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ABSTRACT 

A dense array of ~1,000 continuously recording, short-period geophones was 

deployed in the summer of 2014 within ~15 km of Mount St. Helens. Two earthquake 

catalogs created using reverse time imaging and template detection techniques, increase 

the detection rate and completeness of the earthquake catalog when compared to the 

permanent network, Pacific Northwest Seismic Network, catalog. An investigation into 

event type for ~200 of the earthquake detections leads to the discrimination of two major 

classification groups, volcano-tectonic and long period. Previous to this study, long period 

earthquakes had not been identified in the upper crust during a volcanically inactive period 

and our results lead us to believe they are detected but routinely misidentified as surface-

generated signals and consequently, removed from the Pacific Northwest Seismic Network 

earthquake catalog. Earthquake locations from the reverse time imaging and template 

detection catalogs are mainly distributed in a volume directly beneath the summit crater 

between 0–6 km below sea level with a width of ~1–3 km. Volcano-tectonic and long 

period earthquakes occur in the same source volume, suggesting multiple source processes, 

and have no apparent temporal relationship. Their location is of particular interest because 

it is between the main upper crustal magma reservoir (~5–15 km below sea level) and the 



 iv 

volcanic edifice (0–2.5 km above sea level), as well as directly above the location where 

melt last equilibrated (~5-12 km below sea level) during the 1980 eruption. Future efforts 

should focus on creating LP template detections to prevent their misidentification during 

normal monitoring periods and enable tracking the occurrence of LP seismicity through 

time. Additionally, dense three-component recordings will be necessary to constrain the 

source mechanism of the upper crustal LP earthquakes and potential relationships to 

magmatic processes.  
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1. INTRODUCTION  

Volcanic settings are a challenging field area for earthquake seismology due to the 

variety of potential source mechanisms including tectonic, magmatic, hydrothermal, and 

surficial processes. In addition, complex crustal structure creates strong path effects that 

distort the various source signals. Current seismic monitoring networks are generally 

composed of several seismometers within tens of kilometers of volcanic centers making 

the detection and discrimination of diverse signals difficult, especially for low magnitude 

(M) events. The detection threshold and ability to discriminate different source types in the 

presence of strong path effects could be improved with denser sampling.  

In this study, we test the capability of an array of nearly 1,000 rapidly deployable 

short period seismometers that prioritize spatial sampling over the recording bandwidth 

and noise-floor at each site. We seek to quantitatively classify the diversity of recorded 

seismic source signal and estimate their locations. Volcano-tectonic (VT) earthquakes in 

the upper crust and deep long period earthquakes in the middle-to-lower crust are 

frequently recorded by the long-term networks at Mount St. Helens. The short-term 

availability of a dense array allows greater scrutiny of those source types as well as a 

systematic search for other types of sources that may evade detection by the long-term 

network. Regardless of previous detection, long period seismicity at any depth is of interest 

because the source mechanisms of these events are debated and potentially valuable as 

indicators of fluid migration or volume changes. Our findings include increased 

completeness of VT earthquake detections, and the identification of long period 

earthquakes at a previously unrecognized depth range during a quiescent period.  

 



! 2 

2. BACKGROUND 

2.1 Mount St. Helens volcanism and seismicity 

            Mount St. Helens is part of the Cascade volcanic arc. Magmatism driven by the 

subduction of the Farallon and later the Juan de Fuca plates beneath the northwestern U.S. 

has occurred since ~40 Ma (Defant & Drummond, 1993), but volcanic edifices such as 

Mount St. Helens are more transient. The oldest volcanic products attributed to an eruptive 

center at the current location of Mount St. Helens are dated to ~300 ka (Clynne et al., 2008). 

It is notable that Mount St. Helens is located anomalously far west, ~50 km toward the 

forearc, compared to the main axis of the Cascade volcanic arc. As a result, the young and 

warm slab lies at a relatively shallow depth, ~60–65 km (McCrory et al., 2004).  

Eruptions at Mount St. Helens have a range of compositions from basalt to andesite 

to dacite with most recent eruptions (e.g. 1980, 2005–2006) of dacitic magmas (Mullineaux 

and Crandell, 1981; Iverson et al., 2006). The current surface geology includes mixed 

dacite and basalt domes surrounded by andesite lava flows. The last major eruption was in 

1980, when a highly hazardous Plinian eruption ejected ~1 km3 of material (Christiansen 

and Peterson, 1981) and the most recent activity was the dacite dome-building eruption 

from 2004–2008 (Moran et al., 2008). A magmatic system, like Mount St. Helens, has two 

general states, active when occurrence of physical unrest (e.g., surface deformation, gas 

emissions, earthquake swarms) is punctuated by eruptions and inactive when there is no 

apparent physical unrest but deeper magmatic processes may still occur. Among the 

Cascade arc volcanoes, Mount St. Helens is the most volcanically and seismically active. 

The Pacific Northwest Seismic Network (PNSN) records more than 100 earthquake 

detections per year during volcanically inactive periods and thousands of detections per 
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year during active periods.   

 

2.2 Types of earthquakes 

            A wide range of seismic signals has been identified at Mount St. Helens including 

volcanic-tectonic (VT), long period (LP), deep long period (DLP), and tremor events. 

Finding a temporal relationship between the volcanic state (e.g. dormancy, unrest, 

eruption) and accompanying seismicity is the initial link between types of seismic signals 

and volcanic processes. Tremor and VT earthquakes occur during both volcanically active 

and inactive periods (Shelly et al. 2007; Denlinger and Moran, 2014; Waite et al., 2008), 

as well as LP earthquakes with near-surface (<500 m below the surface) and surface 

hypocenters (e.g. icequakes, rockfalls, avalanches) (Matoza et al. 2015; Mills, 1991). LP 

earthquakes in the upper crust have only been identified during periods of volcanic unrest 

and often temporally coincide with precursory activity, dome growth, or eruptions (Matoza 

et al., 2015; Waite et al., 2008). DLP earthquakes are typically recorded during dormant 

states, however, the lack of detection during active periods may be due to interference from 

the large amount of shallow seismicity (Nichols et al., 2011).  

            VT earthquakes (Fig. 1, A) are the most commonly detected earthquake type at 

Mount St. Helens with hundreds of events detected daily by the PNSN during volcanically 

active periods when swarm behavior is present (Waite et al., 2008). They excite broad 

frequency bands spanning ~1–100 Hz at seismometers within ~10 km. VT events occur 

mostly beneath the summit crater at depths shallower than 5 km below sea level (bsl) and 

no deeper than ~10 km bsl. A map and cross section of VT earthquake locations within 6 

km of the summit crater from 2009–2014 (inactive period) can be seen in Figure 2, A-B. 
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Moment tensors are rarely estimated for the VT earthquakes, making their role in the 

context of magmatic processes unclear (McNutt, 2005).!However, a double couple process 
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resulting in shear failure, like dike emplacement, has been proposed as the source 

mechanism for VT swarm behavior in cases where focal mechanisms have been estimated 

(Roman and Cashman, 2006). Numerical models suggest dike emplacement involves both 

dike propagation (Ukawa and Tsukahara, 1996) and dike inflation (Roman, 2005), 

however, these mechanisms have not been clearly identified together during this process 

Depth&(km)
Latitude

Elevation&(km)

A) B)

Latitude

Elevation&(km)

Depth&(km)

C)

D)

46
.2
6

46
.2

46
.1
4

46
.2
6

46
.2

46
.1
4

2.
5

1.
5

0.
5

2.
5

1.
5

0.
5

<2 0 2 64 8 10 1412

0 5 10 2015 25 30 35

<1
22
.2
4

<1
22
.1
8

<1
22
.1
2 <1
22
.1

<1
22
.2

<1
22
.3

<1
22
.1

<1
22
.2

<1
22
.3<1
22
.2
4

<1
22
.1
8

<1
22
.1
2

Lo
ng
itu
de

Lo
ng
itu
de

Fi
gu
re
2.
(A
-D
)
M
ou
nt
St
.
H
el
en
s
ea
rth
qu
ak
e
lo
ca
tio
ns
fro
m
PN
SN

de
te
ct
io
ns
.(
A
-B
)
V
T
ea
rth
qu
ak
e

lo
ca
tio
ns
(b
la
ck
)
fro
m
20
09
–2
01
4.
(C
-D
)
D
LP
ea
rth
qu
ak
e
lo
ca
tio
ns
(y
el
lo
w
)
fro
m
19
70
–2
01
6.



! 6 

at Mount St. Helens. The VT seismicity during an active period at Mount St. Helens, as 

well as the majority of arc volcanos, is most strongly attributed to dike inflation because 

the pressure axes are approximately orthogonal to local compressive stress (Roman and 

Cashman, 2006). At a number of volcanos, including Mount St. Helens, a strong temporal 

correlation has been observed between the horizontal rotation of fault-plane solutions and 

magmatic activity (Roman and Cashman, 2006). Therefore, VT earthquakes are important 

reflectors of a volcano’s changing stress field and with continued research, possibly useful 

in forecasting volcanic behavior.   

            LP earthquakes, unlike VT earthquakes, are depleted in high frequency energy 

(relative to their magnitudes) and commonly associated with source processes directly 

involving fluids making them a distinct category of earthquake. They have a wide variety 

of characteristics that motivate the classification of LP seismicity in subgroups based on 

frequency content, hypocenter depth, and duration. At Mount St. Helens, LP earthquakes 

occur from the surface to ~40 km bsl, which is near the Moho (Hansen et al., 2016), but 

the depth distribution is not uniform (Nichols et al., 2011; Denlinger and Moran, 2014). In 

comparison to VT earthquakes, LP earthquakes typically have longer durations, are 

depleted in high frequencies, and have more emergent onsets (Fig. 1, B). Hybrid 

earthquakes combine characteristics from both LP and VT earthquakes starting with an 

impulsive, high frequency arrival evolving into a low frequency, long coda duration 

earthquake (Fig. 1, C) (Neuberg et. al., 2006). Tremor is a low frequency signal that lasts 

from minutes to months and is more commonly associated with volcanic activity but has 

also been observed during inactive periods at Mount St. Helens (Denlinger and Moran, 

2014). DLPs most commonly occur ~5–10 km southeast of Mount St. Helens at depths 
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between ~20–40 km bsl and typically produce signal frequencies ≤5 Hz (Nichols et al., 

2011). Figure 2 C-D, display the location of DLPs since 1970 by the PNSN. DLPs often 

occur near active volcanos, and the Cascade and Japan arcs are among the best constrained 

areas of DLP seismicity. They do not exhibit a clear temporal correlation with eruptions at 

Mount St. Helens but are suggested to indicate transport of magmatic fluids or cooling of 

intrusions in the mid to lower crust (Nichols et al., 2011; Aso and Tsai, 2014).  

Upper crustal LP earthquakes have coda durations from ~20–50 s and peak power 

at frequencies between 5–15 Hz. At Mount St. Helens, they have only been observed during 

volcanically active periods and eruptions are often preceded by an increase in LP 

occurrence. In the months prior to the 1980 eruption, upper crustal LP and tremor activity 

occurred as magma degassed at shallow depths (~<2–3 km km below the surface) and 

correlated temporally with episodic edifice deformation (Scandone & Malone, 1985). The 

dome-building 2004–2008 eruption at Mount St. Helens was characterized by millions of 

LP signals, including LP drumbeating occurring every several minutes (Waite et al., 2008) 

and non-cyclic, near-continuous LP microseismicity (Matoza et al, 2015). In this 

manuscript, we refer to the LP microseismic events observed in the Matoza 2015 study, 

and all LP seismicity with depths <1 km, as near-surface LP events. Near-surface LP events 

at Mount St. Helens are often undetected due to their low signal to noise ratio (SNR). Their 

suggested source during the 2004–2008 eruption is a volumetrically oscillating shallow 

(~30 m) crack and the mechanism may be related to a pressure step and the sudden 

condensation of steam (Matoza et al., 2015). Although many hypotheses have been 

proposed, the source of LP earthquakes is still poorly understood and disagreements 

involve the contribution of coupling along the crack or conduit wall, the geometry of the 
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crack or conduit, or other sources of mechanical energy (McNutt, 2005). 

            In seismology, surface-generated signals are often poorly constrained as a seismic 

source, especially at volcanos. Icequakes, and mass wasting events such as rockfalls and 

avalanches occur at Mount St. Helens and produce LP signals with characteristic low 

frequencies and long durations (Fig. 1, D) (Moran et al., 2008). Mass wasting events occur 

dominantly in the summer months inside of the summit crater with a rate of about one 

rockfall per minute during a study period of several days in July 1989 (Mills, 1989). Glacial 

seismicity is another potential surface source (e.g. Thelen et al., 2013) because a small 

glacier has formed in the well-shaded summit crater of Mount St. Helens. 

 

2.3 Permanent network 

            Monitoring efforts at Mount St. Helens have drastically increased since the 1980 

eruption and recognition of the potential hazard. Prior to the 1980 eruption, there was one 

seismometer within a 50 km radius of the volcano. Since the eruption, monitoring has been 

a major priority of the PNSN with ~5 to 10 continuously recording seismometers, including 

one component and three component short-period, as well as three component broadband 

seismometers (Fig. 3). In 2004 an infrasound array was deployed ~13 km from the summit 

crater to investigate the low frequency acoustic energy produced by an active volcano 

(Matoza et al., 2007).  In addition, the Plate Boundary Observatory (PBO) installed four 

borehole seismometers in 2005. With ~15 continuously recording seismometers within a 

15 km radius of the summit crater, Mount St. Helens is the most seismically monitored 

volcano of the Cascade Range. With the intensification of monitoring since 1980, our 

understanding of subsurface structure and earthquake occurrence and locations at Mount 
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St. Helens has greatly improved. In 2014, a large four-year collaborative project, imaging 

Magma Under St. Helens (iMUSH; imush.org) began with the goal to geophysically image 

beneath Mount St. Helens from the surface to the slab interface for a better understanding 

of the magmatic plumbing system of an active continental arc volcano.   

 

2.4 Geophone array deployment in 2014 

Over a four-day period a dense array of 904 autonomous geophones was installed 

along the road and trail system within 15 kilometers of Mount St. Helens (Fig. 3). The 10-

Hz geophones, referred to as nodes, recorded continuously at a 250 Hz sampling rate for 

the two-week volcanically inactive period from late July to early August 2014. The active 

source component of the iMUSH experiment was concurrent with the continuously 

recording geophone deployment. The two weeks of continuous recording coupled with the 

23 active source explosions provide a unique seismic dataset from an active volcano. 

The deployment of large N-array cable-free nodes has been in practice by the oil 

industry since ~2005 (Freed, 2008). Over the following several years, interest in this 

recording technology increased because of the success of node arrays in challenging field 

areas such as highly-populated urban areas like Long Beach, CA (Slater and Hollis, 2012). 

Nodes are lightweight (~5.5 lbs) and self-contained, meaning all necessary equipment 

(sensor, analog-to-digital converter, battery, GPS clock, memory) is within the instrument. 

The compact equipment and straightforward installation of the nodes decreases in-field 

time, making the deployment and demobilization of large node arrays more financially and 

logistically viable than traditional passive source networks. From a quantitative 

perspective, the deployment at Mount St. Helens yielded ~100 Gb of data per day resulting   
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in 1 Tb overall. The limiting factors of the geophones used in this experiment are the two-

week battery life, the poor recording of frequencies lower than ~1 Hz, and the only vertical 

component instrument, which prevents three component analysis.  
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            The dense sampling afforded by large N-arrays is particularly important in a volcanic 

setting. Complex shallow crustal structure due to repeated building and destroying of 

volcanic edifices results in highly scattered wave fields and often low signal-to-noise 

seismic recordings that vary greatly from station to station and are challenging to interpret 

given the wide range of possible seismic sources (Neuberg and Pointer, 2000; Chouet et 

al., 1997). Using a large N-array in a volcanic setting allows for improved detection 

capacity, classification of a more diverse range of signals (including VT, LP, DLP, surface 

signals), and increased ability to identify source processes due to better separation of high 

frequency source and path effects. 
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3. METHODS 

3.1 Detection 

            Reverse-time imaging (RTI), within a 10 km cube centered beneath Mount St. 

Helens at sea level, automatically detected and located 212 earthquakes (Hansen and 

Schmandt, 2015). Magnitude estimates based on coda duration were also calculated for 

each event to maintain consistency with PNSN catalog in the summer of 2014. Following 

the RTI method, ~70 events were used as templates resulting in a total of ~2000 detections, 

including the 212 RTI events, within 15 km of the summit crater (Meng et al., 2016). Of 

the 2000 detections, ~1400 have sufficiently high enough signal quality for the calibration 

of magnitudes. The double difference method (Waldhuaser and Ellsworth, 2000) was used 

to estimate hypocenters for the ~2000 events (Meng et al., 2016). Over a five-year 

volcanically inactive period from 2009 to 2014, the permanent network (PNSN) detected 

and located 495 earthquakes within 6 km of the summit crater (700 earthquakes within 

~20km of the summit crater). To address the detection capacity of a large-N two-week 

deployment compared to five years of traditional passive source permanent network 

monitoring, we create hypocenter distribution maps to compare the amount and spatial 

relationship of earthquakes between these three catalogs.  

  

3.2 Classification 

Volcanic earthquake classification depends largely on frequency content and signal 

duration. To determine the characteristics of each automatically detected event, a suite of 

basic time series analyses was applied to the node data within 6 km of the summit crater 

and permanent network data within ~8 km distance from the summit crater. In total ~225 
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one component short-period nodes, two short-period borehole seismometers, three 

broadband three component seismometers, three short-period one component 

seismometers, and one short-period three component seismometer are used. For each event, 

a topographic map with event location and node stations is plotted to compare relative 

location to other events. Permanent network and node velocity waveforms are filtered from 

2 to 20 Hz and used to gauge detectability by visual inspection. A median envelope of the 

filtered waveforms provides information on the temporal distribution of signal amplitude, 

maximum amplitude, and coda duration. The power spectral density of each event is 

estimated using unfiltered waveforms and the median power is removed from each 

frequency band resulting in a spectrogram displaying power in excess of the background 

noise level across a 5-minute time window. We rely most heavily on the spectrogram and 

envelope to investigate the signal duration and frequency content leading to the 

classification of each event. 

  To automate event classification, a frequency index (FI) metric is calculated using 

spectrograms for stations within 6 km of Mount St. Helens. The RTI estimated origin time 

and event location are used with a 3-D travel time field to calculate time shifts for the event 

arrival to each station. After applying shifts, we take the median of the power spectral 

density for the inner ~225 stations. To estimate the coda duration, we take the median 

power from 3–30 Hz, find the maximum, and subtract the closest sample before and after 

the maximum where the SNR is lower than two. Events that overlap in time and events 

with coda magnitudes from the RTI analysis below zero are removed from this analysis. 

The FI metric is the logarithmic ratio of the median power between 10 and 50 Hz (Phigh) 

and median power between 3 and 10 Hz (Plow) over an event’s duration (Buurman and 
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West, 2010; Matoza et al., 2014).  

� !" = log'(
)*+,*
)-./

 

3.3 Earthquake location 

            Array seismology is a powerful tool used to increase the SNR of waveforms, 

minimize the scattering effect of ray paths, and locate the origin of the source. Plane wave 

propagation can be assumed when the distance between stations is small compared to the 

distance to the source (Rost and Thomas, 2002). At Mount St. Helens we use sub-arrays, 

dense clusters of geophones, with small widths (~1 km) in comparison to the distance to 

the source (~7–10 km). An apparent slowness vector (1*.2)4points from the center of an 

array to the source and reveals the inverse of apparent velocity (apparent slowness) of a 

wave front arriving to the array. Beamforming theoretically (Harjes and Henger, 1973; 

Rost and Thomas, 2002) increases the SNR ratio of the subarray (5) by approximately the 

square root of the number of instruments (6) times the SNR of a single array station (7): 

5 ≈ 67 

The time series at the center of the array is: 

9:;<=;2 > = 4? > + A+(>) 

where ? >  is the signal and A+(>) is the noise. In the time domain, shifts are calculated for 

each station relative to the subarray center for each back azimuth and slowness grid point. 

The time series for each station (B) with location 4C+ � is: 

9+ > = 4? > − C+ ∙ 1*.2 + A+(>) 

Prior to beamforming, we resample seismograms from 250 Hz to 100 Hz and filter from 

~1–10 Hz to improve coherency across the sub-array. A back azimuth and apparent 

slowness grid from 0 – 360° and -1 to 1 s/km in the north and east directions is used for the 
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grid search over ~3400 combinations. The envelope of the median stack of the aligned 

traces  9+ >  is calculated for all apparent slowness and back azimuth combinations (1*.2) 

in the grid and is smoothed by a 0.2 s moving average. For each sample in time, we search 

through the possible slowness and back azimuth combinations for the five maximum 

amplitudes and we define the approximate maximum value as 50 percent weight of the 

maximum plus 50 percent weight of the average second through fifth maximum 

amplitudes. We define the beamtrace as the maximum value among all the median time-

domain stacked traces at each time sample. The best combination of slowness and back 

azimuth results in the highest amplitude of the beamtrace following the eot. Using the 

optimal slowness and RTI epicenter location with a travel-time field from a 3-D velocity 

model (Fig. 4) (Waite and Moran, 2009), we estimate the depth of an event as a function 

of apparent P arrival slowness.  

 

To improve estimates from automated RTI locations, we also investigate absolute 

Figure 4. 1-D average P wave velocities at Mount St. Helens. Depth is relative to sea level.  
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locations by manually picking P arrivals, as well as S minus P arrivals when possible, from 

velocity waveforms filtered from 1–15 Hz. We only use the best ~20–50 node waveforms 

within 6 km from the summit crater for P arrival picks in addition to P, as well as S-P, picks 

when S arrivals are clear for three component permanent network stations. The manually 

picked phase arrivals are used in a grid search with 3-D travel times to find the minimum 

root mean square misfit corresponding to the optimal hypocenter location. The RMS misfit 

represents how well the earthquake hypocenter predicts the observed phase arrivals (P and 

S) in seconds. All measurements are weighted equally for the horizontal location. For the 

vertical location, we give 50% weight to S minus P picks from summit crater three 

component station SEP which lies directly above the majority of RTI locations and 50% 

weight to all other picks. 
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4. RESULTS 

4.1 Detection 

Over five years (2009–2014), 495 earthquakes are detected within 6 km of the 

summit crater by the PNSN. The detection capacity of the 2014 node array at Mount St. 

Helens resulted in approximately an order of magnitude more detections using RTI than 

the typical detection rate of permanent network monitoring. In a second detection effort 

using the node geophone data, RTI earthquakes are used as templates, resulting in another 

order of magnitude increase in detections, totaling ~2000 events within ~14 days. Although 

the number of earthquakes, detection period, and detection technique vary between 

catalogs, there are many spatial similarities (Fig. 5-6). For all three catalogs, there is one 

dominant zone of seismicity that is located at the center to eastern/southeastern edge of the 

summit crater. For the template detection catalog and five-year catalog, the 1 km2 area of 

maximum concentration is the same in the latitude-longitude plane (Fig. 5, D, F). Also for 

all three catalogs, the dominant zone of seismicity is more elongated, ~3 km, in the east-

west dimension and narrower, ~1.5 km, in the north-south dimension. In the longitude-

depth dimension, the majority of RTI events, >70%, occur between 0 and 4km bsl (Fig. 6, 

A-B). Template detected hypocenters are predominately between 0 and 5 km bsl, slightly 

deeper than RTI locations and ~1 km further southeast (Fig. 6, C-D). There is a smaller 

overall geometric distribution of template detected locations in comparison to RTI 

locations (Fig. 5, A, C and Fig 6. A, C) but a wider area of high-density event counts. The 

five-year permanent network locations are tightly grouped between 0 and 4 km bsl and 

share a similar ~2–3 km width for the highest density event count with the template 

detected locations (Fig. 6, D, F).  
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4.2 Classification 

 We analyze the 212 events detected by RTI in the upper crust (<10 km bsl) and 

identify two distinct signal groups, VT and LP. We rely heavily on information from the 

spectrogram and envelope to determine event characteristics. We classify VT earthquakes 

by their impulsive onsets (<3 s to reach maximum envelope amplitude), short duration (<20 

s), and wide frequency range (~5–100 Hz). We classify LP earthquakes by their emergent 

onsets (>5 s to reach maximum envelope amplitude), long duration (>20 s), and relative 

lack of high frequency energy with dominant frequencies less than ~10Hz. Figure 7 

displays a characteristic VT event with clean P arrivals on node and permanent network 

waveforms, an impulsive arrival, a short duration of ~10 s, and frequency ranging from 

~3–80 Hz. Figure 8 displays a characteristic LP event with a detectable, but less obvious 

P arrival on node waveforms and a barely detectable event on permanent network 

waveforms, an emergent arrival, a long duration of ~25 s, and lack of high frequency with 

the majority of power below 10 Hz.  
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Within each group, VT and LP, we find discrepancies that allow the identification 

of subgroups. A subset of the regular VT earthquakes, described above, is identified as VT 

earthquakes with lower magnitude, and a narrower frequency band (Fig. 9). Compared to 

the VT group, the LP group is less homogenous, with variations in duration (~20–100 s), 

the degree that the onset is emergent, and frequency content. A subset of the LP group are 

hybrid LP earthquakes, still exhibiting long duration and dominantly low frequency energy 

but accompanied by a more impulsive and high frequency onset (Fig. 10). Note, the ~15–

20 Hz frequency streaks with power ~4 dB are not an effect of the earthquake source and 

based on their frequency are likely interference from helicopters (pers. comm. Seth Moran). 

These two subsets are mentioned here, but for the remainder of this paper we will not 

distinguish them from their more generic classifications, LP and VT. Overall, ~30 events 

are LP and ~180 are VT, making an average occurrence of ~3 LP earthquakes per day and 

~18 VT earthquakes per day during this deployment. 

Additionally, we review the permanent network catalog for earthquakes occurring 

outside of the 10 km cube used for RTI. Two DLP earthquakes were detected during the 

node deployment approximately 7–8 km SW of the summit crater and at depths of 28 km 

and 36 km bsl. For the DLP earthquake in figure 11, the velocity waveforms have been 

filtered from 1 to 5 Hz. A clear P and S arrival at 15 and 19 s, respectively, are observed in 

the node velocity waveforms (Fig. 11, B) and in the envelope stack (Fig. 11, D). The event 

frequency is between 1–5 Hz, and the event duration is short, ~15 s, in comparison to upper 

crustal LP earthquakes.   
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The FI metric for all events results in a spread of values from ~0 to -1 with a 

predominant peak at 0 (Fig. 12, A). By combining the FI metric and duration (Fig. 12, B), 

we systematically classify LP events as having FI ≤ -0.5 and duration ≥ 20 s. The remainder 

of events, FI > -0.5 or duration < 20 s, are VT. VT events have a narrower range for FI 

values and duration, >95% occur within a range of ~0.6 and ~25 s, respectively. Whereas, 

greater than 90% of the LP events occur within an FI and duration range of ~1.1 and ~40 s 

demonstrating higher variability of LP events when compared to VT events. This 

classification technique results in 105 VT signals and 22 LP signals. Their temporal and 

spatial relationship can be seen in figure 12 C-D. Of the ~30 LP signals classified through 

the visual analysis technique discussed previously, 19 are classified as LP using FI and 

duration. This discrepancy is partially due to the automation of duration, the automated 

removal of events that occur within 5 minutes of one another, and the lack of consideration 

of emergent arrivals as a classification attribute in the FI metric.  

 

4.3 Earthquake location 

 A concern in the robust identification of upper crustal LP earthquakes is the ability 

to discriminate between LP surface and subsurface generated signals. We use beamforming 

analysis for the ~30 LP signals classified by visual inspection to evaluate if the wave front 

orientations are consistent with surface sources. In figure 13, LP signals are analyzed using 

beamforming with a subarray southwest of the summit crater (Fig. 4). We show two LP 

events with back azimuths, ~5–15° (Fig. 13, B, E), pointing NE toward the summit crater 

and they have apparent slownesses that correlate to depths of 3.5 and 6.25 km bsl, 

respectively (Fig. 13, C, F). Each of the depth estimates is greater than their corresponding 
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RTI depths, of 0.5 and 1.5 km bsl. Beamforming analysis results in the confirmation of at 

least 16 LP earthquakes with apparent slownesses of <0.1667 s/km, lower than that of the 

shallow crust >0.1667 s/km and consequently their sources must be deeper (>bsl) (Fig. 14). 

There are 11 LP earthquakes out of the 16 confirmed through beamforming that are also in 

the automated LP catalog (Fig. 15). 
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It is not routine for the PNSN to investigate LP signals, except DLPs, during 
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volcanically inactive periods because of the high number of LP surface-generated signals 

as well as prior to this study, upper crustal LP earthquakes were not believed to occur 

except during volcanically active periods. LP signals documented by the PNSN are 

removed from their published earthquake catalog but kept in a detection catalog that 

includes the estimated origin time but no location. For the approximate two-week 

deployment of the node array the PNSN detection catalog consists of 15 LP surface signals, 

which we compare to LP detection times to look for overlapping events. Note, the RTI 

catalog does not include LP detections above sea level (~1–2.5 km beneath the surface). 

Of the 16 upper crustal LP earthquakes from the RTI catalog, 8 are also found in the PNSN 

LP detection catalog. We assume the remaining 7 PNSN LP sources are in the suburface 

above sea level or at the surface and we use beamforming analysis to constrain their optimal 

back azimuths and optimal depths. Most of the events have very low SNRs and work poorly 

with beamforming but a successful example can be seen in figure 13 G-I, where the back 

azimuth of ~15° points NE toward the summit crater, the apparent slowness (~0.25 s/km) 

is not slow enough to be deeper than sea level and the depth as a function of slowness 

locates the event at the free surface of our travel time grid. Successfully locating an LP 

signal at the surface gives testament to the ability of our beamforming analysis at 

discriminating between surface and subsurface sources. We created spatial distribution 

maps to show the different locations and separation of the 16 confirmed upper crustal LP 

earthquakes and the DLP earthquakes recorded by the PNSN since 1970 (Fig. 16, A-D).  
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We estimate absolute locations for the highest signal-to-noise VT earthquakes with 

clear phase arrivals. The resulting hypocenter estimates are typically within the error of 

RTI and PNSN estimates (Fig. 17, A-B). Determining the absolute location of VT  
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earthquakes is straightforward, whereas for LP earthquakes this is more difficult, with the 

characteristically emergent arrivals and a much smaller number of earthquakes to 

investigate. We can be selective in identifying ~20–50 clean velocity waveforms out of the 

~900 vertical component node velocity waveforms making the horizontal locations of the 

16 LP earthquakes easier to constrain than the depths. As a result, we have few 3-D 

locations for upper crustal LP earthquakes because most do not have clearly identifiable S 

arrivals on three component velocity waveforms. In Figure 17, C-D, the hypocenter 

location we estimate for the upper crustal LP earthquake agrees within error of the RTI 

horizontal location, and almost within error of the vertical location. Overall, our absolute 

depths are ~1–2 km shallower than the automated RTI location depths for upper crustal LP 

earthquakes. Note, there are no PNSN locations of LP signals (see previous paragraph) 
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5. DISCUSSION 

5.1 Detection capacity 

 From 2009–2014, the PNSN detected on average ~1–2 earthquakes per day. During 

the node deployment, PNSN detections increased to an average of ~2–3 earthquakes per 

day. Dense spatial sampling from the node array allows for increased detections using RTI 

and results in an average of ~20 earthquakes per day. Template detection increases the 

average to ~125 earthquakes per day, this is two orders of magnitude greater than the 

average PNSN detection rate (Fig. 18). The increase in detection rate follows the 

Gutenberg-Richter law: 

log'((F) = G − H6 

where 6 is the magnitude, F is the number of earthquakes with magnitudes ≥ 6, and a 

and b are constants. The b value at Mount St. Helens ranges from 0.6–1.8 (Weimer and 

McNutt, 1997; Moran et al., 2008) and the RTI and template detection catalogs have b 

values within that range, 0.99 and 1.1, respectively (Hansen and Schmandt, 2015; Meng et 

al., 2016). Over the recording period, the frequency-magnitude relationship is normal for 

both catalogs, however, their time-frequency relationship includes several spikes in 

seismicity that are not present in the PNSN catalog suggesting small swarms of activity 

whose frequency-magnitude relationships have higher b values (Fig. 18). The most notable 

difference between the catalogs are on July 28 and from August 1–2, where the RTI and 

template detections have strong peaks but the PNSN records little to no detections during 

the concentrated activity. The node deployment at Mount St. Helens demonstrates its 

capacity to substantially increase the completeness of earthquake detections at an active 

volcano and attests to the potential usefulness of large node arrays for volcano monitoring 
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and broader volcanology research. 
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5.2 LP earthquakes 

At MSH, surface observations (eg: hot, mineral-rich springs ~1–2 km from the 

summit crater) indicate hydrothermal activity in the upper few kilometers (~2 km) which 

is likely driven by a shallow heat source (Aizawa, et al. 2009; Bedrosian et al, 2007). 

Volcanic edifices are highly permeable which easily allows meteoric water to join 

magmatic water in the hydrothermal system. Shallow (~30 m), near-continuous, randomly 

occurring LP earthquakes were observed during the 2004–2008 eruption and the leading 

mechanism for their generation is the volumetric oscillation of a crack due to the 

condensation of cool meteoric water as it rapidly interacts with the warmer hydrothermal 

system (Matoza et al., 2015). The LP earthquakes discovered in our study are likely too 

deep to have the same source as the near-surface LP earthquakes, however a dilatational 

mechanism could be common to both.  

Numerical modeling has been used to demonstrate LP signals can be produced by 

slow-rupture failure in unconsolidated rock (Bean et al., 2014). LP signals generated in the 

shallow subsurface (<1 km below the surface) as short pulses are recorded as long duration 

LP earthquakes at stations >~500–800 m from the epicenter. In the shallow edifice (<1 

km), it is possible for VT earthquakes to morph into LP earthquakes due to weaker 

materials near the surface allowing for slower rupture speeds and the generation of stress-

driven, rather than fluid-driven, LP seismicity (Bean, et al., 2014). The occurrence of LPs 

during the two-week period detected by an independent study (pers comm. Hotovec-Ellis) 

reveals microseismic LP earthquakes likely coming from the near-surface or surface. These 

earthquakes have been researched minimally but through beamforming, we confirm they 

are unlikely to have a depth greater than a few hundred meters. These near-surface LP 
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earthquakes could be due to slow-rupture in unconsolidated rock, ice-quakes, small 

rockfalls, or possibly meteoric water interaction with the hydrothermal system. However, 

the upper crustal LP seismicity we focus on in this paper is much deeper and VT 

earthquakes are occurring in the same area which eliminates the possibility that these LP 

signals result from path effects distorting VT earthquake signals. These deeper LP 

earthquakes are considered a different type based on their upper crustal depths and likely 

do not have the same source as that of near-surface LP earthquakes seen by Matoza et al. 

(2015) or Bean et al. (2014). When searching for potential clues related to source, upper 

crustal LP earthquakes can be compared to the VT earthquakes occurring during the same 

time period and in the same space (La Rocca and Galluzzo, 2016).  

LP and VT earthquakes occur in the same source volume (Fig. 5-6, A, C), ~0–6 

km, at Mount St. Helens during the two-week study period, suggesting at least two different 

processes are occurring close in time and space. The observed wide range of LP duration 

and frequency may suggest more than one processes is occurring or a single process with 

variable rates. It is also possible that LP earthquakes, such as hybrid LPs (Fig. 10), have a 

source that involves a combination of the processes producing VT and LP signals. In a 

recent study at Mt. Vesuvius, the source processes of VT and tremor occurring in the same 

source volume was investigated (La Rocca and Galluzzo, 2016).  

 Volcanic tremor was recently discovered at Mt. Vesuvius, a volcano that has been 

inactive since 1944 (La Rocca and Galluzzo, 2016). This study of inactive state, upper 

crustal tremor is the closest analogue we have to Mount St. Helens inactive state, upper 

crustal LP earthquakes. There are many parallels between analysis techniques and results 

from this paper and La Rocca and Galluzzo, 2016. The discovery of tremor, a type of LP 
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signal produced by many earthquakes in a short time, was surprising since this type of 

activity is associated with volcanic unrest or eruption. A seismic array, 10 stations spanning 

<500 m, installed in 2012 improved the earthquake detection capability at Mt. Vesuvius 

which led to the discovery of these low amplitude, microseismic earthquakes and 

beamforming was used to distinguish them from surface sources and deep sources. The 

tremor events are characterized by low frequency (corner frequencies from 3–6 Hz), and 

long duration (~60–400 s), and some tremor was recorded at distances 90 km from the 

volcano (La Rocca and Galluzzo, 2016). The hypocenters for the volcanic tremor, 

estimated by the inversion of S – P picks at three component stations combined with a 

velocity model, span ~5–6.5 km bsl beneath the crater. Importantly, VT earthquakes at Mt. 

Vesuvius span from the surface to ~6.5 km depth, meaning tremor and VT earthquakes 

both occur from ~5–6.5 km bsl. This is in a similar depth range but slightly deeper and 

more confined than the overlap of VT and LP hypocenters (0–6 km bsl) at Mount St. 

Helens. La Rocca and Galluzzo, 2016 hypothesize that VT earthquakes and tremor 

occurring in the same source volume are likely produced by the same source mechanisms 

because of their spectral similarities. They attributed both types to shear failure and the 

difference between VT and LP signals was suggested to arise from variable rupture 

velocity. The suggested source mechanism for tremor, in this case, is many shear failures 

on different fault planes in a small volume and in a short amount of time. At present, the 

best interpretation is that these failures occur between high viscosity (partially crystallized) 

magma and the surrounding conduit and produce stick-slip earthquakes. This could explain 

why tremor occurs on multiple fault planes with different orientations.   
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Although none of the LP signals were in the PNSN catalog, half of the 16 confirmed 

upper crustal LP earthquakes were detected by the PNSN but classified as surface 

generated signals and removed from their catalog. Given the diversity of LP signals (e.g. 

FI values, durations, and onsets) we are likely not identifying many of the diverse longer 

period signals produced by magmatic systems. We do not suggest all of the removed LP 

signals are from the subsurface but our results suggest that this type of seismicity may be 

systematically overlooked and potentially more common than routinely generated catalogs 

would suggest. This poses a problem for event classification using sparse permanent 

networks where beamforming techniques cannot be used. However, during normal 

monitoring periods template detection could be successful if subsurface LP signals have 

been previously identified with dense arrays. Additionally, we could increase the number 

of LP templates by increasing the number of RTI detections through changing the 

parameters to search for LP specific characteristics (e.g. frequency, duration, onset). 

 

5.3 Possible unrest 

The discovery of upper crustal LP earthquakes during a volcanically inactive state 

is a substantial finding in volcano seismology, which raises new questions about the level 

of activity beneath Mount St. Helens during the node array deployment. This period may 

have had higher earthquake occurrence, indicating a possible brief state of unrest (pers. 

comm. Seth Moran and John Vidale). The occurrence of 2 DLP earthquakes in ~10 days at 

Mount St. Helens is unusual and suggests at least the deeper system was experiencing an 

uptick in activity. The detection of VT earthquakes increased from the average ~1–2 

earthquakes per day to ~2–3 earthquakes per day, however we note it is possible that PNSN 
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detections increased due to greater scrutiny by PNSN analysts during the large iMUSH and 

node experiments. During the time of the node deployment 15 LP “surface” signals were 

detected and of those, we have confirmed 8 were upper crustal, not surface sources. These 

results lead us to believe upper crustal LP earthquakes may be routinely catalogued as 

surface LP signals by the PNSN. 

If upper crustal LP events are going undetected or being improperly classified as 

surface sources and there was an unusually high level of subsurface activity during the 

node array deployment, then we would expect increased LP detections by the PNSN during 

this time. There were 64 LP surface events detected by the PNSN during July and August 

of 2014 and 58 detected during July and August of 2015 (15 in 2013, 70 in 2012). Although 

there are slightly more LP signals detected in 2014, the difference is small compared to the 

inter-annual variability. This does not support a higher occurrence of LP seismicity, even 

if there was a higher occurrence of VT or DLP earthquakes. However, it is not ideal to 

track upper crustal LP earthquake activity by the number of events interpreted as surface 

sources because the fraction of false classifications is poorly constrained and many true 

surface sources are expected. Future studies should employ template based detection and 

other array processing methods to specifically identify upper crustal LP earthquakes.  

A high Vp/Vs body extending from ~5–15 km bsl beneath Mount St. Helens 

suggests the presence of melt directly below the location of VT and LP earthquakes, ~0–6 

km bsl, during the node experiment (Kiser et al., 2016). VT and LP earthquake locations 

are also predominately above the location that melt last equilibrated, ~5 km bsl, during the 

1980 eruption (Rutherford and Hill, 1993). Tracking the occurrence of seismicity, 

specifically the upper crustal LP sources which may be related to fluid movement, through 
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time may offer a new perspective on temporal variations in magmatic activity in the depth 

range between the main upper crustal magma reservoir and the summit crater.  
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6. CONCLUSION 

An increased earthquake detection rate by two orders of magnitude and the 

discovery of a new earthquake during a volcanically inactive period are some of the results 

made possible with nearly 1000 rapidly deployable geophones within a ~15 km radial 

distance of Mount St. Helens. The increased detection rate led to increased completeness 

of the earthquake catalog and reveals more periods of concentrated activity when compared 

to permanent network observations. The dense sampling also allows the ability to 

discriminate between different types of seismic signals including VT, LP, DLP, and surface 

sources, and to identify subgroups within the major groups (eg: low magnitude VT and 

hybrid LP). These results are likely not unique to Mount St. Helens but rather to the dense 

sampling afforded by the large-N array. The upper crustal LP earthquakes occurring 

between the main upper crustal magma chamber and the summit crater are important 

signals to continue monitoring, possibly through template detection using permanent 

network stations. An investigation into the source(s) causing LP seismicity is the next step 

in understanding their role in magmatic processes at Mount St. Helens.  
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