
Methylene chloride	ND	ND	NC
4-methyl-, 2-Pentanone	ND	ND	NC
Styrene	ND	ND	NC
1,1,2,2-Tetrachloroethane	ND	ND	NC
Tetrachloroethene	ND	ND	NC
Toluene	ND	ND	NC
1,1,1-Trichloroethane	ND	ND	NC
1,1,2-Trichloroethane	ND	ND	NC
Frichloroethene	ND	ND	NC
/inyl acetate	ND	ND	NC
/inyi chloride	ND	ND	NC
Kylene	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for SVOC Soil Samples Collected in August 2002

earameter a second second	6505-DF1-BH2-3-S Primary Sample (CEL)	0505 DE1 BH23 DU	
Parameter Calific Anti-		μg/kg	
Acenaphthene	ND	ND	NC
Acenaphthylene	ND	ND	NC
Anthracene	ND	ND	NC
Benzo(a)anthracene	ND	ND	NC
Benzo(a)pyrene	ND	ND	NC
Benzo(b)fluoranthene	ND	ND	NC
Benzo(ghi)perylene	ND	ND	NC
Benzo(k)fluoranthene	ND	ND	NC
4-Bromophenyl phenyl ether	ND	ND	NC
Butylbenzyl phthalate	ND	ND	NC
Carbazole	ND	ND	NC
4-Chloro-3-methylphenol	ND	ND	NC
4-Chlorobenzenamine	ND	ND	NC
bis(2-Chloroethoxy)methane	ND	ND	NC
bis(2-Chloroethyl)ether	ND	ND	NC
bis-Chloroisopropyl ether	ND	ND	NC
2-Chloronaphthalene	ND	ND	NC
2-Chlorophenol	ND	ND	NC
4-Chlorophenyl phenyl ether	ND	ND	NC
Chrysene	ND	ND	NC
m-,p-Cresol	ND	ND	NC
o-Cresol	ND	ND	NC
Di-n-butyl phthalate	ND	ND	NC
Di-n-octyl phthalate	ND	ND	NC
Dibenz[a,h]anthracene	ND	ND	NC
Dibenzofuran	ND	ND	NC
1,2-Dichlorobenzene	ND	ND	NC
1,3-Dichlorobenzene	ND	ND	NC
1,4-Dichlorobenzene	ND	ND	NC
3,3'-Dichlorobenzidine	ND	<u>ND</u>	NC
2,4-Dichlorophenol	NDND	ND	NC
Diethylphthalate	ND	ND	NC
2,4-Dimethylphenol	ND	ND	NC
Dimethylphthalate	ND	ND	NC
Dinitro-o-cresol	ND	ND	NC
2,4-Dinitrophenol	ND	ND	NC
2,4-Dinitrotoluene	ND	ND	NC
2,6-Dinitrotoluene	ND	ND	NC
1,2-Diphenylhydrazine	ND	ND	NC
bis(2-Ethylhexyl)phthalate	ND	ND	NC
Fluoranthene	ND	ND	NC
Fluorene	ND	ND	NC
Hexachlorobenzene	ND	ND	NC
Hexachlorobutadiene	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for SVOC Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DE1-BH2-3-DU Duplicate Sample (GEL 1994	
Parameter ***********	a la como en alta como a sua parte de como a su con de como de la como de la como de la como de como de como de No	μg/kg	4-1-12 1
Hexachlorocyclopentadiene	ND	ND	NC
Hexachloroethane	ND	ND	NC
Indeno(1,2,3-c,d)pyrene	ND	ND	NC
Isophorone	ND	ND	NC
2-Methylnaphthalene	ND	ND	NC
Naphthalene	ND	ND	NC
Nitro-benzene	ND	ND	NC
2-Nitroaniline	ND	ND	NC
3-Nitroaniline	ND	ND	NC
4-Nitroaniline	ND	ND	NC
2-Nitrophenol	ND .	ND	NC
4-Nitrophenol	ND	ND	NC
n-Nitrosodiphenylamine	ND	ND	NC
Pentachlorophenol	ND	ND	NC
Phenanthrene	ND	ND	NC
Phenol	ND	ND	NC
Pyrene	ND	ND	NC
1,2,4-Trichlorobenzene	ND	ND _	NC
2,4,5-Trichlorophenol	ND	ND	NC
2,4,6-Trichlorophenol	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for PCB Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DF1-BH2-3-DU	
Parameter	μg/kg		
Aroclor 1016	ND	ND	NC
Aroclor 1221	ND	ND	NC
Aroclor 1232	ND	ND	NC
Aroclor 1242	ND	ND	NC
Aroclor 1248	ND	ND	NC
Aroclor 1254	ND	ND	NC
Aroclor 1260	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for High Explosives Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DF1-BH2-3-DU	
Parameter	μg/Ι		eres RPD ar
4-Amino-2,6-dinitrotoluene	ND	ND	NC
2-Amino-4,6-dinitrotoluene	ND	ND	NC
1,3-Dinitrobenzene	ND	ND	NC
2,4-Dinitrotoluene	ND	ND	NC
2,6-Dinitrotoluene	ND	ND	NC
HMX	ND	ND	NC
Nitro-benzene	ND	ND	NC
2-Nitrotoluene	ND	ND	NC
3-Nitrotoluene	ND	ND	NC
4-Nitrotoluene	ND	ND	NC
RDX	ND	ND	NC
Tetryl	ND	ND	NC
1,3,5-Trinitrobenzene	ND	ND	NC
2,4,6-Trinitrotoluene	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for Metals Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DF1-BH2-3-DU Duplicate Sample (GEL)	
Parameter	mç	RRD RRD	
Arsenic	3.15	3.17	0.63
Barium	103	137	28.33
Cadmium	0.208	0.197	5.43
Chromium	10.1	9.17	9.65
Lead	5.75	4.86	16.78
Mercury	0.00416	0.00928	76.19
Selenium	ND	ND	NC
Silver	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for Chromium VI Soil Samples Collected in August 2002

e Maria Basara (a se tradal de se	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DF1-BH2-3-DU Duplicate Sample (GEL)	
Parameter	mg/ł	<g< th=""><th>RBD-A</th></g<>	RBD-A
Chromium (VI)	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for Cyanide Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (GEL)	6505-DF1-BH2-3-DU Duplicate Sample (GEC)	
Parameter ^{u I s} e Halts di se	mg/k	g	
Cyanide, total	0.0725	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for Gamma Spectroscopy Soil Samples Collected in August 2002

	6505-DF1-BH2-3-S Primary Sample (RPSD)	Duplicate Sample (RPSD	j. <mark>Zekinini</mark>
Parameter		i/g	CAL RPD
Cesium-137	ND	ND	NC
Thorium-232	0.734	0.719	2.06
Uranium-235	ND	ND	NC
Uranium-238	ND	ND	NC

DSS Site 1084, Bldg. 6505 Septic System RPD's Calculated for Gross Alpha/Beta Soil Samples Collected in August 2002

Parameter av Spire	Primary Sample (GEL)	6505-DF1-BH2-3-DU	RPD +
Gross Alpha	8.29	6.83	19.31
Gross Beta	19.4	17.9	8.04

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 3 of 7

General Engineering Laboratories, Inc. (GEL) QC Data

Environmental Restoration Project

United States Department of Energy Sandia Site Office

GEL QC CROSS REFERENCE

		T]		SAMPLE	1	· ·	
Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	DATE	MATRIX	LAB TEST	BATCH #
1084	Bldg. 6505 SS	059673	001	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	HE-8330	196863
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bidg. 6505 SS	059673	002	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bldg. 6505 SS	059674	001	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	HE-8330	196863
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bldg. 6505 SS	059674	002	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bldg. 6505 SS	059675	001	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	HE-8330	196863
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bldg. 6505 SS	059675	002	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bidg. 6505 SS	059676	001	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bidg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	HE-8330	196863

GEL QC CROSS REFERENCE

011				DIOD ED CAMP LOO	SAMPLE	MATDIX		DATOUR
Site #	Site Name	I		DISP_ER_SAMP_LOC	DATE	MATRIX		BATCH #
	Bldg. 6505 SS	059676	l	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL		196732, 197745
1084	Bldg. 6505 SS	059676	002	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bldg. 6505 SS	059677	001	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	HE-8330	196863
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bldg. 6505 SS	059677	002	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bldg. 6505 SS	059678	001	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	HE-8330	196863
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bldg. 6505 SS	059678	002	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	TOTAL-CN	197511
1084	Bidg. 6505 SS	059679	001	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	VOA-8260	196955
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	BNA-8270	196839
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	Cr+6	196888
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	GROSS-A/B	198983
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	HE-8330	196863
1084	Bidg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	PCB-8082	196833
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	RCRA METALS	196732, 197745
1084	Bldg. 6505 SS	059679	002	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	TOTAL-CN	197511
	Bldg. 6505 SS	059680	001	6505/1084-DF1-BH3-TB	20-AUG-02	AQUEOUS	VOA-8260	197301

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

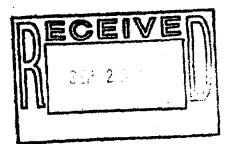
Volume 7 of 7 Radiation Protection & Sample Diagnostics (RPSD) Laboratory Data

> Environmental Restoration Project

United States Department of Energy Sandia Site Office

RPSD QC CROSS REFERENCE

COC 605640 BATCH NO. 201181


Site #	Site Name	SAMPLE#	F#	ER SAMPLE ID	SAMPLE DATE	MATRIX	LAB TEST
1025	Bldg. 6501 E. SS	059668	003	6501E/1025-SP1-BH1-11-S	19-AUG-02	SOIL	GAMMA SPEC
1025	Bldg. 6501 E. SS	059669	003	6501E/1025-SP1-BH1-16-S	19-AUG-02	SOIL	GAMMA SPEC
1026	Bldg. 6501 W. SS	059670	003	6501W/1026-SP1-BH1-12.5-S	19-AUG-02	SOIL	GAMMA SPEC
1026	Bldg. 6501 W. SS	059671	003	6501W/1026-SP1-BH1-17-S	19-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059673	003	6505/1084-DF1-BH1-3-S	20-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059674	003	6505/1084-DF1-BH1-8-S	20-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059675	003	6505/1084-DF1-BH2-3-DU	20-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059676	003	6505/1084-DF1-BH2-3-S	20-AUG-02	SOIL	GAMMA SPEC
1084	Bidg. 6505 SS	059677	003	6505/1084-DF1-BH2-8-S	20-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059678	003	6505/1084-DF1-BH3-3-S	20-AUG-02	SOIL	GAMMA SPEC
1084	Bldg. 6505 SS	059679	003	6505/1084-DF1-BH3-8-S	20-AUG-02	SOIL	GAMMA SPEC
1032	Bidg. 6610 SS	059681	003	6610/1032-OF1-BH1-2-S	20-AUG-02	SOIL	GAMMA SPEC
1032	Bldg. 6610 SS	059682	003	6610/1032-OF1-BH1-7-S	20-AUG-02	SOIL	GAMMA SPEC
1032	Bldg. 6610 SS	059683	003	6610/1032-SP1-BH1-12-S	21-AUG-02	SOIL	GAMMA SPEC
1032	Bldg. 6610 SS	059684	003	6610/1032-SP1-BH1-17-S	21-AUG-02	SOIL	GAMMA SPEC
1028	Bldg. 6560 SS	059686	003	6560/1028-SP1-BH1-14-S	21-AUG-02	SOIL	GAMMA SPEC
1028	Bldg. 6560 SS	059687	003	6560/1028-SP1-BH1-19-S	21-AUG-02	SOIL	GAMMA SPEC
1028	Bldg. 6560 SS	059688	003	6560/1028-SP2-BH1-7-S	22-AUG-02	SOIL	GAMMA SPEC
1028	Bldg. 6560 SS	059689	003	6560/1028-SP2-BH1-12-S	22-AUG-02	SOIL	GAMMA SPEC

COC# 605649

.

CASE NARRATIVE for Sandia National Laboratories ARCOC-605649 SDG#65936A ARCOC-605650 SDG#65936B ARCOC-605651 SDG#65936C ARCOC-605655 SDG#65936D Case No. 7223.02.03.02

2

September 19, 2002

Laboratory Identification:

General Engineering Laboratories, Inc.

Mailing Address:

P.O. Box 30712 Charleston, South Carolina 29417

Express Mail Delivery and Shipping Address:

2040 Savage Road Charleston, South Carolina 29407

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

Sandia collected thirty soil samples and twelve aqueous samples on August 20th, 21st, and 22nd, 2002. The samples arrived at General Engineering Laboratories, Inc., (GEL) Charleston, South Carolina on August 23rd, 2002, for environmental analyses. Cooler clearance (screening, temperature check, etc.) was done upon login. The coolers arrived without any visible signs of tampering and with custody seals intact. The samples were delivered with chain of custody documentation and signatures. The temperature of the samples was 2.0, 3.0, and 4.0°C, as measured from the temperature control bottles.

GENERAL ENGINEERING LABORATORIES PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

One of the vials for the trip blank was received with headspace. There was sufficient sample from the remaining vials to perform the analysis. Sandia was notified. On ARCOC-605649, 605650, and 605651, the metals method listed for soils was 6020. On the equipment blanks on ARCOC-605655, metals method 6010 was listed. Sandia was notified. Client instructed GEL to use the 6010 analysis for both soils and water samples.

The samples were screened according to GEL Standard Operating Procedures (SOP) EPI SOP S-007 rev. 2 "The Receiving of Radioactive Samples." The samples were stored properly according to SW-846 procedures and GEL SOP.

The samples were received and collected as listed in the table below:

ARCOC	SDG#	#of samples	Collection Date	Date Rec'd by Lab
605649	65936A	15	08/20/02	08/23/02
605650	65936B	9	08/20/02,08/21/02	08/23/02
605651	65936C	9	08/21/02,08/22/02	08/23/02
605655	65936D	9	08/22/02	08/23/02

The laboratory received the following samples:

Laboratory ID ARCOC-605649:	Description
65936001	059673-001
65936002	059674-001
65936003	059675-001
65936004	059676-001
65936005	059677-001
65936006	059678-001
65936007	059679-001
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65944001	059680-001

GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

2

Ration and the

ARCOC-605650:

65936008	059681-001
65936009	059682-001
65936010	059683-001
65936011	059684-001
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65944002	059685-001

ARCOC-605651:

65936012	059686-001
65936013	059687-001
65936014	059688-001
65936015	059689-001
65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
65944003	059690-001

ARCOC-605655:

65944004	059639-001
65944005	059639-009
65944006	059639-002
65944007	059639-003
65944008	059639-004
65944009	059639-005
65944010	059639-006
65944011	059639-007
65944012	059639-008

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

> GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

> > 🖍 estand an Danadak Baran

Internal Chain of Custody:

Custody was maintained for the samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Qualifier Flag and Data Package Definitions, Laboratory Certifications, Volatiles Data, Volatiles QC Summary, Semivolatiles Data, Semivolatiles QC Summary, PCB Data, PCB QC Summary, Explosives Data, Explosives QC Summary, Metals Data, Metals QC Summary, General Chemistry Data, General Chemistry QC Summary, Radiochemistry Data, Radiochemistry QC Summary, and Level C Data Package.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Edith M. Kent

Project Manager

GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Ē

🗛 n 1 and an manufaid frames

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG# 65936

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8260A
Prep Method:	SW846 5030A
Analytical Batch Number:	196955
Prep Batch Number:	196953

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
65936001	059673-001
65936002	059674001
65936003	059675001
65936004	059676-001
6593 6 005	059677001
65936006	059678-001
65936007	059679-001
65936008	059681-001
65936009	059682001
65936010	059683-001
65936011	059684001
65936012	059686001
65936013	059687-001
65936014	059688-001
65936015	059689-001
1200290123	VBLK01 (Blank)

1200290126 VBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification

SOP Reference

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the calibration verification standard (CCV) requirements were met.

Quality Control (OC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

QC Sample Designation

Matrix spikes were analyzed on a sample of similar matrix that was in SNLS sample delivery group/work order, # 65745.

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

SDG# 65936 –VOA

Page 2 of 4

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Sample re-analysis was not required for this sample delivery group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

8

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W 1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

SDG# 65936 -- VOA Page 3 of 4

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOAI	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Тгар С
VOA4	HP5890/HP5972	J&WI	Trap K
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Trap K
VOA8	HP6890/HP5973	J&Wi	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

<u>omments</u>

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Stell, Date: 09-13-02 **Reviewer:**

SDG# 65936 -- VOA Page 4 of 4

QC Summary Report Date: September 13, 2002 Sandia National Laboratories Client : Page 1 of 3 MS-0756 P.O. Box 5800 Albuquerque, New Mexico Pamela M. Puissant Contact: 65936 Workorder: QC Units RPD% REC% Parmname NOM Sample Qual Range Anlst Date Time Voistile-GC/MS Federal Batch 196955 OC1200290126 LCS 1.1-Dichloroethylene 50.0 44.0 (75%-134%) SHJ 08/27/02 11:51 ug/kg 88 Benzene 50.0 49.2 ug/kg 98 (80%-120%) Chlorobenzene 50.0 ug/kg 98 48.7 (82%-118%) Toluene 50.0 48.0 ug/kg 96 (74%-115%) Trichloroethylene 50.0 48.0 ug/kg 96 (80%-119%) **Bromofluorobenzene 50.0 47.6 95 ug/kg (69%-138%) ******Dibromofluoromethane 50.0 48.6 ug/kg 97 (67%-137%) **Tolucae-d8 50.0 47.4 95 ug/kg (67%-139%) QC1200290123 MB 1.1.1-Trichlorocthane ND U vg/kg 08/27/02 13:14 1,1,2.2-Teirachloroethane u ND ug/kg 1,1,2-Trichloroethane U ND ug/kg 1,1-Dichloroethane U ND ug/kg 1.1-Dichloroethylene U ND ug/kg 1,2-Dichloroethane U ND ug/kg 1,2-Dichloropropane U ND ug/kg 2-Butanone ND U ug/kg 2-Hexanone U ND ug/kg 4-Methyl-2-pentanone U ug/kg ND Acetone U ND ug/kg Benzene U ND ug/kg Bromodichloromethane U ND ug/kg Bromoform U ND ug/kg Bromomethane Ũ ND ug/kg Carbon disulfide ND U ug/kg Carbon tetrachloride ND U ug/kg Chlorobenzenc U ND ug/kg Chloroethane U ND ug/kg Chloroform U ND ug/kg Chloromethane υ ND ug/kg Dibromochloromethane ND U ug/kg Ethylbenzene U ND ag∕kg Methylene chloride U ND ug/kg U ND Styrene ug/kg ND Tetrachloroethylene U ug/kg Toluene U ND ug/kg Trichloroethylene U ND ug/kg Vinyl acctate U ND ug/kg Vinyl chloride ND υ ug/kg ND Xylenes (total) υ ug/kg cis-1,2-Dichloroethylene U ND ug/kg cis-1.3-Dichloropropylene ND ug/kg υ

QC	S	um	mai	y

				_	and the second distance of the second distanc						
Workorder: 65936									Page 2	of 3	
Parmname .	NOM	···	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Volatile-GC/MS Federal Batch 196955											
trans-1,2-Dichloroethylene				U	ND	ug/kg					
trans-1,3-Dichloropropylene				U	ND	ng/kg					
**Bromofluorobenzene	50.0				48.7	ug/kg		98	(69%-138%)		
*"Dibromofluoromethane	50,0				48.5	ug/kg		97	(67%-137%)		
*"Toluene-d8	50.0				47.6	ug/kg		95	(67%-139%)		
QC1200290124 65745001 PS											
1,1-Dichloroethylene	50.0	U	ND		46.8	ug/L		94	(55%-128%)		08/30/02 00:47
Benzene	50.0	U	ND		51.3	ug/L		103	(53%-118%)		
Chlorobenzene	50.0	U	ND	•	50.4	ug/L		101	(53%-116%)		
Toluene	50.0	U	ND		50.5	ug/L		101	(56%-113%)		
Trichloroethylenc	50.0	U	ND		50.2	ug/L		100	(54%-119%)		
**Bromofluorobenzene	50.0		48.5		47.8	ug/L		96	(69%-138%)		
**Dibromofluoromethane	50.0		48.1		47.0	ug/L		94	(67%-137%)		
**Toluene-d8	50.0		47.6		47.5	ug/L		95	(67%-139%)		
QC1200290125 65745001 PSD											
1.1-Dichloroethylene	50.0	U	ND		43.3	ug/L	8	87	(0%-21%)		08/30/02 01-11
Benzene	50.0	٠U	ND		47.8	ug/L	7	96	(0% -17%)		
Chlorobenzenc	50.0	U	ND		46.7	ug∕L	8	93	(0%-21%)		
Toluenc	50.0	U	ND		47.7	ug/L	6	95	(0%-25%)		
Trichloroethylene	50.0	U	ND		46.4	ug/L	8	93	(0%-25%)		
**Bromofluorobenzene	50.0		48.5		48.1	ug/L		96	(69%-138%)		•
**Dibromofluoromethane	50.0		48.1		47.7	ng/L		95	(67%-137%)		
**Toluenc-d8	50.0		47.6		47.4	ug/L		95	(67%-139%)		

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

		QC Sun	mary				
Workorder: 65936					Page 3	of 3	
Parmuame	NOM	Sample Qual	QC Units	RPD%	REC% Range	Anlet	Date Time
N/A indicates that spike recover	ery limits do not apply when		exceeds spike conc	by a factor o	f 4 or more.		

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

7

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG 65936-1

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by GC/MS by Methods 8260B/5030B
Analytical Method:	SW846 8260B DOE-AL
Analytical Batch Number:	197301

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
65944001	059680001
65944002	059685001
65944003	059690001
65944004	059639001
65944005	059639-009
1200290971	VBLK01 (Method Blank)
1200290979	VBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the calibration verification standard (CCV) requirements were met.

SDG #65936-1 - VOA Page 1 of 3

6

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

QC Sample Designation

Matrix spike analyses were not required for this sample delivery group/work order.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Reanalyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

Sulfur dioxide was found in these samples when a TIC search report was generated. It is believed that the sulfur dioxide should not be present in these samples, and its presence is believed to be the result of system contamination from the analysis of a sample that contained a high concentration of this compound.

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

SDG #65936-1 - VOA Page 2 of 3 Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W 1	Trap C
VOA4	HP5890/HP5972	J&W 1	Тгар К
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J&W 1	Trap K
VOA9	HP6890/HP5973	J&W 1	Trap C

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLPor CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

09--16-02 tate Date: **Reviewer**:

SDG #65936-1 - VOA Page 3 of 3

			· <u>Q</u>	C Sum	mary			Report D	ate: Septemb	er 16, 2	002	
7	4S-0756 P.O. Box 5800						Report Date: September 16, 2002 Page 1 of 2					
	libuquerque, Pameia M. Pul											
Workorder: 6	5944											
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anksi	D <u>at</u> e	Ti
Votatile-GC/MS Fed Bauch 197	israi 1301 .											
QC1200290979	LCS					_			•			
1,1-Dichloroethyle	ne	50.0			45.3	ug/L		91	(78%-140%)	RMB	08/27/03	2 08
Benzenc		50.0			48.5	ug/L			(78%-119%)			
Chlorobenzene		50. 0			50.0	ug/L			(82%-120%)			
Toluene		50.0			50.8	ug/L			(68%-133%)			
Trichloroethylene		50.0			47.2	ng/L.		94	(80%-123%)			
**Bromofluorobenze **Dibromofluoromet		50.0 50.0			45.4 50.9	ug/L			(67%-136%) (62%-148%)			
**Toluenc-d8	nane	50.0			50.9 48.3	ug/L ug/L		•	(58%-139%)			
QC1200290971 1.1.1-Trichlorgetha	MB			U	ND	ug/L					08/27/02	. 14
1.1.2,2-Tetrachlord		· .		U	ND	ug/L					00/2/102	
1.1.2. Trichloroeth				U	ND	ug/L						
1.1-Dicblorocthane				U	ND	ug/L						
1,1-Dichloroethyle				Ŭ	ND	ug/L						
1.2-Dichloroethan				Ŭ	ND	ug/L			•		•	
1,2-Dichloropropa				Ŭ	ND	ug/L						
2-Butanone				Ū	ND	ug/L						
2-Hexanone				Ū	ND	ug/L						
4-Methyl-2-pentan	onc			Ū	ND	ug/L						
Acetone				U	ND	ug/L						
Benzene				υ	ND	ug/L.						
Bromodichloromet	hane			U	ND	ug/L						
Bromoform				U	ND	ug/L						
Bromomethane				U	ND	ug/L		•				
Carbon disulfide				U	ND	ug/L						
Carbon tetrachloric	le.			U	ND	ug/L						
Chlorobenzene				U	ND	ug/L						
Chloroeihane				U	ND	ug/L						
Chiaroform				U	ND	ug/L						
Chloromethanc Dibromochloromet	h			ប ប	ND ND	ug/L ug/L						
Ethylbenzene	transe.			Ŭ	ND	ug/L						
Methylene chloride				ប	ND	ug/L						
Styrenc			•	Ŭ	ND	ug/L						
Tetrachlorocthylen	e.			Ũ	ND	ug/L						
Talucne	-			Ū	ND	ng/L,	•					
Trichloroethylene				Ū	ND	ng/L						
Vinyi chloride				Ū	ND	ug/L						
Xylenes (total)				U	ND	ug/L		1				
cis-1,2-Dichloroeti	ylene			Ū	ND	ug/L						
cis-1.3-Dichloropre				U	ND	¢g∕L						
trans-1.2-Dichlorod				U	ND	ug/L						

•

<u>OC</u> Summary

NOM	Sample Qual	QC	Units RPD%	REC?	Range Anist	Date Time
	υ	ND	ug/L			
50.0		59.9	ug/L	120	(67%-136%)	
50.0		51.9	ug/L	104	(62%-148%)	
50.0		49.7	ug/i.	100	(58%-139%)	
	50.0 50.0	NOM Sample Qual U 50.0 50.0	NOM Sample Qual QC U ND 50.0 59.9 50.0 51.9	NOM Sample Qual QC Units RPD% U ND ug/L 50.0 59.9 ug/L 50.0 51.9 ug/L	NOM Sample Qual QC Units RPD% REC% U ND ug/L 50.0 59.9 ug/L 120 50.0 51.9 ug/L 104	NOM Sample Qual QC Units RPD% REC% Range Anist U ND ug/L 50.0 59.9 ug/L 120 (67%-136%) 50.0 51.9 ug/L 104 (62%-148%)

Notes:

SHI - ala - ala

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded

J Estimated value, the analytic concentration fell above the effective MDL and below the effective PQL.

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

7

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 65936

Method/Analysis Information

Procedure:	Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8270C
Prep Method:	SW846 3550B
Analytical Batch Number:	1 96839
Prep Batch Number:	196838
Sample Analysis	

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002

Page 1 of 5

65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
1200289823	SBLK01 (Blank)
1200289824	SBLK01LCS (Laboratory Control Sample)
1200289825	059679-002MS (Matrix Spike)
1200289826	059679-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitrosodiphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Page 2 of 5

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 65936022(059679-002).

MS Recovery Statement

The matrix spike (MS) recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Page 3 of 5

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Page 4 of 5

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

derbert Maux 09/12/02 Date: **Reviewer:**

			<u>QC Su</u>	mmary			Report D	iate: Septemb	er 12. 2	002
M	andia National Lal IS-0756 .O. Box 5800	boratories			•			Page 1		
	lbuquerque, New I amela M. Puissant									
Workorder: 6	5936			•						
Parmame	· · · · · · · · · · · · · · · · · · ·	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Tin
Sami-Volatiles-GC/M Betch 1968										
QC1200289824	LCS .	1470		621			30	(270.010)	107 11	08/28/02 10
1,2,4-Trichlorobeaz		1670		631	ug/kg		38	(27%-91%)		08/28/02 10
1,4-Dichlorobenzen		1670		568	ug/kg		34	(25%-85%)		
2,4,5-Trichloropher		3330		1960	ug/kg		59	(42%-96%)		
2,4,6-Trichloropher	lol	3330		1630	ug/kg		49	(32%-91%)		
2,4-Dinitrotoluene		1670		1150	ug/kg		69	(50%-109%)		
2-Chlorophenol		3330		1360	ug/kg		41	(31%-85%)		
4-Chloro-3-methylp	henol	3330		1870	ug/kg		56	(34%-97%)		
4-Nitrophenol		3330		3130	ug/kg		94	(22%-128%)		
Accamphthene		1670		814	ug/kg		49	(39%-98%)		
Hexachlorobenzene		1670		904	ug/kg		54	(41%-105%)		
Hexachlorobutadier	lê	1670		534	ug/kg		32	(21%-94%)		
Hexachloroethane		1670	• .	526	ng/kg		32	(25%- 86 %)		
N-Nitrosodipropyla	mine	1670	,	709	ug/kg		43	(34%-90%)		
Nilrobenzene		1670		730	ug/kg	•	44	(30%-84%)		
Pentachlorophenol		3330		1790	ug/kg		54	(27%-109%)		
Phenol		3330	•	1680	ug/kg		50	(31%-83%)		
Pyrene		1670		886	ug/kg		53	(37%-110%)		
m.p-Cresols		3330		1510	ug/kg		45	(40%-83%)		
o-Cresol		3330		1560	ug/kg		47	(34%-86%)		
2,4,6-Tribromophen	ഹ	3330		1820	ug/kg		55	(23%-111%)		
2-Fluorobiphenyl		1670		743	ug/kg		45	(21%-104%)		
2-Fluorophenol		3330		1360	ug/kg		41	(22%-93%)		
Nitrobenzene-d5		1670		678	ug/kg		41	(24%-93%)		
Phenol-d5							51	(22%-99%)		
	•	3330 1670		1690	ug/kg		51 58			
p-Terphenyl-d14	MP	1010		961	ug/kg		. 65.	(30%-133%)		
QC1200289323 1,2,4-Trichlorobenz	MB		. U	ND	ug/kg					08/28/02 10:
1.2-Dichlorobenzen			. U U	ND	ug/kg ug/kg					JUI20/02 10.
1,3-Dichlombenzen	-		U U	ND	ug/kg					
1.4-Dichlorobenzen			บ บ	ND	ug/kg ug/kg					
2,4,5-Trichlorophen			U U	ND	ug/kg ug/kg					
				ND						
2,4,6-Trichlorophen	M .		U		ug/kg					
2,4-Dichlorophenol			U	. ND	ug/kg					
2,4-Dimethylphenol			U T	ND	ug/kg					
2,4-Dinitrophenol			U U	ND	ug/kg					
2,4-Dinitrotoluene			υ	ND	ug/kg					
2,6-Dinitrotoluene			U	ND	ug/kg					
2-Chloronaphthalena	Ċ		U	ND	ug/kg					
2-Chlorophenol			ប	ND	ug/kg					
2-Methyl-4,6-dinitre			U	ND	ug/kg					
2-Methylnaphthalen	¢ .		U	ND	ug/kg	•				
2-Nitrophenol			U	ND .	ug/kg					

Senix Votatile-C-CMS 39 Sub: 196339 3-Dickinopeanythenytcher U ND ug/tg 4-Chiron-amilian U ND ug/tg A-camapthylese U ND ug/tg A-camapthylese U ND ug/tg A-camapthylese U ND ug/tg Beatx(s)ghrowne U ND ug/tg Beatx(s)ghrowne U ND ug/tg Beatx(s)ghrowne U ND ug/tg Distorytyphaniate U ND ug/tg	Workorder: 65936	·						Page 2 of 4	
Back 19839 3,3-Dicklandbezidine U ND up/kg 4-Charoo,3-mathylphenylcher U ND up/kg A-charopholyhose U ND up/kg A-charopholyhose U ND up/kg Anthracese U ND up/kg Benocolyhurses U ND	Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
4-BiomosphenylphanylohanylUNDug/kg4-ChierovalinoUNDug/kg4-ChierovalinoUNDug/kg4-ChierovalinoUNDug/kg4-ChierovalinoUNDug/kg4-ChierovalinoUNDug/kgAceanylphylphanylohanyUNDug/kgAceanylphylphanylohanUNDug/kgAceanylphylphanylohanUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgBenoro(a)pyranoUNDug/kgDistrophylphthalanoUNDug/kgDistrophylphthalanoUNDug/kgDistrophylphthalanoUNDug/kgDistrophylphthalanoUNDug/kgBenoro(a)pythhthalanoUNDug/kgBenoro(a)pythhthalanoUNDug/kgBenoro(a)pythhthalanoUNDug/kg <td< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></td<>					•				
4-Chicrosinsing/bienolUNDug/kg4-Chicrospheny/pheny/etherUNDug/kg4-Chicrospheny/pheny/etherUNDug/kg4-AttraceneUNDug/kgAceasphiltenoUNDug/kgAceasphiltenoUNDug/kgAceasphiltenoUNDug/kgAceasphiltenoUNDug/kgAceasphiltenoUNDug/kgBenzo(a)promeUNDug/kgBenzo(a)promeUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kgBenzo(b)fuoranbenaUNDug/kg<	3,3'-Dichlorobenzidine	•	' U		ug/kg				
4-Chicrophenyi	4-Bromophenylphenylether		U	ND	ug/kg			÷	
4-Charcophenylbanylchar U ND ug/kg 4-Charcophenylbanylchar U ND ug/kg Aceanylbhanol U ND ug/kg Aceanylbhanol U ND ug/kg Aceanylbhanol U ND ug/kg Anthracene U ND ug/kg Benacol/alphraceno U ND ug/kg Benacol/alphraceno U ND ug/kg Benacol/filouronthena U ND ug/kg Carbaxole U ND ug/kg Carbaxole U ND ug/kg Districtionthena U ND ug/kg Districtionthena U ND ug/kg Districtionthalate U <td< td=""><td></td><td></td><td>U</td><td>ND</td><td></td><td></td><td></td><td></td><td></td></td<>			U	ND					
4-Chirophenyiphenyikenyi U ND ug/kg 4-Nirophenol U ND ug/kg Aceanyihtheno U ND ug/kg Aceanyihthylese U ND ug/kg Aceanyihthylese U ND ug/kg Benzo(a)pyrose U ND ug/kg Benzo(a)pyrose U ND ug/kg Benzo(a)pyrose U ND ug/kg Benzo(a)pyrose U ND ug/kg Benzo(b)portubenc U ND ug/kg Di-borty/phthalate U ND ug/kg Di-borty/phthalate U ND ug/kg Dibenzofunca U ND ug/kg Dibenzofunca U ND ug/kg Dibenzofunca U ND ug/kg			U	ND 1	ug/kg				
4-Nitropiend U ND up/kg Aceanphthylese U ND ug/kg Anthracese U ND ug/kg Benzo(a)ubtracene U ND ug/kg Benzo(a)ubtracene U ND ug/kg Benzo(b)ubtracene U ND ug/kg Benzo(b)ubrachene U ND ug/kg Benzo(b)ubrachene U ND ug/kg Benzo(b)ubrachene U ND ug/kg Benzo(b)ubrachene U ND ug/kg Carbazole U ND ug/kg Carbazole U ND ug/kg Din-botylphthalate U ND ug/kg Din-botylphthalate U ND ug/kg Dinbotylphthalate U ND ug/kg Dinbotylphthalate U ND ug/kg Dinbotylphthalate U ND ug/kg Dinbotylphthalate U ND ug/kg<	4-Chlorophenylphenylether			ND					
AceasphthoseUNDug/kgAccauphthyleseUNDug/kgAnthraceneUNDug/kgBenzo(s)promeUNDug/kgBenzo(s)promeUNDug/kgBenzo(s)promeUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBenzo(s)fuorambeneUNDug/kgBotz)fubrazishthalateUNDug/kgDis-botz)fyhthalateUNDug/kgDis-botz)fyhthalateUNDug/kgDisenzo(s)fuorambeneUNDug/kgDisenzo(s)fuorambeneUNDug/kgDisenzo(s)fuorambeneUNDug/kgDisenzo(s)fubralateUNDug/kgDisenzo(s)fubralateUNDug/kgDisenzo(s)fuorambeneUNDug/kgBiotzifyfichalateUNDug/kgDisenzo(s)fuorambeneUNDug/kgBiotzifyfichalateUNDug/kgBiotzifyfichalateUNDug/kgBiotzifyfichalateUNDug/kgBiotzifyfichalateUNDug/kgBiotzifyfichalateUNDug/kg<				ND					
AcemaphylyleseUNDug/kgAnthraceneUNDug/kgBenrod (anthraceneUNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kgDis-octylphthalateUNDug/kgDis-noctylphthalateUNDug/kgDis-noctylphthalateUNDug/kgDistroderanUNDug/kgDistroderanUNDug/kgDistroderanUNDug/kgBenrod (anthracene)UNDug/kgBenrod (anthracene)UNDug/kg				ND					
AndbressenUNDug/kgBenox(a)pathraseneUNDug/kgBenox(a)presenUNDug/kgBenox(b)fluorantheneUNDug/kgBenox(b)fluorantheneUNDug/kgBenox(b)fluorantheneUNDug/kgBenox(b)fluorantheneUNDug/kgBenox(b)fluorantheneUNDug/kgBenox(b)fluorantheneUNDug/kgBour)fbhalateUNDug/kgChrysseeUNDug/kgDienox(h)anthraceneUNDug/kgDienox(h)anthraceneUNDug/kgDienox(h)anthraceneUNDug/kgDienox(h)anthraceneUNDug/kgDienox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)anthraceUNDug/kgBenox(h)a				ND					
Benzo(4)anthracene U ND ug/kg Benzo(4)apprece U ND ug/kg Benzo(4)ppromentatione U ND ug/kg Benzo(4)ppromentatione U ND ug/kg Benzo(4)ppromentatione U ND ug/kg Benzo(4)phromathene U ND ug/kg Benzo(4)phromathene U ND ug/kg Carbuzols U ND ug/kg Carbuzols U ND ug/kg Di-n-outylphthalate U ND ug/kg Dibezzo(4)phromathene U ND ug/kg Boronca							-		
Bence (a) pyreseUNDug/kgBence (b) furoranheneUNDug/kgBence (b) furoranheneUNDug/kgBence (b) pyrese (b) ug/kgUNDug/kgCarbacoleUNDug/kgCarbacoleUNDug/kgCarbacoleUNDug/kgCarbacoleUNDug/kgDis-outylphthalateUNDug/kgDis-outylphthalateUNDug/kgDis-outylphthalateUNDug/kgDis-outylphthalateUNDug/kgDisnotoful/bhthateUNDug/kgDisnotoful/bhthateUNDug/kgDisnotoful/bhthateUNDug/kgDisnotoful/bhthateUNDug/kgDisnotoful/bhthateUNDug/kgDisnotoful/bhthateUNDug/kgExachlorobarzaneUNDug/kgHexachlorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneUNDug/kgIsochorobarzaneU									
Bearsolybihoraubene U ND ug/kg Benzolybihorsylobrashene U ND ug/kg Benzolybihorsylobrashene U ND ug/kg Butybenzylobrashene U ND ug/kg Carbasole U ND ug/kg Carbasole U ND ug/kg Dis-butybihthalate U ND ug/kg Dis-basolybihthalate U ND ug/kg Dibenzo(a,b)auhracene U ND ug/kg Dibenzolybihthalate	· -								
Betzo(ght)perylencUNDug/kgBezzo(ght)perylencUNDug/kgBezzo(k)fluorantheneUNDug/kgCathazoleUNDug/kgCathazoleUNDug/kgDie-buty/phthalateUNDug/kgDie-buty/phthalateUNDug/kgDie-buty/phthalateUNDug/kgDie-buty/phthalateUNDug/kgDienco(a,))authneeneUNDug/kgDiethouty/phthalateUNDug/kgDiethylphthalateUNDug/kgDiethylphthalateUNDug/kgDiethylphthalateUNDug/kgDiethylphthalateUNDug/kgBarcenaUNDug/kgFluorantheseUNDug/kgFluorantheseUNDug/kgFluorantheseUNDug/kgFluorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFloorantheseUNDug/kgFlooranthese <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Benzo(k)fluorambene U ND ug/kg Buiybenzylphthalate U ND ug/kg Chryseol U ND ug/kg Di-a-buiylphthalate U ND ug/kg Di-a-buiylphthalate U ND ug/kg Dibenzo(k,)lanthacene U ND ug/kg Dibenzo(k,)lanthacene U ND ug/kg Dibenzo(k,)lanthacene U ND ug/kg Dibenzo(k,)lanthacene U ND ug/kg Dibenzofkaria U ND ug/kg Bitaria (incorbenzease U ND ug/kg Hexachlorobenzease U ND ug/kg Indeno(1,2,3-ed)pyrene U ND ug/kg Indeno(1,2,3-ed)pyrene U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Butylbenzylphthalate U ND ug/kg Carbazole U ND ug/kg Chracole U ND ug/kg Di-a-butylphthalate U ND ug/kg Di-a-octylphthalate U ND ug/kg Dibenzo(a).banbracene U ND ug/kg Diptenzylphthalate U ND ug/kg Diptenzylphthalate U ND ug/kg Hexachlorobanzene U ND ug/kg Hexachlorobanzene									
Carbazote U ND ug/tg Ctrysece U ND ug/tg Di-a-ocylphthalate U ND ug/tg Di-a-ocylphthalate U ND ug/tg Dibenzofuran U ND ug/tg Bioenon U ND ug/tg Fluorente U ND ug/tg Hexachlorochane U ND ug/tg Ideeno(1,2,3-ed)pyrene U ND ug/tg Isophorone							•		
ChryseneUNDug/kgDis-butylphthalateUNDug/kgDis-octylphthalateUNDug/kgDibenzo(a,h)anthraceneUNDug/kgDibenzofuranUNDug/kgDibenzofuranUNDug/kgDibenzylphthalateUNDug/kgDibenzylphthalateUNDug/kgDibenzylphthalateUNDug/kgDibenzylphthalateUNDug/kgDibenzylphthalateUNDug/kgDibenzylphthalateUNDug/kgEluorantheneUNDug/kgHexachlorobenzeneUNDug/kgHexachlorobenzeneUNDug/kgHexachlorobenzeneUNDug/kgHexachlorobenzeneUNDug/kgHexachlorobenzeneUNDug/kgIndeno(1,2,3-cd)pyreneUNDug/kgNeitosotipropylamineUNDug/kgNeitosotipropylamineUNDug/kgPenachlorophenolUNDug/kgPenachlorophenolUNDug/kgPienathreneUNDug/kgPienathreneUNDug/kgPienolUNDug/kgbis(2-ChloroethoxymethaneUNDug/kgbis(2-Chloroethoxy)nethaneUNDug/kgbis(2-ChloroethoyPylotherUNDug/kgbis(2-									
Di-a-butyphthalateUNDug/kgDi-a-cctyphthalateUNDug/kgDibanzo(a,h)anthraceneUNDug/kgDibanzo(a,h)anthraceneUNDug/kgDiethydphthalateUNDug/kgDimethylphthalateUNDug/kgDimethylphthalateUNDug/kgDimethylphthalateUNDug/kgFluorantheneUNDug/kgFluorantheneUNDug/kgHexachlorobenzzaneUNDug/kgHexachlorobenzzaneUNDug/kgHexachlorobenzzaneUNDug/kgHexachlorobenzzaneUNDug/kgIdadmol(1,2,3-cd)pyreneUNDug/kgIsophoroneUNDug/kgNerobenzzaneUNDug/kgIsophoroneUNDug/kgNerobenzaneUNDug/kgIsophoroneUNDug/kgNerobenzaneUNDug/kgPenachlorophenolUNDug/kgPreneUNDug/kgPreneUNDug/kgbis(2-ChlorophyniethaneUNDug/kgbis(2-ChlorophyniethaneUNDug/kgbis(2-ChlorophyniethaneUNDug/kgbis(2-ChlorophyniethaneUNDug/kgbis(2-ChlorophyniethaneUNDug/kgbis(2-Chlorophyniethan			-						
Di-a-octylphihalate U ND ug/kg Dibenzo(a,b)anthracene U ND ug/kg Dibenzo(a,b)anthracene U ND ug/kg Dibenzofuran U ND ug/kg Elucrantheme U ND ug/kg Fluorant U ND ug/kg Hexachlorobenzene U ND ug/kg Hexachlorochance U ND ug/kg Hexachlorochane U ND ug/kg Isophoran U ND ug/kg Nexachlorochane U ND ug/kg Isophoran U ND ug/kg Nexachlorochane U ND ug/kg Isophorane U ND ug/kg Nexachlorochane U ND ug/kg Isophorane U ND ug/kg Nexachlorochane U ND ug/kg <tr< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	•								
Dibenzo(a,b)anthracene U ND ug/kg Dibenzofuran U ND ug/kg Dimethylphthalate U ND ug/kg Dimethylphthalate U ND ug/kg Diphethylphthalate U ND ug/kg Diphethylphthalate U ND ug/kg Diphethylphthalate U ND ug/kg Diphethylphthalate U ND ug/kg Fluoranthene U ND ug/kg Fluoranthene U ND ug/kg Hexachlorobenzene U ND ug/kg Hexachlorobenzene U ND ug/kg Indeno(1,2,3-cd)pyrene U ND ug/kg Isophtoone U ND ug/kg Netwoodipropylamine U ND ug/kg Netwoodipropylamine U ND ug/kg Penachlorophenol U ND ug/kg Phenadlorophenol U ND<									
Dibenzofuran U ND ug/kg Diethylphthalate U ND ug/kg Dimethylphthalate U ND ug/kg Diphenylamine U ND ug/kg Fluoranthene U ND ug/kg Fluoranthene U ND ug/kg Hexachlorobuzatiene U ND ug/kg Hexachlorobutatiene U ND ug/kg Indeno(1,2,3-cd)pyrene U ND ug/kg Sophorone U ND ug/kg Nirobenzene U ND ug/kg Phenol U ND ug/kg Phenol U ND ug/kg									
DiethylphthalateUND ug/kg DimethylphthalateUND ug/kg DiphenylamineUND ug/kg FluorantheneUND ug/kg FluorantheneUND ug/kg HexachlorobenzeneUND ug/kg HexachlorobenzeneUND ug/kg HexachlorocyclopentatieneUND ug/kg Indeno(1,2,3-cd)pyreneUND ug/kg IsophoroneUND ug/kg NetworkineUND ug/kg Indeno(1,2,3-cd)pyreneUND ug/kg IsophoroneUND ug/kg NetworkineUND ug/kg IsophoroneUND ug/kg StroboroneUND ug/kg PentachlorophenolUND ug/kg PhenolUND ug/kg PhenolUND ug/kg PyreneUND ug/kg bis(2-Chlorocihoxy)methaneUND ug/kg bis(2-Chloroc							•		
DimethylphthalateUNDug/kgDiphenylaminaUNDug/kgFluorantheneUNDug/kgFluorantheneUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgHexachlorobenzensUNDug/kgIsophoroneUNDug/kgIsophoroneUNDug/kgNervieuzensUNDug/kgPenachlorophenolUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethox)methaneUNDug/kgbis(2-Chloroethox)methaneUNDug/kgbis(2-ChlorostopropylphareUNDug/kgbis(2-ChlorostopropylphareUNDug/kgbis(2-ChlorostopropylphareUNDug/kgbis(2-ChlorostopropylphareUNDug/kgbis(2-ChlorostopropylphareUNDug/kgbis(2-ChlorostopropylphareUNDug/kgmp-CreasisUNDug/kgm-NitropallineUNDug/kg <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		• •							
Diphenylamine U ND ug/kg Fluoranthene U ND ug/kg Fluoranthene U ND ug/kg Hexachlorobenzene U ND ug/kg Hexachlorobutadiene U ND ug/kg Hexachlorocyclopentadiene U ND ug/kg Indenco(1,2,3-cd)pyrene U ND ug/kg Isophorone U ND ug/kg Naphthalene U ND ug/kg Nitrobenzene U ND ug/kg Phenol U ND ug/kg Phenol U ND ug/kg bis(2-Chlorochoxy)methane U	֥								
Fuoranthene U ND ug/kg Fluorene U ND ug/kg Hexachlorobenzene U ND ug/kg Hexachlorobutadiene U ND ug/kg Isophorone U ND ug/kg N=nvitrosodipropylamine U ND ug/kg Nitrobenzene U ND ug/kg Penatchlorophenol U ND ug/kg Phenol V ND ug/kg bis(2-Chlororethoxy)methane U N			-						
FluoreneUNDug/kgHexachlorobenzeneUNDug/kgHexachlorobuadieneUNDug/kgHexachlorocyclopentadieneUNDug/kgHexachlorochaneUNDug/kgIndeno(1,2,3-cd)pyreneUNDug/kgIsophoroneUNDug/kgN-NitrusodipropylamineUNDug/kgNaphthaleneUNDug/kgPentachlorochenolUNDug/kgPentachlorophenolUNDug/kgPhenanthreneUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chlorochoxy)methaneUNDug/kgbis(2-Chlorochoxy)methaneUNDug/kgbis(2-Chlorochoxy)methaneUNDug/kgbis(2-Chlorochoxy)methaneUNDug/kgbis(2-Shlynexy))phthalateUNDug/kgm-NitroanilineUNDug/kg									
Hexachlorobenzene U ND ug/kg Hexachlorobutadiene U ND ug/kg Hexachlorocyclopentediene U ND ug/kg Indeno(1,2,3-cd)pyrene U ND ug/kg isophorone U ND ug/kg N-Nitrosodipropylamine U ND ug/kg Naphulatene U ND ug/kg Nitrobenzene U ND ug/kg Pentachlorophenol U ND ug/kg Phenol U ND ug/kg Pyrene U ND ug/kg bis(2-Chlorothoxy)methane U ND ug/kg bis(2-Chlorothyl) ether U ND ug/kg bis(2-Chlorothoxy)methane U ND ug/kg bis(2-Chlorothyl) ether U ND ug/kg bis(2-Chlorothyl) ether U ND ug/kg mp-Cresols U ND ug/kg mp-Cresols U ND ug/kg									
Hexachlorobutadiene U ND ug/kg Hexachlorocylopentadiene U ND ug/kg Hexachlorocylopentadiene U ND ug/kg Hexachlorocylopentadiene U ND ug/kg Indeno(1,2,3-od)pyrene U ND ug/kg isophorone U ND ug/kg N-Nitusodipropylamine U ND ug/kg Naphthalene U ND ug/kg Nitrobenzene U ND ug/kg Pentachlorophenol U ND ug/kg Phenol U ND ug/kg Pyrene U ND ug/kg bis(2-Chlorothoxy)methane U ND ug/kg bis(2-Chlorothy) ether U ND ug/kg bis(2-Chlorothy) pther U ND ug/kg bis(2-Chlorothy))pthalate U ND ug/kg mp-Cresols U ND ug/kg m-Nitroaniline U									
HexachlorocyclopentadieneUND ug/kg HexachlorocthaneUND ug/kg Indeno(1,2,3-cd)pyreneUND ug/kg isophoroneUND ug/kg N-NitrosodipropylamineUND ug/kg NaphthaleneUND ug/kg NitrobenzeneUND ug/kg PentachlorophenolUND ug/kg PhenonUND ug/kg PhenonUND ug/kg PhenonUND ug/kg PyreneUND ug/kg bis(2-Chloroethoxy)methaneUND ug/kg bis(2-Chloroethoyl) etherUND ug/kg bis(2-Chloroethoyl) etherUND ug/kg m,P-CresolsUND ug/kg m,NitroanilineUND ug/kg									
Hexachloroethane U ND ug/kg indeno(1,2,3-cd)pyrene U ND ug/kg isophorone U ND ug/kg N-Nitrosodipropylamine U ND ug/kg Naphthalene U ND ug/kg Nitrobeatzene U ND ug/kg Penachlorophenol U ND ug/kg Phenonithrene U ND ug/kg Phenoni U ND ug/kg Pyrene U ND ug/kg bis(2-Chloroethoxy)methane U ND ug/kg bis(2-Chloroethoyl) ether U ND ug/kg bis(2-Chloroethoyl)pthalate U ND ug/kg bis(2-Chloroethoyl)ether U ND ug/kg bis(2-Chloroethoyl)ether U ND ug/kg bis(2-Chloroethoyl)pthalate U ND ug/kg m.p-Cresols U ND ug/kg m.Nitroaniline U ND ug/kg									
indemo(1,2,3-cd)pyreneUNDug/kgisophoroneUNDug/kgN-NitrosodipropylamineUNDug/kgNaphthaleneUNDug/kgNitrobenzeneUNDug/kgPenachlorophenolUNDug/kgPhenotUNDug/kgPhenotUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)phthalateUNDug/kgm.p-CresolsUNDug/kgm.NitroanilineUNDug/kg									
isophoroneUNDug/kgN-NiurosodipropylamineUNDug/kgNaphthaleneUNDug/kgNitrobenzeneUNDug/kgPentachlorophenolUNDug/kgPhenonlUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgm.p-CresolsUNDug/kgm.NitroamilineUNDug/kg									
N-NitrosodipropylamineUNDug/kgNaphthaleneUNDug/kgNitrobenzeneUNDug/kgPenachlorophenolUNDug/kgPhenonlUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgm.p-CresolsUNDug/kgm.NitroanilineUNDug/kg									,
Naphthalene U ND ug/kg Nirobenzenc U ND ug/kg Penachlorophenol U ND ug/kg Phenanthrenc U ND ug/kg Phenol U ND ug/kg Pyrene U ND ug/kg bis(2-Chloroethoxy)methane U ND ug/kg bis(2-Chloroethoxy)phthalate U ND ug/kg m.p-Cresols U ND ug/kg m-Nirroaniline U ND ug/kg			U	ND					
NitrobenzencUNDug/kgPentachlorophenolUNDug/kgPhenanthrencUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgm.p-CresolsUNDug/kgm.NitroamilineUNDug/kg									
PenuachlorophenolUNDug/kgPhenanthrencUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgmbis(2-Chloroethoxy)methaneUNDug/kgmodelUNDug/kgmodelUNDug/kg			Ľ		ug/kg				
PhenanthrencUNDug/kgPhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Ehlylhexyl)phthalateUNDug/kgm.p-CresolsUNDug/kgm.NitroanilineUNDug/kg	Nitrobenzene		., С	ND	ug/kg				
PhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Ethylhexyl)phthalateUNDug/kgm.p-CresolsUNDug/kgm-NitroanilineUNDug/kg	Pentachlorophenol		υ	ND	ug/kg				
PhenolUNDug/kgPyreneUNDug/kgbis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Ethylhexyl)phthalateUNDug/kgm.p-CresolsUNDug/kgm-NitroanilineUNDug/kg	Phenanthrenc		U	ND	ug/kg				
bis(2-Chloroethoxy)methane U ND ug/kg bis(2-Chloroethyl) ether U ND ug/kg bis(2-Chloroisopropyl)ether U ND ug/kg bis(2-Ethylhexyl)phthalate U ND ug/kg m.p-Cresols U ND ug/kg m-Nitroaniline U ND ug/kg	Phenol		U	ND					
bis(2-Chloroethoxy)methaneUNDug/kgbis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Ethylhexyl)phthalateUNDug/kgm.p-CresolsUNDug/kgm-NitroanilineUNDug/kg	Pyrene		U	ND	ug/kg				
bis(2-Chloroethyl) etherUNDug/kgbis(2-Chloroisopropyl)etherUNDug/kgbis(2-Ethylhexyl)phthalateUNDug/kgm.p-CresolsUNDug/kgm-NitroanilineUNDug/kg									
bis(2-Chloroisopropyl)ether U ND ug/kg bis(2-Ethylhexyl)phthalate U ND ug/kg m.p-Cresols U ND ug/kg m-Nitroaniline U ND ug/kg									
bis(2-Ethylhexyl)phthalate U ND ug/kg m.p-Cresols U ND ug/kg m-Nitroaniline U ND ug/kg									
m.p-Cresols U ND ug/kg m-Nitroaniliae U ND ug/kg									
m-Nitroaniliue U ND ug/kg									
	o-Cresol		Ŭ	ND	ug/kg				
o-Nitroaniline U ND ug/kg									
p-Nitroaniline U ND ug/kg									

12

					LILLESS Y						
Workorder: 65936		-							Page 3	ର୍ଣ 4	
Parmname	NON	1	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal Batch 196839											
**2,4,6-Tribromophenol	3330		-		1750	ug/kg		53	(23%-111%)		
**2-Fluorobiphenyl	1670				843	ug/kg		51 ·	(21%-104%)		
**2-Fluorophenoi	3330				1950	ug/kg		58	(22%-93%)		
**Nirrobenzenc-d5	1670				959	ug/kg		58	(24%-97%)		
**Phenol-d5	3330				2260	ug/kg		68	(22%-99%)	•	
**p-Terphenyl-d14	1670				1200	ug/kg		72	(30%-133%)		
QC1200289825 65936022 MS											
1,2,4-Trichiorobenzene	1 67 0	U	ND		835	ug/kg		50	(15%-112%)		08/28/02 13:41
1,4-Dichlorobenzene	1670	U	ND		739	ug/kg		44	(19%-89%)		
2,4,5-Trichlorophenol	3330	U	ND		2090	ug/kg		63			
2,4,6-Trichlorophenol	3330	ប	· ND		1790	ug/kg		54			
2,4-Dinitrotoluene	1670	U	ND		1170	ug/kg		70	(32%-117%)		
2-Chlorophenol	3330	U	ND		1880	ug/kg		56	(13%-101%)		
4-Chloro-3-methylphenol	3330	U	ND		2450	ug/kg		74	(23%-114%)		
4-Nitrophenol	3330	U	ND		1710	ug/kg		51	(20%-126%)		
Acenaphthene	1670	U	ND		927	ug/kg			(15%-114%)		
Hexachiorobenzene	1670	U	ND		829	ug/kg		50	•••••		
Hexachlorobutadiene	1670	U	ND		680	ug/kg		41			
Hexachloroethane	1670	U	ND		673	ug/kg		40		•	
N-Nitrosodipropylamine	1670	ບ່	ND		995	ug/kg			(18%-106%)		
Nitrobenzone	1670	U	ND		1050	ug/kg		63	, ,		
Peutschlorophenol	3330	U	ND		1740	ug/kg			(34%-110%)		
Phenol	3330	Ū	ND		2120	ug/kg			(17%-104%)		
Pyrene	1670	Ū	ND		897	ug/kg			(26%-130%)		
m.p-Cresols	3330	Ū	ND		2210	ug/kg		66	(
o-Cresol	3330	Ū	ND		2170	ug/kg		65			
**2,4,6-Tribromophenol	3330	-	1980		1850	ug/kg			(23%-111%)		
**2-Fluorobiphenyl	1670		806		894	ug/kg			(21%-104%)		
**2-Fluorophenol	3330		1750		1850	ug/kg		56	(22%-93%)		
**Nitrobenzene-d5	1670		868		947	ug/kg		57	(24%-97%)		
**Phenol-d5	3330		1800		2110	ug/kg		63	(22%-99%)		
**p-Terphenyl-d14	1670		1090		942	ug/kg			30%-133%)		
QC1200289826 65936022 MSD								• •			
1,2,4-Trichlorobenzene	1670	U	ND		719	ug/kg	15	43	(0%-31%)		08/28/02 14:02
1,4-Dichlorobenzene	1670	U	ND		639	ug/kg	15	38	(0%-36%)		
2,4,5-Trichlorophenol	3330	U	ND		2030	ug/kg	3	61	•		
2,4,6-Trichlorophenol	3330	U	· ND		1380	ug/kg	26	42			
2,4-Dinitrotoluene	1670	U	ND		1060	ug/kg	10	64	(0%-37%)		
2-Chlorophenol	3330	Ū	ND		1540	ug/kg	20	46	(0%-34%)		
4-Chloro-3-methylphenol	3330	U	ND		2050	ug/kg	18	62	(0%-34%)		
4-Nitrophenol	3330	U	ND	•	1580	ug/kg	8	48	(0%-35%)		
Acenaphthene	1670	U	ND	-	745	ug/kg	22	45	(0%-33%)		
Hexachlorobenzene	1670	σ	ND		708	ug/kg	16	43			
Hexachlorobutadiene	1670	U	ND		590	ug/kg	14	35			
Hexachloroethane	1670	บ	ND		608	ug/kg	10	37			
N-Nitrosodipropylamine	1670	U	ND		784	ug/kg	24	47	(0%-29%)		
									····		
Nitrobenzene	1670	U	ND		891	ug/kg	16	54			

Workorder: 65936									Page 4	of 4	
Parmname	NOM	I	Sample Q)nal	<u>QC</u>	, Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-GC/MS Federal Batch 196839									•		
Phenol	3330	U	ND		1620	ug/kg	27	49	(0%-37%)		
Pyrene.	1670	υ	ND		821	ug/kg	9	49	(0%-39%)		
m,p-Cresols	3330	U	ND		1640	ug/kg	30	49	•		
o-Cresol	3330	U	ND		1750	ug/kg	21	53			
**2,4,6-Tribromophenol	3330		1980		1580	ug/kg		47	(23%-111%)		
**2-Fluorobiphenyl	1670		806		684	ug/kg		41	(21%-104%)		
**2-Fluorophenol	3330		1750		1590	ug/kg		48	(22%-93%)		
**Nitrobenzene-d5	1670		868		796	ug/kg		48	(24%-97%)		
**Phenol-d5	3330		1800		1640	ng/kg		49	(22%-99%)		
**p-Terphenyl-d14	1670		1090		884	ug/kg		53	(30%-133%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the sample of the duplicate RPD's are not applicable where the sample of the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 65936-1

Method/Analysis Information

Procedure:	Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8270C
Prep Method:	SW846 3510C
Analytical Batch Number:	196776
Prep Batch Number:	196775

<u>Sample Analysis</u>

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
65944006	059639-002
1200289659	SBLK01 (Blank)
1200289660	SBLK01LCS (Laboratory Control Sample)
1200289661	059639-002MS (Matrix Spike)
1200289662	059639-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as

Page 1 of 5

stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitrosodiphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

Target analytes were detected in the blank below the reporting limit.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 65944006(059639-002).

MS Recovery Statement

The matrix spike (MS) recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Page 2 of 5

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation No nonconformance report (NCR) was generated for this SDG.

Manual Integrations No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Page 3 of 5

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alitech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

deabert March Date: 04/12/02 **Reviewer:**

Workorder: 65944	Page 2 o							£ 4		
Parmaame	NOM	Sample Qual	ŌĆ	Units	RPD%	REC%	Range Anist	Date Time		
Semi-Volatiles-GC/MS Federal			-							
Batch 196776										
2-Nitrophenol		υ	ND	u g/L	-		•			
3,3'-Dichlorobenzidine		Ŭ	ND	ug/L						
4-Bromophenylphenylether		Ū	ND	ug/L						
4-Chloro-3-methylphenol		บ	ND	ug/L						
4-Chkroaniline		Ŭ	ND	ug/L						
4-Chlorophenylphenylether		· Ŭ	ND	ug/L						
4-Nitrophenol		Ŭ	ND	ug/L						
Acenaphthene		Ŭ	ND	ug/L						
Accuaphthylene		Ŭ	ND	ug/L						
Anthracepe		Ŭ	ND	ug/L						
Benzo(a)anthracene		Ŭ	ND	ug/L						
Benzo(a)pyrene		Ŭ	ND	ug/L			. ·			
Benzo(b)fluoranthene		Ŭ	ND	ug/L						
Benzo(ghi)perylene		. U	ND							
Benzo(k)fluoranthene			ND	ug/L,						
Butylbenzylphibalate		UUU	ND	ug/L						
Carbazole				ц у/L						
		U	ND	ug/L						
Chrysene Die hendelstelete		. U	ND	ug/L						
Di-n-butylphthalate	•	. <u>0</u>	ND	ug/L						
Di-o-octylphthalate		U	ND	ug/L						
Dibenzo(a,h)anthracene		U	ND	ug/L						
Dibenzofuran		U	ND	ug/L						
Diethylphthalate	•	U	ND	ug/L						
Dimethylphthalate		U	ND	ug/L						
Diphenylamine		U	ND	ug/L						
Fluoranthene		U	ND	ug/L	•					
Fluorene		U	ND	ug/L						
Hexachlorobenzene		U	ND	. ug/L						
Hexachlorobutadiene		U	ND	ug/L						
Hexachlorocyclopcutadiene		U	ND	ug/L						
Hexachloroethane		U	ND	ug/L						
Indeno(1,2,3-cd)pyrene	•	U	ND	. ug/L						
isophorone		U	ND	ug/L.						
N-Nitrosodipropylamine		. U	ND	ug/L						
Naphthalenc		U	· ND	ug/L						
Nitrobenzene		U	ND	ug/L						
Pentachlorophenol		U	ND	- ug/L						
Phenanthrepe		υ	ND	ug/L						
Pheno]		U	ND	ug/L						
Pyrene		U	ND	ug∕L						
his(2-Chloroethoxy)methane	· ·	U	ND	ug/L						
bis(2-Chloroethyl) ether		U	ND	ug/L.						
bis(2-Chloroisopropyl)ether		Ψ	ND	ug/L						
bis(2-Ethylhexyl)phthalate		J	2.20	ug/L						
n,p-Cresols		U	ND	ug/L						
n-Nitroaniline		U I	ND	ug/L						
o-Cresol		U	ND	ug/L						
o-Nitroaniline		ប	ND	ug/L						

	<u>YO DUMMINI J</u>										
Workorder: 65944		<u> </u>				Page 3 of 4					
Parmname	NON	Ā	Sample (Qual	<u> QC</u>	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal Batch 196776											
p-Nitroaniline				U	ND	ug/L					
**2,4,6-Tribromophenol	100			U	102	ug/L		102	(37%-126%)		
**2-Fluorobiphenyl	50.0				42.2	ug/L		85	(32%-109%)		
**2-Fluorophenol	100				54.1	ug/L.		54	(13%-73%)		
**Nitrobenzene-d5	50.0				42.4	ug/L.		85	(33%-107%)		
**Phenol-dS	100				33.5	ug/L		34	(14%-66%)		
**p-Terphenyi-d14	50.0				49.6	ug/L.		99	(36%-130%)		
QC1200289661, 65944006 MS		•			1710	49.2			(3010-13010)		
Pyridipe	100				0.00	ug/L					08/27/02 17:37
1,2,4-Trichlorobenzene	100	U	ND		78.3	ug/L		78	(44%-102%)		
1,4-Dichlorobenzene	100	U	ND		69.3	ug/L,		69	(48%-95%)		
2,4,5-Trichlorophenol	200	U	ND		166	ug/L		83	, ,		
2,4,6-Trichlorophenol	200	U	ND		159	ug/L		79			
2.4-Dinitrotoivene	100	U	ND		82.3	ug/L		82	(48%-120%)		
2-Chloropheaol	200	Ŭ	ND		142	ug/L		71	(32%-98%)		
4-Chloro-3-methylphenol	200	ប	ND		170	ug/L		85	(40%-107%)		
4-Nitrophenol	200	Ü	ND		93.2	ug/L		47	(16%-78%)		
Accamphthene	100	U	ND		83.1	ug/L			(32%-127%)		
Hexachiorobenzene	100	บ่	ND		93.9	ug/L		94 ·			
Hexachlorobutadiene	100	ប	ND		75.9	ug/L		76			
Hexachloroethane	100	ប	ND	•	66.1	ug/L		66			
N-Nitrosodipropylamine	100	υ	ND		79.6	ug/L		80	(44%-119%)		
Nitrobenzene	100	υ	ND		74.1	ag/L.		74	. ,		
Pentachlorophenol	200	U	ND		185	ug/L		92	(44%-104%)		·
Phenol	200	U	ND		89.6	ug/L		45	(15%-70%)		
Pyrene	100	U	ND		86.0	ug/L.		86	(29%-142%)		
m,p-Cresols	200	U	ND		138	ug/L		69			
o-Cresol	200	U	ND		145	ug/L		73			
**2,4,6-Tribromophenol	200				183	ug/L		92	(27%-126%)		
**2-Fluorobiphenyl	100				70.1	ug/L		70	(32%-109%)		
**2-Fluorophenol	200				117	ug/L,		59	(13%-73%)		
**Nitrobenzene-d5	100				68.5	ug/L		69	(33%-107%)		
**Phenol-d5	200				88.1	ug/L		44	(14%-66%)		
**p-Terphenyl-d14	100				83.1	ug/L		83	(36%-130%)		
QC1200289662 65944006 MSD											
Pyridine	100				0.00	ug/L					08/27/02 20:51
1,2,4-Trichlorobenzene	100	ប	ND		83.3	u g/L ,	6	83	(0%-20%)		
1,4-Dichlorobenzene	100	U	ND	-	73.7	ug/L	6	74	(0%-20%)		
2,4,5-Trichlorophenol	200	υ	ND		176	ug/L	5	88			
2,4,6-Trichlorophenol	200	U	ND		166	ug/L	4	83			
2,4-Dinitrotolucae	100	Ų	ND		88.4	ug/L	7	88	(0%-16%)		
2-Chlorophenol	200	υ	ND		151	ug/L	6	76	(0%-25%)		
4-Chloro-3-methylphenol	200	ប	ND		173	ug/L.	2	87	(0%-25%)		
4-Nitrophenol	200	U	ND		110	ug/L.	17	55	(0%-25%)		
Acenaphthene	100	U	ND		88 A	ng/L	6	88	(0%-24%)		
Hexachlorobenzene	100	U	ND		97.9	ug/L	4	98			
Hexachlorobutadiene	100	U	ND		79.0	ug/Ľ,	4	79			
Hexachloroethane	100	U	ND	•	69.6	ug/L	5	70			

P

Workorder: 63944							Page 4 of 4						
Parmame	NOM	[<u> </u>	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time	
Semi-Volatiles-GC/MS Federal Batch 196776													
N-Nitrosodipropy lamine	100	U	ND		83.2	ug/L	4	83	(0%-20%)				
Nitrobenzene	100 -	U	ND		78.1	ug/L	5	78					
Pentachlorophenol	200	U	ND		197	ug/L	7	99	(0%-17%)		۰.		
Phenol	200	U	ND		93.7	ng/L	· 4	47	(0%-29%)				
Ругеве	100	U	ND		91.0	ug/L	6	91	(0%-30%)				
m,p-Cresols	200	U	ND		147	ng/L	6	73					
o-Cresol	200	U	ND		157	ug/L	8	79					
**2,4,6-Tribromophenol	200				194	ug/L		9 7	(27%-126%)				
**2-Fluorobiphenyl	100				74.7	ug/L		75	(32%-109%)				
**2-Fluorophenol	200				126	ug/L		63	(13%-73%)				
**Nitrobenzene-d5	100				72.8	ug/L		73	(33%-107%)				
**Phenol-d5	200				96.0	ug/L		48	(14%-66%)				
**p-Texphenyl-d14	100	•			91.0	ug/L		91	(36%-130%)				

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H . Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless gualified on the QC Summary.

HPLC Narrative Sandia National Labs (SNLS) SDG 65936

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)
Analytical Method:	SW846 8330
Prep Method:	SW846 8330 PREP
Analytical Batch Number:	19686 3
Prep Batch Number:	196862

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

	Sample ID	•	Client ID
6	5936016	059673-002	
6	5936017	059674-002	
6	5936018	059675-002	
6	5936019	059676-002	
6	5936020	059677-002	
6	5936021	059678-002	
6	5936022	059679-002	
6	5936023	059681-002	
6	5936024	059682-002	
6	5936025	059683-002	
6:	5936026	059684-002	
6	5936027	059686-002	
	-		

Page 1 of 8

65936028	059687-002
65936029	059688-002
65936030	059689-002
1200289876	XBLK01 (Blank)
1200289877	XBLK01LCS (Laboratory Control Sample)
1200289878	059673-002MS (Matrix Spike)
1200289879	059673-002MSD (Matrix Spike Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Page 2 of 8

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 65936016 (059673-002).

MS Recovery Statement

The matrix spike recoveries were not within the SNLS static limits. The spike recoveries were within the GEL SPC established acceptance limits. The GEL SPC limits are in the QC Summary. Please see the emails in the Miscellaneous Section.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Page 3 of 8

Technical Information

Holding Time Specifications

All samples in this analytical batch met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Sample Reextract/Reanalysis

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4126 has been generated for this SDG.

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

Page 4 of 8

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)
Analytical Method:	SW846 8330
Prep Method:	SW846 8330 PREP
Analytical Batch Number:	201462
Prep Batch Number:	201460

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
·	Dage 5 of 9

65936028	059687-002
65936029	059688-002
65936030	059689-002
1200300280	XBLK02 (Blank)
1200300281	XBLK02LCS (Laboratory Control Sample)

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section.

QC Sample Designation

A matrix spike was performed on a client sample of similar matrix in SDG 65475.

Page 6 of 8

MS Recovery Statement

The matrix spike recoveries were not within the SNLS static limits. The spike recoveries were within the GEL SPC established acceptance limits. The GEL SPC limits are in the QC Summary. Please see the emails in the Miscellaneous Section.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4126 has been generated for this SDG.

Tetryl was not within the acceptance limits in the laboratory control sample (LCS). As a result the samples were reextracted out of holding for Tetryl only. The reextracted analysis passed for Tetryl. Both analyses are reported. Please see nonconformance report 4126. Please see the emails in the Miscellaneous Section.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

The samples were concentrated prior to analysis to achieve the required detection limit.

Page 7 of 8

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

broker Maren Date:_ Qq **Reviewer:**

QC Summary Report Date: September 25, 2002 **Client**: Sandia National Laboratories Page 1 of 4 MS-0756 P.O. Box 5800 Albuquerque, New Mexico Contact: Pamela M. Puissant Workorder: 65936 NOM Sample Qual QC RPD% REC% Date Time Parmineme Units Range Anist **HPLC Explosives Federal** 196863 Batch QC1200289877 LCS (77%-124%) JLW 08/28/02 19:44 1.3.5-Trinitrobenzene 800 736 92 ug/kg 2,4,6-Trinitrotoluene 800 802 100 (80%-120%) u**g/kg** 2,4-Dinitrotoluene 800 730 ug/kg 91 (77%-122%) 2,6-Dinitrotoluene 800 768 ug/kg 96 (74%-121%) 2-Amino-4,6-dinitrotoluene 800 770 ug/kg 96 (81%-125%) 4-Amino-2,6-dinitrotolucne 800 699 87 (79%-123%) ug/kg HMX 800 796 100 (84%-131%) ug/kg Nicobenzese ug/kg 800 728 91 (75%-125%) RDX 800 807 101 (80%-123%) ug/kg Tetryi 800 411 ug/kg 51* (65%-124%) m-Dinitrobenzene 800 752 ug/kg 94 (77%-124%) m-Nitrotoluene 92 800 738 ug/kg (77%-117%) n-Nitrotoluene 800 732 92 (75%-119%) ug/kg p-Nitrotoluene 748 800 94 (76%-121%) ug/kg 1,2-dinitrobenzene 400 378 ug/kg 94 (71%-118%) QC1200289876 MB ND 1.3.5-Trigitrobenzene U 08/28/02 19:02 ug/kg 2.4.6-Trinitrotoluene ND U ug/kg 2,4-Dinitrotohuene U \mathbf{ND} ug/kg 2,6-Dinitrotoluene U ND ug/kg 2-Amino-4,6-dinitrotoluene ND U ug/kg 4-Amino-2,6-dinitrotolucae U ND ug/kg HMX U ND ug/kg Nitrobenzene ug/kg U ND RDX ND U ug/kg Tetryl υ ND ug/kg m-Dinitrobenzene U ND ug/kg m-Nitrotoluene Ð ND ug/kg o-Nitrotolucne U ND ug/kg p-Nitrotoluene ND U ue/ke **1,2-dinitrobenzene 400 364 ug/kg 91 (71%-118%) QC1200289878 65936016 MS 1,3,5-Trinitrobenzene 800 U ND 732 ug/kg 92 (66%-133%) 08/28/02 20:26 2,4,6-Trinitrotoluene 800 υ ND 753 ug/kg 94 (77%-132%) 2,4-Dinitrotoluene 800 υ ND 731 ug/kg 91 (61%-134%) 2,6-Dinitrotoluene 800 787 98 (70%-121%) U ND ug/kg 2-Amino-4,6-dinitrotoluene U 713 89 (79%-124%) 800 ND ug/kg 4-Amino-2,6-dinitrotoluene U 585 73 800 ND ug/kg (71%-120%) HMX 800 U 773 97 (75%-138%) ND ug/kg Nitrobenzene 800 U ND 739 ug/kg 92 (72%-120%) RDX 800 υ 736 92 (61%-136%) ND ug/kg Tetryl 800 U ND 632 ug/kg 79 (65%-135%)

		<u>VC Su</u>	unnar A						
Wotkorder: 65936							Page 2	of 4	
Parmmanne	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Ankt	Date Time
HPLC Explosives Federal Batch 196863									
m-Dinitrobenzene	800 U	ND	759	ug/kg	•	95	(75%-125%)		
m-Nitrotoluene	800 U	ND	730	ug/kg		91	(73%-116%)		
o-Nitrotoluene	U 008	ND	736	ug/kg		- 92	(68%-122%)		
p-Nitrotoluene	800 U	ND	753	ug/kg		94	(67%-125%)		
**1,2-dinitrobenzene	400	373	377	ug/log		94	(71%-118%)		
QC1200289879 65936016 MSD									
1,3,5-Trinitrobenzene	800 U	ND	843	ug/kg	14	105	(0%-20%)		08/28/02 21:07
2,4,6-Trinitrotoluene	800 U	ND	846	ug/kg	12	106	(0%-20%)		
2,4-Dinitrotolaene	800 U	ND	836	ug/kg	13	104	(0%-24%)		
2,6-Dinitrotoluene	800 U	ND	892	ug/kg	13	111	(0%-21%)		
2-Amino-4,6-dinitrotoluene	800 U	ND	798	ug/kg	· 11	100	(0%-20%)		
4-Amino-2,6-dinitrotolucae	800 U	ND	627	ug/kg	7 ·	78	(0%-20%)		
HMX	800 U	ND	889	ug/kg	14	111	(0%-38%)		
Nitrobenzone	800 Ŭ	ND	844	ug/kg	13	106	(0%-21%)		
RDX	800 U	ND	844	ug/kg	14	105	(0%-35%)		
Tetryi	806 U	ND	727	ug/kg	14	91	(0%-30%)		
m-Dinitrobenzene	800 U	ND	853	ug/kg	12	107	(0%-23%)		
m-Nitrotoluene	800 U	ND	845	ug/kg	15	106	(0%-20%)		
o-Nitrotoluene	5 800 U	ND	845	ug/kg	14	106	(0%-23%)		
p-Nitrotoluene	1800 U	ND	863	vg/kg	14	108	(0%-22%)		
*1.2-dinitrobenzene	400	373	393	ug/kg ·		98	(71%-118%)		
Batch 201462 .	•								
QC1200300281 LCS 1,3,5-Trinitrobenzene	800		69 1			P/	CT10. 1040.	17 337	09/17/02 21:02
2,4,6-Trinitrotoluene	800			ug/kg		86	(77%-124%)	JLW	09/1//02/21:02
2,4-Dinitrotolucne	800		693	ug/kg		87	(80%-120%)		
2.6-Dinitrotoluene	800		641 679	ug/kg		80	(77%-122%)		
2-Amino-4,6-dinitrotoluene	800			ug/kg		85 85	(74%-121%)		
4-Amino-2.6-dinitrotoluene	800		683 595	ug/kg		83 74*	(81%-125%)		
HMX	800			ug/kg			(79%-123%)		
Nitrobenzene	800		723 627	ug/kg		90 78	(84%-131%) (75%-125%)		
RDX	800		713	ug/kg		70 89	·		
Teryl	800		603	ug/kg ug/kg		75	(80%-123%) (65%-124%)		
m-Dinitrobenzene	800		664			83	(77%-124%)		
m-Nitrotoluene	800		632	ug/kg		35 79			
o-Nitrotoluene	800		632	ug/kg		79	(77%-117%)		
p-Nitrotoluene	800		640	ug/kg ug/kg		80	(75%-119%) (76%-121%)		
**1.2-dinitrobenzene	400		346	ug/kg		86	(71%-118%)		
QC1200300280 MB	400		240	네짐/포함		60	(7170-11070)		
1,3,5-Trinitrobenzene		บ	ND	ug/kg					09/17/02 20:19
2,4,6-Trinitrotoluene		Ŭ	ND	ug/kg					
2,4-Dinitrotoiuene		Ű	ND	ug/kg					
2.6-Diniprotokuene		Ŭ	ND	ug/kg					
2-Amino-4,6-dinitrotolucne		· U	ND	ng/kg					
4-Amino-2,6-dinitrotoluenc		· U	ND	ug/kg					
HMX		ΰ	ND	ug/kg					
Nisobenzene		Ū	ND	ug/kg	·				
RDX		ΰ	ND	ug/kg					
		-		· 🖬 🖶					

16(

BPLC Explosives Federal Bach 201462 Tetryl U ND ug/kg ar-Nitrotohene U ND ug/kg or-Nitrotohene U ND ug/kg or-Nitrotohene U ND ug/kg or-Nitrotohene U ND ug/kg or-Nitrotohene U ND ug/kg 1.3.5-Trialtrobenzanc 800 U ND H 2.4-Dinitrotohene 800 U ND H 760 ug/kg 95 (669-133%) 09/17/02 21:44 2.4-Dinitrotohene 800 U ND H 760 ug/kg 95 (698-133%) 09/17/02 21:44 2.4-Dinitrotohene 800 U ND H 767 ug/kg 95 (799-124%) 4.4-STinitrotohene 800 U ND H 779 ug/kg 92 (728-126%) 2.4-Staitrotohene 800 U ND H 771 ug/kg 92 </th <th>Workorder: 65936</th> <th colspan="9">Page 3 of 4</th> <th></th>	Workorder: 65936	Page 3 of 4									
Bach 201462 Teryl U ND ug/kg Distrobubence U ND ug/kg n-Niroxobance U ND ug/kg p-Niroxobance U ND ug/kg p-Niroxobance U ND ug/kg p-Niroxobance 00 V ND ug/kg p-Niroxobance 400 - 354 ug/kg 95 (66%-133%) 09/17/02 21:44 2.4.5-Trinitroxobance 800 U ND H 761 ug/kg 95 (66%-133%) 09/17/02 21:44 2.4-Distroxobance 800 U ND H 761 ug/kg 95 (75%-135%) 2.4-Distroxobance 800 U ND H 714 ug/kg 95 (75%-135%) 2.4-Distroxobance 800 U ND H 714 ug/kg 94 (61%-136%) 2.4-Distroxobance 800 U ND H 714 ug/kg 94 (61%-136%) 2.4-Distroxobance 800 <t< th=""><th>Parmname</th><th>NOM</th><th></th><th>Sample</th><th>Qual</th><th>QC</th><th>Uzits</th><th>RFD%</th><th>REC%</th><th>Range Ank</th><th>Date Time</th></t<>	Parmname	NOM		Sample	Qual	QC	Uzits	RFD%	REC%	Range Ank	Date Time
m.Diintoolaane U ND ug/tg n-Niiroolaane U ND ug/tg p-Niiroolaane U ND ug/tg p-Niiroolaane U ND ug/tg p-Niiroolaane U ND ug/tg ril.3-5-finiiroolaane 800 U ND H 1.3.5-finiiroolaane 800 U ND H 760 ug/tg 96 (778-118%) 2.4-6-71iniiroolaane 800 U ND H 761 ug/tg 96 (778-112%) 2.4-6-71iniiroolaane 800 U ND H 761 ug/tg 96 (778-123%) 2.4-6-71iniiroolaane 800 U ND H 761 ug/tg 98 (718-124%) 2.4-671iniiroolaane 800 U ND H 771 ug/tg 88 (718-124%) 2.4-671iniiroolaane 800 U ND H 771 ug/tg 92 (738-125%) A-Amino-2.6-diniiroolaane 800 U ND H <			·							·	
m.Nitrotohanne U ND ug/tg o-Nitrotohanne U ND ug/tg p-Nitrotohanne 40 354 ug/tg 88 (71%-118%) 0C120003093 65742005 MS 354 ug/tg 95 (66%-133%) 09/17/02 21:44 2.4.6-Diritorotohanne 800 U ND H 760 ug/tg 95 (57%-123%) 2.4-Diritorotohanne 800 U ND H 761 ug/tg 96 (71%-124%) 2.4-Diritorotohanne 800 U ND H 761 ug/tg 96 (71%-124%) 2.4-Diritorotohanne 800 U ND H 761 ug/tg 96 (71%-124%) 2.4-Diritorotohanne 800 U ND H 761 ug/tg 98 (71%-124%) 4.4-Diritorotohanne 800 U ND H 701 ug/tg 92 (72%-124%) 4.4-Miter-2.4-diritorotohanne 800 U ND H 77 75%-125%) PLDA <	•										
o-Nitrotolaese U ND ug/kg p-Nitrotolaese U ND ug/kg 1,3-5*17tnitrotolaese 400 354 ug/kg 95 (656+133%) 09/17/02 21:44 4,4-6*Trinitrotolaese 800 U ND H 76" ug/kg 95 (656+133%) 09/17/02 21:44 4,4-6*Trinitrotolaese 800 U ND H 76" ug/kg 95 (778-128%) 2,4-6*Trinitrotolaese 800 U ND H 754 ug/kg 94 (618-134%) 2,4-5Trinitrotolaese 800 U ND H 80" ug/kg 95 (778-128%) 2,4-5Trinitrotolaese 800 U ND H 79" ug/kg 88 (718-128%) 2,4-5Trinitrotolaese 800 U ND H 79" ug/kg 95 (728-128%) 2,4-5Trinitrotolaese 800 U ND H 73 ug/kg 91 (618-135%)<											
p-Nicrobleme U ND ug/tg **12.4 initrobenzenc 400 354 ug/tg 88 (71%-118%) QC12003093 65745005 MS 1,3.5-Trinitrobenzenc 800 U ND H 760 ug/tg 95 (66%-133%) 09/17/02 2144 2.4-Dinitroblane 800 U ND H 754 ug/tg 94 (61%-134%) 2.4-Dinitroblane 800 U ND H 761 ug/tg 95 (66%-133%) 09/17/02 2144 2.4-Dinitroblane 800 U ND H 761 ug/tg 95 (71%-126%) 2.4-Dinitroblane 800 U ND H 771 ug/tg 88 (71%-120%) 2.4-Dinitroblane 800 U ND H 771 ug/tg 92 (75%-126%) 4.4-Amino-2.6-dinitroblane 800 U ND H 773 ug/tg 92 (75%-126%) BDX 800 U ND H 773 ug/tg 93 (73%-125%) p-Nitro											
***1,2-dimitrobenzenc 400 354 ug/kg 88 (71%-118%) QC120030293 65745005 MS 5745005 MS 5745005 MS 1,3-5-Trinitrobenzenc 800 U ND H 760 ug/kg 95 (65%-133%) 09/17/02.21.94 2,4-Dimitrobenzenc 800 U ND H 761 ug/kg 95 (77%-132%) 2,4-Dimitroblane 800 U ND H 761 ug/kg 95 (79%-134%) 2,4-Dimitroblane 800 U ND H 761 ug/kg 95 (79%-124%) 4.Amino-2,6-dimitroblane 800 U ND H 771 ug/kg 92 (75%-138%) Mitrobenzenc 800 U ND H 771 ug/kg 92 (75%-126%) RDX 800 U ND H 773 ug/kg 92 (75%-126%) n=-Dimitroblane 800 U ND H 773 ug/kg 92 (65%-125%) n=-Dimitrob											
QC120030329 65745005 MS 1,3.5-Trinitrobenzene 800 U ND H 760 ug/kg 95 (6654-133%) 09/17/02 21:44 2,4.6-Trinitroblaene 800 U ND H 767 ug/kg 94 (61%-134%) 2,4.6-Trinitroblaene 800 U ND H 754 ug/kg 94 (61%-134%) 2,4.6-Trinitroblaene 800 U ND H 761 ug/kg 94 (61%-134%) 2,4.6-Trinitroblaene 800 U ND H 761 ug/kg 95 (79%-124%) 2,4.6-Trinitroblaene 800 U ND H 791 ug/kg 92 (72%-124%) 4.Amino-2,6-dimitroblaene 800 U ND H 791 ug/kg 92 (72%-124%) Mitrobenzene 800 U ND H 771 ug/kg 92 (63%-125%) m-Dinitroblaene 800 U ND H 771 ug/kg 93 (73%-116%) m-Dinitroblae	•				U		ug/kg				
1,3,5-Trinitrobenzzie 800 U ND H 760 ug/kg 95 (6654-133%) 09/17/02 21:44 2,4-Dinitrotoluene 800 U ND H 767 ug/kg 96 (77%-132%) 2,4-Dinitrotoluene 800 U ND H 761 ug/kg 96 (77%-132%) 2,4-Dinitrotoluene 800 U ND H 807 ug/kg 95 (79%-124%) 2,4-Dinitrotoluene 800 U ND H 807 ug/kg 95 (79%-124%) 2,4-Dinitrotoluene 800 U ND H 701 ug/kg 95 (79%-124%) 4-Amino-2,6-dinitrotoluene 800 U ND H 737 ug/kg 92 (75%-138%) Nitrobenzene 800 U ND H 771 ug/kg 93 (79%-125%) Nitrotoluene 800 U ND H 773 ug/kg 92 (63%-125%) Nitrotoluene 800 U ND H 773	**1,2-dinitrobenzenc	400				354	ug/kg		88	(71%-118%)	
2.4.6-Trinitrotoluene 800 U ND H 767 ug/tg 96 (77%-132%) 2.4.6-Trinitrotoluene 800 U ND H 767 ug/tg 94 (61%-134%) 2.4-Dimitrotoluene 800 U ND H 807 ug/tg 94 (61%-124%) 2-Amino-4.6-dimitrotoluene 800 U ND H 807 ug/tg 88 (71%-120%) 2-Amino-4.6-dimitrotoluene 800 U ND H 701 ug/tg 88 (71%-120%) 4-Amino-2.6-dimitrotoluene 800 U ND H 701 ug/tg 88 (71%-120%) HMCK 800 U ND H 737 ug/tg 92 (75%-138%) Nitrotonuene 800 U ND H 771 ug/tg 92 (75%-125%) m-Shiftotoluene 800 U ND H 773 ug/tg 93 (73%-115%) o-Nitrotoluene 800 U ND H 753 ug/tg	QC1200300293 65745005 MS			,							
2.4-Dinitrotohama 800 U ND H 754 ug/kg 94 (61%-134%) 2.4-Dinitrotohama 800 U ND H 807 ug/kg 101 (70%-121%) 2-Amino-4.6-dinitrotohama 800 U ND H 761 ug/kg 95 (79%-124%) 4-Amino-2.6-dinitrotohama 800 U ND H 771 ug/kg 88 (71%-120%) HAX 800 U ND H 797 ug/kg 94 (61%-120%) HAX 800 U ND H 797 ug/kg 92 (75%-120%) HAX 800 U ND H 773 ug/kg 94 (61%-136%) Terryl 800 U ND H 773 ug/kg 93 (73%-116%) -Nitrotohana 800 U ND H 732 ug/kg 93 (63%-122%) -Nitrotohana 800 U ND H 753 ug/kg 94 (67%-125%)		• •			-	-				(66%-133%)	09/17/02 21:44
2.6-Dinitrotoluene 800 U ND H 807 ug/kg 101 (70#-121%) 2-Amino-4.6-dinitrotoluene 800 U ND H 761 ug/kg 95 (79%-124%) 4-Amino-2.6-dinitrotoluene 800 U ND H 701 ug/kg 88 (71%-120%) HMX 800 U ND H 701 ug/kg 88 (71%-120%) HMX 800 U ND H 777 ug/kg 92 (72%-130%) RDX 800 U ND H 737 ug/kg 92 (72%-120%) RDX 800 U ND H 61%-125%) 100 173%-116%) Dinitrotoluene 800 U ND H 771 ug/kg 92 (63%-125%) Nitrotoluene 800 U ND H 773 ug/kg 94 (67%-125%) Nitrotoluene 800 U	2,4,6-Triuitrotoluene		-	ND			ug/kg		96	(77%-132%)	
2-Amino-4,6-dinitrotoluene 800 U ND H 761 ug/kg 95 (79%-124%) 4-Amino-2,6-dinitrotoluene 800 U ND H 701 ug/kg 88 (71%-120%) HMOX 800 U ND H 797 ug/kg 100 (75%-138%) Nitrobenzene 800 U ND H 737 ug/kg 92 (72%-138%) RDX 800 U ND H 737 ug/kg 94 (61%-136%) n-Dinitrobezene 800 U ND H 737 ug/kg 94 (65%-135%) m-Dinitrobezene 800 U ND H 737 ug/kg 93 (75%-12%) m-Nitrotoluene 800 U ND H 737 ug/kg 92 (68%-125%) m-Nitrotoluene 800 U ND H 737 ug/kg 94 (67%-125%) m-12-dinitrotoluene 800 U ND H 761 ug/kg 0 07%-02%)	2,4-Dinitrotokaene	800	ប	ND	H	754	ug/kg		94	(61%-134%)	
4-Amino-2,6-dimitrotoluone 800 U ND H 701 ug/kg 88 (71%-120%) HMX 800 U ND H 797 ug/kg 100 (75%-138%) Nitrobenzene 800 U ND H 797 ug/kg 92 (72%-120%) NDX 800 U ND H 750 ug/kg 94 (61%-136%) Tetryl 800 U ND H 778 ug/kg 97 (75%-135%) m-biitrobenzene 800 U ND H 772 ug/kg 93 (73%-116%) o-Nitrotoluene 800 U ND H 772 ug/kg 92 (65%-135%) p-Nitrotoluene 800 U ND H 772 ug/kg 93 (73%-116%) o-Nitrotoluene 800 U ND H 712 ug/kg 94 (67%-125%) g-Laditirotoluene 800 U ND H 767 ug/kg 95 (0%-20%) 09/17/02 22	2,6-Dinitrotoksene	800	U	ND	H	807	ug/kg		101	(70%-121%)	
HMX 800 U ND H 797 ug/tg 100 (75%-138%) Nitrobenzene 800 U ND H 737 ug/tg 92 (72%-120%) RDX 800 U ND H 737 ug/tg 94 (61%-136%) Tetryl 800 U ND H 671 ug/tg 84 (61%-136%) m-Dimitobenzene 800 U ND H 671 ug/tg 93 (73%-116%) o-Nitrotoluene 800 U ND H 772 ug/tg 92 (66%-12%) p-Nitrotoluene 800 U ND H 737 ug/tg 92 (66%-12%) o-Nitrotoluene 800 U ND H 737 ug/tg 91 (75%-125%) p-Nitrotoluene 800 U ND H 761 ug/tg 92 (66%-12%) QC12003024 65745005 MSD 1 761 ug/tg 0 94 (0%-20%) 2.4.6-Tr	2-Amino-4,6-dinitrotolucae	800	U	ND	н	761	ug/kg		95	(79%-124%)	
Nitrobenzene 800 U ND H 737 ug/kg 92 (72%-120%) RDX 800 U ND H 750 ug/kg 94 (61%-136%) retryl 800 U ND H 750 ug/kg 94 (61%-136%) m-Dinitroburate 800 U ND H 778 ug/kg 97 (75%-125%) m-Nitrobluene 800 U ND H 772 ug/kg 93 (73%-1125%) o-Nitrobluene 800 U ND H 773 ug/kg 92 (68%-122%) o-Nitrobluene 800 U ND H 753 ug/kg 94 (67%-125%) vitrobluene 800 U ND H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 1,3.5-Trinitrobluene 800 U ND H 751 ug/kg 0 96 (0%-20	4-Amino-2,6-dinitrotoluone	800	ບ	ND	Ħ	701	ug/kg		88	(71%-120%)	
RDX 800 U ND H 750 ug/kg 94 (61%-136%) Teryl 800 U ND H 671 ug/kg 84 (65%-135%) m-Dimitrobenzene 800 U ND H 778 ug/kg 97 (75%-125%) m-Nitrotoluene 800 U ND H 742 ug/kg 93 (73%-116%) o-Nitrotoluene 800 U ND H 773 ug/kg 94 (67%-125%) p-Nitrotoluene 800 U ND H 753 ug/kg 94 (67%-125%) **1/2-dimitrobenzene 800 U ND H 753 ug/kg 0 (71%-118%) QC12030224 65745005 MSD 1 ND H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 2,4-5 Trinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-20%) 09/17/02 22:22:7 2,4-5 Trinitr	HMX	800	U	ND	H	797	ug/kg		100	(75%-138%)	
RDX 800 U ND H 750 ug/kg 94 (61%-136%) Teryl 800 U ND H 671 ug/kg 84 (65%-135%) m-Dimitrobenzene 800 U ND H 778 ug/kg 97 (75%-125%) m-Mitroblaene 800 U ND H 772 ug/kg 93 (73%-116%) o-Nitroblaene 800 U ND H 773 ug/kg 92 (68%-122%) o-Nitroblaene 800 U ND H 773 ug/kg 94 (67%-125%) o-Nitroblaene 800 U ND H 773 ug/kg 94 (67%-125%) **1,2-diuitrobenzene 400 370 H 401 ug/kg 00 (71%-118%) QC12030294 65745005 MSD	Nitrobenzene	800	ប	ND	H	737	ug/kg		92	(72%-120%)	
Tetryl 800 U ND H 671 ug/kg 84 (65%-135%) m-Dinitrobenzene 800 U ND H 778 ug/kg 97 (75%-125%) m-Nitrotoluene 800 U ND H 773 ug/kg 97 (75%-125%) o-Nitrotoluene 800 U ND H 773 ug/kg 92 (68%-125%) p-Nitrotoluene 800 U ND H 773 ug/kg 92 (67%-125%) p-Nitrotoluene 800 U ND H 773 ug/kg 94 (67%-125%) e-Nitrotoluene 400 370 H 401 ug/kg 100 (71%-118%) QC1200300284 65745005 MSD - - - - - 1,3.5-Trinitrobuene 800 U ND H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 2,4.6-Tinitrotoluene 800 U ND H 755 ug/kg 0	RDX	800	U	ND	H	750			94	(61%-136%)	
m-Nirrotoluene 800 U ND H 742 ug/kg 93 (73%-116%) o-Nitrotoluene 800 U ND H 737 ug/kg 92 (68%-122%) p-Nitrotoluene 800 U ND H 733 ug/kg 94 (67%-125%) p-Nitrotoluene 800 U ND H 753 ug/kg 94 (67%-125%) i*1,2-ztiuitrobenzene 400 370 H 401 ug/kg 100 (71%-118%) QC120030294 65745005 MSD H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 2,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 0 96 (0%-20%) 09/17/02 22:27 2,4,6-Trinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-20%) 09/17/02 22:27 2,4,6-Trinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-20%)	Tetryl	800	U	ND	H	6 71			84	(6\$%-135%)	
m-Nirotoluene 800 U ND H 742 ug/kg 93 (73%-116%) o-Nirotoluene 800 U ND H 737 ug/kg 92 (68%-122%) p-Nirotoluene 800 U ND H 733 ug/kg 94 (67%-125%) p-Nirotoluene 800 U ND H 753 ug/kg 94 (67%-125%) w*1,2-diuitrobenzene 400 370 H 401 ug/kg 0 95 (0%-20%) QC120300294 65745005 MSD	m-Dinitrobenzene	800	U	ND	H	778	ug/kg		97	(75%-125%)	
o-Nitrotoluene800UNDH737ug/kg92(68%-122%)p-Nitrotoluene800UNDH753ug/kg94(67%-125%) $i+1,2$ -dinitrobenzene400370H401ug/kg100(71%-118%)QC120030029465745005MSD	m-Nitrotoluene	800	U	ND	H	742			93	(73%-116%)	
p-Nirotoluene 800 U ND H 753 ug/kg 94 (67%-125%) k=1,2-dinirobenzene 400 370 H 401 ug/kg 100 (71%-118%) QC120030294 65745005 MSD	o-Nitrotoluene	800	U	ND	H	737			92	(68%-122%)	
***1,2-diuitrobenzeue 400 370 H 401 ug/kg 100 (71%-118%) QC1200300294 65745005 MSD - <	p-Nitrotoluene	800	U	ND	H	753			94	(67%-125%)	
QC1200300294 65745005 MSD 1,3,5-Trinitrobenzene 800 U ND H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 2,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 0 96 (0%-20%) 2,4-Dinitrotoluene 800 U ND H 757 ug/kg 0 94 (0%-20%) 2,4-Dinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-20%) 2,4-Dinitrotoluene 800 U ND H 752 ug/kg 0 100 (0%-21%) 2,6-Dinitrotoluene 800 U ND H 752 ug/kg 1 94 (0%-20%) 4-Amino-2,6-dinitrotoluene 800 U ND H 794 ug/kg 0 99 (0%-38%) HMX 800 U ND H 747 ug/kg 0 93 (0%-38%) Nitrobenzene 800 U ND H 747 ug/kg 0<	**1,2-dinitrobenzene	400		370					100	• •	•
1,3,5-Trinitrobenzene 800 U ND H 761 ug/kg 0 95 (0%-20%) 09/17/02 22:27 2,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 0 96 (0%-20%) 2,4-Dinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-20%) 2,6-Dinitrotoluene 800 U ND H 752 ug/kg 0 100 (0%-20%) 2-Amino-4,6-dinitrotoluene 800 U ND H 752 ug/kg 1 94 (0%-20%) 4-Amino-2,6-dinitrotoluene 800 U ND H 752 ug/kg 8 81 (0%-20%) 4-Amino-2,6-dinitrotoluene 800 U ND H 733 ug/kg 0 99 (0%-38%) HMX 800 U ND H 747 ug/kg 0 93 (0%-35%) RDX 800 U ND H 747 ug/kg 93 (0%-35%)	OC1200300294 65745005 MSD				•••		•••			•	
2.4-Dinitrovoluene800UNDH755 ug/kg 094 $(0\%-24\%)$ 2.6-Dinitrotoluene800UNDH804 ug/kg 0100 $(0\%-21\%)$ 2-Amino-4,6-dinitrotoluene800UNDH752 ug/kg 194 $(0\%-20\%)$ 4-Amino-2,6-dinitrotoluene800UNDH752 ug/kg 881 $(0\%-20\%)$ HMX800UNDH794 ug/kg 099 $(0\%-38\%)$ Nitrobenzene800UNDH733 ug/kg 192 $(0\%-21\%)$ RDX800UNDH747 ug/kg 093 $(0\%-35\%)$ Teuryl800UNDH778 ug/kg 097 $(0\%-23\%)$ m-Dinitrobenzene800UNDH743 ug/kg 093 $(0\%-20\%)$ o-Nitrotoluene800UNDH778 ug/kg 097 $(0\%-23\%)$ o-Nitrotoluene800UNDH738 ug/kg 092 $(0\%-23\%)$ o-Nitrotoluene800UNDH738 ug/kg 092 $(0\%-23\%)$ o-Nitrotoluene800UNDH751 ug/kg 094 $(0\%-22\%)$	1,3,5-Trinitrobenzeae	800	U	ND	H	761	ug/kg	0	95	(0%-20%)	09/17/02 22:27
2,6-Dinitrotoluene 800 U ND H 804 ug/kg 0 100 (0%-21%) 2-Amino-4,6-dinitrotoluene 800 U ND H 752 ug/kg 1 94 (0%-20%) 4-Amiao-2,6-dinitrotoluene 800 U ND H 752 ug/kg 8 81 (0%-20%) 4-Amiao-2,6-dinitrotoluene 800 U ND H 650 ug/kg 8 81 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-38%) Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-38%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teryl 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Dimitrobenzene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotoluene 800<	2,4,6-Trinitrotoluene	800	υ	ND	H	767	ug/kg	0	96	(0%-20%)	
2-Amino-4,6-dinitrotoluene 800 U ND H 752 ug/kg 1 94 (0%-20%) 4-Amino-2,6-dinitrotoluene 800 U ND H 650 ug/kg 8 81 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-20%) Nitrobenzene 800 U ND H 794 ug/kg 0 99 (0%-38%) Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-21%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Dinitrobenzene 800 U ND H 738 ug/kg 0 93 (0%-20%) o-Nitrotoluene 800 U <	2,4-Dinitrotoluene	800	υ	ND	н	755	ug/kg	0	94	(0%-24%)	
2-Amino-4,6-dinitrotoluene 800 U ND H 752 ug/kg 1 94 (0%-20%) 4-Amino-2,6-dinitrotoluene 800 U ND H 650 ug/kg 8 81 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-21%) Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-35%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 767 ug/kg 1 83 (0%-33%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) o-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U	2,6-Dinitrotoluene	800	U	ND	H	804	ug/kg	0	100	(0%-21%)	
4-Amiao-2,6-dimitrotoluene 800 U ND H 650 ug/kg 8 81 (0%-20%) HMX 800 U ND H 794 ug/kg 0 99 (0%-38%) Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-21%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 767 ug/kg 1 83 (0%-30%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Nitrotoluene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%)	2-Amino-4,6-dinitroto lucne	800	U	ND	н	752		1	94	(0%-20%)	
HMX 800 U ND H 794 ug/kg 0 99 (0%-38%) Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-21%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 667 ug/kg 1 83 (0%-30%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Nitrotolnene 800 U ND H 738 ug/kg 0 93 (0%-23%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U ND H 751 ug/kg 0 94 (0%-22%)	4-Amiao-2,6-dinitrotolnene	800	U	ND	н	650	ug/kg	8	81	(0%-20%)	
Nitrobenzene 800 U ND H 733 ug/kg 1 92 (0%-21%) RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 667 ug/kg 1 83 (0%-30%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Nitrotolnene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotolnene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U ND H 751 ug/kg 0 94 (0%-22%)	HMX	800	U	ND	н	794		0	99	(0%-38%)	
RDX 800 U ND H 747 ug/kg 0 93 (0%-35%) Teuryl 800 U ND H 667 ug/kg 1 83 (0%-30%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 93 (0%-23%) m-Nitrotolnene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotolnene 800 U ND H 751 ug/kg 0 94 (0%-22%)	Nitrobenzene	800	U	ND	н			1			
Terryl 800 U ND H 667 ug/kg 1 83 (0%-30%) m-Dinitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Nitrotolnene 800 U ND H 743 ug/kg 0 93 (0%-23%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%)	RDX	800	U	ND	н						
m-Dimitrobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%) m-Nitrotolnene 800 U ND H 743 ug/kg 0 93 (0%-20%) o-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotolnene 800 U ND H 738 ug/kg 0 92 (0%-23%)		800	Ū								
m-Nitrotoluene 800 U ND H 743 ug/kg 0 93 (0%-20%) o-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U ND H 751 ug/kg 0 94 (0%-22%)	-								-		
o-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%) p-Nitrotoluene 800 U ND H 751 ug/kg 0 94 (0%-22%)			-							••••••	
p-Nitrotoluene 800 U ND H 751 ug/kg 0 94 (0%-22%)											
			-	_				-		•••	
	**1.2-dinitrobenzene	400	. 🕶	370	н	402	ug/kg	-	101	(71%-118%)	

OC Summary

Notes: RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound.

₿ The analyte was found in the blank above the effective MDL.

H 👘 Holding time was exceeded

62826

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.

VT OF BU	ruer: \$5930					•			Page 4	fof 4		
Parman		NOM	Sample	Qual	<u>OC</u>	Units	RPD%	REC%	Range	Anist	Date	Тіше
P The response between the confirmation column and the primary column is >40%D												
U	U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1											
х	Presumptive evidence that the analyte is not present. Please see narrative for further information.											

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptonce criteria when the sample is greater than five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

16

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

HPLC Narrative Sandia National Labs (SNLS) SDG 65936-1

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)						
Analytical Method:	SW846 8330						
Prep Method:	SW846 8330 PREP						
Analytical Batch Number:	196860						
Prep Batch Number:	196859						

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
65944008	059639-004
1200289873	XBLK01 (Blank)
1200289874	XBLK01LCS (Laboratory Control Sample)
1200289875	XBLK01LCSD (Laboratory Control Sample Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as

Page 1 of 7

HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm LD.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The LCS failed spike recoveries when evaluated versus the SNLS static limits. The LCS passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

Page 2 of 7

LCSD Recovery Statement

All the LCSD spike recoveries for this SDG were within the established acceptance limits.

LCS/LCSD RPD Statement

All the relative percent differences (RPD) between the LCS and LCSD were within the required acceptance limits.

QC Sample Designation

A matrix spike/matrix spike duplicate was not performed with this batch.

Technical Information

Holding Time Specifications

All samples in this analytical batch met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Sample Reextract/Reanalysis

The LCS failed spike recoveries when evaluated versus the SNLS static limits. The LCS passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4305 was generated for this SDG.

The LCS failed spike recoveries when evaluated versus the SNLS static limits. The LCS passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

Manual Integration

No manual integrations were required for any data file in this SDG.

Page 3 of 7

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Target analytes were detected on the primary column for the indicated samples; they were not detected on the confirmation column. 1200289873, 65944008

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)					
Analytical Method:	SW846 8330					
Prep Method:	SW846 8330 PREP					
Analytical Batch Number:	201060					
Prep Batch Number:	201058					

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID			
65944008	059639-004RE			
1200299291	XBLK02 (Blank)			
1200299292	XBLK02LCS (Laboratory Control Sample)			
1200299293	XBLK02LCSD (Laboratory Control Sample Duplicate)			

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The LCS failed spike recoveries when evaluated versus the SNLS static limits. The LCS passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

Page 5 of 7

LCSD Recovery Statement

The LCSD failed spike recoveries when evaluated versus the SNLS static limits. The LCSD passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

LCS/LCSD RPD Statement

All the relative percent differences (RPD) between each LCS and LCSD were within the required acceptance limits.

QC Sample Designation

A matrix spike/matrix spike was not performed with this batch.

Technical Information

Holding Time Specifications

The LCS and LCSD failed spike recoveries when evaluated versus the SNLS static limits. The LCS and LCSD passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4305 was generated for this SDG.

The LCS and LCSD failed spike recoveries when evaluated versus the SNLS static limits. The LCS and LCSD passed spike recoveries when evaluated versus the GEL SPC limits. The GEL SPC limits are on the QC Summary. Please see the emails in the Miscellaneous Section. The associated sample was reextracted out of holding. Both sets of data are reported. Please see nonconformance report 4305.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Target analytes were detected on the primary column for the indicated samples; they were not detected on the confirmation column. 1200299291

Comment

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: derbert Maure Date: 09/25/02

									•	
			QC Su	nmary			Danast T	ate: Septemb		M 7
n I	andia National J 48-0756 .O. Box 5809 Ibuquerque, Ne						Kepon D	aue: Septemo Page 1		50 2
	amela M. Puissa									
Workorder: 6	5944									
Parmuane		NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Tim
HPLC Explosives Fe Batch 196	deral 860	-								
QC1200289874	LCS						••			
1,3,5-Trinitrobenzo		1.04	•	0.946	ug/L		91	(84%-110%)	JLW	08/27/02 22:
2,4,6-Trinitrotolue		1.04		0.998	ug/L		96	(85%-110%)		
2,4-Dinitrotoluene		1.04		0.913	ug/L		88	(78%-110%)		
2,6-Dinitrotoluene		1.04		0.964	ug/L		93	(79%-110%)		
2-Amino-4,6-dinin		1.04	*	0.996	ug/L		96	(77%-110%)		
4-Amino-2,6-diniti	otaluene	1.04		0.925	ug/L		89	(59%-110%)		
HMX		1.04		0.994	ug/L		96	(86%-110%)		
Nitrobenzene		1.04		0.797	ug/L		77	(68%-110%)		
RDX		1.04		0.954	ug/L		92	(76%-110%)		
Tetryl		1.04		0.838	ug/L		81	(73%-110%)		
m-Dinitrobenzene		1.04		0.883	ug/L		85	(76%-110%)		
m-Nitrotoluene		1.04		0.870	ug/L		84	(73%-110%)		
o-Nitrotoluene		1.04		0.854	ug/L		82	(69%-110%)		
p-Nitrotoluenc		1.04		0.870	ug/L		84	(73%-110%)		
1,2-dinitrobenzene		0.519		0.453	-		87	(59%-118%)		
QC1200289875	LCSD	Q.J17		0.493	ug/L		67	(37%-(16%))		
1,3,5-Trinitrobenze		1.04		0.956		1	92	(000 0000)		08/27/02 23:0
2,4,6-Trinitrotoluer		1.04		1.01	ug/L		92 97	(0%-20%)		00/27/02 23:0
2,4-Dinitrotoluene	BC .				ug/L	1		(0%-20%)		
2.6-Dinitrotoluene		1.04		0.955	ng/L	4	92	(0%-20%)		-
		1.04		1.03	ug/L	7	100	(0%-20%)		
2-Amino-4,6-diniu		1.04		0.994	ug/L	0	96	(0%-20%)		
4-Amino-2,6-dinim	oromene	1.04		0.937	ug/L	1	90	(0%-24%)		
HMX		1.04		0.996	ug/L	0	96	(0%-20%)		
Nitrobenzene		1.04		0.872	ng/L	9	84	(0%-20%)		
RDX		1.04		0.940	ug/L	2	91	(0%-20%)		
Tetryl		1.04		0.917	ug/L	9	88	(0%-20%)		· .
m-Dinitrobenzene		1.04 ·		0.935	ug/L	6	90	(0%-20%)		
m-Nitrotoluene		1.04		0.951	ug/L	9	92	(0%-20%)		
o-Nitrotoluene		1.04		0.941	ug/L	10	91	(0%-23%)		
p-Nitrotoluene		1.04		0.958	ug/L	10	92	(0%-20%)		
1,2-dinitrobenzene		0.519		0.477	ug/L		92	(59%-118%)		
QC1200289873	MB				_					
1,3,5-Trinitrobenze			U	ND	ug/L					08/27/02 21:4
2,4,6-Trinitrotoluer	6		U	ND	ug/L					
2,4-Dinitrotoluene			U	ND	ug/L			•		
2,6-Dinitrotolnene			U	ND	ug/L					
2-Amino-4,6-dinim	otoluene		U	ND	ug/L					
-Amino-2,6-dinitra	otoluene	• •	U	ND	ug/L		•	-		
IMX			Ŭ	ND	ug/L					
Nitrobenzene			Ŭ	ND	ug/L					
RDX			U	ND	ug/L					
MARGIN .			u	170	ug/L					

QC Summary

		<u>VC Su</u>	TTTTTTTTTT						
Workorder: 65944							Page 2	of 3	
Parmaame	NOM	Sample Qual	QC	Units	RPD%	REC%	Ratige	Anlsi	Date Time
HPLC Explosives Federal Batch 196860									
m-Dinitrobenzene		U	ND	ug/L			•		
m-Nitroioluene		U	ND	ug/L					
o-Nitrotolucao		U	ND	ug/L					
p-Nitrotoluene		U	ND	ug/L					
**1,2-dinirobenzene	0.519		0.467	ug/L		90	(59%-118%)		•
Batch 201060				_					
QC1200299292 LCS 1.3.5-Triniurobenzene	1.04		0.982			05		11 M	00/14/00 16:00
2.4.6-Trinitrotoluene	1.04		1.02	ug/L		95 99	(84%-110%)	JL, W	09/14/02 16:22
			0.919	ug/L.			(85%-110%)		
2,4-Dimitrotoluene 2,6-Dimitrotoluene	1.04 1.04		0.919	ug/L		89 87	(78%-110%)		
				ug/L		93	(79%-110%)		
2-Amino-4,6-dinitrotolnene	1.04		1.04	ug/L		101	(77%-110%)		
4-Amino-2,6-dinitrom)nene HMX	1.04		0.968	ng/L		93	(59%-110%)		
	1.04	•	1.04	ug/L		100	(86%-110%)		
Nitrobenzene	1.04		0.814	ug/L		78	(68%-110%)		
RDX .	1.04		1.04	ug/L.		100	(76%-110%)		
Tetry] m-Dinitrohenzenc	1.04		0.983	ug/L.		95	(73%-110%)		
	1.04		0.904	ug/L		87	(76%-110%)		
m-Nitrotoluenc	1.04		0.879	ug/L		85	(73%-110%)		
o-Nitrotohiene	1.04		0.851	ug/L		82	(69%-110%)		
p-Nitrotoluene	1.04		0.892	ug/L.		86	(73%-110%)		
**1,2-diaitrobenzene	0.519		0.449	ug/L		86	(59%-118%)		
QC1200299293 LCSD	1.04		0.007	- 7	<u>,</u>	60	100 000		
1,3,5-Trinitrobenzene 2,4,6-Trinitrotoluene	- · ·		0.936	ug/L	5	90	(0%-20%)		09/14/02 17:04
2,4-Dinitrotoluene	1.04 1.04		1.05	ug/L	2	101	(0%-20%)		
2,6-Dinitrotoluene	1.04		0.911 0.939	ug/L	1	88 00	(0%-20%)		
2-Amino-4,6-dinitrotoluene	1.04		1.05	ug/L.	2	90 101	(0%-20%)		
4-Amino-2,6-dinitrotohuene	1.04			ug/L	0	101	(0%-20%)		
HMX	1.04		0.968 1.05	ug/L	0	93	(0%-24%)		
Nirobenzene				ug/L	1	101	(0%-20%)		
RDX	1.04		0.824	ug/L	1	79	(0%-20%)		
	1.04		1.07	ug/L	3	103	(0%-20%)		
Teryi m-Dinitrobenzene	1.04 1.04		0.873 0.882	ug/L	12	84 86	(0%-20%)		
• • • • • • • • • • • • • • • • • • • •				ug/L	2	85	(0%-20%)		
m-Nitrotohusne o-Nitrotohusne	1.04		0.849	ug/L	4	82	(0%-20%)		
	1.04		0.826	ng/L	3	80	(0%-23%)		
p-Nitrotoluene **1.2-dinitrobenzene	1.04		0.858	ug/L	4	83	(0%-20%)		
	0.519		0.444	ng/L		85	(59%-118%)		
QC1200299291 MB 1,3,5-Trinitrobenzene		U	ND	ug/L.					09/14/02 15:40
2,4,6-Trinitrotoluenc		U	ND						09/14/02 13:40
2,4-Dinitrotoluene		U U	ND	ug/L ug/L			•		
2.6-Dinitrololuene			ND ·						
2-Amino-4,6-dinitrotoluene		U	ND	ug/L					
4-Amino-2,6-dinitrotoluene		Ŭ	ND	ug/L					
4-Amino-2,0-aminotoinene HMX		U		ug/L					
•	•	U	ND	ug/L					
Nitrobenzene RDX		U	ND	ug/L					
VIV		U	ND	ug/L					

QC Summary

Workorder: 65944						Page 3 of 3	
Parmoane	NOM	Sample Qual	QC	Units RPD	% REC%	Range Anist	Date Time
HPLC Explosives Federal							
Batch 201060							
Tetryl		U	ND	ug/L			
m-Dinitrobenzene		U	ND	ug/L			
m-Nitrotolucne		ប	ND	ug/L			
o-Nitrotoluene		υ	ND	ug/L			
p-Nitrotoluene		U	ND	ug/L			
**1,2-dinitrobenzene	0.519		0.394	ug/L	76 (59%-118%)	
	Vi J L J		0.004			~~~	•

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I

X Presemptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^A The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

PCB Case Narrative Sandia National Labs (SNLS) SDG#65936

Method/Analysis Information

Procedure:	Polychlorinated Biphenyls by Method 8082
Analytical Method:	SW846 8082
Prep Method:	SW846 3550B
Analytical Batch Number:	196833
Prep Batch Number:	196832
Sample Analysis	

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
1200289815	PBLK01 (Method Blank)
1200289816	PBLK01LCS (Laboratory Control Sample)
1200289817	059673-002MS (Matrix Spike)
1200289818	059673-002MSD (Matrix Spike Duplicate)

SNLS SDG#65936-PCB

Page 1 of 4

System Configuration

Chromatographic Columns

Column ID	Column Description
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm
	* Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK*
ECD2	HP 6890 Series GC ECD/ECD	RESTEK*
ECD3	HP 6890 Series GC ECD/ECD	RESTEK*
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK*

*The columns were changed to RTX-CLPEST1 and RTX-CLPEST2.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have not been met for this SDG.

Aroclor-1016 failed acceptance criteria with a positive bias on both analytical columns in the standards bracketing the samples in this SDG. The positive bias for the analytical data is the result of instrument response increasing after the initial calibration. All target analytes, identified positive in the samples, met the acceptance criteria in the standards bracketing the sample in this SDG. Therefore, the non-compliance has no adverse effects on the data.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID# Laboratory Sample ID#

059673-002

65936016

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the

specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required any dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this SDG:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm". For the samples containing more than one PCB, the quantitation of PCB may be clevated due to overlapping PCB patterns.

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

9/19/02 Date: Reviewer: Jui Cao

SNLS SDG#65936-PCB

				QC Su	mmary			Report D	ate: Septemb	ni 19, 24	
Client : Contact:	Sandia Nation MS-0756 P.O. Box 5800 Albuquerque, Pameia M. Pr	New Mexico							Page 1		
Workorder:	65936										
Parmaame		NOM		Sample Qual	<u>Qċ</u>	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-PC Batch	2 B Federal 196833		•								
QC120028981	6 LLS										
Aroclor-1260		33.3			27.4	ug/kg			(48%-116%)	MM	09/09/02 15:17
**4cmX	_	6.67			5.17	ng/kg		78	(31%-120%)		
**Decachlorobiph	•	6.67			5.43	ug/kg		81	(34%-115%)		
QC120028981	5 MB										
Arocior-1016		•		U	ND	ug/kg			_		09/09/02 15:05
Aroclor-1221		· .		U	ND	ug/kg		+		•	
Aroclor-1232				U	ND	ug/kg					
Aroclor-1242				U.	מא	ug/kg					
Aroclor-1248				U	ND	ug/kg					
Areclor-1254	•			U	ND	ug/kg					
Aroclor-1260				U	ND	ug/kg					
**4¢mx .		6.67			5.05	ug/kg			(31%-120%)		
**Decachlorobiph	-	6.67		· ·	5.30	ug/kg		80	(34%-115%)		
QC120028981	7 65936016 M					•		•			
Arocior-1260		33.3	U	ND	27.4	ug/kg			(36%-134%)		09/09/02 15:28
**4cmx		6.67			5.19	ug/kg			(31%-120%)		
**Decachlorobiph	•	6.67			5.39	ug/kg		8 1	(34%-115%)		
QC120028981	8 65936016 M										
Aroclor-1260		33.3	U	ND	24.3	ug/kg	12	73	(0%-30%)		09/09/02 15:40
**4cmx		6.67			3.98	ug/kg			(31%-120%)		
**Decachlorobiph	enyt	6.67			4.78	ug/xg		72	(34%-115%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

 \mathbf{X} Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

QC Summary												
Workorder:	65936							-	Page	2 of 2		
Parmoame		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
		mits do not apply wi										
		(RPD) obtained from puired detection limit										
	used to evaluate the I		••••							_,		

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

207

PCB Case Narrative Sandia National Labs (SNLS) SDG 65936-1

.

Method/Analysis Information

Procedure:	Polychlorinated Biphenyls by Method 8082
Analytical Method:	SW846 8082
Prep Method:	SW846 3510C
Analytical Batch Number:	196769
Prep Batch Number:	196768

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
65944007	059639-003
1200289639	PBLK01(Method Blank)
1200289640	PBLK01LCS(Laboratory Control Sample)
1200289641	059639-003MS(Matrix Spike)
1200289642	059639-003MSD(Matrix Spike Duplicate)

System Configuration

Chromatographic Columns

Column II	Column Description
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um

SNLS SDG#65936-1 - PCB

J&W5	DB-XLB* 30m x 0.25r DB-17MS(50%-Phenyl	nm x 0.25um I)-methylsiloxane 30m x 0.25mm x 0.25um
J&W6		nylsiloxane 30m x 0.25mm x 0.25um)-methylsiloxane 30m x 0.25mm x 0.25um
RESTEK	Rtx-CLPesticides Rtx-CLPesticides II	30m x 0.25mm x 0.25um 30m x 0.25mm x 0.20um

* Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS) requirements have not been met for this SDG. Aroclor 1260 failed acceptance criteria with a positive bias on non-primary analytical column in the standards bracketing the samples in this SDG. The positive bias for the analytical data is the result of instrument response increasing after the initial calibration. There were no target analytes detected in any associated samples. Therefore, the non-compliance has no adverse effects on the data.

SNLS SDG#65936-1 - PCB

Page 2 of 4

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID#	Laboratory Sample ID#
059639-003	65944007

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

SNLS SDG#65936-1 - PCB

Page 3 of 4

Sample Dilutions

None of the samples in this SDG were required dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	Juni	Cer	Date:	9/16/00	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T				

SNLS SDG#65936-1 - PCB

Page 4 of 4

		-	Q	C Su	mmary			Pancet I	ate: Septemb	- 16 3	10.7
P	15-0756 .O. Box 580	nal Laboratories 10 2, New Mexico						REDUIT	Page 1		····4
	amela M. P										
Warkorder: 6:	5944									•	
Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatilez-PCB Batch 1963	769										
QC1200289640	LCS	1.00			0.680	ug/L		68	(47%-131%)	MM	08/29/02 00:23
Arocior-1260		0.200			0.000	ug/L		60	(34%-116%)	DATAT	V0/29/02 V0.23
**Decachlorobinheny	a1	0.200			0.125	ug/L		68	(21%-122%)		
OC1200289639	MB	0.200			0.155	េទីក្រ		va	(2170-12270)		
Araciar-1016				U	ND	ug/L					08/29/02 00:11
Aroclor-1221				Ŭ	ND	ug/L					
Aroclor-1232				Ŭ	ND	ug/L				•	
Arocior-1242				Ū	ND	ug/L					
Arocior-1248				Ū	ND	1g/L					
Atocior-1254				Ŭ	ND	ug/L					
Arocior-1260				มี	ND	ue/L					
**4cmx		0.200			0.119	ม <u>ต</u> /โ		60	(34%-1:6%)		
**Decachlorobipheny	4	0.200			0.108	ug/L	•	54	(21%-122%)		
QC1200289641 (			•			-					
Aroclor-1260		1.00			0.600	ug/L		60	(21%-113%)		08/28/02 22:33
++4cmx		0.200			0.132	ug/L			(34%-[16%)		
**Decachlorobipheny	1	0.200			0.0587	ug/L		29	(21%-122%)		
QC1200289642 d	5944007 M	SD				-					
Arocior-1260		1.00			0.640	ug/L	6	64	(0%-30%)		08/28/02 22:46
**4cmx		0.200	-		0.135	ug/			(34%-116%)		
**Decachlorobipheny	1	0.200			0.068	ug/L		- 34	(21%-122%)		

#### Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analyzes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation

X Uncertain identification for gamma spectroscopy



# QC Summary

#### Workorder: 65944

						-	
						The second s	
Parmaame	<b>.</b>	NOM	Sample Qual QC	Units RPD	<u>% REC%</u>	Range Anist	Date Time
N/A indicates that shi	ke recovery lig	nits do not apply who	en sample concentration exceed	is snike conc. by a f	ictor of 4 or thos	е.	

Page 2 of 2

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.
 The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/ RL is used to evaluate the DUP result.
 For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

# Inorganic Case Narrative for Sandia National Laboratory SDG# 65936

#### Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
1200289542	Method Blank (MB) ICP-196732/196730
1200289546	Laboratory Control Sample (LCS)
1200289544	059673-002L (65936016) Serial Dilution (SD)
1200289543	059673-002D (65936016) Sample Duplicate (DUP)
1200289545	059673-002S (65936016) Matrix Spike (MS)
1200292059	Method Blank (MB) CVAA-197745/197744
1200292062	Laboratory Control Sample (LCS)

#### Method/Analysis Information:

Analytical Batch #:	196732, 197745
Prep Batch #:	196730, 197744
<b>Standard Operating Procedure:</b>	GL-MA-E-013 REV.6; GL-MA-E-010 REV.10
Analytical Method:	SW846 6010B; SW846 7471A
Prep Method:	SW846 3050B; SW846 7471A

#### System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

# **Sample Preparation**

All samples were prepared in accordance with the referenced SW-846 procedures.

# **Calibration Information:**

#### Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

#### **CRDL Requirements**

All CRDL standards met the referenced advisory control limits.

#### **Continuing Calibration (CCV) Requirements**

All CCV standards bracketing samples from this SDG met the established recovery acceptance criteria, with the exception o silver in CCV11 and CCV12. Samples bracketed by CCV11 and CCV12 were rerun for silver. CCV15 and CCV16 recovered high for lead, but did not bracket reported lead results from this SDG.

#### **Continuing Calibration Blanks (CCB) Requirements**

All continuing calibration blanks (CCB) bracketing samples from this SDG met the established acceptance criteria.

#### **ICSA/ICSAB Requirements**

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

### **Ouality Control (OC) Information:**

#### Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

#### LCS/LCSD Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

#### **QC** Sample Designation

Sample 059673-002 (65936016) was designated as the quality control sample for ICP batch. Sample 059668-002 (65745005) from SNLS SDG 65745 was designated as the quality control sample for CVAA batch. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

#### MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery, with the exception of barium, as indicated by the "*" qualifier on the QC summary.

#### **RPD** Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit

of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

### Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

# **Technical Information:**

#### Holding Time Specifications

All samples were analyzed within the specified holding times.

#### Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. Samples in this SDG required further dilution for selenium in order to minimize suppression due to matrix effects. No dilutions were required for the CVAA analysis other than the 5x dilution for the LCS.

# **Miscellaneous Information:**

## NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

#### **Additional Comments**

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

# Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: AMSADH.E

Date: 9/19/2-

	MS-0756 P.O. Box 5				Ŷ	<u>c su</u>	<u>nmary</u>			Report I	late: Septemb Page 1		002
	Albuquero Pameia M	puë, New M . Puissant	162000		-					· .			
Workorder:	65936	· · ·											
Parmanne			NON	1	Sample	Qual	QC	Units	RPD%	REC*	Range	Anist	Date Time
Metals Analysis-IC Satch (9	<b>P Federal</b> 6732												
QC1200289543	65936016	DUP											
Arsenic					2.84		2.50	mg/kg	13		(0%-20%)	RMJ	09/10/02 19:2
Berium					82.3		89.7	mg/kg	9		(0%-20%)		
Cadroium				J	0.145	I	0.122	mg/kg	N/A ^		(+/-0.476)		
Chromium					1 <b>2.8</b>		7.99	mg/kg	46*		(0%-20%)		
Lead					3.99		4.10	mg/kg	3		(0%-20%)		
Selenium				U	ND	U	ND	mg/kg	N/A		(+/-1.19)	BAS	09/10/02 22:5
Silver				U	ND	U	ND	mg/kg	NA		(+/-0.476)		09/10/02 19:2
QC1200289546 Arsenic	LCS		132				133	mg/kg		101	(74%-126%)		09/10/02 19:0
Barium			781				804	mg/kg		103	(77%-123%)		
Cadmium			51.5				56.5	mg/kg		110	(77%-123%)		
Chromiam			142				151	mg/kg		106	(80%-120%)		
Lead			52.9				52.6	mg/kg		99	(75%-125%)		
Selenium			60.9				67.3	mg/kg		111	(71%-129%)		
Silver			125				136	mg/kg		109	(52%-148%)		
QC1200289542	MB	•	1.5.4				10	marks		103	(32%-140%)		
Arsenic	146.62					U	ND	mg/kg					09/10/02 18:5
Barium						ប	ND	mg/kg					05.10/02 10:3
Cedmium						Ū	ND	mg/kg					
Ibromium						ิ.บิ	ND	mg/kg					
Lead	•					Ŭ	ND	mg/kg					
Selectum			•			บั	ND	mg/kg					
Silver						Ŭ	ND	mg/kg					
QC1200289545	65936016	MS				-							
Arsenic			23.1		2.84		25.3	mg/kg		97	(75%-125%)		09/10/02 19:2
Barium			23.1		82.3		113	mg/kg	•	134*	(75%-125%)		
Cadmium			23.1	<b>J</b> .	0,145		23.2	mg/kg		100	(75%-125%)		
Chromium			23.1		12.8		31.1	mg/kg			(75%-125%)		
ead			23.1		3.99		27.2	mg/kg			(75%-125%)		
Selenium			23.1	U	ND		23.4	mg/kg			(75%-125%)	BAS	09/10/02 22:50
Silver			23.1	Ū	ND		22.5	ng/kg			(75%-125%)		09/10/02 19:23
QC1200289544	65936016	SDILT						- V - D					
Arsenic		-			29.2		6.79	ag/L	16,2				09/10/02 19:13
Barium					847		177	ug/L	4.58				
Cadmium				J	1.49	υ	ND	ug/L	N/A				
Chromium					132		27.8	ug/L	5.36				
.ead			• ·		41.1			ug/L	4.03				
elenium				U	ND	U	ND	սջ/Լ	N/A			BAS	09/10/02 22:44
lilver				Ū	ND	บั	ND	ug/L	N/A			RMJ	09/10/02 19:15

QC1200292060 65745005 DUP





# **QC** Summary

Workorder: 65936									Page 2	of 2		
Paringent	NOM	I	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlet	Date	Time
Matal: Analysis-Marcury Federal Batch 197745								· .				
Mercury OC1200292062 LCS		J	Q.00353	1	0.00352	m <b>g/kg</b>	N/A		(+/-0.00998)	NOR1	09/03/02	2 14:15
Mercury	4.50				4.24	mg/kg		<del>9</del> 4	(68%-132%)		09/03/02	2 14:11
QC1200292059 MB Mercury				U	ND	mg/kg					09/03/02	2 14: <b>09</b> -
QC1200292061 65745005 MS Mercury	0,0902	1	0.00353		0.0969	mg/kg		103	(75%-125%)		09/03/02	2 14:22

#### Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.



# Metals Case Narrative for Sandia National Labs (SNLS) SDG# 65936-1

### Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
65944011	059639-007
1200296652	Method Blank (MB) ICP-199969/199968
1200296656	Laboratory Control Sample (LCS)
1200290416	Method Blank (MB) CVAA-197121/197117
1200290421	Laboratory Control Sample (LCS)

# Method/Analysis Information:

Analytical Batch #:	199969, 197121
Prep Batch #:	199968, 197117
Analytical Method:	SW846 6010B, SW846 7470A
Prep Method:	SW846 3005B, SW846 7470A
Standard Operating Procedure:	GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

#### System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic purop at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

### **Sample Preparation**

All samples were prepared in accordance with the referenced SW-846 procedures.

#### **Calibration Information:**

#### Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for the analyses.

#### **CRDL Requirements**

All element recoveries in the CRDL standards met the advisory control limits (70% - 130).

# **ICSA/ICSAB Requirements**

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

# **Continuing Calibration (CCV) Requirements**

All CCV standards bracketing samples from this SDG met the established recovery acceptance criteria.

# **Continuing Calibration Blanks (CCB) Requirements**

All continuing calibration blanks (CCB) bracketing samples from this SDG met the established acceptance criteria.

### **<u>Ouality Control (QC) Information:</u>**

# Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

#### LCS Recovery Statement

All LCS spike recoveries for this SDG were within the required acceptance limits.

#### **QC** Sample Statement

Sample 059772-005 (66619010) from SNLS SDG 66619 was designated as the quality control sample for the ICP batch. Sample 059555-009 (65920004) from SNLS SDG 65920 was designated as the QC sample for the CVAA batch. A matrix spike (MS) and a sample duplicate (DUP) were analyzed in each batch. A serial dilution (SD) was analyzed in the ICP batch.

#### **MS Recovery Statement**

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The MS analyses met the recommended quality control acceptance criteria for percent recovery (75%-125%) for all applicable analytes.

# **DUP RPD Statement**

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

### Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the IDL for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

#### **Technical Information:**

# **Holding Time Specifications**

All samples in this SDG met the specified holding time requirements.

#### Sample Dilutions

Dilutions are performed to minimize matrix interferences (e.g., those resulting from elevated mineral element concentrations) present in the sample and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. No dilutions were necessary.

# **Miscellaneous Information:**

# **NCR** Documentation

Nonconformance reports (NCR) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

# **Additional Comments**

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

# Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: 000'sast.

Date: 9/19/52_

Client :	Sandia National La) MS-0756 P.O. Box 5800	boratories		Q	<u>C S</u> ı	<u>immary</u>			Report ]	Date: Septembe Page 1		002
Contacts	Albuquerque, New I Pamela M. Puissant											
Workerder:	65944											
Parmagne		NON	Ā	Sample	Quai	QC	Units	RPD%	RECS	6 Range	Anlst	Date Time
Metals Analysis-I( Batch 1	CP Federal 99969											
QC120029665	3 66619010 DUP									•		
Arsenic		•		0.00712		0.00723	mg/L	1 ^		(+/-0.005)	RMJ	09/16/02 18:34
Barium			B	0.0102	B	0.00987	mg/L	3 ^		(+/-0.005)		
Cadmium			J	0.000843	J	0.000846	mg/L	N/A ^		(+/-0.005)		
Chromium			BJ	0.00353	BJ	0.00398	mg/L	N/A ^		(+/-0.005)		
Lead			BJ	0.00272	BĴ	0.0019	mg/L	N/A ^	-	(+/-0.005)		
Selenium			U	ND	U	ND	mg/L	N/A		(+/-0.005)		
Silver			BU	ND	BU	ND	mg/L	N/A		(+/-0.005)		
QC120029665	6 LCS									••••••		
Arsenic		0.500				0.529	mg/L		106	(80%-120%)		09/16/02 17:58
Barium		0.500			В	0.522	mg/L		104	(80%-120%)		
Cadmium		0.500				0.529	mg/L		106	(80%-120%)		
Chromium		0.500			в	0.525	mg/L		105	(80%-120%)		
Lcad		0.500			в	0.532	mg/L		105	(80%-120%)		
Selenium		0.500			-	0.527	mg/L		105	(80%-120%)		
Silver		0.500			в	0.521	mg/L		104	(80%-120%)		
QC1200296652	2 MB	•••••			_	•••••••				-		
Arsenic					U	ND	mg/L					09/16/02 17:52
Barium					ī	0.00025	mg/L					
Cadmium					Ū	ND	mg/L					
Chromium					1	0.000867	me/L					
Lead	2				J	0.00259	mg/L					
Selenium					Ū	ND	mg/L					
Silver					J	0.00085	mg/L					
QC120029665	66619010 MS				2	0.00000	교류고수					
Arsenic		0.500		0.00712		0.524	mg/L		103	(75%-125%)		09/16/02 18:40
Barium		0.500	В	0.0102	В	0.524	mg/L		103	(75%-125%)		
Cadminm		0.500	Ĩ	0.000843	-	0.512	mg/L		102	(75%-125%)		
Chromium		0.500	BJ	0.00353	в	0.518	mg/L		103	(75%-125%)		
Lead		0.500	BJ	0.00272	B	0.515	mg/L		102	(75%-125%)		
Selenium		0.500	نم U	010272 ND	Þ	0.511	mg/L mg/L		102	(75%-125%)		
Silver	•	0.500	BU	ND	в	0.512	mg/L		102	(75%-125%) (75%-125%)		
	66610010 000 T	0.500	БU	ND	Q	V.J 14	ng/L		104	(0.071-0.00)		
Arsenic	66619010 SDILT			7.12	U	ND	ug/L	N/A				09/16/02 18:28
Barium			в	10.2	BI	1.87	ug/L	8.17				
Cadmium			J	0.843	ប្រី	ND	ug/L	N/A				
Chromium			BJ	3.53		1.14	ug/1. ug/1.	61.1				
Lead					BŬ							
Leso Selenium			81 	2.72	BJ	2.69	ug/L	395 N/A				
			U	ND	U	ND	ug/L	N/A				
Silver			BU	ND	BU	ND	· ug/L	N/A				
Metals Analysis-M										•		-
Batch 19	7121					-						

QC1200290417 65748010 DUP

.

ł

# **OC Summary**

Workorder: 65944								Page 2 of 2	
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Matah Analysis-Mercary Federal Batch 197121							·	•	
Mercury	U	I ND	U	ND	mg/L	N/A		(+/-0.0002) NOR1	08/29/02 10:42
QC1200290418 65920004 DUP					•				
Mercury	υ	ND ND	υ	ND	mg/L	N/A		(+/-0.0002)	08/29/02 11:04
QC1200290421 LCS									
Mercury	0.002			0.00197	mg/L.		<del>99</del>	(80%-120%)	08/29/02 10:38
QC1200290416 MB									
Mercury	•		U	ND	mg/L				08/29/02 10:36
QC1200290419 65748010 MS									
Mercury	0.002 U	I ND		0.00199	mg/L		99	(75%-125%)	08/29/02 10:48
QC1200290420 65920004 MS									
Mercury	0.002 U	ND		0.00192	mg/L		96	(75%-125%)	08/29/02 11:06

Notes:

RER is calculated at the 95% confidence level (2-signa).

The Qualifiers in this report are defined as follows:

2 Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where it

- ** Indicates analyte is a surrogate compound.
- В The analyte was found in the blank above the effective MDL.
- Н Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

х Presumptive evidence that the analyte is not present. Please see narrative for further information.

х Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

х Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

* The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.





# **Method/Analysis Information**

Procedure:	Total Cyanide
Analytical Method:	SW846 9012A
Prep Method:	SW846 9010B Prep
Analytical Batch Number:	197511
Prep Batch Number:	197510

# Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
1200291427	MB for batch 197511
1200291428	DUP of 65745005

2

82(

1200291429	DUP of 65936016
1200291430	MS of 65745005
1200291431	MS of 65936016
1200291432	LCS for batch 197511
1200291433	LCS for batch 197511

# SOP Reference

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

# Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

# **Calibration Information:**

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration The instrument was properly calibrated.

Calibration Verification Information All calibration verification standards were within the required limits.

# Quality Control (QC) Information:

# **Blank Acceptance**

The method and calibration blanks associated with this data were within the required acceptance limits.

# Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

#### Quality Control

The following SNLS samples were designated for Quality Control: 65745005, 65936016.

#### Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

# Sample Duplicate Acceptance

The values for the samples and duplicates for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

# **Technical Information:**

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

#### **Holding Times**

All samples from this sample group were analyzed within the required holding time for this method.

### **Preparation/Analytical Method Verification**

All procedures were performed as stated in the SOP.

# **Sample Dilutions**

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200291433.

# **Miscellaneous Information:**

#### Nonconformance Reports -

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

#### <u>Comments</u>

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

#### **Review Validation:**

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Date:	9/11/or
-----------------	---------

# General Chemistry Narrative Sandia National Labs (SNLS) SDG 65936

# Method/Analysis Information

Procedure:	Hexavalent Chromium
Analytical Method:	SW846 7196A
Prep Method:	SW846 3060A
Analytical Batch Number:	196888
Prep Batch Number:	196887

# Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	<b>Client ID</b>
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
65936028	059687-002



817

65936029	059688-002
65936030	059689-002
1200289940	MB for batch 196887
1200289941	DUP of 65745005
1200289942	DUP of 65936021
1200289943	MS of 65745005
1200.289944	MS of 65936021
1200289945	LCS for batch 196887

#### SOP Reference

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

# **Preparation/Analytical Method Verification**

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

### **Calibration Information:**

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

#### Initial Calibration

The instrument was properly calibrated.

# **Calibration Verification Information**

All calibration verification standards were within the required limits.

# **Ouality Control (QC) Information:**

#### **Blank Acceptance**

The method and calibration blanks associated with this data were within the required acceptance limits.

#### Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

# **Quality Control**

The following SNLS samples were designated for Quality Control: 65745005, 65936021.

# Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

# Sample Duplicate Acceptance

The values for the samples and duplicates for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

# **Technical Information:**

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

#### **Holding Times**

All samples from this sample group were analyzed within the required holding time for this method.

# Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

# **Sample Dilutions**

No samples in this sample group required dilutions.

# Miscellaneous Information:

#### Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

					Q	C Su	mmary			Day 1 - 1 D			000
Client :	Sándia Nai MS-0756 P.O. Box 5	<b>80</b> 0								Report D	ate: Septembe Page 1 (		002
Contact:	Aibuquerg Pamela M.		lexico				•			• .			
Workorder:	65936												
Parmname		······	NO	1	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Rapid Flow Anal Batch	ysis Federal 19751 I					_						•	-
QCI20029142 Cyanide, Total	28 65745005	DUP		BJ	6.0706	BU	ND	mg/kg	N/A ^		(+/-0.227)	ADF	08/30/02 11:15
Cyanide, Total	<b>29 659360</b> 16	DUP		BU	ND	BJ	0.275	mg/kg	N/A		(+/-0.278)		08/30/02 11:22
QC120029143 Cyanide, Total QC120029143			2.50			B	2.53	mg/kg		101	(81%-125%)		08/30/02 11:09
Cyanide, Total OC120029142			277			B	340	mg/kg		123	(81%-125%)		08/30/02 11:13
	30 65745005	MŞ				1	0.0869	mg/kg					08/30/02 11:08
Cyanide, Total QC120029143	65936016	MS	5.56 4.55	BJ BU	0.0705	B	6.11	mg/kg			(55%-145%)		08/30/02 11:15
Cyanide, Total Spectrometric As Batch	alysis Federal 196888	I	4.53	μŪ	ND	B	4.57	mg/kg		100	( <b>55%-145%</b> )		08/30/02 11:22
Hexavalent Chr.				υ	ND	υ	ND	mg/kg	N/A		(+/-0.0965)	BEP1	08/30/02 10:00
QC120028994 Hexavalent Chro QC120028994		DUP		U	ND	υ	ND	mg/kg	N/A		(+/-0.0961)		
Hexavalent Chr QC120028994	omium		0.997				0.927	mg/kg		93	(72%-121%)		
• • • • • • • •	13 65745005	MS				U	ND	mg/kg		- 4			
	65936021	MS	0.991	U	ND	•	0.565	mg/kg			(49%-130%)		
Hexavalent Chri	omium	-	0.973	U	ND		0.779	mg/kg		80	(49%-130%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.



Workorder: 65936

# **QC** Summary

WOINGIGET: 93730			Page 2 of 2
Ранилание	NOM	Sample Qual QC Units	RPD% REC% Range Anist Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than

five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

283

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

# Method/Analysis Information

Procedure:	Total Cyanide
Analytical Method:	SW846 9012A
Prep Method:	SW846 9010B Prep
Analytical Batch Number:	199201
Prep Batch Number:	199200

# Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
65944009	059639-005
1200294945	MB for batch 199201
1200294946	LCS for batch 199201
1200294947	DUP of 66197009
1200294948	MS of 66197009

# **SOP** Reference

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

# **Preparation/Analytical Method Verification**

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

# **Calibration Information:**

The instrument used in this analysis was the following: Lachat QuickChem FIA+

# **Initial Calibration**

The instrument was properly calibrated.

# **Calibration Verification Information**

All calibration verification standards were within the required limits.

# **Quality Control (QC) Information:**

#### **Blank** Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

### Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

#### Quality Control

The following sample was designated for Quality Control: 66197009.

## Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

#### Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

# **Technical Information:**

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

### **Holding** Times

All samples from this sample group were analyzed within the required holding time for this method.

# **Preparation/Analytical Method Verification**

All procedures were performed as stated in the SOP.

#### **Sample Dilutions**

No samples in this sample group required dilutions.

# **Miscellaneous Information:**

# **Nonconformance Reports**

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

### **Comments**

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

### **Review Validation:**

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Date: **Reviewer:** 9/11/02

### General Chemistry Narrative Sandia National Labs (SNLS) SDG 65936-1

### Method/Analysis Information

Procedure:	Hexavalent	Chromium
------------	------------	----------

Analytical Method: SW846 7196A

Analytical Batch Number: 196733

### Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
65944010	059639-006
1200289550	MB for batch 196733
1200289551	DUP of 65944010
1200289552	PS of 65944010
1200289553	LCS for batch 196733

### **SOP Reference**

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

### Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

### **Calibration Information:**

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

### **Initial Calibration**

The instrument was properly calibrated.

### **Calibration Verification Information**

All calibration verification standards were within the required limits.

### **Quality Control (QC) Information:**

### **Blank Acceptance**

The method and calibration blanks associated with this data were within the required acceptance limits.

### Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

### Quality Control

The following sample was designated for Quality Control: 65944010.

### Sample Spike Recovery

The matrix spike was outside of the laboratory internal SPC limits but within the client required limits of 75%-125%.

### Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

### **Technical Information:**

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

### **Holding Times**

Sample 65944010 was received with insufficient time to prep/analyze the sample in the remaining method-specified holding time. The following sample was run as soon as possible by the analyst.

### Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

### Sample Dilutions

No samples in this sample group required dilutions.

### **Miscellaneous Information:**

### Nonconformance Reports

No Nonconformance  $\hat{R}$  eports (NCR) were required for any of the samples in this sample group for this analysis.

**OC** Summary Report Date: September 10, 2002 **Client:** Sandia National Laboratories Page 1 of 2 MS-0756 P.O. Box 5800 Albuquerque, New Mexico Contact: Pamela M. Puissant Workorder: 65944 Parmname NOM Sample Qual QC Units RPD% REC% Date Time Range Anist **Rapid Flow Analysis Federal** 100201 Ratch QC1200294947 66197009 DUP U ND ND N/A (+/-0.005) ADF 09/05/02 14:21 Cyanide. Total U mg/L QC1200294946 LCS 0.050 0.0526 105 (90%-110%) 09/05/02 14:19 Cyanide, Total mg/L QC1200294945 MB 09/05/02 14:18 Cyanide, Total U ND mg/L OC1200294948 66197009 MS υ ND (72%-133%) 09/05/02 14:22 0.100 0.0947 95 Cyanide, Total mg/L Spectrometric Analysis Federal Batch 196733 OC1200289551 65944010 DUP (+/-0.010) VH1 08/23/02 16:15 HU ND HU ND N/A Hexavalent Chromium mg/L OC1200289553 TCS 0.100 0.095 95 (89%-110%) Hexavalent Chromium mg/L OC1200289550 MR U ND Hexavalent Chromium mg/L QC1200289552 65944010 PS Hexavalent Chromium 0.100 HU ND H 0.077 mg/L 76× (80%-122%)

### Notes:

RER is calculated at the 95% confidence level (2-sigma),

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MiDL.

H Holding time was exceeded

J Estimated value, the analytic concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

### **QC** Summary

Workorder: 6594	4	
-----------------	---	--

Workorder: 65944		Page 2 of 2
Parmmanne	NOM Sample Qual	QC Units RPD% REC% Range Anist Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than

five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of #-RL is used to evaluate the DUP result. thc

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

### Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 65936

### Method/Analysis Information

Batch Number:198983Procedure:Determination of Gross Alpha And Gross Non-Volatile Beta in WaterAnalytical Method:EPA 900.0

Sample ID	Client ID
65936016	059673-002
65936017	059674-002
65936018	059675-002
65936019	059676-002
65936020	059677-002
65936021	059678-002
65936022	059679-002
65936023	059681-002
65936024	059682-002
65936025	059683-002
65936026	059684-002
65936027	059686-002
65936028	059687-002
65936029	059688-002
65936030	059689-002
1200294338	MB for batch 198983
1200294339	059673-002(65936016DUP)
1200294340	059673-002(65936016MS)
1200294341	059673-002(65936016MSD)
1200294342	LCS for batch 198983

### **SOP Reference**

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

### **Calibration Information:**

#### Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 13, 2002.

#### **Standards Information**

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

#### Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

### **Quality Control (OC) Information:**

#### **Blank Information**

The blank volume is representative of the sample volume(s) in this batch.

#### **Designated QC**

The following sample(s) was used for QC: 65936016.

### QC Information

The alpha matrix spike and matrix spike duplicate failed due to the matrix of the sample. The recoveries were similar in results.

### **Technical Information:**

### **Holding** Time

All sample procedures for this sample set were performed within the required holding time.

### Preparation Information

All preparation criteria have been met for these analyses.

### Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

### **Gross Alpha/Beta Preparation Information**

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

### Miscellancous Information:

### NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

#### Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

### **Review Validation:**

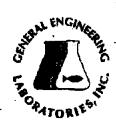
GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

### The following data validator verified the information presented in this case narrative:

Reviewer:	hi-mone	Date: (3Sep2002_



### **GENERAL ENGINEERING LABORATORIES**


Meeting today's needs with a vision for tomorrow.

000

			00	Summary			-			
Client :	Sandia National	Laboratarits					Report ]	Date: Septemb		1002
	MS-0756							Page 1	ac 1	
	P.O. Bex 5800	•						•		
	Albaiquerente, Ne	w Mexico								
Contact:	Pamela M. Puise	sant .			•			•		
Workorder:	65936									
Parmanne		NOM	Sample Q	uni QC	Units	RÈÈ	RECS	Range	Anist	Date Tim
Graviandaic Seliča										
Batch 19	77078									
	65936016 DUP									
Moistare			4,93	4.91	percent	. 0		(0%-2 <b>4%)</b>	MLA	08/27/02 18:1
Red Gas Flow	· •			•	•	•				
	8983		•		,					
001200204338	65936016 DUP	• •								
Alpha			5.50	6.3)	vCVe	0.209		(0%-20%)	<b>1</b> S1	09/07/02 19:15
•		Uncart:	+/-1.65	+/-2.05						
		TPU:	1.74	2.12						
Ben			17.8	18.6	pCi/g	0.182		(UX-20%)		
	•	Uncert	+/-1.73	++ 1.62						
•		TPU:	1,87	2.46						
QC1200294342	LCS			· •						
Alpha		9.89		9.58	pCi/g		97	(75%-1 <b>25%)</b>		09/09/02 07:58
		Uncert:		+/-1.55						
<b>.</b> .		TPU: 39.8		1.75	-					
Beta .		Uncert		46.6 +/-2.66	pCi/g		117	(75%-125%)		
	•	TPU:		47-2.00						
OC1200294338	MA	: 180:		3.48						
Aipha				U 0.0271	pCi/g					09/07/02 19:15
		Uncert		+/-0.0682	Lb					•
		TPU:		0.0682						
Beta				U 0.0895	pCi/g					
•		Uncert		+/-0.123		•				
-		TPU:	•	0.123						
QC1200294340	65936016 MS									
Aipha		89.9	5.50	70.7	pCVg		73=	(75%-125%)		09/09/02 07:58
		Uncert	+/-1.65	+/-15.0						
	1	TPU:	1.74	16.6	• • •					
Bota		362	17.8	363	pCi/g		96	(75%-125%)		
		Uncert	+/-1.73	+/-22.6						
0.01000001-44	64036016 140M	TPU:,	1.87	26.8						
QC1200294341	65936016 MSD	97.9	5.50	72.0	pCi/g		68			
71978A		Uncert	+/-1.65	+/-15.6	head		49			
		TPU:	1.74	16.7						
leta		394 °	17.8	375	pCi/g		91			
re mi	•	Uncert:	+/-1.73		1-01E		71			
	•	TPU:	1.87	26.1						-
		IIU:	1.07	20.5						

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Printed on Recycled Paper.



### **GENERAL ENGINEERING LABORATORIES**

Meeting today's needs with a vision for tomorrow.

### **OC Summary**

Workerser: 63736				•	Page 2 of 2
Parautanse	NOM	Sample Qual	QC Units RER	REC%	Range Anlet Date Time
Notes:					
The Constituent is this second	are defined as follower				

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- ** Indicates analyte is a surogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- 1 Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analyzes the result is less than the effective MDL. For radiochemical analyzes the result is less than the Decision Level
- X Presumptive svidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result. For PS, PSD, and SDILT results, the values listed are the measured amounts, nor final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Printed on Recycled Paper.

### Radiochemistry Case Narrative Sandia National Labs (SNLS) SDG 65936-1

### Method/Analysis Information

Batch Number:198970Procedure:Determination of Gross Alpha And Gross Non-Volatile Beta in WaterAnalytical Method:EPA 900.0

Chent ID 059639-008 MB for batch 198970 059540-008(65919003DUP) 059540-008(65919003MS) 059540-008(65919003MSD) LCS for batch 198970

### SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

### **Calibration Information:**

#### **Calibration Information**

All initial and continuing calibration requirements have been met. The initial calibration was performed on October 11, 2001.

#### **Standards Information**

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

#### Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

#### **Ouality Control (OC) Information:**

#### **Blank Information**

The blank volume is representative of the sample volume(s) in this batch.

### **Designated QC**

The following sample(s) was used for QC: 65919003.

#### QC Information

All of the QC samples met the required acceptance limits.

### **Technical Information:**

### **Holding** Time

All sample procedures for this sample set were performed within the required holding time.

### Preparation Information

All preparation criteria have been met for these analyses.

### Sample Re-prep/Re-analysis

Samples 1200294294, 1200294295 and 1200294296 were recounted due to high alpha recovery.

### **Gross Alpha/Beta Preparation Information**

High hyproscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to exides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

### Miscellaneous Information;

### NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

### Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation: GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

Reviewer: Valurie	DRUM	Date: 9/110/02



### **GENERAL ENGINEERING LABORATORIES**

Meeting today's needs with a vision for tomorrow.

				- 00	1 Si	immary					
Client :	Sandia Nati MS-0756 P.O. Bex Si	ensi Laborat 89	UTİNE	<u>x</u> .					Report )	Date: September 16, 2 Page 1 of 2	1992
Contact:	Albuquergi Pamela M. 3	ne, New Massi Puissunt							-		
Werkerder:	65944			•							
Paramatene			NOM	Sample	Qual	QÇ	Units	RER	REC?	Range Aalst	Date Time
Rad Ges Flow Batch	198970		•								
QC120029428 Alpha	99 - 65919003	DUP		100		137	, pCi/L	0.562		(0%-20%) HOB1	09/10/02 01:17
			Upcert. TPU:	+/-27.9 29.9		+/-31.) 35.5					
Ben	•		Uncert:	106 +/-19.9		109 +/-20.0	pCi/L	0.0835		(0%-20%)	
OCI 20029425	6 LCS	•	TPU:	19.9		20.0					
Alpha	<b>10</b> 172	,	9.89 Uncert:			9.16 +/-1.68	pCi/L		93	(75%-125%)	09/10/02 07:17
Beta	-		TPU: 39.7 Uncert:			1.92 42.3 +/-2_37	рСИ.		· 106	(75%-125%)	
OC120029425	92 MB		TPU:			2.40			•		
Alpha	72 NID		Uncert:	•	U	0.0348 +/-0.0704	pCi/L.		·		09/10/02 01:17
Beta		• *	TPU: Uncert		บ	0.0705 0.0992 +/-0.0774	pCi/L				
			TPU:			0.0774					
QC120029429 Alpha	4 65919003 I		1980 Uncert:	100 +/-27.9		2460 +/-410	pCi/L		120	(75%-125%)	09/10/02/07:17
Beta		۰.	TPU: 7950 Uncert:	29.9 106 +(-19.9		473 9230 +/-495	pCi/L		115	(75%-125%)	
00120558498	A CENTONO 1	4015	TPU:	19.9		499				· .	
QC120029429 Alpha	5 65919003 I		1980 Uncert	100 +/-27.9		2550 +/-427	bC2U'		124	(75%-1 <b>25%</b> )	
Beta	•		TPU: 7950 Uncert:	29.9 106 +/-19.9		475 8560 +/-480	pCi/L		106	(75%-125%)	
			TPU:	19.9		489					

Notes:

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicase RPD's are not applicable where the concentration fails below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 • Fax (843) 766-1178

Princed on Recycled Paper.



### **GENERAL ENGINEERING LABORATORIES**

Meeting today's needs with a vision for tomorrow.

### **QC** Summary

Pite and state	666¢	NOM	Sample Qual	OC	Units	RER	RECS	Range	Anist	Date	Tim
H	Holding time was exceed										
J	Estimated value, the snal	yte concentration fell a	bove the effective MDL	and below t	he effect	ive PQL					
P	The response between the	confirmation column	and the primary column	is >40%D							
U	The analyte was analyzed			For Organic	and Inc	rganic anal	ytes the resul	it is less tha	n ibe effc	ctive MI	L.
` <b>x</b>	For radiochemical analyte Presumptive evidence that			e for further	informat	tion.					
`x x		t the analyte is not pre-	sent. Please see parrativ								
	Presumptive evidence that	t the analyte is not pre- t the analyte is not pre-	sent. Please see marativ sent. Please see narrativ								

for PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Drinted on Recycled Paper.

COC# 605640

Effective Date: 10/09/02

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), RPLS home page.

### **Radiation Protection Sample Diagnostics**

### DOCUMENTATION OF CORRECTED RESULTS

			•						
NEW 14		Hild Original Astronomics							
Sample ID(s):									
Sample Inform	nation: Soil 7.	Marinelli a	501E /1025-	5P1-BA-11-5					
	<b>非非利益</b> 能能非非	ason(s)Nor Contecting							
	cription error								
Other	(describe): Mam	ple date 119 8-19-02.	tred as 8-	19-92;					
		rseden reported		1					
		C. H. Gottenen Result							
Sample ID	Isotope	Result	Error	MDA					
	· · · ·								
Prepared by:	KAAK	have	Date:	10-15-02					
Approved by	5.7.86		Date:	10-15-02.					

RPSD-0212-01.3

PROCEDURE NO: RPSD-02-12	ISSUE NO: 04	ATTACHMENT 1
PROCEDURE NO: RPSD-02-12	1330E NO. 04	PAGE NO: 1 OF 1

***** ******* Sandia National Laboratories Radiation Protection Sample Diagnostics Program 10/15/02 9:55:08 AM ******* Analyzed by: Beverly Ley .10-F10/15/02 -/5-02 Reviewed by: .0 SANDERS (6135) Customer Customer Sample ID 059668-003 : Lab Sample ID : 20118101 Sample Description : 6501E/1025-SP1-BH1-11-S Sample Quantity 707.300 gram : Sample Date/Time 8/19/02 9:45:00 AM : Acquire Start Date/Time : 8/26/02 11:25:00 AM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6003 seconds Comments: U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. 2-sigma Nuclide Activity MDA Name Error (pCi/gram ) (pCi/gram ) -----U-238 Not Detected 7.03E-001 -----5.21E-001 6.49E-001 RA-226 1.98E+000 PB-214 7.92E-001 1.15E-001 5.65E-002 BI-214 1.08E-001 5.11E-002 6.77E-001 PB-210 2.77E+001 Not Detected -----TH-232 8.88E-001 4.11E-001 1.81E-001 RA-228 8.02E-001 1.50E-001 1.27E-001 AC-228 7.73E-001 1.48E-001 9.75E-002 TH-228 6.58E-001 4.33E-001 6.64E-001 RA-224 8.38E-001 1.92E-001 9.19E-002 PB-212 7.87E-001 1.15E-001 3.93E-002 BI-212 8.03E-001 2.50E-001 2.99E-001 TL-208 7.45E-001 1.16E-001 5.41E-002 U-235 Not Detected 2.26E-001 _____ TH-231 Not Detected 1.09E+001 _____ PA-231 Not Detected 1.31E+000 TH-227 Not Detected 3.52E-001 RA-223 Not Detected 2.65E-001 RN-219 Not Detected 3.23E-001 Not Detected PB-211 -------7.13E-001 Not Detected 1.18E+001 TL-207 -----AM-241 Not Detected 4.07E-001 _____ PU-239 Not Detected 4.03E+002 NP-237 Not Detected 2.16E+000 PA-233 Not Detected --------5.49E-002 TH-229 Not Detected -----2.29E-001

: 20118101

1				
	iclide	Activity	2-sigma	MDA
100	Name	(pCi/gram )	Error	(pCi/gram )
		(p==, j==== ,		(per/gram /
	AG-108m	Not Detected		3.43E-002
	AG-110m	Not Detected		
	BA-133	Not Detected		2.68E-002
	BE-7			4.34E-002
		Not Detected		2.26E-001
	CD-115	Not Detected		5.63E-001
	CE-139	Not Detected		2.71E-002
	CE-141	Not Detected		5.73E-002
	CE-144	Not Detected		2.23E-001
	CM-243	Not Detected		1.62E-001
	CO-56	Not Detected		3.00E-002
	CO-57	Not Detected		2.88E-002
	CO-58	Not Detected		2.80E-002
	CO-60	Not Detected		3.10E-002
	CR-51	Not Detected		2.56E-001
	CS-134	Not Detected		4.28E-002
	CS-137	Not Detected		
	EU-152	Not Detected		3.00E-002
	EU-154			8.54E-002
		Not Detected		1.58E-001
	EU-155	Not Detected		1.32E-001
	FE-59	Not Detected		6.90E-002
	GD-153	Not Detected		9.80E-002
	HG-203	Not Detected		3.26E-002
	I-131	Not Detected		4.73E-002
	IR-192	Not Detected		2.75E-002
	K-40	1.72E+001	2.32E+000	2.70E-001
	MN-52	Not Detected		6.14E-002
-	MN-54	Not Detected		3.19E-002
	MO-99	Not Detected		1.17E+000
	NA-22	Not Detected		3.60E-002
	NA-24	Not Detected		7.00E+001
	ND-147	Not Detected		2.76E-001
	NI-57	Not Detected		1.18E+000
	RU-103	Not Detected		
	RU-106	Not Detected		2.78E-002
	SB-122			2.50E-001
	SB-122 SB-124			2.16E-001
		Not Detected		2.77E-002
	SB-125	Not Detected		7.93E-002
	SN-113	Not Detected		3.33E-002
	SR-85	Not Detected		3.45E-002
	TA-182	Not Detected		1.43E-001
	TA-183	Not Detected		9.13E-001
	TL-201	Not Detected		7.60E-001
	Y-88	Not Detected		2.73E-002
	ZN-65	Not Detected		9.60E-002
	ZR-95	Not Detected		4.76E-002
				T. 100-002

### Effective Date: 10/09/02

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), RPLS home page.

### **Radiation Protection Sample Diagnostics**

### DOCUMENTATION OF CORRECTED RESULTS

1.9	The second second second second second second second second second second second second second second second s		
Samp	le ID(s): 20/18/03 05967	0-003	) .
	le Information: Soil Marinelli		
Buinp			
$z = T^{-2}$		a later at /	
	S CONTRACTORISMENT FOR AN AN AND AN AN AN AN AN AN AN AN AN AN AN AN AN	lad dort an will a	n ny h <u>aan an an an Galang Conforman</u> an an an an an an an an an an an an an
অ	Transcription error		Analytical Error
a	Other (describe): <u>Sample date</u>	enter	ed as 8-19-92;
+	correct Sample date a	8-19-0	2.
	This Report supercedes -	report	dated. 8-56-02.
lesson and the second	and the second second second second second second second second second second second second second second secon		

Sample ID	Isotope	Result	Error	MDA
			-	
÷		and the second second		

Prepared by: Approved by:

Date:

Date:

RPSD-0212-01.3

PROCEDURE NO: RPSD-02-12	ISSUE NO: 04	ATTACHMENT 1 PAGE NO: 1 OF 1
--------------------------	--------------	---------------------------------

*********************							******
	* Sand	ia	National 1	Laborator	ies		*
-	Radiation Protectio	n	Sample Diag	gnostics	Program		*
	11	/1	2/02 2:24	:43 PM	-		*
	*****	**	******	*******	******	*****	******
-	*	~	a state annual			111	*
	* Analyzed by: Bevely K	e	21+12-02	Reviewe	d by:	11/2/22	*
			/		******	* # * * * * * * * * * * *	******
			SANDERS (6:	L35)			
	Customer Sample ID	:	059670-003				
	Lab Sample ID	:	20118103				
	Sample Description		6501W/1026	-SP1-BH12	5-5		
•	Sample Quantity		653.600	gram			
			8/19/02		DM		
	Acquire Start Date/Time		8/26/02				
	Detector Name		LAB02	2.10.30	E 1.1		
	Elapsed Live/Real Time	•	6000 /	6002 sec	onde		
	Probled Preckent Time	•	0000 /	0002 860	. on us		

Comments: U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

	Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
	U-238	Not Detected		7.08E-001
	RA-226 .	1.79E+000	5.26E-001	6.87E-001
	PB-214	6.89E-001	1.03E-001	5.72E-002
	BI-214	5.89E-001	9.70E-002	5.08E-002
	B-210	Not Detected		2.78E+001
_	TH-232	7.38E-001	3.51E-001	1.91E-001
	RA-228	7.34E-001	1.42E-001	1.23E-001
	AC-228	6.98E-001	1.42E-001	1.09E-001
	TH-228	8.62E-001	4.04E-001	5.83E-001
	RA-224	8.57E-001	1.95E-001	7.49E-002
	PB-212	7.25E-001	1.07E-001	3.93E-002
	BI-212	6.79E-001	2.90E-001	4.03E-001
	TL-208	6.57E-001	1.14E-001	8.05E-002
		·		2
	U-235	Not Detected		2.20E-001
	TH-231	Not Detected		1.10E+001
	PA-231	Not Detected		1.37E+000
	TH-227	Not Detected	·	3.50E-001
	RA-223	Not Detected		2.69E-001
	RN-219	Not Detected		3.37E-001
	PB-211	Not Detected		7.70E-001
	TL-207	Not Detected		1.27E+001
	NN 041	Net Detected		
	AM-241 PU-239	Not Detected Not Detected		4.24E-001
	NP-237			3.96E+002
	PA-233	Not Detected Not Detected		2.19E+000
	TH-229	Not Detected		5.54E-002
	111-223	not Derected		2.34E-001

1				
	uclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
	AG-108m	Not Detected		3.35E-002
	AG-110m	Not Detected		2.72E-002
	BA-133	Not Detected		4.44E-002
	BE-7	Not Detected		2.58E-001
	CD-115	Not Detected		5.62E-001
	CE-139	Not Detected		2.87E-002
	CE-141	Not Detected		5.51E-002
	CE-144	Not Detected		2.25E-001
	CM-243	Not Detected		1.63E-001
	CO-56	Not Detected		2.87E-002
	CO-57	Not Detected		2.90E-002
	CO-58	Not Detected		3.10E-002
	CO-60	Not Detected		3.35E-002
	CR-51	Not Detected		2.55E-001
	CS-134	Not Detected		4.21E-002
	CS-137	Not Detected		3.01E-002
	EU-152	Not Detected		8.66E-002
	EU-154	Not Detected		1.54E-001
	EU-155	Not Detected		1.29E-001
	FE-59	Not Detected		7.16E-002
	GD-153	Not Detected		9.76E-002
	HG-203	Not Detected		3.26E-002
	I-131	Not Detected		4.92E-002
-	IR-192	Not Detected		2.73E-002
	K-40	1.81E+001	2.45E+000	2.70E-001
y	MN-52	Not Detected		7.01E-002
-	MN-54	Not Detected		3.29E-002
	MO-99	Not Detected		1.18E+000
	NA-22	Not Detected		3.73E-002
	NA-24	Not Detected		6.87E+001
	ND-147	Not Detected		2.64E-001
	NI-57	Not Detected		1.20E+000
	RU-103	Not Detected		2.91E-002
	RU-106	Not Detected		2.68E-001
	SB-122	Not Detected		2.15E-001
	SB-124	Not Detected		2.92E-002
	SB-125	Not Detected		7.90E-002
	SN-113	Not Detected		3.69E-002
	SR-85	Not Detected		3.45E-002
	TA-182	Not Detected		1.52E-001
	TA-183	Not Detected		9.46E-001
	TL-201	Not Detected		7.68E-001
	Y-88	Not Detected		2.70E-002
	ZN-65	Not Detected		9.75E-002
	ZR-95	Not Detected		5.34E-002
				J.34E-002
			•	

	******	******	*			
	* Sand	ia National Laboratories	*			
-	* Radiation Protection	on Sample Diagnostics Program	*			
		/26/02 1:05:15 PM	*			
-	***************************************					
	* î	K Rholez is 1 (	*			
	* Analyzed by: Beurly	Cey 8/27/02 Reviewed by: # 8/26/62	*			
	******	***************************************	*			
	Customer	: SANDERS (6135)				
	Customer Sample ID	: 059668-003				
	Lab Sample ID	: 20118101	9			
	Sample Description	: 6501E/1025-SP1-BH1-11-S				
	Sample Quantity	: 707.300 gram				
	Sample Date/Time	: 8/19/92 9:45:00 AM				
	Acquire Start Date/Time	: 8/26/02 11:25:00 AM				
	Detector Name	: LAB02				
	Elapsed Live/Real Time	: 6000 / 6003 seconds				

Nuclide Name	Activity (pCi/gram )	2-sigma Brror	MDA (pCi/gram )
U-238	Not Detected		7.038-001
RA-226	1.99E+000	5.23E-001	6.52E-001
PB-214	7.96E-001	1.15E-001	5.68E-002
BI-214	6.80E-001	1.09E-001	5.14E-002
PB-210	Not Detected		3.78E+001
TH-232	8.88E-001	4.11E-001	1.81E-001
RA-228	8.02E-001	1.50E-001	1.27E-001
AC-228	7.73E-001	1.48E-001	9.75E-002
TH-228	2.46E+001	1.62E+001	2.49E+001
RA-224	3.14E+001	7.18E+000	3.44E+000
PB-212	2.95E+001	4.31E+000	1.47E+000
BI-212	3.01E+001	9.36E+000	1.12E+001
TL-208	2.79E+001	4.33E+000	2.03E+000
		•	*
U-235	Not Detected		2.26E-001
TH-231	Not Detected		1.09E+001
PA-231	Not Detected		1.31E+000
TH-227	Not Detected		4.86E-001
RA-223	Not Detected		1.00E+026
RN-219	Not Detected		4.45E-001
PB-211	Not Detected		9.83E-001
TL-207	Not Detected		1.63E+001
		· · · ·	
AM-241	Not Detected		4.13E-001
PU-239	Not Detected		4.03E+002
NP-237	Not Detected		2.15E+000
PA-233	Not Detected		5.49E-002
TH-229	Not Detected		2.29E-001

	34						
T	Nuclide		tivity		2-sigma	MDA	
here	Name	(pc	li/gram )		Error	(pCi/gram	>
	AG-108m		Detected			3.62E-002	
	AG-110m		Detected			6.76E+002	
	BA-133	Not	Detected			8.39E-002	
	BE-7	Not	Detected			1.00E+026	
121	CD-115	Not	Detected			1.00E+026	
	CE-139	Not	Detected			2.63E+006	
	CE-141	Not	Detected			1.00E+026	
	CE-144	Not	Detected		*****	1.61E+003	
	CM-243	Not	Detected			2.07E-001	
	CO-56	Not	Detected			5.41E+012	
	CO-57	Not	Detected			3.19E+002	
	CO-58	Not	Detected			8.89E+013	
	CO-60	Not	Detected			1.15E-001	
	CR-51	Not	Detected			1.00E+026	
	CS-134	Not	Detected			1.23E+000	
	CS-137	Not	Detected			3.77E-002	
•	EU-152	Not	Detected			1.42E-001	
	EU-154	Not	Detected			3.54E-001	
	EU-155	Not	Detected			5.78E-001	
	FE-59	Not	Detected			1.00E+026	
	GD-153	Not	Detected			3.48E+003	
	HG-203	Not	Detected			 1.00E+026	
	I-131	Not	Detected			1.00E+026	
	IR-192	Not	Detected			 2.14E+013	
	K-40		.72E+001		2.32E+000	2.70E-001	
2.1	MN-52	Not	Detected			1.00E+026	
	MN-54	Not	Detected			1.06E+002	
	MO-99	Not	Detected			1.00E+026	
	NA-22	Not	Detected			5.16E-001	
	NA-24	Not	Detected			1.00E+026	
	ND-147	Not	Detected			1.00E+026	
	NI-57	Not	Detected			1.00E+026	
	RU-103	Not	Detected			1.00E+026	
	RU-106		Detected			2.40E+002	
	SB-122	Not	Detected			1.00E+026	
	SB-124	Not	Detected			5.06E+016	
	SB-125	Not	Detected			1.00E+000	
	SN-113	Not	Detected			1.19E+008	
	SR-85	Not	Detected			3.82E+015	
	TA-182	Not	Detected	•		5.10E+008	
	TA-183		Detected			1.00E+026	
	TL-201		Detected			1.00E+026	
	Y-88		Detected			5.56E+008	
	ZN-65		Detected			3.09E+003	
	ZR-95		Detected			7.08E+015	

Sandia National Laboratories Radiation Protection Sample Diagnostics Program * 8/27/02 8:48:31 AM ******************* * Analyzed by: Beverly Kay 8/27/02 Reviewed by: Customer : SANDERS (6135) Customer Sample ID : 059669-003-Lab Sample ID : 20118102 -: 6501E/1025-SP1-BH1-16-S Sample Description : 811.500 gram / Sample Quantity : 8/19/02 10:25:00 AM ~ Sample Date/Time Acquire Start Date/Time : 8/26/02 1:06:59 PM -Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
	U-238	Not Detected		5.96E-001
	RA-226	1.49E+000	4.30E-001	5.58E-001
	PB-214	5.87E-001	8.76E-002	4.85E-002
	BI-214	5.28E-001	8.57E-002	4.30E-002
	PB-210	Not Detected		2.30E+001
٤,	TH-232	5.34E-001	2.60E-001	1.62E-001
	RA-228	5.74E-001	1.14E-001	1.05E-001
	AC-228	5.44E-001	1.13E-001	9.21E-002
	TH-228	7.27E-001	3.94E-001	5.90E-001
	RA-224	6.93E-001	1.57E-001	5.89E-002
	PB-212	5.95E-001	8.79E-002	3.45E-002
	BI-212	5.96E-001	2.45E-001	3.37E-001
	TL-208	5.15E-001	8.82E-002	5.81E-002
	U-235	Not Detected		1.89E-001
	TH-231	Not Detected		9.21E+000
	PA-231	Not Detected		1.12E+000
	TH-227	Not Detected		2.91E-001
	RA-223	Not Detected		2.19E-001
	RN-219	Not Detected		2.94E-001
	PB-211	Not Detected		6.74E-001
	TL-207	Not Detected		1.11E+001
	AM-241	Not Detected		3.49E-001
	PU-239	Not Detected		3.40E+002
	NP-237	Not Detected		1.84E+000
	PA-233	Not Detected		4.52E-002
	TH-229	Not Detected		1.97E-001

	Nuclide Name	Activity	2-sigma	MDA
<u>لر ا</u>	Name	(pCi/gram )	Error	(pCi/gram )
		Net Determent		
	AG-108m	Not Detected		2.85E-002
	AG-110m	Not Detected		2.25E-002
	BA-133	Not Detected		3.78E-002
	BE-7	Not Detected		2.12E-001
	CD-115	Not Detected		4.60E-001
	CE-139	Not Detected		2.43E-002
	CE-141	Not Detected		4.80E-002
	CE-144	Not Detected		1.95E-001
	CM-243	Not Detected		1.40E-001
	CO-56	Not Detected		2.84E-002
	CO-57	Not Detected		2.45E-002
	CO-58	Not Detected		2.66E-002
	CO-60	Not Detected		2.91E-002
×	CR-51	Not Detected		2.09E-001
	CS-134	Not Detected		3.53E-002
	CS-137	Not Detected		2.48E-002
	EU-152	Not Detected		7.27E-002
9	EU-154	Not Detected		1.31E-001
	EU-155	Not Detected		1.11E-001
	FE-59	Not Detected		6.09E-002
	GD-153	Not Detected		8.09E-002
	HG-203	Not Detected		2.80E-002
	I-131	Not Detected		4.17E-002
	IR-192	Not Detected		2.27E-002
	K-40	1.67E+001	2.24E+000	2.40E-001
	MN-52	Not Detected		6.18E-002
-	MN-54	Not Detected		2.61E-002
	MO-99	Not Detected		1.03E+000
	NA-22	Not Detected		3.29E-002
	NA-24	Not Detected		6.78E+001
	ND-147	Not Detected		2.31E-001
	NI-57	Not Detected		1.03E+000
	RU-103	Not Detected		2.39E-002
	RU-106	Not Detected		2.20E-001
	SB-122	Not Detected		1.84E-001
	SB-124	Not Detected		2.36E-002
	SB-125	Not Detected		6.45E-002
	SN-113	Not Detected		3.04E-002
	SR-85	Not Detected		2.86E-002
	TA-182	Not Detected		1.31E-001
	TA-183	Not Detected		7.88E-001
+	TL-201	Not Detected		6.70E-001
	Y-88	Not Detected		2.18E-002
	ZN-65	Not Detected		8.51E-002
	ZR-95	Not Detected		4.50E-002
		The real part international (2) (2) (2) (2002)		

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 4:29:13 PM * Analyzed by: heurly lay 8127102 Reviewed by: : SANDERS (6135) Customer : 059670-003 Customer Sample ID Lab Sample ID : 20118103 Sample Description : 6501W/1026-SP1-BH12.5-S Sample Quantity : 653.600 gram Sample Date/Time : 8/19/92 2:05:00 PM Acquire Start Date/Time : 8/26/02 2:48:58 PM Detector Name : LAB02 Elapsed Live/Real Time 6000 / 6002 seconds :

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name U-238 RA-226 PB-214 BI-214 PB-210	Activity (pCi/gram) Not Detected 1.80E+000 6.92E-001 5.91E-001 Not Detected	2-sigma Error 5.29E-001 1.04E-001 9.74E-002	MDA (pCi/gram ) 7.08E-001 6.90E-001 5.74E-002 5.10E-002 3.79E+001
TH-232	7.38E-001	3.51E-001	1.91E-001
RA-228	7.34E-001	1.42E-001	1.23E-001
AC-228	6.98E-001	1.42E-001	1.09E-001
TH-228	3.23E+001	1.51E+001	2.18E+001
RA-224	3.21E+001	7.30E+000	2.80E+000
PB-212	2.72E+001	4.01E+000	1.47E+000
BI-212	2.54E+001	1.09E+001	1.51E+001
TL-208	2.46E+001	4.27E+000	3.01E+000
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.20E-001 1.10E+001 1.37E+000 4.83E-001 1.00E+026 4.65E-001 1.06E+000 1.75E+001
AM-241	Not Detected		4.30E-001
PU-239	Not Detected		3.96E+002
NP-237	Not Detected		2.19E+000
PA-233	Not Detected		5.54E-002
TH-229	Not Detected		2.34E-001

	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
	AG-108m	Not Detected		3.53E-002
	AG-110m	Not Detected		6.86E+002
	BA-133	Not Detected		8.58E-002
	BE-7	Not Detected		1.00E+026
	CD-115	Not Detected		1.00E+026
	CE-139	Not Detected		2.79E+006
	CE-141	Not Detected		1.00E+026
	CE-144	Not Detected		1.62E+003
	CM-243	Not Detected		2.08E-001
	CO-56	Not Detected		5.16E+012
	CO-57	Not Detected		3.22E+002
	CO-58	Not Detected		9.84E+013
	CO-60 .	Not Detected		1.25E-001
	CR-51	Not Detected		1.00E+026
	CS-134	Not Detected		1.21E+000
	CS-137	Not Detected		3.79E-002
	EU-152	Not Detected		1.44E-001
	EU-154	Not Detected		3.45E-001
	EU-155	Not Detected		5.65E-001
	FE-59	Not Detected		1.00E+026
	GD-153	Not Detected		3.46E+003
	HG-203	Not Detected		1.00E+026
	I-131	Not Detected		1.00E+026
	IR-192	Not Detected		2.12E+013
and the second	K-40	1.81E+001	2.45E+000	2.70E-001
	MN-52	Not Detected		1.00E+026
0	MN-54	Not Detected		1.10E+002
	MO-99	Not Detected		1.00E+026
	NA-22	Not Detected		5.35E-001
	NA-24	Not Detected		1.00E+026
	ND-147	Not Detected		1.00E+026
	NI-57	Not Detected	~~~~~	1.00E+026
	RU-103	Not Detected		1.00E+026
	RU-106	Not Detected		2.58E+002
	SB-122	Not Detected		1.00E+026
	SB-124	Not Detected		5.33E+016
	SB-125	Not Detected		1.00E+000
	SN-113	Not Detected		1.32E+008
	SR-85	Not Detected		3.82E+015
	TA-182	Not Detected		5.42E+008
	TA-183	Not Detected		1.00E+026
		Not Detected		1.00E+026
	Y-88	Not Detected		5.50E+008
	ZN-65	Not Detected		3.14E+003
	ZR-95	Not Detected		7.94E+015
	HERRIC ARE REF.			1.2404010

***** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 8:44:47 AM ********************* * Analyzed by: Bevorly Key 8/27/07 Reviewed by: ******* Customer : SANDERS (6135) Customer Sample ID : 059671-003-Lab Sample ID : 20118104 -Sample Description : 6501W/1026-SP1-BH1-17-S -Sample Quantity 740.800 gram-: 8/19/02 Sample Date/Time 2:55:00 PM -: Acquire Start Date/Time : 8/26/02 4:30:56 PM -Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.28E+000 6.24E-001 5.32E-001 Not Detected	4.09E-001 9.37E-002 8.84E-002	6.24E-001 5.47E-001 5.29E-002 5.03E-002 2.34E+001
TH-232	6.11E-001	2.93E-001	1.66E-001
RA-228	5.87E-001	1.20E-001	1.19E-001
AC-228	5.90E-001	1.22E-001	9.65E-002
TH-228	5.70E-001	3.78E-001	5.80E-001
RA-224	6.68E-001	1.59E-001	8.04E-002
PB-212	5.77E-001	8.60E-002	3.58E-002
BI-212	4.80E-001	2.51E-001	3.67E-001
TL-208	4.84E-001	9.13E-002	7.75E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.01E-001 9.86E+000 1.23E+000 3.01E-001 2.31E-001 3.03E-001 6.90E-001 1.09E+001
AM-241	Not Detected		3.72E-001
PU-239	Not Detected		3.57E+002
NP-237	Not Detected		1.96E+000
PA-233	Not Detected		4.91E-002
TH-229	Not Detected		2.09E-001

		De la		
-	Nuclide	Activity.	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
>				
	AG-108m	Not Detected		3.10E-002
	AG-110m	Not Detected		2.45E-002
	BA-133	Not Detected		3.95E-002
	BE-7	Not Detected		2.09E-001
	CD-115	Not Detected		4.90E-001
	CE-139	Not Detected		2.54E-002
	CE-141	Not Detected		5.05E-002
	CE-144	Not Detected		2.02E-001
	CM-243	Not Detected		1.48E-001
	CO-56	Not Detected		2.87E-002
	CO-57	Not Detected		2.67E-002
	CO-58	Not Detected		2.72E-002
	CO-60	Not Detected		3.08E-002
	CR-51	Not Detected		2.34E-001
	CS-134	Not Detected		3.81E-002
	CS-137	Not Detected		2.54E-002
	EU-152	Not Detected		7.82E-002
	EU-154	Not Detected		1.43E-001
	EU-155	Not Detected		1.14E-001
	FE-59	Not Detected		6.74E-002
	GD-153	Not Detected		8.80E-002
	HG-203	Not Detected		2.92E-002
	I-131	Not Detected		4.36E-002
	IR-192	Not Detected		2.47E-002
-	K-40	1.92E+001	2.57E+000	2.73E-001
	MN-52	Not Detected		6.22E-002
5	MN-54	Not Detected		2.83E-002
	MO-99	Not Detected		1.15E+000
	NA-22	Not Detected		3.37E-002
	NA-24	Not Detected		7.00E+001
	ND-147	Not Detected		2.49E-001
	NI-57	Not Detected		1.14E+000
	RU-103	Not Detected		2.45E-002
	RU-106	Not Detected		2.35E-001
	SB-122	Not Detected		1.95E-001
	SB-124	Not Detected		2.45E-002
	SB-125	Not Detected		7.18E-002
	SN-113	Not Detected		3.23E-002
	SR-85	Not Detected		3.01E-002
	TA-182	Not Detected		1.33E-001
	TA-183	Not Detected		8.35E-001
	TL-201	Not Detected		6.84E-001
	Y-88	Not Detected		2.14E-002
	ZN-65	Not Detected		8.91E-002
	ZR-95	Not Detected		4.75E-002

********** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 8:53:47 AM ********************* ***** ***** *** * Analyzed by: Beverly Key 8127102 Reviewed by: Customer : SANDERS (6135) Customer Sample ID : 059673-003 -Lab Sample ID : 20118105 -Sample Description : 6505/1084-DF1-BH1-3-S ~ Sample Quantity 700.100 gram -: Sample Date/Time : 8/20/02 8:40:00 AM -Acquire Start Date/Time : 8/26/02 6:12:55 PM -Detector Name : LAB02 Elapsed Live/Real Time 6000 / 6002 seconds : Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 9.49E-001 5.37E-001 4.93E-001 Not Detected	4.46E-001 8.50E-002 8.31E-002	6.25E-001 6.58E-001 5.68E-002 4.72E-002 2.41E+001
TH-232	4.88E-001	2.46E-001	1.79E-001
RA-228	4.83E-001	1.07E-001	1.16E-001
AC-228	5.70E-001	1.20E-001	9.63E-002
TH-228	7.86E-001	4.07E-001	6.03E-001
RA-224	6.48E-001	1.57E-001	8.11E-002
PB-212	5.73E-001	8.59E-002	3.84E-002
BI-212	5.67E-001	2.70E-001	3.86E-001
TL-208	5.30E-001	9.20E-002	5.96E-002
U-235	Not Detected		1.98E-001
TH-231	Not Detected		9.50E+000
PA-231	Not Detected		1.23E+000
TH-227	Not Detected		3.10E-001
RA-223	Not Detected		2.17E-001
RN-219	Not Detected		3.18E-001
PB-211	Not Detected		6.91E-001
TL-207	Not Detected		1.03E+001
AM-241	Not Detected		3.55E-001
PU-239	Not Detected		3.70E+002
NP-237	Not Detected		1.99E+000
PA-233	Not Detected		4.79E-002
TH-229	Not Detected		2.02E-001



	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
0				·
	AG-108m	Not Detected		3.19E-002
	AG-110m	Not Detected		2.40E-002
	BA-133	Not Detected		3.91E-002
	BE-7	Not Detected		2.11E-001
	CD-115	Not Detected		3.95E-001
	CE-139	Not Detected		2.44E-002
	CE-141	Not Detected		4.88E-002
	CE-144	Not Detected		2.00E-001
	CM-243	Not Detected		1.44E-001
	CO-56	Not Detected		2.92E-002
	CO-57	Not Detected		2.59E-002
	CO-5B	Not Detected		2.64E-002
	CO-60	Not Detected		2.95E-002
	CR-51	Not Detected		2.29E-001
	CS-134	Not Detected		3.75E-002
	CS-137	Not Detected		2.65E-002
	EU-152	Not Detected		7.72E-002
	EU-154	Not Detected		1.47E-001
	EU-155	Not Detected		1.19E-001
	FE-59	Not Detected		6.65E-002
	GD-153	Not Detected		8.70E-002
	HG-203	Not Detected		2.83E-002
	I-131	Not Detected		3.96E-002
	IR-192	Not Detected		2.42E-002
-	K-40	1.48E+001	2.02E+000	2.81E-001
	MN-52	Not Detected		5.67E-002
~	MN-54	Not Detected		2.83E-002
	MO-99	Not Detected		9.05E-001
	NA-22	Not Detected		3.44E-002
	NA-24	Not Detected		3.47E+001
	ND-147	Not Detected		2.34E-001
	NI-57	Not Detected		8.19E-001
	RU-103	Not Detected		2.40E-002
	RU-106	Not Detected		2.16E-001
	SB-122	Not Detected		1.65E-001
	SB-124	Not Detected		2.56E-002
	SB-125	Not Detected		7.09E-002
	SN-113	Not Detected		3.05E-002
	SR-85	Not Detected		3.25E-002
	TA-182	Not Detected	******	1.28E-001
	TA-183	Not Detected		7.28E-001
	TL-201	Not Detected		5.86E-001
	Y-88	Not Detected		2.12E-002
	ZN-65	Not Detected		8.74E-002
	ZR-95	Not Detected		4.70E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 8:59:55 AM * Analyzed by: Beverly Key 8127102 Reviewed by: : SANDERS (6135) Customer Customer Sample ID : 059674-003 Lab Sample ID : 20118106 : 6505/1084-DF1-BH1-8-S Sample Description Sample Quantity : 707.500 gram : 8/20/02 Sample Date/Time 8:55:00 AM Acquire Start Date/Time : 8/26/02 7:54:53 PM : LAB02 Detector Name Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
Maine	(per/gram)		(per/gram /
U-238	Not Detected		6.54E-001
RA-226	1.40E+000	4.84E-001	6.70E-001
PB-214		9.67E-002	5.43E-002
BI-214 BI-214	5.55E-001	9.18E-002	5.04E-002
PB-210	Not Detected	9.100-002	2.57E+001
PB-210	NOC Delected	121 Mar	2.J/ <u>5</u> +001
TH-232	6.61E-001	3.19E-001	1.91E-001
RA-228	7.61E-001	1.44E-001	1.30E-001
AC-228	6.93E-001	1.35E-001	9.22E-002
TH-228	4.87E-001	4.25E-001	6.69E-001
RA-224	8.26E-001	1.85E-001	6.18E-002
PB-212	7.00E-001	1.03E-001	3.73E-002
BI-212	9.62E-001	2.77E-001	3.22E-001
TL-208	6.11E-001	1.06E-001	7.69E-002
U-235	Not Detected		2.07E-001
TH-231	Not Detected		1.00E+001
PA-231	Not Detected		1.22E+000
TH-227	Not Detected		3.26E-001
RA-223	Not Detected		2.31E-001
RN-219	Not Detected		3.09E-001
PB-211	Not Detected		6.94E-001
TL-207	Not Detected		1.13E+001
11-207	NOL DECECTED		1.100+001
AM-241	Not Detected		3.84E-001
PU-239	Not Detected		3.80E+002
NP-237	Not Detected		2.05E+000
PA-233	Not Detected		4.99E-002
TH-229	Not Detected		2.18E-001



.

	Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
				(per/gram /
	AG-108m	Not Detected		3.26E-002
	AG-110m	Not Detected		2.41E-002
	BA-133	Not Detected		4.13E-002
	BE-7	Not Detected		
	CD-115			2.24E-001
	CE-139	Not Detected		4.41E-001
		Not Detected	*******	2.62E-002
	CE-141	Not Detected		5.12E-002
	CE-144	Not Detected		2.09E-001
	CM-243	Not Detected		1.52E-001
	CO-56	Not Detected		2.77E-002
	CO-57	Not Detected		2.69E-002
	CO-58	Not Detected		2.87E-002
	CO-60	Not Detected		3.18E-002
	CR-51	Not Detected		2.37E-001
	CS-134	Not Detected		3.93E-002
	CS-137	Not Detected		2.68E-002
	EU-152	Not Detected		8.06E-002
	EU-154	Not Detected		1.50E-001
	EU-155	Not Detected		1.24E-001
	FE-59	Not Detected	~	6.44E-002
	GD-153	Not Detected		9.01E-002
	HG-203	Not Detected		2.99E-002
	I-131	Not Detected		4.36E-002
	IR-192	Not Detected		2.49E-002
-	K-40	1.52E+001	2.06E+000	2.56E-001
	MN-52	Not Detected		5.49E-002
()	MN-54	Not Detected		2.98E-002
	MO-99	Not Detected		9.64E-001
	NA-22	Not Detected	~~~~~~	3.47E-002
	NA-24	Not Detected		3.57E+001
	ND-147	Not Detected		2.34E-001
	NI-57	Not Detected		8.39E-001
	RU-103	Not Detected		2.60E-002
	RU-106	Not Detected		2.20E-001
	SB-122	Not Detected		1.70E-001
	SB-124	Not Detected		2.41E-002
	SB-125	Not Detected		7.25E-002
	SN-113	Not Detected		3.34E-002
	SR-85	Not Detected		3.21E-002
	TA-182	Not Detected		1.36E-001
	TA-183	Not Detected		7.95E-001
	TL-201	Not Detected		
	Y-88			6.21E-001
	•	Not Detected		2.00E-002
	ZN-65	Not Detected		9.15E-002
	ZR-95	Not Detected		5.06E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 9:04:09 AM ***** * Analyzed by: Beverly Key 8/27/02 Revie Reviewed by: 49/27 : SANDERS (6135) Customer Customer Sample ID : 059675-003 Lab Sample ID : 20118107 Sample Description : 6505/1084-DF1-BH2-3-DU Sample Quantity 613.500 gram : Sample Date/Time : 8/20/02 9:45:00 AM Acquire Start Date/Time : 8/26/02 9:36:51 PM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.47E+000 6.91E-001 6.34E-001 Not Detected	5.29E-001 1.05E-001 1.05E-001	7.18E-001 7.37E-001 6.03E-002 5.69E-002 2.74E+001
TH-232	7.19E-001	3.47E-001	2.06E-001
RA-228	8.08E-001	1.53E-001	1.17E-001
AC-228	6.38E-001	1.36E-001	1.14E-001
TH-228	8.81E-001	4.01E-001	5.73E-001
RA-224	8.53E-001	2.00E-001	1.02E-001
PB-212	7.80E-001	1.15E-001	4.02E-002
BI-212	7.27E-001	2.59E-001	3.27E-001
TL-208	6.71E-001	1.16E-001	7.87E-002
U-235	Not Detected		2.28E-001
TH-231	Not Detected		1.12E+001
PA-231	Not Detected		1.42E+000
TH-227	Not Detected		3.65E-001
RA-223	Not Detected		2.51E-001
RN-219	Not Detected		3.65E-001
PB-211	Not Detected		8.59E-001
TL-207	Not Detected		1.21E+001
AM-241	Not Detected		4.23E-001
PU-239	Not Detected		4.17E+002
NP-237	Not Detected		2.24E+000
PA-233	Not Detected		5.63E-002
TH-229	Not Detected		2.34E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		3.57E-002
AG-110m	Not Detected		2.63E-002
BA-133	Not Detected		4.64E-002
BE-7	Not Detected		2.47E-001
CD-115	Not Detected		4.93E-001
CE-139	Not Detected		2.83E-002
CE-141	Not Detected		5.65E-002
CE-144	Not Detected		2.27E-001
CM-243	Not Detected		1.67E-001
CO-56	Not Detected		3.17E-002
CO-57	Not Detected		3.02E-002
CO-58	Not Detected		3.10E-002
CO-60	Not Detected		3.50E-002
CR-51	Not Detected		2.56E-001
CS-134	Not Detected		4.58E-002
CS-137	Not Detected		2.98E-002
EU-152	Not Detected		8.96E-002
EU-154	Not Detected		1.64E-001
EU-155	Not Detected		1.36E-001
FE-59	Not Detected		7.61E-002
GD-153	Not Detected		9.58E-002
HG-203	Not Detected		3.29E-002
I-131	Not Detected	~~~~~~	4.63E-002
IR-192	Not Detected		2.80E-002
K-40	1.63E+001	2.23E+000	3.06E-001
MN-52	Not Detected		6.40E-002
MN-54	Not Detected		2.30E-002
MO-99	Not Detected		1.13E+000
NA-22	Not Detected		3.93E-002
NA-24	Not Detected		4.14E+001
ND-147	Not Detected		2.67E-001
NI-57	Not Detected		9.95E-001
RU-103	Not Detect <b>ed</b>		3.04E-002
RU-106	Not Detected		2.64E-001
SB-122	Not Detected		2.00E-001
SB-124	Not Detected		2.88E-002
SB-125	Not Detected		8.09E-002
SN-113	Not Detected		3.61E-002
SR-85	Not Detected		3.69E-002
TA-182	Not Detected		1.44E-001
TA-183	Not Detected	• • <b>-</b>	8.79E-001
TL-201	Not Detected		6.77E-001
Y-88	Not Detected		2.67E-002
ZN-65	Not Detected		9.67E-002
ZR-95	Not Detected		5.37E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 9:08:15 AM * Analyzed by: Beverly Kay 8/27/02 Reviewed by: 45 8/27/02 Customer : SANDERS (6135) Customer Sample ID : 059676-003 -: 20118108 -Lab Sample ID Sample Description : 6505/1084-DF1-BH2-3-S Sample Quantity : 563.900 gram -9:45:00 AM-Sample Date/Time : 8/20/02 Acquire Start Date/Time : 8/26/02 11:18:49 PM-Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds Comments: U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. Nuclide Activity 2-sigma MDA (pCi/gram ) Name (pCi/gram ) Error _ _ _ _ _ _ _ ----------Not Detected -----7.47E-001 U-238 7.71E-001 RA-226 1.80E+000 5.74E-001 1.13E-001 PB-214 7.27E-001 7.19E-002 6.06E-002 BI-214 6.37E-001 1.07E-001 PB-210 Not Detected ----------2.98E+001 TH-232 7.34E-001 3.53E-001 2.05E-001 RA-228 7.24E-001 1,46E-001 1.23E-001 -------AC-228 Not Detected 2.01E-001 6.82E-001 TH-228 3.94E-001 5.87E-001 RA-224 8.96E-001 2.07E-001 7.52E-002 4.23E-002 PB-212 7.24E-001 1.08E-001 BI-212 6.92E-001 2.81E-001 3.76E-001 TL-208 6.06E-001 1.12E-001 8.89E-002 U-235 Not Detected ____ 2.43E-001 TH-231 Not Detected _____ 1.19E+001Not Detected PA-231 . . . . . . . . . 1.50E+000 TH-227 Not Detected _ _ _ _ _ _ _ _ _ _ 3.78E-001 RA-223 Not Detected _ _ _ _ _ _ _ _ _ 2.75E-001 RN-219 Not Detected 3.91E-001 Not Detected PB-211 _____ 8.80E-001 TL-207 Not Detected ----1.27E+001 AM-241 Not Detected 4.42E-001 -----PU-239 Not Detected ---------4.37E+002 NP-237 Not Detected ----2.21E+000 PA-233 Not Detected ______ 5.89E-002 TH-229 Not Detected -----2.55E-001

	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	
1	name	(ber) åram )		(pCi/gram )
	AG-108m	Not Detected	*	3.79E-002
	AG-1 <b>1</b> 0m	Not Detected		3.02E-002
	BA-133	Not Detected		4.99E-002
	BE-7	Not Detected	<b></b>	2.64E-001
	CD-115			
		Not Detected		5.11E-001
	CE-139	Not Detected		2.92E-002
	CE-141	Not Detected		6.05E-002
	CE-144	Not Detected		2.43E-001
	CM-243	Not Detected		1.76E-001
	CO-56	Not Detected		3.47E-002
	CO-57	Not Detected		3.14E-002
	CO-58	Not Detected		
				3.37E-002
	CO-60	Not Detected		3.64E-002
	CR-51	Not Detected		2.86E-001
	CS-134	Not Detected		4.71E-002
	CS-137	Not Detected		3.18E-002
	EU-152	Not Detected		9.40E-002
	EU-154	Not Detected		1.75E-001
	EU-155	Not Detected		1.35E-001
	FE-59	Not Detected		8.19E-002
	GD-153	Not Detected		
				1.03E-001
	HG-203	Not Detected		3.55E-002
	I-131	Not Detected		5.04E-002
	IR-192	Not Detected		2.94E-002
	K-40	1.64E+001	2.25E+000	3.28E-001
	MN-52	Not Detected		6.53E-002
÷)	MN-54	Not Detected		3.47E-002
	MO-99	Not Detected		1.20E+000
	NA-22	Not Detected		4,04E-002
	NA-24	Not Detected		4.75E+001
	ND-147	Not Detected		
				2.81E-001
	NI-57	Not Detected		1.17E+000
	RU-103	Not Detected		3.02E-002
	RU-106	Not Detected		2.76E-001
	SB-122	Not Detected		2.12E-001
	SB-124	Not Detected		2.99E-002
	SB-125	Not Detected		8.63E-002
	SN-113	Not Detected		4.03E-002
	SR-85	Not Detected		3.97E-002
	TA-182			
		Not Detected	****	1.60E-001
	TA-183	Not Detected		9.28E-001
	TL-201	Not Detected		7.35E-001
	Y-88	Not Detected		2,33E-002
	ZN-65	Not Detected		1,05E~001
	ZR-95	Not Detected		5.71E-002

******* Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 9:17:33 AM ***** * Analyzed by: Beverly Key 8/27/07 Reviewed by: : SANDERS (6135) Customer Customer Sample ID : 059677-003 -: 20118109 🦯 Lab Sample ID Sample Description : 6505/1084-DF1-BH2-8-S 1 Sample Quantity Sample Date/Time : 636.800 gram -: 8/20/02 10:00:00 AM Acquire Start Date/Time : 8/27/02 1:00:55 AM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds Comments: U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. Nuclide Activity 2-sigma MDA Name (pCi/gram ) Error (pCi/gram ) -------------------------U-238 Not Detected --------7.15E-001 RA-226 1.33E+000 5.11E-001 7.25E-001 PB-214 7.49E-001 1.11E-001 6.04E-002 BI-214 6.65E-001 1.08E-001 5.31E-002 PB-210 ------Not Detected 2.84E+001 TH-232 7.57E-001 3.62E-001 2.06E-001 RA-228 7.43E-001 1.46E-001 1.36E-001 AC-228 7.48E-001 1.47E-001 1.03E-001 TH-228 9.28E-001 4.67E-001 6.89E-001 RA-224 7.81E-001 1.87E-001 1.02E-001 PB-212 7.82E-001 1.15E-001 4.23E-002 BI-212 2.77E-001 8.11E-001 3.48E-001 TL-208 6.84E-001 1.18E-001 8.21E-002 1.82E-001 U-235 1.01E-001 2.32E-001 ------TH-231 Not Detected 1.13E+001 Not Detected PA-231 _____ 1.33E+000 TH-227 Not Detected _ _ _ _ _ _ _ _ _ _ 3.63E-001 RA-223 Not Detected _____ 2.60E-001 RN-219 Not Detected 3.63E-001 PB-211 Not Detected --------7.99E-001 TL-207 Not Detected 1.29E+001 AM-241 Not Detected _____ 4.18E-001 PU-239 Not Detected -----4.17E+002 NP-237 Not Detected ---------2.23E+000 PA-233 Not Detected 5.46E-002 TH-229 Not Detected --------2.36E-001



Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		3.67E-002
AG-110m	Not Detected		2.96E-002
BA-133	Not Detected		4.62E-002
BE-7	Not Detected	*	2.43E-001
CD-115	Not Detected		5.18E-001
CE-139	Not Detected		2.91E-002
CE-141	Not Detected		5.78E-002
CE-144	Not Detected		2.27E-001
CM-243	Not Detected		1.64E-001
CO-56	Not Detected		3.23E-002
CO-57	Not Detected		3.04E-002
CO-58	Not Detected		3.21E-002
CO-60	Not Detected		3.46E-002
CR-51	Not Detected		2.49E-001
CS-134	Not Detect <b>ed</b>		4.55E-002
CS-137	Not Detected		3.02E-002
EU-152	Not Detected	**	9.06E-002
EU-154	Not Detected		1.69E-001
EU-155	Not Detected		1.37E-001
FE-59	Not Detected		7.44E-002
GD-153	Not Detected	·	9.67E-002
HG-203	Not Detected		3.24E-002
I-131	Not Detected		5.08E-002
IR-192	Not Detected	·	2.65E-002
K-40	1.83E+001	2.47E+000	2.86E-001
MN-52	Not Detected		6.71E-002
MN-54	Not Detected		1.86E-002
MO-99	Not Detected		1.11E+000
NA-22	Not Detected		3.91E-002
NA-24	Not Detected		4.93E+001
ND-147	Not Detected		2.71E-001
NI-57	Not Detected		9.91E-001
RU-103	Not Detected		2.86E-002
RU-106	Not Detected		2.60E-001
SB-122	Not Detected		2.00E-001
SB-124	Not Detected		2.97E-002
SB-125	Not Detected		8.10E-002
SN-113	Not Detected		3.62E-002
SR-85	Not Detected		3.63E-002
TA-182	Not Detected		1.54E-001
TA-183	Not Detected		8.85E-001
TL-201	Not Detected		7.20E-001
Y-88	Not Detected		2.55E-002
ZN-65	Not Detected		1.00E-001
ZR-95	Not Detected		5.62E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 9:16:00 AM ***** * Analyzed by: Beverly Key 8/27/02 Reviewed by: Customer : SANDERS (6135) Customer Sample ID : 059678-003 -Lab Sample ID : 20118110 -: 6505/1084-DF1-BH3-3-S-Sample Description Sample Quantity : 651.000 gram -Sample Date/Time : 8/20/02 10:15:00 AM ~ Acquire Start Date/Time : 8/27/02 2:42:53 AM -Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.33E+000 6.14E-001 5.25E-001 Not Detected	4.55E-001 9.39E-002 8.74E-002	6.70E-001 6.22E-001 5.44E-002 4.48E-002 2.60E+001
TH-232	5.26E-001	2.66E-001	1.96E-001
RA-228	6.24E-001	1.28E-001	1.17E-001
AC-228	6.52E-001	1.28E-001	8.35E-002
TH-228	3.90E-001	3.90E-001	6.21E-001
RA-224	6.24E-001	1.53E-001	7.34E-002
PB-212	6.08E-001	9.08E-002	3.60E-002
BI-212	6.70E-001	2.68E-001	3.60E-001
TL-208	5.15E-001	9.78E-002	8.21E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.04E-001 1.00E+001 1.26E+000 3.22E-001 2.41E-001 3.16E-001 6.79E-001 1.09E+001
AM-241	Not Detected		3.91E-001
PU-239	Not Detected		3.81E+002
NP-237	Not Detected		2.10E+000
PA-233	Not Detected		5.00E-002
TH-229	Not Detected		2.14E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		3.16E-002
AG-110m	Not Detected		2.35E-002
BA-133	Not Detected		4.17E-002
BE-7	Not Detected		2,42E-001
CD-115	Not Detected		4.58E-001
CE-139	Not Detected		2.61E-002
CE-141	Not Detected		5.14E-002
CE-144	Not Detected		2.13E-001
CM-243	Not Detected		1.59E-001
CO-56	Not Detected		3.16E-002
CO-57	Not Detected		2.74E-002
CO-58	Not Detected		2.82E-002
CO~60	Not Detected		3.23E-002
CR-51	Not Detected		2.37E-001
CS-134	Not Detected		3.98E-002
CS-137	Not Detected		2.69E-002
EU-152	Not Detected		8.04E-002
EU-154	Not Detected		1.45E-001
EU-155	Not Detected		1.24E-001
FE-59	Not Detected		6.84E-002
GD-153	Not Detected		9.12E-002
HG-203	Not Detected	********	3.10E-002
I-131	Not Detected		4.26E-002
IR-192	Not Detected		2.39E-002
 K-40	1.30E+001	1.79E+000	2.66E-001
MN-52	Not Detected		5.54E-002
 MN-54	Not Detected		3.10E-002
MO-99	Not Detected		1.03E+000
NA-22	Not Detected		3.62E-002
NA-24	Not Detected		4.95E+001
ND-147	Not Detected		2.58E-001
NI-57	Not Detected		9.24E-001
RU-103	Not Detected		2.44E-002
RU-106	Not Detected		2.50E-001
SB-122	Not Detected		1.80E-001
SB-124	Not Detected		2.74E-002
SB-125	Not Detected		7.29E-002
SN-113	Not Detected		3.32E-002
SR-85	Not Detected		3.48E-002
TA-182	Not Detected		1.35E-001
TA-183	Not Detected		8.34E-001
TL-201	Not Detected		6.60E-001
Y-88	Not Detected		2.36E-002
ZN-65	Not Detected		9.18E-002
ZR-95	Not Detected		4.90E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 12:57:16 PM ***** Reviewed by: burly Key, 8127/02 * Analyzed by: ********* : SANDERS M (6135) Customer : 059679-003 Customer Sample ID : 20118111 Lab Sample ID : 6505/1084-DF1-BH3-8-S Sample Description Sample Quantity : 766.200 gram Sample Date/Time : 8/20/02 10:30:00 AM Acquire Start Date/Time : 8/26/02 11:17:00 AM Detector Name : LAB01 Elapsed Live/Real Time 6000 / 6002 seconds : Comments: U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ************** Nuclide Activity 2-sigma MDA Name (pCi/gram ) - Error (pCi/gram ) _ _ _ _ _ _ _ _____ _____ Not Detected -------5.00E-001 U-238 1.39E+000 5.44E-001 7.77E-001 RA-226 7.64E-001 1.15E-001 6.13E-002 PB-214 BI-214 6.12E-001 1.02E-001 5.04E-002 . _ _ _ _ _ _ _ _ _ _ _ _ 8.36E+000 PB-210 Not Detected TH-232 6.94E-001 3.37E-001 2.07E-001 RA-228 6.43E-001 1.43E-001 1.57E-001 AC-228 7.39E-001 1.48E-001 9.53E-002 TH-228 7.65E-001 2.29E-001 4.26E-001 RA-224 7.97E-001 2.00E-001 1.03E-001 PB-212 7.14E-001 1.07E-001 3.88E-002 2.91E-001 3.99E-001 BI-212 6.63E-001 TL-208 6.69E-001 1.16E-001 7.25E-002 Not Detected 1.96E-001 U-235 _ _ _ _ _ _ _ _ _ _ _ _ 6.60E+000 TH-231 Not Detected Not Detected 1.35E+000 PA-231 Not Detected 3.26E-001 TH-227 _ _ _ _ _ _ _ _ _ _ RA-223 Not Detected 1.54E-001 RN-219 Not Detected _____ 3.85E-001 PB-211 Not Detected 8.50E-001 TL-207 Not Detected 1.51E+001 Not Detected AM-241 1.72E-001 PU-239 Not Detected 3.49E+002 Not Detected 1.89E+000 NP-237 PA-233 Not Detected 5.61E-002 TH-229 Not Detected 1.94E-001



Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.22E~002
AG-110m	Not Detected		3.13E-002
BA-133	Not Detected		4.24E-002
BE-7	Not Detected		2.61E-001
CD-115	Not Detected		4.28E-001
CE-139	Not Detected		2.49E-002
CE-141	Not Detected		4.89E-002
CE-144	Not Detected		1.94E-001
CM-243	Not Detected		1.69E-001
CO-56	Not Detected		3.63E-002
CO-57	Not Detected		2.47E-002
CO-58	Not Detected		3.31E-002
CO-60,	Not Detected		3.87E-002
CR-51	Not Detected		2.58E-001
CS-134	Not Detected		4.60E-002
CS-137	Not Detected		3.39E-002
EU-152	Not Detected		7.32E-002
EU-154	Not Detected		<b>1.95E-001</b>
EU-155	Not Detected		1.11E-001
FE-59	Not Detected		8.57E-002
GD-153	Not Detected		6.55E-002
HG-203	Not Detected		3.33E-002
I-131	Not Detected		4.38E-002
IR-192	Not Detected		2.80E-002
K-40	1.47E+001	2.04E+000	3.29E-001
MN-52	Not Detected		7.36E-002
MN-54	Not Detected	. <b></b>	3.43E-002
MO-99	Not Detected		1.09E+000
NA-22	Not Detected		4.66E-002
NA-24	Not Detected	*****	3.15E+001
ND-147	Not Detected		3.02E-001
NI-57	Not Detected		9.41E-001
RU-103	Not Detected		3.08E-002
RU-106	Not Detected		2.89E-001
SB-122	Not Detected		1.88E-001
SB-124	Not Detected		3.05E-002
SB-125	Not Detected		8.67E-002
SN-113	Not Detected		3.76E-002
SR-85	Not Detected		3.68E-002
TA-182	Not Detected		1.79E-001
TA-183	Not Detected		3.36E-001
TL-201	Not Detected		3.23E-001
Y-88	Not Detected		2.64 <b>E-</b> 002
ZN-65	Not Detected		1.21E-001
ZR-95	Not Detected		6.55E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 2:38:34 PM ******* Reviewed by: Reviewed by: Beverly ary 8/27/02 * Analyzed by: * * * * * * * * * * * * : SANDERS M (6135) Customer Customer Sample ID : 059681-003 Lab Sample ID : 20118112 Sample Description : 6610/1032-OF1-BH1-2-S Sample Quantity : 668.800 gram Sample Date/Time : 8/20/02 11:30:00 AM Acquire Start Date/Time : 8/26/02 12:59:22 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Activity	2-sigma	
(pci/gram)	EFFOR	(pCi/gram )
Not Detected		5.05E-001
	4.77E-001	6.32E-001
		6.44E-002
4.44E-001	8.40E-002	6.05E-002
Not Detected		8.61E+000
7.06E-001	3.40E-001	1.94E-001
6.42E-001	1.47E-001	1.53E-001
5.49E-001	1.29E-001	1.10E-001
6.40E-001	2.27E-001	4.59E-001
5.71E-001	1.66E-001	1.08E-001
6.54E-001	9.92E-002	3.71E-002
7.59E-001	2.79E-001	3.43E-001
5.32E-001	1.05E-001	8.66E-002
Not Detected	******	1.97E-001
Not Detected		6.42E+000
Not Detected		1.40E+000
Not Detected		3.32E-001
Not Detected		1.55E-001
Not Detected		3.87E-001
Not Detected		8.81E-001
Not Detected		1.54E+001
Not Detected		1.68E-001
Not Detected		3.51E+002
Not Detected	* *	1.87E+000
Not Detected		5.99E-002
Not Detected		1.90E-001
	<pre>(pCi/gram ) Not Detected 1.47E+000 5.80E-001 4.44E-001 Not Detected 7.06E-001 6.42E-001 6.42E-001 5.49E-001 6.40E-001 5.71E-001 6.54E-001 7.59E-001 5.32E-001 Not Detected Not Detected</pre>	(pCi/gram )       Error         Not Detected          1.47E+000       4.77E-001         5.80E-001       9.51E-002         4.44E-001       8.40E-002         Not Detected          7.06E-001       3.40E-001         6.42E-001       1.47E-001         5.71E-001       1.29E-001         6.40E-001       2.27E-001         5.71E-001       1.66E-001         6.54E-001       9.92E-002         7.59E-001       2.79E-001         5.32E-001       1.05E-001         Not Detected          Not Detected

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.26E-002
AG-110m	Not Detected		
BA-133	Not Detected		3.16E-002
BE-7	Not Detected		4.17E-002
CD-115	Not Detected		2.58E-001
CE-139	Not Detected		4.35E-001
CE-141			2.52E-002
	Not Detected		4.80E-002
CE-144	Not Detected		1.93E-001
CM-243	Not Detected		1.71E-001
CO-56	Not Detected		3.72E-002
CO-57	Not Detected		2.41E-002
CO-58	Not Detected		3.38E-002
CO-60	Not Detected		4.39E-002
CR-51	Not Detected		2.65E-001
CS-134	Not Detected	*	4.47E-002
CS-137	Not Detected		3.38E-002
EU-152	Not Detected		7.16E-002
EU-154	Not Detected		1.98E-001
EU-155	Not Detected		1.08E-001
FE-59	Not Detected		9.15E-002
GD-153	Not Detected		6.46E-002
HG-203	Not Detected		3.35E-002
I-131	Not Detected		<b>4.72E-002</b>
IR-192	Not Detected		2.87E-002
K-40	1.44E+001	2.03E+000	4.06E-001
MN-52	Not Detected		7.79E-002
MN-54	Not Detected		3.76E-002
MO-99	Not Detected		<b>1.24E+000</b>
NA-22	Not Detected		5.00E-002
NA-24	Not Detected	****	3.67E+001
ND-147	Not Detected		2.87E-001
NI-57	Not Detected	*	9.34E-001
RU-103	Not Detected		3.30E-002
RU-106	Not Detected		2.85E-001
SB-122	Not Detected		1.95E-001
SB-124	Not Detected		3.26E-002
SB-125	Not Detected		8.67E-002
SN-113	Not Detected	***	4.03E-002
SR-85	Not Detected	**	3.94E-002
TA-182	Not Detected		1.80E-001
TA-183	Not Detected		3.24E-001
TL-201	Not Detected		3.12E-001
Y-88	Not Detected		3.22E-002
ZN-65	Not Detected		1.20E-001
ZR-95	Not Detected		6.17E-002

**** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 4:20:53 PM Reviewed by: Burly Key 8/27/02 * Analyzed by: : SANDERS M (6135) Customer Customer Sample ID : 059682-003 Lab Sample ID : 20118113 Sample Description : 6610/1032-OF1-BH1-7-S Sample Quantity : 649.800 gram Sample Date/Time : 8/20/02 2:35:00 PM Acquire Start Date/Time : 8/26/02 2:40:39 PM Detector Name : LAB01 Elapsed Live/Real Time 6000 / 6002 seconds :

Comments:

Nuclide	Activity (pCi/gram )	2-sigma	MDA
Name		Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.48E+000 6.40E-001 5.95E-001 Not Detected	5.76E-001 1.03E-001 1.06E-001	5.16E-001 8.18E-001 6.72E-002 6.74E-002 8.94E+000
TH-232	6.19E-001	3.12E-001	2.21E-001
RA-228	6.41E-001	1.51E-001	1.70E-001
AC-228	5.36E-001	1.30E-001	1.17E-001
TH-228	4.62E-001	2.19E-001	4.75E-001
RA-224	6.58E-001	1.83E-001	1.10E-001
PB-212	6.13E-001	9.43E-002	4.00E-002
BI-212	7.78E-001	2.77E-001	3.31E-001
TL-208	5.85E-001	1.10E-001	7.93E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.06E-001 7.09E+000 1.45E+000 3.36E-001 1.62E-001 4.02E-001 9.33E-001 1.60E+001
AM-241	Not Detected		1.75E-001
PU-239	Not Detected		3.67E+002
NP-237	Not Detected		1.88E+000
PA-233	Not Detected		6.12E-002
TH-229	Not Detected		1.96E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram_)
AG-108m	Not Detected		4.24E-002
AG-110m	Not Detected		3.22E-002
BA-133	Not Detected		4.45E-002
BE-7	Not Detected		2.70E-001
CD-115	Not Detected		4.36E-001
CE-139	Not Detected		2.73E-002
CE-141	Not Detected		5.16E-002
CE-144	Not Detected		2.03E-001
CM-243	Not Detected		1.80E-001
CO-56	Not Detected		3.97E-002
CO-57	Not Detected		2.52E-002
CO-58	Not Detected		3.89E-002
CO-60	Not Detected		4.31E-002
CR-51	Not Detected		2.66E-001
CS-134	Not Detected		4.99E-002
CS-137	Not Detected		3.56E-002
EU-152	Not Detected		7.50E-002
EU-154	Not Detected		2.01E-001
EU-155	Not Detected		1.14E-001
FE-59	Not Detected		8.67E-002
GD-153	Not Detected		6.90E-002
HG-203	Not Detected		3.62E-002
I-131	Not Detected		4.87E-002
IR-192	Not Detected		2.94E-002
K-40	1.66E+001	2.31E+000	2.83E-001
MN-52	Not Detected		7.46E-002
MN-54	Not Detected		3.99E-002
MO-99	Not Detected		1.28E+000
NA-22	Not Detected		5.34E-002
NA-24	Not Detected		3.23E+001
ND-147	Not Detected		3.35E-001
NI-57	Not Detected		1.01E+000
RU-103	Not Detected		3.59E-002
RU-106	Not Detected		3.25E-001
SB-122	Not Detected		2.09E-001
SB-124	Not Detected		3.40E-002
SB-125	Not Detected		9.39E-002
SN-113	Not Detected		4.22E-002
SR-85	Not Detected		4.00E-002
TA-182	Not Detected		1.91E-001
TA-183	Not Detected		3.37E-001
TL-201	Not Detected		3.36E-001
Y-88	Not Detected		3.05E-002
ZN-65	Not Detected		1.24E-001
ZR-95	Not Detected		6.83E-002
	•		

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 6:03:11 PM 12 Reviewed by: Bevaly Key 8/27/02 * * Analyzed by: K. 8/27/07 : SANDERS M (6135) Customer Customer Sample ID : 059683-003 Lab Sample ID : 20118114 Sample Description : 6610/1032-SP1-BH1-12-S Sample Quantity : 701.100 gram Sample Date/Time : 8/21/02 10:35:00 AM

Acquire Start Date/Time : 8/26/02 4:22:57 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
	(F , ) ,		
U-238	Not Detected		5.01E-001
RA-226	1.60E+000	5.35E-001	7.27E-001
PB-214	6.26E-001	9.922-002	6.16E-002
BI-214	4.98E-001	9.04E-002	6.00E-002
PB-210	Not Detected		8,58E+000
TH-232	5.54E-001	2.84E-001	2.15E-001
RA-228	4.99E-001	1.48E-001	1.63E-001
AC-228	5.61E-001	1.35E-001	1.25 <b>E-</b> 001
TH-228	5.40E-001	2.11E-001	4.46E-001
RA-224	6.25E-001	1.70E-001	8.85E-002
PB-212	6.17E-001	9.37E-002	3.68E-002
BI-212	7.02E-001	3.01E-001	4.06E-001
TL-208	5.18E-001	1.02E-001	8.22E-002
U-235	Not Detected		1.95E-001
TH-231	Not Detected		6.27E+000
PA-231	Not Detected		<b>1.37E+000</b>
TH-227	Not Detected		3.21E-001
RA-223	Not Detected		1.43E-001
RN-219	Not Detected		3.66E-001
PB-211	Not Detected		8.29E-001
TL-207	Not Detected		1.50E+001
AM-241	Not Detected		1.66E-001
PU-239	Not Detected		3.42E+002
NP-237	Not Detected		1.87E+000
PA-233	Not Detected		5.60E-002
TH-229	Not Detected		1.86E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.18E-002
AG-110m	Not Detected		3.05E-002
BA-133	Not Detected		4.04E-002
BE-7	Not Detected		2.53E-001
CD-115	Not Detected		3.46E-001
CE-139	Not Detected		2.40E-002
CE-141	Not Detected		4.81E-002
CE-144	Not Detected		1.88E-001
CM-243	Not Detected		1.69E-001
CO-56	Not Detected		3.83E-002
CO-57	Not Detected		2.42E-002
CO-58	Not Detected		3.37E-002
CO-60	Not Detected		4.21E-002
CR-51	Not Detected		2.55E-001
CS-134	Not Detected		4.64E-002
CS-137	Not Detected		3.15E-002
EU-152	Not Detected		7.18E-002
EU-154	Not Detected		1.94E-001
EU-155	Not Detected		1.05E-001
FE-59	Not Detected		8.57E-002
GD-153	Not Detected		6.14E-002
HG-203	Not Detected		3.28E-002
I-131	Not Detected		4.10E-002
IR-192	Not Detected		2.75E-002
K-40	1.40E+001	1.96E+000	2.71E-001
MN-52	Not Detected		6.13E-002
MN-54	Not Detected		3.74E-002
MO-99	Not Detected		9.49E-001
NA-22	Not Detected		4.67E-002
NA-24	Not Detected		1.24E+001
ND-147	Not Detected		2.92E-001
NI-57	Not Detected		6.26E-001
RU-103	Not Detected		3.02E-002
RU-106	Not Detected		2.79E-001
SB-122	Not Detected		1.54E-001
SB-124	Not Detected		3.14E-002
SB-125	Not Detected		8.40E-002
- SN-113	Not Detected		4.01E-002
SR-85	Not Detected		3.80E-002
TA-182	Not Detected		1.71E-001
TA-183	Not Detected		2.91E-001
TL-201	Not Detected		2.53E-001
Y-88	Not Detected		2.93E-002
ZN-65	Not Detected		· 1.19E-001
ZR-95	Not Detected		6.06E-002



Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 7:45:30 PM ***** Reviewed by: Beverly Key 8127 (02 * Analyzed by: Customer : SANDERS M (6135) Customer Sample ID : 059684-003 Lab Sample ID : 20118115 : 6610/1032-SP1-BH1-17-S Sample Description Sample Quantity : 774.300 gram Sample Date/Time : 8/21/02 11:15:00 AM Acquire Start Date/Time : 8/26/02 6:05:17 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	5.03E-001 1.40E+000 6.15E-001 5.27E-001 Not Detected	2.37E-001 5.21E-001 9.63E-002 9.12E-002	3.87E-001 7.34E-001 5.92E-002 5.28E-002 8.24E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	5.58E-001 6.17E-001 5.51E-001 7.51E-001 6.23E-001 6.56E-001 5.19E-001 5.57E-001	2.89E-001 1.38E-001 1.25E-001 2.31E-001 1.64E-001 9.82E-002 2.80E-001 1.06E-001	2.29E-001 1.50E-001 1.05E-001 4.42E-001 7.82E-002 3.42E-002 4.04E-001 8.47E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	1.30E-001 Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected	1.66E-001	1.95E-001 6.31E+000 1.29E+000 3.05E-001 1.45E-001 3.58E-001 7.75E-001 1.42E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		1.60E-001 3.34E+002 1.74E+000 5.45E-002 1.81E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.09E-002
AG-110m	Not Detected		2.98E-002
BA-133	Not Detected		3.98E-002
BE-7	Not Detected		2.50E-001
CD-115	Not Detected		3.33E-001
CE-139	Not Detected		2.42E-002
CE-141	Not Detected		4.67E-002
CE-144	Not Detected		1.88E-001
CM-243	Not Detected		1.57E-001
CO-56	Not Detected		3.34E-002
CO-57	Not Detected		2.35E-002
CO-58	Not Detected		3.37E-002
CO-60	Not Detected		4.13E-002
CR-51	Not Detected		2.44E-001
CS-134	Not Detected		4.36E-002
CS-137	Not Detected		3.37E-002
EU-152	Not Detected		7.00E-002
EU-154	Not Detected		1.89E-001
EU-155	Not Detected		1.03E-001
FE-59	Not Detected		8.65E-002 6.07E-002
GD-153	Not Detected		
HG-203	Not Detected		3.03E-002
I-131	Not Detected		4.12E-002
IR-192	Not Detected	2.09E+000	2.64E-002 3.05E-001
K-40	1.51E+001	2.095+000	6.38E-002
MN-52	Not Detected Not Detected		1.79E-002
MN-54	Not Detected		9.66E-001
MO-99	Not Detected		4.36E-002
NA-22	Not Detected		1.23E+001
NA-24 ND-147	Not Detected		2.75E-001
NU-147 NI-57	Not Detected		6.37E-001
	Not Detected		2.96E-002
RU-103	Not Detected		2.88E-001
RU-106	Not Detected		1.52E-001
SB-122	Not Detected		2.93E-002
SB-124	Not Detected		8.19E-002
SB-125 SN-113	Not Detected		3.66E-002
	Not Detected		3.57E-002
SR-85 TA-182	Not Detected		1.63E-001
	Not Detected		2.84E-001
TA-183	Not Detected		2.84E-001 2.47E-001
TL-201 Y-88	Not Detected Not Detected		2.47E-001 2.81E-002
	Not Detected		1.10E-001
ZN-65	Not Detected		6.44E-002
ZR-95	NOL Defected		0.44£-VV2







Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 9:27:49 PM ********* 58/27/07 Reviewed by: Beverly Key 8127/02 * Analyzed by: -******* : SANDERS M (6135) Customer Customer Sample ID : 059686-003 Lab Sample ID : 20118116 Sample Description : 6560/1028-SP1-BH1-14-S Sample Quantity : 515.500 gram Sample Date/Time : 8/21/02 2:25 2:25:00 PM Acquire Start Date/Time : 8/26/02 7:47:35 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238	Not Detected		6.44E-001
RA-226	1.88E+000	6.87E-001	9.56E-001
PB-214	7.66E-001	1.24E-001	7.88E-002
BI-214	7.34E-001	1.30E-001	8.08E-002
PB-210	Not Detected	1.300-001	1.08E+001
PD-210	NUL DELECLED		1.000+001
TH-232	8.55E-001	4.22E-001	2.76E-001
RA-228	8.63E-001	1.92E-001	1.73E-001
AC-228	8.25E-001	1.83E-001	1.46E-001
TH-228	7.73E-001	2.95E-001	6.25E-001
RA-224	9.17E-001	2.42E-001	1.14E-001
PB-212	7.71E-001	1.18E-001	4.71E-002
BI-212	5.62E-001	3.42E-001	5.01E-001
TL-208	6.82E-001	1.37E-001	1,15E-001
U-235	Not Detected		2.51E-001
TH-231	Not Detected	~	8.33E+000
PA-231	Not Detected		1.74E+000
TH-227	Not Detected		4.20E-001
RA-223	Not Detected		1.87E-001
RN-219	Not Detected		4.86E-001
PB-211	Not Detected		1.10E+000
TL-207	Not Detected		2.08E+001
AM-241	Not Detected		2.16E-001
PU-239	Not Detected		4.55E+002
NP-237	Not Detected		2.37E+000
PA-233	Not Detected		7.49E-002
TH-229	Not Detected		2.34E-001

-	•			
	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram )	Error	(pCi/gram )
	AG-108m	Not Detected		5.18E-002
	AG-110m	Not Detected		3.83E-002
	BA-133	Not Detected		5.27E-002
	BE-7	Not Detected		3.30E-001
	CD-115	Not Detected		4.36E-001
	CE-139	Not Detected		3.14E-002
	CE-141	Not Detected		6.09E-002
	CE-144	Not Detected		2.42E-001
	CM-243	Not Detected		2.22E-001
	CO-56	Not Detected		4.96E-001
	CO-57	Not Detected		
	CO-58			3.06E-002
		Not Detected		4.70E-002
	CO-60	Not Detected		5.27E-002
	CR-51	Not Detected		3.38E-001
	CS-134	Not Detected		5.98E-002
	CS-137	Not Detected		4.31E-002
	EU-152	Not Detected		9.09E-002
	EU-154	Not Detected		2.39E-001
	EU-155	Not Detected		1.39E-001
	FE-59	Not Detected		1.11E-001
	GD-153	Not Detected		7.94E-002
	HG-203	Not Detected		4.36E-002
	I-131	Not Detected	·	5.58E-002
	IR-192	Not Detected		3.74E-002
	K-40	1.88E+001	2.65E+000	4.34E-001
	MN-52	Not Detected		8.47E-002
	MN-54	Not Detected		4.70E-002.
	MO-99	Not Detected		1.24E+000
	NA-22	Not Detected		7.01E-002
	NA-24	Not Detected		1.71E+001
	ND-147	Not Detected		3.79E-001
	NI-57	Not Detected	·	7.94E-001
	RU-103	Not Detected		4.09E-002
	RU-106	Not Detected		3.79E-001
	SB-122	Not Detected		2.07E-001
	SB-124	Not Detected		3.84E-002
	SB-125	Not Detected		1.16E-001
	SN-113	Not Detected		4.79E-002
	SR-85	Not Detected		5.28E-002
	TA-182	Not Detected		2.34E-001
	TA-183	Not Detected		3.75E-001
	TL-201	Not Detected		3.36E-001
	Y-88	Not Detected		
	ZN-65	Not Detected		3.91E-002
	ZR-95	Not Detected		1.55E-001
	<u> 11 - 11</u>	NOC DECECTER		8.24E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/26/02 11:10:08 PM Reviewed by: Bernly Key 8/27/02 Analyzed by: ***** : SANDERS M (6135) Customer Customer Sample ID : 059687-003 Lab Sample ID : 20118117 : 6560/1028-SP1-BH1-19-S Sample Description Sample Quantity : 727.600 gram Sample Date/Time : 8/21/02 2:45:00 PM Acquire Start Date/Time : 8/26/02 9:29:54 PM Detector Name : LAB01 Elapsed Live/Real Time 6000 / 6002 seconds :

Comments:

. .

. .

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram )	Error	(pCi/gram )
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.48E+000 6.17E-001 5.38E-001 Not Detected	4.82E-001 9.74E-002 9.51E-002	4.85E-001 6.45E-001 6.02E-002 6.00E-002 8.17E+000
TH-232	6.05E-001	2.94E-001	1.73E-001
RA-228	4.26E-001	1.60E-001	2.09E-001
AC-228	6.07E-001	1.34E-001	1.08E-001
TH-228	3.08E-001	1.74E-001	4.39E-001
RA-224	5.87E-001	1.61E-001	8.53E-002
PB-212	5.87E-001	8.94E-002	3.48E-002
BI-212	4.78E-001	2.57E-001	3.68E-001
TL-208	5.53E-001	1.06E-001	8.59E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		1.89E-001 6.10E+000 1.32E+000 3.04E-001 1.44E-001 3.57E-001 8.18E-001 1.47E+001
AM-241	Not Detected		1.67E-001
PU-239	Not Detected		3.42E+002
NP-237	Not Detected		1.85E+000
PA-233	Not Detected		5.39E-002
TH-229	Not Detected		1.83E-001

Juclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
20 100-			
AG-108m	Not Detected		4.12E-002
AG-110m	Not Detected		3.01E-002
BA-133	Not Detected		4,05E-002
BE-7	Not Detected		2.55E-001
CD-115	Not Detected		3.30E-001
CE-139	Not Detected		2.42E-002
CE-141	Not Detected		4-65E-002
CE-144	Not Detected		1.90E-001
CM-243	Not Detected		1.60E-001
CO-56	Not Detected	********	3.71E-002
CO-57	Not Detected		2.38E-002
CO-58	Not Detected		3.27E-002
CO-60	Not Detected		3.93E-002
CR-51	Not Detected		2.47E-001
CS-134	Not Detected		4.47E-002
CS-137	Not Detected		3.41E-002
EU-152	Not Detected		7.07E-002
EU-154	Not Detected		1.90E-001
EU-155	Not Detected		1.06E-001
FE-59	Not Detected		8.15E-002
GD-153	Not Detected		6.23E-002
HG-203	Not Detected		3.14E-002
I-131	Not Detected		4,13E-002
IR-192	Not Detected		2.59E-002
K-40	1.49E+001	2.08E+000	3.06E-001
MN-52	Not Detected		6.20E-002
MN-54	Not Detected	******	3.70E-002
MO-99	Not Detected		1.01E+000
NA-22	Not Detected		4.76E-002
NA-24	Not Detected		1.36E+001
ND-147	Not Detected		2.87E-001
NI-57	Not Detected	*******	6.29E-001
RU-103	Not Detected		3.13E-002
RU-106	Not Detected		2.78E-001
SB-122	Not Detected		1.52E-001
SB-124	Not Detected		3.12E-002
SB-125	Not Detected		8.53E-002
SN-113	Not Detected		3.68E-002
SR-85	Not Detected		3.59E-002
TA-182	Not Detected		1.75E-001
TA-183	Not Detected		2.95E-001
TL-201	Not Detected		2.55E-001
Y-88	Not Detected		3.66E-002
ZN-65	Not Detected		1.19E-001
ZR-95	Not Detected		6.28E-002

J

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 12:52:27 AM Reviewed by: Burnly Key 8/27/02 * Analyzed by: ****** ******* : SANDERS M (6135) Customer Customer Sample ID : 059688-003 Lab Sample ID : 20118118 Sample Description : 6560/1028-SP2-BH1-7-S Sample Quantity 698.200 gram : : 8/22/02 '9:15:00 AM Sample Date/Time Acquire Start Date/Time : 8/26/02 11:12:13 PM Detector Name : LAB01 Elapsed Live/Real Time 6000 / 6002 seconds :

Comments:

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
U-238	Not Detected		5.38E-001
RA-226	1.67E+000	6.05E-001	8.48E-001
PB-214	7.86E-001	1.21E-001	7.16E-002
BI-214	7.06E-001	1.18E-001	6.10E-002
PB-210	Not Detected		9.33E+000
TH-232	7.50E-001	3.67E-001	2.35E-001
RA-228	6.96E-001	2.03E-001	2.40E-001
AC-228	7.92E-001	1.60E-001	1.07E-001
TH-228	8.51E-001	2.56E-001	4.74E-001
RA-224	8.70E-001	2.17E-001	1.02E-001
PB-212	8.02E-001	1.19E-001	3.93E-002
BI-212	7.98E-001	3.34E-001	4.53E-001
TL-208	7.09E-001	1.29E-001	9.62E-002
U-235	1.03E-001	1.84E-001	2.15E-001
TH-231	Not Detected		7.03E+000
PA-231	Not Detected		1.51E+000
TH-227	Not Detected		3.51E-001
RA-223	Not Detected		1.55E-001
RN-219	Not Detected		3.94E-001
PB-211	Not Detected		9.10E-001
TL-207	Not Detected		1.55E+001
AM-241	Not Detected	*********	1.79E-001
PU-239	Not Detected		3.79E+002
NP-237	Not Detected		2.02E+000
PA-233	Not Detected		6.09E-002
TH-229	Not Detected	****	2.02E-001



Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.58E-002
AG-110m	Not Detected		3.38E-002
BA-133	Not Detected		4.49E-002
BE-7	Not Detected		2.90E-001
CD-115	Not Detected		3.00E-001
CE-139	Not Detected		
CE-141	Not Detected		2.69E-002
CE-144	Not Detected		5.16E-002
CM-243	Not Detected		2.03E-001
CO-56		********	1.84E-001
	Not Detected		3.83E-002
CO-57	Not Detected		2.56E-002
CO-58	Not Detected	*****	3.67E-002
CO-60	Not Detected		3.99E-002
CR-51	Not Detected		2.80E-001
CS-134	Not Detected		5.02E-002
CS-137	Not Detected		3.82E-002
EU-152	Not Detected		7.64E-002
EU-154	Not Detected		2.13E-001
EU-155	Not Detected		1.17E-001
FE-59	Not Detected	<b></b>	8.61E-002
GD-153	Not Detected		6.60E-002
HG-203	Not Detected	~~~~~	3.58E-002
I-131	Not Detected		4.37E-002
IR-192	Not Detected		3.06E-002
K-40	1.37E+001	1.93E+000	3.22E-001
MN-52.	Not Detected		5.97E-002
MN-54	Not Detected		3.69E-002
MO-99	Not Detected		7.92E-001
NA-22	Not Detected		5.31E-002
NA-24	Not Detected		6.41E+000
ND-147	Not Detected		2.84E-001
NI-57	Not Detected		5.40E-001
RU-103	Not Detected		3.35E-002
RU-106	Not Detected		2.90E-001
SB-122	Not Detected		1.35E-001
SB-124	Not Detected	****	3.18E-002
SB-125	Not Detected		9.40E-002
SN-113	Not Detected		4.07E-002
SR-85	Not Detected		4.04E-002
TA-182	Not Detected		1.81E-001
TA-183	Not Detected		2.87E-001
TL-201	Not Detected		2.42E-001
Y - 88	Not Detected		3.32E-002
ZN-65	Not Detected		1.20E-001
ZR-95	Not Detected		6.54E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 2:34:46 AM 17 Reviewed by: Beverly Key 8/27/02 * * Analyzed by: ð ******* Customer : SANDERS M (6135) Customer Sample ID : 059689-003 Lab Sample ID : 20118119 : 6560/1028-SP2-BH1-12-S Sample Description Sample Quantity : 679.400 gram : 8/22/02 9:40:00 AM Sample Date/Time Acquire Start Date/Time : 8/27/02 12:54:32 AM : LAB01 Detector Name 6002 seconds Elapsed Live/Real Time 6000 / :

Comments:

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
U-23B RA-226	Not Detected 1.43E+000	6.01E-001	5.32E-001 8.73E-001
PB-214	7.64E-001	1.33E-001	1.19E-001
BI-214	6.95E-001	1.19E-001	6.99E-002
PB-210	Not Detected		9.14E+000
TH-232	8.96E-001	4.27E-001	2.37E-001
RA-228	5.48E-001	1.79E-001	2.20E-001
AC-228	7.12E-001	1.51E-001	1.12E-001
TH-228	1.11E+000	2.87E-001	4.52E-001
RA-224	8.08E-001	2.08E-001	1.06E-001
PB-212	7.87E-001	1.17E-001	3.94E-002
BI-212	1.09E+000	3.51E-001	4.23E-001
TL-208	7.02E-001	1.29E-001	9.77E-002
U-235	Not Detected		2.17E-001
TH-231	Not Detected		7.03E+000
PA-231	Not Detected		1.53E+000
TH-227	Not Detected		3.59E-001
RA-223	Not Detected		1.55E-001
RN-219	Not Detected		4.27E-001
PB-211	Not Detected		9.49E-001
TL-207	Not Detected		1.62E+001
AM-241	Not Detected		1.82E-001
PU-239	Not Detected		3.84E+002
NP-237	Not Detected		1.98E+000
PA-233	Not Detected		6.43E-002
TH-229	Not Detected		2.06E-001

Nuclide Name	Activity (pCi/gram )	2-sigma Error	MDA (pCi/gram )
AG-108m	Not Detected		4.47E-002
AG-110m	Not Detected		3.46E-002
BA-133	Not Detected	· · · · · · · · · · · · ·	4.72E-002
BE-7	Not Detected		2.78E-001
CD-115	Not Detected		3.16E-001
CE-139	Not Detected	<u>issues</u>	2.72E-002
CE-141	Not Detected		5.24E-002
CE-144	Not Detected		2.10E-001
CM-243	Not Detected		1.86E-001
CO-56	Not Detected		3.90E-002
CO-57	Not Detected		2.58E-002
CO-58	Not Detected		4.07E-002
CO-60	Not Detected		4.06E-002
CR-51	Not Detected		2.73E-001
CS-134	Not Detected		5.21E-002
CS-137	Not Detected		3.71E-002
EU-152	Not Detected		7.68E-002
EU-154	Not Detected	*	2.09E-001
EU-155	Not Detected		1.16E-001
FE-59	Not Detected		9.50E-002
GD-153	Not Detected		6.83E-002
HG-203	Not Detected		3.62E-002
I-131	Not Detected		4.22E-002
IR-192	Not Detected	· · · · · · · · · ·	3.02E-002
K-40	1.59E+001	2.21E+000	3.30E-001
MN-52	Not Detected	• • • • • • · ·	6.42E-002
MN-54	Not Detected		3.86E-002
MO-99	Not Detected		9.03E-001
NA-22	Not Detected		4.95E-002
NA-24	Not Detected		6.75E+000
ND-147	Not Detected		3.04E-001
NI-57	Not Detected		5.12E-001
RU-103	Not Detected		3.24E-002
RU-106	Not Detected		3.09E-001
SB-122	Not Detected	* = *	1.50E-001
SB-124	Not Detected		3.56E-002
SB-125	Not Detected		9.30E-002
SN-113	Not Detected		4,34E-002
SR-85	Not Detected		4.31E-002
TA-182	Not Detected	*****	1.86E-001
TA-183	Not Detected		2.89E-001
TL-201	Not Detected		2.51E-001
Y-88	Not Detected	********	3.67E-002
ZN-65	Not Detected		1.28E-001
ZR-95	Not Detected		6.81E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program * 8/27/02 7:04:13 AM ****** Analyzed by: ø Reviewed by: ****************************** ****** : SANDERS M (6135) Customer Customer Sample ID : LAB CONTROL SAMPLE USING CG-134 Lab Sample ID : 20118120 : MIXED GAMMA STANDARD CG-134 Sample Description Sample Quantity 1.000 Each : : 11/01/90 12:00:00 PM Sample Date/Time Acquire Start Date/Time : 8/27/02 6:53:58 AM : LAB02 Detector Name 600 / Elapsed Live/Real Time 604 seconds : Comments: ******* 2-sigma MDA Nuclide Activity (pCi/Each ) (pCi/Each ) Error Name _ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ Not Detected 3.96E+003 U-238 5.65E+003 RA-226 Not Detected Not Detected 5.71E+002 PB-214 4.67E+002 Not Detected -----BI-214 Not Detected 2.69E+005 PB-210 1.83E+003 TH-232 Not Detected -------RA-228 Not Detected _____ 1.69E+003 1.05E+003 AC-228 Not Detected TH-228 Not Detected 4.20E+005 Not Detected 4.16E+003 _ _ _ _ _ _ _ _ _ _ RA-224 3.25E+004 PB-212 Not Detected _ _ _ _ _ _ _ _ _ _ 1.98E+005 BI-212 Not Detected Not Detected 5.15E+004 TL-208 _ _ _ _ _ _ _ _ _ _ _ Not Detected 1.52E+003 บ-235 Not Detected 6,93E+004 TH-231 _____ PA-231 Not Detected 1.23E+004 TH-227 Not Detected 2.54E+003 Not Detected RA-223 1:00E+026 Not Detected ____ 5.56E+003 RN-219 PB-211 Not Detected 1.26E+004TL-207 Not Detected _ _ ~ ~ _ _ _ _ _ 1.73E+005AM-241 8.07E+004 1.20E+004 4.00E+003 PU-239 Not Detected 2.68E+006 Not Detected 1.42E+004NP-237 Not Detected 5.09E+002 PA-233 -------TH-229 Not Detected _ _ _ _ _ _ _ _ _ _ _ _ 1.52E+003



	Nuclide Name	Activity (pCi/Each )	2-sigma Error	MDA (pCi/Each )
	AG-108m	Net Detected		
	AG-108m AG-110m	Not Detected Not Detected		2.05E+002
				2.27E+008
	BA-133	Not Detected		7.89E+002
	BE-7	Not Detected		1.00E+026
	CD-115	Not Detected		1.00E+026
	CE-139	Not Detected		5.27E+011
	CE-141	Not Detected		1.00E+026
	CE-144	Not Detected		5.52E+007
	CM-243	Not Detected		1.85E+003
	CO-56	Not Detected		1.86E+019
	CO-57	Not Detected		1.19E+007
	CO-58	Not Detected		4.97E+020
	CO-60	8.25E+004	1.07E+004	6.28E+002
	CR-51	Not Detected		1.00E+026
	CS-134	Not Detected		1.20E+004
	CS-137	7.05E+004	8.92E+003	3.16E+002
	EU-152	Not Detected		1.10E+003
	EU-154	Not Detected		2.29E+003
	EU-155	Not Detected		4.94E+003
	FE-59	Not Detected		1.00E+026
	GD-153	Not Detected		1.54E+008
	HG-203	Not Detected		1.00E+026
	I-131	Not Detected		1.00E+026
_	IR-192	Not Detected		9.77E+019
	K-40	Not Detected		1.10E+003
	MN-52	Not Detected		1.00E+026
	MN-54	Not Detected		3.54E+006
	MO-99	Not Detected		1.00E+026
	NA-22	Not Detected		3.25E+003
	NA-24	Not Detected		1.00E+026
	ND-147	Not Detected		1.00E+026
	NI-57	Not Detected		1.00E+026
	RU-103	Not Detected		1.00E+026
	RU-106	Not Detected		7.41E+006
	SB-122	Not Detected		1.00E+026
	SB-124	Not Detected		1.00E+026
	SB-125	Not Detected		<b>1.94E+004</b>
	SN-113	Not Detected	~~~~~	7.41E+013
	SR-85	Not Detected		1.00E+026
	TA-182	Not Detected		1.53E+014
	TA-183	Not Detected		1.00E+026
	TL-201	Not Detected		1.00E+026
	Y-88	Not Detected		1.86E+014
	ZN-65	Not Detected		1.21E+008
	ZR-95	Not Detected		1.00E+026

	***************************************	***
	* Sandia National Laboratories	*
1	indiation receeding pumpic pragnobered regian	*
с. 1.	Quality Assurance Report	*
	***************************************	***

Report Date QA File Analyst Sample ID Sample Quantity Sample Date Measurement Date Elapsed Live Time	• • • • • •	RPREESE 20118120 1.00 11/01/90 8/27/02 600	Each 12:00:00 6:53:58 seconds	PM AM
Elapsed Real Time		604		

Parameter	Mean	1S Error	New Value	<	LU : S	D:	UD:	BS >
AM-241 Activity	8.247E-002	3.740E-003						
CS-137 Activity	7.191E-002	3.245E-003	7.053E-002	<	$\checkmark$	:	:	>
CO-60 Activity	8.019E-002	3.862E-003	8.090E-002	<	:	:	:	>

lags Key:

LU = Boundary Test (Ab = Above , Be = Below) SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action) UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by:

Sandia National Laboratories Radiation Protection Sample Diagnostics Program ÷ 8/27/02 6:47:05 AM ** ****** ***** 1 Reviewed by: Analyzed by: ***** ******** : SANDERS M (6135 Customer Customer Sample ID : LAB CONTROL SAMPLE USING CG-134 Lab Sample ID : 20118121 : MIXED_GAMMA_STANDARD_CG-134 Sample Description Sample Quantity 1.000 Each : Sample Date/Time : 11/1/90 12:00:00 PM Acquire Start Date/Time : 8/27/02 6:36:51 AM Detector Name : LAB01 Elapsed Live/Real Time 600 / 604 seconds : Comments: MDA Nuclide Activity 2-siqma (pCi/Each ) (pCi/Each ) Error Name _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ U-238 Not Detected 2.49E+003 ------Not Detected 5.55E+003 RA-226 --**-**----PB-214 Not Detected _ - - - - - - - - -6.66E+002 BI-214 Not Detected --------5.75E+002 PB-210 Not Detected -----9.37E+004 TH-232 Not Detected -----2.17E+003 RA-228 Not Detected --------2.41E+003Not Detected AC-228 ------1.49E+003TH-228 Not Detected -----4.69E+005 RA-224 Not Detected ------1.80E+004 PB-212 Not Detected -----3.32E+004 BI-212 Not Detected _____ 2.79E+005 TL-208 Not Detected -----6.55E+004 Not Detected **U-235** ---------1.42E+003TH-231 Not Detected 4.19E+004 -----Not Detected PA-231 -------1.41E+004Not Detected 2.59E+003 TH-227 ----RA-223 Not Detected 1.00E+026 RN-219 Not Detected 6.94E+003 Not Detected PB-211 _____ 1.53E+004 TL-207 Not Detected _____ 2.42E+005 AM-241 8.79E+004 1.27E+004 1.83E+003 PU-239 Not Detected ------2.34E+006 NP-237 Not Detected 1.25E+004Not Detected 5.90E+002 PA-233 ------Not Detected ------TH-229 1.23E+003

Juclide	Activity	2-sigma	MDA
Name	(pCi/Each )	Error	(pCi/Each )
AG-108m	Not Detected		3.09E+002
AG-110m	Not Detected		2.71E+008
BA-133	Not Detected		9.10E+002
BE-7	Not Detected		1.00E+026
CD-115	Not Detected		1.00E+026
CE-139	Not Detected		4.89E+011
CE-141	Not Detected		1.00E+026
CE-144	Not Detected		4.85E+007
CM-243	Not Detected		2.09E+003
CO-56	Not Detected	*	2.27E+019
CO-57	Not Detected		1.06E+007
CO-58	Not Detected		6.64E+020
CO-60	7.76E+004	1.03E+004	1.09E+003
CR-51	Not Detected		1.00E+026
CS-134	Not Detected		1.46E+004
CS-137	6.90E+004	8.76E+003	4.01E+002
EU-152	Not Detected		9.65E+002
EU-154	Not Detected		3.43E+003
EU-155	Not Detected		4.12E+003
FE-59	Not Detected		1.00E+026
GD-153	Not Detected		9.74E+007
HG-203	Not Detected		1.00E+026
I-131	Not Detected		1.00E+026
👝 IR-192	Not Detected		1.12E+020
K-40	Not Detected		1.47E+003
MN-52	Not Detected		1.00E+026
	Not Detected		4.87E+006
MO-99	Not Detected	·	1.00E+026
NA-22	Not Detected		4.40E+003
NA-24	Not Detected		1.00E+026
ND-147	Not Detected		1.00E+026
NI-57	Not Detected		1.00E+026
RU-103	Not Detected		1.00E+026
RU-106	Not Detected		9.03E+006
SB-122	Not Detected		1.00E+026
SB~124	Not Detected		1.00E+026
SB-125	Not Detected		2.32E+004
SN-113	Not Detected		8.80E+013
SR-85	Not Detected		1.00E+026
TA-182	Not Detected		2.12E+014
TA-183	Not Detected		1.00E+026
TL-201	Not Detected		1.00E+026
Y-88	Not Detected		2.27E+014
ZN-65	Not Detected		1.68E+008
ZR-95	Not Detected		1.00E+026
			1.0007020

	* * * * * * * * * * * * * * * * * * * *	* * *
	Sandia National Laboratories	*
S.	Radiation Protection Sample Diagnostics Program	*
<b>U</b>	Quality Assurance Report	*
	* * * * * * * * * * * * * * * * * * * *	***

Report Date		B/27/02 6:47:09 AM
QA File	:	C:\GENIE2K\CAMFILES\LCS1.QAF
Analyst	:	RPREESE
Sample ID	:	20118121
Sample Quantity	:	1.00 Each
		11/1/90 12:00:00 PM
Measurement Date	:	8/27/02 6:36:51 AM
Elapsed Live Time	:	600 seconds
Elapsed Real Time	:	604 seconds

Parameter	Mean	1S Error	New Value	<	LU : S	SD:	UD:	BS >
_ <b></b>								
AM-241 ACTIVITY	8.570E-002	3.465E-003	8.786E-002	<	:	:	:	>
CS-137 Activity	6.836E-002	1.368E-003	6.897E-002	<	:	:	:	>
CO-60 Activity	7.657E-002	3.480E-003	7.757E-002	<		:	:	>

lags Key:

LU = Boundary Test(Ab = Above , Be = Below )SD = Sample Driven N-Sigma Test(In = Investigate, Ac = Action)UD = User Driven N-Sigma Test(In = Investigate, Ac = Action)BS = Measurement Bias Test(In = Investigate, Ac = Action)

n

Reviewed by: