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ABSTRACT

This thesis develops an algebraic analog of psuedo-Riemannian geometry for

relative schemes whose cotangent sheaf is finite locally free. It is a generalization of

the algebraic differential calculus proposed by Dr. Ernst Kunz in an unpublished

manuscript to the non-affine case. These analogs include the psuedo-Riemannian

metric, Levi-Civitá connection, curvature, and various existence theorems.
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1 Introduction

In this paper, a notion of the psuedo-Riemannian metric is presented for relative

schemes whose contangent sheaf is finite locally free. For example, a smooth alge-

braic variety V of dimension n over a field k has this property that the cotangent

sheaf ΩX/k is locally free of rank n. More generally, nonsingular varieties have

this property as well. The motivation may be found in the fact that there lacks

a well-developed analog of a metric tensor in algebraic geometry. However, this

does not mean that there has not been any efforts made to develop this lack of.

For instance, there are two independent efforts that start to address this notion.

On one hand, [1] is an unpublished work developing psuedo-Riemannian geometry

in the affine case of commutative algebra, but this machinery does not consider

glueing operations or a scheme-theoretic flavor. In particular, the analog of the

Levi-Civitá connection is worked out only in the case where 2 is always a unit of

the commutative ring. Yet, on the other hand, in [2] and [3] one does have a notion

of a smooth psuedo-Riemannian variety over a field of characteristic zero and its

geometry is studied. A primary objective of this paper is to blend as much as

possible these two bodies of work and strive for the greatest generality. Algebraic

constructions of differential calculus dates far back, and more at the foundational

level, it can be thought to be started with this paper [4]. A very good account

1



of this may also be found in the paper [5]. As scheme-theoretic methods were

developed, soon followed generalizations of connections to vector bundles over a

scheme. For instance, this may be found in [6], [7], and [8]. In what follows is a

brief outline of this paper.

The first section of this paper constructs the desired analog of a metric in

algebraic geometry. We start with an S-scheme X such that the cotangent sheaf

ΩX/S is locally free of (finite) rank n. A metric on X over S can be thought of as

an OX-bilinear morphism g : ΘX/S ×ΘX/S → OX of abelian sheaves whose global

section induces a symmetric 2-tensor and satisfies a non-degeneracy condition.

Similar to classical differential geometry, the existence of a metric determines an

isomorphism of cotangent sheaf ΩX/S and the tangent sheaf ΘX/S. However, it

is known that such an isomorphism does not always exist, so this allows one to

restrict to points of X for which the restriction of g to this set forms a metric,

and hence the induced isomorphism of (restricted sheaves).

In the second section, we introduce the meaning of a connection in algebraic

geometry and generalize the machinery introduced in [1] for our purposes in a

scheme-theoretic approach. This gives a meaning to local constructions like con-

nections forms, connection matrices, Christoffel symbols, and more. There is also

a set of localization idea’s of these constructions as we will see later on. The

third section has one of the main theorems of this paper, i.e. the existence of the

algebraic Levi-Civitá connection for a psuedo-Riemannian scheme. Similar to the
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second section, we will further carry over some of the constructions proposed in

[1] to this non-affine case and have notions of Laplace operators, Hesse forms, and

also what is called a residual of a psuedo-Riemannian scheme. These residuals

can be thought of as a convenient quotient of the structure that is constructed

from a sheaf of ideals. The last section will study the curvature properties of the

developed framework with connections and metrics for this algebraic context.

2 Algebraic Metrics

Let X be an S-scheme where the cotangent sheaf ΩX/S is finite locally free as

an OX-module. Consider an OX-bilinear morphism g : ΘX/S × ΘX/S → OX of

abelian sheaves. It gives rise naturally to a morphism of OX-modules

g⊗ : ΘX/S ⊗OX
ΘX/S → OX

which is defined on simple local sections by g⊗(v⊗w) = g(v, w) and on arbitrary

local sections by extending linearly to linear combinations of simple local sections.

We have that the section g is symmetric if, and only if, g⊗ ◦ τ = g⊗ where

τ : ΘX/S ⊗OX
ΘX/S → ΘX/S ⊗OX

ΘX/S

is the braiding isomorphism of abelian sheaves, i.e. on simple local sections v ⊗

w 7→ w ⊗ v.

Lemma 1. For an OX-bilinear morphism g : ΘX/S × ΘX/S → OX of abelian
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sheaves, there exists an induced morphism

δg : ΘX/S → Θ∗X/S

of OX-modules defined on an open U as the map taking l ∈ H0(U,ΘX/S) to the

OX(U)-linear map g(U)(l,−) where (δg(U)(l))(w) = g(U)(l, w).

Proof. The morphism δg is the natural transformation taking an open subset

U ⊂ X to the OX(U)-linear map δg(U) that acts on elements l ∈ ΘX/S by sending

it to the map g(U)(l,−). This makes sense as g(U) is anOX(U)-bilinear morphism

g(U) : ΘX/S(U)×ΘX/S(U)→ OX(U).

Lemma 2. If E is a locally free sheaf on a ringed space (X,OX), then (E⊗OX
E)∗

and E∗ ⊗OX
E∗ are isomorphic as OX-modules.

Proof. The isomorphism is defined by the natural bilinear map (E ⊗OX
E) ×

(E∗ ⊗OX
E∗) → OX , which is shown to be an isomorphism looking at bases

locally.

Remark 1. Under suitable circumstances, when the cotangent sheaf ΩX/S of an

S-scheme X is locally free of finite rank n, then we have an isomorphism of the

OX-modules ΩX/S ⊗OX
ΩX/S and the dual OX of ΘX/S ⊗OX

ΘX/S. Therefore, we

may interchangeably consider sections of one as sections of the other without loss

of generality.
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Definition 1. Given an OX-bilinear morphism g : ΘX/S×ΘX/S → OX of abelian

sheaves, then we say that it is a psuedo-Riemannian metric (or metric for

short) on X when the following conditions hold:

1. (symmetry) g⊗(X) is a global section of the sheaf Sym2(ΩX/S);

2. (non-degeneracy) the map δg : ΘX/S → Θ∗X/S is an isomorphism of OX-

modules.

Notation 1. When evaluating the metric g and map δg to some open set U ⊂ X,

we will still write them respectively as g and δg rather than g(U) and δg(U) when

the open set U is clear from context.

Lemma 3. Consider an OX-bilinear morphism g : ΘX/S×ΘX/S → OX of abelian

sheaves. The stalks of the map of sheaves δg : ΘX/S → Θ∗X/S are all isomorphisms

if, and only if, it is non-degenerate.

Proof. This follows from elementary properties of sheaves of OX-modules.

Proposition 1. For an OX-bilinear morphism g : ΘX/S ×ΘX/S → OX of abelian

sheaves to be non-degenerate, then following hold and are equivalent:

1. the map of determinants det(δg) : det(ΘX/S)→ det(Θ∗X/S) being an isomor-

phism;

2. the stalks of the map of determinants det(δg) : det(ΘX/S) → det(Θ∗X/S) are

all isomorphisms.
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Proof. This follows from the fact that ΘX/S and ΩX/S are isomorphic finite locally

freeOX-modules, and also from the fact that the operator det preserves short exact

sequences.

Proposition 2. (Existence By Removal) Consider an S-scheme X where ΩX/S

is finite locally free as an OX-module, and a OX-bilinear morphism g : ΘX/S ×

ΘX/S → OX of abelian sheaves. If R(g) denotes the closure of the subset of X

for which the stalks of the OX,p-linear map δg,p : ΘX/S,p → Θ∗X/S,p fails to be an

isomorphism, then X(g) := X \ R(g) is an open subscheme of X and g|X(g) is a

metric on ΘX/S|X(g).

Proof. Clearly, open subsets are open subschemes. Since at each point p ∈ X(g),

the map δg,p is an isomorphism by the construction of the space X(g), we have

that g is non-degenerate.

Definition 2. Suppose that X is an S-scheme. Given a metric g on X, we call

the pair (X, g) a psuedo-Riemannian scheme over S. For sections V,W of

ΘX/S, g(V,W ) is called the scalar product of V,W .

Example 1. For R a commutative unital ring, the polynomial ring R[x1, . . . , xn]

has the property that ΩY/X is a free OX-module of rank n trivialized by dx1, . . . , dxn

where Y = An
X and X = Spec(R). Writing δx1, . . . , δxn for the dual basis of ΘY/X ,

we see that any OY -bilinear morphism g : ΘY/X ×ΘY/X → OY of abelian sheaves
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may be written as the sum
n∑

i,j=1

gijδxi ⊗ δxj

where gij are elements of R[x1, . . . , xn]. It follows that g is symmetric if, and only

if, the matrix (gij)
n
i,j=1 is symmetric in Matn(R[x1, . . . , xn]). By identifying Θ∗Y/X

with ΩY/X via the canonical OY -isomorphism, we see that the map δg : ΘY/X →

ΩY/X is given by δg(dxi) =
∑n

j=1 gijδx
j for 1 ≤ i ≤ n. Therefore, we see that g is

non-degenerate if, and only if, det(gij)
n
i,j=1 is a unit in R[x1, . . . , xn].

Example 2. Suppose that X is a nonsingular variety of dimension n over a field

k. The cotangent sheaf ΩX/k is an OX-module locally free of rank n. It may very

well hold in general that ΩX/k is not isomorphic to ΘX/k as an OX-module. In

fact, even if it were the case, we do not necessarily have that ΩX/k is free and of

finite rank unlike the example above. However, observe that for each symmetric

matrix

G = (gij)
n
i,j=1 ∈ Matn(OX(X)),

we can consider the set R(G) of points p ∈ X for which the determinant of G

is not a unit of the local ring OX,p. It can be seen that this set R(g) is closed

and we have that X \ R(g) is an open subscheme of X. Applying the Existence

by Removal, we have that there exists a metric on the scheme X \ R(g). More

generally, any smooth algebraic variety X over k of dimension n has the property

that the cotangent sheaf ΩX/k is locally free of rank n. Applying the same idea
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above, we can restrict to particular open subschemes that surely have a metric by

studying the symmetric matrices with entries in the ring of global sections.

Example 3. Suppose that S ⊂ T are fields where {xi}li=1 is a collection of ele-

ments. Assume that either char(S) = 0 and {xi}li=1 is a transcendence basis of T

over S, or that char(S) = p > 0 and {xi}li=1 is a p-basis for T over S. Then the

global sections of ΩT/S form a vector space over T of dimension l with basis {xi}li=1.

As a result, the contangent sheaf a free OT -sheaf of rank l. Writing x1, . . . , xl as

the dual basis of {xi}li=1, then each OT -bilinear morphism g : ΘT/S ×ΘT/S → OT

of abelian sheaves may be written in the form
∑l

i,j=1 gijx
i⊗xj. From observations

in the above examples, we see that any such OT -bilinear morphism g is a metric

if, and only if, (gij)
l
i,j=1 is a symmetric matrix in Matl(T ) whose determinant is

nonzero.

Example 4. Suppose that K ⊂ L are field with L a separable finitely generated

over K. Let r be the transcendence degree of L over K. Then the global sections of

ΩL/K is a L-vector space of dimension r. By the discussions in the examples above,

we have that OL-bilnear forms g written in the form
∑r

i,j=1 gijx
i ⊗ xj relative to

a dual basis x1, . . . , xr are metrics if, and only if, (gij)
r
i,j=1 is a symmetric matrix

in Matr(T ) whose determinant is nonzero.

Proposition 3. (Correspondence of Algebraic Metrics) Let X be an S-cheme over

S where ΩX/S(X) is a free OX(X)-module of rank n. There exists a one-to-one
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correspondence between symmetric non-degenerate OX-bilinear morphisms ΘX/S×

ΘS/S → OX of abelian sheaves and symmetric matrices (gij) ∈ Matn(OX(X)) with

the property that det(gij) ∈ OX(X)×.

Proof. Suppose that ΩX/S(X) has a basis b1, . . . , bn and b1, . . . , bn forms the dual

basis to b1, . . . , bn for ΘX/S(X). We can write an arbitrary tensor

g ∈ H0(X,ΩX/S ⊗OX
ΩX/S)

as the sum
n∑

i,j=1

gijb
i ⊗ bj

where gij ∈ OX(X), then it can be seen that g is symmetric if, and only if, the

matrix (gij)
n
i,j=1 is symmetric. Let l1 =

∑n
i=1 x

ibi and l2 =
∑n

i=1 y
ibi be elements

of ΘX/S(X) where xi and yi are elements of OX(X). The scalar product is given

by

g(l1, l2) =
n∑

i,j=1

gijx
iyj.

The map δg(bi) sends bj to gij. By identifying Ω∗∗X/S(X) with ΩX/S(X) by the

canonicalOX(X)-isomorphism, then δg : ΘX/S(X)→ ΩX/S(X) is given by δg(bi) =∑n
j=1 gijb

j for 1 ≤ i ≤ n. Therefore, we see that g is non-degenerate if, and only

if, (gij)
n
i,j=1 is an element of OX(X)×.

Theorem 1. (Local Existence of Psuedo-Riemannian Schemes) If X is a smooth

scheme over S and U ⊂ X is an open for which ΩX/S|U is a free OX |U -module of

9



rank n, then there exists an algebraic metric g on ΩX/S|U making the pair (U, g)

a psuedo-Riemannian scheme.

Proof. Since Γ(U,ΩX/S|U) is a free OX(U)-module of finite rank, then the above

proposition ensures the existence of the desired algebraic metric. Surely, for any

choice of a1, . . . , an ∈ OX(U)×, the diagonal matrix A given by

A =



a1 0 0 · · · 0

0 a2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · an



is symmetric and the determinant of A is det(A) = a1 · · · an, which is in the

multiplicative subgroup of units OX(U)×. If b1, . . . , bn for a basis for ΘX/S|U ,

then there exists the following algebraic metric given by g =
∑n

i=1 aib
i⊗ bi by the

correspondence above.

Consider an S-scheme X where the cotangent sheaf ΩX/S is locally free of rank

n. Given a metric g on X and a point p ∈ X, there exists a basis b1, . . . , bn of

ΩX/S,p as a free OX,p-module, and we write its dual basis by b1, . . . , bn. In this

case, we call (gij)
n
i,j=1 the fundamental matrix at p of the metric with respect

to the basis b1, . . . , bn. The canonical image gp of g at the germ p induces an
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OX,p-bilinear form ΘX/S,p ×ΘX/S,p → OX,p given by

gp : (
l1
v1

,
l2
v2

) 7→ g(l1, l2)

v1v2

.

As well as, the OX,p-linear map δg,p : ΘX/S,p → Θ∗X/S,p is the isomorphism via the

stalk of δg at p. Thus, gp is a algebraic metric on OX,p-module ΘX/S,p, which we

call the localization of g at p.

Given the localization gp, it induces a κ(p)-bilinear mapping

g(p) : ΘX/S(p)×ΘX/S(p)→ κ(p)

where ΘX/S(p) is the quotient κ(p)-module ΘX/S,p/mpΘX/S,p for mp the maximal

ideal of the local ring OX,p. Denoting li for the image of li ∈ ΘX/S,p in ΘX/S(p),

we have that mapping g(p) above is given by

g(p)(l1, l2) = gp(l1, l2),

i.e. the image of gp(l1, l2) in the residue field κ(p), whose value is called the scalar

product of tangent vectors at p. From this, it is easy to see that

g(p)(l1(p), l2(p)) = g(l1, l2)(p)

for sections l1, l2 of ΘX/k and l1(p), l2(p) are their respective images. Since ΘX/S,p

is a free OX,p-module of finite rank, it happens that g(p) is non-degenerate if, and

only if, gp is so. Given a psuedo-Riemannian scheme (X, g), for each p ∈ X, we

call the pair (OX,p, gp) the localization of (X, g) at p. When X is a scheme over
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a field k, then for any psuedo-Riemannian structure (X, g) that may be imposed

on X is called psuedo-Riemannian scheme over k.

Definition 3. Given sections l1 and l2 of ΘX/S, we say that they are orthogonal,

and write l1 ⊥ l2, if g(l1, l2) = 0.

Proposition 4. (Algebraic Metric Equivalence Principle) Suppose that B is a

basis for an S-scheme X as a topological space. Given an OX-bilinear morphism

g : ΘX/S×ΘX/S → OX of abelian sheaves, the following assertions are equivalent:

1. g defines a metric on ΘX/S;

2. g(U) defines a metric on ΘX/S(U) for each U ∈ B;

3. gp defines a metric on ΘX/S,p for each p ∈ X;

4. g(p) is non-degenerate for each p ∈ X.

Proposition 5. (Pasting For Algebraic Metrics) Suppose that B = {Ui}i∈I is a

basis for an S-scheme X. Consider an OX-bilinear morphism g : ΘX/S×ΘX/S →

OX of abelian sheaves. Let gi be metrics on ΘX/S|Ui
for i ∈ I be give such that

resUi,Ui∩Uj
(gi) = resUj ,Ui∩Uj

(gj) in

P (Ui ∩ Ui)⊗OX(Ui∩Ui) ΩX/S(Ui ∩ Ui)

for all i, j ∈ I. There exactly one metric g on ΘX/S such that for all i ∈ I,

gi = g(Ui).
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Proposition 6. (Existence of Local Orthogonal Bases) Suppose that (X, g) is a

pseudo-Riemannian scheme over a field k of characteristic p 6= 2. Fix a p ∈ X.

For any affine open U = Spec(S) neighborhood of p in X (i.e. p ∈ Spec(S))

where 2 ∈ S× such that ΩX/k(U) is free of finite rank, there exists f ∈ S \ p and

local sections l1, . . . , ln of ΘX/k(D(f)) which form a basis of ΘX/k(D(f)) as an

OX(D(f))-module such that

g(D(f))(li, lj) = εiδij

where i, j = 1, . . . , n and each εi is a unit of OX(D(f)).

Proof. Since the characteristic of k is not equal to 2, we know that 2 is a unit

of k. Furthermore, ΩX/k being a finite locally free OX-module, its stalks are free

modules of finite rank. Notice that the residue field κ(p) has characteristic not

equal to 2. There exists a basis (ζ1, . . . , ζn) of ΘX/k(p) satisfying the property that

g(p)(ζi, ζj) = αiδij where αi ∈ κ(p)× and 1 ≤ i, j ≤ n. Choose li ∈ Ω×X/k,p with

image ζi in ΘX/S(p) for each 1 ≤ i ≤ n. Then (l1, . . . , ln) is a basis of ΘX/S,p by

Nakayama’s Lemma. Thus, for each 1 ≤ i, j ≤ n, we see that

gp(li, lj)(p) = g(p)(ζi, ζj),

and as a result, gp(li, lj) is a unit εi of OX,p for i = j and an element of mpOX,p

otherwise. We may require that gp(li, lj) = 0 for i 6= j by choosing suitable li. We

proceed by an inductive argument in the sense that one can assume this condition
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has already been satisfied for l1, . . . , lm with 1 ≤ m < n. Define an element l
′
m+1

as follows,

l
′

m+1 := lm+1 −
m∑
k=1

gp(lm+1, lk)ε
−1
k lk.

It follows that

gp(l
′

m+1, l
′

m+1) = gp(lm+1, lm+1)− 2
m∑
k=1

gp(lm+1, lk)
2ε−1
k +

m∑
k+1

gp(lm+1, lk)
2ε−1
k

is a unit of OX,p and for 1 ≤ k ≤ m,

gp(l
′

m+1, lk) = gp(lm+1, lk)− gp(lm+1, lk)ε
−1
k εk = 0.

By induction, we can find a basis (l1, . . . , ln) of ΘX/S,p with the desired property

that

gp(li, lj) = εiδij

where i, j = 1, . . . , n and each εi is a unit of OX,p for each 1 ≤ i ≤ n. Therefore,

for any affine open Spec(R) of p in X, choosing a suitable f ∈ R \ p, there exists

local sections l1, . . . , ln of ΘX/k(D(f)) which form a basis of ΘX/k(D(f)) as an

OX(D(f))-module such that

g(D(f))(li, lj) = εiδij

where i, j = 1, . . . , n and each εi is a unit of OX(D(f)).

Definition 4. For a psuedo-Riemannian scheme (X, g) over a scheme S, we see

that for a section f of OX , the differential section df of ΩX/S is given by df(V ) =
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V (f) for V a section of ΘX/S. The algebraic vector field δ−1
g (df) =: Grad(f) is

called the gradient of the section f .

Recall that when consider as sections, δg ◦Grad, d : OX → ΩX/k are equivalent,

so d being a k-derivation ofOX ensures that Grad is also such. That is, for sections

f, g of OX ,

Grad(fg) = fGrad(g) + Grad(f)g.

Further, this gives the following formula for V as a section of ΘX/k,

g(Grad(f), V ) = V (f).

Consider a psuedo-Riemannian scheme (X, g) over S. For any local sections

(σ1, . . . , σn) generating a (local) basis for ΩX/S and (V1, . . . , Vn) its (local) dual

basis for ΘX/S, we can write g as follows:

g =
n∑

i,j=1

gijσ
i ⊗ σj

where gij are sections of OX . Then (gij)
n
i,j=1 is called the local fundamental

matrix of (X, g) relative to (σ1, . . . , σn). Its inverse is denoted by (gij)ni,j=1,

and we have that
n∑
j=1

gijg
jk = δki

for 1 ≤ i, k ≤ n. The map δg is given by δg(Vi) =
∑n

j=1 gijσ
j for 1 ≤ i ≤ n.

Writing Grad(f) =
∑n

i=1 φ
iVi where each φi is a section of OX , then

Vj(f) = g(Grad(f), Vj) =
n∑
i=1

φigij,
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hence, we see that φi =
∑n

j=1 g
ijVj(f) and the following result is obtained,

Grad(f) =
n∑
i=1

( n∑
j=1

gijVj(f)
)
Vi.

Consider a psuedo-Riemannian schemes (X, g) and (Y, g) over a field k. If there

exists a k-isomorphism of schemes φ : X → Y , then there is an isomorphism of

OX-modules φ∗ : ΘX/k → Ω∗Y/k where ΩY/k is considered as an OX-module via the

map φ and φ∗ : V 7→ φV φ−1 for a section V of ΘX/k. Denote V φ to mean φV φ−1.

We know that both ΩX/k and ΩY/k are finite locally free as modules over their

respective schemes. If x1, . . . , xn is a collection of local sections generating ΘX/k

as a free OX-module of finite rank which are dual to a collection of local sections

x1, . . . , xn generating ΩX/k as a free OX-module of finite rank, then the section V φ
i

is equal to yi for 1 ≤ i ≤ n where the collection of sections yi = φ(xi) form a basis

and the collection of yi is its dual. When φ is a k-isomorphism of schemes over k

as above, we say that φ is an isometry over k if the following diagram commutes:

ΘX/k ⊗OX
ΘX/k OX

ΘY/k ⊗OX
ΘY/k OY

g

φ∗⊗OX
φ∗ φ

h

It follows that φ is an isometry if, and only if, for each local fundamental matrix

G of (X, g) with respect to a collection local sections V1, . . . , Vn forming a (local)

basis of ΘX/k as an OX-module, we have that φ(G) is the fundamental matrix of

(Y, g) with respect to the sections V φ
1 , . . . , V

φ
n when they form a basis for ΘY/k as
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an OY -module. When (X, g) = (Y, h), the isometries φ : X → X over k of X

form the group of isometric automorphisms of (X, g) over k.

3 Connections

Let (X, g) be psuedo-Riemannian scheme over a scheme S where Ω)X/S is locally

free of rank n. This section will study the properties of what are called connections

on X. We wish to create constructions so that certain finiteness conditions are

met for the desired analogs of psuedo-Riemannian geometry.

Definition 5. Let X be an S-scheme. A connection on ΘX/S is an OS-bilinear

morphism of abelian sheaves

∇ : ΘX/S ×ΘX/S → ΘX/S, (V,W ) ∈ ΘX/S(U)×ΘX/S(U) 7→ ∇U
V (W )

satisfying the properties on local sections f of OX on some open set U ⊂ X,

1. ∇U
fV (W ) = f∇U

V (W ),

2. ∇U
V (fW ) = f∇U

V (W ) + V (f)W .

We say that ∇U
V (W ) is the covariant derivative of W with respect to V .

Notation 2. When the open subset U ⊂ X is clear from context, we will write

∇U as just ∇, i.e. ∇U
V (W ) ≡ ∇V (W ).
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Definition 6. Given an X be an S-scheme and connection ∇ on ΘX/S, it is

integrable when the following identity holds on all sections V1, V2,W of ΘX/S,

∇V1(∇V2(W ))−∇V1(∇V1(W )) = ∇[V1,V2](W ).

Remark 2. If ∇1 and ∇2 are two connections on ΘX/S, then ∇1 − ∇2 is an

OX-bilinear map:

(∇1 −∇2)fV (W ) = ∇1,fV (W )−∇2,fV (W )

= f∇1,V (W )− f∇2,V (W )

= f(∇1 −∇2)V (W );

(1)

(∇1 −∇2)V (fW ) = f∇1,V (W ) + V (f)W − f∇2,V (W )− V (f)W

= f∇1,V (W )− f∇2,V (W )

= f(∇1 −∇2)V (W ).

(2)

On the other hand, given a connection ∇ on ΘX/S and any OX-bilinear map

β : ΘX/S × ΘX/S → ΘX/S, the sum ∇ × β is an connection on ΘX/S. This

correspondence allows one to say that the class of connections on ΘX/S is either

empty or can be identified with ModOX
(ΘX/S ⊗OX

ΘX/S,ΘX/S).

Definition 7. Consider local sections b1, . . . , bn ∈ H0(U,ΘX/S) generating ΘX/S

as a finite free OX(U)-module. For each local section V of H0(U,ΘX/S) and each
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1 ≤ i ≤ n, we have that

∇V (bi) =
n∑
k=1

ωki (V )bk

where ωki (V ) ∈ Γ(X,OX). The maps ωki are local sections of ΩX/S(U), and we call

them the local connection forms of ∇. Further, the matrix (ωki )ni,k=1 is called

the local connection matrix of ∇ with respect to the local sections b1, . . . , bn.

Remark 3. Consider local sections b1, . . . , bn ∈ H0(U,ΘX/S) generating ΘX/S as

a finite free OX(U)-module. Let m =
∑n

i=1 f
ibi be a local section of ΘX/S(U) with

each f i sections of OX(U), and we have that

∇V (m) =
n∑

i,k=1

f iωki (V )bk +
n∑
k=1

V (fk)bk.

Consequently, we see that ∇ is uniquely determined by its local connection matrix

(ωki )ni,k=1. Yet, on the other hand, for an arbitrary n × n matrix (ωki )ni,k=1 with

entries sections of ΘX/S(U), the equation on ∇V (m) defines an connection on

ΘX/S|U with a global connection matrix (ωki )ni,k=1 in the sense of entries being

global sections of ΩX/S|U .

Example 5. For R a commutative unital ring, the polynomial ring S = R[x1, . . . , xn]

has the property that ΩY/X is a free OX-module of rank n trivialized by dx1, . . . , dxn

where Y = An
X and X = Spec(R). Write δx1, . . . , δxn for the dual basis of ΘY/X

and recall that ΩY/X(X) = ⊕ni=1Sdxi. We can identify connections on ΩY/X with

n×n matrices (ωki )ni,k=1 with coefficients in ⊕ni=1Sdxi via the formula above acting
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on local sections V and m =
∑n

i=1 f
iδxi by

∇V (m) =
n∑

i,k=1

f iωki (V )δxk +
n∑
k=1

V (fk)δxk.

Example 6. Suppose that S ⊂ T are fields where {xi}li=1 is a collection of el-

ements. Assume that either char(S) = 0 and {xi}li=1 is a transcendence basis

of T over S, or that char(S) = p > 0 and {xi}li=1 is a p-basis for T over S.

Then the global sections of ΩT/S form a vector space over T of dimension l with

basis {dxi}li=1. As a result, the contangent sheaf a free OT -sheaf of rank l. Write

x1, . . . , xl as the dual basis of {dxi}li=1. From remarks above, we can identify con-

nections on ΩT/S with l × l matrices (ωki )li,k=1 with coefficients in ⊕li=1Tdxi via

the formula above acting on local sections V and m =
∑l

i=1 f
ixi by

∇V (m) =
l∑

i,k=1

f iωki (V )xk +
l∑

k=1

V (fk)xk.

Proposition 7. (Correspondence for connections) Given the case where ΩX/S is

a free OX-module of finite rank, then there exists a one-to-one correspondence

with n× n matrices with entries in Γ(X,ΩX/S) and connections on ΘX/S.

Remark 4. Suppose that on some open subset U ⊂ X, ΘX/S(U) has a local basis

V1, . . . , Vn, and let σ1, . . . , σn be the dual local basis for ΩX/S(U), so σi(Vk) = δik

for 1 ≤ i, k ≤ n. The connection forms here may be written as

ωki =
n∑
j=1

Γkijσ
i

where each Γkij is a local section of OX(U) where 1 ≤ i, k ≤ n and 1 ≤ j ≤ n.
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Definition 8. Each Γkij are called the local algebraic Christoffel symbols of

∇ with respect to b1, . . . , bn (above) and V1, . . . , Vn, and they determine ∇ accord-

ing to the expression

∇(
∑
j

gjVj,
∑
i

f ibi) =
∑
k

(∑
i,j

f igjΓkij +
∑
i

giVi(f
k)
)
bk.

Definition 9. For a connection ∇ on ΘX/S, we say that a section W of ΘX/S is

horizontal if for all other local sections V of ΘX/S, ∇V (W ) = 0.

For an open set U ⊂ X, we write Θ∇X/S(U) ⊂ ΘX/S(U) as the OX-submodule

of horizontal local sections. In the case where we restrict to an open set U where

ΩX/S(U) is a free OX(U)-module, let b1, . . . , bn be local sections for a basis of

ΘX/S(U) and (ωki )ni,k=1 be the local connection matrix of ∇ with respect to this

basis. We see that for a local section W ∈ Γ(U,ΘX/S) written in the form W =∑n
i=1 f

ibi, it is horizontal if, and only if, the f 1, . . . , fn are local sections of OX

that satisfy the following expression

V (f 1)
...

V (fn)

 = −(wki (V ))


f 1

f 2

...
fn


for every V ∈ Γ(U,ΘX/S). Denote the associated local dual basis for ΩX/S by

σ1, . . . , σn. Write the local algebraic Christoffel symbols with respect to these

local bases by Γkij with 1 ≤ i, k ≤ n and 1 ≤ j ≤ n. We see that W is a local
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horizontal section of ∇ if, and only if, the following expression is satisfied

bj(f
1)

...
bj(f

n)

 = −(Γkij)


f 1

f 2

...
fn


for each 1 ≤ j ≤ n. We say that the connection ∇ has sufficiently many

solutions if Θ∇X/S is an OX-subsheaf of ΘX/S that generates ΘX/S where Θ∇X/S

is the sheaf associated to the presheaf U 7→ Θ∇X/S(U). For local sections V,W of

ΘX/S(U) and unit ε of O×X(U), we have the following quotient rule

∇V (ε−1M) = ε−1∇V (W ) + V (ε−1)W = ε−2(ε∇V (W )− V (ε)W ).

Fix some p ∈ X. We call the stalk of the connection ∇ at this point the

localization of ∇ at p. Since ΩX/S is finite locally free, we see that ΩX/S,p is a

finite free OX,p-module. The localization ∇p induces a OX,p-bilinear map

∇(p) : ΘX/S,p/mpΘX/S,p ×ΘX/S,p → ΘX/S(p)

where mp is the unique maximal ideal of the local ring OX,p and ΘX/S(p) :=

ΘX/S,p/mpΘX/S,p. From this, we see that there exists a canonical isomorphism of

OX/S,p-modules,

1. ΘX/S,p/mpΘX/S,p

2. ModOX,p
(ΩX/S,p,OX,p)/mpModOX,p

(ΩX/S,p,OX,p)

3. TX/S(p)
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where TX/S(p) := ΩX/S,p/mpΩX/S,p (whose elements are called tangent vectors at

p). We may regard ∇(p) as an OX/S,p-bilinear map

∇(p) : TX/S(p)×ΘX/S,p → ΘX/S(p).

Since this map is induced by the localization ∇p, it satisfies the following rule,

∇(p)(V, fZ) = f(p)∇(p)(V, Z) + V (f)Z(p)

for each tangent vector V ∈ TX/Y (p), ”germs at p” of elements f ∈ OX,p, and

”germs at p” of Z ∈ ΘX/S,p. By ”germs at p”, we mean the images of the re-

spective elements obtained from the Leibniz rule on ∇(p) induced by ∇p. We

write ∇(p)(V, Z) as ∇(p)V (W ) and called this the directional derivative of Z with

respect to V (at p). Furthermore, it can be seen that

∇(p)V (p)(W ) = (∇V (W ))(p)

for V,W sections of ΘX/S about p. One could consider the connection ∇ as a

measurement in the rate of change of W at p in the direction of V (p).

Consider the map of abelian scheaves

φ : ΘX/S ×ΘX/S ×ΘX/S → ΘX/S

defined by φ(V,W,Z) = [∇V ,∇W ]Z − ∇[V,W ](W ) for sections V,W,Z of ΘX/S

where

[∇V ,∇W ]Z = ∇V∇W (Z)−∇W∇V (Z).

23



Clearly, φ is an OX-trilinear map on sections. Indeed, let f be a section of OX and

V,W,Z be sections of ΘX/S. We see linearity in V by the following computation,

[∇fV ,∇W ](Z)−∇[fV,W ](Z) = ∇fV (∇W (Z))−∇W (∇fV (Z))−∇(fV )◦W−W◦(fV )(Z)

= f∇V (∇W (Z))− f∇W (Z)−W (f)∇V (Z)

−∇f [V,W ](Z) +W (f)∇V (Z)

= f
(
[∇V ,∇W ](Z)−∇[V,W ](Z)

)
.

Since φ is alternating in V and W , the linearity in the second component follows

as well. Lastly, we show the linearity of Z as follows:

[∇V ,∇W ](Z)−∇[fV,W ](Z) = ∇V (f∇W (Z) +W (f)Z)−∇W (f∇V (Z) + V (f)Z)

− f∇[V,W ](Z)− [V,W ](fZ)

= f∇V (∇W (Z)) + V (f)∇W (Z) +W (f)∇V (Z)

+ V (W (f))Z − f∇W (∇V (Z))−W (f)∇V (Z)

− V (f)∇W (Z)

−W (V (f))Z − f∇[V,W ](Z)− [V,W ](fZ)

= f([∇V ,∇W ]Z −∇[V,W ](Z)).

From this, we see that φ defines a map of abelian sheaves

R(∇) : ΘX/S →ModOX
(

2∧
ΘX/S,ΘX/S)

given by

R(∇)(Z)(V ∧W ) = [∇V ,∇W ]Z −∇[V,W ](Z)
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where V,W,Z are sections of ΘX/S. This map φ also gives a map of abelian

sheaves

B(∇) : ΘX/S ×ΘX/S →ModOX
(ΘX/S,ΘX/S)

which is given by (V,W ) 7→ φ(V,W,−) for sections V,W of ΘX/S.

Definition 10. We that that R(∇) and B(∇) are respectively the curvature

and curvature form of the connection ∇. The connection ∇ is integrable

when R(∇) = 0.

There exists another map of abelian sheaves

ψ : ΘX/S ×ΘX/S → ΘX/S

given by

(V,W ) 7→ ∇V (W )−∇W (V )− [V,W ]

where V,W are sections of ΘX/S. In fact, it is an alternating map and is OX-

bilinear as for each section f of OX ,

∇fV (W )−∇W (fV )− [fV,W ]

= f(∇V (W )−∇W (V ))−W (f)V − fV ◦W + fW ◦ V +W (f)V

= fψ(V,W )

This map φ induces an OX-linear map

T (∇) :
2∧

ΘX/S → ΘX/S
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given by for sections V,W of ΘX/S,

T (∇)(V ∧W ) = ∇V (W )−∇W (V )− [V,W ].

Definition 11. We say that T (∇) is called the torsion of the connection ∇. If

T (∇) = 0, then we say that ∇ is symmetric. In this case when R(∇) = T (∇) =

0, we call the connection flat.

Proposition 8. For any p ∈ X, the curvature R(∇p) is the image of R(∇) of

the canonical map from

ModOX(X)(ΘX/S(X),ModOX(X)(
2∧

ΘX/S(X),ΘX/S(X)))

to

ModOX,p
(ΘX/S,p,ModOX,p

(
2∧

ΘX/S,p,ΘX/S,p)),

and the torsion T (∇p) is the canonical image of T (∇) by

ModOX(X)(
2∧

ΘX/S(X),ΘX/S(X))→ModOX,p
(

2∧
ΘX/S,p,ΘX/S,p).

Proof. The image of [V,W ] in ΘX/S,p is the commutator of the images of V and

W in ΘX/S,p. From this, the diagram

ΘX/S(X)×ΘX/S(X) ΘX/S(X)

ΘX/S,p ×ΘX/S,p ΘX/S,p

∇

∇p

commutes, so we see that

[(∇p)V , (∇p)W ]Z = ∇p(V,∇p(W,Z))
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is the canonical image of [∇V ,∇W ]Z in ΘX/S,p. A similar thing could be stated

about

(∇p)[V,W ]Z = ∇p([V,W ], Z).

From this, the claims follow.

4 Algebraic Levi-Cività

Within this section, we only consider psuedo-Riemannian schemes (X, g) for which

the number 2 is always a section (both globally and locally) of the sheaf of units

O×X . For example, such could be the field of rational numbers Q, any field exten-

sion k of Q (i.e. characteristic of k is 0), any field K of characteristic p not equal to

2, finite commutative rings of characteristic p not equal to 2, any non-zero algebra

of finite type over any of the aforementioned commutative rings, etc. Furthermore,

it will be shown that any such psuedo-Riemannian schemes (X, g) above have a

canonical symmetric compatible connection that serves as an algebraic analog of

the Levi-Cività.

Theorem 2. (Local Existences of Algebraic Levi-Cività connections) Consider

a psuedo-Riemannian scheme (X, g) over a scheme S for which the number 2

is always a section of the sheaf of units O×X . There exists a unique symmetric

connection

∇ : ΘX/S ×ΘX/S → ΘX/S
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satisfying the following compatibility condition for any sections V,W,Z of ΘX/S,

Z(g(V,W )) = g(V,∇Z(W )) + g(W,∇Z(V )).

Proof. First, we will assume the existence of such an connection ∇. We see that

for sections V,W,Z of ΘX/S,

g(Z,∇V (W )) = g(Z,∇W (V )) + g(Z, [V,W ])

= W (g(V, Z))− g(V,∇W (Z)) + g(Z, [V,W ])

= W (g(V, Z))− g(V,∇W (Z)) + g(Z, [V,W ])

= W (g(V, Z))− Z(G(V,W )) + g(W,∇Z(V ))

− g(V, [W,Z]) + g(Z, [V,W ])

= W (g(V, Z))− Z(g(V,W )) + g(W,∇V (Z))

+ g(W, [Z, V ])− g(V, [W,Z]) + g(Z, [V,W ])

= W (g(V, Z))− Z(g(V,W )) + V (g(W,Z))−

g(Z,∇V (W )) + g(W, [Z, V ])− g(V, [W,Z]) + g(Z, [V,W ]).

From this expression, we obtain the following formula,

2g(Z,∇V (W )) = W (g(V, Z))− Z(g(V,W )) + V (g(W,Z))

+ g(W, [Z, V ])− g(V, [W,Z]) + g(Z, [V,W ]).

Since 2 is always a section of O×X and g is non-degenerate, the uniqueness of ∇

follows.
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Next, we must show the existence of such an connection ∇. Denote the right

side of the expression above by F (V,W,Z). We show OX-linearity in each of the

components Z and V of F to derive the desired properties of the connection. Let

f a section of OX . Then

F (V,W, fZ) = W (fg(V, Z))− fZ(g(V,W )) + V (fg(W,Z))

+ g(W, (fZ) ◦ V − V ◦ (fZ))

− g(V,W ◦ (fZ)− (fZ) ◦W ) + fg(Z, [V,W ])

= fF (V,W,Z) +W (f)g(V, Z) + V (f)g(W,Z)

− g(W,V (f)Z)− g(V,W (f)Z)

= fF (V,W,Z).

For fixed local sections V,W of ΘX/S, the function F defines an element of ΩX/S

(identified with its canonical isomorphism). Hence, there exists a unique section

∇V (W ) depending only on the sections V and W with the property that

F (V,W,Z) = 2g(∇V (W ), Z)

for every section of ΘX/S. This shows OX-linearity in Z of F . Next, we show
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OX-linearity in V ,

F (fV,W,Z) = W (f)g(V, Z)− Z(f)g(V,W ) + fV (g(W,Z))

+ g(W,Z ◦ (fV )− (fV ) ◦ Z)−

fg(V, [W,Z]) + g(Z, (fV ) ◦W −W ◦ (fV ))

= fF (V,W,Z).

Hence, for every section Z of ΘX/S, we have that

g(∇fV (W ), Z) = fg(∇V (W ), Z) = g(f∇V (W ), Z),

and this ensures that ∇fV (W )) = f∇V (W ) on sections. We make the following

observation in the W component of F ,

F (V, fW,Z) = fW (g(V, Z))− Z(fg(V,W )) + V (fg(W,Z)) + fg(W, [Z, V ])

− g(V, (fW ) ◦ Z − Z ◦ (fW ))

− g(Z, V ◦ (fW )− (fW ) ◦ V )

= fF (V,W,Z)− Z(f)g(V,W ) + V (F )g(W,Z) + F (f)g(W,V )

+ V (f)g(W,Z)

= fF (V,W,Z) + 2g(Z, V (f)W ).

This implies that for all sections Z of ΘX/S,

g(∇V (fW ), Z) = g(f∇V (W ) + V (f)W,Z).
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Hence,

∇V (fW ) = f∇V (W ) + V (f)W,

so ∇ is an connection on ΘX/S. Furthermore, we see that for sections Z of ΘX/S,

symmetry of ∇ follows from

g(Z.∇V (W ))− g(Z,∇W (V )) = g(Z, [V,W ]),

and compatibility follows from the fact that

F (Z,W, V ) + F (Z, V,W ) = 2Z(g(V,W ))

implies that g(V,∇Z(W )) + g(W,∇Z(V )) = Z(g(V,W )). This completes the

proof.

Definition 12. The unique connection ∇ above is called the algebraic Levi-

Cività connection on X over S.

Consider a psuedo-Riemannian scheme (X, g) with algebraic Levi-Cività con-

nection ∇. For a section f of OX , we write ∆f to be the section div∇(Gradf)

of OX and call it the Laplacian of f , and the map ∆ : OX → OX the Laplace

operator. We all define the Hessian of f as Hessf := ∆(−,Gradf). The OX-

bilinear map

hessf : ΘX/S ×ΘX/S → ΘX/S

with (hessf)(V,W ) = g(∇V (Gradf),W ) for V,W sections of ΘX/S is called the
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Hesse form of f , and the tensor in ΩX/S ⊗OX
ΩX/S corresponding to it is called

the Hesse tensor.

Proposition 9. For each section f , the Hesse tensor f is a symmetric tensor.

Proof.

(hessf)(V,W ) = g(∇V (Gradf),W )

= g(W,∇V (Gradf)

= −g(Gradf,∇V (W )) + V (g(Gradf,W ))

= −g(Gradf,∇V (W ))− g(Gradf, [V,W ]) + V (g(Gradf,W ))

= g(V,∇W (Gradf))−W (g(Gradf,W ))− g(Gradf, [V,W ])

+ V (g(Gradf,W ))

= (hessf)(W,V )−W (V (f))− [V,W ](f) + V (W (f))

= (hessf)(W,V )

Now suppose that ΩX/S has a local basis σ1, . . . , σn and V1, . . . , Vn is its local

dual basis. Let (ωji )
n
i,j=1 be the local connection matrix of ∇ with respect to

σ1, . . . , σn. That is,

∇V (Vi) =
n∑
j=1

ωji (V )Wj

for 1 ≤ i ≤ n and local section V of ΘX/S. The entries ωji are called the local

connection forms of ∇ with respect to σ1, . . . , σn. If (gik)
n
i,k=1 is the local
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fundamental matrix of (X, g) with respect to σ1, . . . , σn, then

g(∇V (Vi),−) = δg(∇V (Vi)) =
n∑
j=1

ωji (V )σj =
∑
j,k

ωji (V )gkjσ
k =

∑
k

ωkiσ
k

where ωki :=
∑

j gkjω
j
i . The ωki are called local connection forms of the

first kind, whereas given the inverse (gik)ni,k=1 of the fundamental matrix, the

forms ωki =
∑

k g
jkωki are called local connection forms of the second kind.

By identifying ΩX/S with its double dual Ω∗∗X/S of OX-modules by its canonical

isomorphism, we can write these forms as

ωki =
n∑
j=1

Γkijσ
j, ωji =

n∑
k=1

Γjikσ
k.

We respectively call Γkij and Γjik the local Christoffel symbols of the first kind

and second kind of the psuedo-Riemannian scheme (X, g).

Proposition 10. For each 1 ≤ i, j, k ≤ n with notation above, we have that one

may write:

1. ωik + ωki = dgik (where d is the universal derivation);

2. Γkij = 1
2

(
Vi(gjk)−Vk(gij)+Vj(gik)+g(Vi, [Vk, Vj])−g(Vj, [Vi, Vk])+g(Vk, [Vj, Vi])

)
;

3. dσi =
∑n

k=1 σ
k ∧ ωik.

Suppose that x1, . . . , xn is a local differential basis of ΩX/S (i.e. dx1, . . . , dxn

generated ΩX/S as a finite free OX-module on some open subset). We may take

σi and Vi above respectively as dxi and ∂
∂xi

for 1 ≤ i ≤ n. We have that for
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1 ≤ i, j ≤ n, [Vi, Vj] = 0 and the local Christoffel symbols of the first kind

simplify to

Γkij =
1

2
(
∂gjk
∂xi
− ∂gij
∂xk

+
∂gik
∂xj

),

and it may be deduced that Γkij = Γkji. If for 1 ≤ i, k ≤ n it happens that

gik = δik, we say that V1, . . . , Vn form a local orthonormal basis of ΘX/S.

In such a situation (ωik)
n
i,k=1 is a skew-symmetric matrix (i.e ωik = −ωki for all

1 ≤ i, k ≤ n). Thus, we have the following equations

Γkij =
1

2

(
g(Vi, [Vk, Vj])− g(Vj, [Vi, Vk]) + g(Vk, [Vj, Vi])

)
,

and also that for 1 ≤ i, j, k ≤ n, one has Γkij = −Γjik.

Fix a psuedo-Riemannian schemes (X, g) with algebraic Levi-Cività connection

∇. Let I be a sheaf of ideals on OX . Write OX/I for its quotient sheaf of OX-

modules. There exists a split exact sequence of OX/I-modules,

0→ I/I2 → ΩX/S/IΩX/S → ΩX/S/OXd(I)→ 0.

Writing ΩX/S/OXd(I) as ΘI/S and dualizing with respect to OX/I yields the

following split-exact sequence,

0→ ΘI/S → ΘX/S/IΘX/S → (I/I)2 → 0.

The algebraic metric

g : ΘX/S/IΘX/S ×ΘX/S/IΘX/S → OX/I
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induced by g is non-degenerate. We call the triple (X, g, I) a psuedo-Riemannian

residual of (X, g) (over S). For V a section of ΘX/S, denote V as the image of

V in ΘX/S/IΘX/S.

Proposition 11. ΘI/S = 〈{Gradf}f∈I〉⊥.

Proof. We know that ΘI/S is equivalent to ModOX
(ΩX/S/IΩX/S,OX/I), and so

sections of ΘI/S can be identified with those linear forms

l : ΩX/S/IΩX/S → OX/I

which vanish on the image of I/I2 in ΩX/S/IΩX/S, i.e. on the residue classes of

the df for f sections of I. Furthermore, for any section V of ΘX/S, we have that

V is a section of ΘI/S if, and only if, for every section f of I, one has V (f) is also

a section of I. However, V (f) = g(Gradf, V ), so this condition is equivalent to

g(Gradf, V ) = 0.

Corollary 1. The following are equivalent:

1. g : ΘX/S/IΘX/S ×ΘX/S/IΘX/S → OX/I is non-degenerate;

2. the restriction of g to 〈{Gradf}f∈I(U)〉⊥ on any open U of ΘX/S/IΘX/S is

non-degenerate;

3. for any open U of ΘX/S/IΘX/S,

ΘX/S/IΘX/S(U) = ΘI/S(U)× 〈{Gradf}f∈I(U)〉⊥.

35



Fix a psuedo-Riemannian residual (X, g, I), so g is non-degenerate. Let ∇ be

its algebraic Levi-Cività connection. Notice that we can write

ΘX/S/IΘX/S = ΘI/S ×Θ⊥I/S.

Write ΘX/S for ΘX/S/IΘX/S. For each section V of ΘX/S, we have a unique

decomposition V = V > + V ⊥ where V > (called the tangential component) is

a section of ΘI/S and V ⊥ (called the normal component) is a section of Θ⊥I/S.

The connection ∇ induces a well-defined map

∇ : ΘI/S ×ΘX/S → ΘX/S

as follows. For V a section of ΘI/S and W a section of ΘX/S (with representative

sections V,W of ΘX/S), we have that ∇V (W ) = ∇V (W )). Since ∇ is OX-linear in

V , ∇V (W )) does not depend on the choice of V . Furthermore, if W ′ were another

representative section of W of ΘX/S, then W−W ′ =
∑m

k=1 akWk for some sections

ak and Wk respectively for I and ΘX/S. Then

∇V (W )−∇V (W ′) = ∇V (W −W ′) =
m∑
k=1

V (αk)Wk +
m∑
k=1

ak∇V (Wk).

Since V is a section of ΘI/S and the ak are sections of I, we have that V (ak) is

also a section of I, so the right side of the expression above is zero. Therefore,

∇V (W ) = ∇V (W ′). Clearly, ∇ forms an connection on ΘX/S.

Theorem 3. Relative to the notation above, if V ,W are sections of ΘX/S with
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representative sections V,W of ΘX/S, then

∇V (W ) = ∇VW
⊥
.

Definition 13. The maps

Π : ΘI/S ×Θ⊥I/S → ΘI/S

given by (V ,N) 7→ −(∇V (N))⊥ is called the second fundamental forms of

(X, g, I). Fixing some section N , the map

SN : ΘI/S → ΘI/S

given by V 7→ Π(V ,N) is called the shape operator with respect to N .

The maps SN and Π are respectively OX/I-linear and OX/I-bilinear. In

particular, the shape operator with respect to a section N defines an OX/I-

bilinear map

lN : ΘI/S ⊗OX/I ΘI/S → OX/I

given by (V ,W ) 7→ g(SN(V ),W ), which uniquely determines SN as g is non-

degenerate.

Proposition 12. If N is a representative of N , then the following conditions

hold:

1. lN is symmetric and lN(V ,W ) = g(∇V (W ), N)
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2. For V ,W representative sections of ΘX/S of sections V ,W of ΘI/S and φ a

section of I, for each N := Gradf ,

lN(V ,W ) = −(hessf)(V,W ).

The symmetric tensor ΠN of ΩI/S ⊗OX/I ΩI/S corresponding to lN is called

the second fundamental tensor of (X, g, I). Suppose that ΩX/S has a basis

σ1, . . . , σn such that for the dual basis V1, . . . , Vn of ΘX/S, the residues V1, . . . , Vm

form a basis of ΘI/S and Vm+1, . . . , Vn form a basis for Θ⊥I,S. Writing N =∑n
k=m+1 v

kVk for vk a section of OX/I. Let (ωji )
1≤j≤n
1≤i≤m be the connection ma-

trix of ∇ with respect to V1, . . . , Vm and

g =
m∑

k,l=1

gklσk ⊗ σl,

for gkl sections of OX/I, be the fundamental tensor of this psuedo-Riemannian

residual with σl the image of σl as a section of ΩI/S.

Proposition 13. With respect to the notation above,

1. ΠN =
∑m

i,j=1 bij(N)σi ⊗ σj with bij(N) = −
∑n

s=m+1 v
sωjs(Vi);

2. the matrix of SN with respect to the basis V1, . . . , Vm is (gij)(bij(N)).

5 Curvature of Algebraic Levi-Cività connections

Fix a pseudo-Riemannian scheme (X, g) where 2 is always a section of O×X and

let ∇ be its algebraic Levi-Cività connection. Recall that the curvature R of ∇
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is map of abelian sheaves

R : ΘX/S →ModOX
(

2∧
ΘX/S,ΘX/S)

with the property that

R(V )(W ∧ Z) = [∇W ,∇Z ]V −∇[W,Z](V )

for sections V,W,Z of ΘX/S.

Proposition 14. Assume that (X, g) has zero torsion. For any sections V,W,Z

of ΘX/S,

R(V )(W ∧ Z) +R(W )(Z ∧ V ) +R(Z)(V ∧W ) = 0.
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Proof.

R(V )(W ∧ Z) +R(W )(Z ∧ V ) +R(Z)(V ∧W )

= [∇W ,∇Z ]V −∇[W,Z](V ) + [∇Z ,∇V ]W −∇[Z,V ](W )

+ [∇V ,∇w]Z −∇[V,W ](Z)

= ∇W (∇Z(V ))−∇Z(∇W (V ))−∇[W,Z](V ) +∇Z(∇V (W ))

−∇V (∇Z(W ))−∇[Z,Y ](W ) +∇V (W (Z)))

−∇W (∇V (Z))−∇[V,W ](Z)

= ∇W (∇Z(V ))−∇Z(∇V (W ))−∇Z([W,V ])−∇[W,Z](V )

+∇Z(V (W ))−∇V (∇W (Z))

−∇V ([Z,W ])−∇[Z,V ](W ) +∇V (∇W (Z))

−∇W (∇Z(V ))−∇W ([V, Z])−∇[V,Z](Z)

= ∇Z([V,W ])−∇[W,Z](V ) +∇V ([W,Z])−∇[Z,V ](W )

+∇W ([Z, V ])−∇[V,W ](Z)

= [Z, [V,W ]] + [V, [W,Z]] + [W, [Z, V ]]

= 0.

The map of abelian sheaves

K : ΘX/S ×ΘX/S ×ΘX/S ×Θ X/S → OX
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given by

(U, V,W,Z) 7→ g(U,R(V )(W ∧ Z))

is OX-linear in each of its components. We may think of K as a 4-tensor of ΩX/S,

Definition 14. We call K the curvature tensor of (X, g) with connection ∇.

Proposition 15. (Symmetric For Curvature Tensor) Recall that 2 is always a

section of O×X . For sections U, V,W,Z of ΘX/S, we have the following expressions

holding:

1. K(U, V,W,Z) +K(U,W,Z, V ) +K(U,Z, V,W ) = 0;

2. K(U, V,W,Z) = −K(V, U,W,Z) = −K(U, V, Z,W );

3. K(W,Z,U, V ) = K(U, V,W,Z).

When 3 is not a zerodivisor section of OX , for any 4-tensor K′ above satisfying

the properties above and if for any sections U, V of ΘX/S it happens that

K′(U, V, U, V ) = K(U, V, U, V ),

then K′ = K.

Proof. The first item follows from proposition above. By the definition of K, we
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see that K(U, V,W,Z) = −K(U, V, Z,W ). Then

K(V, V,W,Z) = g(V,R(V )(W ∧ Z))

= g(V,∇W (∇Z(V )))− g(V,∇Z(∇W (V )))− Z(g(V,∇W (V )))+

g(∇W (V ),∇Z(V ))− 1

2
[W,Z](g(V, V ))

=
1

2

(
(W ◦ Z)g(V, V )− (Z ◦W )(g(V, V ))− [W,Z](g(V, V ))

)
= 0,

so we see that K is alternating with respect to the sections U and V , and this

proves the second item. The last item and assertion follow from the similarly.

Suppose that ΩX/S has a local basis σ1, . . . , σn and V1, . . . , Vn is the local dual

basis for ΘX/S. We may regard R as a local section of

ModOX
(ΘX/S,Ω

2
X/S ⊗OX

ΘX/S)

and write for 1 ≤ j ≤ n,

R(Vj) =
n∑
k=1

Ωk
j ⊗ Vk

where each Ωk
j is a local section of Ω2

X/S. Then we have that

K(Vi, Vj, Vr, Vs) = g(Vi,R(Vj)(Vr ∧ Vs)) =
n∑
k=1

gijΩ
k
j (Vr ∧ V2).

Writing each Ωij as
∑n

k=1 gikΩ
k
j for 1 ≤ i, j ≤ n, we obtain that

K(Vi, Vj, Vr, Vs) = Ωij(Vr ∧ Vs)

for 1 ≤ i, j, r, s ≤ n. This proves the following statement.
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Corollary 2. The matrix (Ωij)
n
i,j=1 is skew-symmetric, i.e. for any 1 ≤ i, j ≤ n

we have that Ωij = −Ωji.

Proposition 16. For any 1 ≤ i, j ≤ n, let ωij and ωij respectively be the lo-

cal connection forms of the first and second kind for ∇ with respect to the basis

σ1, . . . , σn.

1. Ωij = dωij −
∑n

l=1 wli ∧ ωlj;

2. dΩij =
∑n

l=1(Ωil ∧ ωlj − ωli ∧ Ωlj).

Proof. There exists the following expressions

1. Ωk
j = dωkj +

∑n
l=1 ω

k
l ∧ ωlj,

2. dgik = ωik + ωki.

On one hand,

Ωij =
n∑
k=1

gikΩ
k
j

=
n∑
k=1

gikdω
k
j +

n∑
k=1

gik

n∑
l=1

ωkl ∧ ωlj

=
n∑
k=1

d(gijω
k
j )−

n∑
k=1

dgik ∧ ωkj +
n∑
l=1

ωik ∧ ωkj

= dωij −
n∑
k=1

ωik ∧ ωkj −
n∑
k=1

ωki ∧ ωkj +
n∑
k=1

ωik ∧ ωkj

= dωij −
n∑
k=1

ωik ∧ ωkj −
n∑
k=1

ωki ∧ ωkj +
n∑
k=1

ωik ∧ ωkj

= dωij

n∑
l=1

ωli ∧ ωlj,
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and on the other hand,

dΩij = −
n∑
l=1

dωli ∧ ωlj +
n∑
l=1

ωli ∧ dωlj

= −
n∑
l=1

Ωli ∧ ωlj +
n∑

l,t=1

ωti ∧ ωtl ∧ ωlj +
n∑
l=1

ωli ∧ Ωl
j −

n∑
l,t=1

ωli ∧ ωlt ∧ ωtj

=
n∑
l=1

(Ωil ∧ ωlj − ωli ∧ Ωjl).

Proposition 17. If p is an element of X, then the curvature of Rp is the image

of the curvature R by the canonical map from

ModOX(X)(ΘX/S(X),ModOX(X)(
2∧

ΘX/S(X),ΘX/S(X)))

to

ModOX,p
(ΘX/S,p,ModOX,p

(
2∧

ΘX/S,p,ΘX/S,p)).

The curvature Kp is the canonical image of K induced from the map ΩX/S →

ΩX/S,p.

Proof. In order to prove the statement forRp, it is enough to show that for sections

V,W,Z of ΘX/S with images Vp,Wp, Zp in ΘX/S,p, the derivation Rp(Vp)(Wp ∧Zp)

is the image of R(V )(W ∧ Z) in ΘX/S,p. But this follows from the fact that the

diagram

ΘX/S(X)OX(X)ΘX/S(X) ΘX/S(X)

ΘX/S,pOX,p
ΘX/S,p ΘX/S,p

∇

∇p
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commutes and that [V,W ]p is the image of [V,W ] in ΘX,p. The statement for Kp

then follows.

For sections V,W of ΘX/S, define

Ric(V,W ) = Trace(U 7→ R(W )(U ∧ V ))

where U is a section of ΘX/S. We see that Ric is OX-linear in both V and W , so

it defines a tensor Ric of ΩX/S ⊗OX
ΩX/S, which will be called the Ricci tensor

of (X, g).

Proposition 18. The Ricci tensor is symmetic. If (σ1, . . . , σn) is a basis for ΩX/S

and (V1, . . . , Vn) is its dual basis, then

Ric =
n∑

r,s=1

(
n∑

i,j=1

gijK(Vi, Vr, Vj, Vs))σ
r ⊗ σs.

Proof. We write R(Vr)(Vj ∧Vs) =
∑

k α
k
rjsVk with αkrjs a section of OX . It follows

that

K(Vi, Vr, Vj, Vs) = g(Vi,R(Vr)(Vj ∧ Vs)) =
∑
k

αkrjsgik,

and that

αkrjs =
∑
i

gikK(Vi, Vr, Vj, Vs).

The definition of Ric then yields the expression

Ric(Vr, Vs) =
∑
j

αjrjs =
∑
i,j

gijK(Vi, Vr, Vj, Vs).

These results show that Ric is a symmetric tensor and completes the proof.
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The composed map

Traceg : ΩX/S ⊗OX
ΩX/S

id⊗δ−1
g−−−−→ ΩX/S ⊗OX

ΘX/S → OX

that is given by

ω1 ⊗ ω2 7→ ω1 ⊗ δg(ω2) 7→ δg(ω2)(ω1)

is called the g-trace of 2-tensors.

Definition 15. The map ρ defined by Traceg(Ric) is called the scalar curvature

of (X, g).

Given a basis V1, . . . , Vn as above, we may write

ρ =
n∑

i,j,r,s=1

gijgrsK(Vi, Vr, Vj, Vs).

Definition 16. We call (X, g) an Einstein scheme and g an Einstein metric

if for some global section γ of OX , it happens that Ric = γg.

Proposition 19. Suppose that ΩX/S has constant rank n. If (X, g) is an Einstein

scheme and ρ is its scalar curvature, then ρ = nγ for γ a section of OX such that

Ric = γg.

Proof.

ρ = Traceg(Ric) = Traceg(γg) = γTraceg(g) = nγ.
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Proposition 20. Suppose that ΩX/S has rank 2. Assume that 2 is always a section

of OX , Then (X, g) is an Einstein scheme. If σ1 and σ2 form a basis for ΩX/S,

V1, V2 is its dual, and (gij)
2
i,j=1 is the fundamental matrix of (X, g) with respect to

σ1, σ2, then it happens that Ric = γg with

γ =
K(V1, V2, V1, V2)

det(gij)2
i,j=1

.

Also ρ = 2γ is independent of the choice of the basis σ1 and σ2 for ΩX/S.

Proof. Notice that it is enough to prove the second assertion of the proposition.

We see that g11 g12

g21 g22

 =
1

det(gij

 g22 −g12

−g21 g11

 ,

so the symmetries of K yield the following expression, thus completing the proof,

Ric =
2∑

r,s=1

2∑
i,j=1

gijK(Vi, Vr, Vj, Vs)σ
r ⊗ σs

= K(V1, V2, V1, V2)
(
g22σ1 ⊗ σ1 − g21σ1 ⊗ σ2 − g12σ2 ⊗ σ1 + g11σ2 ⊗ σ2

)
=
K(V1, V2, V1, V2)

det(gij)
g.

In this situation above, we call γ the Guassian curvature of (X, g) and it

is denoted K. We will generalize as follows. Let G be a sheaf ΩX/S-submodules

such that it is of rank 2 and its dual sheaf G∗ also has rank 2 as well as a sheaf

ΘX/S-submodules. The results above regarding Einstein schemes applies to the
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sheaf G. This allows one to consider the Gaussian curvature of (X, g) relative

to G, which is denoted by KG and clearly constructed from above. Fix such a

sheaf G.

Corollary 3. Supose that V1, V2 are an orthonormal basis of G and write Ω12 as

Kσ1 ∧ σ2 for some K a section of OX . Then K is the Guassian curvature KG of

G.

Theorem 4. (Residuals Relation To Global Curvature) Let (X, g, I) be a psuedo-

Riemannian residual of (X, g). For U, V ,W,Z sections of ΘI/S with respective

representative sections U, V,W,Z of ΘX/S, the following expression holds,

K(U, V ,W,Z) = K(U, V,W,Z)+g((∇W (U))⊥, (∇V (Z))⊥)−g((∇V (U))⊥, (∇W (Z))⊥).

Proof. We know that the following expressions hold,

1. ∇V (∇W (V ) = (∇(∇W (X))>)> = (∇V (∇W (Z)))> −∇V ((∇W (Z))⊥)>,

2. ∇W (∇V (Z) = (∇W (∇V (Z)))> −∇W ((∇V (Z))⊥)>,

3. ∇[V ,W ](Z) = (∇[V,W ](Z))>.

From this, it follows that

R(V ∧W )(Z) = (R(V ∧W )(Z))> + (∇W (∇V (Z))⊥)> − (∇V ((∇W (Z))⊥))>.
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Therefore, we obtain

K(U, V ,W,Z) = g(U,R(V ∧W )(Z))

= g(U,R(V ∧W )(Z)) + g(U,∇W (∇V (Z))⊥)

− g(U,∇V ((∇W (Z))⊥)),

which implies the desired result,

K(U, V ,W,Z) = K(U, V,W,Z) + g((∇W (U))⊥, (∇V (Z))⊥)−

g((∇V (U))⊥, (∇W (Z))⊥).

6 Applications & Computations

Example 7. Let k be a field of characteristic not equal to two, and A = k[x, y]/(y2−

x3). We have that

ΩA/k
∼= (Adx⊕ Ady)/(2ydy − 3x2dx).

At the origin, this module is free of rank two, but outside of th origin, it is of rank

one, so the sheaf associated to the module ΩA/k is not locally free.

Theorem 5. If X is an S-scheme, then there exists a metric on ΩX/S if, and

only if, there exists a symmetric isomorphism of ΩX/S and ΘX/S as OX-modules

in the following sense:
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• There exists an OX-module isomorphism u : ΘX/S → ΩX/S that factors as

ΘX/S → Ω∗X/S
u∗−→ Θ∗X/S → ΩX/S

where the left and right arrows are the canonical isomorphisms, and u∗ is

the dual map of u.

Proof. This is an implication from previous work.

Proposition 21. Consider (B,m) a regular local ring which contains its residue

field B/m (up to an isomorphism). If B/m is a perfect field where B is a location

of a finitely generated k-algebra, then there exists a metric on X = Spec(B).

Proof. It is enough to show that ΩX/k is a free module of finite rank, but this

naturally follows from that fact the rank ΩX/k is a free B-module of rank being

equal to the Krull dimension of B.

Corollary 4. In the notation above, any chose of a regular system of parameters

generate a differential basis for ΩX/k, and hence, a metric on X over k.

Example 8. If Y is any scheme and X = An
Y is affine n-space over Y , then ΩX/Y

is a free OX-module of rank n and basis (dX/Y (x1), · · · , dX/Y (xn)), which generate

a metric on X.

Proposition 22. If X is a smooth variety of dimension n over a perfect field k,

then each point p ∈ X has an open neighborhood U for which ΩU/k is finite free

as an OX |U -module and there exists a metric on ΩU/k.
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Proof. The existence of such an open neighborhood follows from the fact that

ΩX/k is locally free of rank n. By the Correspondence of Metrics Proposition,

there exists a one-to-one correspondence between symmetric non-degenerate OX-

bilinear morphisms ΘX/S×ΘS/S → OX of abelian sheaves and symmetric matrices

(gij) ∈ Matn(OX(X)) with the property that det(gij) ∈ OX(X)×.

Proposition 23. If G is a group scheme over a field k, then there exists a metric

on ΩG/k.

Proof. This follows from the fact that there exists some r ∈ N0 such that ΩG/k
∼=

O⊕rG as OG-modules (Bhatt, Math 731). In this case, we have that ΘG/k
∼= ΩG/k

as OG-modules, and completes the proof.

Example 9. Let k be a field. Consider an elliptic curve X over k. The identifi-

cation of the canonical line bundle KX with the cotangent sheaf ΩX/k implies that

it is trivial. In fact, this comes from that fact that X is a group scheme over k.

Corollary 5. Any abelian variety over a field k is a pseudo-Riemannian scheme.

Proposition 24. Consider the affine coordinate ring k[x1, · · · , xn]/p for some

prime ideal p where k is a field of characteristic zero. There exists an

f ∈ k[x1, · · · , xn]/p

such that the affine scheme

Spec((k[x1, · · · , xn]/p)[f−1])

51



has a metric.

Proof. Let R = k[x1, · · · , xn]/p. It is enough to show that the cotangent module

ΩR[f−1]/k is free of rank d for some f ∈ R and d ∈ N. We know that ΩR/k is

finitely generated as an R-module. Denote K(R) as the field of fractions for R,

and note that

ΩR/k ⊗R K(R) = ΩK(R)/k

is a finite-dimensionalK(R)-vector space with dimension tr.deg(K(R)/k). Clearly,

this is equal to some d. Choose elements x1, · · · , xd ∈ ΩR/k which form a basis for

ΩK(R)/k. This gives a map Rd → ΩR/k which becomes an isomorphism after one

localizes at the zero ideal (o). Hence, there exists an f ∈ R such that the map

above is an isomorphism after localization at f . We find that ΩR[f−1]/k is a free of

rank d as desired.

Example 10. Let Fp denote the field of p elements. Consider the ring R =

Fp[x]/(xp − 1) and the group scheme Spec(R) over Fp. The contangent sheaf

ΩR/Fp is Rdx, which is free of rank 1. Hence, there exists a metric on R.

Proposition 25. Let k be an algebraically closed field and R be a quotient ring

k[x1, · · · , xn] such that ΩR/k is a projective R-module of rank dim(R). For any

closed point p ∈ Spec(R), there exists a metric on Spec(Rp).

Proof. This comes from the fact that ΩR/k is locally free and projective of rank

dim(R). Hence, ΩRp is free of dimension dim(Rp).
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Example 11. Let k be an imperfect field of characteristic p nonzero. We can

choose an a ∈ k such that a1/p 6∈ k. Let k′ = k(a1/p), and as a ring, this isomorphic

to k[t]/(tp−α). One can see that Ωk′/k = k′ as it is the cokernel of the map k′ → k′

given by multiplication d
dt
|a1/p(tp− a). Hence, it is possible to see that a generator

for Ωk′/k is t where t is a p-th root of a, and so Ωk′/k = k′.

Proposition 26. Let k be an imperfect field of characteristic p nonzero. If k′ =

k(a1, · · · , an) where each ai has the property that a
1/p
i 6∈ k, then there exists a

metric on Spec(k′) and is determined by the generators dai.

Proof. This follows from that fact the Ωk′/k is free of rank n over k′ by adapting

the argument in the example above.
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