University of New Mexico UNM Digital Repository

Regulatorily Completed

Sandia National Labs/NM Technical Reports

9-1-2005

Justification for Class III Permit Modification September 2005, DSS Site 1079, Operable Unit 1295, Building 6643 Septic System at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl complete

Recommended Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification September 2005, DSS Site 1079, Operable Unit 1295, Building 6643 Septic System at Technical Area III." (2005). https://digitalrepository.unm.edu/snl_complete/167

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

This work supported by the

United States Department of Energy under contract DE:AC04:94I85000

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 2/2)

Environmental Restoration Project

Summary of Data Used for NFA Justification

- Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, gross alpha/beta activity, and radionuclides by gamma spectroscopy.
- There were VOCs detected at the 19 sites, SVOCs were detected at 15 of the sites, PCBs were detected at 9 sites, and cyanide was identified at 14 of the sites. HE compounds were detected at one of the sites (AOC 1113).
- Barium was detected at concentrations above the background value at six sites. Chromium and arsenic
 were detected at concentrations above background values at five sites. Silver was detected at concentrations above the background value at three sites, lead was detected above the background value at two
 sites, and mercury was detected above the background value at one site. No other metals were detected
 above background concentrations.
- Uranium-235 was detected at an activity slightly above the background activity at 5 of the 19 sites and, although not detected, the MDA for U-235 exceeded the background activity at 14 sites and the MDA for U-238 exceeded the background activity at one site. Gross alpha activity was slightly above background activity at five of the 19 sites, and gross beta activity was above the background activity at one site.
- All confirmatory soil sample analytical results for each site were used for characterizing that site, for
 performing the risk screening assessment, and as justification for the NFA proposal for the site.

Recommended Future Land Use

Industrial land use was established for these 19 AOC sites.

Results of Risk Analysis

- Risk assessment results for industrial and residential land-use scenarios are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process."
- Because COCs were present in concentrations greater than background-screening levels or because
 constituents were present that did not have background-screening numbers, it was necessary to perform
 risk assessments for these all of these AOCs. The risk assessment analysis evaluated the potential for
 adverse health effects for industrial and residential land-use scenarios.
- The maximum concentration value for lead was 22.2 J mg/kg at AOC 1081 and 11.9 mg/kg at AOC 1087: these exceed the background value of 11.8 mg/kg. The EPA intentionally does not provide any human health toxicological data on lead; therefore, no risk parameter values could be calculated. The NMED guidance for lead screening concentrations for construction and industrial land-use scenarios are 750 and 1,500 mg/kg, respectively. The EPA screening guidance value for a residential land-use scenario is 400 mg/kg. The maximum concentration for lead at these two sites are less than all the screening values; therefore, lead was eliminated from further consideration in the human health risk assessment for each site.
- The non-radiological total human health HIs for 18 of the 19 AOCs are below NMED guidelines for a residential land-use scenario.
- For four sites, the total estimated excess cancer risks are at or slightly above the residential land-use scenario guideline. However, the incremental excess cancer risk values for these four sites are below the NMED residential land-use scenario guideline.
- For one of the 19 sites (AOC 1081), the total HI and the estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario due to elevated levels of arsenic and silver. However, the total HI and estimated excess cancer risk values are below the NMED guidelines for the industrial land-use scenario.
- The total human health TEDEs for industrial land-use scenarios ranged from 0.001 to 0.46 mrem/yr, all of which are substantially below the EPA numerical guideline of 15 mrem/yr. The total human health TEDEs for residential land-use scenarios ranged from 0.0052 to 0.12 mrem/yr, all of which are substantially below the EPA numerical guideline of 75 mrem/yr. Therefore, these AOCs are eligible for unrestricted radiological release.
- Using the SNL predictive ecological risk and scoping assessment methodologies, it was concluded that a
 complete ecological pathway for each of 18 of the sites was not associated with the respective COPELs
 for that site. Thus, a more detailed ecological risk assessment to predict the level of risk was not deemed
 necessary for these sites.
- Ecological risks associated with AOC 1084 were predicted incorporating potential receptors and site-specific COPECs. The HQ values predicted were less than one, with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52%) of the HQ values. Therefore, ecological risks associated with this site are expected to be low.
- In conclusion, human health and ecological risks are acceptable for 18 sites for a residential land-use scenario and for all 19 for an industrial land-use scenario per NMED guidance. Thus, 18 of these sites are proposed for CAC without institutional controls, and one site (AOC 1081) is proposed for CAC with institutional controls.

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

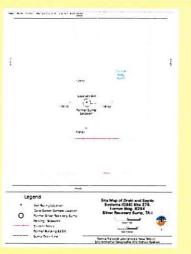
The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

		Reside	ential Land-Use Scenario
AOC Number	Site Name	Total Hazard Index	Excess Cancer Risk
276 Former Bldg 829X Silver Recovery Sump		0.27	2E-5 Total ^a /3.95E-6 Incremental
1004	Bldg 6969 Septic System	0.08	2E-6 Total
1031	Former Bldgs, 6589 and 6600 Septic System	0.25	1E-5 Total ^a /2.55E-6 Incrementa
1034	Bldg 6710 Septic System	0.00	2E-9 Total
1035	Bldg 6715 Septic System	0.04	3E-9 Total
1036	Bldg 6922 Septic System	0.26	1E-5 Total ^a /8.35E-7 Incrementa
1052	Bldg 803 Seepage Pit	0.00	2E-6 Total
1078	Bldg 6640 Septic System	g 6640 Septic System 0.27 IE	
1079	Bldg 6643 Septic System	0.00	3E-8 Total
1080	Bldg 6644 Septic System	0.00	4E-8 Total
1084	Bldg 6505 Septic System	0.08	None
1087	Bldg 6743 Seepage Pit	0.00	4E-9 Total
1092	MO 228-230 Septic System	0.06	None
1098	TA-V Plenum Rooms Drywell	0.03	3E-7 Total
1102	Former Bldg 889 Septic System	0.00	IE-10 Total
1104	Bldg 6595 Seepage Pit	0.00	2F-6 Total
1113	Bldg 6597 Drywell	0.14	1E-7 Total
1120	Bldg 6643 Drywell	0.12	1E-6 Total
NMED Gu	idance for Residential Land Use	< 1	<1E-5
AOC	445797	Indus	trial Land-Use Scenario
Number	Site Name		Excess Cancer Risk
1081	Bldg 6650 Septic System	0.39	5E-6 Total
NMED G	idance for Industrial Land Use	< 1	<1E-5

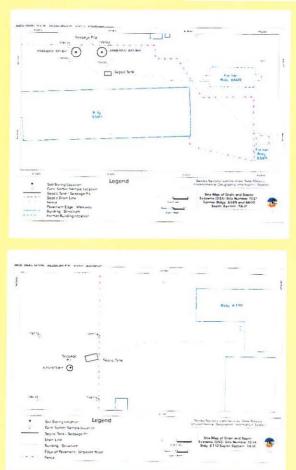
Maximum value exceeds NMED guidance for specified land-use scenario, therefore, incremental values are shown

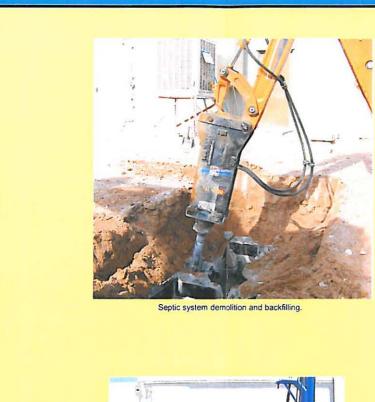
For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

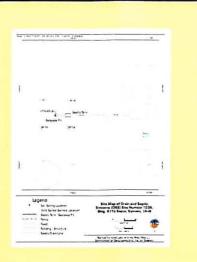


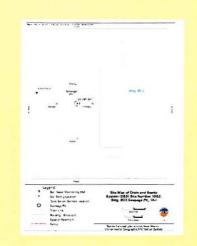
Drain and Septic Systems (DSS) Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035 1036, 1052

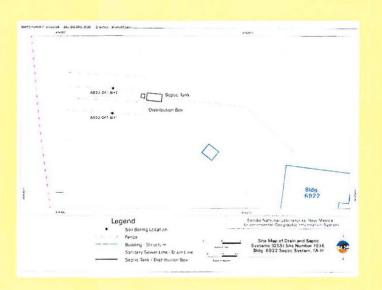




Environmental Restoration Project







For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

United States Department of Energy under contract DE-AC04-94I85000.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 1/2)

Environmental Restoration Project

Site History

Drain and septic system site histories for the 19 AOCs are as follows:

AOC Number	Site Name	Location	Year Building and System Built	Year Brain or Septic System Abandoned	Year(s) Septic Jank Effluent Sampled	Year Septic Tank Pumped For the last Time
276	Former Bidg 829X Salvet Recovery Sump	TAI	1048 1978	1994	No septic tank at this sale	NA.
1004	Bldg 6969 Septic System	Vehicle Range	1955	System is active	Periodically since 1992	Penndically
1031	former Bidgs 6589 and 6600 Septic System	TAIH	1967	1991 (septic tank and scepage pits backfilled in 2002)	1992, 1995	1996
1014	Bldg 6710 Septic System	TA-NI	195X	Farly 1990s	1990 1991,	1996
1035	Bldg 6715 Septic System	TA-IB	1962	Farly 1990s	1990-1991. 1992-1995	1996
1036	Bidg 6922 Septic System	1 A-III	1955	1991	1990 1991. 1992 1995 2005	2005
1052	Bldg 803 Seepage Pit	IA-I	1957	Сикломп	No septic tank at this site	NA.
1078	Bldg 6640 Septic System	ТАШ	1959	1901	1990 1991	Unknown (backfilled n
1079	Bldg 6643 Septic System	TA-III	1989	1801	1990 1991 1992 1994 2005	2005
1080	Bldg 6644 Septic System	[A-III	1989	1991	1990 1991	1996
1081	Bldg 6650 Septic System	FA III	(southern systems Early 1980s (northern system)	1991	1002 1004 (xitch septic tank) 2004 (north septic tank)	199n (wath septe tank) 1 nknyun (north septe tank)
1084	Bldg 6505 Septic System	TA-III	1954	1091	1660 (60)	Unknown flackfilled before 2000)
1087	Bldg 6743 Seepage Pit	17.11	1967	2004 2005	No septic tank at this sate	NA
1092	MO 228-230 Septic System	1A III	1988	1991	1990 1991	Unknown that kfilled before 2001)
1098	TA-V Plenum Rooms Drywell	TA-V	1958	Laris 1990s	Screptic tank at this sale	NA
102	Former HIdg 889 Septic System	IAI	Early 1950s	Early 1990s	1992 1994	(inkraism (removed)
7114	Bldg 6595 Scepage Pit	IAV	6961	Larly 1990»	No septic tank at this site	NA
113	Bldg 6597 Drywell	IAV	1971	Prior to 2002	Ne septic tank at this sate	NA
120	Bldg 6643 Drywell	TAIII	1080	1991	No septic tank at this site	NA

Depth to Groundwater

Depth to groundwater at these 19 AOCs is as follows:

AOC Number	Site Name	Location	Groundwater Depth (ft bgs) 555	
276	Former Bldg 829X Silver Recovery Sump	TA-l		
1004	Bldg 6969 Septic System	Robotic Vehicle Range	548	
1031	Former Bldgs. 6589 and 6600 Septic System	TA-III	486	
1034	Bldg 6710 Septic System	TA-III	470	
1035	Bldg 6715 Septic System	TA-III	470	
1036	Bldg 6922 Septic System	TA-III	490	
1052 Bldg 803 Seepage Pit		TA-I	552	
1078 Bldg 6640 Septic System		TA-III	476	
1079	Bldg 6643 Septic System	TA-III	487	
1080	Bldg 6644 Septic System	TA-III	480	
1081	Bldg 6650 Septic System	TA-III	480	
1084	Bldg 6505 Septic System	TA-III	508	
1087	Bldg 6743 Seepage Pit	TA-III	461	
1092	MO 228-230 Septic System	TA-III	488	
1098	TA-V Plenum Rooms Drywell	TA-V	509	
1102	Former Bldg 889 Septic System	TA-I	535	
1104	Bldg 6595 Seepage Pit	TA-V	507	
1113	Bldg 6597 Drywell	TA-V	515	
120	Bldg 6643 Drywell	TA-III	483	

Constituents of Concern

- · VOC
- SVOCs
- PCBs
- HE Compounds
- Metals
- CyanideRadionuclides

Investigations

- A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil vapor samplers, and soil borings.
- Ten of the 19 AOCs were selected by NMED for passive soil-vapor sampling to screen for VOCs; no significant VOC contamination was identified at any of the ten sites.
- Soil samples were collected from directly beneath drainfield drain lines, seepage pits, and drywells to determine if COCs were released to the environment from drain systems.
- Four of the sites were selected by NMED for active soil vapor sampling to screen for VOCs. Each of the
 active soil-vapor monitoring wells was 150 ft deep with vapor sampling ports at 5, 20, 70, 100, and 150-ft
 bgs. The VOC concentrations were significantly lower than the 10 ppmv action level established by
 NMED.

The years that site-specific characterization activities were conducted and soil sampling depths at each of these 19 AOC sites are as follows:

AOC Number	Site Name	Buried Components (Drain Lines, Drywells) Located With a Backhoe	Soil Sampling Beneath Drainlines. Seepage Pits, Drywells	Type(s) of Drain System, and Soil Sampling Depths (ft bgs)	Passive Soil Vapor Sampling	Active Soil Vapor Monitor Well Installation and Sampling
276	Former Bldg 829X Silver Recovery Sump	Nene	1994.2002	Silver Recovery Sump 8, 13	2002	None
1004	Bldg 6969 Septic System	2002	2002	Drainfield 8_13	2002	2003
1031	Former Bldgs 6589 and 6600 Septic System	2002	2002	Scepage Pats. 15, 20	2002	None
1034	Bldg 6710 Sepuc System	None	2002	Scepage Pit 14, 19	2002	None
1035	Bldg 6715 Septic System	None	2002	Scepage Pit 11, 16	2002	None
1036	Bldg 6922 Septic System	1997	1998, 1999	Dramfield 5, 10	None	None
1052	Bldg 803 Seepage Pit	None	2002	Seepage Pit 22, 27	2002	2003
1078	Bldg 6640 Septic System	2002	2002	Drainfield 5, 10	None	None
1079	Bldg 6643 Septic System	2002	2002	Dramfield 11, 16	None	None
1080	Bldg 6644 Septic System	2002	20012	Dramfield Borehole 1 & 2 & 10 Borehole 3 - 6, 11	None	None
1081	Bldg 6650 Septic System	2003 (north septic tank)	2002	South seepage pit 10, 12, 15, 17 North seepage pit 10, 12, 15, 17, 20, 24 25	2002	2003
1084	Bldg 6505 Septic System	2002	2002	Drainfield 3, 8	21812	None
1087	Bldg 6743 Septic System	None	2002	Scepage Pit 8, 13	2002	Notice
1092	MO 228-230 Septic System	2002-2003	2002	Drainfield 6 11	None	2003
1098	FA-V Plenum Rooms Drywell	None	7002	Drywell 10, 15	None	None
1102	Former Bidg 889 Septic System	1999-2002	2002	Scepage Pit 25 30	None	None
1104	Bldg 6595 Seepage Pit	None	2002	Seepage Pit 11 16	None	None
1113	Bldg 6597 Drywell	2002	2002	Drywell 5, 10	None	None
1120	Bldg 6643 Drywell	2002	2002	Drywell 8 13	2002	None

For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

Sandia National Laboratories

Justification for Class III Permit Modification September 2005

DSS Site 1079
Operable Unit 1295
Building 6643 Septic System at Technical
Area III

CAC (SWMU Assessment Report) Submitted September 2004 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories

Justification for Class III Permit Modification September 2005

DSS Site 1079
Operable Unit 1295
Building 6643 Septic System at Technical
Area III

CAC (SWMU Assessment Report) Submitted September 2004 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

SEP 1 7 2004

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Solid Waste Management Unit (SWMU) Assessment Reports and Proposals for Corrective Action Complete for Drain and Septic Systems (DSS) Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120 at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518. These documents are compiled as DSS Round 6 and No Further Action (NFA) Batch 24.

This submittal includes descriptions of the site characterization work and risk assessments for the above referenced DSS Sites. The risk assessments conclude that for these sites: (1) there is no significant risk to human health under either the industrial or residential land-use scenarios; and (2) that there are no ecological risks associated with these sites.

Based on the information provided, DOE and Sandia are requesting a determination of Corrective Action Complete without controls for these DSS sites.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner

Manager

Enclosure

cc w/enclosure:

L. King, EPA, Region 6 (Via Certified Mail)

W. Moats, NMED-HWB (via Certified Mail)

M. Gardipe, NNSA/SC/ERD

C. Voorhees, NMED-OB

cc w/o enclosure:

K. Thomas, EPA, Region 6

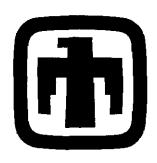
F. Nimick, SNL, MS 1089

D. Stockham, SNL, MS 1087

B. Langkopf, SNL, MS 1087

M. Sanders, SNL, MS 1087

R. Methvin, SNL MS 1087


J. Pavletich, SNL MS 1087

A. Villareal, SNL, MS 1035

A. Blumberg, SNL, MS 0141

M. J. Davis, SNL, MS 1089

ESHSEC Records Center, MS 1087

Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR CORRECTIVE ACTION COMPLETE DRAIN AND SEPTIC SYSTEMS SITE 1079, BUILDING 6643 SEPTIC SYSTEM

September 2004

United States Department of Energy Sandia Site Office

TABLE OF CONTENTS

LIST	OF TAB	LES IEXES	BREVIATIONS	vii
1.0	PROJ	ECT BAG	CKGROUND	1-1
2.0	DSS S	SITE 107	9: BUILDING 6643 SEPTIC SYSTEM	2-1
	2.1 2.2		scription and Operational History	
		2.2.1 2.2.2	Site Description Operational History	
	2.3	Land U	se	2-7
		2.3.1 2.3.2	Current Land UseFuture/Proposed Land Use	
3.0	INVE	STIGATO	DRY ACTIVITIES	3-1
	3.1 3.2 3.3 3.4	Investig Investig	gation 1—Septic Tank Samplinggation 2—Backhoe Excavationgation 3—Soil Sampling	3-1 3-1
		3.4.1 3.4.2 3.4.3	Soil Sampling MethodologySoil Sampling Results and ConclusionsSoil Sampling Quality Assurance/Quality Control Samples and Data Validation Results	3-2
	3.5	Site Sa	mpling Data Gaps	3-22
4.0	CON	CEPTUAL	L SITE MODEL	4-1
	4.1 4.2 4.3	Enviror	and Extent of Contamination	4-1
		4.3.1 4.3.2	SummaryRisk Assessments	4-6
	4.4	Baselir	ne Risk Assessments	4-8
		4.4.1 4.4.2	Human Health Ecological	

į

TABLE OF CONTENTS (Concluded)

5.0		OMMENDATION FOR CORRECTIVE ACTION COMPLETE WITHOUT TROLS DETERMINATION	5-1
	5.1	Rationale	5-1
	5.2	Criterion	5-1
6.0	REF	ERENCES	6-1

LIST OF FIGURES

Figure		
2.2.1-1	Location Map of Drain and Septic Systems (DSS) Site Number 1079, Bldg. 6643 Septic System, TA-III	2-3
2.2.1-2	Site Map of Drain and Septic Systems (DSS) Site Number 1079, Bldg. 6643 Septic System, TA-III	2-5
3.4-1	View of trench being excavated to locate the DSS Site 1079 Septic System drainfield laterals at Building 6643. Manhole cover in foreground is the access to the septic system distribution box. View to the north. March 13, 2002	3-3
3.4-2	Collecting soil samples with the Geoprobe™ in the DSS Site 1079 drainfield at Building 6643. View to the southwest. August 22, 2002	3-5
4.2-1	Conceptual Site Model Flow Diagram for DSS Site 1079, Building 6643 Septic System	4-3

This page intentionally left blank.

LIST OF TABLES

-	_	L	1 -
1	- 73	•	١P

3.4-1	Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1079, Building 6643 Septic System Soil Samples3-7
3.4.2-1	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, VOC Analytical Results, August 2002 (Off-Site Laboratory)3-8
3.4.2-2	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, VOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-9
3.4.2-3	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, SVOC Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-4	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, SVOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-12
3.4.2-5	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, PCB Analytical Results, August 2002 (Off-Site Laboratory)3-14
3.4.2-6	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, PCB Analytical MDLs, August 2002 (Off-Site Laboratory)3-15
3.4.2-7	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, HE Compound Analytical Results, August 2000 (Off-Site Laboratory)
3,4,2-8	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, HE Compound Analytical MDLs, August 2002 (Off-Site Laboratory)3-16
3.4.2-9	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Metals Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-10	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Metals Analytical MDLs, August 2002 (Off-Site Laboratory)3-18
3.4.2-11	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-12	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, August 2002 (Off-Site Laboratory)

LIST OF TABLES (Concluded)

Table	le
-------	----

3.4.2-13	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, August 2002 (On-Site Laboratory)	3-20
3.4.2-14	Summary of DSS Site 1079, Building 6643 Septic System, Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results, August 2002 (Off-Site Laboratory)	3-22
4.2-1	Summary of Potential COCs for DSS Site 1079, Building 6643 Septic System	4-5
4.3.2-1	Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1079, Building 6643 Septic System Carcinogens	4-7

LIST OF ANNEXES

Annex

- A DSS Site 1079 Septic Tank Sampling Results
- B DSS Site 1079 Soil Sample Data Validation Results
- C DSS Site 1079 Risk Assessment

This page intentionally left blank.

ACRONYMS AND ABBREVIATIONS

AOP Administrative Operating Procedure

BA butyl acetate

bgs below ground surface
CAC Corrective Action Complete
COC constituent of concern
DSS Drain and Septic Systems

EB equipment blank

EPA U.S. Environmental Protection Agency

ER Environmental Restoration FIP Field Implementation Plan

HE high explosive(s)
HI hazard index

HWB Hazardous Waste Bureau
KAFB Kirtland Air Force Base
MDA minimum detectable activity
MDL method detection limit

mrem millirem

NFA no further action

NMED New Mexico Environment Department

OU Operable Unit

PCB polychlorinated biphenyl

RCRA Resource Conservation and Recovery Act RPSD Radiation Protection Sample Diagnostics

SAP Sampling and Analysis Plan

SNL/NM Sandia National Laboratories/New Mexico

SVOC semivolatile organic compound SWMU Solid Waste Management Unit

TA Technical Area TB trip blank

TEDE total effective dose equivalent
TOP Technical Operating Procedure
VOC volatile organic compound

yr year

This page intentionally left blank.

1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of

other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

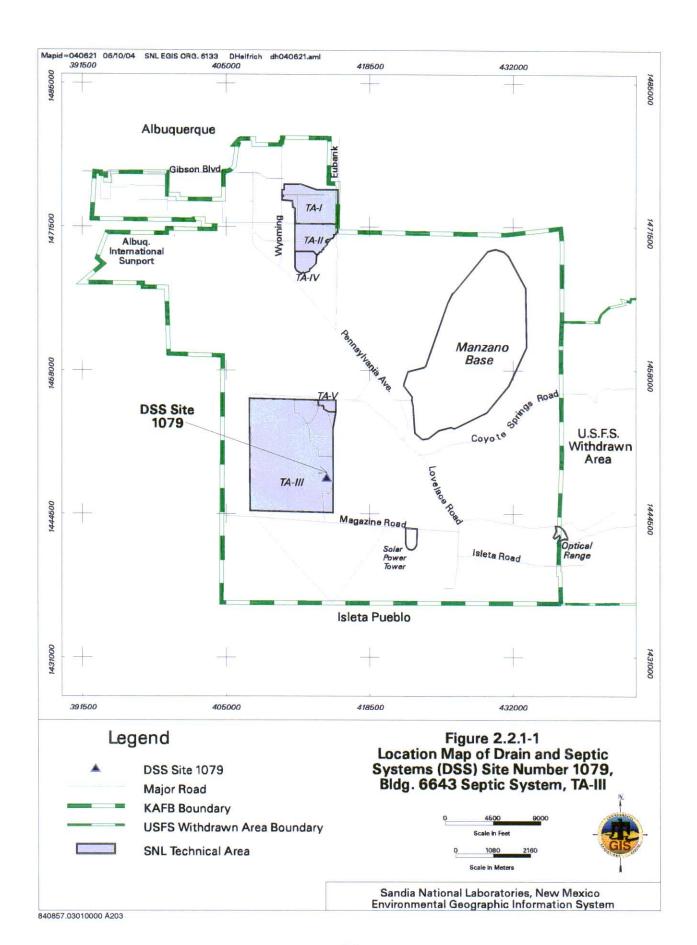
Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).

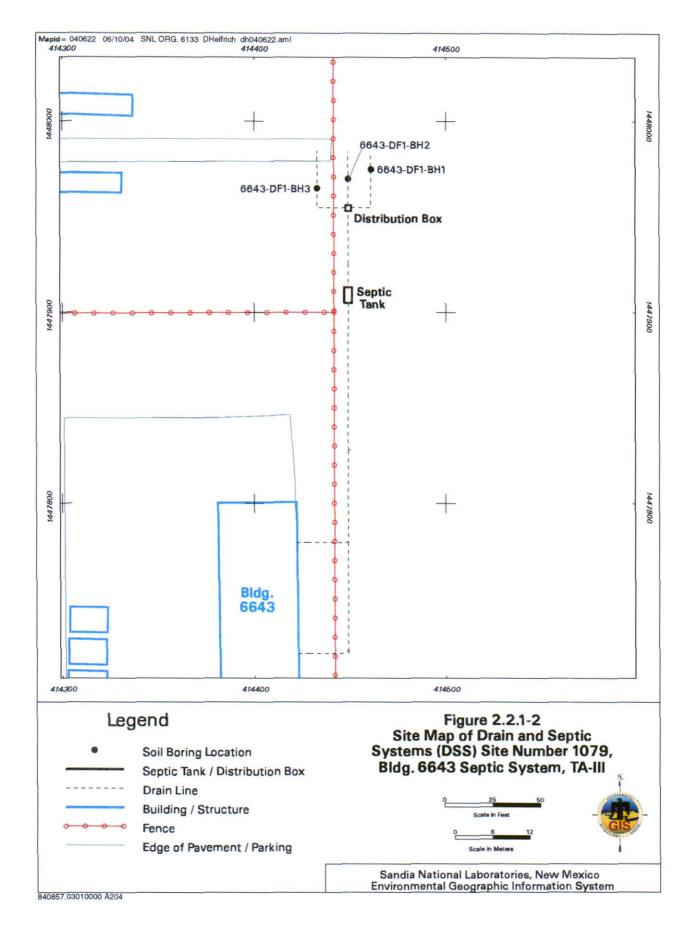
2.0 DSS SITE 1079: BUILDING 6643 SEPTIC SYSTEM

2.1 Summary

The SNL/NM ER Project conducted an assessment of DSS Site 1079, the Building 6643 Septic System. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report provides documentation that the site was specifically characterized, that no significant releases of contaminants to the environment occurred via the Building 6643 Septic System, and that it does not pose a threat to human health or the environment under either the industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment, and septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for DSS Site 1079 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, a determination of Corrective Action Complete (CAC) without controls (NMED April 2004) is recommended for DSS Site 1079 based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk.


2.2 Site Description and Operational History


2.2.1 Site Description

DSS Site 1079 is located in SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (Figure 2.2.1-1). The site is located approximately 1.4 miles southwest of the entrance to TA-III and is on the northeast side of Building 6643 (Figure 2.2.1-2). The abandoned septic system consisted of a septic tank that emptied to a distribution box 40 feet away, which in turn emptied to three drainfield laterals, each approximately 30 feet long (Figure 2.2.1-2). Construction details are based upon engineering drawings (SNL/NM February 1987), site inspections, and backhoe excavations of the system. The system received discharges from Building 6643, approximately 110 feet to the southwest.

The surface geology at DSS Site 1079 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1079, and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic conductivities (SNL/NM March 1996). Site vegetation primarily consists of desert grasses, shrubs, and cacti.

This page intentionally left blank.

The ground surface in the vicinity of the site is flat to very slightly sloping to the southwest. The closest major drainage lies south of the site and terminates in a playa just west of KAFB. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,413 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 487 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production well to DSS Site 1079 is KAFB-4, approximately 4.1 miles to the northwest. The nearest groundwater monitoring wells are at the Mixed Waste Landfill, approximately 4,700 to 5,500 feet northwest of the site.

2.2.2 Operational History

Available information indicates that Building 6643, currently known as the Laser Optics Test Facility, was constructed in 1989 (SNL/NM March 2003), and it is assumed the septic system was constructed at the same time. Because operational records are not available, the site investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations. In 1991, Building 6643 was connected to an extension of the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1079 is industrial.

2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1079 is industrial (DOE et al. September 1995).

This page intentionally left blank.

3.0 INVESTIGATORY ACTIVITIES

3.1 Summary

Three assessment investigations have been conducted at this site. In late 1990 or early 1991, 1992, and 1995, waste characterization samples were collected from the septic tank (Investigation 1). In March 2002, a backhoe was used to physically locate the buried drainfield drain lines at the site (Investigation 2). In August 2002, near-surface soil samples were collected from three borings in the drainfield (Investigation 3). Investigations 2 and 3 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

As part of the SNL/NM Septic System Monitoring Program, aqueous and/or sludge samples for waste characterization were collected from the Building 6643 septic tank in late 1990 or early 1991, 1992, and 1995 (SNL/NM April 1991, SNL/NM June 1993, SNL/NM December 1995). The 1990 or 1991 aqueous sample was analyzed at an off-site laboratory for volatile organic compounds (VOCs), oil and grease, metals, uranium-235, uranium-238, and gross alpha/beta activity. The 1992 sludge sample was analyzed at an off-site laboratory for gross alpha/beta activity, tritium, and radionuclides by gamma spectroscopy. The 1995 aqueous sample was analyzed for VOCs, semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), metals, formaldehyde, fluoride, nitrate/nitrite, oil and grease, total phenol, radionuclides by gamma spectroscopy, isotopic uranium, tritium, and gross alpha/beta activity. The analytical results for the two sampling events are presented in Annex A. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release.

On January 31, 1996, the residual contents, approximately 220 gallons of waste and added water, were pumped out and managed according to SNL/NM policy (Shain August 1996).

3.3 Investigation 2—Backhoe Excavation

On March 13 and 14, 2002, a backhoe was used to determine the location, dimensions, and average depth of the DSS Site 1079 drainfield system. The drainfield was found to have three 30-foot-long laterals, arranged as shown on Figure 2.2.1-2, with an average drain line trench depth of 11 feet bgs. No visible evidence of stained or discolored soil or odors indicating residual contamination was observed during the excavation. No samples were collected during the backhoe excavation at the site.

3.4 Investigation 3—Soil Sampling

Once the system drain lines were located, soil sampling was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED. On August 22 and 23, 2002, soil samples were collected from three drainfield boreholes. Soil boring locations are shown on Figure 2.2.1-2. Figures 3.4-1 and 3.4-2 show backhoe trenching and soil sampling activities at DSS Site 1079. A summary of the boreholes, sample depths, sample analyses, analytical methods, laboratories, and sample dates is presented in Table 3.4-1.

3.4.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals. In drainfields, the top of the shallow interval started at the bottom of the drain line trenches, as determined by the backhoe excavation, and the lower (deep) interval started at 5 feet below the top of the upper interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter Geoprobe™ sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3 or 4 feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon® film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1079 are presented and discussed in this section.

VOCs

VOC analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-1. Method detection limits (MDLs) for the VOC soil analyses are presented in Table 3.4.2-2. Methylene chloride was detected in all six soil samples collected; 2-butanone was detected in two of the soil samples collected. Toluene was detected only in the

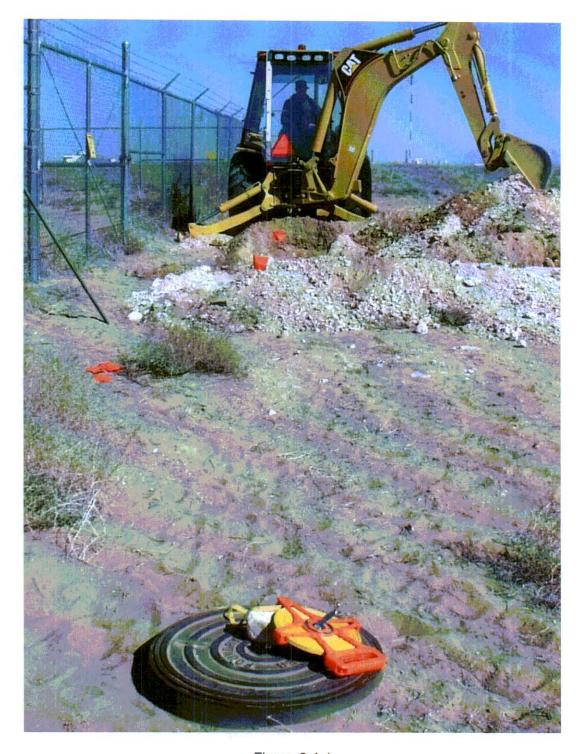


Figure 3.4-1
View of trench being excavated to locate the DSS Site 1079 Septic System drainfield laterals at Building 6643. Manhole cover in foreground is the access to the septic system distribution box. View to the north. March 13, 2002

Figure 3.4-2
Collecting soil samples with the Geoprobe™ in the DSS Site 1079 drainfield at Building 6643. View to the southwest. August 22, 2002

Table 3.4-1 Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1079, Building 6643 Septic System Soil Samples

Sampling Area	Number of Borehole Locations	Top of Sampling Intervals in each Borehole (ft bgs)	Total Number of Soil Samples	Analytical Parameters and EPA Methods ^a	Analytical Laboratory	Date Samples Collected
Drainfield	3	11. 16	6	VOCs EPA Method 8260	GEL	08-22-02 08-23-02
i	3	11, 16	6	SVOCs EPA Method 8270	GEL	08-22-02 08-23-02
	3	11, 16	6	PCBs EPA Metnod 8082	GEL	08-22-02 08-23-02
	3	11, 16	6	HE Compounds EPA Method 8330	GEL	08-22-02 08-23-02
	3	11, 16	6	RCRA Metals EPA Methods 6000/7000	GEL	08-22-02 08-23-02
	3	11, 16	6	Hexavalent Chromium EPA Method 7196A	GEL	08-22-02 08-23-02
	3	11, 16	6	Total Cyanide EPA Method 9012A	GEL	08-22-02 08-23-02
	3	11, 16	6	Gamma Spectroscopy EPA Method 901.1	RPSD	08-22-02 08-23-02
	3	11, 16	6	Gross Alpha/Beta Activity EPA Method 900.0	GEL	08-22-02 08-23-02

²EPA November 1986,

= Below ground surface. Below ground surface.
Drain and Septic Systems.
U.S. Environmental Protection Agency.
Foot (feet). ošs

EPA

ft

= General Engineering Laboratories, Inc. GEL

HE = High explosive(s).

PCB = Polychlorinated biphenyl.

RCRA = Resource Conservation and Recovery Act.

RPSD = Radiation Protection Sample Diagnostics Laboratory.

SVOC = Semivolatile organic compound. VOC = Volatile organic compound.

Table 3.4.2-1

Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, VOC Analytical Results August 2002

(Off-Site Laboratory)

Sample Attributes			VOCs (EPA Method 8260a) (μg/kg)		
Record		Sample		Methylene	
Number ^b	ER Sample ID	Depth (ft)	2-Butanone	Chloride	Toluene
605653	6643-DF1-BH1-11-S	11	ND (3.67)	2.06 J (4.9)	ND (0.333)
605653	6643-DF1-BH1-16-S	16	6.85	2.02 J (4.9)	ND (0.333)
605653	6643-DF1-BH2-11-S	11	ND (3.82)	1.79 J (5.1)	ND (0.347)
605653	6643-DF1-BH2-16-S	16	ND (3.74)	1.92 J (5)	ND (0.34)
605653	6643-DF1-BH3-11-S	11	4.76 J (5.1)	2.4 J (5.1)	ND (0.347)
605653	6643-DF1-BH3-16-S	16	ND (3.6)	1.71 J (4.81)	ND (0.327)
Quality Assurance/Quality Control Sample (μg/L)					
605653	6643-DF1-TB	NA	ND (2.31)	ND (3.3)	0.391 J (1

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole. DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.

J () = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram. μg/L = Microgram(s) per liter.

NA = Not applicable.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample.
TB = Trip blank.

VOC = Volatile organic compound.

Table 3.4.2-2 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, VOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8260a		
	Detection Limit		
Analyte	(μg/kg)		
Acetone	3.38–3.59		
Benzene	0.433-0.459		
Bromodichloromethane	0.471-0.5		
Bromoform	0.471-0.5		
Bromomethane	0.481-0.51		
2-Butanone	3.6–3.82		
Carbon disulfide	2.27–2.41		
Carbon tetrachloride	0.471-0.5		
Chlorobenzene	0.394-0.418		
Chloroethane	0.779-0.827		
Chloroform	0.5-0.531		
Chloromethane	0.356-0.378		
Dibromochloromethane	0.481-0.51		
1,1-Dichloroethane	0.452-0.48		
1,2-Dichloroethane	0.413-0.439		
1,1-Dichloroethene	0.4810.51		
cis-1,2-Dichloroethene	0.452-0.48		
trans-1,2-Dichloroethene	0.51-0.541		
1,2-Dichloropropane	0.462-0.49		
cis-1,3-Dichloropropene	0.413-0.439		
trans-1,3-Dichloropropene	0.24-0.255		
Ethylbenzene	0.365-0.388		
2-Hexanone	3.63-3.85		
Methylene chloride	1.3–1.38		
4-Methyl-2-pentanone	3.88–4.11		
Styrene	0.375-0.398		
1,1,2,2-Tetrachloroethane	0.8750.929		
Tetrachloroethene	0.365-0.388		
Toluene	0.327-0.347		
1,1,1-Trichloroethane	0.510.541		
1,1,2-Trichloroethane	0.519-0.551		
Trichloroethene	0.433-0.459		
Vinyl acetate	1.71–1.82		
Vinyl chloride	0.538-0.571		
Xylene	0.375-0.398		

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.
 μg/kg = Microgram(s) per kilogram.
 VOC = Volatile organic compound.

AL/9-04/WP/SNL04:r5551.doc 3-9 840857.03.01 09/10/04 2:52 PM

trip blank (TB) associated with these samples. All of these compounds are common laboratory contaminants and may not indicate soil contamination at this site.

SVOCs

SVOC analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-3. MDLs for the SVOC soil analyses are presented in Table 3.4.2-4. Fluorene was detected in the 16-foot-bgs sample from borehole BH3. No other SVOCs were detected in these samples.

PCBs

PCB analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-5. MDLs for the PCB soil analyses are presented in Table 3.4.2-6. No PCBs were detected in any of the samples collected.

HE Compounds

High explosive (HE) compound analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-7. MDLs for the HE soil analyses are presented in Table 3.4.2-8. No HE compounds were detected in any of the samples collected.

RCRA Metals and Hexavalent Chromium

Resource Conservation and Recovery Act (RCRA) metals and hexavalent chromium analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-9. MDLs for the metals soil analyses are presented in Table 3.4.2-10. None of the metal concentrations detected in the samples exceed the corresponding NMED-approved background concentrations.

Total Cyanide

Total cyanide analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-11. MDLs for the cyanide soil analyses are presented in Table 3.4.2-12. Cyanide was detected in the 16-foot-bgs sample from borehole BH2.

Radionuclides

Analytical results for the gamma spectroscopy analysis of the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-13. No activities above NMED-approved background levels were detected in any sample analyzed. However, although not detected, the minimum detectable activities (MDAs) for uranium-235 analyses exceeded the background activity because the standard gamma spectroscopy count time for soil samples

Table 3.4.2-3 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, SVOC Analytical Results August 2002

(Off-Site Laboratory)

	Sample Attributes		SVOCs (EPA Method 8270ª) (µg/kg)
Record		Sample	
Numberb	ER Sample ID	Depth (ft)	Fluorene
605653	6643-DF1-BH1-11-S	11	ND (4)
605653	6643-DF1-BH1-16-S	16	ND (4)
605653	6643-DF1-BH2-11-S	11	ND (4)
605653	6643-DF1-BH2-16-S	16	ND (4)
605653	6643-DF1-BH3-11-S	11	ND (4)
605653	6643-DF1-BH3-16-S	16	201

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

bAnalysis request/chain-of-custody record.

BH = Borehole.
DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample.

SVOC = Semivolatile organic compound.

Table 3.4.2-4 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8270 ^a
j	Detection Limit
Analyte	(μg/kg)
Acenaphthene	8
Acenaphthylene	16.7
Anthracene	16.7
Benzo(a)anthracene	16.7
Benzo(a)pyrene	16.7
Benzo(b)fluoranthene	16.7
Benzo(g,h,i)perylene	16.7
Benzo(k)fluoranthene	16.7
4-Bromophenyl phenyl ether	34
Butylbenzyl phthalate	28.7
Carbazole	16.7
4-Chlorobenzenamine	167
bis(2-Chloroethoxy)methane	12.3
bis(2-Chloroethyl)ether	37.3
bis-Chloroisopropyl ether	11
4-Chloro-3-methylphenol	167
2-Chloronaphthalene	13.7
2-Chlorophenol	15.3
4-Chlorophenyl phenyl ether	19.7
Chrysene	16.7
o-Cresol	26
Dibenz[a,h]anthracene	16.7
Dibenzofuran	17
1,2-Dichlorobenzene	10
1,3-Dichlorobenzene	11.3
1,4-Dichlorobenzene	15.7
3,3'-Dichlorobenzidine	167
2,4-Dichlorophenol	20.7
Diethylphthalate	17.7
2,4-Dimethylphenol	167
Dimethylphthalate	18.3
Di-n-butyl phthalate	24
Dinitro-o-cresol	167
2,4-Dinitrophenol	167
2,4-Dinitrotoluene	25.3
2,6-Dinitrotoluene	33.3
Di-n-octyl phthalate	30.3
Diphenyl amine	22.3
bis(2-Ethylhexyl) phthalate	30
Fluoranthene	16.7
Fluorene	4

Refer to footnotes at end of table.

Table 3.4.2-4 (Concluded) Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002

(Off-Site Laboratory)

	EPA Method 8270 ^a Detection Limit
Analyte	(µg/kg)
Hexachlorobenzene	20
Hexachlorobutadiene	12.7
Hexachiorocyclopentadiene	167
Hexachloroethane	22
Indeno(1,2,3-cd)pyrene	16.7
Isophorone	16
2-Methylnaphthalene	16.7
4-Methylphenol	33.3
Naphthalene	16.7
2-Nitroaniline	167
3-Nitroaniline	167
4-Nitroaniline	37
Nitrobenzene	20.3
2-Nitrophenol	17
4-Nitrophenol	167
n-Nitrosodipropylamine	22.7
Pentachlorophenol	167
Phenanthrene	16.7
Phenol	12.7
Pyrene	16.7
1,2,4-Trichlorobenzene	12.7
2,4,5-Trichlorophenol	17.3
2,4,6-Trichlorophenol	27.3

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.
μg/kg = Microgram(s) per kilogram.
SVOC = Semivolatile organic compound.

Table 3.4.2-5 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, PCB Analytical Results August 2002

(Off-Site Laboratory)

	Sample Attributes		PCBs
Record		Sample	(EPA Method 8082a)
Numberb	ER Sample ID	Depth (ft)	_(μg/kg)
605653	6643-DF1-BH1-11-S	11	ND
605653	6643-DF1-BH1-16-S	16	ND _
605653	6643-DF1-BH2-11-S	11	ND_
605653	6643-DF1-BH2-16-S	16	ND
605653	6643-DF1-BH3-11-S	11	ND _
605653	6643-DF1-BH3-16-S	16	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DF = Drainfield.

DSS ≈ Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER ≈ Environmental Restoration.

ft = Foot (feet).

ID = Identification.

μg/kg = Microgram(s) per kilogram.

ND ≈ Not detected.

PCB = Polychlorinated biphenyl.

S ≈ Soil sample.

Table 3.4.2-6 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, PCB Analytical MDLs August 2002 (Off-Site Laboratory)

Analyte	EPA Method 8082a Detection Limit (μg/kg)
Aroclor-1016	1
Aroclor-1221	2.82
Aroclor-1232	1.67
Aroclor-1242	1.67
Aroclor-1248	1
Aroclor-1254	0.5
Aroclor-1260	1

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram. PCB = Polychlorinated biphenyl.

Table 3.4.2-7 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, HE Compound Analytical Results August 2000 (Off-Site Laboratory)

	Sample Attributes	HE	
Record		Sample	(EPA Method 8330a)
Numberb	ER Sample ID	Depth (ft)	(μg/kg)
605653	6643-DF1-BH1-11-S	1 1	ND
605653	6643-DF1-BH1-16-S	16	ND
605653	6643-DF1-BH2-11-S	11	ND
605653	6643-DF1-BH2-16-S	16	ND
605653	6643-DF1-BH3-11-S	11	ND
605653	6643-DF1-BH3-16-S	16	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole. DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

HE = High explosive(s).
ID = Identification.

μg/kg = Microgram(s) per kilogram.

ND = Not detected. S = Soil sample.

Table 3,4,2-8 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, HE Compound Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8330 ^a Detection Limit
Analyte	(μg/kg)
2-Amino-4,6-dinitrotoluene	18.1–21.5
4-Amino-2,6-dinitrotoluene	34.1-40.5
1,3-Dinitrobenzene	34.1–40.5
2,4-Dinitrotoluene	55–65.4
2,6-Dinitrotoluene	48–57
HMX	48–57
Nitrobenzene	48–57
2-Nitrotoluene	24–28.5
3-Nitrotoluene	24–28.5
4-Nitrotoluene	24-28.5
RDX	48–57
Tetryl	22.1–26.2
1,3,5-Trinitrobenzene	29-34.4
2.4,6-Trinitrotoluene	48–57

^aEPA November 1986.

DSS = Drain and Septic Systems.

= U.S. Environmental Protection Agency. EPA

HE = High explosive(s). HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

Tetryl = Methyl-2,4,6-trinitrophenylnitramine.

Table 3.4.2-9 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Metals Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		Metals (EPA Method 6000/7000/7196A ^a) (mg/kg)								
Record		Sample				Ţ					
Number ^b	ER Sample ID	Depth (ft)	Arsenic	Barium	Cadmium	Chromium	Chromium (VI)	Lead	Mercury	Selenium	Silver
605653	6643-DF1-BH1-11-S	11	2.89	127	0.0551 J (0.459)	8.37	ND (0.0495)	4.56	0.00455 J (0.00945)	0.164 J (0.459)	0.103 J (0.459 J)
605653	6643-DF1-BH1-16-S	16	2.7	140	0.0674 J (0.472)	7.94	ND (0.0536)	4.31	ND (0.000913 J)	ND (0.153)	ND (0.0851)
605653	6643-DF1-BH2-11-S	11	3.15	102	0.0494 J (0.455)	8.35	ND (0.0553)	4.94	0.00328 J (0.00906)	0.216 J (0.455)	ND (0.082)
605653	6643-DF1-BH2-16-S	16	2.9	180	0.0606 J (0.463)	8.68	ND (0.0523)	5.31	ND (0.000913 J)	ND (0.15)	ND (0.0835)
605653	6643-DF1-BH3-11-S	11	2.67	43.9	0.0582 J (0.476)	7.49	ND (0.0531)	4.61	ND (0.000887 J)	0.447 J (0.476)	ND (0.0859)
605653	6643-DF1-BH3-1 <u>6-S</u>	16	2.5	51.6	ND (0.0464)	7.31	ND (0.0518)	3.85	ND (0.000972 J)	ND (0.157)	ND (0.0876)
Backgroun Area Supe	nd Concentration—Sout ergroup ^e	hwest	4.4	214	0.9	15.9	1	11.8	<0.1	<1	<1

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cDinwiddie September 1997.

BH = Borehole. DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet). ID = Identification.

= Analytical result was qualified as an estimated value.

J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit. mg/kg = Milligram(s) per kilogram.

ND() = Not detected above the MDL, shown in parentheses.

S = Soil sample.

Table 3.4.2-10 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Metals Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 6000/7000/7196Aa
	Detection Limit
Analyte	(mg/kg)
Arsenic	0.188-0.2
Barium	0.0606-0.0648
Cadmium	0.0435-0.0464
Chrom:um	0.146-0.156
Chromium (VI)	0.0495-0.0553
Lead	0.258-0.275
Mercury	0.000887-0.000972
Selenium	0.147-0.157
Silver	0.0820.0876

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit, mg/kg = Milligram(s) per kilogram.

Table 3.4.2-11

Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical Results August 2002

(Off-Site Laboratory)

	Sample Attributes	Total Cyanide	
Record		Sample	(EPA Method 9012Aa)
Numberb	ER Sample ID	Depth (ft)	(mg/kg)
605653	6643-DF1-BH1-11-S	11	ND
605653	6643-DF1-BH1-16-S	16	ND
605653	6643-DF1-BH2-11-S	11	ND
605653	6643-DF1-BH2-16-S	16	0.0511 J (0.25)
605653	6643-DF1-BH3-11-S	11	ND
605653	6643-DF1-BH3-16-S	16	ND

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

PAnalysis request/chain-of-custody record.

BH = Borehole. DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

f: = Foot (feet).
ID = Identification.

J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

ND = Not detected.S = Soil sample.

Table 3.4.2-12

Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical MDLs August 2002

(Off-Site Laboratory)

	EPA Method 9012Aa
	Detection Limit
Analyte	(mg/kg)
Total Cyanide	0.0381-0.0419

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL ≈ Method detection limit. mg/kg ≈ Milligram(s) per kilogram.

Table 3.4.2-13 Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results August 2002 (On-Site Laboratory)

	Sample Attributes		Activity (EPA Method 901.1 ^a) (pCi/g)								
Record		Sample	Cesium-137		Thorium-232		Uranium-235		Uranium-238		
Numberb	ER Sample ID	Depth (ft)	Result	Error ^c	Result	Errorc	Result	Errorc	Result	Errorc	
605641	6643-DF1-BH1-11-S	11	ND (0.0323)		0.623	0.302	ND (0.18)		ND (0.452)		
605641	6643-DF1-BH1-16-S	16	ND (0.028)		0.501	0.243	ND (0.168)		ND (0.413)		
605641	6643-DF1-BH2-11-S	11	ND (0.029)		0.705	0.336	ND (0.217)		ND (0.708)		
605641	6643-DF1-BH2-16-S	16	ND (0.0304)		0.559	0.278	ND (0.18)		ND (0.453)		
605641	6643-DF1-BH3-11-S	11	ND (0.0367)		0.71	0.337	ND (0.203)		ND (0.503)		
605641	6643-DF1-BH3-16-S	16	ND (0.0321)		0.634	0.309	ND (0.193)		ND (0.489)		
Backgrour	nd Activity—Southwest Ar	ea	0.079	NA	1.01	NA	0.16	NA	1.4	NA	
Supergrou	ıp ^d .			} }		, ,	ļ		J		

Note: Values in **bold** exceed background soil activities.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

°Two standard deviations about the mean detected activity.

^dDinwiddie September 1997.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet). ID = Identification.

MDA = Minimum detectable activity.

NA = Not applicable.

ND() = Not detected above the MDA, shown in parentheses.

ND() = Not detected, but the MDA (shown in parentheses) exceeds background activity.

pCi/g = Picocurie(s) per gram.

S = Soil sample.

-- = Error not calculated for nondetect results.

(6,000 seconds) was not sufficient to reach the NMED-approved background activity established for SNL/NM soil. Even though the MDAs may be slightly elevated, they are still very low, and the risk assessment outcome for the site is not significantly impacted by their use.

Gross Alpha/Beta Activity

Gross alpha/beta activity analytical results for the six soil samples collected from the three drainfield boreholes are summarized in Table 3.4.2-14. Gross alpha activity slightly above the New Mexico-established background activity (Miller September 2003) was measured in the 11- and 16-foot-bgs samples from borehole BH2 and in the 16-foot-bgs sample from borehole BH3. However, no gross alpha activity greater than an order-of-magnitude above the New Mexico-established background level (Miller September 2003) was detected in any of the samples. None of the gross beta activities were above background. These results indicate no significant levels of radioactive material are present in the soil at the site.

3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS Project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicate, equipment blank (EB), and TB samples. Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 site samples. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all the samples in that batch. Toluene was detected in the TB for DSS Site 1079 (Table 3.4.2-1).

No duplicate soil samples or EBs were collected at this site.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). Annex B contains the data validation reports for the samples collected at this site. The data are acceptable for use in this request for a determination of CAC without controls.

Table 3.4.2-14

Summary of DSS Site 1079, Building 6643 Septic System Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results August 2002

(Off-Site Laboratory)

Sample Attributes			Activity (EPA Method 900.0a) (pCi/g)			
Record		Sample	Gross Alpha		Gross Beta	
Number ^b	ER Sample ID	Depth (ft)	Result	Error	Result	Error
605653	6643-DF1-BH1-11-S	11	17.1	5.82	22.7	2.21
605653	6643-DF1-BH1-16-S	16	14.7	5.59	21.8	2.1
605653	6643-DF1-BH2-11-S	11	22.6	8.78	21.7	2.05
605653	6643-DF1-BH2-16-S	16	26.8	8.73	20.9	2.26
605653	6643-DF1-BH3-11-S	11	17	5.71	24	2.27
605653	6643-DF1-BH3-16-S	16	21.4	6.47	25.3	2.2
Background Activity ^d			17.4	NA	35.4	NA

Note: Values in **bold** exceed background soil activities.

BH = Borehole.

DF = Drainfield,

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

NA = Not applicable.

pCi/g = Picocurie(s) per gram.

S = Soil sample.

3.5 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1079.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

[°]Two standard deviations about the mean detected activity.

^dMiller September 2003.

4.0 CONCEPTUAL SITE MODEL

The conceptual site model for DSS Site 1079, the Building 6643 Septic System, is based upon the COCs identified in the soil samples collected from beneath the drainfield at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1079 are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, and radionuclides. No PCBs, HE compounds, or hexavalent chromium were detected in any of the soil samples collected at this site. None of the eight RCRA metals were detected at concentrations above the approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils (Dinwiddie September 1997). Two VOCs and one SVOC were detected in the soil samples collected at this site. Cyanide was detected in one sample but since it does not have a quantified background screening concentration, it is unknown if this COC exceeds background.

When a metal concentration exceeded its maximum background screening value, it was considered further in the risk assessment process. None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. However, the MDAs for all of the uranium-235 analyses exceeded the corresponding background activity. Gross alpha activity was detected above the New Mexico-established background level. However, no gross alpha activity greater than an order-of-magnitude above the New Mexico-established background level (Miller September 2003) was detected in any of the samples. No elevated gross beta activity was measured in these samples.

4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system and drainfield. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the drainfield (Figure 4.2-1). The depth to groundwater at the site (approximately 487 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex C provides additional discussion on the fate and transport of COCs at DSS Site 1079.

Table 4.2-1 summarizes the potential COCs for DSS Site 1079. All potential COCs were retained in the conceptual model and evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1079 is industrial (DOE et al. September 1995).

This page intentionally left blank.

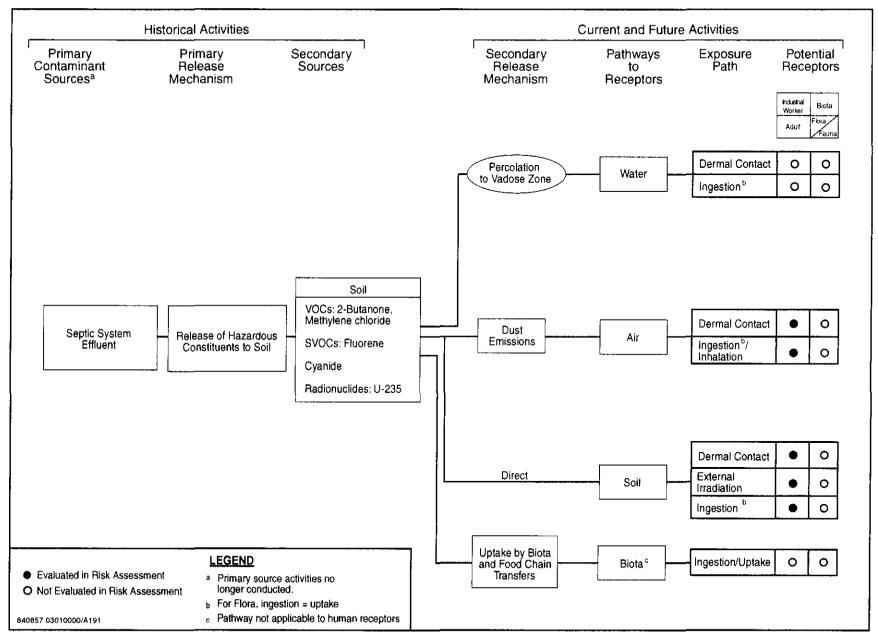


Figure 4.2-1
Conceptual Site Model Flow Diagram for DSS Site 1079, Building 6643 Septic System

Table 4.2-1 Summary of Potential COCs for DSS Site 1079, Building 6643 Septic System

		Number of	COCs Detected or with Concentrations Greater than Background or Nonquantified	Maximum Background Limit/Southwest Area Supergroup ^b	Maximum Concentration ^c (All Samples)	Average Concentration ^d	Number of Samples Where COCs Detected with Concentrations Greater than Background or Nonquantified
VOCs	COC Type	Samples ^a	Background 2-Butanone	(mg/kg) NA	(mg/kg) 0.00685	(<i>mg/</i> kg) 0.0032	Background ^e
VOCS		6	Methylene Chloride	NA NA	0.00003	0.0020	6
SVOCs		6	Fluorene	NA NA	0.201	0.0352	1
PCBs		6	None	NA	NA	NA	None
HE Compounds	3	6	Nane	NA	NA	NA	None
RCRA Metals		6	None	NA	NA	NA NA	None
Hexavalent Chr	romium	6	None	NA	NA	NA	None
Cyanide		6	Cyanide	NC	0.0511 J	0.0250	1
Radionuclides	Gamma Spectroscopy	6	Uranium-235	0.16	ND (0.217)	NC ^f	6
(pCi/g)	Gross Alpha	6	Gross Alpha	17.49	26.8	NA	3
	Gross Beta	6	None	35.49	25.3	NA	None

^aNumber of samples includes duplicates and splits.

Maximum concentration is either the maximum amount detected, or for radionuclides, the greater of either the maximum detection or the maximum MDA above

^dAverage concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect results, divided by the number of samples.

^oSee appropriate data table for sample locations.

An average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy. ⁹Miller September 2003.

COC = Constituent of concern. DSS = Drain and Septic Systems.

HE = High explosive(s).

= Analytical result was qualified as an estimated value. J

MDA = Minimum detectable activity. MDL

= Method detection limit. mg/kg = Milligram(s) per kilogram.

= Not applicable.

NC ≈ Not calculated.

ND () ≈ Not detected above the MDA, shown in parentheses.

PCB ≈ Polychlorinated biphenyl. ≈ Picocurie(s) per gram. pViOq

RCRA = Resource Conservation and Recovery Act.

SVOC ≈ Semivolatile organic compound.

VOC = Volatile organic compound.

^bDinwiddie September 1997.

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.

No pathways to groundwater and no intake routes through flora or fauna are considered appropriate for either the industrial or residential land-use scenarios. Annex C provides additional discussion of the exposure routes and receptors at DSS Site 1079.

4.3 Site Assessment

Site assessment at DSS Site 1079 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex C discusses the risk assessment performed for DSS Site 1079 in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1079 poses no significant threat to human health under either the industrial or residential land-use scenarios. Ecological risks were found to be insignificant because no pathways exist.

4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risks at DSS Site 1079. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1079 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because methylene chloride, 2-butanone, fluorene, cyanide, and uranium-235 are present above background levels, have MDAs above background levels, or have nonquantified background levels, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex C provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1079 is 0.00 for the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.00. The excess cancer risk is 2E-8 for DSS Site 1079 COCs for an industrial land-use scenario. NMED guidance states that

cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 1.56E-8. Both the incremental HI and excess cancer risk are below NMED guidelines.

The HI calculated for the COCs at DSS Site 1079 is 0.00 for the residential land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.00. The excess cancer risk for DSS Site 1079 COCs is 3E-8 for a residential land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 3.32E-8. Both the incremental HI and incremental excess cancer risk are below NMED guidelines.

For the radiological COCs, one of the constituents (uranium-235) had MDA values greater than the corresponding background value. The incremental total effective dose equivalent (TEDE) and corresponding estimated cancer risk from radiological COCs are much lower than the U.S. Environmental Protection Agency (EPA) guidance values; the estimated TEDE is 8.2E-3 millirem (mrem)/year (yr) for the industrial land-use scenario. This value is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding incremental estimated cancer risk value is 9.4E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional controls is 2.1E-2 mrem/yr with an associated risk of 2.8E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1079 is eligible for unrestricted radiological release.

The incremental nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

Table 4.3.2-1
Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1079, Building 6643 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	1.56E-8	9.4E-8	1.1E-7
Residential	3.32E-8	2.8E-7	3.1E-7

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997b) also was performed as set forth by the NMED Risk-Based Decision Tree in the "RPMP [RCRA Permits Management Program]

Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex C, Sections IV, VII.2, and VII.2.1). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.

All COCs at DSS Site 1079 are located at depths of 5 feet bgs or greater. Therefore, no complete ecological pathways exist at this site, and a more detailed ecological risk assessment is not necessary.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1079 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that no complete pathways exist at DSS Site 1079, a baseline ecological risk assessment is not required for the site.

5.0 RECOMMENDATION FOR CORRECTIVE ACTION COMPLETE WITHOUT CONTROLS DETERMINATION

5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, a determination of CAC without controls is recommended for DSS Site 1079 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.
- None of the COCs warrant ecological concern because no complete pathways exist at the site.

5.2 Criterion

Based upon the evidence provided in Section 5.1, a determination of CAC without controls (NMED April 2004) is recommended for DSS Site 1079. This is consistent with the NMED's NFA Criterion 5, which states, "the SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

This page intentionally left blank.

6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shephard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment for Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, "List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program." July 8, 1996.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB, September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

IT, see IT Corporation.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding "State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples." September 12, 2003.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2002.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

New Mexico Environment Department (NMED) March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED) April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act, § 74-4-10," New Mexico Environment Department, Santa Fe, New Mexico. April 29, 2004.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), February 1987. SNL/NM Facilities Engineering Drawing 100111-M2 showing the Building 6643 Septic System, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 1991. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Results for Detected Parameters, Technical Area III and Coyote Canyon Test Field, April 1991," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 1993. "Sandia National Laboratories/New Mexico Septic Tank Monitoring Report, 1992 Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1995. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Reports, December 1995," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

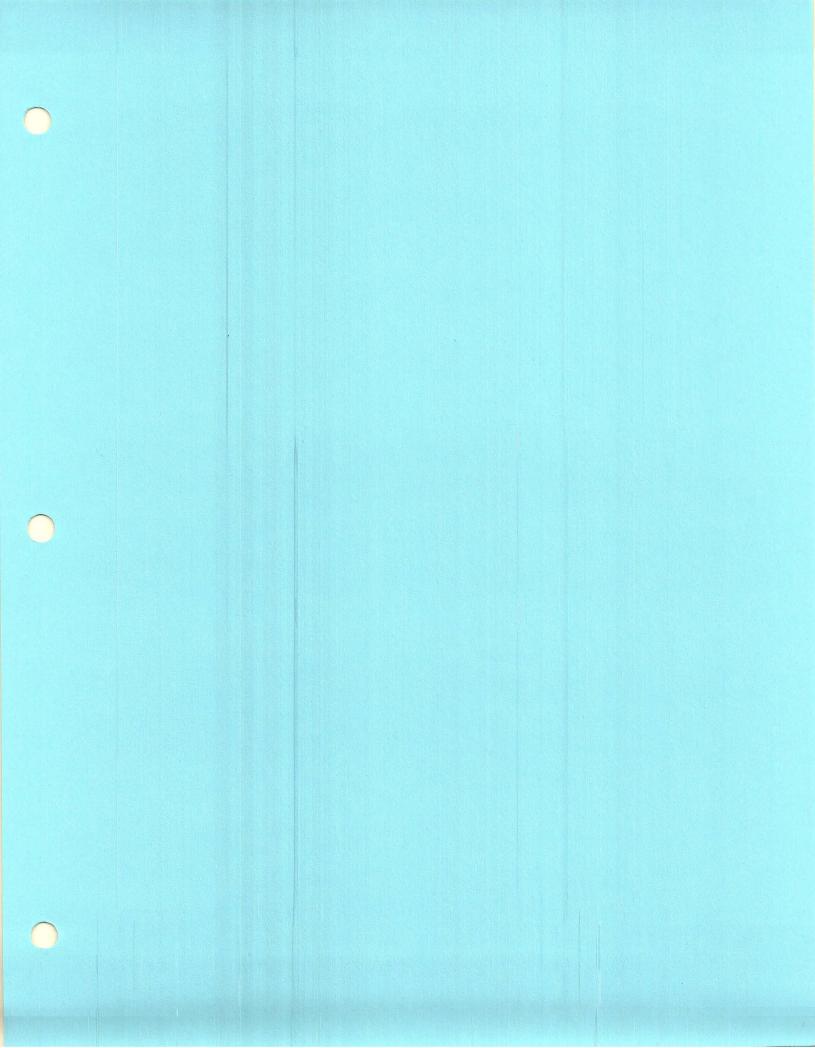
Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.


Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous Sandia National Laboratories/New Mexico septic tanks at Sandia National Laboratories, Albuquerque, New Mexico. August 23, 1996.

SNL/NM, see Sandia National Laboratories/New Mexico.

- U.S. Department of Energy (DOE) and U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service. September 1995.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington D.C.
- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997a. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997b. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

This page intentionally left blank.

ANNEX A
DSS Site 1079
Septic Tank Sampling Results

Results of Septic tank sampling conducted between 12/18/90 and 1/8/91 for buildings noted.

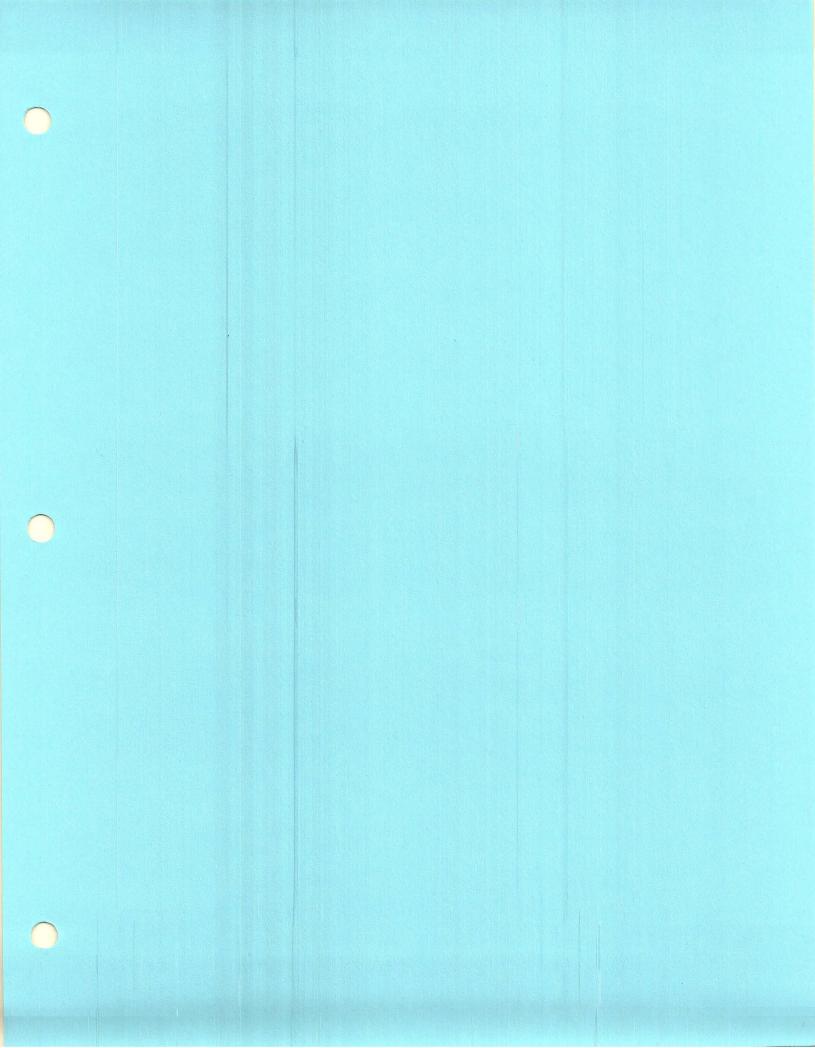
PBDionne

4-17-91

Nick Durand,

For your information.

David Dionne


TABLE 16

SUMMARY OF ANALYTICAL RESULTS FOR DETECTED PARAMETERS TECHNICAL AREA III AND COYOTE CANYON TEST FIELD SEPTIC TANK SAMPLING

BUILDING 6643

SAMPLES NUMBERS SNLA004833, SNLA004855, SNLA004834

Parameter	Results	Units
VOLATILE ORGANICS		
Methylene Chloride	0.001	mg/l
INORGANICS		
Oil and Grease	40	mg/i
METALS		
Barium	0.52	mg/l
Copper	0.30	mg/l
Manganese	0.057	mg/l
Mercury	0.0003	mg/l
Zinc	0.37	mg/i
RADIOLOGICAL		
Gross Alpha	6.5	pCi/l
Gross Beta	50	pCi/l
Uranium 235	1.0	pCi/l
Uranium 238	2.1	pCi/l

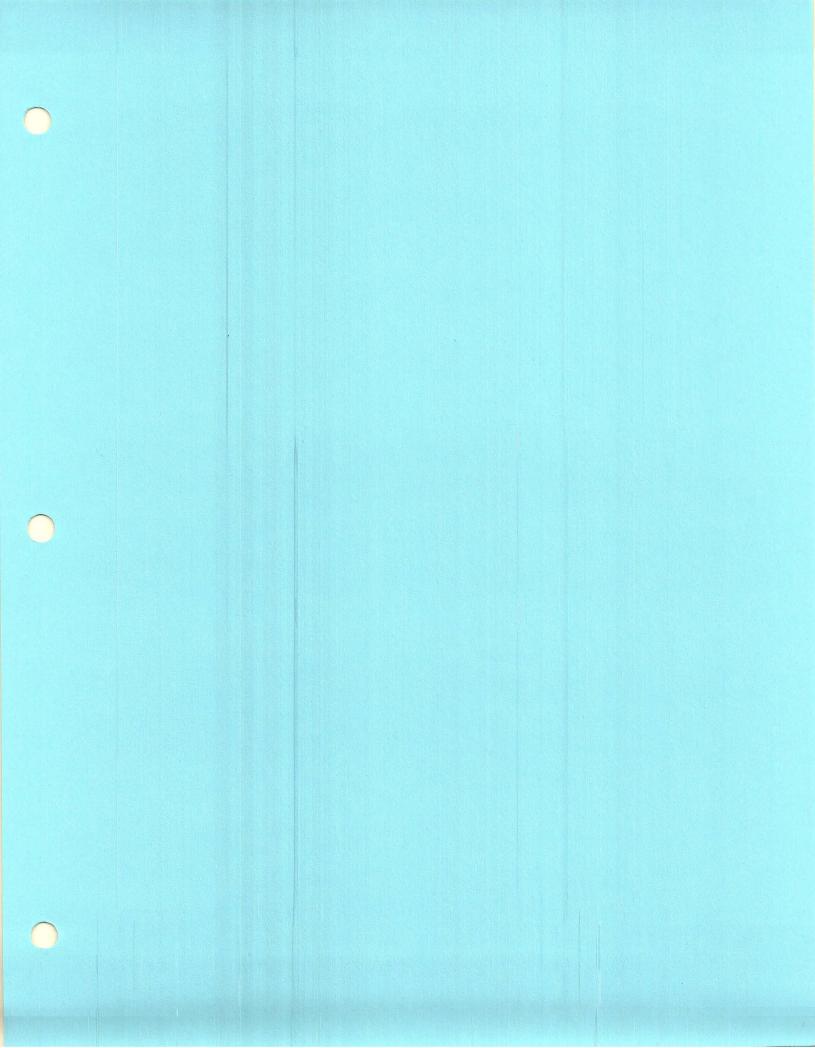
Building 6643 Area 3 Sample ID No. SNLA008561 Tank ID No. AD89017R

On November 10, 1992, a sludge sample was collected from the septic tank serving Building 6643. During review of the radiological data, no parameters were detected that exceed U.S. Department of Energy (DOE) derived concentration guideline (DCG) limits. During review of the radiochemistry data, the following items were noted:

- ²¹⁴Pb was measured at 0.427 pCi/mL, which is above the IL calculated during this monitoring effort. The level of ²¹⁴Pb was less than 0.1 percent of its DGC limit.
- ²¹²Pb was measured at 0.486 pCi/mL and ²³²Th was measured at 0.463 pCi/mL. These findings suggest above background levels of ²³²Th exist at this location. The ²¹²Pb level was within DOE DCG constraints; the ²³²Th level (0.463 pCi/mL) exceeded the DOE DGG of 0.25 pCi/mL.
- ⁴⁰K was measured at 7.08 pCi/mL, which is above the IL calculated during this monitoring effort. The ⁴⁰K level was within DOE DCG constraints.

Results of Septic Tank Analyses	
(Słudge Sample)	
6643 A-3	

 Building No./Area:
 6643 A-3


 Tank ID No.:
 AD89017R

 Date Sampled:
 11/10/92

Sample ID No.: SNLA008561

Sample ID No.:	SNLAU06361		
Analytical Parameter	Measured Concentration	± 2 Sigma Uncertainty	Units
Gross Alpha	1E+01	1E+01	pCi/g
Gross Beta	3E+01	2E+01	pCi/g
Gross Alpha	2E+01	1E+01	pCi/g
Gross Beta	2E+01	2E+01	pCi/g
Gross Alpha	2E+01	1E+01	pCi/g
Gross Beta	4E+01	2E+01	pCi/g
Tritium	2E-01	2E-01	pCi/L
Actinium-228	0.463	0.109	pCi/mL
Bismuth-214	0.291	0.0684	pCi/mL
Cadmium-109	0.557	0.486	pCi/mL
Cesium-137	0.0496	0.0347	pCi/mL
Potassium-40	7.08	0.583	pCi/mL
Lead-212	0.486	0.0478	pCi/mL
Lead-214	0.427	0.0758	pCi/mL
Radium-226	0.283	0.0664	pCi/mL
Radium-228	0.463	0.109	pCi/mL
Thorium-232	0.463	0.109	pCi/mL
Thorium-234	0.716	0.398	pCi/mL
Thallium-208	0.461	0.0925	pCi/mL
Uranium-238	0.715	0.397	pCi/mL

ND = Not Detected NA = Not Applicable

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:	Bldg 6643	
Sample ID Number:	024399	
Date Sampled:	6-28-95	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	COA Discharge Limit ^b	Comments
Volatile Organics (8260)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
None detected above DL	ND	various	various	TTO = 5.0	
Semivolatile Organics (8270)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
bis(2-Ethylhexyl)Phthalate	0.005J	0.010	NR NR	TTO = 5.0	
Pesticides/PCBs (8080)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
None detected above DL	ND	Various	NR / PCBs = 0.001	TTO = 5.0	
Metals (6010/7470)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Arsenic	ND	0.010	· 0.1	2.0	
Barium	0.0599J	0.200	1.0	20.0	
Cadmium	ND	0.005	0.01	2.8	
Chromium	ND	0.020	0.05	20.0	
Copper	0.0077J	0.025	1.0	16.5	
Lead	ND	0.003	0.05	3.2	
Manganese	0.0961	0.010	0.2	20.0	
Nickel	ND	0.040	0.2	12.0	
Selenium	ND	0.005	0.05	2.0	
Silver	ND	0.010	0.05	5.0	
Thallium	ND	0.010	NR	NR	
Zinc	0.0113J	0.020	10.0	28.0	
Mercury	ND	0.0002	0.002	0.1	
Miscellaneous Analyses	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Field pH	7.4 pH units	0 - 14 pH units	6 – 9 pH units	5 – 11 pH units	
Formaldehyde (NIOSH 3500)	0.052	0.050	NR	260.0	
Fluoride (300.0)	0.16	0.10	1.6	180.0	
Nitrate + Nitrite (353.1)	1.47	0.250	10.0	NR	

Refer to footnotes at end of table.

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:	Bldg 6643	
Sample ID Number:	024399	
Date Sampled:	6-28-95	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	COA Discharge Limit ^b	Comments
Miscellaneous Analyses	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Oif + Grease (9070)	1.59	0.94	NR	150.0	
Total Phenol (9066)	ND	0.080	0,005	4.0	-

Notes:

IDL = Instrument detection limit.

NR = Not regulated.

TTO = Total toxic organics.

^{*} New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.

b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M - maximum allowable concentration for grab sample.

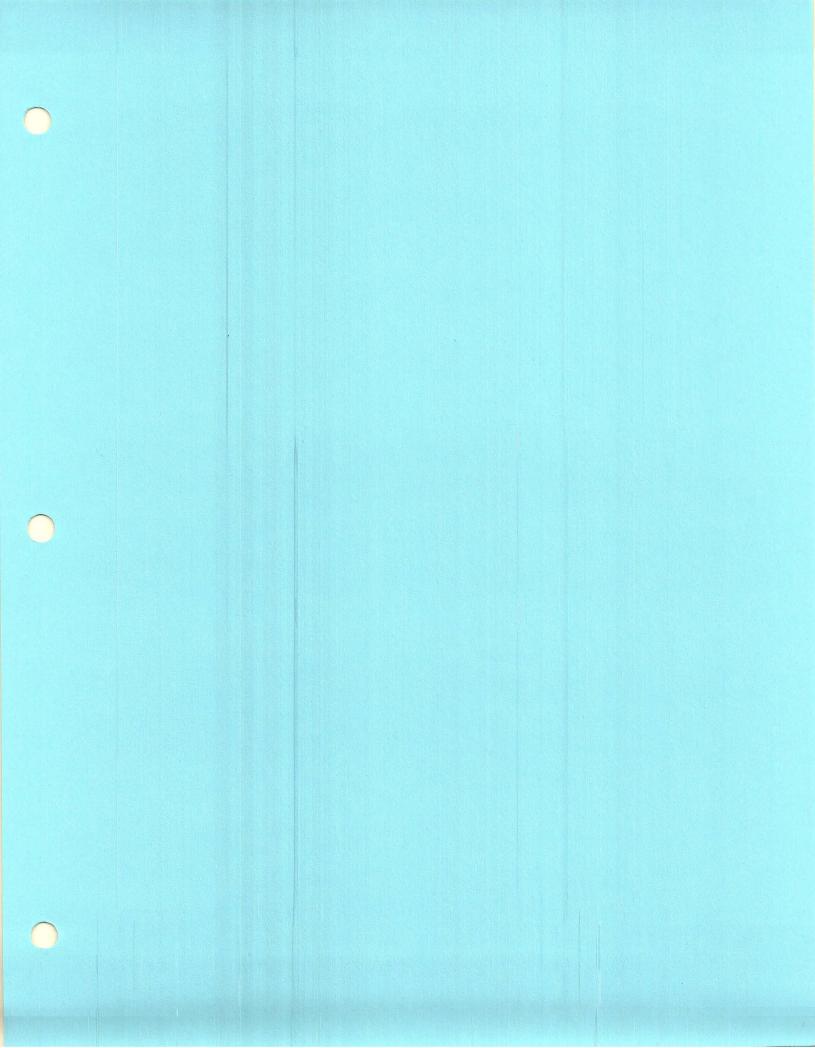
B = Analyte detected in method blank.

DL = Detection limit indicated on laboratory report.

J = Estimated concentration of analyte, between DL and fDL.

ND = Not detected above DL indicated.

RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF AQUEOUS SAMPLE


Building ID:	Bldg 6643
Sample ID Number:	024399
Date Sampled:	6-28-95

Parameter (Method)	Result	MDA	Critical Level	NM Discharge Limit	Comments
Radiological Analyses	(pCi/L ± 2-5)	(pCVL)	(pCi/L)	(pCi/L)	
Gross Alpha (9310)	0.91 ± 0.52	1.10	0.48	NR	
Gross Beta (9310)	11.1 ± 1.3	0.9	0.42	NA	
Isotopic Analyses	(pCi/L ± 2-a)	(pCi/L)	(pCVL)	(pCi/L)	
Tritium (906.0)	-91.9 ± 55.9	96.1	47.5	NR	
Uranium-238 ^b	0.26 ± 0.12	0.051	0.042	NA NA	sampled 7-13-95
Uranium-235/236 ^b	0.011 ± 0.030	0.076	0.058	NR	sampled 7-13-95
Uranium-234 ^b	0.33 ± 0.14	0.051	0.042	NR	sampled 7-13-95
Gamma Spectroscopy ^e	(pCl/mL ± 2-a)	(pCi/mL)	(pCVL)	(pCi/L)	
None detected above MDA	ND	various	NL	NR NR	

Notes:

- New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
 Isotopic uranium analyzed by NAS-NS-3050.
- * Analyzed in-house by SNL/NM Department 7715. MDA = Minimum detectable activity.

- ND = Not detected above MDA indicated.
- NL = Not listed.
- NR = Not regulated.

ANNEX B
DSS Site 1079
Soil Sample Data Validation Results

RECORDS CENTER CODE: ER/1295/DSS/DAT

		SMO ANALYT	TICAL DATA	ROUT	ING FORM			
PROJEC	T NAME:	DSS Soil Samp	ling		PROJECT/TASK:	7223_02	2.03.02	
SNL TASK	EADER:	Collins			ORG/MS/CF0#:	6133/10	89/CF03	32-02
SMO PROJE	CT LEAD:	Herrera			SAMPLE SHIP DATE:			
							EDD	
ARCOC	LAB	LAB ID	PRELIM D	ATE	FINAL DATE	EDD	ONQ	BY
605652	GEL	66189A			10/8/2002	X	X.	JAC
605653	GEL_	66189B			10/8/2002	X	LX.	JAC
605654	GEL	66189C			10/8/2002	X	X.	JAC
605656	GEL	66189D			10/8/2002	X	<u> x</u>]	JAC
								
					NAME		DAT	E
, R	EVIEW C	OMPLETED I	3Y/DATE: _		. Herrera		(U. 24	5-02
CORRECT	IONS RE	QUESTED/RE	ECEIVED:	الحط	10.25-02	YCC	'd to	29-02
		PRO	OBLEM#:		5106			
F	INAL TR	ANSMITTED .	ΓΟ/DATE: ¯	5	ianders	10	.29-02	•
s	ENT TO	VALIDATION I	BY/DATE:		Conn		lolagi	
RUSH VAL	IDATION	REQUIRED	EST. TAT:					
		OMPLETED I		·	<i>√</i> √		11.19	7. Od
	C	OPY TO WM I	BY/DATE:			·		
TO ERD	MS OR RE	CORDS CENTE	R BY/DATE: _	Conn		4	26/02	<u></u>
		CO	MMENTS:			•		
								
····						· 		
					· <u> </u>			

					······································			
								

				**************************************		ARCCC	9050	52, 63, 64,	-56							<u>-</u>	Pate: On	enis, Inorg	enic and Radio	ocher
VOC(RZBO)	79-01-6 (Irichlanowithere)	Ali SVOC(6270) compounds	95-50-1(1,2-dichlorobenzene)	87-68-3 (hexachtorobutadiena)	57.72-1 (hexachlocoethere)	All PCBs (aos2):	All HE(6330) compounds	1946-51-0 (4-amino-2,8-dinhrotokoene)	479-45-8 (tetryl)	Metals	7440-22-4 (aliver)	7439-97-6 (mercury)	744D-39-3 (barkum)	7440-47-3 (chromkin)	7438-92-1 (lead)	General Chemierry	SASS-70-0 (total cyanida)	18540-29-9 (hexavalent chromium)	Radioshemjetry	
		P2			UJ,A													\sqcap	Γ -	Γ
		_				W,A1										·				Γ
																		WHT		
											W,B3		ήB	J,B,B3	J,B,Ba					
		P2						W,A2,P1				W,83								
			333U,B	UJ,A2	UJ,A2			UJ,A2,P1				W,B3								
			333U,B	UJ,A2	LLLA2			UJA2,P1				J,B3								
		P2						UJ,A2,P1				W,B3								
				UJ,A2	WA2			ULA2,P1				J,83								L.
				W.AZ	UJ,A2			LU, A2 ,P1			J,B3	UJ,B3		}						
				LW,A2	W,A2			W,A2,P1			J,83	J,B3]	
				W,A2	W,A2			W,A2,P1				W,B3					J,A	}	All CIC	
				UJ,A2	UJ,A2			W,A2,P1				W,B3					J,A		criteria	
				IJJ,A2	LU,A2	Ĺ		UJA2,P1			J.B3	J, B3							No date wil	
				WAZ	W,A2		<u> </u>	W,A2,P1				W,B3						}		\Box
				UJ,A2	W,A2			WA2PI				J.83						}		
				CRY VS	UJ.A2			UJAZ P1				UJ,B3					J,A		ľ	
				LULA2	LU,A2			WA2P1				UJ,B3						<u> </u>		
		L		UJ A2	UJ,A2			UJ,A2,P1				UJ,B3								
				W,A2	UJA2			UJ,A2,P1				W,B3					JA			L
				ιί, λ 2	UJ A2			W,A2,P1				W.83					A,E			
				ULA2	UJ,A2			WA2PI				W,83							L	
				W,A2	UJ,A2			W,A2P1				UJ.B3					J,A			
				W,A2	UJ,A2			W,A2,P1				J,B3								
			<u> </u>	<u> </u>				<u> </u>												L.
	ឃ																			L
		P2						<u> </u>	W,A			J,B3	j			اا				
	(OSCHISTO)		23 All SVOC(8279)	(A) All SVOC(6279) comp	P2	A	Noting N	Contract Contract	Continue Continue	P2	A	ACCIPTANI	Continue Continue	Contraction Contraction	COCHESSION COC	Company Comp		Company Comp	1986 1986	THE THE

Valuable of Mal

Analytical Quality Associates, Inc.

616 Maxine NE

Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

Albuquerque, NM 87123

MEMORANDUM

DATE:

11/12/02

TO:

File

FROM:

Linda Thal

SUBJECT:

Inorganic Data Review and Validation - SNL

Site: DSS soil sampling

ARCOC # 605652, -53, -54 and -56 GEL SDG # 66189, 66195 and 66197 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 6010 (ICP-AES metals), SW-846 7471/7470 (Hg), SW-846 9012A (total CN) and SW-846 7196A (hexavalent chromium).

Problems were identified with the data package that resulted in the qualification of data.

ICP-AES – Metals Batch # 197718 (Samples 66189-021 through –040)
Silver was detected in the ICB/CCB at a value > DL but < RL. Sample 66189-026, 027 and –030 had values > DL but < 5X the blank value and will be qualified "J. B3".

Hg Batch # 197662 (Samples 66189-021 through -040)

Hg was detected in the CCB at a negative value with an absolute value > DL but < RL. Samples 66189-023, -025, -027, -030, -032 and --040 had values > DL but < 5X DL and will be qualified "J, B3". All remaining samples were non-detect and will be qualified "UJ, B3".

ICP-AES-Metals Batch # 199132 (Sample 66195-002)

The replicate RPD (54%) failed QC acceptance criteria (<35%) for barium. The sample had a barium value > 5X RL and will be qualified "J".

Hg Batch # 199386 (Sample 66195-002)

Hg was detected in the ICB/CCB at a negative value with an absolute value > DL but < RL. The sample had a value > DL but < 5X DL and will be qualified "J. B3".

ICP-AES-Metals Batch # 199969 (Sample 66197-011)

Barium was detected in the MB at a value > DL but < RL. The sample result was <5X the blank value and will be qualified "J, B".

Chromium was detected in the CCB and MB at a value > DL but < RL. The sample result was <5X the blank values and will be qualified "J, B, B3".

Silver was detected in the ICB at a negative value with an absolute value > DL but < RL. The sample was non-detect and will be qualified "UJ, B3".

Lead was detected in the CCB and MB at a value > DL but < RL. The sample result was <5X the blank values and will be qualified "J, B, B3".

Total Cyanide - Batch #197853 and 198863

The high concentration LCS's in both batches had %R's (134/139%) > QC acceptance criteria (81-125%). All sample results were non-detect with the exception of samples 66189-028, -029, -033, -036, -037 and --039. These all had values > DL but < RL and will be qualified "J, A".

Hexavalent Chromium - Batch # 197692

Sample 66197-010 was received by the laboratory and analyzed after 2x the holding time had expired. The sample result was non-detect, and using professional judgment will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: The samples were analyzed within the prescribed holding time and properly preserved except as mentioned above in the summary section.

Calibration

All Analyses: The initial and continuing calibration data met QC acceptance criteria.

Blanks

All Analyses: All blank criteria were met except as mentioned above in the summary section and as follows:

ICP-AES – Metals Batch # 197718 (Samples 66189-021 through –040)
Silver was detected in the ICB/CCB at a value > DL but < RL. Samples 66189-021 through –25, -028, -029 and –031 through 040 were non-detect and will not be qualified.

Barium and lead were detected in the EB, and chromium in the MB and EB, at values > DL but < RL. All associated sample results were > 5X the blank values and will not be qualified.

ICP-AES-Metals Batch # 199132 (Sample 66195-002)

Barium, chromium and lead were detected in the EB at values > DL but < RL. The sample results were > 5X the blank values and will not be qualified.

ICP-AES-Metals Batch # 199969 (Sample 66197-011)

Selenium was detected in the CCB at a value > DL but < RL. The sample result was non-detect and will not be qualified.

Silver was detected in the CCB and MB at a value > DL but < RL. The sample result was non-detect and will not be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analyses

All Analyses: The LCS met QC acceptance criteria. No LCSD was analyzed. No data will be qualified as a result.

Matrix Spike (MS) Analysis

All Analyses: The MS met QC acceptance criteria except as follows:

ICP-AES-Metals Batch # 199969 (Sample 66197-011)

The sample used for the MS was of similar matrix from another SNL SDG. No data will be qualified as a result.

CVAA-Hg Batch # 198713 (Sample 66197-011)

The sample used for the MS was of similar matrix from another SNL SDG. No data will be qualified as a result.

Replicate Analysis

All Analyses: The replicate analysis met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES-Metals Batch # 199969 (Sample 66197-011)

The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified as a result.

CVAA-Hg Batch # 198713 (Sample 66197-011)

The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified as a result.

ICP interference Check Sample (ICS)

ICP-AES (All batches): The ICS-AB met QC acceptance criteria.

All Other Analyses: No ICS required.

ICP Serial Dilution

ICP-AES (All batches): The serial dilution met QC acceptance criteria.

ICP-AES-Metals Batch # 199969 (Sample 66197-011)

The sample used for the serial dilution was of similar matrix from another SNL SDG. No data will be qualified as a result.

All Other Analyses: No serial dilutions required.

Detection Limits/Dilutions

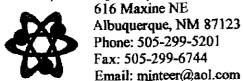
All Analyses: All detection limits were properly reported.

ICP-AES: All soil samples were diluted 2X.

All Other Analyses: No dilutions were performed.

Other QC

<u>All Analyses</u>: An equipment blank and a field duplicate was submitted on the ARCOC. There are no "required" validation procedures for assessing a field duplicate.


No field blank was submitted on the ARCOC.

It should be noted that the COC requested that metals be analyzed by method SW-846 6020.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

MEMORANDUM

DATE:

11/08/02

TO:

File

FROM:

Linda Thal

SUBJECT:

Organic Data Review and Validation - SNL

Site: DSS soil sampling

ARCOC # 605652, -53, -54, -56 GEL SDG # 66189, 66195 and 66197

Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 8260A/B (VOC), 8270C (SVOC), 8082 (PCBs) and 8330 (HEs). Problems were identified with the data package that resulted in the qualification of data.

VOC Batch # 197964

Trichloroethene had a RF (0.22) < than the specified minimum (0.30) but > 0.01. Sample 66195-001 was non-detect and will be qualified "UJ".

SVOC - Batch 197857 (Sample 66189-022, 023 and 025 though 040)

1,2-Dichlorobenzene was detected in the method blank (MB) at a value > DL but < RL. Samples 66189-022 and -023 had 1,2-dichlorobenzene values > DL, < RL and <5X the MB value and will be qualified "U, B" at the RL.

The MS/MSD had %R < QC acceptance criteria (75-125%) and < 40% for hexachlorobutadiene and hexachloroethane. All associated sample results were non-detect and will be qualified "UJ, A2".

SVOC - Batch 199631 (Sample 66189-021and -024)

No MS/MSD, LCS/LCSD or replicate was performed with this batch. As there is no measure of precision, both associated sample results will be qualified "P2".

SVOC - Batch 198215 (Sample 66195-002)

Due to laboratory error, the MS failed %R for most spiked compounds and all surrogates. Several of the MSD compounds were < QC acceptance criteria (25-75%) but > 40% (see DV worksheet). The MSD and the sample passed all surrogate recoveries. Using professional judgment, the failing MS recoveries will not be used to qualify data. However, as there is no measure of precision, the sample results will be qualified "P2".

SVOC - Batch 197643 (Sample 66197-006)

The LCS %R for hexachloroethane (41%) was < QC acceptance criteria (75-125%). The sample result was non-detect and will be qualified "UJ, A".

The MS/MSD was performed on a sample from an unknown SDG. As there is no measure of precision for the sample, it will be qualified "P2".

PCB Batch # 197833 (66197-007)

The surrogate (DCB) %R was < QC acceptance criteria (21-122%) but > 10%. The sample results were non-detect and will be qualified "UJ, A1".

HE - Batch # 198039 (Sample 66189-021 through -040)

The MS %R (54%) and RPD (43%) failed QC acceptance criteria (71-120%/<20%) for 4-amino-2,6-dinitrotoluene. All associated sample results were non-detect and will be qualified "UJ, A2, P1".

HE - Batch # 198044 and 203606 (Sample 66195-002)

The sample was re-extracted and re-analyzed after the holding time had expired. Both sets of results appear on the Certificate of Analysis and both sets of data will be validated.

<u>Batch 198044</u>: The LCS %R was < QC acceptance criteria but > 10% for tetryl. The sample result is non-detect and will be qualified "UJ, A".

<u>Batch 203606</u>: The sample was re-extracted after its holding time had expired. Both sets of results, QC summary's and calibration data are provided. All the re-extracted sample results were non-detect and will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analysis</u>: The samples were properly preserved and analyzed within the method prescribed holding time except as mentioned above in the summary section.

Calibration

<u>All Analysis</u>: All initial and continuing calibration acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC Batch # 197932, 197964 and 199064

Several compounds had %D > 20% but < 40% (refer to DV worksheet). All associated sample results were non-detect and no data will be qualified.

SVOC - Batch 197857 (Sample 66189-022, 023 and 025 though 040)

The initial calibration had a correlation coefficient > 0.9 but < 0.99 for 2-nitrophenol (MSD 8), 2,4-dinitrophenol (MSD4) and 4,6-dinitro-2methylphenol (MSD4). The associated sample results were non-detect and will not be qualified.

The CCVs (instruments MSD4 and MSD8) preceding the samples had a %D > 20% but < 40% for several compounds (see DV worksheet). All associated sample results were non-detect and no data will be qualified.

SVOC - Batch 199631 (Sample 66189-021and -024)

Several compounds had %D > 20% but < 40% (refer to DV worksheet). All associated sample results were non-detect and no data will be qualified.

SVOC - Batch 198215 (Sample 66195-002)

The initial calibration had a correlation coefficient > 0.9 but < 0.99 for 2-nitrophenol. The associated sample result was non-detect and will not be qualified.

Several compounds had %D > 20% but < 40% (refer to DV worksheet). All associated sample results were non-detect and no data will be qualified.

SVOC - Batch 197643 (Sample 66197-006)

Several compounds had %D > 20% but < 40% (refer to DV worksheet). The associated sample results were non-detect and no data will be qualified.

PCB Batch # 197835 (66189-021 through -040)

The CCV preceding samples 66189-037 through -040 had a %D > 20% but < 40% with a positive bias for aroclor 1016. The sample results were non-detect and therefore unaffected by a positive bias; no data will be qualified.

Blanks

<u>All Analysis</u>: All method blank, equipment blank and trip blank acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC

Sample 66197-004 (trip blank) had a toluene value > DL but < RL. All associated samples (66189-008 through ~015) were non-detect for toluene and no data will be qualified.

SVOC - Batch 197857, 199631 and 198215

Bis(2-ethylhexyl)phthalate was detected in the equipment blank (EB) (66197-006) at a value > DL but < RL. All associated samples were non detect with the exception of sample 66189-038 which had a bis(2-ethylhexylphthalate) value > DL and > 10X EB value. No data will be qualified.

SVQC - Batch 197857 (Sample 66189-022, 023 and 025 though 040)

1,2-Dichlorobenzene was detected in the method blank (MB) at a value > DL but < RL. Samples 66189-025 through -040 were non-detect and will not be qualified.

HE - Batch 198171 (Sample 66197-008)

Tetryl was detected in the MB at a value >DL but < RL. The sample result was non-detect and will not be qualified.

Surrogates

All Analysis: All surrogate acceptance criteria were met.

Internal Standards (ISs)

All Analysis: All internal standard acceptance criteria were met.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

All Analysis: All MS/MSD acceptance criteria were met except as mentioned above in the summar section and as follows:

VOC Batch # 197964

The PS/PSD was run on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

SVOC - Batch 197857 (Sample 66189-022, 023 and 025 though 040)

Several compounds (see DV worksheet) had %R < QC acceptance criteria (75 – 125%) but > 40%. Using professional judgment, no data will be qualified.

PCB - Batch 197833 (Sample 66197-007)

Only 500ml of sample was used for the MS/MSD (DF=2X). It is not known what affect this will have on the extraction procedure; no data will be qualified.

HE - Batch 203606

No MS/MSD was extracted with this batch. The sample had already been spiked in Batch # 198044 and all the %Rs were in criteria. No data will be qualified.

HE - Batch 198171

No MS/MSD was extracted with this batch. An LCS/LCSD was extracted and met all QC acceptance criteria for accuracy and precision. No data will be qualified.

Laboratory Control Samples (LCS/LCSD) Analysis

<u>All Analysis</u>: The LCS/LCSD acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC – Soils and Waters

It should be noted that no compound was associated with internal standard 1,4-dichlorobenzene-d4. No data will be qualified as a result.

SVOC - Soils and Waters

It should be noted that no compound was associated with internal standard perylene-d12. No data will be qualified as a result.

HE - Batch 198044

The LCS had a %R slightly < QC acceptance criteria (79-123%) for 4-amino-2,6-dinitrotoluene (74%). The MS/MSD %R was in criteria, and using professional judgment, no data will be qualified.

Detection Limits/Dilutions

All Analysis: All detection limits were properly reported. Samples were not diluted.

Confirmation Analyses

VOC and SVOC: No confirmation analyses required.

PCB: All confirmation acceptance criteria were met.

HE: The sample results were non-detect and therefore no confirmation analysis was required.

Other QC

<u>VOC</u>: A trip blank, equipment blank and a field dup were submitted on the ARCOC. There are no "required" criteria for assessing a field dup. It should be noted that vinyl acetate is on the TAL for soils but not for waters.

<u>SVOC, PCB and HE</u>: An equipment blank and a field dup were submitted on the ARCOC. There are no "required" criteria for assessing a field dup. No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201

Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE:

November 14, 2002

TO:

File

FROM:

Linda Thal

SUBJECT:

Radiochemical Data Review and Validation - SNL

Site: DSS soil sampling

ARCOC 605652, -53, -54, -56

GEL SDG # 66189, 66195, 66197 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with approved procedures using method EPA 900.0 (Gross Alpha/Beta). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: All samples were analyzed within the prescribed holding times and properly preserved.

<u>Calibration</u>

All Analyses: The case narrative stated the instruments used were properly calibrated,

Blanks

No target analytes were detected in the method blank or equipment blank at concentrations > the associated MDAs.

Matrix Spike (MS) Analysis

The MS/MSD analyses met all QC acceptance criteria with the following exception:

Batch # 198970 Sample 66197-012

It should be noted that the sample used for the MS/MSD was of similar matrix from SNL SDG 65919.

Laboratory Control Sample (LCS) Analysis

The LCS analyses met all QC acceptance criteria.

Replicates

The replicate analyses met all QC acceptance criteria with the following exception:

Batch # 198970 Sample 66197-012

It should be noted that the sample used for the replicate was of similar matrix from SNL SDG 65919.

Tracer/Carrier Recoveries

No tracer/carrier required.

Negative Bias

All sample results met negative bias QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

Other QC

An equipment blank and a field duplicate was submitted on the ARCOC. There are however, no "required" data validation procedures for assessing a field duplicate. No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Data Validation Summary

Site/Project: OSS SOII Sampling Project/Task #: 7223. 02.03.02	# of Samples: N 2 4 12 Matrix: Soil 4 Agueous
AR/COC#: 605652 ~ 53 - 54 - 56	Laboratory Sample IDs: 66/89 - 00/ 1/20 - 002
Laboratory: CFL	66197 - 001 thru - 012
Laboratory Report #: 66/89, 66/97 (#zo)	

					Analy	/sis				
QC Element		Org	anics			Inor	ganics			1 kx avalen
	VOC	svoc	Pesticide/ PCB	HPLC (HE)	ICP/AES	GFAA/ AA	CVAA (Hg)	CN V V V T,A V	RAD	Other .
1. Holding Times/Preservation	~	✓	✓	UJHT	V	NA	\ \ \ \	V	V	Ww 1
2. Calibrations	YJ	V	·	✓	V		✓	V	V	v
3. Method Blanks	v_	UB V	✓	/	J.B,B3 J.B3		UJ, J, B3	V	V	v
4. MS/MSD	V	V1, 192 P2	V	U3,193,1	V		V		V	V
5. Laboratory Control Samples	✓	V 15,9	V	131A V	V		/	JA	V	V
6. Replicates		, and the second			YB			V	V	V
7. Surrogates	V	V	V VJ, AI	V	/				en a markary si	
8. Internal Standards	V	V							all significant	
9. TCL Compound Identification	V	V		A Second State of the Seco						
10. ICP Interference Check Sample					/					
11. ICP Serial Dilution										
12. Carrier/Chemical Tracer Recoveries									NA	
13. Other QC	TB EB	DUP EB	DUP FB	DUP	DUP FB		DUP FB UJ. J. B3	DUP	DUP F.B	00 P 678

1	-	Estimated	Check (√)	=	Acceptable			
U	=	Not Detected	Shaded Cells	=	Not Applicable (also "NA")			
UJ	=	Not Detected, Estimated	NP	₩	Not Provided		N II .	
R	=	Unusable	Other:			Reviewed By:	Dual	Date: //- 1/4.02

Site/Project:	033 5011	Jandin AR/COC#: 605652 - 3	13, -54, -56 Laboratory Sample IDs:	66189 - 001	the - 040
		Laboratory Report #:66	•	66195 - 00	1 4 -002
of Samples	LT DIHLE 12	Matrix: So// & AzO	,	66197 - 0	01 7/10 -012

Sample ID	Analytical Method	Holding Time Criteria	Days Holding Time was Exceeded	Preservation Criteria	Preservation Deficiency	Comments
66195 - 002-RE	SW-846 8330	121 days	14 days	NA	NA	UJ, 4T
66197-010	SW-846 7196A	ayyour	27 hours > 2x HT	NA	NA	UJ, 14T
				111111111111111111111111111111111111111		

Reviewed By:	dhal	Date:	11-11.02
--------------	------	-------	----------

Volatile Organics (SW 846 Method 8260)

Page 1 of 2

	CAS#	SS Soll Sampling 3FK SW-8H6 826 Name	1	1	Intercept	Ι_	-	11	Callib. RSD/ R ²	•	CCV %D		Method	LCS	LCS	LCS	мѕ	MsD	MS	Fi D	eki up.	Eq Eq	97- ulp.	CC197 Trip Blanks	- 002 ,	hov
		(1	NE	ا د د	(,>	.05_	1;	<20%/ 0.99⊋].,:	20%	,]	! 7	1,	ر ا	1.2.0	(,,	l, ,	1	R	PO	-514 -41	erika oo	SPANA	shee	الاد . ک
1	71-55-6	1.1.1-trichloroethane	1.7	0.10	<u> </u>	1/	- ~	1	<u> </u>	1	7 (7	V V	/	 	NA	 	 	 	<u> </u>	71			-7 -7		}
		1,1,2,2-tetrachioroethane		0.30		ij		11		ΤÝ	7	Ť	7	 	1	 	 		 	1						
-	79-00-5	1.1.2-trichloroethane	11	0.10		П		††		\top		11	1 				1			1			-			
_		1.1-dichloroethme	11	0.10		П	-	77		11		11	1	 	 	} 	 	1	1	,						
ì		1,1-dichloroethene	11	0.20		П	7	\top		T	1	П	1-1	17	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	177	177		\Box	1					
i		1.2-dichloroethune	11	0.10		П		71		11	\neg	11		+	1	,	-	12-2-		1	_					
ì		1.2-dichloroethene(total)	1	0.01		П	_	П		17		\sqcap		1			1		1							1
ì		1,2-dickloropropuse	\overline{V}	0.01		П	7	77				11		1	1		<u> </u>				_					
ī	78-93-3	2-Intenone (MEK) (10xMk)	_	0.01			1		,	\prod		П								П						
ī	110-75-8	2-chloroethyl vinyl ether	1		<u> </u>	П	\neg	Ĭ		11		\sqcap	11-		<u> </u>		1									
2		2-hexanone (MBK)	1.7	0.01	1	П	_	1		\sqcap		Ħ	7-		1		1		1	М	_				,	
_	108-10-1	4-methyl-2-pentanone (MIBK)	11	0,10						\prod							 			П					- 	
П	67-64-1	acctone(10xMk)	11	0.01	7 .7	\vdash	- \	む		1		11	1-1	 	1	 	† 	 	 	\vdash						
_	71-43-2	heattean	††	0.50		П	1	Ħ		1-1		Ħ	1	1./	~		1.//	VV	11	\vdash	1		-			
_	75-27-4	bromodichloromethane	††	0.20		П	7	71	-	17	-	11	+ +	 _			 	-		1	-+		_			
	75-25-2	bromotions		0.10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	П	<u></u>	H		11	+	\exists		1			 			\vdash	-+					 -
	74-83-9	bromomethane	Ħ	0.10		Γf		П		11	_ /	্ৰা	- 	1	 		†			\vdash	_					
	75-15-0	carbon disulfide	11	0.10			_	77		T		v	1 1	1	1					\vdash	_					
	56-23-5	carbon tetracistoride	11	0.10	1	П	7	11		17	\neg	П		1	,		1				_†					
2	108-90-7	chlorobensene	T	0.50		П	7			\sqcap	7	П	7-7		V		1//			Γ				1		
	75-00-3	chloroethane	11	0.01	./	П	$\overline{}$	1	V	П		П	1							\Box	_					
_	67-66-3	chioreform	11	0.20		M	\neg	П		ਜ਼ਿ	\neg	11		1						\Box	_					
_	74-87-3	chloromethane	11	0.10		7	7	1	,	12	5	11	1	1			 									
_		cis-1_3-dichloropropene	1	0.20				17		12		11	1	1			1			\Box	7					
_		dibromochloromethane	11	0.10		Π	7	\top		To.	7	77	1			 										
		cthylbenzene	\top	0.10				77		\prod	,	71	7-1												 +	
		methylene chloride (10xb/k)	Π	0.01		\triangleright	$\overline{\mathcal{L}}$	1	2	\Box	,	7									_†					
		styrene		0.30		T				\prod	¥	তা					T		-		_					
2		tetrackioroethene	Π	0.20				T		\prod	_ (7	1	E			T			\Box	7			·		
žΤ		toluene(10xblk)	\sqcap	0.40]		D.	Œ.	īĪ		12							_			JDL ZRIL	to b	197
╗	10061-02-6	trans-1,3-dichloropropene	TT	0.10				Γ			2										_					سلسلس
_		trichiorvethene	11	0.30		77	7,1			Γ	٠ -	11	. 1 - 1 - 1 -	V				7		\Box						
		vinyi chloride	Π	0.10		_ ;	<u> </u>	4		\prod		П	1				<u> </u>		~~*	\dashv		_				
_		xylenes(total)	11	0.30		Ī		П				П								7	_					
		1,2- DICHOLOGHER					T	П		\Box		П								_	_					
一	Jorgan.	() = Dict to me //	LI.	4	l	7	_	11		1		11								\dashv	_		_			 -

roject:		". <u> </u>	, , , , , , , , , , , , , , , , , , ,) GO Butan	···						
atory;	Laboratory	y Report #:		# of San	nples:		Matrix:				
	Surro	gate Recove	ry and Intern	al Standard	Outliers (SW	846 Metho	d 8260)				
Sample	SMC 1	SMC 2	SMC 3	IS 1 Area	IŞ 1 RT	IS 2 area	IS 2 RT		IS 3 area		3 RT
		· 									
MC 1: 4-Bromofluorobenz MC 2: Dibromofluorometi	nane IS 2; Chor	obenzene-d5		Comm	ents: Barch	# 197	964 PS/A	20 D	66/63	SYX	soç
MC 3: Toluene-d8	IS 3: 1,4-I	Dichlorobenzene	:-d4		COVS	Bouch	197932	L	8.03	5 <i>4</i>	1-1
										84	
								₹.	8.01	NO SA wed pot	NS/I

Volatile Organics (SW 846 Method 8260)

Page 1 of 2

		GEL			itory Repo	rt #:		66	19,										9.07	TARU	- 00	14	
	ds:	<u>₩ - 8 46 8 460</u>	Т	1	Intercept	Calib.	R	dib. SD/		D D	Met						06 4 MSD		Flekti	Equip.	Trip		T
	ÇAS II	, realito	Ĺ	RF		>.05	ব	99	20	1%	BI	ks			RPD	.		RPD	Dup. RPD	Blanks	Blanks	ļ	
1 (1-55-6	1,1,1-trichloroethane	\overline{V}	0.10		V]	/_	V		. î			i		NA							
2]	9-34-5	1,1,2,2-tetrachloroethane		0.30																	l		
2]	9-00-5	1,1,2-trichloroothane	${\mathbb L}$	0.10			<u> </u>						L										
<u> </u>	5-34-3	1,1-dichloroethane	Щ	0.10				لـــــــــا						<u> </u>				ļ					
_		1,1-dichloroethere	Щ.	0.20		<u> </u>	↓_	<u> </u>	<u> </u>			<u> </u>	12	l V	1.1/_		<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	1_
		1,2-dichioroethane	Ш	0.10	<u> </u>	ļļ	ــــ	ļ			<u> </u>		<u> </u>			ļ	Ι\				ļ	<u> </u>	ا ــــــــــــــــــــــــــــــــــــ
		1,2-dichloroethene(total)	<u> </u>	0.01	 		ــــــ					L	 		ļ	ļ	17-	ļ				<u> </u>	┸-
1		1,2-dichleroprogane	\boldsymbol{arphi}	0.01			<u> </u>		.		ļ		<u> </u>		L	ļ	$\vdash \downarrow$		 _		<u> </u>		4
1	78-93-3	2-butanone (MEK) (10xhBs)	V	0.01	V	V	V																
1	10-75-8	2-chloroethyl vinyl ether						<u></u>										<u> </u>					
2		2-hexazione (MBK)	1/	0.01			1									<u> </u>	ļ. <u></u>	Ι.					
2		4-methyl-2-pentanone (MIBK)		0.10																			
Γ	7-64-1	acetone(10xblk)	П	0.01		V	<u> </u>	_			L												
Γ	/1-43-2	bensene		0.50			<u> </u>							V	1								\Box
1 1	15-27-4	bromodichloromethane	П	0.20															Λ				
3	5-25-2	bromoform	11	0.10			<u> </u>		Ш														I
	4-83-9	bromomethane	-	0.10																			I
	5-15-0	carbon disulfide		0.10	<u> </u>																		
	6-23-5	enrhou tetrachioride	٠	0.10	<u> </u>						L												
	08-90-7	chiorobenzene		0.50	<u> </u>		└ ─	<u> </u>					<u></u>	V	<i>\\</i>					<u> </u>			┸
		chloroethane		0.01	Ļ		<u> </u>			24										\			
	7-66-3	chloroform		0.20	1	1	┞	· · ·		<u>Z</u>	-			<u> </u>									↓
	4-87-3	chloromethane		0.10		 	\vdash		- 2		 						 _						—
-		cis-1,3-dichloropropene	-	0.20	 	┼─┼─	-	ļ	- 3	_	 		 										4
_		dibromochloromethane		0.10	 	} 	├	├		Υ_							 						+
		ethylbenzone (10.11)		0.10	 		V	/			-	-											┿
_		methylene chloride (10xblk)		0.01	V	1-	⊢ ~	,—	 		$\vdash \vdash \vdash$									\			+
		styrcae	•	0.30	 	 -	-	\vdash				-										 	
		tetrachioroethene			}	} }	-									· · · · · · · · · · · · · · · · · · ·	-				 		┼
		toluene(10xblk)	•	0.40	 	 	 		-3	7			$ \lambda$	V	-1/-						 		+
_		trans-1,3-dichleropropene	-	0.10	 	,276.3	 		<u> </u>	}				V			 				 \ 		 -
		trichloroethene		0.10	 	V	 		 	\leftarrow			Y	-			 						┼
		vinyl chloride		0.10	 -	 	┝										 -∤				- \ 		
		xylenes(total) 2 - DICA/ONS ethers		10.00	 	1	-	├ ─┤	 		 										/		+
	100 - 1	1,2- DICHOPOEKE	ŧ۶	 	 	 	 	١													 \		+
	77(A) ~	I WAS PILLIONOPINE	~~	1	<u> </u>		Ь	Щ.	-			-							لــــــــــــــــــــــــــــــــــــــ				ــــــــــــــــــــــــــــــــــــــ

olatile Organics	AR/CYOC	#: 60	5654 -23	- 56 - 50 Ratch #	·s·			Pag	e 2 of 2
/Project:	Laborator	y Report #:		# of Sar	nples:	Ma	trix:		
			ry and Intern						
Sample	SMC 1	SMC 2	SMC 3	IS 1 Area	IS 1 RT	IS 2 area	IS 2 RT	IS 3 area	IS R
IN CRITERIA									
				· · · · · · · · · · · · · · · · · · ·					
	 								
SMC 1: 4-Bromofluorobenzene SMC 2: Dibromofluoromethane SMC 3: Toluene-d8	IS 2: Cho	robenzene robenzene-d5 Dichlorobenzene	e-d4	Comm	ents:	,		- 11 - 1	
Summary : Baren 1	97932	66189 -	001 Hn 0	20 5011					
			001						
	199064	66197	- 00/ -	EB All	' EA		NO		
	•			TB tor			WO		

800	ratory	/:	S Soil Sampling A	abo	ratory	Report #:		66	/8	. .	, _	66	793	-,			- (1) -		795	Ø	·		- 002			
Meth	rods:		JW-846 BX16	<u>.</u>												1-1	22 = 2 A	. <u>0)</u>	/9	-64/)			- 002			
of:	Sampl	les:	ال Matrix:		<u></u> _	01/5								Ba	tch #s:	197	857			9631			198215			ic cres
	ı	CAS#	NAME	TCL	Min	intercept	Ca			R		CCV %D	Me BI	thod anks	LCS	LCSB	LCS RPD	MS	MSD	1 1	ಕಿ ಕಿಸ್ Field Dup. RPD	Equip	Fleid Blanks	1 %	60	С
				╄-	<u> </u>	123						70%	1/_	a) S	10	0	3	/ a . s	/ 23	123		 	 	િ	- 1	
2	_		1,2,4-Trichlorobenzene	ļ.	0.20		4	XX	14	¥-	4	\mathcal{V}_{+}	↓ ⊻	ΥY	1-4-	<u> </u>	<u> </u>	<u> </u>	⇍ᅶ	86	ــــــــــــــــــــــــــــــــــــــ	1-4	NA	↓ ५	\leftarrow	لـــــــــــــــــــــــــــــــــــــ
1		95-50-1	1,2-Dichlorobenzene	Ц	0.40		Щ.	11	#	\bot	4	-	44		ļ	<u> </u>	<u> </u>			ļ		╂┼-		41	_	
1			1,3-Dichlorobonzene	Ц	0.60		Щ	\sqcup	4	╀	11		<u>k</u>	1-1	-	 _			↓			-	-}}	} ~-}	 -	
1		106-46-7	1,4-Dichlorobenzene	#	0.50		Щ.	11	#	4	#		#	1-1	1V	1	V .		<u> </u>	2.01	-	 	-}}-	4	 	
3			2,4,5-Trichlorophenol	11	0.20		Щ.	\sqcup	#	\perp	╁	 ;	₩.	┷╌┼	1	<u> </u>	V		G. 1.2						\longrightarrow	
3			2,4,6-Trichlorophenol	4	0.20		Ц.,		#	_	4	├	Д.	+-+	12	1	V	10 /	मा ठ	10		 		4-4		
2		120-83-2	2,4-Dichlorophenol	44	0.20		Щ	\sqcup	Щ	+	$\!$	1	Щ.	1	<u> </u>	<u> </u>	ļ		 	ļ	-		 	4		_
2			2,4-Dimethylphonol	Ц	0.20		Щ	14	Щ	<u>+</u>	4	\vdash	Щ.	1-1	ļ	L			 	ļ			-	- 24	2.5	
3			2,4-dinitrophenol	Ц	0.01	$\mathcal{A}_{\mathcal{A}}$	44	1	V	<i>1</i> /	7	igspace	Щ.	↓ ↓	ļ	<u> </u>			↓					1		
3	BN	121-14-2	2,4-Dinitrotoluene	Ц	0.20	/ /	4	1	<u></u>	<u>.</u>	4		11_	1-1	1/	LV_	V	19	V V	119		1 1	1_1_	1_1		·· · · · · · · · · · · · · · · · · · ·
3	BN	606-20-2	2,6-Dinitrotoluene	Ц	0.20		Щ	11	11	\perp	Ц		11_	1									1-1-	1		
3	BN	91-58-7	2-Chloronaphthaicne	Ц	0.80		Щ	\sqcup	Ц.	1	Ц		Ш.		<u> </u>									1		
1	A	95-57-8	2-Chlorophenol	Ш	0.80		Ш		Ц.	\perp	1	<u> </u>	Ш.	1 1	12	V	V	VV	1//	/ 85			 			
2	BN	91-57-6	2-Methylnaphthalene	Ц	0.40		1	Ц	11	1	1		11	11		Ĺ			1					1		
1	A	95-48-7	2-Methylphenol (o-cresol)	Ц	0.70			Ц	Ц		1		\coprod	<u> </u>	1	<u> </u>	<u> </u>	5 2 1	150 🗸	<u>v 90</u>				lacksquare		
3	BN	88-74-4	2-Nitrouniline	Ц.	0.01	\checkmark \checkmark	\checkmark	V	⊻		1		Ш											\Box		
2	Α	88-75-5	2-Nitrophenol	Ц	0.10	1 4	<u>۷</u>	\ \	.50	de	<u>#</u>		Щ.,	1 1		<u> </u>			<u> </u>							
5]	BN	91-94-1	3,3'-Dichlorobenzidine	Ц	0.01	<i></i>		Ш	Ц		Ц		Щ	<u> </u>	<u> </u>				ļ	L1		1				
3	BN	99-09-2	3-Nitroeniline	Ш	0.01	∀ √	<u> </u>	1	¥/		V.								<u> </u>	<u> </u>			<u> </u>	$oxed{igsquare}$		
4	٨		4,6-Dinitro-2-methylphenol	\prod	0.01	1	<u>/</u>	\coprod	2			X	\coprod	1								1		$oxed{\Box}$		
4			4-Bromophenyl-phenylether	\coprod	0.10		\int		\coprod	. 7	\prod	,	\prod													
3]	BN	7005-72-3	4-Chlorophenyl-phenylether	\prod	0.40		Z		QL.																\Box	
2	A	59-50-7	4-Chioro-3-methylphenol	\prod	0.20		$oldsymbol{\mathbb{I}}$		П						V	V	V	/ 18	V V	11	<i>+</i>					
2	BN	106-47-8	4-Chloroaniline	\prod	0.01		Ţ		\prod		,	32														
1	Ā	106-44-5	4-Methylphenol (p-cresol)	Γ	0.60			П	IT	Π		V		\prod												

MSD 8 # MSD 4 SA 22-36 (exc). 24) SA 37-40 B-20 -

Semivolatile	Organics
--------------	-----------------

Page 2 of 3

						•		-				<u> 2</u> P																
	1.81	bora	tory R	eport #: _			_							# of St	mples:				M	iatrix:	_							
CAS#	NAME	TGL	IMIO	Intercept		RF	<u>`</u>	RS R	P/	%	Ð	Med Bla	hod	LCS	LCSD	LCS RAPO	MS	MSD	MS RPD	Du	р.					C0	√ D	C(N °/0
		↓_	↓	1	1/2	>.05			9	036	74. %'	<u></u>	<u> 3</u>	14	a	3	/ 3	/ 3	1 3		_		7-			(2	<u> </u>	D
		44		ļ	X	¥	A,	2 X		ĽZ.	1	4.	<u>/ y</u>	γ		 	}		 	14		_ Y	\sim	~	<u>A</u>	 }	<u> </u>	\ \ \ \ \
		4		ļ	\coprod	4	Ш		Щ	<u> </u>	1	Ц.	┷╅╌	<u></u>	<u></u>		V 9			_						 }		- 2
		11		<u> </u>	Ц	<u>↓</u>	Ц	_	Щ	4	_	Щ	1	\checkmark	<u> </u>	1	V V	<u>/ /</u>	V /0	k	Щ							
208- 9 6-8	Acenaphthylene	4		<u> </u>	Ц	_	Ц		Ц	4		Щ	$\sqcup \bot$	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ļ	1_1				لـــــا				
120-12-7	Anthracene	44			11	1	Ц		Ц	Ц.			$\downarrow\downarrow$	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>	1				<u> </u>	Ш		<u> </u>	
56-55-3	Benzo(a)anthracene	11			Ц	╧	Ц	1	Щ	4	1	 			<u> </u>	<u> </u>	<u> </u>		ـــــــ	1_1								1
50-32-8	Вел20(в)ругеле	Ш	0.70	<u> </u>	Ц	⅃.	Ц					Ш		<u> </u>		<u> </u>	丄											<u> </u>
205-99-2	Ben20(b)fluorenthene	Ш	0.70	<u> </u>	Ш	L	Ц	Ŀ	ш"			Ш		<u> </u>		<u>L_</u>	Ш.											
191-24-2	Benzo(g,h,i)perylene	П	0.50	√	V		ļ	6			L				L	l	L		<u>L</u>	11				Ĺ			Ĺ	
207-08-9	Benzo(k)fluoranthene	П	0.70		П]_	\prod				1		\prod	<u> </u>						<u> </u>								Γ_{-}
111-91-1	bis(2-Chloroethoxy)methane	1	0.30	· ·		Ţ	\prod							T	L					I}								
111-44-4	bis(2-Chloroethyl)ether	П	0.70		П	\top	Π	П	Ţ		Ţ	П		J]		ŢŢ						-3	1.6	
108-60-1	bis(2-chloroisopropyl)ether	T	0.01	1	Π	Т	Π		Т		Τ	<u> </u>							T^{-}	\sqcap						1	~	
117-81-7	bis(2-Ethylhexyl)phthalate	\top	0.01	V	\overline{V}	7	T	7	Т	Т	┰								T			2.30	85					
85-68-7	Butylbenzylphthelate	Ħ	0.01		Π	\top	П	П	Т		T											, V	\					
86-74-8	Carbazole	T	0.01	1	П	7	П	\sqcap	Ţ		\top		17						\top	1						- 1	<u> </u>	1
218-01-9	Chryscae	11	0.70		П	て	П	· q ·				П	11			1			\top							1		
53-70-3	Dibenz(a,h)authracene	11	0.40	1//	V	./	T.	"	П		1																	
132-64-9	Dibenzofitran	11	0.80	1	Π	Ť	П	i	T			1	17			1			\top	1							$\overline{}$	7
84-66-2	Diethylphthalate	††	0.01	1	\sqcap	1	\top		\top	\sqcap	_	-													\Box			T^-
	Dimethylphthalate	11	0.01	1	Π	1	††	1 1	7		1	1	11	7	,	T-	1		1	1								
84-74-2	Di-n-butylphthalate	††	0.01	1	\dagger	╁	11	1	T	\top			††	1		1		 -	\top	1	\neg						1	1
17-84-0	Di-n-octylphthalate	††	0.01	 	T	+	T	Ħ	T	1	1	1	1	T	Ι	 	T		 								 	1 -
205-44-0	Fluoranthene	††		1	Ħ	1	$\dagger \dagger$	\sqcap	\sqcap		1	ſΤ	$\dagger \dagger$	T^-	1	T			1	↾							<u> </u>	T^-
86-73-7	Fluorene	††		7	7	\dagger	╁	' 十	H	\top	十	f	† †	1-		 	—		 		~							
118-74-1	Hexachlorobenzene	$\dagger \dagger$	0.10	×	竹	+	₩		7	+		1	1	1,7	1,7	1	9 12	CL 47	111	†	-						 	
		+†		 	H	+	₩	⇈	#	+	+	††	† †	٠,٠		1							┢╼┥	_			+	+-
		††		17	t	+	$\dagger t$	汁	\forall	+	7.9	 -	11	1	 	 -	7 / Ju	<u> </u>	<u> </u>	1			 		 	·	_	+
67-72-1	Hexachloroethane	╅┪	0.30		۲	-	₩	\vdash	\dashv	╁┼╾		╫	┿	1.7	1.7	177	36 19		 	╀─┤			\vdash		\vdash		_	┼
	CAS # 100-01-6 100-02-7 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 111-91-1 111-44-4 108_60-1 117-81-7 85-68-7 86-74-8 218-01-9 131-11-3 84-74-2 117-84-0 206-44-0 86-73-7 118-74-1 87-68-3 17-47-4	CAS # NAME 100-01-6 4-Nitroaniline 100-02-7 4-Nitrophenol 83-32-9 Acenaphthene 208-96-8 Acenaphthene 120-12-7 Anthracene 56-55-3 Benzo(a)anthracene 56-55-3 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(g,h,i)perylene 207-08-9 Benzo(k)fluoranthene 111-91-1 bis(2-Chloroethoxy)methane 111-44-4 bis(2-Chloroethoxy)methane 111-44-7 bis(2-Chloroethoxy)methane 117-81-7 bis(2-Ethylheryl)phthalate 85-68-7 Butylbenzylphthalate 85-68-7 Butylbenzylphthalate 218-01-9 Chrysene 132-64-9 Dibenzo(g,h)anthracene 132-64-9 Dibenzo(g,h)anthracene 132-64-9 Dibenzo(g,h)anthracene 132-64-9 Dibenzo(g,h)anthracene 131-11-3 Dimethylphthalate 131-11-3 Dimethylphthalate 17-84-0 Di-n-octylphthalate 17-84-0 Fluoranthene 86-73-7 Fluorene 118-74-1 Hexachlorobenzene 87-68-3 Hexachlorobenzene 87-68-3 Hexachlorobenzene 87-68-3 Hexachlorocyclopentadiene	CAS # NAME CAS # NAME 100-01-6 4-Nitroantline 100-02-7 4-Nitrophenol 83-32-9 Acenaphthene 208-96-8 Acenaphthene 120-12-7 Anthracene 56-55-3 Benzo(a)anthracene 56-55-3 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 191-24-2 Benzo(b)fluoranthene 191-24-2 Benzo(k)fluoranthene 111-91-1 bis(2-Chloroethoxy)methane 111-91-1 bis(2-Chloroethoxy)methane 111-44-4 bis(2-Chloroethoxy)methane 111-48-7 bis(2-chloroethoxy)phthalate 85-68-7 Bunylbenzylphthalate 85-68-7 Bunylbenzylphthalate 218-01-9 Chrysone 132-64-9 Dibenzofiran 84-66-2 Diethylphthalate 131-11-3 Dimethylphthalate 131-11-3 Dimethylphthalate 131-14-4 Di-n-butylphthalate 14-74-2 Di-n-butylphthalate 17-84-0 Di-n-octylphthalate 17-84-0 Fluoranthene 86-73-7 Fluorene 118-74-1 Hexachlorobenzene 87-68-3 Huxachlorobutadiene 77-47-4 Hexachlorobenzene	NAME C Min RF	NAME C Min. Intercept	Laboratory Report #:	Laboratory Report #:	Laboratory Report #:	CAS # NAME C Min. Intercept R8 R8 R8 R8 R8 R8 R8 R	Laboratory Report #:	Laboratory Report #:	Laboratory Report #:	CAS # NAME C Min. Intercept RF RSD RSD	Laboratory Report #:	Laboratory Report #: # of St	Laboratory Report #: # of Samples: Cajib Responsible Cajib Cajib Responsible Cajib Cajib Cajib Responsible Cajib Cajib Cajib Responsible Cajib Cajib	Laboratory Report #: # of Samples: # of Samples:	Laboratory Report #: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples: # of Samples:	Laboratory Report #: # of Samples:	Laboratory Report #: # of Samples: M Min Ref R	Laboratory Report #: # of Samples: Matrix CAS # NAME	Laboratory Report #: # of Samples: Matrix: CAS # NAME	Laboratory Report #: # of Samples:	Laboratory Report #: # of Samples: Matrix:	Laboratory Report #: # of Samples: Matrix:	CAS # NAME T Min Intercept Callb. RSD RS	Laboratory Report #: # of Samples: Matrix: CAS # NAME T	Laboratory Report #: # of Samples: Marius

Labor	ntory:				_	Laborat	ory Repor	rt #:			· —					f	of San	aples: _			,	Matri	‹ :								
BNA	CAS#		NAME		TGL	Min. RF	Interce	ı	Cali RF	-	Cat RS R	D/ 2 %/	CCV %D	N	Method Blanks	1	LCS	LCS RPB	MS	MSC	MS RPD	Field Dup. RPD	Equi Blan	ip. iks i	Field Blank	d ,	C CV % 5	- 1	°/°		
BN	193-39-5	indeno	(1,2,3-cd)py	rene		0.50	-\}/- -	- 1,	7.7	7	7	· /	500	1	_ 	 	- o t	13-	1	' 	+>	1	 	- -	NE	4	~	, 	<u> </u>	廾	
BN	78-59-1	Isophor		-		0.40	- - -	-H	Ť	7	ĬŤ	Ť	++	M	-Y-Y	┼	 -	 	╁╌┈┈	1	+	1	1 Y		115	7	Y	╅	- Y	\dashv	
BN	91-20-3	Naphth			+	0.70		-#	-			+1		-+1	-†-†	 -	· · · · · · · · · · · · · · · · · · ·	 -	+-	†	 		1	-	+	-+	-+				
BN	98-95-3	Nitrobe			+	0.20		-+	-	\top		$\dashv \dagger$	+	-	-1	1.7	V	1	0 4	15 5	3 / 9	<u> </u>	\vdash	\dashv	-	_	+	-+	7.	7.2	
BN	86-30-6		sodiphenyl	amine	-!	0.01		-	1				1.	1		1	<u> </u>	 	7-0	1				_	7	7		+			
H _{BN}	621-64-7	(1)	oso-di-propy	elamina.		0.50		-#	\vdash	╌┼┤	╂┼╌┽	+	+		╼┼╍╅	╅╾	-		-	 		 -	╂┷┷┼	-	-+	-+		-	- 	\dashv	
A	87-86-5		njotobpenoj njotobpenoj		4	0.05	 	- 1	-	╃┥	 		+-		-+-	1	Y.	\ <u>/</u>	<u> </u>	<u> </u>	9		┢═┼	-	-	-					
BN	85-01-8	Phenan				0.70	-₩		-	+	Y	+1	+++	+	┯┾╌┤	1	Y-	 ^ -	K-7 ₀	<u> </u>	10	4	╂┈╼┾	-	-+	+	\dashv	+			
A	108-95-2					0.80	+	-#	-	+1		+	\dashv	Н		1.7					V 9	B -	\leftarrow	-+	\dashv	-+	+	-+	∤		
	129-00-0				_	0.60	1/-	Ч,	\vdash	-H	000	- 	┯	-++	-1-	17	\ <u>\</u>	V	<u> </u>		1 4 16		╀┈┼	-		╌┼		-+			
+=-	1	+	hery/an	4400	+		 	-fi		+	***	, + {	- - 		-1		 -	 - -	 	<u> </u>	V 's		 	_	-	1	+	+	~	{	
	+		~~~		_			~+'	у	-+-	┝╼┸		\dashv	┝╅┥	_+-	+			+	 	+		!+	~		-+					
W.L	Sam	Die	SMC 1	SMC	_	_	Recove	_		_		6	BMC 1	· I s	SMC 8	↓]	Com	ments:	19	1 <u></u> 1857	: m	8 1,2	Did	1010	inze	وبد	<u>ا</u> ح	٨٥	۷,	ب وبرِ	
_	Sam 66/95- 002 Sam SMC 1: Ni SMC 4: Ph SMC 7: 2-2	ms o le trobenza	/ 8 Ø Au me-d5 (BN)	/7	SM SM	MC 3 /8 C 2: 2-F C 5: 2-F	Recove SMC 4 /8 //// 0_ // // // // // // // // // // // // //	3 N - - - - - - - - - - - - - - - - - - -	AC 5	3	S S S	MC :	NA B: p-Ta	/ phoz	SMC 8	I (B)) } }	ments: 2Nimpo 2,4 Din 2 Methy	Have Hopher 11 176	42-3 BKU, 2 DINING	4 5 /	75DB 2-04-≯/4	r -d waci wac	923 40~0 K/0 h	>0 46w 4e/	DL Tadu	LR vene	ላ ይ ነ ሬ	\bullet \text{\(\text{\\ \etitx{\\ \etitx}\\ \et	<i>U</i>	,
_	66/95- 002 James SMC 1: Ni SMC 4: Pb	ms o le trobenza	/ 8 Ø Au me-d5 (BN)	/7	SM SM	MC 3 / 6 // 6 // 6 // 6 // 7 // 7 // 7 // 7	SMC 4 /8 //e/// // // // // // // // // // // /	SN / ev myl(I ol(A)	AC 5	(BN)	S S S S	MC (<i>NA</i> 3: p-Ta 5: 2,4,6	/ phoz	NA nyi-d14 (I (B)) } }	ments: 2Nimpo 2,4 Din 2 Methy	Have Hopher 11 176	A2 - 8 BKU, 2 DINING	4 5 /	7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02.	2 -0 64 aci 64 aci 64 67 70	1000 Hora Ms E	>c ebw ebw ee/l ory /m.	od Tad Vaca Jo	iene e s c co	4 2 / / / / / / / / / / / / / / / / / / /	√ ∠ 40 9.0 2.3	10%	92
_	66/95- 002 James SMC 1: Ni SMC 4: Pb	MS o le trobenze enol-dó (2-Chloro	/ 8 Ø Au me-d5 (BN)	/7 50 A)	SM SM SM	MC 3 /6	SMC 4 /8 //e//0_ 2/6 luorobiphero luorophero Dichlorobo	SN 	AC 5	(BN)	S S Out	MC :	### NA 19 19 19 19 19 19 19 1	phoz Trit	NA syl-d14 (romoph	BN))	ments: 2 Ninop 2, 4 Din 2 mehy	. 19. Anne Marie 11. 11.6	22-3 840,2 0101MEC	4 S.	7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02.	r -d waci wac	1000 Hora Ms E	>c ebw ebw ee/l ory /m.	od Tad Vaca Jo	iene e s c co	4 2 / / /	√ ∠ 44 9.0 2.3	10%	92
UKA 215	66/95- 002 Ja.m., SMC 1: Ni SMC 4: Pb SMC 7: 2-3	ms o le trobenze encl-dó (2-Chioro)	/ B Ø M me-d5 (BN) (A) phenol-d4 (/7 50 A)	SM SM SM	MC 3 /6	SMC 4 /8 //e//0_ 2/6 luorobiphero luorophero Dichlorobo	SN 	AC 5	(BN)	S S Out	MC :	### NA 19 19 19 19 19 19 19 1	phoz Trit	NA syl-d14 (romoph	BN))	ments: 2 Ninop 2, 4 Din 2 mehy	. 19. Anne Marie 11. 11.6	22-3 840,2 0101MEC	4 S.	7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02.	2 -0 64 aci 64 aci 64 67 70	1000 Hora Ms E	>c ebw ebw ee/l ory /m.	od Tad Vaca Jo	iene e s c co	4 2 / / /	√ ∠ 44 9.0 2.3	10%	92
_	66/95- 002 Ja.m., SMC 1: Ni SMC 4: Pb SMC 7: 2-3	ms o le trobenze encl-dó (2-Chioro)	## AM Med	/7 50 A)	SM SM SM	MC 3 /6	SMC 4 /8 //e//0_ 2/6 luorobiphero luorophero Dichlorobo	SN 	AC 5	(BN)	S S Out	MC :	### NA 19 19 19 19 19 19 19 1	phoz Trit	NA syl-d14 (romoph	BN))	ments: 2 Ninop 2, 4 Din 2 mehy	. 19. Anne Marie 11. 11.6	22-3 840,2 0101MEC	4 S.	7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02.	2 -0 64 aci 64 aci 64 67 70	1000 Hora Ms E	>c ebw ebw ee/l ory /m.	od Tad Vaca Jo	iene e s c co	4 2 / / /	√ ∠ 44 9.0 2.3	10%	92
_	66/95- 002 Ja.m., SMC 1: Ni SMC 4: Pb SMC 7: 2-3	ms o le trobenze encl-dó (2-Chioro)	## AM Med	/7 50 A)	SM SM SM	MC 3 /6	SMC 4 /8 //e//0_ 2/6 luorobiphero luorophero Dichlorobo	SN 	AC 5	(BN)	S S S Out	MC: MC:	<i>γ</i> Α 3: p-Tα 6: 2,4,6	phor Trib	NA syl-d14 (promopb	BN) enoi (A)	rea IS	ments: 2Nimp 2, 4 Din 2 mely	hand hand himpha	996	4 SI	7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02. 7 - 02.	1 -c	HONG HONG MS E MW	>c compactions	DA Fad have	LR. Vera COV	h wep.	V < 40.9.00	100 Po	9.2

abo	oratory bode:	r. <u> </u>	5011 Sampling. EL 1 SW-846 82	Labo 7() (ratory	Report #:		6619	7							<u>-</u>					
100		<u>`</u>	/ Matrix			Jakr								9764							
ıs	BNA	CAS#	NAME	TC	Min.	intercept	Callb. RF	Calib. RSD/ R ²	CCV %D	Me	thod	LCS	LCSD	LCS RPD	MS	MSD	MS RPD	Field Dup. RPD	Equip. Blanks	Fleid Blanke	
				-	``"		>.05	<20%/ 0.99	20%								IN B	RPD		Dianka	
2	BN	120-82-1	1,2,4-Tricklorobenzene	V	0.20		V	V	V		/	مسل	NA								
	BN	95-50-1	1,2-Dichlorobenzene	П	0.40																
ı	BN	541-73-1	1,3-Dichlorobenzene	Π	0.60																
L	BN	106-46-7	1,4-Dichlorobenzene	П	0.50							V									
,	A	95-95-4	2,4,5-Tricklorophenol	Π	0.20							V									
,	A	88-06-2	2,4,6-Tricklorophenol		0.20					Γ		V									
2	A	120-83-2	2,4-Dichlorophenol	П	0.20																
2	A	105-67-9	2,4-Dimethylphenol	П	0.20					T											
,	A	51-28-5	2,4-dinitrophenol	T	0.01		1	1							1						
3	BN	121-14-2	2,4-Dinitrotoluene	П	0.20						T	V									
;	BN	606-20-2	2,6-Dinitrotoluene	Π	0.20					T											
,	BN	91-58-7	2-Chioronaphthalene	7	0.80						1										
	A	95-57-8	2-Chlorophenol	1	0.80							V									
	BN	91-57-6	2-Methylasphtbalene	11	0.40					T			·								
	٨	95-48-7	2-Methylphonol (o-cresol)		0.70							1/				1					
,	BN	88-74-4	2-Nitroaniline	11	0.01												· · · · · · · · · · · · · · · · · · ·				
	A	88-75-5	2-Nitrophenol	11	0.10											1					
,	BN	91-94-1	3,3'-Dichlorobenzidine	1	0.01					Π											
П	BN	99-09-2	3-Nitroaniline	\top	0.01																
П	A	534-52-1	4,6-Dinitro-2-methylphenol	11	0.01																
	BN		4-Bromopheryl-phenylether	T	0.10																
	BN	7005-72-3	4-Chlorophenyl-phenylether	Π	0.40																
:	Λ	59-50-7	4-Chloro-3-methylphenol	71	0.20							V				T					
:	BN	106-47-8	4-Chiorogniline	\top	0.01					_											
	- A	106-44-5	4-Methylphenol (p-cresol)	-	0.60						1					 					

A		_	
Semivoi	atıla	Orna	nics.

Page 2 of 3

ratory: _	· 12.	Lab	юга	tory R	eport#:_					_		# of S	imples:				M	atrix:	··			
BNA	CAS#	NAME	T C		Intercept	Ca R	lib. F	Calib. RSD/ R ²	CCV %D	Met	hod nks	LCS	LCSD	LCS RPD	мѕ	MSD	MS RPD	Field Dup. RPD	Equip. Blanks	Field Blanks		
						>,	05	<20%/ 0.99	20%								_	KPU				
3 BN	100-01-6	4-Nitroaniline	V	0.01		د	/		V	V	/		NA									
3 A	100-02-7	4-Nitrophenol		0.01							[<u>~</u>										L
3 BN	83-32- 9	Acenaphthene	Ц	0.90								1/										L.
3 BN	208-96-8	Acenaphthylene		0.90	<u> </u>					<u> </u>		<u> </u>	<u> </u>	\								
4 BN	120-12-7	Anthracene		0.70		L_	L															\mathbb{L}
5 BN	56-55-3	Benzo(a)anthracene		0.80																		\prod
6 BN	50-32-8	Benzo(a)pyrene		0.70		V	/	_														T
6 BN	205-99-2	Benzo(b)fluoranthene	$\llbracket brack brack$	0.70																		T
6 BN	191-24-2	Benzo(g.h,i)perylene	П	0.50			``	V	+21	J												Т
6 BN	207-08-9	Benzo(k)fluorambene	П	0.70					V	\Box												
2 BN	111-91-1	bis(2-Chloroethoxy)methane		0.30	[
1 BN	111-44-4	bis(2-Chloroethy!)ether	П	0.70																		
BN	108-60-1	bis(2-chloroisopropyl)ether	П	0.01																		Т
5 BN	117-81-7	bis(2-Ethylhexyl)phthalate	П	10.0	V	Γ_{\checkmark}		/			_											T
5 BN	85-68-7	Butyibenzyiphthalate	П	0.01			П															
BN	86-74-8	Carbazole	\prod	0.01																		
5 BN	218-01-9	Chrysene	П	0.70																	· · · · · · · · · · · · · · · · · · ·	
6 BN	3-70-3	Dibenz(a,h)anthracene		0.40		V		V	125	1												1
3 BN	132-64-9	Dibenzofuran		0.80					V	1												
3 BN	84-66-2	Diethylphthalate		0.01		_																
3 BN	131-11-3	Dimethylphthalate		0.01															7			
4 BN	84-74-2	Di-n-butylphthalate	11	0.01															\			T
	17-84-0	Di-n-octylphthalate	II	0.01		· •	7												\ \			† ⁻
4 BN	206-44-0	Fluoranthene	Π	0.60	-			1										·	\ -	·		
	86-73-7	Fluorene	\parallel	0.90																		t
4 BN	118-74-1	Hexachlorobenzene	\dagger	0.10			1-1	_		<u> </u>										7-1		-
BN	87-68-3	Hexachlorobutadiene	H	0.01										-						\		
+	77-47-4	Hexachlorocyclopestadiene	H	0.01				_		t									 †	$\overline{}$		
	67-72-1	Hexachloroethane	#	0.30			\vdash			1	H	X	,					+		\		
omme			<u> </u>			L.,,,	·	<u>, , , , , , , , , , , , , , , , , , , </u>				<i>4/</i>	3							\		L
vinanci	1 40 4							•			1	.,	979	/ 1								
										B-2	. (% / ·	7 .	0/								

		Semivo	olatile	Organ	ics																			Page	3 of 3	
ite	/Pro	oject:					AR/COC	#: <u>60</u> 8	5652		53,	<u>-54,</u>	3	Ъ	I	3atch#	s:									
ab	orai	tory;			·		Laborato	ry Report	#:					_	#	of Sar	uples:_				Matrix	c:				
В	NΑ	CAS#		NAME		TCL	Min. RF	Intercep	Calif	0.	Calib. RSD/ R²	CCV %D	M.	ethod anks	LCS	LCS D	LCS RPD	MS	мэр	MS RPD	Field Dup. RPD	Equip. Bianks	Field Blanks		· · · · · · · · · · · · · · · · · · ·	
	. (<u>.</u>	>.05		<20%/ 0.99	20%				_		<u> </u>			KFD			}		Ì
E	N	193-39-5	Indeno(1,2,3-са)рут	cne	V	0.50				V	V	floor	$\sqrt{}$		NA]
F	N	78-59-1	Isophor	one			0.40						1_]]
E	N	91-20-3	Naphth	lene			0.70	1					L				1				<u></u>					}
E	N	98-95-3	Nitrobe	nZette			0.20								کا]]
E	N	86-30-6	N-Nitro	sodiphenyla	mine		0.01											$ \mathcal{A} $								1
Ę	N	621-64-7	N-Nitro	so-di-propy	lamine	_	0.50	1	1-1	\dashv	_		\top	1	$t_{\mathcal{T}}$	 		1				 	1			1
			+	lorophenol		1	0.05	 	1	7		 	1	+-	1/		1						† †			†
F	N		Phenan			۲	0.70	 	1	7	_		丅	1	┌╴	1	\top									1
_	٨	108-95-2	Phenol			П	0.80	7	1-1	7	_		1	7	1		T						1			1
Ī	3N	129-00-0	Pyrene			\prod	0.60	7	7-7	7					1	Ţ <u> </u>		Ţ -]								1
_			Dio	heny la	mye										Γ											1
_			, , ,				1	7		\neg			7					1						7		1
		Sam		SMC 1		_	المسابقة فتعب	Recover SMC 4			MC 6	SMC 7	S	MC 8		Com	ments:						sam.			
]			HOXI		oro es	tione	· ja.	1/3 KG	۲۲. د	L IOW	ひ ブ
	1									┺	I		_		1							V	NO	4	'ひま"	ι.
					<u> </u>					}		L			}										. ,	,
		SMC 4: Pt	enat da	po-d5 (BN) (A) phenol-d4 (Si	MC 5: 2-F1 MC 8: 1.2-	luorobiphen luorophenoi Dichlorobe	(A) nzene-04		SMC	3: p-Tu 3: 2,4,6-)		м	s/ni	so	perjo	rwed	onc 804.	saux	ple .	word
	J	Sam	nla	19.1	18 1-8	T),	8 2-2703	internal	Stanua IS 3-area	Is	J.RT	IS A-sre	عا د	LRT	13.6	trad (S	S.RT	ls 6 area	IS &J	RT	and	משמת	804.	% 6	e faile	al "Ti
		10		TEC		-	-			+~			+-		-	-				=						
	Ì	7,7		1/1/	17	-		}		╫			1		<u> </u>				}	\dashv		~~v× ,	whee	re.	140	reau
				 	 	+				+-			-		 		 -		}		pr	orided.	No	071	her	MULLO
					 -	7				 			1		} -	_			`	_	01	- ρ	recision	a ·	. ۾ اا	/
	,	IS 1: 1,4-I IS 4: Phen		cazese (4 (110 (BN)	BN)			ulewo-d8 (E me-d12 (BN				Acenspin Purylene			N)			 -	·			•		•	, 4	
															B-22				Not	٤.	Case	ببه	r. slav. '. Fav	es /	lai	አጨ
																				P	waved	_	· ray	's K	exact	rock

PCBs (SW 846 - Method 8082)

	y:			oratory Rep	poet #:	L) (4.4		<u> 6 189</u>	,661	95					,	6	619	<u>5 - </u>	00.	7				
	: <u>SW - 6</u>											O	<u> </u>								<u>(2)</u>			
of Sam	ples: 2/	»	datrix:	50//3						Batch	#s:	978	<u>35</u>		<u>- 2</u>	1 160	<u>u - 0</u>	40)		197	<u> </u>	16	6195	٠.,
AS#	Name	T C intercept	Calib RSD / F	CC/		Method Blanks	LCB	LCSS	LC8 RPD		MSD	M8 RPD	Fle	D.		ulp.		eld -		- -		192 JUNE 19	N V C P	· · ·
	<u> </u>	L-	<20%/0	99, / 20%		<u>ر ۽ /</u>	1	2	20%	1 2	/ 2	/20%α:	RP JS				<u> </u>		<u> </u>					
4-11-2	Aroclor-1016	MA	V	√ √↑ 21	V	/ /			NΑ				V	<u> </u>	l	/	_/	Y 4			-			
4-28-2	Aroclor-1221			27	ı	/ /								۳۹										
	Aroclor-1232				\v	/ V				<u> </u>					K.		Ι					Ι		
	Aroclor-1242		V	Υ	V	/ /													L.					
	Aroclor-1248		/	V	V	, v								I			T							
	Aroclor-1254		V	V .		1 1							Ш	\perp			100							
96-82-5	Aroclor-1260		V	V V	1/1	/ \	V	V		V_/	V V	V V		\perp			<u> </u>	1						
								<u> </u>						丄				- 04	LT	•				
]	į	E		[į									₹			7		
	1 1				-					<u> </u>			<u> </u>	_}			↓							_
	<u> </u>	<u> </u>												1										
	Parrie		40	SMC	DT.		Sam	nie			MC		SMC		7] _{C=}				~~	01	21.00	d/~4	
	Sample		MC REC	SMC	RT		Sam	pie		-	MC REC		SMC	Z R	Т	Co	пре	its: (1	C.	W	יק	ecee	ding	
	•			SMC	RT		Sarr	ple		-			SMC	Z R'	T	Co	преп	ıts: (1	3.	CV 7 -	יק 40	10.	ding 16 A	J
	•			SMC	RT		Sarr	ple		-			SMC	Z R'	T	Co	преп	its: (1	3.	∵ 7 -	יק טע	*cee.	ding 16 A	<u> </u>
7,	Sample COA			8MC	RT		Sam	ple		-			SMC	Z R'	ī	Co	шией	its: (1)	3.	∵ 7 -	р ' 40	10.	ding 16 1	
2	•			8MC Confirm			Sam	ple		-			SMC	Z R	T	Con	швет	its: (1)	3.	7 -	p' 40	ecee.	ding 16 1	S
7	•		REC		nation		Sam			-%			SMC			Con	ште	its: (1	3.	7 -	p' 40	10.	ding 16 A	<u>.</u> د
	Sent acry	* 1	REC	Confirm	nation					-%	REC					Co	m met	its: (1)	3.	7 -	p' 40	10.	ding 16 A	<u>.</u> د
	Sample	% F	REC	Confirm	nation					-%	REC					Co	швет	its: (1)	3.	7 -	p' 40	10.	ding 16 A	
4	Sample	% F	REC	Confirm	nation					-%	REC					Co	пред	its: (1)	3	7 -	p' 40	10.	ding	
4	Sent acry	% F	REC	Confirm	nation					-%	REC					Co	m met	nts: (1)	3	7 -	p' 40	ecee:	ding	

Reviewed By:	 drae	•	D-4	11 11 63
Keriewou by.	 70000		Date:	//.//.02

PCBs (SW 846,- Method 8082) Site/Project: D33 501/ Sampling AR/COC#: 60565d -53 -54 - GLaboratory Sample IDs: 66/97-007 (68) __ Laboratory Report #: ___ 66197 Laboratory: CEL Methods: 50.846 8082 # of Samples: _____/ Matrix: ____ Agueous Batch #s: 197833 CCV Callb Field Method Equip. Fleid RBD / R¹ CAS# C Intercept LCS LCSD RPD MSD RPD Dup. Name %D Blanks Blanks Blanks <20%/0.99 20% 20% 20% 12674-11-2 Aroclor-1016 NA NA NA 11104-28-2 Aroclor-1221 11141-16-5 Aroclor-1232 53469-21-9 Aroclor-1242 12672-29-6 Aroclor-1248 ~ 11097-69-1 Aroclor-1254 11096-82-5 Aroclor-1260 SMC SMC RT Sample. SMC 8MC RT Sample. Comments: % REC % REC "UJ A1" 66197-007 DUB /21-122 Pb) 7/00 Confirmation RPD > 25% CA8# RPD > 25% CAS# Sample Sample

Reviewed By: Date: 11. 11. Od

High Explosives (SW 846 Method 8330)

Methods:	xa: <u>Ου υσι/</u> y: <u>GF</u> Z <u>υν- ε</u>	46 8	Labor 330	ratory Rep	ort #:		6189	, <i>4</i> 	6/95			0	6	6/93	<u>- 00</u>	DA (3)		······································	
# of Samp	oles:&/	Ma	ıtrix:	Ag	V65	, U '	//هک			Batc	1#s: _/	9803	9		980 N	<i>₩</i> ⁄€	203606		
CAS#	NAME		Inter	ceptt	I IVe R ²	CCV %0 / 20%	8	ethod tanks U 2	LCS	LCS®	RPD	M8	MSC	M8 RPD 2 /20%		Equip. Blanks U	Fleid Blanks U		
591-41-0	HMX	1	N	A	<u>~</u>		7	V /		1,/~ ,	MA				7		NA		
1-82-4	RDX				T]														
)-35-4	1,3,5-Trinitrobena	ene								1									
-65-0	1,3-dinitrobenzen						ΠT								TL				
3-95-3	Nitrobenzene		<u> </u>					$\top \!\!\! \perp$		/43-/24	Γ] []					1	
79-45-8	Tetryl							\Box		36		3							
8-96-7	2,4,6-trinitrotolue	ne						\Box											
572-78-2	2-amino-4,6-dinit	otoluene								(79-183		(1-11	d)	14202)				
46-51-0	4-emino-2,6-dinit	otoluene						TI		78 Ì		54		43				J	
21-14-2	2,4-dinitrotoluene						$\Pi\Pi$	$\top 1$	TJ		I . Γ	\overline{V}	'		<u> </u>				
6-20-2	2,6-dinitrotoluene						$\prod \rfloor$						7 (
3-72-2	2-nitrotoluene									T1]	
-99-0	4-nitrotoluene		Ш	[[$\perp 1$		Ţ.					}	
-08-1	3-nitrotoluene		1	T_				$\Box ot$									["]		
3-11-5	PETN											T							
									<u> </u>		<u> </u>								
										⅃	<u> </u>								
									⅃		<u> </u>		J		<u> </u>	<u> </u>			
			<u> </u>				<u> </u>			<u> </u>		┷—	<u> </u>		<u> </u>	<u> </u>			
											-	Barch	1:20	3606	,	roms/r	MIO N	6 Q	
Sam	ple SMC %R	EC SM	CRT	Samp	ie	SMC	%RE	c :	SMC R	r) (Comm	ents:	66	195 -	002	ه مان	y barch	0 Q UJ, 41	r 41
IN	witer-	[<u></u> @{	· 								
								T_		\Box		Roles	. 1/24		ACS Tara	., .,7	LT_	A C	is Mino →
<u> </u>						<u></u>						DWG	1778	2 4 4	7049	, ,,	Good 4	3/uso	No Q
		Co	nfirmat	ion									.000	20	-)/ -	9-040	UJ Az P	<u> </u>	
Sam	ple CAS#	RPD :	25%	Samp	le	C	45#	RI	PD > 25	% 0	<u>13</u>	akh:	7480	37	gu,	4-0	mino SI	AC Huso H H ms	
778	- CRY 18RIA																• • •	- 1170	
										1									

High Explosives (SW 846 Method 8330)

# of Samp	les:		Mai	rix:	149	veous		-	19/L		Batch	#s:	1981	//				 		
CAS#		NAME	1		ept	Curve R ²	CCV %D	Me Bi	thod anks	LCS	LCSD	LCS RPD	MS	MSD	MS RPD	Field. Dup. RPD	Equip. Blanks	Field Blanks		
01.41.0	HMX		- -	 	·a-	.99	20%	+-	U		V	20%	NA		20%	IN D	U	ָ ט		
91-41-0 1-82-4	RDX		- Y	 "	4	- Y	1	+	 	 	 	1	 ("'		 	 -				
35-4		Trinitrobenzene	 - 	 			 -		+	 	 	 	 		 	 				
65-0		nitrobenzene		+			 	- -	+		 		 			 				
95-3		enzene		+					+		1		1	/	-					 -
9-45-8	Tetryl			 			 	0.0	18 18 JF			 	 							\vdash
3-96-7		trinitrotoluene				,		10.0	1/		 		-			 		··· · · · · · · · · · · · · · · · · ·		
572-78-2		no-4,6-dinitrotolu	ene	 			 		γ	 	 	 	 							
46-51-0		no-2,6-dinitrotolu		 					1		 	 -	 					-	···	
1-14-2		nitrotoluene		1					 		 				i —	 	$\overline{}$			
5-20-2		nitrotoluene							1		1				 	<u> </u>	7			
72-2		otoluene		1										· · · · · · · · · · · · · · · · · · ·	* **		$\overline{}$			\vdash
99-0		otoluene	·		-			1												
08-1		otoluene						1	1										· · · · · · · · · · · · · · · · · · ·	<u> </u>
11-5	PETN					· ·	<u> </u>					1	1							
													1							
				1													······			
Sam	nia .	SMC %REC	SMC	RT	Sa	ımple	SMC	%REC	s	MC RT		Comme	nts:	No	Ш	/rus O	XC	ision	Used	
<u> </u>	-	i i				,		,,,,,	-		-					,		,		
<u> </u>	~ <i>0</i> 0	ITERIA ^					 		#					10	as.	ses	prec	1900 V		
							 													
	_						Ь													
			Co	ofirmat	ion_															
Sam	ple	CAS#	RPD >	25%	Sa	mple	C/	AS#	RP	D > 25'	%									
//	CE	TELA							1-		=									
1 777									1											

WS 10+3 Soil

Inorganic Metals

						(0/K)					Batch	#s:	19766	,2 1	1 Hg)		197	7/8 (IU)		
CAC #/	• • •			U912	ugle	ng Itg			** = * · · · · · · · · · · · · · · · · ·	QC I	Eleme	nt				66197-					
CAS #/ Analyte	TAL	ICV	CCV		ССВ	Method Blanks	LCS	LCSD	LCSD RPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dilu- tion	Field Dap. RPD	O// Equip. Blanks	Field Blanks			
29-90-5 Al																V	<i>J'</i>	NA			
40-39-3 Ba 40-41-7 Bo		_V_			-	<u> </u>	_ <i>V</i>	\ MA		MA	MA			Y			. 455	i			
40-43-9 CH	V			V	V	V		\			+		NA	V	NA_						
40-70-2 Ca																	1.7				
40-47-3 Cr 40-48-4 Co	~			<u> </u>	V	· 1017	V				-\		-	V	V	V-	. €03	9/8			
10-50-8 Cu				 				 	_		1		 				-				
9-89-6 Fe																					
9-95-4 Mg																					
19-96-5 Mn 10-02-0 Ni				 	 			 			/				 	}			,		
10-09-7 K																					
40-22-4 Ag	K			1.38	1.30		1/		\	N.			MA		MA						
10-23-5 Na 10-62-2 V				 				 	1			\			 						
10-66-6 Zn				 					<u> </u>			-									
															70 P	0 1					
9-92-1 Pb	<u> </u>	V	\	V	<u>/</u>	<u> </u>	<u> </u>			7			1/2	<u> </u>	100	100.3 V	1.95	 			
82-49-2 Se 40-38-2 As		\			Y		4					\ \	HA	- > -	7	- , Y					
40-36-0 Sb			, , , , , , , , , , , , , , , , , , ,			F															
40-2 8- 0 TI																					
39-97-6 Hg	V		V	V	11-1					Y		1	MA			~					
anide CN										<u></u>											
															L						
					<u></u>										├				——		
															1						

199386 (Hg) 199132 (TED-AE 199386 (Hg) 199132 (Hg) 199132 (Hg) 19912 (Hg) 1991	/2
MSD Rep. ICS Dim- Dup. Equip. Field F8 X5vq/. S4 V V 1455 AB 2.275	
754 V V 1455 2.275 NA V NA V V	491.
NA V NA V V	<i>191.</i>
	兰
V V . 918 A. 59	
	+
▝▀▗▗▗▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	9/L
	}
	+
	1
	II
╌╌┼╌╌┼╌╌┼╌╌┼	
NA V NA V V	
∖ ~~~ \ ~~~ \ ~~~ \ ~~~ \ ~~~~ \ ~~~~~~~~	+
┼╸ ╉╌╌┼╌╌┟╼╼╃╌╼┵ ╽┈┼╺╂══	+
\	+
V V V 1.95 9.76	4010.
MY V NN V V	7
/ / KA V V	
	┵—
NA V	<u> </u>
	
	=
	
	1
	vol. {ml}) x (1000 mi / 1 liter)] / Dilution Factor = µg / 1

Inorganic Metals

Site/Proje	a: <u>DS</u>	<u>S</u>	<u>)01)</u> (Sampli.	19 AR/C	COC #: 6	,0565	<u>a,-53</u>	-54-1	26	Labori	atory Sar	nple IDs:	·	661	<u>97- 0</u>	177				_
Laborator	y:	GEL			_ Labor	atory Repor	t #:				- ··×										
Methods:	<u>SW)</u>	-846	ر مط	O (I	CP. AF	<u> لكن</u>	7470	140	<u>}</u>												_
# of Samp	les:			Mat	aix:	ы) Ади	<u>cous</u>				Batch	#s:/	19996	9 (IU)	198	17/3 ((119)			-
CAS#/						ng/l				QCI	Eleme	nt					7 ,, ,		Ng ;	18.	
Analyte	TAL	ıcv	ccv] -	ССВ	1	ıcs	1.CSD	LCSD RPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dilg- tion	Field Dup. RPD	Equip. Blacks	Field Blanks	COS	MB	
7429-90-5 Al								NA			NA					NA					(
7440-39-3 Ba	<u></u>		12	V	V	000 25	V	T 7		LV.	1		<i>\</i>		V	<u> </u>				0010	15
7440-41-7 Be	 -		 	 '	 	 	 '	[] /		 '		 _	{ /			-	 	 		 	('J,B''
7440-43-9 Cd 7440-70-2 Ca	- <i>Y</i> -	V		V	1-1	 	<u> </u>	 	 	1-4-		 	NA	-V-	NA		 	 	 	 -	∤ ′
7440-47-3 Cr	 	1	1		LOW	.000867		 	 	11	 	}	Na		NA.	 	}	}	1005	.004	R2C
7440-48-4 Co			 		1	30000		1		1	1		 	- V	<u> </u>	——————————————————————————————————————		 	10000		1.
7440-50-8 Cu			J															1			J, B, 6
7439-89-6 Fe							<u> </u>										Z				ĺ
7439-95-4 Mg		├ ~		 -'	 	 '	 '	 	 '	 '	 	}	 	 	 '	}	 	}	 		}
7439-96-5 Mn 7440-02-0 Ni	 	 -	 	 '	 		 		{ '	 	├──		 	 -	 	 			 		ł
7440-09-7 K		 	 	 		 	 '	 	 	 -	 		 	· ·	 	 -	 	-I4 Y ?	}	/	j
7440-22-4 Az	~			1.03	2.61	28000			 			1	NA	V	74	ļ ————		7	01305	.0042	υσ,Β,
7440-23-5 Na									\Box									5	- · · · · · · · ·	<u> </u>	
7440-62-2 V																					į
7440-66-6 Zn				 '		 	 '	 	 	 		├ ─┴──	ļJ			ļ		<u> </u>			l
7430 00 1 70	<u> </u>		[(/		1-2-0		 		 	 		NA	 	استجيا		 	[-\	00000		H
7439-92-1 Pb 7782-49-1 Se	1	-	1	151	3.17	00259	1	 	 	$+ \mathcal{L}$	 	┝╼╾┼┈	NA		NA NA		 	 \	- 00 4 A	-:0/24	$J_I B_I$
7440-38-2 As				10	13.7	 		 		121		 \- -	177		MA	 -			2 900 ·	$\overline{}$	B3"
7440-36-0 Sb							بستعسر												 	$-\sqrt{1}$	l
7440-28-0 TL																					- NO
7439-97-6 Hz	Y			V					<u> </u>	V		\\	NA								Wo Q
0			 '		 -'		 '	├ ───┤			ļ				 		ļ				í
Cyanide CN_		 	} -	╁┈┈┙	 	 	j <i>J</i>	 	├── ─	 	/	 	 		,	 		 	┟┈┈╼┷┩		i
			 	 -	 	 	i	<u>├</u>		 			 					 			ļ.
															,—— <u> </u>						Į.
Notes: Shaded Commen				lida-to-aqu /×	teoms com	version; mg	/kg = µg	/g: [(µg/	g) x (sampl												
IGAE	: ند	ወሀሶ	mı	SO	46	619	SWY				Reviev	wed By:		0	Ula	<u></u>		D ₈	ate: <u>//. /</u>	1.02	
Hg	:	DUP	, wr		66.	ച8 ദ	WL			B-1	4				٠						

General Chemistry

CAS#	Analyte	_			Ţ	. 	T	,			QC E	leme	nt	T	 -	I	rest.	,	
B	Anapte	T A L	ICV	ccv	ICB	ССВ	Method Bianks	LCS	LCSD	LCSD RPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Difu- tion	Field Dup. RPD	Equip. Bianks	Fleld Blasica
n 9	10 tal CV			/	1	1	/	V	NA		V	NA		MA	MA	Na	~	/	NA
	701W CV		✓ .	~	~	~	V	134	125 %		V			NA NA					
002	Total		V	V	1	V	V	V / 139			V			Ne					
× '0	Her avote	1 1	√	V	~	1	V	V			V	\ 		MA					
	11		V	V	V	V	V	V			V V			NA NA					
÷	//		~	\	√	✓	V	V			74			MA					
omments:	66197 * ALLON TLUS	der W	g /i	o the	e c	11.5	ratr. O du	した	s Aij	78- 10	The 1004.		ingac	turo	150	mst.			

aboratory: \mathcal{G}	<u> </u>		<u> </u>	aborato	ry Repo	rt #;				66	195 -00	d/ 4nu 0		
Methods:	FPA	900	0						. <u> </u>	64	197-	012 (58) 3		
of Samples:	21		Matrix	<u>. ა</u> ე	1/3		· · · · · · · · · · · · · · · · · · ·		Batch #s:	8 986	200	147	98970	
									QC Element	<u> </u>		<u> </u>	(3)	
Analyte		Method Blanks	LCS	MS MS	Rep RER	Equip. Blanks	Field Dup. RER	Field Blanks	Sample ID	Isotope	IS/Trace	Sample ID	Isotope	15/T
Criteria		IJ	20%	25%	<1.0	U	<1.0	U	NA		50-105			50-
H3 CMU d U-238 Normale			14,	VV	<u> </u>	<u> </u>	<u> </u>	NA						
U-238 Normale	المتعلقا		 _		V	V	<u> </u>			}				\
U-234						 	 -					}		
U-235/-236 Gro Th-232 /Yonyo	بعبد		1	V V	-X	 Y	 _	NA NA		\	L			
Th-228	Patrier	<u> </u>	 -	VV	<u></u>		$+ \nu_{-+}$	nn _		1->				
Th-230			┿┈	-		 	╀┈╌╼┧		 	+>		 	- 	 -
Pu-239/-240			+			 	 		<u> </u>			 		
Gross Alpha				1	V	NA	NA	NA	 					
Gross Alpha Nonvolatile Bet	a	1/	12	VV	1	MA	No	MM				*		
Ra-226														
Ra-28			1									•		
Ni-63			<u> </u>		Ĺ <u>.</u>		1							
Gamma Spec. A			ļ	 	L	}	}							
Gamma Spec. C				 			}		}				-	
Gamma Spec. C	0-00		 	ļ		 	╂╼╼╌╼┪							_
<u> </u>				 		 -	 		}					
<u></u>			<u></u>	<u> </u>			<u> </u>		<u>. </u>	<u></u>		<u></u>	لـــــــــــــــــــــــــــــــــــــ	L
Parameter		ethod		cal Tra	cer	Typical C	arrier		Comments: 8	auch i	98970	Dup M	DIM/I	63
Iso-U		a spec.	U-232			NA	i							SM
Iso-Pu		a spec.	Pu-242			NA								
Iso-Th		a spec.	Th-229			NA								
Am-241		a spec.	Am-24			NA								
Sr-90	Beta		Y ingre	owth		NA								
Ni-63	Beta		NA			Ni by ICP								
Ra-226		ination	NA			NA								
Ra-226		a spec.	Ba-133		25	NA								
Ra-228	Gam	ma spec.	Ba-133			NA	- 5							

Contract Verification Review (CVR)

Project Leader Collins	Project Name	DSS Soil Sampling	Case No.	7237_01.07.02
AR/COC No. 605652, 653, 654, 655	Analytical Lab	GEL	SDG No.	66189A, B, C, D

in the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Complete				olved?
No.	item	Yes	No	If no, explain_	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	Х				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	Х				
1.4	Preservative correct for analyses requested	X				
1.5	Custody records continuous and complete	X				[
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х				
1.7	Date samples received	X				
1.8	Condition upon receipt information provided	Х				

2.0 Analytical Laboratory Report

Line		Complete?			Resc	olved?
No.	item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided (if requested)	Х				
2.5	Detection limits provided; PQL and MDL (or IDL), MDA and Lc	X				
2.6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X				
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	Х				
2.10	Namative provided	Х				
2.11	TAT met	X				
2.12	Hold times met		Х	HE re-extraction out of holding time		
2.13	Contractual qualifiers provided	X	_			
2.14	All requested result and TIC (if requested) data provided	X				

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

3.0 Data Quality Evaluation	,,,	,	
item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	x		
3.2 Quantitation limit met for all semples	X		
3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples		Х	4-amino-2,8-dinitrotoluene and tetryl not within HPLC acceptance limits; re-extracted sample LCS within limits
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 		X	Decachlorophenol not within PCB acceptance limits
c) Matrix spike recovery data reported and met		X	several SVOC (059710-002, 059840-002) recovery failures; 4- amino-2,8-dinitrotoluene HPLC MS recovery low
Precision Benicate sample precision reported and met for all inorganic and radiochemistry samples	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples		X	SVOC (059710-002, 059840-002) RPD not within acceptance limits; 4-amino-2,6-dinitrotolurene HPLC RPD not within acceptance limits
3.5 Blank data a) Method or reagent blank data reported and met for all samples		x	Toluene detected in VOC method blank; 1,2-Dichlorobenzene detected in SVOC method blank; Tetryl detected in HE method blank; barium, chromium, lead & silver detected in inorganics method blank
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	ble(2-Ethylhexyl)phthalate detected in SVOC equipment blank; bertum, chromium, lead detected in inorganic equipment blank
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDt. for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemicsi)); "H"-analysis done beyond the holding time	x		
3.7 Nametive addresses planchet flaming for gross alpha/beta	X		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	X		·

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

	item	Yes	No	Comments
4.1 G	C/MIS (8260, 8270, etc.)			
a)	12-hour tune check provided	х	ļ	
_				
b)	Initial calibration provided	х		
c)	Continuing calibration provided	×		
d)	Internal standard performance data provided	x		
,	·		ļ	
е)	Instrument run logs provided	Х		
	C/HPLC (8330 and 8010 and 8082)			
a)	Initial calibration provided	x		
	O STATE OF THE STA	x		
(a	Continuing calibration provided	^		
c)	Instrument run logs provided	- X		
4.3 Inc	organics (metals)			
a)	Initial calibration provided	х		
b)	Continuing calibration provided	x		
c)	ICP interference check sample data provided	×		
d)	ICP serial dilution provided	х		
ه)	Instrument run logs provided	x		
	diochemistry			
	Instrument run logs provided	×		
			L., [

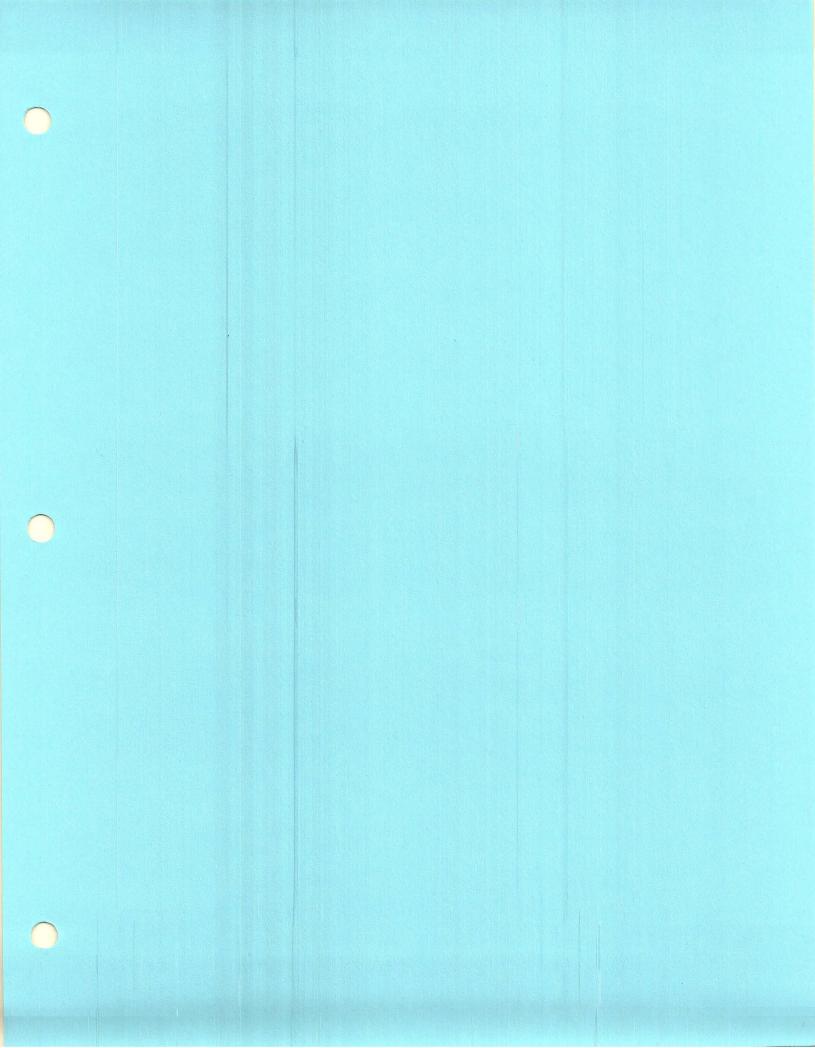
Contract Verification Review (Concluded)

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
059691-002	svoc	missing certificate of analysis
059710-002RE	HPLC	missing certificate of analysis for re-extraction and QC Summary for 1200305569 (blank) and 1200305570 (LCS, passed)
		
		
	<u> </u>	
	 	
1.53-6-		
re deficiencies unresolved?	es) No	
ed on the review, this data package	is complete. Yes	(No)
ntovide: nonconformance report	nt correction request num	aber 5106 and date correction request was submitted: 10/25/02
iewed by: Ulu-	Date	: 10/25/02 Closed by:Date:

CONTRACT LABORATORY


ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab	,		\sim	INAL	COND VERO		AIND !	CHAI	N OF C	0310	Ui		rage_1_0	" <u> — </u>
Batch No.	NIA				SMO Use							AR/COC	605	5653
Dept No./Mail Stop:	6135/1089		Date Samp	les Ship	ped: 8-27-0	Z		Task No.		7223.02		✓ Waste Characterization	ī .	-
Project/Task Manager.	Mike Sandors Co	Hims	Carner/Wa	vbill No.	1734	4	SMO A	uthorizati	on: (C) (Lun		-Send preliminary/copy (report to:	
Project Name:	DSS soil sampling	<u> </u>	Lab Contac	-	Edie Kent 803-556-	<i></i>	Contra	ct #:_PO 2	21671					
Record Center Code:	ER/1295/DSS/DAT		Lab Destina	alion:	GEL	<u> </u>	1 5,00	E 140	MCHer	40000	acon.	Released by COC No.:,	. <u> </u>	·
Logbook Ref. No.:	ER 090		SMO Contac	VPhone:	Pam Puissant/505-l	344-3185]	,		,,- ,		☐ Validation Required		·
Service Order No.	CF032-02		Send Report	10 SMO:	Wendy Palencia/50	5-844-313	2					Bill To:Sandia National Labs (A	occunts Payat	oke)
Location	Tech Area											P.O. Box 5800 MS 0154	ı	
Building 6643	Room]		Referen	ce LOV	(availa	ble at S	MO)			Albuquerque, NM 87185	0154	
	ER Sample ID		Pump	ER Site	1 ' '	Sample	Co	ntainer	Preserv-	Collection	Sample	Parameter & Meth	rod	Lab Sample
Sample NoFraction	Sample Location (Detail	Depth (ft)	No.	Collected	Matrix	Туре	Volume	ative	Method	Туре	Requested		10
059698-001	6643/1120-DW1-BH1	- 8 -s_	8'	1120	8-22-02/1/30	ss_	AS	4oz	4c	G	SA	VOC (8260B)		<u> </u>
059699-001	6643/1120-DW1-BH1	- 13 8	/3'	1	1150) S	AS	4oz	4c	G	SA	VOC (8260B)		
059698-002	6643/1120-DW1-BH1	- x -s_	8'		1135	s	A G	500ml	4c	G	ŞA	see below for parameter		 -
059699-002	6643/1120-DW1-BH1	/ 5	13'	4	1200	<u>s</u>	AG_	500ml	4c	G	SA	see below for parameter		ļ
059641-001	6643/1079-DF1-8H1-	<i>] </i> S	11.	1079	1400	s	AS	40Z	4c	G	\$A_	VOC (8260B)		<u> </u>
059642-001	6643/1079-DF1-BH1-	i/s	14		1425	<u>s</u>	AS	4oz	4c_	G	SA	VOC (8260B)		ļ <u>.</u>
059641-002	6643/1079-DF1-BH1-	11-S	11'		140=	<u>s</u> _s_	AG	500ml	4c	G	SA	see below for parameter		<u> </u>
059642-002	6643/1079-DF1-BH1-	<u> S</u>	16		14.30	s s	RG	500ml	4c	_ G	SA	see below for parameter		ļ
059700-001	6643/1079-DF1-BH2-	11-5	11'	1079	8-23-02/083	<u>s</u>	AS	40 <u>z</u>	4c	G	SA	VOC (8260B)		
059701-001	6643/1079-DF1-BH2-		16'	1029		<u>s</u> s	AS	4oz	46	G		VOC (8260B)	 	<u> </u>
RMMA	YesNo	Ref.			Sample Tracking		Smo U:		Special Ins			ments	Abnorma	
Sample Disposal	Return to Client		isposal by la		Date Entered(mm/d	d/yy)	09/04	<i>b</i> 2	1	Yes 🔲			Condition	is on
Turnaround Tim	e <u></u>	Norma	<u>aí (</u>	Rush	Entered by:		JBC	UV.	Level C Par		✓ Yes		Receipt	
Return Samples By:		 -	f Rush:					<i></i>	*Send repo	irt to:		SVOC (8270C)		
	Name	Şiç	gnature	Init	Company/Orga			llular	Mike Sand			PCBs(8082)Cr6+(7197)	ĺ	
Sample	J.Lee	14/6	De Inc.	12					Dept6135/			HE(8330		Lab Use
Team	W.Gibson		4/2/2/4		MDM/6135/505-8					-284/2478	l	Total Cyanide(9010)	l	
Members	G.Quintana	Lifes	H. Ilun	146	Shaw/6135/505-2	84-33 <u>09</u>			1			RCRA Metals (6020, 7000)	•	
		<u> </u>		,	<u> </u>]			7471)		
	7								*Please list	as separat	e report.	Gross alpha/beta (900)		
1.Relinquished by	48/20270			Date	RYDITime O	810	4.Relino	uished b	у		Org.	Date	Time	
1. Received by			Org/4/7		5/2162 Time 0	810	4. Rece				Org.	Date	Time	
2.Relinquished by	A & Fleder	540 <u> </u>	Org. 1/97		/	725		juished b	y		Org.	Date	Time	
2. Received by	<u> </u>		Org."	Date	Time		5. Rece				Org.	Date	Time	
3.Relinquished by			Org.	Date	Time		6.Relino	ulshed b	у		Org.	Date	Time	

OFF-SITE LABORATORY Analysis Request And Chain Of Custody (Continuation)

Page_2_of___

AR/COC-Project Name: Project/Task Manger: Project/Tesk No.; 7220.02,03.02 Location Tech Area Reference LOV (available at SMO) Lab use Building Room Sample No-ER Sample ID or Beginning ER Date/Time (hr) Sample Collection Sample Parameter & Method Lab Sample Container Preserv-Fraction Depth (ft) | Site No Collected Matrix Method ID. Sample Location detail. Type Volume ative Туре Requested 059700-002 6643/1079-DF1-BH2-}/-S 8-33-02/0535 S ĄG 500ml G see below for parameter 4c <u>08</u>501 059701-002 S θ G 500ml G see below for parameter 6643/1079-DF1-BH2-/6-S 4c 059702-001 6643/1079-DF1-BH3-J/-S S AS 4oz G SA VOC (8260B) 4c G AS VOC (8260B) 059703-001 6643/1079-DF1-BH3-**//**-S 0955 4oz 4c SA 6643/1079-DF1-BH3-J/-S 0945 AG 500ml G see below for parameter 059702-002 4c 059703-002 500ml G see below for parameter 6643/1079-DF1-BH3-//-S S AG 4c 000 NIA 059704-001 6643/1079-DF1-BH3-TB DIW Ġ 3x40m1 HCL G (VOC (8260B) Abnormal Conditions on Receipt LAB USE Redipient Initials

ANNEX C DSS Site 1079 Risk Assessment

TABLE OF CONTENTS

1.	Site De	scription and History	
11.	Data Q	uality Objectives	
111.	Determ	ination of Nature, Rate, and Extent of Contamination	
	III.1	Introduction	
	111.2	Nature of Contamination	
	III.3	Rate of Contaminant Migration	C-5
	III.4	Extent of Contamination	
IV.	Compa	rison of COCs to Background Levels	
V.		d Transport	
VI.	Human	Health Risk Assessment	C-10
	VI.1	Introduction	C-10
	VI.2	Step 1. Site Data	C-10
	VI.3	Step 2. Pathway Identification	C-10
	VI.4	Step 3. Background Screening Procedure	
		VI.4.1 Methodology	C-11
		VI.4.2 Results	C-11
	VI.5	Step 4. Identification of Toxicological Parameters	C-15
	VI.6	Step 5. Exposure Assessment and Risk Characterization	C-15
		VI.6.1 Exposure Assessment	
		VI.6.2 Risk Characterization	C-17
	VI.7	Step 6. Comparison of Risk Values to Numerical Guidelines	C-19
	VI.8	Step 7. Uncertainty Discussion	
	VI.9	Summary	
VII.	Ecologi	cal Risk Assessment	
	VII.1	Introduction	
	VII.2	Scoping Assessment	
		VII.2.1 Data Assessment	
		VII.2.2 Bioaccumulation	
		VII.2.3 Fate and Transport Potential	
		VII.2.4 Scoping Risk-Management Decision	
VIII.	Refere	nces	
Appa	endix 1		C-29

This page intentionally left blank.

LIST OF TABLES

Table	Page
1	Summary of Sampling Performed to Meet DQOs
2	Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1079
3	Summary of Data Quality Requirements for DSS Site 1079
4	Nonradiological COCs for Human Health Risk Assessment at DSS Site 1079 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log $K_{\rm ow}$
5	Radiological COCs for Human Health Risk Assessment at DSS Site 1079 with Comparison to the Associated SNL/NM Background Screening Value and BCF
6	Summary of Fate and Transport at DSS Site 1079
7	Toxicological Parameter Values for DSS Site 1079 Nonradiological COCs C-16
8	Radiological Toxicological Parameter Values for DSS Site 1079 COCs Obtained from RESRAD Risk Coefficients
9	Risk Assessment Values for DSS Site 1079 Nonradiological COCs
10	Risk Assessment Values for DSS Site 1079 Nonradiological Background Constituents
11	Summation of Radiological and Nonradiological Risks from DSS Site 1079, Building 6643 Septic System Carcinogens
	LIST OF FIGURES
Figure	Page
1	Conceptual Site Model Flow Diagram for DSS Site 1079, Building 6643 Septic System

This page intentionally left blank.

DSS SITE 1079: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1079, the Building 6643 Septic System, at Sandia National Laboratories/New Mexico (SNL/NM), is located in Technical Area-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE). The abandoned septic system consisted of a septic tank connected to a distribution box and a drainfield consisting of three 30-foot-long drain lines. Available information indicates that Building 6643 was constructed in 1989 (SNL/NM March 2003), and it is assumed that the septic system was also constructed at that time. By 1991, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1079 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic system at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations.

The ground surface in the vicinity of the site is flat or slopes slightly to the southwest. The closest drainage lies south of the site and terminates in the playa just west of KAFB. No springs or perennial surface-water bodies are located within 3 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface is flat or slopes gently to the southwest. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1079 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1079 lies at an average elevation of approximately 5,413 feet above mean sea level (SNL/NM April 2003). The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 487 feet below ground surface (bgs). Groundwater flow is thought to be west in this area (SNL/NM March 2002). The nearest groundwater monitoring wells are approximately 4,700 feet to 5,500 feet northwest of the site at the Mixed Waste Landfill. The nearest production well, KAFB-4 is northwest of the site, approximately 4.1 miles away.

II. Data Quality Objectives

The Data-Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001) identified the site-specific sample

locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1079 was effluent discharged to the environment from the drainfield at this site.

Table 1
Summary of Sampling Performed to Meet DQOs

DSS Site 1079 Sampling Area	Potential COC Source	Number of Sampling Locations	Sample Density (samples/acre)	Sampling Location Rationale
Soil beneath the septic system drainfield	Effluent discharged to the environment from the drainfield	3	NA	Evaluate potential COC releases to the environment from effluent discharged from the drainfield

COC = Constituent of concern.

DQO = Data Quality Objective.

DSS = Drain and Septic Systems.

NA = Not applicable.

The soil samples were collected at three locations across DSS Site 1079 with a Geoprobe™ from two 3- or 4-foot-long sampling intervals at each boring location. Drainfield sampling intervals started at 11 and 16 feet bgs in each of the three drainfield borings. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

The soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

Table 2 Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1079

Sample Type	VOCs	SVOCs	PCBs	HE	RCRA Metals	Hexavalent Chromium	Cyanide	Gamma Spectroscopy Radionuclides	Gross Alpha/Beta
Confirmatory	6	6	6	6	6	6	6	6	6
Duplicates	0	0	0	0	0	0	0	0	0
EBs and TBs ^a	1	0	0	0	0	0	0	0	0
Total Samples	7	6	6	6	6	6	6	6	6
Analytical Laboratory	GEL	GEL	GEL	GEL	GEL	GEL	GEL	RPSD	GEL

^aTBs for VOCs only.

DSS = Drain and Septic Systems.

= Equipment blank. EΒ

= General Engineering Laboratories, Inc. GEL

HE = High explosive(s).

PCB = Polychlorinated biphenyl.

QA/QC = Quality assurance/quality control.

RCRA = Resource Conservation and Recovery Act.

= Radiation Protection Sample Diagnostics Laboratory. RPSD

= Semivolatile organic compound. SVOC

= Trip blank. TB VOC

= Volatile organic compound.

Table 3
Summary of Data Quality Requirements for DSS Site 1079

Analytical Method ^a	Data Quality Level	GEL	RPSD
VOCs EPA Method 8260	Defensible	6	None
SVOCs EPA Method 8270	Defensible	6	None
PCBs EPA Method 8082	Defensible	6	None
HE Compounds EPA Method 8330	Defensible	6	None
RCRA metals EPA Method 6000/7000	Defensible	6	None
Hexavalent Chromium EPA Method 7196A	Defensible	6	None
Total Cyanide EPA Method 9012A	Defensible	6	None
Gamma Spectroscopy Radionuclides EPA Method 901.1	Defensible	None	6
Gross Alpha/Beta Activity EPA Method 900.0	Defensible	6	None

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.GEL = General Engineering Laboratories, Inc.

HE = High explosive(s).

PCB = Polychlorinated biphenyl.

QA/QC = Quality assurance/quality control.

RCRA = Resource Conversation and Recovery Act.

RPSD = Radiation Protection Sample Diagnostics Laboratory.

SVOC = Semivolatile organic compound. VOC = Volatile organic compound.

QA/QC samples were collected during the sampling effort according to the Environmental Restoration (ER) Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only). No significant QA/QC problems were identified in the QA/QC sample.

All of the soil sample results were verified/validated by SNL/NM according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," AOP [Administrative Operating Procedure] 00-03 (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1079 request for a determination of Corrective Action Complete (CAC) without controls. The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The

gamma spectroscopy results are presented in the CAC proposal. The reviews confirmed that the analytical data are defensible and therefore acceptable for use in the request for a determination of CAC without controls. Therefore, the DQOs have been fulfilled.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1079 is based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, and soil sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1079, which is presented in Section 4.0 of the associated request for a determination of CAC without controls. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1079 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and potential degradation products at DSS Site 1079.

III.3 Rate of Contaminant Migration

The septic system at DSS Site 1079 was deactivated in 1991 when Building 6643 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the septic system at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system was discontinued has been predominantly dependent upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted at the site are adequate to characterize the rate of COC migration at DSS Site 1079.

III.4 Extent of Contamination

Subsurface soil samples were collected from boreholes drilled at three locations beneath the effluent release area (drainfield) at the site to assess whether releases of effluent from the septic system caused any environmental contamination.

The soil samples were collected at sampling depths starting at 11 and 16 feet bgs in the drainfield area. Sampling intervals started at the depths at which effluent discharged from the drainfield drain lines would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS-type sites at SNL/NM. The soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1079 request for a determination of CAC without controls describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs evaluated in this risk assessment include all detected organic and all inorganic and radiological COCs for which samples were analyzed. When the detection limit of an organic compound is too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound is retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation uses only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 and 5.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs are evaluated. The nonradiological COCs included in this risk assessment consist of both inorganic and organic compounds.

Table 4 lists the nonradiological COCs and Table 5 lists the radiological COCs for the human health risk assessment at DSS Site 1079. All samples were collected from depths greater than 5 feet bgs; therefore, evaluation of ecological risk was not performed. Both tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4 discusses the results presented in Tables 4 and 5.

V. Fate and Transport

The primary releases of COCs at DSS Site 1079 were to the subsurface soil resulting from the discharge of effluents from the Building 6643 septic system. Wind, water, and biota are natural mechanisms of COC transport from the primary release point; however, because the discharge was to subsurface soil, none of these are considered to be of potential significance as transport mechanisms at this site. Because the septic system is no longer active, additional

RISK ASSESSMENT FOR DSS SITE 1079

Table 4
Nonradiological COCs for Human Health Risk Assessment at DSS Site 1079 with
Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K_{ow}

coc	Maximum Concentration (all samples) (mg/kg)	SNL/NM Background Concentration (mg/kg) ^a	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	Log K _{ow} (for organic COCs)	Bloaccumulator? ^b (BCF >40, Log K _{ow} >4)
Inorganic			,		-, -	
Arsenic	3.15	4.4	Yes	44 ^c		Yes
Barium	180	214	Yes	170 ^d		Yes
Cadmium	0.0674 J	0.9	Yes	64 ^c	_	Yes
Chromium, total	8.68	15.9	Yes	16 ^c	_	No
Chromium VI	0.0277°	1	Yes	16 ^c	_	No
Cyanide	0.0511 J	NC _	Unknown	NC		Unknown
Lead	5.31	11.8	Yes	49°		Yes
Mercury	0.0046 J	<0.1_	Yes	5,500°	_	Yes
Selenium	0.447 J	<1	Yes	800 ^f	_	Yes
Silver	0.103 J	<1	Yes	0.5°	-	No
Organic						
2-Butanone	0.00685	NA _	NA NA	19	0.29 ^g	No
Fluorene	0.201	NA	NA	2,239 ^h	4.18 ^h	Yes
Methylene chloride	0.0024 J	NA	NA	59	1,25 ⁹	No

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

BCF = Bioconcentration factor.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

J = Estimated concentration.

K_{ow} = Octanol-water partition coefficient.

Log = Logarithm (base 10).

mg/kg = Milligram(s) per kilogram.

NA = Not applicable.

NC = Not calculated.

NMED = New Mexico Environment Department.

SNL/NM = Sandia National Laboratories/New Mexico.

Information not available.

^aDinwiddie September 1997, Southwest Area Supergroup.

⁶NMED March 1998.

^cYanicak March 1997.

^dNeumann 1976.

^eParameter was not detected. Concentration listed is one-half the maximum detection limit.

^fCallahan et al. 1979.

⁹Howard 1990.

hMicromedex, Inc. 1998.

Table 5 Radiological COCs for Human Health Risk Assessment at DSS Site 1079 with Comparison to the Associated SNL/NM Background Screening Value and BCF

COC	Maximum Activity (all samples) (pCi/g) ^a	SNL/NM Background Activity (pCi/g) ^b	is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	ls COC a Bioaccumulator? ^c (BCF >40)
Cs-137	ND (0.0367)	0.079	Yes	3,000 ^d	Yes
Th-232	0.71	1.01	Yes	3,000e	Yes
U-235	ND (0.217)	0.16	No	900e	Yes
U-238	ND (0.708)	1.4	Yes	900e	Yes

Note: Bold indicates COCs that exceed the background screening values and/or are bioaccumulators.

aValue listed is the greater of either the maximum detection or the highest MDA.

^bDinwiddie September 1997, Southwest Area Supergroup.

°NMED March 1998.

dWhicker and Schultz 1982.

Baker and Soldat 1992.

BCF = Bioconcentration factor.
COC = Constituent of concern.
DSS = Drain and Septic Systems.
MDA = Minimum detectable activity.

ND () = Not detected above the MDA, shown in parentheses.

ND () = Not detected, but the MDA (shown in parentheses) exceeds background activity.

NMED = New Mexico Environment Department.

pCi/g = Picocurie(s) per gram.

SNL/NM = Sandia National Laboratories/New Mexico.

infiltration of water is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1079, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 487 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1079 include both inorganic and organic constituents. The inorganic COCs include both radiological and nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-life of the radiological COC (U-235), the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms are expected to result in significant losses or transformations of the inorganic COCs.

The organic COCs at DSS Site 1079 are limited to 2-butanone, fluorene, and methylene chloride. Organic COCs may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of 2-butanone and methylene chloride through volatilization is expected to be minimal.

Table 6 summarizes the fate and transport processes that can occur at DSS Site 1079. The COCs at this site include both radiological and nonradiological inorganic analytes as well as organic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low, and loss through decay of the radiological COC is insignificant because of its long half-life.

Table 6
Summary of Fate and Transport at DSS Site 1079

Transport and Fate Mechanism	Existence at Site	Significance
Wind	Yes	Low
Surface runoff	Yes	Low
Migration to groundwater	No	None
Food chain uptake	Yes	Low
Transformation/degradation	Yes	Low to moderate

DSS = Drain and Septic Systems.

VI. Human Health Risk Assessment

VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

Step 1.	Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.
Step 2.	Potential pathways are identified by which a representative population might be exposed to the COCs.
Step 3.	The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.
Step 4.	Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.
Step 5.	Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide.
Step 6.	These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED, and the DOE to determine whether further evaluation and potential site cleanup are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.
Step 7.	Uncertainties of the above steps are addressed.

VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1079. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1079 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust and volatiles. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated

soil. No water pathways to the groundwater are considered. Depth to groundwater at DSS Site 1079 is approximately 487 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual site model flow diagram for DSS Site 1079.

Pathway Identification

Nonradiological Constituents	Radiological Constituents
Soil ingestion	Soil ingestion
Inhalation (dust and volatiles)	Inhalation (dust)
Dermal contact	Direct gamma

VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

VI.4.1 Methodology

Maximum concentrations of nonradiological COCs are compared to the approved SNL/NM maximum screening levels for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Section VI.6.2. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or that do not have either a quantifiable or calculated background screening level are considered in further risk assessment analyses.

For radiological COCs that exceed the SNL/NM background screening levels, background values are subtracted from the individual maximum radionuclide concentrations. Those that do not exceed these background levels are not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have a background value and are detected above the analytical minimum detectable activity (MDA) are carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

VI.4.2 Results

Tables 4 and 5 show the DSS Site 1079 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, one constituent (cyanide) does not have a quantified background screening concentration; therefore it is unknown whether this COC exceeds background. Three constituents are organic compounds that do not have corresponding background screening values.

This page intentionally left blank.

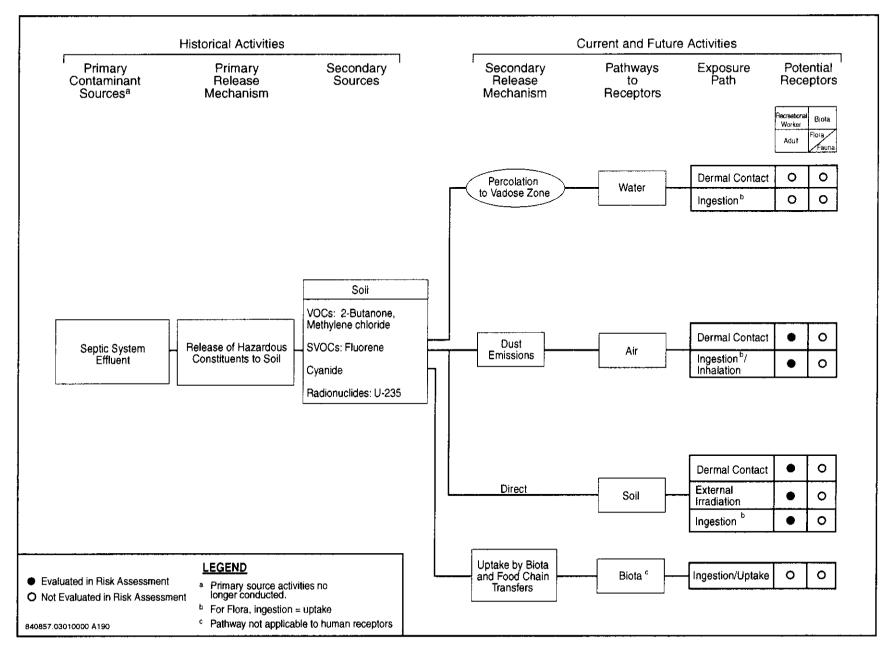


Figure 1
Conceptual Site Model Flow Diagram for DSS Site 1079, Building 6643 Septic System

For the radiological COCs, one constituent (U-235) has an MDA greater than its background screening level.

VI.5 Step 4. Identification of Toxicological Parameters

Tables 7 (nonradiological) and 8 (radiological) list the COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 7 were obtained from the Integrated Risk Information System (IRIS) (EPA 2003), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), and the EPA Region 6 electronic database (EPA 2002a). Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways were the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA 1988).
- DCFs for surface contamination (contamination on the surface of the site) were taken from DOE/EH-0070, "External Dose-Rate Conversion Factors for Calculation of Dose to the Public" (DOE 1988).
- DCFs for volume contamination (exposure to contamination deeper than the immediate surface of the site) were calculated using the methods discussed in "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil" (Kocher 1983) and in ANL/EAIS-8, "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil" (Yu et al. 1993b).

VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for the industrial and residential land-use scenarios. The incremental TEDE and incremental estimated cancer risk are provided for the background-adjusted radiological COC for both the industrial and residential land-use scenarios.

VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways. The appendix shows parameters for both industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS

Table 7
Toxicological Parameter Values for DSS Site 1079 Nonradiological COCs

	RfDo		RfD _{inh}		SFo	SFinh		
COC	(mg/kg-d)	Confidence	(mg/kg-d)	Confidence ^a	(mg/kg-d) ⁻¹	(mg/kg-d) ⁻¹	Cancer Class ^b	ABS
Inorganic								
Cyanide	2E-2°	(M	_	-		_	D	0.1 ^d
Organic								
2-Butanone	6E-1°	L	2.9E-1°	L	-	_	D	0.1 ^d
Fluorene	4E-2 ^c	L	4E-2 ^e	-		_	D	0.1 ^d
Methylene chloride	6E-2°	М	8,6E-1 [†]		7.5 E-3 ^c	1.6E-3°	В2	0.1 ^d

^aConfidence associated with IRIS (EPA 2003) database values. Confidence: L = low, M = medium.

ABS = Gastrointestinal absorption coefficient.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HEAST = Health Effects Assessment Summary Tables.

IRIS = Integrated Risk Information System.

mg/kg-d = Milligram(s) per kilogram-day. $(mg/kg-d)^{-1}$ = Per milligram per kilogram-day.

NMED = New Mexico Environment Department.

RfD_{inh} = Inhalation chronic reference dose.

 RfD_o = Oral chronic reference dose. SF_{inh} = Inhalation slope factor.

SF_p = Oral slope factor.

Information not available.

RISK ASSESSMENT FOR DSS SITE 1079

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003):

B2 = Probable human carcinogen. Sufficient evidence in animals and inadequate or no evidence in humans.

D = Not classifiable as to human carcinogenicity.

^cToxicological parameter values from IRIS electronic database (EPA 2003).

^dToxicological parameter values from NMED (December 2000).

^{*}Toxicological parameter values from EPA Region 6 (EPA 2002a).

Toxicological parameter values from HEAST (EPA 1997a).

Table 8
Radiological Toxicological Parameter Values for DSS Site 1079 COCs
Obtained from RESRAD Risk Coefficients^a

coc	SF _o	SF _{inh} (1/pCi)	SF _{ev}	Cancer Class ^b
U-235	4 70F-11	1.30E-08	2.70E-07	A

^aYu et al. 1993a.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

1/pCi = One per picocurie. COC = Constituent of concern. DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

g/pCi-yr = Gram(s) per picocurie-year.

SF_{ev} = External volume exposure slope factor.

SF_{inh} = Inhalation slope factor. SF_o = Oral (ingestion) slope factor.

(EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), as well as other EPA and NMED guidance documents, and reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For the radiological COC, the coded equation provided in RESRAD computer code is used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a).

Although the designated land-use scenario for this site is industrial, risk and TEDE values for a residential land-use scenario are also presented.

VI.6.2 Risk Characterization

Table 9 shows an HI of 0.00 for the DSS Site 1079 nonradiological COCs and an estimated excess cancer risk of 2E-8 for the designated industrial land-use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 10 shows no quantified HI or estimated excess cancer risk for the DSS Site 1079 associated background constituents under the designated industrial land-use scenario.

For the radiological COC, contribution from the direct gamma exposure pathway is included. For the industrial land-use scenario, a TEDE was calculated that results in an incremental TEDE of 8.2E-3 millirem (mrem)/year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997b), an incremental TEDE of 15 mrem/yr is used for the probable land-use scenario (industrial in this case); the calculated dose value for DSS Site 1079 for the industrial land-use scenario is well below this guideline. The estimated excess cancer risk is 9.4E-8.

Table 9
Risk Assessment Values for DSS Site 1079 Nonradiological COCs

	Maximum	Industrial Land-Use Scenario ^a		Residential Land-Use Scenarioa	
coc	Concentration (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Inorganic					
Cyanide	0.0511 J	0.00	-	0.00	
Organic					
2-Butanone	0.00685	0.00		0.00	
Fluorene	0.201	0.00		0.00	_
Methylene chloride	0.0024 J	0.00	2E-8	0.00	3E-8
Tot	lal	0.00	2E-8	0.00	3E-8

^aEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

J = Estimated concentration.
mg/kg = Milligram(s) per kilogram.
= Information not available.

Table 10
Risk Assessment Values for DSS Site 1079 Nonradiological Background Constituents

	Background	Industrial Land-Use Scenario ^a		Residential Land-Use Scenario ^a	
coc	Concentration (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Cyanide	NC				_
	Total				

^aEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

NC = Not calculated.

= Information not available.

For the nonradiological COCs under the residential land-use scenario, the HI is 0.00 with an estimated excess cancer risk of 3E-8 (Table 9). The numbers in the table include exposure from soil ingestion, dermal contact, and dust and volatile inhalation. Although the EPA (1991) generally recommends that inhalation not be included in a residential land-use scenario, this pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 10 shows no quantified HI or estimated excess cancer risk for the DSS Site 1079 associated background constituents under the residential land-use scenario.

For the radiological COC, the incremental TEDE for the residential land-use scenario is 2.1E-2 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1079 for the residential land-use scenario is well below this guideline. Consequently, DSS Site 1079 is eligible for unrestricted radiological release as the residential land-use scenario results in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 2.8E-7. The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 "Establishment of Cleanup Levels for CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] Sites with Radioactive Contamination," (EPA 1997b). This summation is tabulated in Section VI.9, Summary.

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluates the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.00 (less than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). The estimated excess cancer risk is 2E-8. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determined risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. Assuming the industrial land-use scenario, there is neither a quantifiable HI nor an excess cancer risk for the nonradiological COCs. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background screening concentrations are assumed to have a hazard quotient of 0.00. The incremental HI is 0.00 and the incremental estimated excess cancer risk is 1.56E-8 for the industrial land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under an industrial land-use scenario.

For the radiological COC under the industrial land-use scenario, the incremental TEDE is 8.2E-3 mrem/yr, which is significantly lower than EPA's numerical guideline of 15 mrem/yr. The incremental estimated excess cancer risk is 9.4E-8.

The calculated HI for the nonradiological COCs under the residential land-use scenario is 0.00, which is below numerical guidance. The estimated excess cancer risk is 3E-8. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental HI is 0.00 and the estimated incremental cancer risk is 3.32E-8 for the residential land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under the residential land-use scenario.

The incremental TEDE for a residential land-use scenario from the radiological components is 2.1E-2 mrem/yr, which is significantly lower than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 2.8E-7.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1079 is based upon an initial conceptual model that was validated with sampling conducted at the site. The sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). The DQOs contained in these two documents are appropriate for use in risk screening assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk screening assessment at DSS Site 1079.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Based upon the COCs found in the near-surface soil and the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach is used to calculate the risk assessment values. Specifically, the parameter values in the calculations are conservative and calculated intakes are probably overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 7 shows the uncertainties (confidence levels) in nonradiological toxicological parameter values. There is a combination of estimated values and values from the IRIS (EPA 2003), HEAST (EPA 1997a), EPA Region (EPA 2002a), and Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), Risk Assessment Information System (ORNL 2003), or the EPA regions (EPA 2002a, EPA 2002b, EPA 2002c). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Risk assessment values for nonradiological COCs are within the acceptable range for human health under the industrial and residential land-use scenarios compared to established numerical guidance.

For the radiological COC, the conclusion of the risk assessment is that potential effects on human health for both the industrial and residential land-use scenarios are below background and represent only a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

VI.9 Summary

DSS Site 1079 contains identified COCs consisting of some inorganic, organic, and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site include soil ingestion, dermal contact, and dust and volatile inhalation for chemical COCs, and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways are applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the industrial land-use scenario the HI (0.00) is significantly lower than the accepted numerical guidance from the EPA. The estimated excess cancer risk is 2E-8; thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.00 and the incremental estimated excess cancer risk is 1.56E-8 for the industrial land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the residential land-use scenario the HI (0.00) is below the accepted numerical guidance from the EPA. The estimated excess cancer risk is 3E-8. Thus, excess cancer risk is below the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 0.00 and the incremental estimated excess cancer risk is 3.32E-8 for the residential land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the residential land-use scenario.

The incremental TEDE and corresponding estimated cancer risk from radiological COCs are much less than EPA guidance values. The estimated TEDE is 8.2E-3 mrem/yr for the industrial land-use scenario, which is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997b). The corresponding incremental estimated cancer risk value is 9.4E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional control is 2.1E-2 mrem/yr with an associated risk of 2.8E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1079 is eligible for unrestricted radiological release.

The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 (EPA 1997b). The summation of the nonradiological and radiological carcinogenic risks is tabulated in Table 11.

Table 11
Summation of Radiological and Nonradiological Risks from DSS Site 1079, Building 6643 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	1.56E-8	9.4E-8	1.1Ë-7
Residential	3.32E-8	2.8E-7	3.1E-7

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1079. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological risk assessment that corresponds with that presented in EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment if warranted by the results of the scoping assessment. Initial components of NMED's decision tree (a discussion of DQOs, data assessment, and evaluations of bioaccumulation as well as fate and transport potential) are addressed in previous sections of this report. At the end of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data with respect to the existence of complete ecological exposure pathways, an evaluation of bioaccumulation potential, and a summary of fate and transport potential. The scoping risk-management decision (Section VII.2.4) summarizes the scoping results and assesses the need for further examination of potential ecological impacts.

VII.2.1 Data Assessment

As indicated in Section IV, all COCs at DSS Site 1079 are at depths of 5 feet bgs or greater. Therefore, no complete ecological exposure pathways exist at this site, and no COCs are considered to be COPECs.

VII.2.2 Bioaccumulation

Because no COPECs are associated with this site, bioaccumulation potential was not evaluated.

VII.2.3 Fate and Transport Potential

The potential for the COCs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 6 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COCs at this site. Degradation, transformation, and decay of the radiological COC also are expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it is concluded that complete ecological pathways are not associated with COCs at this site. Therefore, no COPECs exist at the site, and a more detailed risk assessment was not deemed necessary to predict the potential level of ecological risk associated with the site.

VIII. References

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Howard, P.H., 1990. Volume II: "Solvents," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc. Chelsea, Michigan.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Kocher, D.C. 1983. "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil," *Health Physics*, Vol. 28, pp. 193–205.

Micromedex, Inc., 1998, Hazardous Substances Databank.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," NCRP Report No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," in New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

Oak Ridge National Laboratory, 2003. "Risk Assessment Information System," electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL, Oak Ridge National Laboratory.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, See Sandia National Laboratories, New Mexico.

- U.S. Department of Energy (DOE), 1988. "External Dose-Rate Conversion Factors for Calculation of Dose to the Public," DOE/EH-0070, Assistant Secretary for Environment, Safety and Health, U.S. Department of Energy, Washington, D.C.
- U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.
- U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1988. "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997a. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997b. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 2002a. "Region 6 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.
- U.S. Environmental Protection Agency (EPA), 2002b. "Region 9 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.
- U.S. Environmental Protection Agency (EPA), 2002c. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.
- U.S. Environmental Protection Agency (EPA), 2003. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington, D.C.
- Whicker, F.W., and V. Schultz, 1982. *Radioecology: Nuclear Energy and the Environment*, Volume II, CRC Press, Boca Raton, Florida.

- Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.
- Yu, C., A.J. Zielen, J.-J. Cheng, Y.C. Yuan, L.G. Jones, D.J. LePoire, Y.Y. Wang, C.O. Loureiro, E. Gnanapragasam, E. Faillace, A. Wallo III, W.A. Williams, and H. Peterson, 1993a. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD," Version 5.0. Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois.
- Yu, C., C. Loureiro, J.-J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace, 1993b. "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil," ANL/EAIS-8, Argonne National Laboratory, Argonne, Illinois.

This page intentionally left blank.

APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Intro<u>duction</u>

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous. radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- · Ingestion of contaminated soil

- · Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different landuse scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following five potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- · Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

Table 1
Exposure Pathways Considered for Various Land-Use Scenarios

Industrial	Recreational	Residential
Ingestion of contaminated drinking water	Ingestion of contaminated drinking water	Ingestion of contaminated drinking water
Ingestion of contaminated soil	Ingestion of contaminated soil	Ingestion of contaminated soil
Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)
Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only
External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS Il projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

=
$$C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
 (1)

where:

C = contaminant concentration (site specific)

CR = contact rate for the exposure pathway

EFD= exposure frequency and duration

BW = body weight of average exposure individual

AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimated dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_s = \frac{C_s * IR * CF * EF * ED}{BW * AT}$$

where:

= Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)

= Chemical concentration in soil (mg/kg)

IR = Ingestion rate (mg soil/day)

CF = Conversion factor (1E-6 kg/mg)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_s = \frac{C_s * IR * EF * ED * \left(\frac{1}{VF} \text{ or } \frac{1}{PEF}\right)}{BW * AT}$$

where:

I_s = Intake of contaminant no... co...... C_s = Chemical concentration in soil (mg/kg) = Intake of contaminant from soil inhalation (mg/kg-day)

IR = Inhalation rate (cubic meters [m³]/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

VF = soil-to-air volatilization factor (m³/kg)

PEF = particulate emission factor (m³/kg)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Soil Dermal Contact

$$D_a = \frac{C_s * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

D_a = Absorbed dose (mg/kg-day)
 C_s = Chemical concentration in soil (mg/kg)
 CF = Conversion factor (1E-6 kg/mg)

SA = Skin surface area available for contact (cm²/event)

AF = Soil to skin adherence factor (mg/cm²)

ABS = Absorption factor (unitless)

EF = Exposure frequency (events/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{RW * AT}$$

where:

I_w = Intake of contaminant C_w = Chemical concentration IR = Ingestion rate (L/day) = Intake of contaminant from water ingestion (mg/kg/day)

= Chemical concentration in water (mg/liter [L])

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{BW * AT}$$

where:

= Intake of volatile in water from inhalation (mg/kg/day)

IR, = Inhalation rate (m³/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1x10-5 and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land-use scenarios for nonradiological and radiological COCs,

respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

Table 2
Default Nonradiological Exposure Parameter Values for Various Land-Use Scenarios

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			
		8.7 (4 hr/wk for	
Exposure Frequency (day/yr)	250 ^{a,b}	52 wk/yr) ^{a,b}	350a,b
Exposure Duration (yr)	25 ^{a,b,c}	30a,b,c	30ª,b,c
	70 ^{a,b,c}	70 Adult ^{a,b,c}	70 Adulta,b,c
Body Weight (kg)		15 Child ^{a,b,c}	15 Child ^{a,b,c}
Averaging Time (days)			
for Carcinogenic Compounds (= 70 yr x 365 day/yr)	25,550 ^{a.b}	25,550 ^{a,b}	25,550 ^{a,b}
for Noncarcinogenic Compounds (= ED x 365 day/yr)	9,125 ^{a,b}	10,950 ^{a,b}	10,950 ^{a.b}
Soil Ingestion Pathway			
Ingestion Rate (mg/day)	100 ^{a,b}	200 Childa,b	200 Child a,b
		100 Adult ^{a,b}	100 Adult a.b
Inhalation Pathway		_ 	
		15 Childa	10 Childa
Inhalation Rate (m³/day)	20a,b	30 Adulta	20 Adulta
Volatilization Factor (m³/kg)	Chemical Specific	Chemical Specific	Chemical Specific
Particulate Emission Factor (m³/kg)	1.36E9a	1.36E9a	1.36E9a
Water Ingestion Pathway			
Ingestion Rate (liter/day)	2.4ª	2.4ª	2.4ª
Dermal Pathway			
months a matter a		0.2 Child ^a	0.2 Childa
Skin Adherence Factor (mg/cm²)	0.2ª	0.07 Adulta	0.07 Adulta
Exposed Surface Area for Soil/Dust		2,800 Childa	2,800 Childa
(cm²/day)	3,300°	5,700 Adulta	5,700 Adulta
Skin Adsorption Factor	Chemical Specific	Chemical Specific	Chemical Specific

^aTechnical Background Document for Development of Soil Screening Levels (NMED December 2000). ^bRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

ED = Exposure duration.

EPA = U.S. Environmental Protection Agency.

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not available.

wk = Week(s).

yr = Year(s).

^cExposure Factors Handbook (EPA August 1997).

Table 3

Default Radiological Exposure Parameter Values for Various Land-Use Scenarios

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			
	8 hr/day for		
Exposure Frequency	250 day/yr	4 hr/wk for 52 wk/yr	365 day/yr
Exposure Duration (yr)	25 ^{a,b}	30a,b	30 ^{a,b}
Body Weight (kg)	70 Adulta,b	70 Adulta,b	70 Adult ^{a,b}
Soil Ingestion Pathway			
Ingestion Rate	100 mg/day ^c	100 mg/day ^c	100 mg/day ^c
Averaging Time (days)			
(= 30 yr x 365 day/yr)	10,950 ^d	10,950 ^d	10,950 ^d
Inhalation Pathway		<u>- I </u>	
Inhalation Rate (m³/yr)	7,300 ^{d,e}	10,950e	7,300 ^{d,e}
Mass Loading for Inhalation g/m ³	1.36E-5d	1.36E-5 ^d	1.36 E -5 d
Food Ingestion Pathway			
Ingestion Rate, Leafy Vegetables			
(kg/yr)	NA	NA NA	16.5°
Ingestion Rate, Fruits, Non-Leafy	. 		.
Vegetables & Grain (kg/yr)	NA	NA	101.8 ^b
Fraction Ingested	NA	NA	0.25 ^{b,d}

^aRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

EPA = U.S. Environmental Protection Agency.

g = Gram(s)

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not applicable.

wk = Week(s).

yr = Year(s).

^bExposure Factors Handbook (EPA August 1997).

^cEPA Region VI guidance (EPA 1996).

dFor radionuclides, RESRAD (ANL 1993).

eSNL/NM (February 1998).

References

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

DOE and USAF, see U.S. Department of Energy and U.S. Air Force.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment," Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

- U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.
- U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.
- U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.
- U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.
- U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force.
- U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force.

- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

APR 7 2008

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi,

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Quality Control (QC) Report, and copies of gamma spectroscopy analytical results for the entire Drain and Septic Systems (DSS) project, in response to the New Mexico Environment Department Request for Supplemental Information: Environmental Restoration Project SWMU Assessment Reports and Proposals for Corrective Action Complete: Drain and Septic Systems Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120, (DSS Round 6); September 2004, Environmental Restoration Project at Sandia National Laboratories, New Mexico, EPA ID No. NM589011518, dated January 14, 2005.

One hardcopy (consisting of seven volumes) will be delivered to Will Moats (NMED), and an electronic CD will be sent by certified mail to you and Laurie King (EPA).

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner

Manager

Enclosure

cc w/ enclosure:

W. Moats, NMED-HWB (via Certified Mail)

L. King, EPA, Region 6 (Via Certified Mail)

M. Gardipe, NNSA/SC/ERD

J. Volkerding, DOE-NMED-OB

cc w/o enclosure:

D. Pepe, NMED-OB

J. Estrada, NNSA/SSO, MS 0184

F. Nimick, SNL, MS 1089

R. E. Fate, SNL, MS 1089

M. J. Davis, SNL, MS 1089

D. Stockham, SNL, MS 1087

B Langkopf, SNL, MS 1087

P. Puissant, SNL, MS 1087

M. Sanders, SNL, MS 1087

A. Blumberg, SNL, MS 0141

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 1 of 7 Master Index and

Field Duplicate Relative Percent Difference Tables

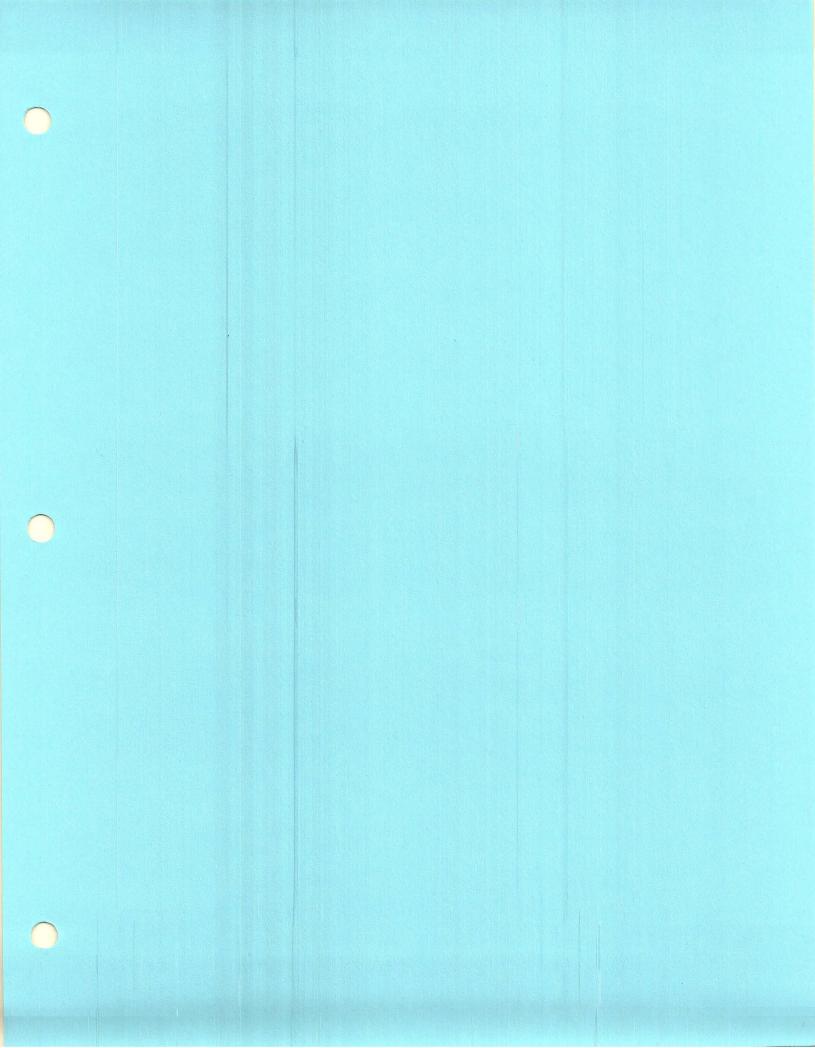
Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories/New Mexico Drain and Septic Systems Project Quality Control Report April 2005

In response to the New Mexico Environmental Department (NMED) request for supplemental information dated January 14, 2005, the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) project is providing a complete set of laboratory analytical quality control (QC) documentation for approximately 1,200 soil and associated field blank and duplicate samples collected at the SNL/NM Drain and Septic System (DSS) sites from 1998 to 2002.

The documentation set is comprised of seven report binders. The first binder contains a master index sorted by DSS Site number, and then by analytical parameter. The master index also includes the site names, binder number in which the pertinent QC information can be found for any individual sample, Analytical Request/Chain of Custody (AR/COC) numbers, ER sample IDs, ER sample numbers, sample collection dates, sample matrix, analytical laboratory, and the laboratory analytical batch number for these DSS samples. The first binder also contains tables of calculated relative percent differences (RPDs) for primary and field duplicate sample pairs collected at the DSS sites from 1998 to 2002.


Binders 2 through 5 include the detailed QC information for General Engineering Laboratories (GEL). Binder 6 includes the same type of information for the ER Chemistry Laboratory (ERCL). Binders 2 through 6 include general narratives which address condition on receipt at the laboratory, and sample integrity issues (proper preservation, shipping, AR/COC, etc.). Technical narratives are also provided for each analytical method used. These narratives address holding time and any other specific QC method conformance issues. QC summaries are included for each QC batch. These include the result data and applicable calculations (percent recovery, RPD) for analytical blanks, spikes, and replicates. Finally, Binder 7 includes both complete gamma spectroscopy data documentation, and the associated batch QC from the SNL Radiation Protection Sample Diagnostic (RPSD) Laboratory. For each data set indicated by the AR/COC number, an individual cross reference summary sheet is provided.

DRAIN AND SEPTIC SYSTEMS PROJECT QC MASTER INDEX

C'2- #	Site Name	Binder#	COC#	ER Sample ID	Sample #	SAMPLE DAT	E MATRIX	LAB TEST	Lab	BATCH#
Site #	Bldg, 6640 SS	Volume 7	605641	6640/1078-DF1-BH2-10-S	059694-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1078	Bidg. 6640 SS	Volume 7	605641	6640/1078-DF1-BH2-5-S	.059693-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1078 1078	Bldg, 6640 SS	Volume 7	605641	6640/1078-DF1-BH3-10-S	059696-003	26-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1078	Bldg. 6640 SS	Volume 7	605641	6640/1078-DF1-BH3-5-DU	:059697-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1078	Bldg. 6640 SS	Volume 7	605641	6640/1078-DF1-BH3-5-S	059695-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1078	Bldg. 6640 SS	Volume 3	605652	6640/1078-DF1-BH1-10-S	059692-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1078	Bldg. 6640 SS	Volume 3	605652	6640/1078-DF1-BH1-5-S	059691-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1078	Bldg. 6640 SS	Volume 3	605652	6640/1078-DF1-BH2-10-S	059694-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 19 7762
1078	Bldg. 6640 SS	Volume 3	605652	6640/1078-DF1-BH2-5-S	059693-002	23-AUG-02	SOIL	RCRA METALS	(GEL	-197718, 1 97762
1078	Bldg, 6640 SS	Volume 3	605652	6640/1078-DF1-BH3-10-S	:059696-002	26-AUG-02	SOIL	IRCRA METALS	⊹GEL	197718, 19 7762
1078	Bidg, 6640 SS	Volume 3	605652	6640/1078-DF1-BH3-5-DU	059697-002	23-AUG-02	SOIL	RCRA METALS	GEL.	197718, 197762
1078	Bldg, 6640 SS	Volume 3	605652	6640/1078-DF1-8H3-5-S	,059695-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	PCB-8082	.GEL	_. 197835
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	PCB-8082	[GEL	197835
1079	Bidg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	PCB-8082	⊦GEL	197835
1079	Bldg. 6643 SS	Volume 3	605653	:6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	PCB-8082	GEL	197835
1079	,Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	PCB-8082	GEL	197835
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	-PCB-8082	GEL	197835
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	TOTAL-CN	:GEL	197853
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	TOTAL-CN	GEL	197853
1079	Bldg. 6643 SS	⊱ Volume 3	605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	:TOTAL-CN	:GEL	197853
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	∶TOTAL-ÇN	(GEL	197853
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	:TOTAL-CN	GEL	197853
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-16-S	059703-002	:23-AUG-02	SOIL	'TOTAL-CN	GEL	197853
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	.BNA-8270	GEL	197857
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	BNA-8270	GEL	197857
1079	Bldg. 6643 SS	5 Volume 3	605653	(6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	BNA-8270	GEL	197857
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	.BNA-8270	GEL	(197857
1079	Bldg, 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	BNA-8270	;GEL	197857
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	BNA-8270	,GEL	197857
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-11-S	059641-001	22-AUG-02	SOIL	VOA-8260	₄GEL	197932
1079	Bidg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-16-S	059642-001	22-AUG-02	SOIL	VOA-8260	GEL	:197932
1079	Bidg. 6643 SS	: Volume 3	605653	6643/1079-DF1-BH2-11-S	059700-001	23-AUG-02	SOIL	VQA-8260	GEL	197932
1079	Bldg. 6643 SS	: Volume 3	605653	8643/1079-DF1-BH2-16-S	059701-001	23-AUG-02	SOIL	′VOA-8260	GEL	197932
1079	Bldg. 6643 SS	. Volume 3	605653	6643/1079-DF1-BH3-11-S	059702-001	23-AUG-02	SOIL	∛VOA-8260	GEL	197932
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-16-S	059703-001	23-AUG-02	SOIL	VOA-8260	GEL	197932
1079	Bldg, 6643 SS	Volume 3	605653	6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	,Cr+6	≀GEL	198031
1079	Bldg. 6643 5S	Volume 3	605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	;SOIL	Cr+6	GEL	‡198031
1079	Bidg, 6643 SS	Volume 3	605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	Cr+6	'GEL	{198031 ·
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	Cr+6	GEL	198031
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	Cr+6	GEL	198031
1079	Bldg. 6643 SS	Volume 3	605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	:Cr+6	GEL	198031

DRAIN AND SEPTIC SYSTEMS PROJECT QC MASTER INDEX

								Į.		l	
Site #	Site Name	Binder#		COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg, 6643 SS	Volume 3		605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	HE-8330	GEL	198039
1079	Bldg. 6643 SS	Volume 3		605653	6643/10/9-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bidg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH2-16-\$	059701-002	23-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	GROSS-A/B	GEL	198986
1079	Bldg. 6643 \$\$	Volume 3		605653	6643/1079-DF1-8H3-TB	059704-001	23-AUG-02	AQUEOUS	VOA-8260	GEL	199064
1079	.Bldg. 6643 SS	Volume 7	į	605641	6643/1079-DF1-BH1-11-S	059641-003	22-AUG-02	SOIL	GAMMA SPEC	RPSD	:201191
1079	'Bldg. 6643 \$\$	Volume 7	1	605641	-6643/1079-DF1-BH1-16-S	059642-003	22-AUG-02	SOIL	GAMMA SPEC	RPSD	·201191
1079	Bidg. 6643 SS	Volume 7		605641	6643/1079-DF1-BH2-11-S	059700-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1079	.Bldg. 6643 SS	Volume 7	÷	605641	6643/1079-DF1-BH2-16-S	059701-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1079	Bldg, 6643 SS	Volume 7	1	605641	6643/1079-DF1-BH3-11-S	059702-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1079	Bldg. 6643 SS	Votume 7	i	605641	6643/1079-DF1-BH3-16-S	059703-003	23-AUG-02	SOIL	GAMMA SPEC	RPSD	201191
1079	Bldg. 6643 SS	Volume 3	:	605653	-6643/1079-DF1-BH1-11-S	059641-002	22-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH1-16-S	059642-002	22-AUG-02	SOIL	RCRA METALS		197718, 197762
1079	Bldg. 6643 SS	Volume 3	2	605653	6643/1079-DF1-BH2-11-S	059700-002	23-AUG-02	SOIL	'RCRA METALS		197718, 197762
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH2-16-S	059701-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1079	Bldg. 6643 SS	Volume 3		605653	6643/1079-DF1-BH3-11-S	059702-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1079	Bldg. 6643 SS	 Volume 3 	•	605653	6643/1079-DF1-BH3-16-S	059703-002	23-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1080	Bldg. 6644 SS	Volume 3		605656	6644/1080-DF1-EB	059640-002	26-AUG-02	AQUEOUS	BNA-8270	GEL	,197643
1080	Bldg. 6644 SS	Volume 3		605656	6644/1080-DF1-EB	059640-006	.26-AUG-02	AQUEOUS	Cr+6	GEL	197692
1080	Bldg. 6644 SS	Volume 3		605656	6644/1080-DF1-EB	059640-003	26-AUG-02	AQUEOUS	PCB-8082	GEL	197833
1080	∄Bldg. 6644 SS	Volume 3	,	605654	.6644/1080-DF1-BH1-10-S	059706-002	26-AUG-02	SOIL	PCB-8082	GËL	197835
1080	Bldg. 6644 SS	Volume 3		605654	6644/1080-DF1-BH1-5-S	059705-002	26-AUG-02	SOIL	PCB-8082	'GEL	197835
1080	Bldg. 6644 SS	y Volume 3	;	605654	6644/1080-DF1-BH2-10-S	059708-002	26-AUG-02	SOIL	PCB-8082	GEL	197835
1080	Bldg. 6644 SS	, Volume 3	i	605654	6644/1080-DF1-BH2-5-S	059707-002	26-AUG-02	SOIL	PCB-8082	GEL	197835
1080	Bldg. 6644 SS	Volume 3	:	605654	6644/1080-DF1-BH3-6-S	059709-002	26-AUG-02	SOIL	PCB-8082	GEI	197835
1080	Bldg. 6644 SS	Volume 3		605654	,6644/1080-DF1-BH3-11-S	059710-002	26-AUG-02	SOIL	PCB-8082	,GEL	197837
1080	Bldg. 6644 SS	Volume 3	ļ.	605654	6644/1080-DF1-BH1-10-S	059706-002	26-AUG-02	SOŁ	TOTAL-CN	·GFI	197853
1080	Bldg. 6644 SS	Volume 3		605654	.6644/1080-DF1-BH1-5-S	059705-002	26-AUG-02	SOIL	TOTAL ON	GEL	197853
1080	Bldg. 6644 SS	Volume 3	?	605654	6644/1080-DF1-BH2-10-S	059708-002	26-AUG-02	SOIL	TOTAL-CN	GFI	197853
1080	Bldg. 6644 SS	Volume 3	2	605654	6644/1080-DF1-BH2-5-S	059707-002	26-AUG-02	SOIL	TOTAL-CN	GEL	,197853
1080	Bldg. 6644 SS	Volume 3	;	605654	6644/1080-DF1-BH3-6-S	059709-002	26-AUG-02	SOIL	TOTAL-CN		197853
1080	Bldg. 6644 SS	Volume 3	ŧ	605654	6644/1080-DF1-BH1-10-S	059706-002	26-AUG-02	SOIL	BNA-8270	,GEL	197857
1080	Bldg. 6644 \$S	Volume 3	`	605654	6644/1080-DF1-BH1-5-S	059705-002	26-AUG-02	SOIL	BNA-8270	GEL	197857
1080	Bldg. 6644 SS	Volume 3	`	605654	6644/1080-DF1-BH2-10-S	059708-002	26-AUG-02	SOIL	BNA-8270	GEL	197857

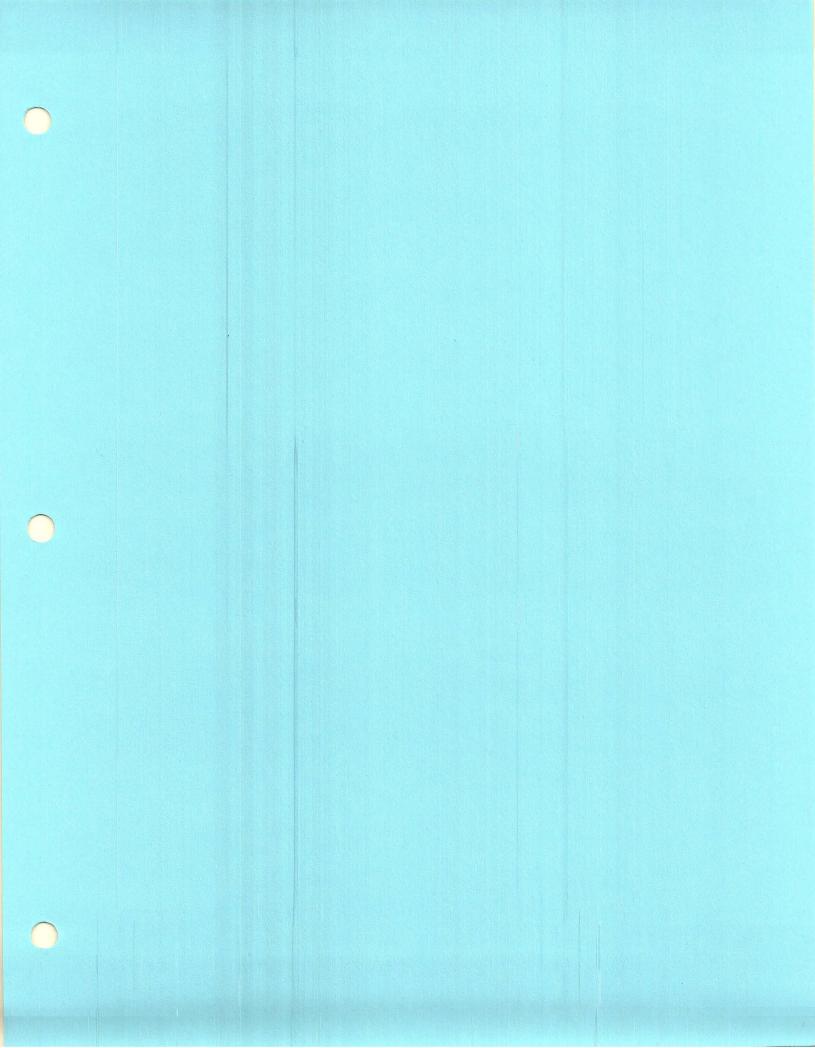
Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 3 of 7
General Engineering Laboratories, Inc. (GEL) QC Data

Environmental Restoration Project


United States Department of Energy Sandia Site Office

_ • •			T	<u> </u>	SAMPLE	T		
Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	DATE	MATRIX	LAB TEST	BATCH#
1079	Bidg. 6643 SS	059641	001	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	VOA-8260	197932, 197964
1079	Bidg. 6643 SS	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	BNA-8270	197857, 197631, 19821 5
1079	Bldg. 6643 SS	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	Cr+6	198031, 198034
1079	Bldg. 6643 SS	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	GROSS-A/B	198986
1079	Bldg. 6643 SS	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	HE-8330	198039, 198044, 201462, 203606
1079	Bldg. 6643 SS	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	PCB-8082	197835, 197837
1079	Bldg. 6643 \$S	059641	002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	RCRA METALS	197718, 197762, 199132, 199386
1079	Bldg. 6643 SS	059641	(002	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059642	001	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	VOA-8260	197932, 197964
	Bldg. 6643 SS	059642	002	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	BNA-8270	197857, 197631, 198215 198031, 198034
	Bldg. 6643 SS	059642	002	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	Cr+6	198986
	Bidg. 6643 SS Bidg. 6643 SS	059642 059642	002	6643/1079-DF1-BH1-16-S 6643/1079-DF1-BH1-16-S	22-AUG-02 22-AUG-02	SOIL	GROSS-A/B HE-8330	198039, 198044, 201462, 203606
1079	Bldg. 6643 SS	059642	002	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	PCB-8082	197835, 197837
	Bldg. 6643 SS	059642	002	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	7.1014.1112	197718, 197762, 199132, 199386
	Bldg. 6643 SS	059642	002	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	TOTAL-CN	197853, 198863
1120	Bldg. 6643 DW	059698	001	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	VOA-8260	197932, 197964
	Bidg. 6643 DW	059698 059698	002	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	BNA-8270	197857, 197631, 198215 198031, 198034
	Bldg. 6643 DW Bldg. 6643 DW	059698	002	6643/1120-DW1-BH1-8-S 6643/1120-DW1-BH1-8-S	22-AUG-02 22-AUG-02	SOIL	Cr+6 GROSS-A/B	198986
	Bidg. 6643 DW	059698		6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	HE-8330	198039, 198044, 201462, 203606

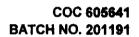
					SAMPLE	1		
Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	DATE	MATRIX	LAB TEST	BATCH#
1120	Bldg. 6643 DW	059698	002	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	PCB-8082	197835, 197837
1120	Bldg. 6643 DW	059698	002	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	RCRA METALS	197718, 197762, 199132 199386
1120	Bldg. 6643 DW	059698	002	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	TOTAL-CN	197853, 198863
1120	Bldg. 6643 DW	059699	001	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	VOA-8260	197932, 197964
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	BNA-8270	197857, 197631, 198215
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	Cr+6	198031, 198034
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	GROSS-A/B	198986
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	HE-8330	198039, 198044, 201462, 203606
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	PCB-8082	197835, 197837
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	RCRA METALS	197718, 197762, 199132, 199386
1120	Bldg. 6643 DW	059699	002	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059700	001	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	VOA-8260	197932, 197964
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	BNA-8270	197857, 197631, 198215
1079	Bidg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	Cr+6	198031, 198034
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	GROSS-A/B	198986
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	HE-8330	198039, 198044, 201462, 203606
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	PCB-8082	197835, 197837
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	RCRA METALS	197718, 197762, 199132, 199386
1079	Bldg. 6643 SS	059700	002	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059701	001	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	VOA-8260	197932, 197964
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	BNA-8270	197857, 197631, 198215

			T		SAMPLE	Ţ <u></u>		Ţ
Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC_	DATE	MATRIX	LAB TEST	BATCH#
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	Cr+6	198031, 198034
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	GROSS-A/B	198986
			1					198039, 198044, 201462,
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	HE-8330	203606
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	PCB-8082	197835, 197837
								197718, 197762, 199132,
	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	RCRA METALS	199386
1079	Bldg. 6643 SS	059701	002	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059702	001	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	VOA-8260	197932, 197964
	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	BNA-8270	197857, 197631, 198215
	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	Cr+6	198031, 198034
1079	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	GROSS-A/B	198986
			}			1		198039, 198044, 201462,
	Bidg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	HE-8330	203606
1079	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	PCB-8082	197835, 197837
			<u> </u>			ļ		197718, 197762, 199132,
	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	RCRA METALS	199386
	Bldg. 6643 SS	059702	002	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059703	001	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	VOA-8260	197932, 197964
			l			1		
	Bldg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	BNA-8270	197857, 197631, 198215
	Bidg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	Cr+6	198031, 198034
1079	Bldg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	GROSS-A/B	198986
						1		198039, 198044, 201462,
	Bldg. 6643 SS	059703		6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	HE-8330	203606
1079	Bldg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	PCB-8082	197835, 197837
4020	DId., 6043.00	050700		00404070 DE4 DU2 40 0	20 4110 22			197718, 197762, 199132,
10/9	Bldg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	RCRA METALS	199386

Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	SAMPLE DATE	MATRIX	LAB TEST	BATCH#
1079	Bldg. 6643 SS	059703	002	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	TOTAL-CN	197853, 198863
1079	Bldg. 6643 SS	059704	001	6643/1079-DF1-BH3-TB	23-AUG-02	AQUEOUS	VOA-8260	199064

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

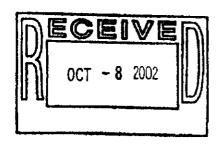

April 2005

Volume 7 of 7
Radiation Protection & Sample Diagnostics (RPSD)
Laboratory Data

Environmental Restoration Project

United States Department of Energy Sandia Site Office

RPSD QC CROSS REFERENCE


Site #	Site Name	SAMPLE#	F#	ER SAMPLE ID	SAMPLE DATE	MATRIX	LAB TEST
1079	Bldg. 6643 SS	059641	003	6643/1079-DF1-BH1-11-S	22-AUG-02	SOIL	GAMMA SPEC
1079	Bldg. 6643 SS	059642	003	6643/1079-DF1-BH1-16-S	22-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059691	003	6640/1078-DF1-BH1-5-S	23-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059692	003	6640/1078-DF1-BH1-10-S	23-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059693	003	6640/1078-DF1-BH2-5-S	23-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059694	003	6640/1078-DF1-BH2-10-S	23-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059695	003	6640/1078-DF1-BH3-5-S	23-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059696	003	6640/1078-DF1-BH3-10-S	26-AUG-02	SOIL	GAMMA SPEC
1078	Bldg. 6640 SS	059697	003	6640/1078-DF1-BH3-5-DU	23-AUG-02	SOIL	GAMMA SPEC
1120	Bldg. 6643 DW	059698	003	6643/1120-DW1-BH1-8-S	22-AUG-02	SOIL	GAMMA SPEC
1120	Bldg. 6643 DW	059699	003	6643/1120-DW1-BH1-13-S	22-AUG-02	SOIL	GAMMA SPEC
1079	Bldg. 6643 SS	059700	003	6643/1079-DF1-BH2-11-S	23-AUG-02	SOIL	GAMMA SPEC
1079	Bidg. 6643 SS	059701	003	6643/1079-DF1-BH2-16-S	23-AUG-02	SOIL	GAMMA SPEC
1079	Bldg. 6643 SS	059702	003	6643/1079-DF1-BH3-11-S	23-AUG-02	SOIL	GAMMA SPEC
1079	Bldg. 6643 SS	059703	003	6643/1079-DF1-BH3-16-S	23-AUG-02	SOIL	GAMMA SPEC
1080	Bldg. 6644 SS	059705	003	6644/1080-DF1-BH1-5-S	26-AUG-02	SOIL	GAMMA SPEC
1080	Bldg. 6644 SS	059706	003	6644/1080-DF1-BH1-10-S	26-AUG-02	SOIL	GAMMA SPEC
1080	Bldg. 6644 SS	059707	003	6644/1080-DF1-BH2-5-S	26-AUG-02	SOIL	GAMMA SPEC
1080	Bldg. 6644 SS	059708	003	6644/1080-DF1-BH2-10-S	26-AUG-02	SOIL	GAMMA SPEC
1080	Bldg. 6644 SS	059709	003	6644/1080-DF1-BH3-6-S	26-AUG-02	SOIL.	GAMMA SPEC
1080	Bldg. 6644 SS	059710	003	6644/1080-DF1-BH3-11-S	26-AUG-02	SOIL	GAMMA SPEC

RECORDS CENTER/ ORIGINAL COPY CASE NARRATIVE

for

Sandia National Laboratories ARCOC-605652 SDG#66189A ARCOC-605653 SDG#66189B ARCOC-605654 SDG#66189C

> ARCOC-605656 SDG#66189D Case No. 7223.02.03.02

September 24, 2002

Laboratory Identification:

General Engineering Laboratories, Inc.

Mailing Address:

P.O. Box 30712 Charleston, South Carolina 29417

Express Mail Delivery and Shipping Address:

2040 Savage Road Charleston, South Carolina 29407

Telephone Number:

(843) 556-8171

Summary:

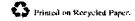
Sample receipt

Sandia collected forty-two soil samples and twelve aqueous samples on August 22nd, 23rd, and 26th, 2002. The samples arrived at General Engineering Laboratories, Inc., (GEL) Charleston, South Carolina on August 28th, 2002, for environmental analyses. Cooler clearance (screening, temperature check, etc.) was done upon login. The coolers arrived without any visible signs of tampering and with custody seals intact. The samples were delivered with chain of custody documentation and signatures. The temperature of the samples was 2.0, 3.0, and 5.0°C, as measured from the temperature control bottles.

GENERAL ENGINEERING LABORATORIES
P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407
(843) 556-8171 • Fax (843) 766-1178

On ARCOC-605652, sample ID 059698-001 was listed as the trip blank. On ARCOC-605653, the same sample ID is listed for a soil sample. A new sample ID was given to the sample ID on ARCOC-605652. The new sample ID was 059893-001. The hexavalent chromium matrix spike for the soil samples failed contractual limits at 73.7%, but was within GEL's SPC limits. The LCS passed at 87%. All samples were either "U" or "J" flagged. Client was contacted regarding this issue and instructed GEL to report the data with an NCR.

The samples were screened according to GEL Standard Operating Procedures (SOP) EPI SOP S-007 rev. 2 "The Receiving of Radioactive Samples." The samples were stored properly according to SW-846 procedures and GEL SOP.


The samples were received and collected as listed in the table below:

ARCOC	SDG#	#of samples	Collection Date	Date Rec'd by Lab
605652	66189A	15	08/23/02,08/26/02	08/28/02
605653	66189B	17	08/22/02,08/23/02	08/28/02
605654	66189C	13	08/26/02	08/28/02
605656	66189D	9	08/26/02	08/28/02

The laboratory received the following samples:

<u>Laboratory ID</u> ARCOC-605652:	<u>Description</u>
66189001	059691-001
66189002	059692-001
66189003	059693-001
66189004	059694-001
66189005	059695-001
66189006	059696-001
66189007	059697-001
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
66189026	059696-002
66189027	059697-002
66197003	059893-001

GENERAL ENGINEERING LABORATORIES
PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407
(843) 556-8171 • Fax (843) 766-1178

<u>Laboratory ID</u> ARCOC-605653;	Description
66189008	059698-001
66189009	059699-001
66189010	059641-001
66189011	059642-001
66189012	059700-001
66189013	059701-001
66189014	059702-001
66189015	059703-001
66189028	059698-002
66189029	059699-002
66189030	059641-002
66189031	059642-002
66189032	059700-002
66189033	059701-002
66189034	059702-002
66189035	059703-002
66197004	059704-001
ARCOC-605654:	
66189016	059705-001
66189017	059706-001
66189018	059707-001
66189019	059708-001
66189020	059709-001
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
66195001	059710-001
66195002	059710-002
66197005	059711-001
ARCOC-605656:	
66197001	059640-001
66197002	059712-001
66197006	059640-002
66197007	059640-003
66197008	059640-004
66197009	059640-005
66197010	059640-006

66197011

66197012

GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

059640-007

059640-008

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

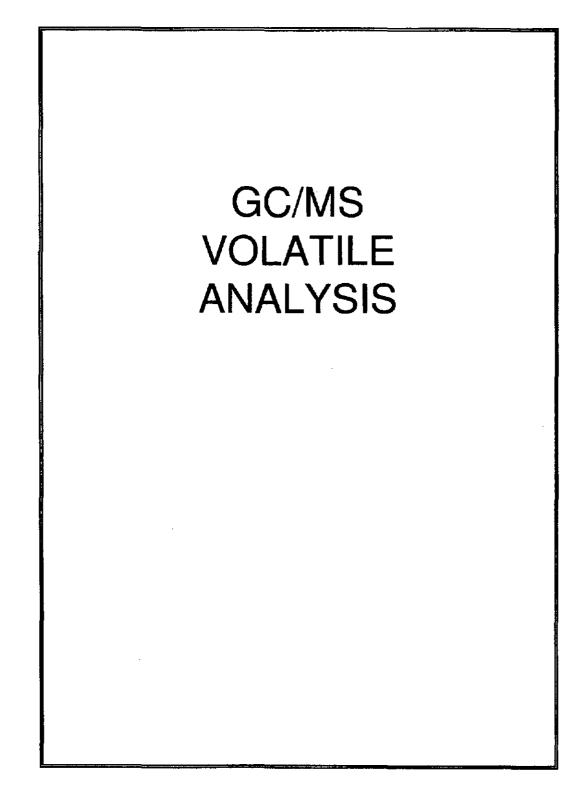
Internal Chain of Custody:

Custody was maintained for the samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Qualifier Flag and Data Package Definitions, Laboratory Certifications, Volatiles Data, Volatiles QC Summary, Semivolatiles Data, Semivolatiles QC Summary, PCB Data, PCB QC Summary, Explosives Data, Explosives QC Summary, Metals Data, Metals QC Summary, General Chemistry Data, General Chemistry QC Summary, Radiochemistry Data, Radiochemistry QC Summary, and Level C Data Package.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.


Edith M. Kent

Project Manager

GENERAL ENGINEERING LABORATORIES
PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407
(843) 556-8171 • Fax (843) 766-1178

5

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG 66189

Method/Analysis Information

Procedure: Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method: SW846 8260A

Prep Method: SW846 5030A

Analytical Batch Number: 197932

Prep Batch Number: 197931

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
66189001	059691-001
66189002	059692-001
66189003	059693-001
66189004	059694-001
66189005	059695-001
66189006	059696-001
66189007	059697-001
66189008	059698-001
66189009	059699-001
66189010	059641-001
66189011	059642-001
66189012	059700001
66189013	059701-001

SDG#66189 -VOA

Page 1 of 5

66189014	059702-001
66189015	059703-001
66189016	059705-001
66189017	059706-001
66189018	059707001
66189019	059708-001
66189020	059709-001
1200292492	VBLK01 (Blank)
1200292498	VBLK01LCS (Laboratory Control Sample)
1200292491	VBLK02 (Blank)
1200292497	VBLK02LCS (Laboratory Control Sample)
1200293145	VBLK03 (Blank)
1200293146	VBLK03LCS (Laboratory Control Sample)
1200292494	059691-001MS (Matrix Spike)
1200292496	059691-001MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Quality Control (QC) Information

SDG#66189 - VOA

Page 2 of 5

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blanks.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control samples were within the acceptance limits.

QC Sample Designation

The following sample was designated for matrix spike analysis:

66189001

059691-001

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual

SDG#66189 -- VOA

Page 3 of 5

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Columo ID	Column Description
&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Тгар С
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J&W1	Тсар С
VOA7	HP5890/HP5972	J&W2	Trap K
VOA8	HP6890/HP5973	J&W1	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

SDG#66189 -- VOA

Page 4 of 5

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Organics Package Creation

This package has been originally reviewed by Richard Bornar (9/4/2002-12:19) This package has been peer reviewed by Alberto Rodriguez (9/15/2002-16:15) This package has been packaged by Tamara Carter (9/18/2002-10:55) This roadmap has been edited by Package Requirements

Raw Data	nes	Standards Traceability
N	N	

Samples

exclude	datafile	sampleno	client-id	injdate	injtime	sublist	comments
	Achem/VOA1.i/082902v1.b/1y411.d	66189001	059691-001	19-AUG-2002	14:16	66189.sub	
	/chem/VOA f.t/082902v1.b/1y420.d	66189010	059641-001	29-AUG-2002	18:47	66189.sub	
	/chem/VOA1.i/082902v1.lt/1y432.d	66189011	059642-001	30-AUG-2002	00:21	66189.sub	
	/ohem/VOA1.i/082902v1.b/1y433.d	661890(2	059700-001	30-AUG-2002	00:47	66189.sub	
	/chem/VOA1.i/082902v1.b/1y434.d	66189013	059701-001	30-AUG-2002	01:13	66189.sub	
	/chem/VOA1.i/082902v1.b/1y435.d	66139014	059702-001	30-AUG-2002	OT:39	66189.sub	
	/chem/VOA1.i/082902v1.b/1y436.d	66189015	059703-001	30-AUG-2002	02:06	66189.sub	
	/chern/VOA1.i/082902v1.b/1y437.d	66189016	059705-001	30-AUG-2002	02:32	66189.sub	
	/chem/VOA1.i/082902v1.b/1y438.d	66189017	059706-001	30-AUG-2002	02:58	66189.sub	
	/chem/VOA1.j/082902v1.b/1y439.d	66189018	059707-001	30-AUG-2002	03:25	66189.sub	
0	/chcm/VOA1.i/082902v1.b/1y440.d	65(890(9	059708-001	30-AUG-2002	03:51	66189.sub	
ב	/chern/VOA (.3/082902+1.5/1.y4\2.d	66189002	059692-001	29-AUG-2002	14:46	66189.sub	
ם	/cben/VOA1.i/082902v1.b/1y441.d	66189020	059709-001	30-AUG-2002	04:17	66189.sub	
	: /chem/VOA1.i/082902v1.b/1y413.d	66189003	059693-001	29-AUG-2002	15:16	66189.sub	
	/chem/VOA1.i/082902v1.b/1y414.d	66189004	059694-001	29-AUG-2002	15:45	66189.sub	
	/chem/VOA1.i/082902v1.b/1y415.d	66189005	059695-001	29-AUG-2002	16:15	66189.sub	
	/chcm/VOA1.i/082902v1.h/1y416.d	66189906	059696-001	29-AUG-2002	16:45	66189.sub	
0	/chem/VOA1.i/082902×1.b/1y417.d	66189007	059697-001	29-AUG-2002	17:16	66189 sub	!
<u> </u>	/chem/YOA1.i/082902v1.b/1y418.d	66189008	0.59698-001	29-AUG-2002	17:45	66189.sub	
	/chem/VOA1.i/082902v1.b/1y419.d	66189009	059699-001	29-AUG-2002	18:15	66189.sub	

QC Samples

exclude	dytafile	sampleno	client-id	injdate	injtime	sublist	comments
	[chem/NOA1.i/082902v1.h/1y423.j]	1200292494	0.19691-001MS	29-AUG-2002	20:18	65189.sub	
a	/whem/VOA1.i/083002v1.b/1y508.d	1200292494	059691-001MS	30-AUG-2002	11:15	66189.sub	
	/chem/VOA1.i/082902v1.b/1y424.d	1200292496	059691-001MSD	29-AUG-2002	20:48	66189.sub	

	/chem/VOA1.i/083002v1.b/1y509.d	1200292496	059691-001MSD	30-AUG-2002	11:46	66189.sub
	/chem/VOA1.i/082902v1.b/1y427A.d	1200292497	VBLK02LCS	29-AUG-2002	22:09	66189,sub
	/chem/VOA1.i/082902v1.b/1y403A.d	1200292498	VBLKOILCS	29-AUG-2002	08:37	66189.sub
0	/chem/VOA1.i/083002v1.b/1y503A.d	1200293146	VBLK03LCS	30-AUG-2002	08:37	66189.sub
	/chem/VOA1.i/082902v1.b/1y431A.d	1200292491	VBLK02	29-AUG-2002	23:54	66189,sub
	/chem/VOA1.i/082902v1.b/1y406A.d	1200292492	VBLK01	29-AUG-2002	10:10	66189.sub
	/chem/VOA1.i/083002v1.b/1y506A.d	1200293145	VBLK03	30-AUG-2002	10:08	66189.sub

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG# 66195

Method/Analysis Information

Procedure: Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method: SW846 8260A

Prep Method: SW846 5030A

Analytical Batch Number: 197964

Prep Batch Number: 197963

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
66195001	059710-001
1200292570	VBLK01 (Blank)
1200292573	VBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification

SOP Reference

Procedures for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedures (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

SDG# 66189 - VOA

Page 1 of 4

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

QC Sample Designation

Matrix spikes were analyzed on a sample of similar matrix in SNLS sample delivery group/work order, # 66163.

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Sample re-analysis was not required for this sample delivery group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

SDG# 66189 -VOA

Page 2 of 4

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&W1	Тгар К
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Trap K

SDG# 66189 - VOA

Page 3 of 4

VOA8	HP6890/HP5973	J&W1	Trap K
VOA9	НР6890/НР5973	J&W1	Тгар С

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The followi	ing data validator verified the in	formation presented in this case narrative
Reviewer:	Chule Wilson	Date: 09.23.02

SDG# 66189 -VOA

Organics Package Creation

This package has been originally reviewed by Crystal Statesy (9/3/2002 8:08) This package has been peer reviewed by Michael Penny (9/3/2002 13:25) This package has been packaged by LySandra Gathers (9/6/2002 13:34) This roadmap has been edited by Package Requirements

Raw Data	TICS	Standards Traceability
И	N	

Samples

exclude	datafile	samplena ¹	client-id	injdate	injtime	, sublist	comments
	/chem/VOA5.i/082902v5.b/5y426.d	66193001	059710-001	29-AUG-2002	19:25	dus.1-98130	

QC Samples

exclude	datafile	sampleno	client-id	injdate	injiime	sublist	comments
	/chem/VOA5.i/082902v5.tv5y403LSA.d	1200292573	VBLKOH.CS	29-AUG-2002	08:24	66189-1.sub	
•	/chem/VOA5.i/083002v5.b/5y503LSA.d	1200294712	VBLK@2LCS	30-AINI-2002	09:03	66189-1,sub	
ם	fchem/VOA5.i/082902v5.b/5y407BSA.d	1200292570	VBLKOI	29-AUG-2002	10:19	66189-1.sub	qe w/ 66163
	fchem/VOA5 3/083002v5 Jc/5y507 BS Aud	1200294111	VBLK02	30-AUG-2002	10:58	65189-1.sup	

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG 66189-2

Method/Analysis Information

Procedure: Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method: SW846 8260B

Prep Method: SW846 5030B

Analytical Batch Number: 199064

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client TD
66197001	059640-001
66197002	059712-001
66197003	059893-001
66197004	059704-001
66197005	059711-001
1200294599	VBLK01 (Blank)
1200294602	VBLK01LCS (Laboratory Control Sample)
1200294625	VBLK01LCSD (Laboratory Control Sample Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial

SDG#66189-2 ~VOA

Page 1 of 4

calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

QC Sample Designation

Since the samples in this sample delivery group/work order were field QC samples (i.e.: trip blank, equipment blank, etc.), the analysis of a matrix spike (MS) and a matrix spike duplicate (MSD) was not required. Instead, a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) set was analyzed.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

LCSD Recovery Statement

All the required analyte recoveries in the laboratory control sample duplicate were within the acceptance limits.

LCS/LCSD RPD Statement

The relative percent differences (RPD) between the laboratory control sample and Laboratory Control Sample Duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

SDG#66189-2 -VOA

Page 2 of 4

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column JD	Column Description
1&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID System Configuration		Chromatographic Column	P & T Trap		
VOA1	HP6890/HP5973	J&W1	Trap C		
	SDG#66189	9-2 -VOA			

Page 3 of 4

Trap C	J&W1	HP6890/HP5973	VOA2
Trap K	J&W1	HP5890/HP5972	VOA4
Trap C	J&W1	HP5890/HP5972	VOA5
Trap K	J&W2	HP5890/HP5972	VOA7
Trap K	J&W1	HP6890/HP5973	VOA8
Trap C	J&W1	HP6890/HP5973	VOA9

Comments

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

SDG#66189-2 -- VOA

^{*} Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Organics Parkage Creation

This package has been originally reviewed by Richard Bomar (9/6/2002 15:00)
This package has been peer reviewed by Alberto Rodriguez (9/15/2002 15:16)
This package has been packaged by Tamara Carter (9/23/2002 12:53)
This roadmap has been edited by
Package Requirements

Raw Data	TICS	Standards Traceability
N	N	

Samples

exclude	datafile	sampleno	client-id	injdate	injtime	suhlist	comments
	/chem/VOA1.i/090302v1.b/1z217.d	66197001	059640-001	03-SEP-2002	15:02	66189-2.sub	
	/df em/VOA3.:x090302v1.bv1z218.d	65197002	059712-001	03-SEP-2002	15:28	66189-2.sub	
	/chem/VOA1.i/090302v1.b/1z219.d	66197003	059698-001	03-SEP-2002	15:55	66189-2.sub	
	/chem/VOA1.i/090302v1.b/1z220.d	66197004	059704-001	03-SEP-2002	16:22	66189-2.sub	
	/chem/VOA1.i/090302v1.b/1z221.d	66197005	059711-001	03-SEP-2002	16:48	66189-2.auh	

QC Samples

exclude	datafile	затаріено	client-id	injdate	injtime	sublist	comments
	/chcm/VOA1.i/090302v1.b/1z203A.d	1200294602	VBLKOILCS	03-SEP-2002	08:29	66189-2.sub	
	/chem/VOA1.i/090302v1.b/1z214A.d	1200294625	VBLKOILCSD	03-SEP-2002	13:42	66189-2.sub	
	/chem/VOA1.i/090302v1.b/1z206A.d.	1200294599	VBLKOI	03-SEP-2002	09:58	66189-2.sub	

GC/MS VOLATILES QUALITY CONTROL SUMMARY

Report Date: September 23, 2002 Page 1 of 5

Client:

Sandia National Laboratorles

MS-0756
P.O. Box 5800
Albuquerque, New Mexico
Pamela M. Puissant

Contact:

Workorder:

66189

Рагипалье	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Tirue
Volatile-GC/MS Federal											
Pach 197932											
QC1200292497 LCS											
1,1-Dichloroethylene	50.0			49.3	ug/kg		99	(75%-134%)	RMB	08/29/02	22:09
Benzene	50.0			51.2	ug/kg		102	(80%-120%)			
Culcrobenzene	50.0			49.7	ug/kg		99	(82%-118%)			
Toluene	50.0			51.8	ug/kg		104	(74%-115%)			
Trichloroethylene	50.0			50.8	ug/kg		102	(80%-119%)			
*Bromofluorobenzene	50.0			47.1	ug/kg		94	(69%-138%)			
*Dibromofluoromethane	50.0			51.0	ug/kg		102	(67%-137%)			
**Toluege-d8	50.0			46.4	ug/kg		93	(67%-139%)			
QC1200292498 LCS											
1,1-Dichloroethylene	50.0			51.0	ug/kg		102	(75%-134%)		08/29/02	. 08:37
Benzene	50.0			53.6	u g /kg		107	(80%-120%)			
Chlorobenzene	50.0			54.5	ug/kg		109	(82%-118%)			
Toluene	50.0			56.1	ug/kg		112	(74%-115%)			
Trichloroethylene	50.0			53.1	ug/kg		106	(80%-119%)			
**Bromofluorobenzene	50.0			49.3	ug/kg		99	(69%-138%)			
**Dibromofluoromethane	50.0			51.6	ug/kg		103	(67%-L37%)			
**Tolucne-d8	50.0			48.0	ug/kg		96	(67%-139%)			
QC1200293146 LCS											
1,1-Dichloroethylene	50.0			48.8	ug/kg		98	(75%-134%)		08/30/02	08:37
Benzene	50.0			50.9	ug/kg		102	(80%-120%)			
Chlorobenzene	50.0			52.3	ug/kg		105	(82%-118%)			
Totucne	50.0			54.3	ug/kg		109	(74%-115%)			
Trichloroethy lene	50.0			51.0	ug/kg		102	(80%-119%)			
**Bromofluorobenzene	50.0			51.7	ug/kg		103	(69%-138%)			
**Dibromofluoromethane	50.0			50.4	ug/kg		101	(67%-137%)			
**Toluene-d8	50.0			48.6	ug/kg		97	(67%-139%)			
QC1200292491 MB							•	(,			
1,1,1-Trichioroethane			U	ND	ug/kg					08/29/02	23:54
1,1,2,2-Tetrachloroethane			υ	ND	ug/kg						
1,1,2-Trichloroethane			Ū	ND	ug/kg						
1,1-Dichloroethane			Ū	ND	ug/kg						
1.1-Dichloroethylene			Ū	ND	ug/kg						
1,2-Dichloroethane			Ū	ND	ug/kg						
1,2-Dichloropropane			Ŭ	ND	ug/kg						
2-Butanone			ŭ	ND	ug/kg						
2-Hexanone			Ü	ND	ug/kg						
4-Methyl-2-pentanone			Ü	ND	ug/kg						
Acetone			Ü	ND	ug/kg						
Benzene			Ü	ND	ug/kg						
Bromodichloromethane			Ü	ND	ug/kg			i .			
Bromoform			Ü	ND	ug/kg			,			
Bromomethane			Ü	ND	ug/kg						
THE COLUMN THE PROPERTY OF THE			U	TAD	ns vs						

Workonder: 66189	Page 2 of 5								
Раглавне	NOM	Sample	(Jan)	QC	Units	RPD%	REC%		Dute Time
Volatile-GC/MS Federal									
Batch 197932									
Caroon disulfide			υ	ND	ug/kg				
Carbon tetrachloride			บั	ND	ug/kg				
Chlorobenzene			Ü	ND	ug/kg				
Chloroethane			บ	ND	ug/kg				
Chloroform			บ	ND	ug/kg				
Chloromethane			Ü	ND	ug/kg				
Dibromochloromethane			ŭ	ND	ug/kg				
Ethylbenzene			บ	ND	ug/kg				
Methylene chloride			บ	ND	ug/kg				
Styrene			บั	ND	ug/kg				
Tetrachlomethylene			ΰ	ND	vg/kg				
Tolucae			Ü	ND	ug/kg				
Trichioroethyjene			Ü	70	ug/kg				
Vinyl acetate			Ū	ND	ug/kg				
Vinyl chloride			\ddot{u}	ΩN.	nāyrā -e-Z				
Xylenes (total)			ซื	ND.	ug/kg				
cis-1,2-Dichloroethylene			ซ	ND	ug/kg				
cis-1,3-Dichloropropylene			Ü	ND	ug/kg				
trans-1,2-Dichleroethylene			บ	MD	ng/kg				
trans-1,3-Dichloropropylene			Ŭ	ND	ng/kg				
**Bromefluorobenzene	50.0		·	52.7	ug/kg		105	(69%-138%)	
**Dioromofluoromethane	50.0			51.1	ug/kg		102	(67%-137%)	
**Toluene-d8	50.0			50.2	ug/kg		100	(67%-139%)	
QC1200392492 MB	24-5				-66		,	1	
1,1,1-Trichloroethane			U	ND	rg/kg				08/29/02 10:10
1,1,2,2-Tetrachloroethane			Ü	ND	ug/kg				
1,1.2-Trichloroethane			ซ	ND	ug/kg				
1, 1-Dichloroethane			Ü	ND	ug/kg				
1,1-Dichloroethylene			บ	ND	ug/kg				
1,2-Dichloroethane			U	ND	ug/kg				
1,2-Dichloropropane			Ū	ND	ug/kg				
2-Butanone			Ū	ND	ug/kg				
2-Нехапове			บ	ND	ng/kg				
4-Methyl-2-pentanone			ีบ	ND	ug/kg				
Actions			Ŭ	ND	ug/kg				
Benzene			ับ	ND	ug/kg				
Bromodichloromethane			Ū	ND	ug/kg				
Bromoform			Ū	ND	ug/kg				
Bromomethane			υ	ND	ug/kg				
Carbon disulfide			บ	ND	ug/kg				
Carbon terrachionide			Ū	ND	ug/kg				
Chlorobenzene			Ų	ND	ug/kg				
Chloroethane			Ū	ND	ug/kg				
Chloroform			Ū	ND	ug/kg				
Chloromethane			Ü	ND	ug/kg				
Dibromechloromethane			ŭ	ND	ug/kg				
Ethylpenzene			U	ND	ug/kg			,	
Methylene chloride			u	ND	ug/kg				

		QC SIII	<u>umary</u>					
Workorder: 66189							Page 3 of 5	
Parmname	NOM	Sample Quai	QC	Units	RPD%	REC%	Range Anlst	Date Time
Volatile-GC/MS Federal								
Batch 197932								
Styrene		U	ND	ug/kg				
Tetrachioroethylene		ŭ	ND	ug/kg			,	
Toluene		บั	ND	ug/kg				
Trichloroethylens		บ	ND	ug/kg				
Vinyl acetate		Ū	ND	ug/kg				
Vinyl chloride		Ŭ	ND	ug/kg			•	
Xylenes (total)		Ü	ND	ug/kg			•	
cis-1,2-Dichloroethylene		Ü	ND	ug/kg				
cis-1,3-Dichloropropylene		Ü	ND	ug/kg				
trans-1,2-Dichloroethylene		Ū	ND	ug/kg				
trans-1,3-Dichloropropylene		υ	ND	ug/kg				
** Bromofluorobenzene	50.0		60.7	ug/kg		121	(69%-138%)	
**Dibromofluoromethane	50.0		50.9	ug/kg		102	(67%-137%)	
**Toluene-d8	50.0		50.3	ug/kg		101	(67%-139%)	
QC1200293145 MB								
1,1,1-Trichloroethane		U	ND	ug/kg				08/30/02 10:08
1.1.2.2-Tetrachloroethane		บ	ND	ug/kg				
1,1,2-Trichloroethane		Ŭ	ND	ug/kg				
1,1-Dichloroethane		U	ND	ug/kg				
1,1-Dichloroethylene		U	ND	ug/kg				
1,2-Dichloroethane		U	ND	ug/kg			•	
1,2-Dichloropropane		U	ND	ug/kg				
2-Butanone		Ŭ	ND	u g/k g				
2-Hexanone		U	ND	ug/kg				
4-Methyl-2-pentanone		U	ND	ug/kg				
Acetone		U	ND	ug/kg				
Benzene		Ŭ	ND	ug/kg				
Bromodichloromethane		ŭ	ND	ug/kg				
Bromoform		U	ND	ug/kg				
Bromomethane		Ŭ	ND	ns/kg				
Carbon disulfide		Ŭ	ND	ug/kg				
Carbon tetrachloride		U	ND	u g ∕kg				
Chlorobenzene		U	ND	иg/kg				
Chloroethane		บ	ND	ug/kg				
Chleroform		Ŭ	ND	ug∕kg				
Chloromethane		U	ND	ug/kg				
Dibromochloromethane		U 	ND	ug/kg			1	
Ethylbenzene		U	ND	ug/kg				
Methylene chloride		Ŭ	ND	ug/kg				
Styrene Tetraphican ethylana		U	ND	ug/kg				
Tetrachloroethylene Teluene		U	ND	ug/kg				
Toluene Teighlogoothydon		υ	ND	ug/kg				
Trichloroethylene		Ü	ND	ng/kg				
Vinyl acetate Vinyl oblosida		υ	ND	ug/kg				
Vinyl chloride Xylenes (total)		U	ND	ug/kg				
cis-1,2-Dichloroethylene		U	ND	ug/kg				
cis-1,2-Dictroroemyrene cis-1,3-Dichloropropylene		ប	ND	ug/kg				
ы-т,э-ысшогоргоруюве		U	ND	ug/kg				

Workorder: 66189 Page 4 of 5

									- mag- ,		•		
Parmname	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time	
Volatile-GC/MS Federal					•							-	
Batch 197932													
trans-1,2-Dichloroethylene				U	ND	ug/kg							
trans-1,3-Dichloropropyleae				U	ND	ug/kg							
*Bromofluorobenzene	50.0				54.2	ug/kg		108	(69%-138%)				
*Dibromofhioromethane	50.0				49.3	ug/kg		99	(67%-137%)				
**Toluene-d8	50.0				50.0	ug/kg		100	(67%-139%)				
QC1200292494 66189001 PS													
f, 1-Dichloroethylene	50.0	U	ND		44.5	ug/L		89	(55%-128%)		08/30/02	2 11:15	
Benzene	50.0	υ	ND		47.8	ug/L		96	'(53%-118%)	i			
Chlorobenzene	50.0	U	ND		49.5	ug/L		99	(53%-116%)	•			
Toluene	50.0	U	ND		51.4	ug/L		103	(56%-113%)				
Trichloroethylene	50.0	U	ND		47.1	ug/L		94	(54%-119%)				
*Bromofluorobenzene	50.0		51.1		49.9	ug/L		100	(69%-138%)	ı			
**Dibromofluoromethane	50.0		51.4		51.0	ս ջ/L		102	(67%-137%)	1			
**Toluene-d8	50.0		48.9		49.2	ug/L		98	(67%-139%)				
QC1200292496 66189001 PSD						-							
f, t-Dichloroethylene	50.0	U	ИD		46.0	πā∖Γ	3	92	(0%-21%)		OB/30/0/	2 11:46	
Benzene	50.0	U	ND		48.5	ug/L.	1	97	(0%-17%)				
Chlorobenzene	50.0	U	ND		49.B	ug/L	1	100	(0%-21%)	+			
Toluene	50.0	U	ND		51.2	ug/L	0	102	(0%-25%)	+			
Trichloroethylene	50.0	U	ND		48.5	ug/L	3	9 7	(0%-25%)				
**Bromofluorobenzene	50.0		51.1		52.1	ug/L		104	(69%-138%)	ı			
**Dibromofluoromethane	50.0		51.4		51.8	ng/L		104	(67%-137%)	1			
*Toluene-d8	50.0		48.9		49.3	ug/L		99	(67%-139%)				

Notes:

RER is calculated at the 95% confidence level (2-sigma):

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyse concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see marrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder: 66189

Page 5 of 5

Parmname NOM Sample Qual QC Units RPD% REC% Range Ankst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 18, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder: 66197

Parmame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Volatile-GC/MS Federal			*								
Batch 199064											
QC1200294602 LCS											
1,1-Dichloroethylene	50.0			45.9	ug/L		92	(78%-140%)	RMB	09/03/02	08:29
Benzene	50.0			48.4	ug/L		97	(78%-)19%)			
Chlorobenzene	50.0			49.5	α Σ /L		99	(82%-120%)			
Tolnese	50.0			52.3	ug/L		105	(68%-133%)			
Trichloroethylene	50.0			48.7	ug/L		97	(80%-123%)			
*Brumofluorobenzene	50.0			57.3	ug/L		115	(67%-136%)			
**Dibromofluoromethane	50.0			50.6	ιψ/L		101	(62%-148%)			
**Tolucne-d8	50.0			49.5	ug/L		99	(58%-139%)			
QC1200294625 LCSD											
1,1-Dichloroethylene	50.0			46,8	ug/L	2	94	(0%-30%)		09/03/02	13:42
Benzene	50.0			49.2	ug/L	2	98	(0%-30%)			
Chlorobenzene	50.0			50.7	ng/L	2	101	(0%-30%)			
Toluene	50.0			52.4	ug/L	0	105	(0%-30%)			
Trichloroethylene	50.0			49.6	ug/L	2	99	(0%-30%)			
**Bromofluorobenzene	50.0			56.8	նք/Լ		114	(67%-136%)			
Dibromofhoromethane	50.0			51.4	uħ.Γ			(62%-148%)			
**Toluene-d8	50.0			49.2	ug/L		98	(58%-139%)			
QC1200294599 MB			./.9								
1.1.1-Trichloroethanc			U	ΝD	սց/Ն					09/03/02	09:58
1,1,2,2-Tetracbloroethane 1,1,2-Trichloroethane			U	ND	ug/L						
1.1-Dichloroethane			Ú	ND	¥g/L						
1,1-Dichloroethylene			U U	ND OM	ug/L						
1,2-Dichloroethane			Ü		ug/L						
1,2-Dichlompropage			บ	DN DN	vg/L						
2-Butanone			ŭ	ND	ug/L ug/L						
2-Hexanone			_		_						
4-Methyl-2-pentanone			υ	ND ND	u<u>r</u>/L						
Acetone			ប	ND	ug/L						
Bonzene				ИD	ug/L						
Bromodichloromethane			υ	ND	ug/L						
Вголюботта В голиоботта			U	ND	ug/L						
Bromoniethane			ũ	ND	ug/L						
			U	ND	ug/L						
Carbon disulfide			υ	ND	ug/L						
Carbon totrachloride			U	ND	ag/L						
Chlorobenzeue			U	ND	មន្∕∟						
Chloroethane			U	ND	ug/L						
Chloroform			Ũ	ND	սց/Լ						
Chloromethane			υ	ΝD	пħТ						
Dibromochloromethane			C	ND	ug L						
Ediylbenzene			U	ND	սայՆ						
Methylene chloride			U	ND	ug/L						

OC Summary

Workorder: 66197

Page 2 of 2

Parmosme	NOM	Sample	Qual	Qς	Units	RPD%	REC%	Range	Aakt	Date	Time
Volatile-CC/MS Federal											
Batela £99064											
Styreac			U	ND	ng/L						
Tetrachloroethylene			ប	ND	աք/Ն						
Toluene			U	ND	ug/L						
Trichlomethylene			Ų	ND	ug/L						
Vinyl chloride			U	ND	ug/L						
Xylenes (total)			U	ND	ug/∟						
cis-1,2-Dichloroethylene			ឋ	ND	ug∕L						
cis-1,3-Dichloropropylene			ប	ND	ug/L						
trans-1,2-Dichloroethylene			ប	ND	սք/Լ						
trans-1,3-Dichloropropylene			υ	ND	ug/L						
**Bremofluomheazene	50.0			59.8	ug/L		120	(67%-136%))		
*Dibromoflucromethane	50.0			49.6	ug/L		99	(62%-148%)	1		
*Toluene-d8	50.0			52.2	ug/L		104	(58%-139%)	•		

Notes

RER is calculated at the 95% confidence level (2-sigms).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable when if
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MPL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL), in cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the volves listed are the measured amounts, not final concentrations.

Where the unalytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the OC Summary.

Report Date: September 23, 2002 Page 1 of 4

Client:

Sandia National Laboratories MS-**47**56 P.O. Box **5800**

Albuquerque, New Mexico .
Pamela M. Puissant

Contact:

Workorder: 66195

Parmame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Volatile-GC/MS Federal											
Batch 197964											
QC1200292573 LCS											
1,1-Dichloroethylene	50.0			50.4	ug/kg		101	(75%-134%)	CDS1	08/29/0	08:24
Benzene	50.0			55.3	ug/kg		111	(80%-120%)			
Chlorobenzene	50.0			55.1	u g/k g		t 1Q	(82%-118%)			
Toluene	50.0			54.8	ug/kg		I 10	(74%-115%)			
Trichloroethylene	5 0.0			55.9	ug/kg		112	(80%-119%)			
**Bromofluorobenzene	50.0			54.7	ug/kg		109	(69%-138%)			
*Dibromofiuoromethane	<i>5</i> 0.0			53.9	ug/kg		108	(67%-137%)			
* Toluene-dfl	50.0			53.8	ug/kg		108	(67%-139%)			
QC1200294112											
l, l-Dichloroethylene	50.0			49.7	ug/kg		100	(75%-134%)		08/30/03	2 09:03
Banzene	50.0			55.1	ug/kg		110	(80%-120%)			
Chlorobenzene	<i>5</i> 0.0			549	ug/kg		110	(82%-118%)			
Toluene	50.0			54.4	ug/kg		109	(74%-115%)			
Trichloroethylene	50.0			55.1	ug/kg		110	(80%-119%)			
**Bromofluorobenzene	50.0			53.5	ug/kg		107	(69%-138%)			
**Dibromofluoromethane	50.0			55.4	ug/kg		111	(67%-137%)			
**Toluene-d8	50.0			54.7	ug/kg		109	(67%-139%)			
QC1200292570 MB											
1,1,1-Trichloroethane			U	ND	n ā ∖vā					08/29/02	2 10:19
1,1,2,2-Tetrachloroethane			U	ND	ug/kg						
1,1,2-Trichloroethane			U	ND	ng/kg						
1, 1-Dichloroethane			U	ND	ug/kg						
1,1-Dichloroethylene			ប	ND	πā\κā						
1,2-Dichloroethane			U	ND	ng/kg						
1,2-Dichloropropane			U	ND	n&\KB						
2-Butanone			U	ND	ug/kg						
2-Hexanone			υ	ND	ug/kg						
4-Methyl-2-pentanone			U	ND	ug/kg						
Acetone			U	ND	пВ КБ						
Benzene			U	ND	ug/kg						
Bromodichioromethane			U	ND	ng/kg						
Втопнобогии			U	ND.	u g/k g						
Bromomethane			U	ND	ug/kg			•			
Carbon disulfide			Ü	ND	ng/kg						
Carbon tetrachloride			U	ND	u g/k g						
Chlorobenzene			U	ND	u g/k g						
Chloroethane			U	ND	ng/kg						
Chloroform			U	ND	ug/kg						
Chloromethane			U	ND	ng/kg						
Dibromochloromethane			U	ND	ug/kg						
Ethylbenzene			U	ND	ug/kg						
Methylene chloride			U	ND	⊔g/kg						

		X-2-2-3-						
Workorder: 66195							Page 2 of 4	
Parmuame	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlet	Date Time
Volatile-GC/MS Federal								
Batch 197964								
Styrene		ਧ	ND	ug/kg				
Tetrachloroethylene		ប័	ND	ug/kg				
Toluene		บั	ND	ug/kg				
Trichloroethylene		Ŭ	ND	n≅∖ys n≅∖ys				
Vinyl acctate		บั	ND	ug/kg				
Vinyl chloride		ប័	ND	ng/kg				
Xylenes (total)		บ	ND	ug/kg				
cis-1,2-Dichloroethylene		บั	ND	ug/kg				
cis-1,3-Dichloropropylene		บั	ND	ug/kg				
trans-1,2-Dichloroethylene		Ŭ	ND	ug/kg				
trans-1,3-Dichloropropylene		บ	ND	ug/kg				
**Bromofluorobenzene	50.0	U	55.3	aā\¢ā asv₽		111	'(69%-138%)	
**Dibromofluoromethane	50.0		52.9	υg/kg		106	(67%-137%)	
**Toluene-d8	50.0		53.8	ug/kg		108	(67%-139%)	
QC1200294[11 MB	20.0		77.4	-6/6		100	10. 10.101	
1, 1, 1-Trichtoroethage		ប	ND	ug/kg				08/30/02 10:58
1,1,2,2-Tetrachloroethane		Ū	ND	ug/kg				
1,1,2-Trichloroethane		บ	ND	ug/kg				
1.1-Dichloroethane		บั	ND	ug/kg				
1,1-Dichloroethylene		Ü	ND	ug/kg				
1,2-Dichloroethane		ັ້ນ	ND	ng/kg				
1,2-Dichloropropane		Ü	ND	ug/kg				
2-Butanone		Ü	ND	ng/kg				
2-Hexanone		U	ND	ug/kg				
4-Methyl-2-pentanone		Ľ	ND	ug/kg				
Acetone		Ŭ	ND	ug/kg				
Benzene		บ	ND	ng/kg				
Bromodichloromethane		ù	CN	ug/kg				
Bromoform		บ	ND	ug/kg				
Bromomethane		ΰ	ND	ug/kg				
Carbon disulfide		บ	ND	ug/kg				
Carbon tetrachloride		ΰ	. ND	ug/kg				
Chlorobenzene		Ü	ND	ug/kg				
Chloroethane		U	ND	υg/kg				
Chloroform		Ü	ND	ug/kg				
Chloromethane		U	ND	ug/kg				
Dibromochloromethane		υ	ND	ug/kg				
Ethylbenzene		U	ND	ug/kg				
Methylene chloride		U	ND	ug/kg				
Styrene		U	ND	ug/kg				
Tetrachlorocthylene		U	ND	ug/kg				
Toluene		Ū	NID	ug/kg				
Trichloroethylene		Ū	ND	ug/kg				
Vinyl acetate		บ	ND	ng/kg			-	
Vinyl chloride		Ū	ND	ug/kg				
Xylenes (total)		Ŭ	ND	ug/kg			•	
cis-1,2-Dichloroethylene		Ū	ND	ug/kg				
cis-1,3-Dichloropropylene		Ü	ND	u <i>g/</i> kg				

Workorder: 66195 Page 3 of 4 Date Time Рапивате NOM Sample Qual OC Units RPD% REC% Range Ankt Volatile-GC/MS Federal Bauch 197964 ND trans-1,2-Dichloroethylene Ų ug/kg ND trans-1,3-Dichloropropytene υ ug/kg **Bromofhiorobenzene 50.0 54.7 ug/kg 109 (69%-138%) **Dibromofluoromethane 50.0 51.8 ue/kg 104 (67%-137%) **Toluene-d8 107 50.0 53.5 ug/kg (67%-139%) QC1200292571 66163003 PS 50.0 42.9 86 1,1-Dichleroethylene ug/L (55%-128%) 08/30/02 11:55 95 Renzene 50.0 47.6 ug/L (53%-118%) Chlorobenzene 50.0 47.2 94 ug/L (53%-116%) ug/L Toluene 50.0 3 0.598 48.0 95 (56%-113%) Trichloroethylene 50.0 47.6 95 ug/L (54%-119%) **Bromofluorobeazene 50.0 53.6 53.0 ug/L 106 (69%-138%) **Dibromofluoromethane 50.0 52.0 104 51.6 ug/L (67%-137%) **Tolucne-d8 50.0 52.2 104 (67%-139%) 53.0 ug/L OC1200292572 66163003 PSD 50.0 43.6 87 08/30/02 12:24 1,1-Dichloroethylene ug/L (096-21%)50.0 ug/ℂ Веплеве 47.4 0 95 (0%-17%) Chlorobenzene 50.0 46.0 92 (0%-21%)ug/L 2 Toluene 94 50.0 Ţ 0.598 47.8 ug/L 0 (0%-25%)

**Toluene-d8 Notes:

Trichloroethylene

**Bromofluorobenzene

**Dibromofluoromethane

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

46.8

52.6

53.1

52.1

ug/L

ug/L

ug/L

ug/L

94

105

106

104

(0%-25%)

(69%-138%)

(67%-137%)

(67%-139%)

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

53.6

516

53.0

P The response between the confirmation column and the primary column is >40%D

50.0

50.0

50.0

50.0

- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Page 4 of 4 Parmname NOM Sample Qual QC Units RPD% REC% Range Anist Date Time

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Workorder:

66195

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

GC/MS SEMIVOLATILE ANALYSIS

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 66189

Method/Analysis Information

Procedure: Semivolatile Analysis by Gas Chromatograph/Mass

Spectrometer

Analytical Method: SW846 8270C

Prep Method: SW846 3550B

Analytical Batch Number: 197857

Prep Batch Number: 197856

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID		Client ID
66189022	059692-002	
66189023	059693-002	
66189025	059695-002	
66189026	059696-002	
66189027	059697-002	
66189028	059698-002	
66189029	059699-002	
66189030	059641-002	
66189031	059642-002	
66189032	059700-002	
66189033	059701-002	

Page 1 of 8

66189034	059702-002
66189035	059703-002
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
1200292317	SBLK01 (Blank)
1200292318	SBLK01LCS (Laboratory Control Sample)
1200292319	059703-002MS (Matrix Spike)
1200292320	059703-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

Target analytes were detected in the blank below the reporting limit.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 66189035 (059703-002)

MS Recovery Statement

The matrix spike (MS) recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

Method/Analysis Information

Procedure: Semivolatile Analysis by Gas Chromatograph/Mass

Spectrometer

Analytical Method: SW846 8270C

Prep Method: SW846 3550B

Analytical Batch Number: 199631

Prep Batch Number: 199630

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
66189021	059691-002
66189024	059694-002
1200295903	SBLK02 (Blank)
1200295904	SBLK02LCS (Laboratory Control Sample)

Page 4 of 8

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries were within the established acceptance limits.

QC Sample Designation

A matrix spike was not performed with this batch.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5M\$2	Similar to the I&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: <u>Fan Hau</u>	bert Date	e: 9/20/02
--------------------------	-----------	------------

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 66189-1

Method/Analysis Information

Procedure: Semivolatile Analysis by Gas Chromatograph/Mass

Spectrometer

Analytical Method: SW846 8270C

Prep Method: SW846 3550B

Analytical Batch Number: 198215

Prep Batch Number: 198214

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
66195002	059710-002
1200293055	SBLK01 (Blank)
1200293056	SBLK01LCS (Laboratory Control Sample)
1200293057	059710-002MS (Matrix Spike)
1200293058	059710-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions

of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

The matrix spike 1200293057 (059710-002MS) failed surrogate recovery. The associated sample and matrix spike duplicate passed surrogate recovery. This failure is attributed to laboratory error.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

A matrix spike was performed with this batch on sample 66195002 (059710-002).

MS Recovery Statement

One or more of the required spiking analytes were not within the acceptance limits in the matrix spike. This failure is attributed to laboratory error.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD recoveries were not within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: desteath Maren Date: 09/20/02

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 66189-2

Method/Analysis Information

Semivolatile Analysis by Gas Chromatograph/Mass

Procedure: Spectrometer

Analytical Method: SW846 8270C

Prep Method: SW846 3510C

Analytical Batch Number: 197643

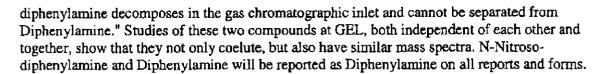
Prep Batch Number: 197642

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
66197006	059640-002
1200291779	SBLK01 (Blank)
1200291780	SBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification


Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries were within the established acceptance limits.

QC Sample Designation

A matrix spike was performed on a sample of similar matrix not in this SDG.

MS Recovery Statement

One or more of the required spiking analytes were not within the acceptance limits in the matrix spike (MS). The matrix spike duplicate (MSD) also failed recoveries. The failing recoveries are attributed to matrix interference.

MSD Recovery Statement

One or more of the required spiking analytes were not within the acceptance limits in the matrix spike duplicate (MSD). The matrix spike (MS) also failed recoveries. The failing recoveries are attributed to matrix interference.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD recoveries were not within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and OC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: Kerbert Marer Date: 09/20/20

GC/MS SEMI- VOLATILES QUALITY CONTROL SUMMARY

Report Date: September 19, 2002 Page 1 of 6

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder: 66189

Parmnanee	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Dute Time
Sami-Volatiles-GC/MS Federal				•				1		
Batch 197857										
QC1200292318 LCS										
1,2,4-Trichlorobenzene	1670			740	ug/kg		44	(27%-91%)	EHI	09/03/02 13:57
1,4-Dichlorobenzene	1670			643	ug/kg		39	(25%-85%)		
2,4,5-Trichlorophenol	3330			2430	ug/kg		73	(42%-96%)		
2.4.6-Trichlorophenal	3330			2120	ug/kg		64	(32%-91%)	-	
2,4-Dinitrotoluene	1670			1350	ug/kg		81	(50%-109%)		
2-Chlorophenol	3330			1670	ug/kg		50	(31%-85%)		
4-Chloro-3-methylphenol	3330			2330	ug/kg		70	(34%-97%)		
4-Nitrophenol	3330			3410	ug/kg		102	(22%-128%)		
Acenaphthene	1670			: 977	ug/kg		59	(39%-98%)		
Hexachlorobeszene	1670			1060	ug/kg		64	(41%-105%)		
Hexachlorobutadiene	1670			601	ug/kg		36	(21%-94%)		
Hexachloroethane	1670			621	ug/kg		37	(25%-86%)		
N-Nitrosodipropylamine	1670			B97	ug/kg		54	(34%-90%)		
Nitrobenzene	1670			834	ug/kg		50	(30%-84%)		
Pentachlorophenol	3330			2000	ug/kg		60	(27%-109%)		
Phenol	3330			1910	ug/kg		57	(31%-83%)		
Pyreae	1670			1270	ug/kg		76	(37%-110%)		
m,p-Cresols	3330			1860	ug/kg		56	(40%-83%)		
o-Cresol	3330			1920	ug/kg		58	(34%-86%)		
**2,4,6-Tribromophene!	3330			2250	ug/kg		68	(23%-111%)		
**2-Fluorobiphenyl	1670			901	ug/kg		54	(21%-104%)		
**2-Fluorophenol	3330			1570	ug/kg		47	(22%-93%)		
**Nitrobenzene-d5	1670			774	ug/kg		47	(24%-97%)		
**Phenol-d5	3330			1930	ng/kg		58	(22%-99%)		
**p-Terphenyl-d14	1670			1370	ug/kg		82	(30%-133%)		
QC1200292317 MB	1670			13/0	η¥/ r K		02	(3070-13370)		
1.2.4-Trichlorobenzene			υ	ND	ug/kg					09/03/02 13:36
1.2-Dichlorobenzene			j	71.4	ug/kg					Q2/Q2/Q2 13.30
1,3-Dichlorobenzene			บ	ND	ug/kg					
1,4-Dichlorobenzene			Ü	ND	ug/kg			•		
2,4,5-Trichlorophenol			Ü	ND	ug/kg					
2,4,6-Trichlorophenol			U	ND	ug/kg					
2,4-Dichlorophenol			บ	NO	ug/kg ug/kg			•		
2,4-Dimethylphenol			U	ND						
2,4-Dinitrophenol			U	ND	ug/kg					
2,4-Dinitroteluene			_		ug/kg					
2,6-Dinitroteluene			U	ND	ug/kg					
2-Chloronaphahalene			Ü	ND	ug/kg					
•			ប	ND	ug/kg					
2-Chlorophenol			U	. ИД	ug/kg					
2-Methyl-4,6-dinitrophenol			U	ND	υ g/k g					
2-Methylnaphthalene			U	ND	ug/kg					
2-Nitrophenol			U	ND	· ug/kg					

Workorder: 66189						Page 3 of 6					
	27027						DECK	Page 2 of 6			
Parmname	NOM _	Sample	Quar	QC	Units	RPD%	REC%	Range	Anlst	Date Ti	
Semi-Volatiles-GC/MS Federal Butch 197857											
3,3'-Dichlorobenzidine			U	ND	ug/kg						
4-Bromophenylphenylether			Ü	ND	ug/kg						
4-Chloro-3-methylphenol			Ū	ND	ug/kg						
4-Chloroaniline			ับ	ND	ug/kg						
4-Chlorophenylphenylether			บ	ND	ug/kg			' '			
4-Nitrophenol			บ	ND	ug/kg			-			
Acenaphthene			Ū	ND	ug/kg	•					
Acenaphthylene			Ŭ	ND	ug/kg						
Anthracene			บ	ND	ug/kg	•					
Benzo(a)anihracene			บ	ND	ug/kg						
Benzo(a)pyrene			Ü	· ND	ug/kg						
Benzo(b)fluoranthene			ប	ND	ug/kg						
Benzo(ghi)perylene			Ü	ND	ug/kg						
Benzo(k)fluoranthene			Ŭ	ND	nā\rā obvrā						
Butylbenzylphthalate			Ŭ	ND							
Carbazole			U	ND	ug/kg						
					ug/kg	•					
Chrysene Dien bestelnbehalere			Ų	ND ND	ug/kg						
Di-n-butylphthalate			U		ug/kg		•				
Di-n-octylphthalate			U	ND	ng/kg	-, •					
Dibenzo(a,h)anthracene			U	ND	ug/kg	•	•	•			
Dibenzofuran			U	ND	ug/kg						
Diethylphthalate			υ	ND	ug/kg						
Dimethylphthalate			U	ND	ug/kg						
Diphenylamine			U	ND	. ug/kg		;				
Fluoranthene			U	ND	υg/kg						
Fluorene			ប	NTO	u <u>r</u> /kg						
Hexachlorobenzene			U	ND	ug/kg						
Hexachlorobutadiene			บ	ND	ug/kg						
Hexachlorocyclopentadiene			ט	ND	ug/kg						
Hexachloroethane			U	ND	ng∕kg		,				
Indeno(1,2,3-cd)pyrene			U	, ND	ug/kg						
Isophorone			U	ND	ug/kg						
N-Nitrosodipropylamine			U	ND	ug/kg						
Naphthalene			U	ND	ug/kg						
Nitrobenzene			U	NД	ug/kg						
Pentachlorophenol			ប	- ND	ug/kg		'				
Phenanthrene			U	ND	ug/kg						
Phenol			Ų	ND	ug/kg						
Рутепе			U	ND	ug/kg						
bis(2-Chloroethoxy)methane			ប	ND	ug/kg						
bis(2-Chloroethyl) ether			U	ND	ug/kg	•					
bis(2-Caloroisopropyl)ether			U	ND	ug/kg	•					
bis(2-Ethylhexyl)phthalate			ប	ND	ug/kg						
m.p-Cresols			Ū,	ND	ug/kg						
m-Nitroaniline			Ū.	ND	цg/kg						
o-Cresol			บ	: ND	ug/kg						
o-Nitroaniline			Ü	ND	ug/kg						
p-Nitroaniline			Ü	ND	ug/kg		,				

			~			•						
Workorder: 66189									Page 3	of 6		
Parmuame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Semi-Volatiles-GC/MS Federal							•					
Batch 197857												
**2,4,6-Tribromophenol	3330				1640	ng/kg	•	49	(23%-111%)			
**2-Fluorobiphenyl	1670				654	ug/kg		39	(21%-104%)			
**2-Fluorophenol	3330				1570	ug/kg		47	(22%-93%)			
**Nitrobenzene-d5	1670				683	ug/kg		41	(24%-97%)			
**Phenol-d5	3330				1780	ng/kg		53	(22%-99%)			
**p-Terphenyl-d14	1670				1420	ug/kg		86	(30%-133%)			
QC1200292319 66189035 MS												
1,2,4-Trichlorobenzene	1670	Ų	ND		647	• og/kg		39	(15%-112%)		09/03/02	2 19 36
1.4-Dichlorobenzene	1670	υ	ND		629	ug/kg		38	(19%-89%)			
2,4,5-Trichlorophenol	3330	Ū	ND		1830	ng/kg		55				
2,4,6-Trichlorophenol	3330	U	ND		1340	n g/kg		40				
2,4-Dinitrotoluene	1670	υ	ND		1220	ug/kg		73	(32%-117%)			
2-Chlorophenol	3330	U	ND		1480	ug/kg		45	(13%-101%)			
4-Chloro-3-methylphenoi	3330	U	ND		1930	ug/kg		58	(23%-114%)			
4-Nitrophenol	3330	บ	ND		1200	ug/kg		36	(20%-126%)			
Acenaphthene	1670	บ	ND		782	u g/k g		47	(15%-114%)			
Hexachiorobenzene	1670	U	ND		986	u g/ kg		59	1			
Hexachlorobutadiene	1670	U	ND		546	. ug/kg		33				
Hexachlorocthane	1670	U	ND		605	ng/kg		36				
N-Nitrosodipropylamine	1670	U	ND		777	ug/kg		47	(18%-106%)			
Nitrobenzene	J670	U	ND		- 867	∎g/kg		52				
Pentachlorophenol	3330	U	ND		1520	ug/kg		46	(34%-110%)			
Phenol	3330	U	ND		1660	ng/kg		50	(17%-104%)			
Pyrene	1670	U	NO		1170	ug/kg		70	(26%-130%)			
m,p-Cresols	3330	IJ	ND		1670	ug/kg		50				
o-Cresol	3330	U	ND		1730	ug/kg		52				
**2,4,6-Tribromophenol	3330				1700	ng/kg		51	(23%-111%)			
**2-Fluorobiphenyl	1670				671	ug/kg		40	(21%-104%)			
**2-Fluorophenol	3330				1400	· ug/kg		42	(22%-93%)			
**Nitrobenzene-d5	1670				717	ug/kg		43	(24%-97%)			
**Phenol-d5	3330				1660	u g/k g		50	(22%-99%)			
**p-Terphenyl-d14	1670				1260	ug/kg	_	76	(30%-133%)			
QC1200292320 66189035 MSD	1630					٠ ـ ـ		30			*****	
1,2,4-Trichlorobenzene	1670	U	ND		629	ug/kg	3	38	(0%-31%)		09/03/0	2 19:57
1,4-Dichlorobenzene	1670	U	ND		567	ug/kg		34	(0%-36%)			
2,4,5-Trichlorophenol	3330	U	ND		1860	ug/kg	2	56				
2,4,6-Trichlorophenol	3330	U	ND		1380	ug/kg	•	41	.AM 34M			
2,4-Dinitrotoluene	1670	U	ND		1190	ug/kg	2	72	(0%-37%)			
2-Chlerophenol	3330	U	ND		1420	ug/kg	4	43	(0%-34%)			
4-Chloro-3-methylphenol	3330	U	ND		1970	ug/kg	2	59	(0%-34%)			
4-Nitrophenol	3330	U	ND		1010	ug/kg		30	(0%-35%)			
Acenaphthene	1670	U	ND		812	ug/kg		49	(0%-33%)			
Hexachlorobenzene	1670	U	ND		939	ug/kg		56				
Hexachlorobutadiene Hexachloroethane	1670	U	ND		518	ug/kg		31				
	1670	U	ND		538	ug/kg		32	, and an-			
N-Nitrosodipropylamine	1670	U	ND		749	ug/kg		45	(0%-29%)	1		
Nitrobenzene	1670	U	ND		751	ug/kg		45	100 100			
Pentachlorophenol	3330	U	ND		1220	ug/kg	22	37	(0%-40%)	l		

Workorder: 66189									Page 4	of 6	
Paromame	NOM		Sample	Qual	QC	Units	RPD%	REC%			Date Tim
Semi-Volatiles-GC/MS Federal											
Batch 197857									•		
Phenol	3330	υ	ND		1670	ug/kg	i	50	(0%-37%)		
Pyrene	1670	Ū	ND		1150	ug/kg	2	69	(0%-39%)		
m,p-Cresols	3330	U	ND		1710	ug/kg	2	51	(07.07.2)		
o-Cresol	3330	Ū	ND		1670	ug/kg	4	50			
**2,4,6-Tribromopheacl	3330	•	100		1710	ug/kg	7	51	(23%-111%)		
**2-Fluorobiphenyl	1670				694	ug/kg		42	(21%-104%)		
**2-Fluorophenol	3330				1500	ug/kg		45	(22%-93%)		
**Nitrobenzene-d5	1670				705	ug/kg		42	(24%-97%)		
**Phenol-d5	3330				1670	ug/kg		50	(22%-99%)		
**p-Terphenyl-d14	1670				1170	ug/kg		70	(30%-133%)		
Batch 199631	2010				11/0	~ B∞6		,	(30%-125%)		
QC1200295904 LCS											
1,2,4-Trichlerobenzene	1670				922	ug/kg		55	(27%-91%)	EHI	09/09/02 15:
1,4-Dichlorobenzene	1670				789	ug/kg		47	(25%-85%)		
2,4,5-Trichlorophenol	3330				2360	ug/kg		71	(42%-96%)		
2.4,6-Trichlorophenol	3330				2120	ug/kg		64	(32%-91%)		
2,4-Dinitrotoluene	1670				1370	ug/kg	•	82	(50%-109%)		
2-Chlorophenol	3330				1680	ug/kg		50	(31%-85%)		
4-Chloro-3-methylphenol	3330				2380	ug/kg		71	(34%-97%)		
4-Nitrophenol	3330				2790	ug/kg		84	(22%-128%)		
Acenaphthene	1670				1070	ug/kg		64	(39%-98%)		
Hexachlorobeszene	1670				1260	ng/kg		76	(41%-105%)		
Hexachlorobutadiene	1670				917	ug/kg		55	(21%-94%)		
Hexachloroethane	1670				118	ug/kg		49	(25%-86%)		
N-Nitrosodipropylamine	1670				981	ug/kg		59	(34%-90%)		
Nitrobenzene	1670				851	ug/kg		51	(30%-84%)		
Pentachlorophenol	3330				.2620	ug/kg		79	(27%-109%)		
Phenol	3330				1810	ug/kg		54	(31%-83%)		
Pyrene	1670				1230	ug/kg		74	(37%-110%)		
m,p-Cresols	3330				2090	ug/kg		63	(40%-83%)		
o-Cresol	3330				1890	ug/kg		57	(34%-86%)		
**2,4,6-Tribromophenol	3330				2710	ug/kg		81	(23%-111%)		
**2-Fluorobipheayl	1670				883	ug/kg		53	(21%-104%)		
**2-Fluorophenol	3330				1540	ug/kg		46	(22%-93%)		
**Nirrobeuzene-d5	1670				794	ug/kg		48	(24%-97%)		
**Phenol-d5	3330				1730	ug/kg		52	(22%-99%)		
**p-Terphenyl-d14	1670				1310	ug/kg		78	(30%-133%)		
QC1200295903 MB 1,2,4-Trichlorobenzene				U	ND	dra					On money and a
· •						ug/kg					09/09/02 14:5
1,2-Dichlorobenzene 1,3-Dichlorobenzene				U	ND ND	ug/kg					
•				U		ug/kg					
1,4-Dichlorobenzene 2,4,5-Trichlorophenol				U	ND	ug/kg					
•				U	ND - ND	ug/kg					
2,4,6-Trichlorophenol 2,4-Dichlorophenol				U	ND	ug/kg					
•				U	, ND	ug/kg					
2,4-Dimethylphenol				U	ND	ug/kg					
2,4-Dinitrophenol				ע	ND	ug/kg					
2,4-Dinitrotoluene				ט	ND	ug/kg					

Workorder: 66189					:	Page 5 of 6						
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC% Range	Anlst	Date	Time		
Semi-Volatiles-GC/MS Federal												
Batch 199631					•							
2.6-Dinitrotoluene			U	ND	ug/kg							
2-Chloromophthalene			U	ND	ug/kg							
2-Chlorophenol			Ü	ND	ug/kg							
2-Methyl-4,6-dinitrophenol			Ū	ND	ag/kg							
2-Methylnaphthalene			Ü	ND	ug/kg							
2-Nitrophenol			U	ND	цg/kg							
3,3'-Dichlorobenzidine			Ū	ND	ug/kg							
4-Bromophenylphenylether			Ū	ND	· ug/kg							
4-Chloro-3-methylphenol			Ü	ND	ug/kg		1					
4-Chloroaniline			Ū	· ND	ug/kg							
4-Chiorophenylphenylether			Ū	. ND	ug/kg		1					
4-Nitrophenol			Ŭ	ND	ug/kg							
Acenaphthene			Ŭ	ND	ug/kg							
Acenaphthylene			Ų	ND	ug/kg							
Anthracene			Ū	ND	ug/kg							
Benzo(a)anthracene			Ū	ND.	ug/kg							
Benzo(a)pyrene			Ü	ND	ug/kg							
Benzo(b)fluoranthene			Ū	ND	.ug/kg							
Benzo(ghi)perylene			ΰ	ND	ug/kg							
Benzo(k)fluoranthene			บ	ND	ug/kg							
Butylbenzylphthalate			Ŭ	ND	ug/kg							
Carbazole			Ū·	ND	: ug/kg							
Chrysene			Ŭ .	ND	ug/kg							
Di-n-butylphthalate			ŭ.	ND	ug/kg							
Di-n-octylohthalate			Ŭ	ND	ug/kg							
Dibenzo(a,h)anthracene			Ŭ	ND	ug/kg							
Dibenzofuran			บั	ND	ug/kg							
Diethylphthalate			Ŭ	ND	ug/kg							
Dimethylphthalate			บ	ND	ug/kg							
Diphenylamine			บั	ND	ug/kg							
Fluoranthene			บ	ND	ug/kg							
Pluorene			Ü	ND	ug/kg							
Hexachlorobenzene			บ	ND	ug/kg							
Hexachlorobutadiene			ับ	ND	ug/kg							
Hexachlorocyclopentadiene			บ	ND	ug/kg							
Hexachloroethane			ซ	ND	ug/kg ug/kg							
Indeno(1,2,3-cd)pyrene			ñ	ND	ug/kg							
Isophorone			Ū	ND	ug/kg							
N-Nitrosodipropylamine			บ	ND	ug/kg							
Naphthalene			ŭ	ND	ug/kg							
Nitrobenzene			υ	ND	ug/kg		1					
Pentachlorophenol			บ	ND	ug/kg							
Phenanthrene			บ	ND	ng/kg		•					
Phenol			U	ND	ug/kg ug/kg							
Pyrene			Ū	ND	ug/kg ug/kg							
bis(2-Chloroethoxy)methane			Ū	ND	ug/kg ug/kg							
bis(2-Chloroethyl) ether			Ü	ND			•					
bis(2-Chloroisopropyl)ether			บ	ND	ug/kg							
ova(*-curororachi obliticine)			IJ	MD	ug/kg							

Workorder: 66189 Page 6 of 6

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Semi-Volatiles-GC/MS Federal Batch 199631								
bis(2-Ethylhexyl)phthalate		υ	ND	ug/kg				
m.p-Cresois		U	ND	ug/kg				
m-Nitroaniline		U	ND	ug/kg				
o-Cresol		Ū	ND	ug/kg			•	
o-Nitroaniline		U	ND	ug/kg				
p-Nitroaniline		υ	ND	ug/kg				
**2,4,6-Tribromophenol	3330		1710	ug/kg		51	(23%-111%)	
**2-Fluorobiphenyl	1670		720	ug/kg		43	(21%-104%)	
**2-Fluorophenol	3330		1480	ug/kg		44	(22%-93%)	
**Nitrobenzene-d5	1670		666	ug/kg		40	(24%-97%)	
**Phenol-d5	3330		1560	ug/kg		47	(22%-99%)	
**p-Terphenyl-d14	1670		1220	ug/kg		73	(30%-133%)	

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.]
- X Presumptive evidence that the analyte is not present. Please see parative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 19, 2002 Page 1 of 3

Client:

Sandia National Laboratories

MS-9756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder: 66197

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-GC/MS Federal										
Barch 197543										
QC1200291780 LCS										
Pyridine	50.0			15.9	ug/L		32		CAK	08/29/02 11:40
1,2,4-Trichlorobenzene	50.0			29.9	u g/ L		60	(53%-104%)		
1,4-Dichlorobenzene	50.0			25.4	ug/L	•	51	(47%-102%)		
2,4,5-Trichlerophenol	100			89.0	ug/L		89	(67%-106%)		
2,4,6-Trichlorophenol	100			84.9	ug/L		85	(45%-111%)		
2,4-Dinitrate luene	50.0			44.3	ug/L		89	(55%-121%)		
2-Chlorophenol	100			71.4	· ug/L			(47%-87%)		
4-Chloro-3-methylphenol	100			82.5	ug/L		83	(51%-100%)		
4-Nitrophenol	100			26.7	ug/L		27	(10%-55%)		
Acenaphthene	50.0			42.9	ug/L		86	(63%-111%)		
Hexachlorobenzene	50.0			50.7	ug/L		101	(67%-1)4%)		
Hexachlorobutadiene	50.0			24.0	ug/L		48	(44%-106%)		
Hexachlorocchane	50.0			20.6	ug/L		41*	(47%-97%)		
N-Nitrosodipropylamine	50.0	•		40.6	ug/L		81	(52%-118%)		
Nitrobenzene	50.0			39.3	ug/L	•	79			
	100			91.I	_		91	(49%-110%)		
Pentachlorophenol Phenol	100				ug∕L 			(31%-110%)		
				28.0	ag/L		28	(16%-44%)		
Pyrene	50.0			48.0	ug/L		96	(68%-117%)		
m,p-Cresols	100			57.7	ug∕L.		58	(43%-100%)		
o-Crescl	100			65 .5	ug/L		66	(47%-87%)		
**2,4,6-Tribromophenol	100			99.3	ug/L		99	(27%-126%)		
••2-Fluorobiphenyl	50.0			37.4	ug/L		75	(32%-109%)		
**2-Fiuorophenol	100			45.5	ug/L		46	(13%-73%)		
**Nitrobenzene-d5	50.0			35.3	ug/L		71	(33%-107%)		
**Phenol-d5	100			27.6	$\pi \mathbf{a} / \Gamma$		28	(14%-66%)		
r*p-Terphenyi-d14	50.0			48.5	սց∕∟		97	(36%-130%)		
QC1200291779 MB										
1,2,4-Trichlorobenzene			Ü	ND	ug/L					08/29/02 16:13
1,2-Dichlorabenzene			U	ND	ug/L					
1,3-Dichlorobenzene			U	ND	ug/L					
1,4-Dichlorobenzene			U	ND	ug/L					
2,4,5-Trichlerophenel			U	ND	ug/L					
2,4,6-Trichlorophenel			U	ND	ug/L					
2,4-Dichtoropheaol			U	ND	äg/L					
2.4-Dunethy)pheno)			Ù	ND	ug/L					
2,4-Dinitrophenol			Ū	ND	บะ/ไ					
2,4-Dinitrotoluene			Ü	. ND	ug/L	•				
2,6-Dinitrotoluene			Ŭ	ND	ug/L					
2-Chloronaphthalene			. บ	ND	ug/L					
2-Chlorophenol			U	ND						
2-Methyl-4,6-dinitrophenol			-		ug/L,					
·			Ŭ	ND	ug/L	•				
2-Methy inaphthalene			U	ND	u <u>e</u> /L					

Workorder: 66197				•.	,		Page :	t of 3	
Рагинате	NOM	Sample Qual	OC.	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal			_						
Batch 197643				•	•				
2-Nitrophenol		IJ	ND	u g/ L					
3,3'-Dichlorobenziding		Ŭ	ND	ug/L					
4-Bromophenylphenylether		Ů	ND	ug/L					
4-Chloro-3-methylphenol		. Ū	ND	սջ/Լ					
4-Chloroeniline		Ū	ND	ug/L					
4-Chlorophenylphenylether		· U	' ND	ug/L					
4-Nitrophenol		ľ	, ND	ug/L					
Acenaphtheus		ប	ND	ug/L					
Aceraphthylene		\mathbf{r}	. ND	ug/L					
Anthracene		U	ND	ug/L					
Benzo(a)anthracene		Ū	ND	• ug/L					
Benzo(a)pyrene		U	ND	· ug/L					
Benzo(b)fluoranthene		υ	ND	ug/L					
Benzo(ghi)perylene		υ	ND.	· ug/L					
Benzo(k)fluoramhene		υ	· ND	ug/L					
Butylbenzylphthalate		Ū	. ND						
Carbazole		Ū	, ND	ˈug/t					
Chrysene		Ü	ND	. ug/L,					
Di-n-butylphthalate		Ū	ND	ug/L					
Di-n-octylphthalate		Ū	ND	110/					
Dibenzo(a,h)anthracene		U	ND	ug/L					
Dibenzofuran		ប	ND	ug/L					
Diethylphthalate		· U	ND	ug/L					
Dimethylphthalate		υ	• ND	ug/L					
Diphenylamine		Ü	ND	ug/L					
Fluoranthene		U	ND	ug/L					
Fluorene		U	ND	ug/L					
Hexachlorobenzene		Ľ	ND	ug/L					
Hexachlorobutediene		ប	ND	ug/L					
Hexachlorocyclopentadiene		u	ND	ug/L					
Hexachloroethane		ប	, ND	ug/L					
Indeno(1,2,3-cd)pyrene		ប	ND	ug/L					
Isophorone		ט	. ND	ng/L					
N-Nitrosodipropylamine		υ	ND	ug/L					
Naphthalene		U	ND	ц <u>е</u> /L					
Nitrobenzene		ប	ND	u <u>g</u> /1					
Pentachlorophenol		υ	ND	ug/L					
Phenautivene		U	ND	ug/L					
Phenol		บ	. ND	ug/L					
Pyrene		Ū	, ND	ug/L					
bis(2-Chloroethoxy) methane		U	ND	∵ug/L					
bis(2-Chloroethyl) ether		Ū	· ND	ug/L					
bis(2-Chloroisopropyl)ether		บั	. ND	ug/L					
bis(2-Ethylhexyl)phthalate		บ	ND	ug/L					
m.p-Cresols			· ND	ng/L					
m-Nitroaniline		บ	ND	ug/L					
a-Cresol		ŭ	ND	นอู่ไ					
o-Nitroaniline		บ	ND	ug/L					
		J		,-6-2					

Workorder: 66197

Page 3 of 3

								_			
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Semi-Volatiles-GC/MS Federal				<i>.</i> •	-						
Batch 197643				· ·		· .					
p-Nitroaniline			Ū	NE	· ug/L						
**2,4,6-Tribromophenol	100			87.4	ug/L		87	(27%-126%)			
**2-Fluorobiphenyl	50.0			36.9	ug/L	,	74	(32%-109%)			
**2-Flucrophenol	100			49.0	ug/L	,	49	(13%-73%)			
**Nitrobenzene-d5	50.0			* 37.7	ug/L		75	(33%-107%)			
* *Phenol-d5	1 0 0			30.5	ug/L		31	(14%-66%)			
**p-Temhenyl-d14	50.0			50.5	ug/L		101	(36%-130%)			

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where if
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- 1 Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 20, 2002 Page 1 of 4

Chent:

Sandia National Laboratories

MS-0756

P.O. Box 5800
Albuquerque, New Mexico
Pamela M. Puissant

Contact:

Workorder: 66195

Ратнаме	NOM	Sample Qual	QC	Units RPD	% REC%	Range	Aulst	Date Time
Semi-Volutiles-GC/MS Federal								
Batch 198215								
QC1200293056 LCS								
1,2,4-Trichlorobenzene	1670		960	ug/kg	58	(27%-91%)	EHI	08/30/02 13:34
1,4-Dichlorobenzene	1670		894	ug/kg	54	(25%-85%)		
2,4,5-Trichlorophenol	3330		2110	ug/kg	63	(42%-96%)		
2,4,6-Trichlorophenol	3330		2020	ug/kg	61	(32%-91%)		
2,4-Dinitrotoluene	1 6 70		1230	ug∕kg	74	(50%-109%)		
2-Chlorophenol	3330		1880	ug/kg	56	(31%-85%)		
4-Chloro-3-methylphenol	3330		2290	nB/kB	69	(34%-97%)		
4-Nitrophenol	3330		1970	ug/kg	59	(22%-128%)		
Acenaphthene	1670		981	u g/k g	5 9	(39%-98%)		
Hexachlorobenzene	1670		1020	ug/kg	61	(41%-105%)		
Hexachlorobutadiene	1670		8 17	ug/kg	49	(21%-94%)		
Hexachloroethane	1670		924	ng/kg	55	(25%-86%)		
N-Nitrosodipropylamine	1670		9 70	ug/kg	58	(3 4%-9 0%)		
Nitrobenzene	1670		1080	ug/kg	65	(30%-84%)		
Pentachlorophenol	3330		2050	ug/kg	61	(27%-109%)		
Phonol	3330		2020	ug/kg	61	(31%-83%)		
Рутепе	1670		1090	ug/kg	65	(37%-110%)		
m,p-Cresols	3330		1980	ug/kg	60	(40%-83%)		
o-Cresol	3330		1930	ug/kg	58	(34%-86%)		
**2,4,6-Tribromophenol	3330		1950	ug/kg	59	(23%-111%)		
**2-Fluorobiphenyl	1670		936	π ā ∖ ķ ā	56	(21%-104%)		
**2-Fluorophenol	3330		1860	ug/kg	56	(2 2%-93%)		
**Nitrobenzene-d5	1670		998	ug/kg	60	(24%-97%)		
**Phenol-d5	3330		2090	ug⁄kg	63	(22%-99%)		
**p-Terphenyl-d14	1670		1170	u g/k g	70	(30%-133%)		
QC1200293055 MB			.			•		
1.2.4-Trichlorobenzene		U	ND	u g/kg				08/30/02 13:14
1,2-Dichlorobenzene		U	ND	π ä ∖jcΕ				
1,3-Dichlorobenzene		U	ND	ug/kg				
1,4-Dichlorobenzene		Ų	ND	ug/kg				
2,4,5-Trichlorophenol		ប	ND	næ/kg				
2,4,6-Trichlorophenol		U	ND	ug/kg				
2,4-Dichlorophenol		U	ND	ug/kg				
2,4-Dimethylphenol		ប	ND	ug/kg				
2,4-Dinitrophenol 2,4-Dinitrotoluene		บ	ND	ug/kg				
		U	ND	ug/kg				
2,6-Dinitrotolague		Ų	ND	ag/kg				
2-Chloronaphthalene		ប	ND	ug/kg				
2-Chlorophenol		U	ND	ug/kg				
2-Methyl-4,6-dinitrophenol		U	ND	ug/kg				
2-Methylnaphthalene		ប	ND	ug/kg				
2-Nitropheaol		υ	ND	ug/kg				

·											
Workorder: 66195								Page 2	of 4		
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Tim
Semi-Volatiles-GC/MS Federal											
Batch 198215											
3,3'-Dichlorobenzidine			υ	ND	ug/kg						
4-Bromophenylphenylether			U	ND	ug/kg						
4-Chloro-3-methylphenol			Ü	ND	ug/kg		,				
4-Chloroaniline			U	ND	ug/kg						
4-Chlorophenylphenylether			ΰ	ND	ug/kg						
4-Nitrophenol			Ü	ND	ug/kg						
Acenaphthene			Ū	ND	ug/kg						
Acenaphthylene			Ü	ND	ug/kg						
Anthracene			Ū	ND	ug/kg						
Benzo(a)anthracene			Ū	ND	ug/kg						
Вепло(а)рутеле			Ū	ND	ug/kg						
Benzo(b)fluoranthene			Ŭ	ND	ug/kg						
Benzo(ghi)perylene			Ū	ND	ug/kg						
Benzo(k)fluoranthene			П	ND	ug/kg						
Butylbenzylphthalate			П	ND	ug/kg						
Carbazole			บ	ND	ug/kg						
Chrysene			บ	ND	ug/kg						
Di-n-butylphthalate			บ	ND	ug/kg						
Di-n-octylphthalate			บ	ND	ug/kg						
Dibenzo(n,h)anthracene			บ	ND							
Dibenzofuran			Ū	ND	ug/kg ug/kg						
Diethylphthalatz			Ū	ND	ng/kg						
			Ū	ND							
Dimethylphthalate Diphenylamine					ug/kg						
* *			U	ND	ug/kg						
Fluoranthene			Ū	ND	ug/kg						
Fluorene			U	ND	ug/kg						
Hexachlorobenzene			U	ND	ug/kg						
Hexachlorobutadione			U	ND	u g/k g						
Hexachlorocyclopentadiene			U	ND	ug/kg						
Hexachloroethane			Ü	ND	ug/kg						
Indeno(1,2,3-cd)pyrene			Ü	ND	ug/kg						
Isophorone			U	ИD	ug/kg						
N-Nitrosodipropylamine			U	ND	ug/kg						
Naphthalene			U	ИD	ug/kg						
Nitrobenzene			ប	ND	ug/kg						
Pentachlorophenol			U	ND	ug/kg						
Phenanthrene			υ	ND	ug/kg						
Phenol			U	ND	ug/kg						
Pyrene			υ	ND	ug/kg						
bis(2-Chloroethoxy)methane			U	ND	ug/kg						
bis(2-Chloroethy!) ether			U	ND	ug/kg						
bis(2-Chloroisopropyl)ether			U	ND	ug/kg						
bis(2-Ethylhexyl)phthalate			U	ND	ug/kg						
m,p-Cresois			U	ND	ug/kg						
m-Nitroaniline			U	ND	ug/kg						
o-Cresol			ប	ND	ug/kg						
o-Nitroaniline			U	ND	ug/kg						
p-Nitroaniline			U	ND	ug/kg						

Parmonaine NOM Sample Qual QC Units RPD % NEC % Range Anks Date	With the second		**	<u> </u>								
Semi-Volantias-GCASS Foliars Data 1982 S Semi-Volantias-GCASS Foliars 1982 S 1982	Workorder: 66195											
**2,4,6-Tribromophenol 3330	Рагимате	NOM	Sample	Qual	<u>QC</u>	Units	RPD%	REC%	Range	Ankt	Date	Time
**2-Fluoropheno! 1670				•								
****Particular content	2,4,6-Tribromophenol	3330			1890	ug/kg		57	(23%-111%)			
**Nikrobenzene.45	2-Fluorobiphenyl	1670			938	ug/kg		56	(21%-104%)			
**Nikrobenzene-65 1670 U ND 1 315 ug/kg 19 (24%-97%) **Price 14 1670 U ND 1 3150 ug/kg 19 (29%-117%) 08/30/02 14-Dickhlorobenzene 1670 U ND 576 ug/kg 19 (32%-117%) 08/30/02 24,4-5-Trickhlorophenol 3330 U ND 554 ug/kg 19 (32%-117%) 2-2,4-6-Trickhlorophenol 3330 U ND 554 ug/kg 19 (32%-117%) 18/3-10/4-6-Trickhlorophenol 3330 U ND 554 ug/kg 19 (32%-117%) 18/3-10/4-6-Trickhlorophenol 3330 U ND 554 ug/kg 19 (32%-117%) 18/3-10/4-6-Trickhlorophenol 3330 U ND 559 ug/kg 19 (20%-126%) 18/3-10/4-6-Trickhlorophenol 3330 U ND 10 10 10 10 10 10 10 10 10 10 10 10 10	2-Fluorophecot	3330			1910	ug/kg		57	(22%-93%)			
**p-Tenjennyl-014		1670			974	ug/kg		59	(24%-97%)			
CC120029057 66195002 MS	Phenol-d5	3330			2130	ug/kg		64	(22%-99%)			
1,2,4-Frichlorospenzene	p-Terphonyl-d14	1670			1360	ug/kg		82	(30%-133%)			
1.4-Dichlorobenzene	QC1200293057 66195002 M											
2,4,5-Trichlorophenol 3330 U ND 576 ug/kg 17 2,4,6-Trichlorophenol 3330 U ND 524 ug/kg 19* (32%-117%) 2,4-Distrotollene 1670 U ND 590 ug/kg 18* (32%-117%) 2-Chlorophenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Chloro-3-methylphenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Chloro-3-methylphenol 3330 U ND 1312 ug/kg 18* (23%-114%) 4-Chloro-3-methylphenol 3330 U ND 286 ug/kg 17* (15%-114%) 4-Chloro-3-methylphenol 1670 U ND 226 ug/kg 17* (15%-114%) Hexachlorobuzdriene 1670 U ND J 2263 ug/kg 16* Hexachlorobuzdriene 1670 U ND J 303 ug/kg 19 N-N-titrosodipropylamine 1670 U ND J	1,2,4-Trichlorobenzene	1670 U	ND	1	299	ug/kg		18	(15%-112%)		08/30/0:	2 14:37
2,4,6-Trichlorophenol 3300 U ND 524 ug/kg 16 16 2.4-Distrotolueae 1670 U ND J 315 ug/kg 18* (32%-117%) 22%-117%) 2-Chiorophenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Nitrophenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Nitrophenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Nitrophenol 3330 U ND 312 ug/kg 19* (20%-126%) 4-Nitrophenol 61670 U ND 1 226 ug/kg 17* (15%-114%) 4-Nitrophenol 1670 U ND 1 263 ug/kg 17 (15%-114%) 4-Nitrophenol 1670 U ND 1 263 ug/kg 16 16 16 14-Nitrophenol 3330 U ND 303 ug/kg 18 (18%-116%) 18%-116%) 19 (14%-110%) 19 18%-116%) 19 (24%-110%) 19 18 (24%-110	1,4-Dichlorobenzene	1670 U	ND	1	305	ug/kg		18+	(19%-89%)			
2.4-Dinitrotoliene	2,4,5-Trichlorophenol	3330 U	ND		576	μg∕kg		17				
2-Chlorophenol 3330 U ND 590 ug/kg 18 (13%-101%) 4-Chloro-3-methylphenol 3330 U ND 615 ug/kg 18* (23%-114%) 4-Nitrophenol 3330 U ND 1 312 ug/kg 9* (20%-126%) Acenaphthene 1670 U ND 1 286 ug/kg 17* (15%-114%) Hexachloroberazene 1670 U ND 1 276 ug/kg 17* (15%-114%) Hexachloroberazene 1670 U ND 1 263 ug/kg 16* Hexachloroberazene 1670 U ND 1 309 ug/kg 19* (15%-114%) Nitrosodipropylamine 1670 U ND 1 309 ug/kg 19* (16%-106%) Nitrobenzene 1670 U ND 1 323 ug/kg 19* (16%-106%) Nitrobenzene 1670 U ND 1 323 ug/kg 19* (34%-110%) Pentachlorophenol 3330 U ND 628 ug/kg 19* (34%-110%) Pentachlorophenol 3330 U ND 628 ug/kg 19* (34%-110%) Phenol 3330 U ND 628 ug/kg 19* (34%-110%) Phenol 3330 U ND 628 ug/kg 18* (17%-104%) Pyrene 1670 U ND 273 ug/kg 16* (26%-130%) map-Cresols 3330 U ND 642 ug/kg 19* (24%-110%) **2-A-Firbromophenol 3330 U ND 642 ug/kg 19* **2-A,4-6-Tribromophenol 3330 U ND 642 ug/kg 19* **2-Fluorophenol 3330 U ND 642 ug/kg 19* **2-Fluorobiphenyl 1670 821 279 ug/kg 17* (22%-93%) **Nitrobenzene 45 1670 U ND 550 ug/kg 17* (22%-93%) **Nitrobenzene 45 1670 U ND 550 ug/kg 17* (22%-93%) **Nitrobenzene 45 1670 U ND 755 ug/kg 18* (22%-99%) **Phenol-65 3330 U ND 755 ug/kg 18* (22%-99%) **Phenol-65 3330 U ND 755 ug/kg 86* 45 (0%-31%) QC1200293038 66195032 MSD 1.2-4-Trichlorophenol 3330 U ND 755 ug/kg 86* 45 (0%-31%) QC1200293038 66195022 MSD 1.2-4-Trichlorophenol 3330 U ND 1740 ug/kg 81* 43 (0%-36%) 2.4-5-Trichlorophenol 3330 U ND 1740 ug/kg 85* 44 (0%-34%) 2.4-6-Triblorophenol 3330 U ND 1740 ug/kg 85* 44 (0%-34%) 2.4-Chloro-3-methylphenol 3330 U ND 1740 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1800 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 67 (0%-35%)	2,4,6-Trichlorophenol	3330 U	ND		524	ug/kg		16	1			
4-Cilcro-3-methylphenol 3330 U ND 615 ug/kg 9° (20%-154%) 4-Nitrophenol 3330 U ND J 312 ug/kg 9° (20%-154%) 4-Cilcro-3-methylphenol 1670 U ND J 216 ug/kg 17 (15%-114%) 4-Cilcro-3-methylphenol 1670 U ND J 266 ug/kg 17 (15%-114%) 4-Cilcro-3-methylphenol 1670 U ND J 266 ug/kg 17 (15%-114%) 4-Cilcro-3-methylphenol 1670 U ND J 263 ug/kg 166 4-Cilcro-3-methylphenol 1670 U ND J 303 ug/kg 169 4-Cilcro-3-methylphenol 1670 U ND J 303 ug/kg 19 4-Cilcro-3-methylphenol 3330 U ND 622 ug/kg 19 4-Cilcro-3-methylphenol 3330 U ND 622 ug/kg 19 4-Cilcro-3-methylphenol 3330 U ND 622 ug/kg 18 (17%-104%) 4-Cilcro-3-methylphenol 3330 U ND 642 ug/kg 16 (25%-130%) 4-Cilcro-3-methylphenol 3330 U ND 642 ug/kg 17 4-Cilcro-3-methylphenol 3330 U ND 644 ug/kg 17 4-Cilcro-3-methylphenol 3330 U ND 645 ug/kg 17 4-Cilcro-3-methylphenol 3330 U ND 755 ug/kg 86° 45 (0%-31%) 08/30/02 4-Cilcro-3-methylphenol 3330 U ND 7140 716 ug/kg 81° 43 (0%-36%) 4-Cilcro-3-methylphenol 3330 U ND 7140 0 ug/kg 117 4-Cilcro-3-methylphenol 3330 U ND 1470 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 1470 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2240 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2240 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2240 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2240 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2240 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2400 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2400 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2400 ug/kg 85° 44 (0%-34%) 4-Cilcro-3-methylphenol 3330 U ND 2400 ug/kg 85° 44 (0%-34%)	2,4-Dinitrotoluene	1670 U	ND	J	315	ug/kg		19*	(32%-117%)			
4-Nitrophenol 3330 U ND J 312 ug/kg 9* (20%-126%) Accraphthene 1670 U ND 286 ug/kg 17 (15%-114%) Hexachloroberzene 1670 U ND J 276 ug/kg 17 Hexachlorobutadiene 1670 U ND J 263 ug/kg 16 Hexachlorobutadiene 1670 U ND J 309 ug/kg 16 Hexachlorobutadiene 1670 U ND J 309 ug/kg 19 N-Nitrosodipropylamine 1670 U ND J 303 ug/kg 19 N-Nitrosodipropylamine 1670 U ND J 303 ug/kg 19 Pentachlorophenol 3330 U ND 628 ug/kg 19* (34%-110%) Phenol 3330 U ND 628 ug/kg 19* (34%-110%) Phenol 3330 U ND 612 ug/kg 18* (17%-104%) Pyrane 1670 U ND 273 ug/kg 16* (26%-130%) rmp-Cresols 3330 U ND 564 ug/kg 17* o-Cresol 3330 U ND 642 ug/kg 19* **2.4.6-Tribromophenol 3330 U ND 642 ug/kg 19* **2.Fluorobjhenyl 1670 821 279 ug/kg 17* (21%-104%) **2.Fluorobjhenyl 1670 821 279 ug/kg 17* (21%-104%) **Nitrobenzene-d5 1670 U ND 755 ug/kg 17* (22%-93%) **Nitrobenzene-d5 1670 U ND 755 ug/kg 18* (22%-99%) **Nitrobenzene-d5 1670 U ND 755 ug/kg 18* (24%-97%) **Phenol-d5 3330 U ND 755 ug/kg 86* 45 (0%-31%) **P-Terphenyl-d14 1670 U ND 755 ug/kg 81* (24%-97%) **P-Terphenyl-d14 1670 U ND 755 ug/kg 81* 43 (0%-36%) 1.4-Dichlorobenzene 1670 U ND 755 ug/kg 81* 43 (0%-36%) 1.4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 1.4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2.4-S-Trichlorophenol 3330 U ND 2060 ug/kg 119* 75 (0%-37%) 4-CC120029908 66195002 MSD 1.2-4-Trichlorophenol 3330 U ND 2060 ug/kg 119* 75 (0%-37%) 4-Cluorophenol 3330 U ND 2040 ug/kg 119* 75 (0%-37%) 4-Dichlorobenzene 1670 U ND 1740 ug/kg 114* 67 (0%-34%) 4-Chioro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Chioro-3-methylphenol 3330 U ND 240 ug/kg 144* 67 (0%-34%) 4-Nitrophenol 3330 U ND 2040 ug/kg 144* 67 (0%-34%) 4-Nitrophenol 3330 U ND 2040 ug/kg 144* 67 (0%-34%)	2-Chlorophenol	3330 U	ND		590	ug/kg		18	(13%-101%)			
Acenaphthene 1670 U ND 286 ug/kg 17 (15%-114%) Hexachlorobertzene 1670 U ND J 276 ug/kg 17 Hexachlorobertzene 1670 U ND J 263 ug/kg 16 Hexachlorobertzene 1670 U ND J 309 ug/kg 19 N-Nitrosodipropylamine 1670 U ND J 303 ug/kg 19 N-Nitrosodipropylamine 1670 U ND J 323 ug/kg 19 Herachlorophenol 3330 U ND 628 ug/kg 19 (34%-110%) Hentol 3330 U ND 628 ug/kg 19 (34%-110%) Hentol 3330 U ND 612 ug/kg 18 (17%-104%) Hentol 3330 U ND 564 ug/kg 18 (17%-104%) Hentol 3330 U ND 564 ug/kg 19 Hentol 46 (26%-130%) Hentol 3330 U ND 564 ug/kg 19 Hentol 46 (26%-130%) Hentol 47 U ND 564 ug/kg 17 (21%-104%) Hentol 47 U ND 42 ug/kg 19 Hentol 47 Ug/kg 17 Ug/kg 17 Ug/kg 17 Ug/kg 17 Ug/kg Ug/kg 17 Ug/kg Ug/kg 17 Ug/kg	4-Chloro-3-methylphenol	3330 U	ND			u g/k g		18*	(23%-114%)			
Hexachlorobertzene		3330 U	ND	J	312	⊔g/kg		9*	(20%-126%)			
Hexachlorobutadiene	Acenaphthene		ND		286	ug/kg		17.	(15%-114%)			
Hexachloroethane	Hexachlorobenzene	1670 U	ND	J	276	ug/kg		17				
N-Nitrosodipropylamine 1670 U ND J 303 ug/kg 19 Nitrobenzene 1670 U ND J 323 ug/kg 19 Pentachlorophenol 3330 U ND 628 ug/kg 19** (34%-110%) Phenol 3330 U ND 612 ug/kg 18** (17%-104%) Pyrenc 1670 U ND 273 ug/kg 16** (26%-130%) m.p-Cresols 3330 U ND 564 ug/kg 17 o-Cresol 3330 U ND 642 ug/kg 19 **2-4,6-Tribromophenol 3330 U ND 642 ug/kg 19 **2-Fluorobjphenyl 1670 821 279 ug/kg 17** (21%-104%) ***2-Fluorobjphenol 3330 1840 550 ug/kg 17** (22%-93%) **Nitrobenzene-d5 1670 U ND 556 ug/kg 17** (22%-93%) **Nitrobenzene-d5 1670 U ND 586 ug/kg 18** (24%-97%) **Phenol-d5 3330 S 586 ug/kg 18** (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18** (30%-133%) QC1200293088 66195002 MSD 1-2.4-Trichlorobenzene 1670 U ND 718 ug/kg 86** 45 (0%-31%) 1-2.4-Trichlorobenzene 1670 U ND 718 ug/kg 81** 43 (0%-36%) 1-2.4-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2-4.6-Trichlorophenol 3330 U ND 1240 ug/kg 119** 75 (0%-37%) 2-4-Dimitrotluene 1670 U ND 1740 ug/kg 119** 75 (0%-37%) 2-Chiorophenol 3330 U ND 1240 ug/kg 119** 75 (0%-37%) 2-Chiorophenol 3330 U ND 1240 ug/kg 119** 75 (0%-37%) 4-Chioro-3-methylphenol 3330 U ND 1240 ug/kg 114** 67 (0%-34%) 4-Chioro-3-methylphenol 3330 U ND 1900 ug/kg 114** 57 (0%-35%)		1670 U	ND	J	263	ug/kg		16	ř.			
Nitrobenzee		1670 U	ND	J	309	ug/kg		19				
Pentachlorophenol 3330 U ND 628 ug/kg 19	N-Nitrosodipropylamine	1670 U	ND	J	303	ug/kg		18	(18%-106%)			
Phenol 3330 U ND 612 ug/kg 18 (17%-104%)	Nitrobenzene	1670 U	ND	J	323	ug/kg		19				
Pyrene 1670 U ND 273 ug/kg 16* (26%-130%) m,p-Cresols 3330 U ND 564 ug/kg 17 o-Cresol 3330 U ND 642 ug/kg 19 **2,4,6-Tribromophenol 3330 1740 716 ug/kg 22* (23%-111%) **2-Fluorophenol 3330 1840 550 ug/kg 17* (22%-93%) ***2-Fluorophenol 3330 1840 550 ug/kg 17* (22%-93%) ***1 Nitrobenzene-d5 1670 3330 1840 550 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **P-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorophenol 3330 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1240 ug/kg 119* 75 (0%-37%) 2,4,6-Trichlorophenol 3330 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)	Pentachlorophenol	3330 U	ND		628	ug/kg		19*	(34%-110%)			
m.p-Cresols 3330 U ND 564 ug/kg 17 o-Cresol 3330 U ND 642 ug/kg 19 ***2,4,6-Tribromophenol 3330 1740 716 ug/kg 22* (23%-111%) ***2-Fluorobiphenyl 1670 821 279 ug/kg 17* (21%-104%) ***2-Fluorophenol 3330 1840 550 ug/kg 17* (22%-93%) ***Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) ***P-Terphenyl-d14 1670 292 ug/kg 18* (22%-99%) **2-Trichlorophenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorophenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U			ND		612	ug/kg		18	(17%-104%)			
o-Cresol 3330 U ND 642 ug/kg 19 **2,4,6-Tribromophenol 3330 1740 716 ug/kg 22* (23%-111%) **2-Fluorobiphenyl 1670 821 279 ug/kg 17* (21%-104%) **2-Fluorophenol 3330 1840 550 ug/kg 17* (22%-93%) **Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **P-Tetphenyl-d14 1670 292 ug/kg 18* (20%-99%) **QC1200293058 66195002 MSD 1.2.4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1.4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2.4.5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2.4.6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2.4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2.Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4.Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4.Nitrophenol 3330 U ND 1900 ug/kg 114* 67 (0%-35%)	Pyrene	1670 U	ND		273	ug/kg		16*	(26%-130%)			
**2,4,6-Tribromophenol 3330 1740 716 ug/kg 22* (23%-111%) **2-Fluorobiphenyl 1670 821 279 ug/kg 17* (21%-104%) **2-Fluorobiphenyl 3330 1840 550 ug/kg 17* (22%-93%) **Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 144* 57 (0%-35%)	• •							17				
**2-Fluorobiphenyl 1670 821 279 ug/kg 17* (21%-104%) **2-Fluorophenol 3330 1840 550 ug/kg 17* (22%-93%) **Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)		3330 U	ND		642	ug/kg		19				
**2-Finorophenol 3330 1840 550 ug/kg 17* (22%-93%) **Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1900 ug/kg 114* 67 (0%-35%)	- · ·							22*	(23%-111%)			
**Nitrobenzene-d5 1670 307 ug/kg 18* (24%-97%) **Phenol-d5 3330 586 ug/kg 18* (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1900 ug/kg 14* 57 (0%-35%)		1670	821		279	ug/kg		17+	(21%-104%)			
**Phenol-d5 3330 586 ug/kg 18* (22%-99%) **p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 1740 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1240 ug/kg 119* 75 (0%-37%) 2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)	-	3330	1840		550	ug/kg		17*	(22%-93%)			
**p-Terphenyl-d14 1670 292 ug/kg 18* (30%-133%) QC1200293058 66195002 MSD 1,2,4-Trichkorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1,4-Dichkorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2,4,5-Trichkorophenol 3330 U ND 2060 ug/kg 113 62 2,4,6-Trichkorophenol 3330 U ND 1740 ug/kg 107 52 2,4-Dinitrotolnene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)		1670			307	ug/kg		18*	(24%-97%)			
QC1200293058 66195002 MSD 1.2.4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1.4-Dichlorobenzene 1670 U ND 718 ug/kg 81" 43 (0%-36%) 2.4.5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2.4.6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2.4-Dinitrotoluene 1670 U ND 1240 ug/kg 119" 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114" 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)					586	ug/kg		18*	(22%-99%)			
1.2.4-Trichlorobenzene 1670 U ND 755 ug/kg 86* 45 (0%-31%) 08/30/02 1.4-Dichlorobenzene 1670 U ND 718 ug/kg 81* 43 (0%-36%) 2.4.5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2.4.6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2.4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-35%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)					292	ug/kg		18≖	(30%-133%)			
1,4-Dichlorobenzene 1670 U ND 718 ug/kg 81" 43 (0%-36%) 2,4,5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2,4,6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119" 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85" 44 (0%-34%) 4-Nitrophenol 3330 U ND 2240 ug/kg 114" 67 (0%-35%)	•											
2.4.5-Trichlorophenol 3330 U ND 2060 ug/kg 113 62 2.4.6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2.4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)											08/30/0	2 14:58
2,4,6-Trichlorophenol 3330 U ND 1740 ug/kg 107 52 2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)	•								(0%-36%)			
2,4-Dinitrotoluene 1670 U ND 1240 ug/kg 119* 75 (0%-37%) 2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)												
2-Chlorophenol 3330 U ND 1470 ug/kg 85* 44 (0%-34%) 4-Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114* 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)	<u>-</u>											
4 Chloro-3-methylphenol 3330 U ND 2240 ug/kg 114" 67 (0%-34%) 4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)									• /			
4-Nitrophenol 3330 U ND 1900 ug/kg 144* 57 (0%-35%)	•	11.5							•			
Accraphibene 1670 U ND 917 na/ka 105~ 55 (104-334)						_						
	-		ND		917	ug/kg	105*	55	(0%-33%)			
Hexachlorobenzene 1670 U ND 1030 ug/kg 116 62							116					
Hexachlorobutadiene 1670 U ND 627 ug/kg B2 38									•			
Hexachloroethane 1670 U ND 689 ug/kg 76 41												
N-Nitrosociipropylamine 1670 U ND 816 ug/kg 92* 49 (0%-29%)								49	(D%-29%)			
Nitrobenzene 1670 U ND 885 ug/kg 93 53												
Pentachlorophenol 3330 U ND 1890 ug/kg 100* 57 (0%-40%)	Pentachlorophenol	3330 U	ND		1890	ng/kg	100*	57	(0%-40%)			

Workorder: 66195								Page 4	of 4		
Parmoame	NOM		Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Semi-Volutiles-GC/MS Federal Batch 198215											
PhenoI	3330	U	ND	1680	ug/kg	93*	50	(0%-37%)			
Ругеле	1670	Ų	ND	1090	ug/kg	120~	66	(0%-39%)			
m,p-Cresols	3330	U	ND	1690	ug/kg	100	51				
o-Cresol	3330	U	ND	1690	ug/kg	90	51				
**2,4,6-Tribromophenol	3330		1740	1870	ug/kg		56	(23%-111%)			
**2-Fluorobiphenyl	1670		821	802	ug/kg		48	(21%-104%)			
**2-Fluorophenol	3330		1840	1480	ug/kg		45	(22%-93%)			
**Nitrobenzene-d5	1670			780	ug/kg		47	(24%-97%)			
**Phenol-d5	3330			1670	ug/kg		50	(22%-99%)			
**p-Terphenyl-d14	1670			1120	ug/kg		67	(30%-133%)			

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analyzes the result is less than the effective MDL. }
- X Presumptive evidence that the analyte is not present. Please see partative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

HPLC EXPLOSIVES ANALYSIS

HPLC Narrative Sandia National Labs (SNLS) SDG 66189

Method/Analysis Information

Procedure:

Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method:

SW846 8330

Prep Method:

SW846 8330 PREP

Analytical Batch

Number:

198039

Prep Batch Number:

198038

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
66189026	059696-002
66189027	059697-002
66189028	059698-002
66189029	059699-002
66189030	059641-002
66189031	059642-002

Page 1of 4

66189032	059700-002
66189033	059701-002
66189034	059702-002
66189035	059703-002
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
1200292731	XBLK01 (Blank)
1200292732	XBLK01LCS (Laboratory Control Sample)
1200292733	059691-002MS (Matrix Spike)
1200292734	059691-002MSD (Matrix Spike Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above

columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm LD.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

All the LCS spike recoveries were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 66189021 (059691-002)

MS Recovery Statement

4-amino-2,6-dinitrotoluene fails recovery low in the matrix spike (MS). The analyte meets acceptance criteria in the LCS and MSD. The failure is attributed to random laboratory error.

MSD Recovery Statement

The matrix spike duplicate recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were not within the required acceptance limits. For 4-amino-2,6-dinitrotoluene.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance report (NCR) has been generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this sample group.

The FORM 8 uses the retention time of the surrogate as a measure of how close the retention times of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer:	gan Back	Date: 9-15-02
-----------	----------	---------------

HPLC Narrative Sandia National Labs (SNLS) SDG 66189-1

Method/Analysis Information

Procedure:

Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method:

SW846 8330

Prep Method:

SW846 8330 PREP

Analytical Batch

Number:

198044

Prep Batch Number:

198043

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
66195002	059710-002
1200292738	XBLK01 (Blank)
1200292739	XBLK01LCS (Laboratory Control Sample)
1200292740	059710-002MS (Matrix Spike)
1200292741	059710-002MSD (Matrix Spike Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitrogromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

One or more of the required spiking analytes were outside of the SNLS and GEL acceptance limits in the laboratory control sample (LCS). Due to QC failure the associated sample was reextracted. See NCR 4645

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 66195002 (059710-002)

MS Recovery Statement

One or more of the required spiking analytes were not within the SNLS acceptance limits in the matrix spike (MS). The matrix spike duplicate (MSD) also failed recoveries. The failing recoveries are attributed to matrix interference. All of the recoveries were within GEL's SPC recovery limits.

MSD Recovery Statement

One or more of the required spiking analytes were not within the acceptance limits in the matrix spike duplicate (MSD). The matrix spike (MS) also failed recoveries. The failing recoveries are attributed to matrix interference. All of the recoveries were within GEL's SPC recovery limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements for the initial extraction. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Sample Reextract/Reanalysis

The following sample was reextracted due to failing spike recoveries in the LCS, MS, and MSD. 66195002 (059710-002)

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance report (NCR) has been generated for this SDG.

Page 3 of 7

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

The samples were concentrated prior to analysis to achieve the required detection limit. For GEL, the following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrobenzene and 1,3-Dinitrobenzene c.)m-,p-, and o-Nitrotoluene.

Method/Analysis Information

Procedure:

Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method:

SW846 8330

Prep Method:

SW846 8330 PREP

Analytical Batch

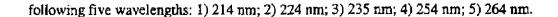
Number:

203606

Prep Batch Number:

203605

C--- -1. TD


Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client 1D
66195002	059710-002RE
1200305569	XBLK02 (Blank)
1200305570	XBLK02LCS (Laboratory Control Sample)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

All the LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

A matrix spike/matrix spike dulicate was not performed with this batch.

Technical Information

Holding Time Specifications

Not all samples in this SDG met the specified holding time requirements. The following samples were originally extracted within holding, but were reextracted out of holding due to failing spike recoveries in the LCS.

66195002 See NCR 4645

GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

The following non-conformance report (NCR) was submitted with this SDG. See NCR 4645. The sample was reextracted out of holding due to low spike recoveries in the LCS.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

The samples were concentrated prior to analysis to achieve the required detection limit. For GEL, the following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrobenzene and 1,3-Dinitrobenzene c.)m-,p-, and o-Nitrotoluene.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 6 of 7

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer:	BelDate:	9-26-62
-----------	----------	---------

HPLC Narrative Sandia National Labs (SNLS) SDG 66189-2

Method/Analysis Information

Procedure: Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method: SW846 8330

Prep Method: SW846 8330 PREP

Analytical Batch

Number:

198171

Prep Batch Number: 198170

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
66197008	059640-004
1200292964	XBLK01 (Blank)
1200292965	XBLK01LCS (Laboratory Control Sample)
1200292966	XBLK01LCSD (Laboratory Control Sample Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

One or more of the required spiking analytes were not within the SNLS 80-120% static acceptance limits. However, the LCS was within the acceptance limits according to the GEL SPC limits. The client has been notified and requested that the data are used. Please see the enclosed e-mail in the Miscellaneous Section. The enclosed Certificate of Analysis has the GEL SPC limits on it.

LCSD Recovery Statement

All of the required spiking analytes were within the acceptance limits in the laboratory control sample duplicate (LCSD).

LCS/LCSD RPD Statement

All of the relative percent differences (RPDs) between the LCS and the LCSD were within the acceptance limits for this SDG.

QC Sample Designation

A matrix spike/matrix spike duplicate was not performed with this batch.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance report (NCR) has been generated for this SDG.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

Sample 1200292964 had a response for some target analytes whose concentration greatly differed between the primary and confirmation analysis (greater than 40% difference). Because both columns or detectors indicated an acceptable peak in the appropriate retention time window for these analytes, the analytes are reported as positive results. Due to the high percent difference between the two columns, it is indicated as such on the appropriate Certificate of Analysis with a P qualifier. Those analytes reported with a percent difference greater than 40% but less than 70% are qualified as presumptive evidence of the presence of the material. Analytes reported with a percent difference greater than 70% should be considered undetected.

Sample 66197008 extract was a thick emulsion.

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case parrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: Rester Maur Date: 10/03/02

HPLC QUALITY CONTROL SUMMARY

Report Date: September 14, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-6756
P.O. Box 5800
Albuquerque, New Mexico
Pamela M. Puissant

Contact:

Workorder: 66189

Parmage	NOM		Sample	Qual	QC_	Units	RPD%	REC%	Range	Anlst	Date	Time
RPLC Explosives Federal	•											
Batch 198039									,			
QC1200292732 LCS									•			
1.3,5-Trinitrobenzene	800				726	ug/kg		91	(77%-124%)	ИW	09/05/0;	2 19:38
2,4,6-Trinitrotalnene	800				748	ug/kg		94	(80%-120%)			
2,4-Dinitrotoisens	80 0				713	ug/kg		89	(77%-122%)			
2.6-Diniprotoluene	800				754	ug/kg		94	(74%-121%)			
2-Amino-4,6-dinitroteluene	800				754	ug/kg		94	(81%-125%)			
4-Amino-2,6-dinitroteluene	800				701	ng/kg		88	(79%-123%)			
HMX	800				759	ug/kg		95	(84%-131%)			
Nitrobenzene	800				721	ug/kg		90	(75%-125%)			
RDX	800				758	ug/kg		95	(80%-123%)			
Tetryl	800				576	ug/kg		72	(65%-124%)			
m-Dinitrobenzene	800				732	ug/kg		92	(77%-124%)			
m-Nitrotohiane	800				722	ug/kg		90	(77%-117%)			
o-Nitrotoluene	800				716	ug/kg		90	(75%-119%)			
p-Nitrotolucue	800				732	ng/kg		91	(76%-121%)			
*1,2-dinitrobenzene	400				373			93	(71%-118%)			
	400				313	ug/kg		93	(1120-11930)			
QCI 200292731 MB 1.3.5-Trinitrohenzene				υ	ND						09/05/00	1 13.5/
2.4.6-Trinitrotoluene					ND	ug/kg			,		OSICIOISO	2 10:30
• ,				υ	-	ug/kg						
2,4-Dinitrotokiene				Ŭ	ND	ng/kg						
2,6-Dinivotolucne				ŭ	ND	ug/kg			i			
2-Amino 4,6-dinhrotoluene				Ū	ND	ng/kg						
4-Amino-2,6-dinitrotoluene				U	ND	ug∕kg						
HMX				\boldsymbol{u}	NO	ug/kg						
Nitrobenzene				U	ND	ug/kg						
RDX				U	ND	ug/kg						
Tetryl				U	ИD	ugskg						
m-Dinitrobenzene				U	ND	ug/kg						
m-Nitrotolaene				$oldsymbol{u}$	NO	ug/kg						
o-Nitrotoluene				U	ND	ug/kg						
p-Nitrotoluene				U	ND	ug/kg						
*1,2-dinitrobenzene	400				380	ug/kg		95	(71%-118%)			
QCi200292733 66189021 MS												
1,3,5-Trinitrobenzene	800	U	ND		677	ug/kg		85	(66%-133%)		09/05/0	2 20:19
2,4,6-Trinitrotoluene	800	U	ND		717	ug/kg		90	(77%-132%)			
2.4-Dinitrotoluene	800	ŭ	ND		720	ug/kg		90	(61%-134%)			
2.6-Dinitrotoluene	800	U	ND		786	ug/kg		98	(70%-121%)			
2-Amino-4.6-dinitrotoluene	800	U	ND		635	ug/kg		79	(79%-124%)			
4-Amino-2,6-dimitrotoluene	800	Ū	ND		433	ug/kg		54*	(71%-120%)			
HMX	800	Ü	ND		760	ug/kg		95	(75%-138%)			
Nitrobenzene	800	ŭ	ND		708	ng/kg		89	(72%-120%)			
RDX	800	Ü	ND		720			90				
Tetryt	800	Ü	_		575	ug/kg ^			(61%-136%)			
e const	avu	Ų	ND		3/3	ug/kg		72	(65%-135%)			

Workorder: 66189

Page 2 of 2

Parmesme	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range /	<u>Anis</u> t	Date Ti	De.
HPLC Explosives Federal												
Batch 198039												
m-Dinitrobenzene	800	U	ND		737	ug/kg		92	(75%-125%)			
m-Nitrotoluene	800	Ų	ND		716	ug/kg		90	(73%-116%)			
o-Nitrotoluene	800	Ű	ND		711	ug/kg		89	(68%-122%)			
p-Nitrotoluene	800	U	ND		726	ug/kg		91	(67%-125%)			
** 1,2-dinitrobenzene	400		407		365	ug/kg		91	(71%-118%)			
QC1200292734 66189021 MSD												
1,3,5-Trinitrobenzene	800	U	ND		725	ug/kg	7	91	(0%-20%)		09/05/02 21	:01
2,4,6-Trinitrotoluene	800	U	ND		752	ug/kg	5	94	(0%-20%)			
2.4-Dinitrotolyene	800	U	ND		737	ug/kg	2	92	(0%-24%)			
2,6-Dinitrotoluene	800	U	ND		783	ug/kg	0	98	(0%-21%)			
2-Amino-4,6-dinitrotoluene	800	U	ND		756	ug/kg	17	94	(0%-20%)			
4-Amino-2,6-dinitrataluene	008	U	ND		672	u g/k g	43*	84	(0%-20%)			
HMX	800	U	ND		784	ng/kg	3	98	(0%-38%)			
Nitrobenzene	800	U	ND		731	ц g/k g	3	91	(0%-21%)			
RDX	800	IJ	ND		735	ug/kg	2	92	(0%-35%)			
Tetryl	800	IJ	ND		659	ug/kg	14	82	(0%-30%)			
m-Dinitrobenzene	800	Ų	ND		756	ug/kg	3	95	(0%-23%)			
m-Nitrotoluene	800	Ū	ND		744	ug/kg	4	93	(0%-20%)			
o-Nitrotoluene	800	υ	ND		734	ug/kg	3	92	(0%-23%)			
p-Nitrotoluene	800	Ų	ND		749	ug/kg	3	94	(0%-22%)			
**1,2-dinitrobenzene	400		407		383	ug/kg		96	(71%-118%)			

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see tarrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

WA indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

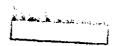
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 26, 2002 Page 1 of 4

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

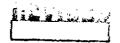

Contact:

Workorder: 66195

Parmame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Tirne
HPLC Explosives Federal												
Batch 198044												
QC1200292739 LCS												
1,3,5-Trinitrobenzene	800				755	ug/kg		94	(77%-124%)	ЛW	09/11/0	2 09:23
2.4,6-Trinitrotoluene	800				820	ug/kg		103	(80%-120%)			
2,4-Dinitrotoluene	800				700	ug/kg		88	(77%-122%)			
2,6-Dinitrotoluene	800				732	ug/kg		92	(74%-121%)			
2-Amino-4,6-dinitrotoluene	800				737	ug/kg		92	(81%-125%)			
4-Amino-2,6-dinitrotoluene	800				625	ug/kg		78*	(79%-123%)			
HMX	800				968	ug/kg		121	(84%-131%)			
Nitrobeazene	800				657	og/kg		82	(75%-125%)			
RDX	800				813	ug/kg		102	(80%-123%)			
Tetryl	800				308	ug/kg		38*	(65%-124%)			
m-Dinitrobenzene	800				719	ug/kg		90	(77%-124%)			
m-Nitrotoluene	800				657	ug/kg		82	(77%-117%)			
o-Nitrataluene	800				659	ug/kg		82	(75%-119%)			
p-Nitrotoluene	800				668	ug/kg		84	(76%-121%)			
*1,2-dinitrobenzene	400				368	ug/kg		92	(71%-118%)			
QC1200292738 MB									,			
1,3,5-Trinitrobenzene				υ	ND	ug/kg					09/11/0	2 08:41
2,4,6-Trinitrotoluene				υ	ND	ug/kg						
2,4-Dinitrotoluene				U	ND	ug/kg						
2,6-Dinitrotoluene				U	ND	ug/kg						
2-Amino-4,6-dinitrotoluene				Ü	ND	ug/kg						
4-Amino-2,6-dinitrotoluene				Ų	ND	ug/kg						
HMX				U	ND	ug/kg			•			
Nitrobenzene				U	ND	ug/kg			,			
RDX				U	ND	ug/kg						
Tetryl				ប	ND	ug/kg						
m-Dinitrobenzene				U	ND	ug/kg						
m-Nitrotoluene				U	ND	ug/kg						
o-Nitrotoluene	•			ŭ	ND	ug/kg						
p-Nitrotaluene				U	ND	ug/kg						
*1,2-dinitrobenzene	400			-	382	ug/kg		96	(71%-118%)			
QC1200292740 66195002 MS									(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1,3,5-Trinitrobenzene	800	U	ND		739	ug/kg		92	(66%-133%)		09/11/0	2 10:04
2,4,6-Trinitrotoluene	800	U	ND		720	ug/kg		90	(77%-132%)			
2,4-Dinitrotoluene	800	U	ND		727	ug/kg		91	(61%-134%)			
2,6-Dinitrotoluene	800	U	ND		808	ug/kg		101	(70%-121%)			
2-Amino-4,6-dinitrotoluene	800	U	ND		702	ug/kg		88	(79%-124%)			
4-Amino-2,6-dinitrotoluene	800	U	ND		574	ug/kg		72	(71%-120%)			
HMX	908	Ū	ND		760	ug/kg		95	(75%-138%)			
Nitrobenzene	800	Ū	ND		724	ug/kg		91	(72%-120%)			
RDX	800	Ŭ	ND		729	ug/kg		91	(61%-136%)			
Tetryl	800	Ŭ	ND		700	ug/kg		88	(65%-135%)			

Workorder: 66195									Page 2	of 4	
Parmame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
HPLC Explosives Federal											
Batch 198044											
m-Dinitrobenzene	800	υ	ND		740	ug/kg		93	(75%-125%)		
m-Nitrotoluene	800	υ	ND		717	ug/kg		90	(73%-116%)		
o-Nitrotoluene	800	υ	ND		721	ug/kg		90	(68%-122%)		
p-Nitrotoluene	800	U	ND		727	ug/kg		91	(67%-125%)		
**1,2-dinitrobenzene	400		374		397	ug/kg		99	(71%-118%)		
QC1200292741 66195002 MSD						-					
1,3,5-Trinitrobenzene	800	Ų	ND		739	ug/kg	0	92	(0%-20%)		09/11/02 10:46
2,4,6-Trimitrotoluene	800	U	ND		71 9	ug/kg	0	90	(0%-20%)		
2,4-Dinitrotoluene	800	U	ND		735	ug/kg	1	92	. (0%-24%)		
2,6-Dinitrotoluene	800	U	ND		852	ug/kg	5	106	(0%-21%)		
2-Amino-4,6-dinitrotoluene	800	Ų	ND		670	ug/kg	5	84	(0%-20%)		
4-Amino-2,6-dinitrotoluene	800	U	ND		503	ug/kg	13	63	(0%-20%)		
HMX	800	υ	ND		764	ug/kg	1	96	. (0%-38%)		
Nitrobenzene	800	U	ND		721	ug/kg	0	90	(0%-21%)		
RDX	800	U	ND		729	ug/kg	0	91	(0%-35%)		
Tetryl	800	U	ND		694	ц g/kg	1	87	(0%-30%)		
m-Dinitrobenzene	800	υ	ND		746	ug/kg	1	93	(0%-23%)		
m-Nitrotoluene	800	U	ND		758	ug/kg	6	95	(0%-20%)		
o-Nitrotoluene	800	U	ND		715	ug/kg	I	89	(0%-23%)		
p-Nitrotoluene	800	Ų	ND		724	ug/kg	0	91	(0%-22%)		
**1,2-dinitrobenzene	400		374		393	ug/kg		98	(71%-118%)		
Batch 201462									1		
QC1200300281 LCS									+		
1,3,5-Trinitrobenzene	800				691	ug/kg		86	(77%-124%)	ЛW	09/17/02 21:02
2,4,6-Trinitrotoluene	800				693	ug/kg		87	(80%-120%)		
2.4-Dinitrotoluene	800				641	ug/kg		80	(77%-122%)		
2,6-Dinitrotoluene	800				679	ug/kg		85	(74%-121%)		
2-Amino-4,6-dinitroroluene	800				683	ug/kg		85	(81%-125%)		
4-Amino-2,6-dinitrotoluene	800				595	ug/kg		74*	(79%-123%)		
HMX	800				723	ug/kg		90	(84%-131%)		
Nitrobenzene	800				627	ug/kg		78	(75%-125%)		
RDX	800				713	ug/kg		89	(80%-123%)		
Tetryl	800				503	ug/kg		75	(65%-124%)		
m-Dinitrobenzene	800				664	ug/kg		83	(77%-124%)		
m-Nitrotoluene	800				632	ug/kg		79	(77%-117%)		
o-Nitrotoluene	800				632	ug/kg		79	(75%-119%)		
p-Nitrotoluene	800				640	ug/kg		80	(76%-121%)		
**1,2-dinitrobenzene	400				346	ug/kg		86	(71%-118%)		
QC1200300280 MB									((========		
1,3,5-Trinitrobenzene				U	ND	ug/kg					09/17/02 20:19
2,4,6-Trinitrotoluene				U	ND	ug/kg			ı		
2.4-Dinitrotoluene				U	ND	ug/kg					
2,6-Dinitrotoluene				Ü	ND	ug/kg					
2-Amino-4,6-dinitrotoluene				Ü	ND	ug/kg			•		
4-Amino-2,6-dinitrotoluene				Ū	ND	ug/kg					
HMX				บ	ND	ug/kg					
Nitrobenzene				Ū	ND	ug/kg					
RDX				Ũ	ND	ug/ke					

Parmanne NOM Sample Quai QC Units NP15% REC% Range Anist	Date Time
HPLC Explosives Federal Batch 201462 Tetryl UND ug/kg m-Dinitrobeuzene UND ug/kg m-Nitrotoluene UND ug/kg p-Nitrotoluene UND ug/kg 1,3-5-Trinitrobeuzene 400 354 ug/kg 88 (71%-118%) QC1200300293 65745005 MS 1,3,5-Trinitrobeuzene 800 UND H 760 ug/kg 95 (66% 133%) (62,4,6-Trinitrotoluene 800 UND H 767 ug/kg 96 (77%-132%) 2,4-Dinitrotoluene 800 UND H 754 ug/kg 94 (61%-134%)	• * * **
Tetry	09/17/02 21:4 4
C ND ug/kg m-Dinitrobeuzene	09/17/02 21:4 4
m-Dinitrobetzene	09/17/02 21:44
m-Dinitrobenzene U ND ug/kg m-Nitrotolnene U ND ug/kg o-Nitrotolnene U ND ug/kg p-Nitrotolnene U ND ug/kg **1,2-dinitrobenzene 400 354 ug/kg **1,2-dinitrobenzene 400 354 ug/kg **8 (71%-118%) QC1200300293 65745005 MS 1,3,5-Trinitrobenzene 800 U ND H 760 ug/kg 95 (66% 133%) (62,4,6-Trinitrotolnene 800 U ND H 767 ug/kg 96 (77%-132%) 2,4-Dinitrotolnene 800 U ND H 754 ug/kg 94 (61%-134%)	09/37/02 21:44
m-Nitrotoluene U ND ug/kg c-Nitrotoluene U ND ug/kg p-Nitrotoluene U ND ug/kg **1,2-dimitrobenzene 400 354 ug/kg **1,2-dimitrobenzene 400 354 ug/kg **8 (71%-118%) QC1200300293 65745005 MS 1,3,5-Trinitrobenzene 800 U ND H 760 ug/kg 95 (66% 133%) (62,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 96 (77%-132%) 2,4-Dimitrotoluene 800 U ND H 754 ug/kg 94 (61%-134%)	09/17/02 21:44
p-Nitrotoluene	09/17/02 21:44
p-Nitrotoluene	09/17/02 21:44
**1,2-dinitrobenzene 400 354 ug/kg 88 (71%-118%) QC1200300293 65745005 MS 1,3,5-Trinitrobenzene 800 U ND H 760 ug/kg 95 (66% 133%) (2,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 96 (77%-132%) 2,4-Dinitrotoluene 800 U ND H 754 ug/kg 94 (61%-134%)	09/17/02 21:44
1,3,5-Trinitrobenzene 800 U ND H 760 ug/kg 95 (66% 133%) 0 2,4,6-Trinitrotoluene 800 U ND H 767 ug/kg 96 (77%-132%) 2,4-Dinitrotoluene 800 U ND H 754 ug/kg 94 (61%-134%)	09/17/02 21:44
2,4,6-Trinitrotoluene 800 U ND H 767 ng/kg 96 (77%-132%) 2,4-Dinimotoluene 800 U ND H 754 ng/kg 94 (61%-134%)	09/17/02 21:44
2,4-Dinimotoluene 800 U ND H 754 ug/kg 94 (61%-134%)	
2.6-Dinitrosolusus 800 II NO H 807 pg/kg 101 (70%-12.9%)	
with a second to the transfer and the second to the transfer and the second term of the s	
2-Amino-4.5-dinitrotoluene 800 H ND H 761 ug/kg 95 (79%-124%)	
4-Amino-2,6-dinimutalmene 800 U ND H 701 ug/kg 88 (71%-120%)	
HMX 800 U ND H 787 ug/kg 100 (75%-138%)	
Nitrobeaugne 800 U ND H 737 ug/kg 92 (72%-120%)	
RDX 800 U ND H 750 ug/kg 94 (61%-136%)	
Terryl 900 U ND H 671 ug/kg 84 (65%-135%)	
m-Dinitrobenzene 800 U ND H 778 ug/kg 97 (75%-125%)	
m-Nitrotolusne 80C U ND H 742 ug/kg 93 (73%-116%)	
o-Nitrotoliusne 800 U ND K 737 ug/kg 92 (68%-122%)	
p-Nitrotoluene 800 U ND H 753 ug/kg 94 (67%-125%)	
**1,2-dinimobenzene 400 370 H 401 ug/kg 100 (71%-118%)	
QC1200300294 65745005 MSD	
1,3.5-Trinitrobenzene 800 U ND H 761 ug/kg 0 95 (0%-20%)	09/17/02 22:27
2,4.6-Trinitrotoluene 800 U ND H 767 ug/kg 0 96 (0%-20%)	
2,4 Dinitrotoluene 800 U ND H 755 ug/kg 0 94 (0%-24%)	
2,6-Dimitrosolusus 800 U ND H 804 ug/kg 0 100 (0%-21%)	
2 Amino-4,6-dinitrocoluenc 800 U ND H 752 ug/kg 1 94 (0%-20%)	
4-Amino-2,6-dinitropoluene 800 U ND H 650 ug/kg 8 81 (0%-20%)	
HMX 800 U ND H 794 ug/kg 0 99 (0%-38%)	
Nitrobezzene 800 U ND H 733 ug/kg 1 92 (0%-21%)	
RDX 800 U ND 11 747 ug/kg 0 93 (5%-35%)	
Terryl 800 U ND H 667 ug/kg 1 83 (195-30%)	
m-Diniuobenzene 800 U ND H 778 ug/kg 0 97 (0%-23%)	
m-Nitrotoluene 800 U NU H 743 ug/kg 0 93 (0%-20%)	
o-Nitrotoluene 800 U ND H 738 ug/kg 0 92 (0%-23%)	
p-Nitrotolucue 800 U ND H 751 ug/kg 0 94 (1945-2246)	
**1,2-distrobenzenc 400 370 H 402 ug/kg 101 (71%-118%)	
Barch 203606	
QC1200305570 LC3	
	008403 12.64
The second secon	09/24/02 13:54
in and the sector	
and the second s	
- Comment of the state of the s	
The state of the s	
the space of the transfer of t	
Nitrobeazene 800 704 ug/kg 88 (75%-125%)	


Workorder: 66195								Page 4	of 5		
Parmame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Ankı	Date	Time
HPLC Explosives Federal											
Batch 203606											
RDX	800			795	ug/kg		99	(80%-123%)			
Tetryl	800			782	ug/kg		98	(65%-124%)			
ni-Dinitrobenzene	800			741	ug/kg		93	(77%-124%)			
m-Nivotoluone	800			709	ug/kg		89	(77%-117%)			
o-Nitrotoluene	800			711	ug/kg		89	(75%-119%)			
p-Nitrotoluene	800			721	ug/kg		90	(76%-121%)			
** 1,2-dinitrobenzene	400			358	ug/kg		90	(71%-118%)			
QC1200305569 MB								•			
1,3,5-Trinitrobenzene			U	ND	ug/kg					09/24/0	12 13:11
2.4.6-Trinitrotoluene			U	ND	υg/kg						
2,4-Dinitrotokiene			U	ND	ng/kg						
2,6-Dinitrotoluene			U	ND	ug/kg						
2-Amino-4,6-dinitrotoluene			Ų	ND	աջ/Նայ						
4-Amino-2,6-dinitrotoluene			U	ND	ug/kg						
HMX			U	ND	ug/kg						
Niurobenzeae			U	ND	ng/kg						
RDX			U	ND	ug/kg						
Tetryl			U	ND	ug/kg						
m-Dinitrobenzene			Ų	ND	ug/kg						
n-Nitrosolvene			υ	ND	ug/kg						
o-Nitrotoluene			υ	ND	ug/kg						
p-Nitrotofaene			U	ND	ug/kg						
**1,2-dinitrobenzene	400			363	ug/kg		91	(71% 118%)			

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyse was found in the blank above the effective MDL.
- II Holding time was exceeded
- I Estimated value, the analyse concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >10%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the snalyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder: 66195

Page 5 of 5

Parmname NOM Sample Qual QC Units RPD% REC% Range Anist Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

A The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5%) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5% the RL, a control limit of +/-the RL is used to evaluate the DIP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 4, 2002

Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder:

66197

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Ankt	Date	Time
HPLC Explosives Federal											
Batch 198171		•									
OC1200292965 LCS											
1,3,5-Trinitrobenzene	1.04			0.936	ug/L		90	(84%-110%)	JLW	09/01/0	2 12:54
2,4,6-Trinitrotolnene	1.04			0.982	ug/L		95	(85%-110%)			
2,4-Dinitrotoluene	1.04			0.833	ug/L		80	(78%-110%)			
2,6-Dinitrotoluene	1.04			0.862	ug/L		83	(79%-110%)			
2-Amino-4,6-dinitrotoluene	1.04			0.980	u g/ L		94	(77%-110%)			
4-Amino-2,6-dinitrotoluene	1.04			0.792	ug/L		76	(59%-110%)			
HMX	1.04			1.02	ug/L		99	(86%-110%)			
Nitrobenzenz	1.04			0.716	ug/L		69	(68%-110%)			
RDX	1.04			0.948	ug/L		91	(76%-110%)			
Tetryl	1.04		В	0.940	ug/L		91	(73%-110%)			
m-Dinitrobenzene	1.04			0.795	ug/L		77	(76%-110%)			
m-Nitrotoluene	L. 0 4			0.774	ug/L		75	(73%-110%)			
o-Nitrotoluene	1.04			0.784	ug/L		76	(69%-110%)			
p-Nitrotoluene	1.04			0.827	ug/L		80	(73%-110%)			
*1,2-dinitrobenzene	0.519			0.423	ug/L		82	(59%-118%)			
QC1200292966 LCSD											
1,3,5-Trinitrobenzene	1.04			0.912	ug/L		88	(0%-20%)		09/01/0	2 13:36
2,4,6-Trinitrotoluene	1.04			0.967	ug/L		93	(0%-20%)			
2,4-Dinitrotoluene	1.04			0.895	ug/L	7	86	(0%-20%)			
2,6-Dinitrotoluene	1.04			0.942	ng/L	9	19	(0%-20%)			
2-Amino-4,6-dinitrotoluene	1.04			0.992	ug/L	1	95	(0%-20%)			
4-Amino-2,6-dinitrotoluene	1.04			0.903	ug/L	13	87	(0%-24%)			
HMX	1.04			0.992	n\$/L	3	95	(0%-20%)			
Nitrobenzene	1.04			0.805	սց/Ն	12	78	(0%-20%)			
RDX	1.04			0.928	ug/L		89	(0%-20%)			
Tetryl	1.04		В	0.940	սջ∕Ն		91	(0%-20%)			
m-Dinitrobenzene	1.04			0.673	u g/ L		₿4	(0%-20%)			
m-Nitrotolucne	1.04			0.863	ug∕Ն		B 3	(0%-20%)			
o-Nitrotolnene	1.04			0.864	ug/L		83	(0%-23%)			
p-Nitrotolucne	1.04			0.903	ug/L	. 9	87	(0%-20%)			
** 1,2-dinitrobenzene	0.519			0.453	ug/L		87	(59%-118%)			
QC1200292964 MB			3.		_						
1,3,5-Trinitrobenzene			U	ND	ug/L					09/01/0	12:12
2,4,6-Trinitrotoluene			ប	ND	ug/L						
2,4-Dinitrotoluene			บ	ИD	ug/L						
2,6-Dinitrotolueue			U	ND	ug/L						
2-Amino-4,6-dimitrotoluene			ប	ND	ug/L						
4-Amino-2,6-dinitrotoluene			U	ND	ug/L			•			
HMX	•		U	ND	ug/L						
Nitrobenzene			ប	ND	ug/L			•			
RDX			U	ND	ug/L						
Tetryl			ΤP	0.0818	ng/L	,					

Workerder: 66197

Page 2 of 2

							1 after 1	- UI - L		
Parmname	NGM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
HPLC Explodives Federal Batch 198171										· · · -
m-Dinitrobenzene		U	ND	ц ջ/ L						
m-Nitrotoluene		U	ND	ug/L						
c-Nitrotoluene		ប	ND	ug/L						
p-Nitrotoluene		ŋ	ND	ug/L	,					
** 1,2-dinitrobenzene	0.519		0.375	og/L		72	(59%-118%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see sarrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than SX the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC SEMIVOLATILE PCB ANALYSIS

PCB Case Narrative Sandia National Labs (SNLS) SDG#66189

Method/Analysis Information

Procedure:

Polychlorinated Biphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW846 3550B

Analytical Batch Number:

197835

Prep Batch Number:

197834

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID		Client ID
66189021	059691-002	
66189022	059692-002	
66189023	059693-002	
66189024	059694-002	
66189025	059695-002	
66189026	059696-002	
66189027	059697-002	
66189028	059698-002	
66189029	059699-002	
66189030	059641-002	
66189031	059642-002	
66189032	059700-002	
66189033	059701-002	
66189034	059702-002	
66189035	059703-002	
66189036	059705-002	
66189037	059706-002	
66189038	059707-002	

66189039	059708-002
66189040	059709-002
1200292263	PBLK01 (Method Blank)
1200292264	PBLK01LCS (Laboratory Control Sample)
1200292265	059691-002MS (Matrix Spike)
1200292266	059691-002MSD (Matrix Spike Duplicate)

System Configuration

Chromatographic Columns

Column ID	Column Description
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durab ond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83mm DB-XLB* 30m x 0.53mm x 1.5mm
J&W5	DB-XLB* 30m x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm

^{*} Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECDI	HP 6890 Series GC ECD/ECD	RESTEK*
ECD2	HP 6890 Series GC ECD/ECD	RESTEK*
ECD3	HP 6890 Series GC ECD/ECD	RESTEK*
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W 5
ECD7	HP 6890 Series GC ECD/ECD	J&W5

*The columns were changed to RTX-CLPEST1 and RTX-CLPEST2.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have not been met for this SDG.

Aroclor-1016 failed acceptance criteria with a positive bias on both analytical columns in the standard bracketing the samples in this SDG. The positive bias for the analytical data is the result of instrument response increasing after the initial calibration. All samples were bracketed by acceptable calibration verification standards for the compounds identified positive in the samples. Therefore, the non-compliance has no adverse effects on the data.

Some surrogates failed high in the standards bracketing the samples in this SDG. However, this non-compliance has no adverse effects on the data.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following samples were selected for the PCB method QC:

Client Sample ID# Laboratory Sample ID#

059691-002 66189021

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required any dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent a positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Juni Cao Date: 9/23/02

,PCB Case Narrative Sandia National Labs (SNLS) SDG#66189-1

Method/Analysis Information

Procedure:

Polychlorinated Biphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW846 3550B

Analytical Batch Number:

197837

Prep Batch Number:

197836

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID				
66195002	059710-002				
1200292267	PBLK01 (Method Blank)				
1200292268	PBLK01LCS (Laboratory Control Sample)				
1200292269	059710-002MS (Matrix Spike)				
1200292270	059710-002MSD (Matrix Spike Duplicate)				

System Configuration

Chromatographic Columns

Column ID	Column Description
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5mm DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
I&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.00m DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm

* Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK*
ECD2	HP 6890 Series GC ECD/ECD	RESTEK*
ECD3	HP 6890 Series GC ECD/ECD	RESTEK*
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&WS
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK*

^{*}The columns were changed to RTX-CLPEST1 and RTX-CLPEST2.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have not been met for this SDG.

Aroclor-1016 failed acceptance criteria with a positive bias on one analytical column in the standard bracketing the samples in this SDG. The positive bias for the analytical data is the result of instrument response increasing after the initial calibration. No target analytes were detected in the sample. Therefore, the non-compliance has no adverse effects on the data.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

SNLS \$DG#66189-)-PCB

QC Sample Designation

The following samples were selected for the PCB method QC:

Client Sample ID#

Laboratory Sample ID#

059710-002

66195002

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All sample extracts were cleaned using alumina. Additionally, elemental mercury was added to field sample extracts to remove high concentrations of sulfur.

Sample Dilutions

None of the samples in this SDG required any dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent a positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator ver	ified the information present	ed in this case narrative:
Reviewer: Fin Cao	Date:	3/23/02

PCB Case Narrative Sandia National Labs (SNLS) SDG# 66189-2

Method/Analysis Information

Procedure: Polychlorinated Biphenyls by Method 8082

Analytical Method: SW846 8082

Prep Method: SW846 3510C

Analytical Batch Number: 197833

Prep Batch Number: 197832

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

	Sample ID	Client ID
	66197007	059640-003
	1200292257	PBLK01 (Method Blank)
	1200292258	PBLk01LCS(laboratory control Sample)
	1200292261	059640-003MS(Matrix Spike)
•	1200292262	059640-003MSD(Matrix Spike Duplicate)

System Configuration

Chromatographic Columns

ID	Column Description
J&WI	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5mm

SNLS SDG#66189-2 - PCB

Page 1 of 5

DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um

DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um

DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um RESTEK

Rtx-CLPesticides 30m x 0.25mm x 0.25um x 0.25um x 0.25um x 0.25um x 0.25um

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

SNLS SDG#66189-2 - PCB

Page 2 of 5

^{*} Durabond and DB-XLB are trademarks of J & W.

CVS Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were not within the established acceptance criteria for this SDG. The surrogate recovery for sample 66197007 failed the recovery criteria. There was no more sample left to re-extract.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

OC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID#

Laboratory Sample ID#

059640-003

66197007

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and

SNLS SDG#66189-2 - PCB

Page 3 of 5

time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All samples underwent sulfur cleanup procedure.

Sample Dilutions

None of the samples in this SDG were required dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these

SNLS SDG#66189-2 - PCB

Page 4 of 5

conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the	information pres	ented in this case nar	rative
Reviewer: Juin Caro	Date:	9/15/02	

GC/ECD PCB QUALITY CONTROL SUMMARY

Report Date: September 23, 2002

Page 1 of 2

Client :

Sundia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder:

66189

Parinname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Vojadler PCB Federal Batch 197835										
OC[200292264 LCS										
Argelor-1260	33.3			29.3	ug/kg		88	(48%-116%)	MM	09/11/02 16:16
**4cmx	6.67			5.38	ug/kg		81	(31%-120%)		
**Decachlorobiphenyl	6.67			5.74	ug/kg		86	(34%-115%)		
OC1200292263 MB					-5.0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Aroctor-1016			U	ND	ng/kg					09/11/02 16:04
Aroclor-1221			U	ΔV	ug/kg					
Aroclor-1232			Ų	ND	ug/kg					
Aroclor-1242			U	ND	ug/kg					
Aroclar-1248			U	ХD	ug/kg					
Arocler-1254			Ū	ND	ug/kg					
Aroclor-1260			Ū	ND	ug/kg					
**4cmx	6.67		_	5.51	ug/kg		83	(31%-120%)		
**Decachlorobiphenyl	6.67			5.72	ug/kg		86	(34%-115%)		
OC1200292265 66189021 MS							• • •	(,		
Arocler-1260	33.3	ט אס		29.7	ng/kg		89	(36%-134%)		09/11/02 16:27
**4cmx	6.67			5.38	ug/kg		81	(31%-120%)		
**Decachlorobiphenyl	6.67			5.63	ug/kg		84	(34%-115%)		
QC:200292266 6618902: MSD					•					
Aroclor-1260	31.3	U ND		28.6	ug/kg	4	86	(0%-10%)		09/11/02 16:39
**4cmx	6.67			5.32	ug/kg		80	(31%-120%)		
**Decachlorobiphenyl	6.67			5.56	ug/kg		84	(34%-115%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where if
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see narrative for further information,
- X Presumptive evidence that the analyte is not present. Please see narrative for further infrontation.
- X Uncertain identification for gamma spectroscopy.

Workorder: 66189

Page 2 of 2

NOM QC Units RPD% Sample Qual REC% Range Anist Date Time Parmaame

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary,

Report Date: September 18, 2002

Page 1 of 2

Client :

Sandia National Laboratories

MS-0756 P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder: 6619

Workorder: 66197										
Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volutiles-PCB Federal Batch 197833										
QCJ200292258 LCS										
Arocler-1260	1.00			0.760	ug/L		76	(47%-[31%)	GHI	09/09/02 17:09
**4cmx	0.200			0.130	ug/L		65	(34%-116%)		
**Decachlorobiphenyl OC1200292257 MB	0.200			0.149	ug/L		75	(21%-122%)		
Arcelor-1016			Ų	ND	ug/L					09/09/02 16:57
Aroctor-1221			Ü	ND	ս ջ/ Լ					
Aroclor-1232			U	ND	ug/L					
Aroclor-1242			U	ND	ug/L					
Aroclor-1248			υ	ND	ug/L					
Araclar-1254			U	ND	սց/Լ			1		
Araclor-1260			U	ND	սջ/Լ			•		
**4cmx	0.200			0.134	<u>пу/</u> [_		67	(34%-116%)		
**Decachlorobiphenyl	0.200			0.144	ug/L		72	(21%-122%)		
QC1200292261 66197007 MS					•					
Aracler-1260	00.1	מא ט		0.650	ug/L		65	(21%-113%)		09/09/02 17:34
**4cmx	0.200			0.121	ug/L		60	(34%-) 16%)		
**Decachlorobiphenyl	0.200			0.108	ug/L		54	(21%-122%)		
QC1200292262 66197007 MSD					•			•		
Arccior-1260	1.00	U ND		0.690	ug/L	6	69	(0%-30%)		09/09/02 17:46
**4cmx	0.200			0.132	vg/L		66	(34%-116%)		
**Decachlorobiphenyl	0.200			0.0968	ug/L		43	(21%-122%)		

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or "RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.
- X Presumptive evidence that the analyte is not present. Please see narrative for faither information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder:

66197

QC Summary

Page Z of 2 QC Parmname Units RPD% REC% Range Anist NOM Sample Qual

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Renort Date: September 23, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamelu M. Puissant

Workorder: 66195

Parmaame	NOM	Sampl	c Qual	QC	Units	RPD%	REC%	Range	ieinA	Date Tir	me
Seral-Volatiles-PCB Federal Batch 197837								:			
QC1200292268 LCS				4	_						
Aroclor-1260	33.3			30.4	ug/kg		91	(48%-116%)	MM	09/11/02 23	:22
*4cmx	6.67			6.04	ug/kg		91	(31%-120%)			
*Decachlorobiphenyl	6.67			6.02	ug/kg		90	(34%-115%)			
QC1200292267 MB											
Aroclor-1016			U	ND	ug∕kg					09/11/02 23	1:10
Aroctor-1221			U	ND	ug⁄kg						
Arocior-1232			ľ	ND	սցչեջ						
Aroclor-1242			U	ND	ug/kg						
Aroclor-1248			ľ	ND	ug/kg						
Aroclar-1254			U	ND	ug/kg						
Arocler-1260			Ų	ND	ug/kg						
*4cmx	6 67			6.67	ug/kg		001	(31%-120%)			
*Decachlorobiphenyl	6.67			6.58	ug/kg		99	(34%-115%)			
QC1200292269 66195002 MS											
Araclar-1260	33.3	U N	D	29.4	ng/kg		88	(36%-134%)		09/11/02 23	:3.
•4cmx	6.67	6.0	4	5.26	ug/kg		79	(31%-120%)			
**Decachlorobiphenyl	6.67	6.6	9	5.71	ug'kg		86	(34%-115%)			
OC1200292270 66195002 MSD											
Aroclor-1260	33.3	U N	D	29.4	ng/kg	2	88	(0%-30%)		09/11/02 23	5:4
*4cmx	6.67	6.0	4	5.14	ug/kg		77	(31%-120%)			
**Decachlorobiphenyl	6.67	6.6		5.65	ug/kg		85	(34%-115%)			

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where &
- Indicates analyse is a surrogate compound.
- The analyte was found in the blank above the effective MDL. В
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- The response between the confirmation column and the primary column is >40%D
- The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- Presumptive evidence that the analyte is not present. Please see narrative for further information
- Х Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- Uncertain identification for gamma spectroscopy.

Workorder:

66195

QC Summary

Page 2 of 2 QC Units RPD% REC% NOM Sample Qual Range Anist Date Time Parmoame

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

INORGANIC ANALYSIS

Inorganic Case Narrative for Sandia National Laboratory SDG# 66189

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
661890 26	059696-002
66189027	059697-002
66189028	059698-002
66189029	059699-002
66189030	059641-002
66189031	059642-002
66189032	059700-002
66189033	059701-002
66189034	059702-002
66189035	059703-002
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
1200291976	Method Blank (MB) ICP-197718/197717
1200291980	Laboratory Control Sample (LCS)
1200291978	059691-002L (66189021) Serial Dilution (SD)
1200291977	059691-002D (66189021) Sample Duplicate (DUP)
1200291979	059691-0028 (66189021) Matrix Spike (MS)
1200292097	Method Blank (MB) CVAA-197762/197761
1200292100	Laboratory Control Sample (LCS)
1200292098	059691-002D (66189021) Sample Duplicate (DUP)
1200292099	059691-002S (66189021) Matrix Spike (MS)

Method/Analysis Information:

Analytical Batch #: 197718, 197762 Prep Batch #: 197717, 197761

Standard Operating.Procedure: GL-MA-E-013 REV.6; GL-MA-E-010 REV.10

Analytical Method: SW846 6010B; SW846 7471A Prep Method: SW846 3050B; SW846 7471A

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits.

Continuing Calibration (CCV) Requirements

All CCV standards associated with samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) associated with samples from this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS/LCSD Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 059691-002 (66189021) was designated as the quality control sample for ICP and the CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection

limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. No dilutions were required for the CVAA analysis other than the 5x dilution for the LCS.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: <u>QUU: 5174. S.</u>

Date: <u>91918</u>

Inorganic Case Narrative for Sandia National Laboratory SDG# 66189-1

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
66195002	059710-002
1200294757	Method Blank (MB) ICP-199132/199131
1200294761	Laboratory Control Sample (LCS)
1200294759	059710-002L (66195002) Serial Dilution (SD)
1200294758	059710-002D (66195002) Sample Duplicate (DUP)
1200294760	059710-002S (66195002) Matrix Spike (MS)
1200295327	Method Blank (MB) CVAA-199386/199385
1200295330	Laboratory Control Sample (LCS)
1200295328	059710-002D (66195002) Sample Duplicate (DUP)
1200295329	059710-002S (66195002) Matrix Spike (MS)

Method/Analysis Information:

Analytical Batch #:

199132, 199386

Prep Batch #:

199131, 199385

Standard Operating Procedure: GL-MA-E-013 REV.6; GL-MA-E-010 REV.10

Analytical Method:

SW846 6010B; SW846 7471A

Prep Method:

SW846 3050B; SW846 7471A

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits.

Continuing Calibration (CCV) Requirements

All CCV standards associated with samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) associated with samples from this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS/LCSD Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 059710-002 (66195002) was designated as the quality control sample for ICP and the CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of -/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria, with the exception of barium, as indicated by the "*" qualifier.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of

the instruments. The samples were diluted the standard 2x for soils on the ICP. No dilutions were required for the CVAA analysis other than the 5x dilution for the LCS.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: _	allismy (
Date: _	9/23/2

Metals Case Narrative for Sandia National Labs (SNLS) SDG# 66189-2

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
66197011	059640-007
1200293696	Method Blank (MB) CVAA-198713/198712
1200293699	Laboratory Control Sample (LCS)
1200293697	059554-009D (66218007) Sample Duplicate (DUP)
1200293698	059554-009S (66218007) Matrix Spike (MS)
1200296652	Method Blank (MB) ICP-199969/199968
1200296656	Laboratory Control Sample (LCS)
1200296654	059772-005L (66619010) Serial Dilution (SD)
1200296653	059772-005D (66619010) Sample Duplicate (DUP)
1200296655	059772-005S (66619010) Matrix Spike (MS)

Method/Analysis Information:

Analytical Batch #: 198713, 199969 Prep Batch #: 198712, 199968

 Analytical Method:
 SW846 6010B, SW846 7470A

 Prep Method:
 SW846 3005B, SW846 7470A

Standard Operating Procedure: GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for the analyses.

CRDL Requirements

All element recoveries in the CRDL standards met the advisory control limits (70% - 130).

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Continuing Calibration (CCV) Requirements

All CCV standards bracketing samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) bracketing samples from this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the required acceptance limits.

QC Sample Statement

Sample 059554-009 (66218007) from SNLS SDG 66218 was designated as the quality control sample for the ICP batch. Sample 059772-005 (66619010) from SNLS SDG 66619 was designated as the QC sample for the CVAA batch. A matrix spike (MS) and a sample duplicate (DUP) were analyzed in each batch. A serial dilution (SD) was analyzed in the ICP batch.

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The MS analyses met the recommended quality control acceptance criteria for percent recovery (75%-125%) for all applicable analytes.

DUP RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the IDL for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

Sample Dilutions

Dilutions are performed to minimize matrix interferences (e.g., those resulting from elevated mineral element concentrations) present in the sample and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. No dilutions were necessary.

Miscellaneous Information:

NCR Documentation

Nonconformance reports (NCR) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Revlewer:	allised. a	<u>.)</u>
Date:	919/52	

INORGANICS QUALITY CONTROL SUMMARY

Report Date: September 16, 2002 Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pameia M. Puissant

Workarder:

66189

QC1200292098 66189021 DUP

Parmname			NOM		Sample	Qual	ÓС	Units	RPD%	REC%	Range	Anist	Date	Time
Melals Analysis ICF Fe	derat								-		ı			
Batch 197718	8													
QC1200291977 66	5189021	DUP												
Arsenic					4.53		4.16	mg/kg	8		(0%-20%)	RMJ	09/09/0	2 21:57
Barium					157		167	mg/kg	6		(0%-20%)			
Cadmium				J	0.0801	1	0.083	mg/kg	N/A ^		(+/-0.490)	1		
Chromium				В	10.3	В	10.7	mg/kg	4		(0%-20%)			
Lead					6.16		6.10	mg/kg	1		(0%-20%)	I		
Selenium				J	0.309	Ţ	0.182	mg/kg	N/A ^		(+/-0.490))		
Silver				U	ND	U	ND	mg/kg	N/A		(+/-0.490))		
QC1200291980	LCS													
Arsenic			132				144	mg/kg		109	(74%-126%)	ı	09/09/0	2 21:40
Berium			781				828	mg/kg		106	(77%-123%)	i		
Cadmium			51.5				58.5	mg/kg		114	_. (77%-123%)	i		
Chromium			142			В	160	mg/kg		113	(80%-120%)			
Lead			52.9				58.4	mg/kg		110	(75%-125%)	-		
Selenium.			60.9				70.0	mg/kg		115	(71%-129%)	+		
Silver			125				154	mg/kg		123	(52%-148%)	+		
QC1200291976	MB													
Arsenic						Ų	ND	mg/kg					09/09/0	2 21:34
Barium						U	ND	mg/kg						
Cadmium						U	ND	mg/kg						
Chromeum						J	0.202	mg/kg						
Lead						U	ND	mg/kg						
Selenium						U	ND	mg/kg						
Silver						U	ND	mg/kg						
QC1200291979 66	5189021	MS												
Arsenic			24.5		4.53		29.3	mg/kg		101	(75%-125%)	l	09/09/0	2 22:03
Barium			24.5		1 5 7		195	mg/kg		N/A	(75%-125%))		
Cadmium			24.5	J	0,0801		24.9	mg/kg		101	(75%-125%))		
Chromium			24.5	В	10.3	В	37.2	mg/kg		110	(75%-125%))		
Lead			24.5		6.16		31.5	mg/kg		103	(75%-125%))		
Selenium			24.5	J	0.309		24.0	mg/kg		97	(75%-125%))		
Silver			24.5	\mathbf{U}	ND		26.2	mg/kg		107	(75%-125%))		
QC1200291978 66	6189021	SDILT												
Arsenic					45.7		8.61	ag/L	5.92				09/09/0	2 21:51
Barium					1590		305	ug/L	3.84		1			
Cadmium				j	0.809	Ų	ND	ag/L	N/A					
Chromium				В	104	В	20.9	ug/L	.023					
Lead					62.2		11.2	ug/L	10.2					
Sclenium				J	3.13	Ü	ND	ug/L	N/A					
Silver				U	ND	U	ND	ug/L	N/A					
Metals Analysis-Mercu	ry Feder	le						=						
Betch 19776:	•	•												

Workorder: 66189

Page 2 of 2

									•	
Paramame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Metals Analysis Mercury Federal Batch 197762										
Mercury		U	ND	J	0.00104	mg/kg	N/A		(+/-0.00984) NOR1	09/13/02 11:53.
QC1200292100 LCS Mercury	4,50				4.28	mg/kg		95	(65%-132%)	09/13/02 11:49 -
QC1200292097 MB Mercury				υ	ND	mg/kg				09/13/02 11:47
QC1200292099 66189021 MS Mercury	0.0885	Ū	ND		0.0892	mg/kg		100	(75%-125%)	09/13/02 11:55 .

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL, 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptonoc criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 17, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder: 66197

Parmuame			NO	1	Sample	Qual	QC	Units	RPD%	REC%	Range	Andst	Date Time
Metals Analysis-ICP	Federal												
Batch 1999	969												
OC1200296653	66619010	DUP											
Arsenic					0.00712		0.00723	mg/L	1 ^		- (+/-0.005)	RMJ	09/16/02 18:34
Barium				В	0.0102	В	0.00987	mg/L	3 ^		(+/-0.005)		
Cadmium				J	0.000843	J	0.000846	mg/L	N/A ^		(+/-0.005)		
Chromium				BJ	0.00353	BJ	0.00398	mg/L	N/A ^		(+/-0.005)		
Lead				BJ	0.00272	BJ	0.0019	mg/L	N/A ^		(+/-0.005)		
Selenium				U	ND	Ų	, ND	ng/L	N/A		(+/-0.005)		
Silver				BU	ND	BU	ND	mg/L	N/A		(+/-0.005)		
QC1200296656	LCS							•					
Arsenic			0.500				0.529	mg/L		106	(80%-120%)		09/16/02 17:58
Barium			0.500			В	0.522	mg/L		104	(80%-120%)		
Cadmium			0.500				0.529	mg/L		106	(80%-120%)		
Chromium			0.500			В	0.525	mg/L		105	(80%-120%)		
Lead			0.500			В	0.532	mg/L		106	(80%-120%)		
Selenium			0.500				0,527	mg/L		105	(80%-120%)		
Silver			0.500			В	0.521	mg/L		104	(80%-120%)		
QC1200296652	MB							-					
Arsenic						U	ND	mg/L					09/16/02 17:52
Barium						J	0.00025	mg/L					
Cadmium						Ŭ	ND	mg/L					
Chromium						J	0.000867	mg/L					
Lead						1	0.00259	mg/L					
Selenium						U	ND	mg/L					
Silver)	0.00085	mg/L					
QC1200296655	66619010	MS						-					
Arsenic			0.500		0.00712		0.524	mg/L		103	(75%-125%)		09/16/02 18:40
Barium			0.500	В	0.0102	В	0.524	mg/L		103	(75%-125%)		
Cadmium			0.500	J	0.000843		0.512	mg/L		102	(75%-125%)		
Chromium			0.500	BJ	0.00353	В	0.518	mg/L		103	(75%-125%)		
Lead			0.500	BJ	0.00272	В	0.515	mg/L		102	(75%-125%)		
Selenium			0.500	U	ND		0.511	mg/L		102	(75%-125%)		
Silver			0.500	BU	ND	В	0.512	mg/L		102	(75%-125%)		
OC1200296654	66619010	SDILT						·		}	,		
Arsenic					7.12	V	ND	ug/L	N/A				09/16/02 18:28
Barium				В	10.2	ВJ	1.87	ug/L	8.17				
Cadmium				5	0.843	บ	ND	ug/L	N/A				
Chromium				₿Ĵ	3.53	ВJ	1.14	ug/L	61.1				
Lead				BJ	2.72	Bl	2.69	ug/L	395				
Selenium				U	ND	Ü	ND	ug/L	N/A				
Silver				BU	ND	BÙ	ND	ug/L	N/A				
- CA - THE		rai		20	ND	טע	110	"ELL	144				

QC1200293697 66218007 DUP

7

QC Summary

Workerder:

66197

Page 2 of 2

Parmeaine	MOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Metals Analysis-Mercury Federal Batch 198713									
Mercury	ţ	סא ע	U	ND	mg/L	N/A		(+/-0.0002) NOR1	09/05/02 17:17
QC1200293699 LCS									
Мегситу	0.002			0.0021	mg/L		105	(80%-120%)	09/05/02 17:11
QC1200293696 MB									
Mercury			U	ND	mg/L				09/05/02 17:09
OC1200293698 66218007 MS									
Mercury	0.002 t	J ND		0.00217	mg/L		108	(75%-125%)	09/05/02 17:19

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 19, 2002 Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico

Pamela M. Puissant Contact:

Workorder: 66195

Parmame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Metals Analysis-ICP Federal												
Barch 199132												
QC1200294758 66195002 DUP												
Arsenic			2.59		2,54	mg/kg	2		(0%-20%)	BAS	09/06/0	2 02:59
Barium			183		105	mg/kg	54*		(0%-20%)			
Cadmium		J	0.108	j	0.131	mg/kg	N/A ^		(+/-0.500)			
Chromium			6.38		6.34	mg/kg	1		(0%-20%)			
Lead			3.44		3.51	mg/kg	2		(0%-20%)			
Selenium		U	ND	U	ND	mg/kg	NA		(+/-0_500)			
Silver		IJ	ND	Ū	ND	mg/kg	N/A		(+/-0.500)			
OC1200294761 LCS		_		-		n-Bdb			(1, 0,500)			
Arsenic	132				135	mg/kg		102	(74%-126%)		09/06/0	2 02:41
Bacium	781				792	nig/kg		101	(77%-123%)			
Cadmium	51.5				52.8	mg/kg		102	(77%-123%)			
Chromium	142				148	mg/kg		104	(80%-120%)			
Lead	52.9				52,3	ug/kg		99	(75%-125%)			
Selenium	60.9				65.6	mg/kg		108	(71%-129%)			
Silver	125				135	mg/kg		108	(52%-148%)			
OC1200294757 MB									(02/01/0/0/			
Arsenic				U	ND	пъд/кд					09/06/0	2 02:34
Barium				U	ND	mg/kg						
Cadmium				Ũ	ND	mg/kg						
Chromium				Ū	ND	mg/kg						
Lead				Ū	ND	mg/kg						
Selenium				Ū	ND	mg/kg						
Silver				Ü	ND	mg/kg						
QC1200294760 66195002 MS				~								
Arsenic	24.8		2.59		26.0	mg/kg		95	(75%-125%)		09/06/0	2 03:06
Barium	24.8		183		200	me/kg		N/A	(75%-125%)			
Cadmium	24.6	ĵ	0.108		23.2	mg/kg		94	(75%-125%)			
Chromium	24.8	-	6.38		31.1	mg/kg		100	(75%-125%)			
Lead	24.8		3.44		26.9	mg/kg		95	(75%-125%)			
Selenium.	24.8	U	ND		22.8	mg/kg		92	(75%-125%)			
Silver	24.8	Ü	ND		24.2	mg/kg		98	(75%-125%)			
QC1200294759 66195002 SDILT		-							(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Arsenic			26.4	1	3.83	ug/L	27,7				09/06/0	2 02:53
Barium			1860		375	ug/L	.654					
Cadmium		J	£.10		ND	ug/L	N/A					
Chromium		-	65.1	-	13.5	Jgn Jgn						
Lead			35.0		6.45	ug/L						
Selenium		U	ND		ND	ug/L						
Silver		U	ND	-	ND	ug/L ug/L						
· ·-		u	LIFFE	·	ND	иŘГ	IMA					
Metals Analysis-Mercury Federal Batch 199386												

QC1200295328 66195002 DUP

Workerder: 66195

Page 2 of 2

Parmname	NOM		Sample	Qual	QC	Units	RPD%	REC %	Range Anist	Date Time
Metals Analysis-Mercury Federa Batch 199386	al .								•	
Mercury		J	0.00106	υ	ND	mg/kg	N/A		(+/-0.00908) NOR1	09/12/02 11:24
QC1200295330 LCS										
Mercury	4.50				3.54	mg/kg		79	(68%-132%)	09/12/02 11:20
QC1200295327 MB										
Mercury				Ų	ND	mg/kg				09/12/02 11:18
QC1200295329 66195002	2M									
Mercury	0.0984	J	0.00106		0.104	mg/kg		104	(75%-125%)	09/12/02 11:26

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GENERAL CHEMISTRY ANALYSIS

General Chemistry Narrative Sandia National Labs (SNLS) SDG 66189

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

197853

Prep Batch Number:

197852

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
66189026	059696-002
66189027	059697-002
66189028	059698-002
66189029	059699-002
66189030	059641-002
66189031	059642-002
66189032	059700-002
66189033	059701-002

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recoveries for the laboratory control samples were within the required acceptance limits. The solid LCS (1200292312) was within manufacturer's limits.

Ouality Control

The following samples were designated for Quality Control: 66189028, 66189029.

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The values for the samples and duplicates for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPDs are not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200292312.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure: Hexavalent Chromium

Analytical Method: SW846 7196A

Prep Method: SW846 3060A

Analytical Batch Number: 198031

Prep Batch Number: 198030

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
66189026	059696-002
66189027	059697-002
66189028	059698-002
66189029	059699-002
66189030	059641- 0 02
66189031	059642-002
66189032	059700-002
66189033	059701-002
66189034	059702-002
66189035	059703-002
1200292711	MB for batch 198031
1200292712	DUP of 66189021

1200292713 DUP of 66189029 1200292714 MS of 66189021 1200292715 MS of 66189029 1200292716 LCS for batch 198031

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following samples were designated for Quality Control: 66189021, 66189029.

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The values for the samples and duplicates for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPDs are not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure: Hexavalent Chromium

Analytical Method: SW846 7196A

Prep Method: SW846 3060A

Analytical Batch Number: 198034

Prep Batch Number: 198032

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
1200292717	MB for batch 198034
1200292718	DUP of 66189036
1200292719	MS of 66189036
1200292720	LCS for batch 198034

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66189036.

Sample Spike Recovery

The matrix spike for sample 66189036 was outside of the client required limits of 75%-125%; but, was within GEL SPC limits. The client and PM were notified and the data was accepted with an NCR. See NCR# 4173.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

NCR #4173 was written for this sample batch.

Additional Comments

Sample 66189040 was turbid (medium brown color).

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Date: 9/20/02

General Chemistry Narrative Sandia National Labs (SNLS) SDG 66189-1

Method/Analysis Information

Procedure: Hexavalent Chromium

Analytical Method: SW846 7196A

Prep Method: SW846 3060A

Analytical Batch Number: 198034

Prep Batch Number: 198032

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66195002	059710-002
1200292717	MB for batch 198034
1200292718	DUP of 66189036
1200292719	MS of 66189036
1200292720	LCS for batch 198034

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66189036.

Sample Spike Recovery

The matrix spike for sample 66189036 was outside of the client required limits of 75%-125%; but, was within GEL SPC limits. The client and PM were notified and the data was accepted with an NCR. See NCR# 4173.

Sample Duplicate Acceptance

The Relative Percent Difference between the sample and duplicate for this SDG was within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions
No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

NCR# 4173 was written for this sample batch.

Method/Analysis Information

Procedure: Total Cyanide

Analytical Method: SW846 9012A

Prep Method: SW846 9010B Prep

Analytical Batch Number: 198863

Prep Batch Number: 198862

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
66195002	059710-002
1200293998	MB for batch 198863
1200293999	LCS for batch 198863
1200294000	DUP of 66195002
1200294001	MS of 66195002
1200294122	LCS for batch 198863

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recoveries for the laboratory control samples were within the required acceptance limits. The solid LCS (1200294122) was within manufacturer's limits.

Quality Control

The following SNLS sample was designated for Quality Control: 66195002.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200294122.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

672			
Reviewer:	Date:	9/20	102

General Chemistry Narrative Sandia National Labs (SNLS) SDG 66189-2

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW8467196A

Analytical Batch Number:

197692

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66197010	059640-006
1200291915	MB for batch 197692
1200291916	DUP of 66197010
1200291917	PS of 66197010
1200291918	LCS for batch 197692

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66197010.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

Sample 66197010 was received by the lab outside of the method specified holding time. The sample was analyzed on the day it was received,

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

Nonconformance Report (NCR) 3161 was written for this batch.

Method/Analysis Information

Procedure: Total Cyanide

Analytical Method: SW846 9012A

Prep Method: SW846 9010B Prep

Analytical Batch Number: 199201

Prep Batch Number: 199200

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
66197009	059640-005
1200294945	MB for batch 199201
1200294946	LCS for batch 199201
1200294947	DUP of 66197009
1200294948	MS of 66197009

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66197009.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	DAI	2	Date:	<u>9/13/12</u>	
					

GENERAL CHEMISTRY QUALITY CONTROL SUMMARY

Report Date: September 20, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756 P.O. Box 5600

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder:

66189

Parmname		NÖM		Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Rapid Flow Analysis Federal				-					<u> </u>		
Batch 197853											
QC1200292307 66189028	DUP										
Cyanide, Total			Ţ	0.0669	U	ND	mg/kg	N/A ^		. (+/-0.250) ADF	08/30/02 12:15
QC1200292308 66189029	DUP										
Cyanide, Total			J	0.048	1	0.0445	mg/kg	N/A ^		(+/-0.208)	08/30/02 12:17
QC1200292311 LCS											
Cyanide, Total		2.50				2.67	mg/kg		107	(81%-125%)	08/30/02 12:03
QC1200292312 LCS											
Cyanide, Total		277				372	mg/kg		134*	(81%-125%)	08/30/02 12:06
QC1200292306 MB							_				
Cyanide, Total					U	ND	mg/kg				08/30/02 12:02
QC1300292309 66189028	MS		_				_				
Cyanide, Yotal		4.17	J	0.0669		4.62	mg/kg		109	(55%-145%)	08/30/02 12:15
QC1200292310 66189029	MS		_			F 877	4		* * * *	(CCC 1.28)	2020001010
Cyanide, Total		4.55	J	0.048		5.07	mg/kg		110	(55%-145%)	08/30/02 12:18
Spectrometric Analysis Federal											
Batch 198031											
QC1200292712 6618902;	DUP									•	
Hexavalent Chromium			U	ND	U	МD	mg/kg	N/A		(+/-0.0949) BEP1	09/03/02 09:00
QC1200292713 66189029	DUP									T.	
Hexavalent Chromium			Ų	ND	U	ND	mg/kg	NA		(+/-0,0948)	
QC1290292716 LCS											
Hexavalent Chromium		1.00				0.890	mg/kg		89	(72%-121%)	
QC1200292711 MB											
Hexavalent Chromium					U	ND	mg/kg				
QC1200292714 66189021	MS										
Hexavalent Chromium		0.900	Ų	ND		0.756	mg/kg		84	(49%-130%)	
QC1200292715 66189029	MS										
Hexavalem Chromium		0.983	Ų	ND		0.816	mg/kg		83	(49%-130%)	
Batch 198034											
OC1200292718 66189036	nue										
Hexavalent Chromium			J	0.0713	J	0.0741	mg/kg	N/A ^		(+/-0.0927) BEP1	09/03/02 09:00
QC1200252720 LCS			,	3.3.1	-	-,	••• •	•		(02102102
Hexavalent Chromium		D.941				0.819	mg/kg		87	(72%-121%)	
OC1200292717 MB									-	(*-** *******************************	
Hexavalent Chromium					บ	ND	mg/kg				
	MS				-	- - - -					
Hexavalent Chromium		0.978	J	0.0713		0.792	mg/kg		74	(49%-130%)	
		· -	-			-				,	

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.

Х

QC Summary

						-						
Worke	rder: 66189								Page 2	ог 2		
Parmas	ime	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
H	Holding time was exce	eded										
1	Estimated value, the as	nalyte concentration fell:	bove the eff	ective MD	L and below	v the effect	tive PQL					
P	The response between	the confirmation column	and the prin	ary colum	wais>40%-I)		,				
U	The analyte was analy:	zed for but not detected t	clow this co	ncentration	ı. For Orga	nic and Inc	nganic anal	ytes the resu	lt is less tha	in the effe	ctive MI) <u>L</u> . }
х	Presumptive evidence	that the analyte is not pro	sent. Please	see narrat	ive for furth	er informa	ution.					
X	Presumptive evidence	that the analyte is not po	sept. Please	sce narrat	ive for furth	er infroma	aion.					

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Uncertain identification for gamma spectroscopy.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Client:

Saudia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact: Workerder:

66197

Report Date: September 13, 2002 Page 1 of 2

Parmusme	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rapid Flow Analysis Federal Batch 199201										
QC1200294947 66197009 DUP Cyanide, Total	υ	ND	U	ND	mg/L	N/A		(+/-0.005)	ADF	09/05/02 14:21
QC1200294946 LCS Cyanide, Total	0.050			0.0526	mg/L		105	(90%-110%)		09/05/02 14:19
QC1200294945 MB Cyanide, Total QC1200294948 66197009 MS			Ų	ND	mg/L					09/05/02 14:18
Cyanide, Total	0.100 Ų	ND		0.0947	mg/L		95	(72%-133%)		09/05/02 14:22
Spectrometric Analysis Federal Baich 197592								i I		
QC1200291916 66197010 DUP Hexavalent Chromium	HU	ND	HU	МD	mg/L	N/A		(010. 0- /+)	VHI	08/28/02 17:45
QC1200291918 LCS Hexavalent Chromium	0.100			0.107	mg/L		107	(89%-110%)		
QC1200291915 MB Hexavalent Chromium QC1200291917 66197010 PS			U	ND	mg/L					
Hexavalent Chromium	0.100 HU	ND	Ħ	0.119	mg/L		118	(80%-122%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analyzes the result is less than the effective MDL. I
- X Presumptive evidence that the englyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workerder: 66197

Page 2 of 2

Parmname NOM Sample Qual QC Units RPD% REC%' Range Aulst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: September 20, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder: 66195

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Rapid Flow Analysis Federal Batch 198863						•			
QC1200294000 66195002 DUP Cyanide, Total	ប	ND	บ	ND	mg/kg	N/A	•	(+/-0.278) ADF	09/04/02 07:15
QC1200293999 LCS Cyanide, Total	2.50			2,65	ы g/k g		106	(81%-125%)	09/04/02 07:04
QC1200294122 LCS Cyraide, Total OC1200293998 MB	277			386	wg/kg		139*	(81%-125%)	09/04/02 07:08
QC1200299998 MB Cyanide, Total QC1200294001 66195002 MS			ប	ND	mg/kg		,		09/04/02 07:03
Cyonide, Total Spectrometric Analysis Federal	5.56 U	סמ		5.11	rog/kg		92	(55%-145%)	09/04/02 07:16
Batch 198034									
QC1200292718 66189036 DUP Hexavalent Chromium	J	0.0713	1	0.0743	oog/kg	N/A ^		(+/-0.0927) BEP1	09/03/02 09:00
QC1200292720 LCs Hexavatent Chromium QC1200292717 MB	0.941			0.819	mg/kg		87 .	(72%-121%)	
Hexavalent Chromium OC1200292719 66189036 MS			U	ND	mg/kg				
Hexavalent Chronium	0.978 J	0.0713		0.792	mg/kg		74	(49%-130%)	

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery of RRPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see paragive for further information.
- X Presumptive evidence that the analyte is not present. Please see parrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workerder: 66195 Page 2 of 2 NOM REC% Range Anlst Sample Qual QC Units RPD% Parmname Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 66189

Method/Analysis Information

Batch Number: 198986

Procedure: Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method: EPA 900.0

Sample ID	Client ID
66189021	059691-002
66189022	059692-002
66189023	059693-002
66189024	059694-002
66189025	059695-002
66189026	059696-002
66189027	059697-002
66189028	059698-002
66189029	059699-002
66189030	059641-002
66189031	059642-002
66189032	059700-002
66189033	059701-002
66189034	059702-002
66189035	059703-002
66189036	059705-002
66189037	059706-002
66189038	059707-002
66189039	059708-002
66189040	059709-002
1200294348	MB for batch 198986
1200294349	059691-002(66189021DUP)
1200294350	059691-002(66189021MS)
1200294351	059691-002(66189021MSD)
1200294352	LCS for batch 198986

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 13, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated OC

The following sample(s) was used for QC: 66189021.

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 66189021 and 1200294349 were recounted due to high alpha duplicate relative error ratio.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Comments
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

Reviewer:	"di hione	Date: 19 Sep 2002

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 66195

Method/Analysis Information

Batch Number,

200142

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample ID	Client ID
66195002	059710-002
1200297097	MB for batch 200142
1200297098	059710-002(66195002DUP)
1200297099	059710-002(66195002MS)
1200297100	059710-002(66195002MSD)
1200297101	LCS for batch 200142

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 13, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometra

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample(s) was used for QC: 66195002.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Qualifier information

Manual qualifiers were not required.

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Date: 24 September 24 S

Radiochemistry Case Narrative Sandia National Labs (SNLS) SDG 66189-2

Method/Analysis Information

Batch Number:

Procedure: Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method: EPA 900.0

Sample ID	Client ID
66197012	059640-008
1200294292	MB for batch 198970
1200294293	059540-008(65919003DUP)
1200294294	059540-008(65919003MS)
1200294295	059540-008(65919003MSD)
1200294296	LCS for batch 198970

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated OC

The following sample(s) was used for QC: 65919003. Qc sample is from Snls.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

Samples 1200294294, 1200294295 and 1200294296 were recounted due to high alpha recovery.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Valarie DRUM Date: 9/10/02

RADIOCHEMISTRY QUALITY CONTROL SUMMARY

Meeting today's needs with a vision for tomorrow.

QC Summary

Report Date: September 19, 2002 Page 7 of 2

Client:

Sandia National Laboratories

MS-9756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Paissant

Contact:

Workerder:

66189

Parmaone	NOM	Sample C	لمدد	QC	Dales	RKR	REC%	Range Anist	Data Time
Gravianetric Solids									-
Batch 197803									
OC1200292209 66189021 DUP									
Moisture		3.55		3.18	percent	200*		(0%-24%) MLA	09/03/02 15:03
٤									
Rad Gas Flow									
Baich 198916	•								
QC1200294349 66189021 DUP									
Alpha		14.7		23.9	p Ci/ g	0.633		(0%-20%) HO81	09/16/02 16:31
	Uncert:	+/-5.13		+/-6.47					
•	TPU:	5.34		9.18					
Beta		21.0		23.7	pCi√g	0.714		(04-70 4 -)	
	Uncert	+/-1.80		₩-1.83					
	TPU:	1.88		1.93					
QC(200294352 LCS	13.1645			B.W.	_ < 100_		100	.720 154: -	Aug. 10 40
Alpha	9.89			9.90	pCi/g	;	100	(75%-125%)	09/13/02 13:41
	Uncern			+/-1.51					
70	TPU: 39.7			1.72 42. J	-0:4-		inc	(75%-125%)	
Вец	• • •			+/-2.42	pCi/g	-	100	11536-173241	
•	Cacare								
QC1200294348 MB	TPU:			2.66					
Alpha			ឋ	0_178	pCi/x		٠.		09/14/02 12:52
- A PAGE	Uncert		٠	+/-0.2 3	ber 5	•			03.1-405 15-25
	TPU:			0.214		•			
Вец	•••		U	-0.0049	pCi/g				
	Uncerc		•	+/-0.158	F-1-	,			
	TPU:			0.168					
OC1200294350 66189021 MS	*- 0.								
Alpha	93.3	14,7		117	pCi/s		110	(75%-125%)	09/13/02 13:41
•	Uncert:	+/-5.13		+/-19.9				•	
	TPU:	5.34		21.8					
Beta	375	21.0		354	pCi/g		89	(75%-L25%)	
	Uncen:	+-1.20		+1-22.5					
	TPU:	1.88		24.3					
QC1200294351 66189021 MSD					•				
Alpha	97.9	14.7		124	pCi/g		111		
	Uncert:	+4-5.13		+/-20.8					
	TPU:	5.34		23.8					
Beta	394	21.0		390	ρ Ci/g		94		
	Uncert	+/-1.80		+6-24.1					
	TPU:	1.88		26.0					

PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 * Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

OC Summary

Workerder:

66189

Page 2 of 2

Рагилате NOM RER REC% Range Andi Date Time

Notes:

The Qualifiers in this report are defined as follows:

- Recovery or RRPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- Indicates analyte is a suirogate compound.
- The analyte was found in the blank above the effective MDL.
- Holding time was exceeded
- Estimated value, the analyse concentration fell above the effective MDL and below the effective PQL
- The response between the confirmation column and the primary column is >40%D
- The analyze was analyzed for but not detected below this concentration. For Organic and Intergenic analyzes the result is less than the effective MDL. For radiochemical analyses the result is less than the Decision Level
- Presumptive evidence that the analyse is not present. Please see narrative for further information.
- x Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- х Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to avalence the DUP result. For PS. PSD, and SDR. Tresults, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

> P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 * Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

OC Summary

Report Date: September 16, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albequerque, New Mexico Pansele M. Pulesant

Contact:

ZZ107

LITERALING	NOM	Saprole Qual	QC	Units	KER	RECT	Range Aust	Date Time
Red Gas Flow								
Batch 198970								
OC1200294293 65919003 DUP								
Alpha	i.	igo	137	oCi/L	0.562		(0%-20%) HORI	09/10/02 01:17
	Uncert	W-27.9	+/-31.3	•			•	
	TPU:	29,9	35.5					
Beta ·	- 4 -7	106	109	pCVL	0.0835		(0%-20%)	
	Uncerc	4/-19.9	+/-20.0	•			, ,	
	TPU:	19.9	20.0					
OC12007294296 LCS		•						
Alphe	9.89		9.16	pCi/L		93	(75%-1 25%)	09/10/02 07:17
•	Uncert		+/-1.68					
	ፓ ንሀ:		1.92					
Heu	39.7		42.3	pCVL		106	(75%-125%)	
	Uncert		+/-2.37					
	TPU:		2,40					
QC1200394292 MB	•						1	
Alpha		ני	0.0348	pCi/L				09/10/02 01:17
	Uncert		+/-0.0704					
	TPU:		D.07 0 5					
Bets		Ū	0.0992	pCi/L			•	
•	Uncert		+/-0.0774					
	IPU:		0.0774					
QC1200294294 65919003 MS	1000	100	2.00			130	men sodes	DO 11 D. 12 1
Alpha	1980	100	2460	pCi/L		120	(75%-12 5%)	09/10/02 07:17
	Uncert	+1-27.9	+/-410					
_	TPU:	29.9	473	-07.0			/350 10501	
Beta	7950	106	9230	PCIAL		113	(75%-125%)	
•	Uncert:	+/-19.9	+/-495					
	TPU:	19.9	499					
QC1200294295 65919003 MSQ	1980	100	2550	pCVL,		12.1	(75%-125%)	
4 lptia	Uncert:	+/-27.9	+J-427	perc		1-7	(12/0-122/0)	
	TPU:	29.9	475					
Beta	7950	106	356D	pCi/L		106	(75%-125%)	
DCM	Vacera	+/-19.9	+√-490	hener		LOG	/.au.tram)	
	TPU:	19.9	489					

The Qualifiers in this report are defined as follows:

- Recovery or SRPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- Indicates analyte is a surrogate compound.
- The analyse was found in the black above the effective MDL.

P O Box 36712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

QC Summary

Workorder: 66197

Page 2 of 2

		· · · · · · · · · · · · · · · · · · ·							
Parmname	NOM	Sample Qual	OC.	F724.a	DDD	PPCC	Danes	A - 1-0	Danks WV
7 Statutante	110111	Samber Com	XX	- UNIG	- RUSK	REC%		WHIN-	Date Time
TT Unlike San was accorded	_								

- H Holding time was exceeded.
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyse was analyzed for but not detected below this concentration. For Organic and Inorganic analyses the result is less than the effective MDL. For radiochemical analyses the result is less than the Decision Level
- X. Presumptive evidence that the analyte is not present. Please see numative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that apike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicane (DLP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or deplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Meeting today's needs with a vision for tomorrow.

QC Summary

Report Date: September 23, 2002

Page 1 of 1

Sandia National Luboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Cantact:

Panela M. Princant

Worksrder:

Parmustus	NOM	Sample Qua	i <u>oc</u>	Ualta	RER	RECY	Range Anlet	Date Time
Gravingstric Salida	·		· 		· ———			
Batch 197803								
QC1200292209 66199031 DOP						•		
Moisture		3.55	3.38	percent	200*		(0%-24%) MLA	09/03/02 15:0
				•			,	
Rad Gus Flow							•	
Hasch 100142	_		,			:		
QC1200297098 66(95002 DUF.	•							
Alpha		19.3	20,8	pCi/g	0.271		(0%-20%) JS1	09/18/02 01:56
	Uncert:	+/-2.30	+/-2.42					
	TPU:	2.73	2.16					
Beta		20.8	20.5	PCV	0.0654		(0%-20%)	
	Uncert:	, +/-3. 94	+/-2.14					
	TPU:	2,12	2.29					
QC1200297101 LCS								
Alpha	9.89		.10.3	pCi/g	:	104	(75%-125%)	09/18/01 09:53
	Uncern		+/-1.10					
55	TPU:		1.43	دفيود			omena ha Bath	
Bet2	39.7		42.2	pCive	i	106	(75%-125%)	
	Uncert:		+/-2.58					
0.01724766007	TPU:		3.07					
QC1200297097 MB Alpha		บ	0.0251	pCife				
Leibon .	Uncerc	•	+/-0.245	Pers				
•	17U:		0.145					
Beta .	170.	U	_	pCi/g				
145	Goesit	_	+/-0.139	,				
	TPU:		0.139				6	
QC1200297099 66193002 MS						•		
Alpha	96.9	19.3	97.9	pCVg		- 51	(75%-(25%)	
-	Uncert:	+/-2.30	+133				•	
•	TPU:	2.73	14.6		-			
Bets	390	20.8	389	pČî/g		95	(75%-125%)	
	Uncert:	+/-1.94	+/-24.4				•	
	TPU:	2.17	27.7					
QC1200297100 66;91002 MSD								
Alpha	95.1	193	94.0	pCi/g		79		
	Uncert	+/-2.30	+/-13.0					
_	TPU:	2.73	13,8					
Beta	382	20.8	380	¢Ci∕g		94		
	Uncert	+/-1.94	+/-23 .9					
	TYU:	2.17	29.3					

P O Box 30712 * Charleston, SC 29417 * 2040 Savage Road * 29407 (843) 556-8171 • Fax (843) 766-1178

Meeting today's needs with a vision for tomorrow.

OC Summary

Workorder:

66135

Page 2 of 2

Parmesme NOM Sample Qual Units RER REC% Range Anlet Date Time

Notes:

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- Indicates analyte is a surrogate compound.
- The analyse was found in the blank above the effective MDL.
- Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- The response between the confirmation column and the primary column is >40%D
- The analyte was malyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For redicahemical analytes the result is less than the Decision Level
- Presumptive evidence that the analyte is not present. Please see narrative for further information.
- Presumptive evidence that the analyte is not present. Please see narrative for figither infromation.
- Uncertain identification for garrana spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five tires (5X) the contract required detection limit (RL). In cases where either the sample or displicate value is RL is used to evaluate the DUP result. less than 5X the RL, a control limit of +/- the For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Suramary.

Radiation Protection Sample Diagnostics Program

8/28/02 4:17:17 AM

* Analyzed by: Reviewed by: 8000

Customer : SANDERS M (6135)

Customer Sample ID : 059641-003 Lab Sample ID : 20119120

Sample Description : 6643/1079-DF1-BH1-11-S

Sample Quantity : 811.300 gram

Sample Date/Time : 8/22/02 2:10:00 PM Acquire Start Date/Time : 8/28/02 2:37:03 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 -214 -210	Not Detected 1.45E+000 5.52E-001 4.92E-001 Not Detected	4.99E-001 8.98E-002 8.65E-002	4.52E-001 6.87E-001 6.36E-002 5.40E-002 8.02E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	6.23E-001 6.99E-001 Not Detected Not Detected 6.70E-001 6.12E-001 7.50E-001 5.75E-001	3.02E-001 1.48E-001 1.72E-001 9.21E-002 2.93E-001 1.06E-001	1.80E-001 1.50E-001 1.98E-001 6.72E-001 8.41E-002 3.60E-002 3.87E-001 8.15E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		1.80E-001 5.90E+000 1.33E+000 3.01E-001 1.38E-001 3.46E-001 7.81E-001 1.39E+001
AM-241 PU-239 NP-237 PA-233	Not Detected Not Detected Not Detected Not Detected Not Detected		1.57E-001 3.29E+002 1.70E+000 5.33E-002 1.78E-001

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 8/28/02 5:59:35 AM

Analyzed by: F/28/00 Reviewed by: F/28/00

Customer : SANDERS M (6135)

Customer Sample ID : 059642-003 Lab Sample ID : 20119121

Sample Description : 6643/1079-DF1-BH1-16-S

Sample Quantity : 914.800 gram

Sample Date/Time : 8/22/02 2:35:00 PM Acquire Start Date/Time : 8/28/02 4:19:22 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity (pCi/gram)	2-sigma	MDA
Name		Error	(pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.45E+000 6.07E-001 4.97E-001 Not Detected	4.76E-001 9.24E-002 8.54E-002	4.13E-001 6.48E-001 5.27E-002 5.10E-002 6.92E+000
TH-232	5.01E-001	2.43E-001	1.45E-001
RA-228	4.56E-001	1.07E-001	1.21E-001
AC-228	4.84E-001	1.03E-001	7.27E-002
TH-228	4.76E-001	1.72E-001	3.58E-001
RA-224	5.71E-001	1.48E-001	7.35E-002
PB-212	5.21E-001	7.86E-002	2.99E-002
BI-212	5.95E-001	2.25E-001	2.88E-001
TL-208	4.19E-001	8.21E-002	6.79E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		1.68E-001 5.50E+000 1.16E+000 2.62E-001 1.27E-001 3.25E-001 7.16E-001 1.27E+001
AM-241	Not Detected		1.43E-001
PU-239	Not Detected		2.92E+002
NP-237	Not Detected		1.56E+000
PA-233	Not Detected		4.68E-002
TH-229	Not Detected		1.61E-001

[Summary Report] - Sample ID: : 20119120

Nuclide	Activity	2-sigma	MDA
	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		4.17E-002
AG-110m	Not Detected Not Detected		2.94E-002
BA-133	Not Detected Not Detected		3.80E-002
BE-7			
CD-115	Not Detected		2.37E-001
	Not Detected		3.38E-001
CE-139	Not Detected		2.35E-002
CE-141 CE-144	Not Detected	~	4.31E-002
CM-243	Not Detected Not Detected		1.81E-001 1.57E-001
CO-56	Not Detected Not Detected		3.45E-001
CO-57	Not Detected Not Detected		2.27E-002
CO-58	Not Detected		3.26E-002
CO-60	Not Detected	~	3.97E-002
CR-51	Not Detected Not Detected		2.39E-001
CS-134	Not Detected Not Detected		4.36E-001
CS-134 CS-137	Not Detected		3.23E-002
EU-152	Not Detected		6.74E-002
EU-154	Not Detected	••••	1.92E-001
EU-155	Not Detected		1.00E-001
FE-59	Not Detected		8.17E-002
GD-153	Not Detected	~	5.86E-002
HG-203	Not Detected	*	3.06E-002
I-131	Not Detected	·	3.94E-002
-192	Not Detected		2.57E-002
) 40	1.60E+001	2.20E+000	3.12E-001
MN-52	Not Detected		6.76E-002
MN-54	Not Detected		3.61E-002
MO-99	Not Detected		9.97E-001
NA-22	Not Detected	~ 	4.36E-002
NA-24	Not Detected	~	1.59E+001
ND-147	Not Detected		2.70E-001
NI-57	Not Detected		6.67E-001
RU-103	Not Detected		2.98E-002
RU-106	Not Detected		2.66E-001
SB-122	Not Detected		1.64E-001
SB-124	Not Detected		2.82E-002
SB-125	Not Detected		7.99E-002
SN-113	Not Detected		3.62E-002
SR-85	Not Detected		3.48E-002
TA-182	Not Detected		1.61E-001
TA-183	Not Detected		2.84E-001
TL-201	Not Detected		2.54E-001
Y-88	Not Detected		3.21E-002
ZN-65	Not Detected		1.08E-001
ZR-95	Not Detected		5.75E-002

•			
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	
			(pCi/gram)
AG-108m	Not Detected		3 535 000
AG-110m	Not Detected		3.53E-002
BA-133	Not Detected		2.50E-002
BE-7	Not Detected		3.44E-002
CD-115	Not Detected		2.23E-001
CE-139			2.97E-001
CE-141			2.08E-002
CE-144			4.12E-002
CM-243	Not Detected		1.65E-001
	Not Detected		1.42E-001
CO-56	Not Detected		3.07E-002
CO-57	Not Detected		2.07E-002
CC-58	Not Detected		3.05E-002
CO-60	Not Detected		3.50E-002
CR-51	Not Detected		2.12E-001
CS-134	Not Detected		3.89E-002
CS-137	Not Detected		2.80E-002
EU-152	Not Detected		6.15E-002
EU-154	Not Detected		1.62E-001
EU-155	Not Detected		9.03E-002
FE-59	Not Detected		7.27B-002
GD-153	Not Detected		5.46E-002
HG-203	Not Detected		2.71B-002
I-131	Not Detected		3.63B-002
IR-192	Not Detected		2.23E-002
K-40	1.38E+001	1.91E+000	2.94E-001
/MN-52	Not Detected		5.63E-002
MN - 54	Not Detected		3.07E-002
MO-99	Not Detected		9.07E-001
NA-22	Not Detected		4.32E-002
NA-24	Not Detected		1.58E+001
ND-147	Not Detected		2.46E-001
NI-57	Not Detected		5.81E-001
RU-103	Not Detected	~	2.49E-001
RU-106	Not Detected		
SB-122	Not Detected		2.46E-001
SB-124	Not Detected		1.32E-001
SB-125	Not Detected		2.52E-002
SN-113	Not Detected		6.81E-002
SR-85	Not Detected		3.23E-002
TA-182			3.05E-002
TA-183	Not Detected		1.51E-001
TL-201	Not Detected		2.56E-001
	Not Detected		2.38E-001
Y-88	Not Detected		2.39E-002
ZN-65	Not Detected		1.01E-001
2R-95	Not Detected		5.33E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program

8/27/02 3:47:23 PM

* Analyzed by: beverly Key 8/27/02 Reviewed by:

: SANDERS M (6135) Customer

Customer Sample ID : 059691-003 Lab Sample ID : 20119101

Sample Description : 6640/1078-DF1-BH1-5-S

Sample Quantity : 750.200 gram
Sample Date/Time : 8/23/02 11:15:00 AM Acquire Start Date/Time: 8/27/02 10:56:57 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

TH-229

Not Detected

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ******************

2.12E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.68E~001
RA-226	1.68E+000	4.80E-001	6.22E-001
PB-214	7.41E-001	1.08E-001	5.40E-002
BI-214	6.30E-001	1.01E-001	4.92E-002
PB-210	Not Detected		2.59E+001
TH-232	7.60E-001	3.57E-001	1.82E-001
RA-228	7.78E-001	1.42E-001	1.11E-001
AC-228	7.53E-001	1.45E-001	1.01E-001
TH-228	5.03E-001	3.33E-001	5.09E-001
RA-224	1.05E+000	2.25E-001	6.83E-002
PB-212	8.20E-001	1.19E-001	3.82E-002
BI-212	8.90E-001	2.85E-001	3.58E-001
TL-208	7.43E-001	1.20E-001	7.19E-002
U-235	Not Detected		2.11E-001
TH-231	Not Detected		1.03E+001
PA-231	Not Detected		1.27E+000
TH-227	Not Detected		3.42E-001
RA-223	Not Detected		2.05E-001
RN-219	Not Detected		3.17E-001
PB-211	Not Detected		7.25E-001
TL-207	Not Detected		1.20E+001
AM-241	Not Detected	*	3.90E-001
PU-239	Not Detected		3.79E+002
NP-237	Not Detected		2.02E+000
PA-233	Not Detected		5.02E-002

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		7 047 000
AG-110m	Not Detected		3.24E-002
BA-133	Not Detected		2.55E-002
BE-7			4-15E-002
CD-115			2.14E-001
CE-139			2.02E-001
	Not Detected		2.63E-002
CE-141	Not Detected		5.03E-002
CE-144	Not Detected		2.08E-001
CM-243	Not Detected		1.53E-001
CO-56	Not Detected		2.73E-002
CO-57	Not Detected		2.76E-002
CO-58	Not Detected		2.83E-002
CO-60	Not Detected		3.17E-002
CR-51	Not Detected		2.17E-001
CS-134	Not Detected		3.96E-002
CS-137	Not Detected		2.57E-002
EU-152	Not Detected		8.31E-002
EU-154	Not Detected		1.49E-001
EU-155	Not Detected	~~~~~~	1.23E-001
FE-59	Not Detected		6.21E-002
GD~153	Not Detected		8.89E-002
HG-203	Not Detected		2.97E-002
I-131	Not Detected		3.52E-002
IR-192	Not Detected		2.45E-002
K-40	1.59E+001	2.15E+000	2.18E-001
MN-52	Not Detected		4.32E-002
MN-54	Not Detected		2.84E-002
MO-99	Not Detected		5.11E-001
NA-22	Not Detected		3.41E-002
NA-24	Not Detected		2.37E+000
ND-147	Not Detected	,	2.30E-001
NI-57	Not Detected		1.57E-001
RU-103	Not Detected	*	2.40E-002
RU-106	Not Detected		2.40E-002 2.22E-001
SB-122	Not Detected		8.96E-002
SB-124	Not Detected		2.44E-002
SB-125	Not Detected		
SN-113	Not Detected		7.29E-002
SR-85	Not Detected		3.27E-002
TA-182	Not Detected		3.19E-002
TA-183	Not Detected		1.35E-001
TL-201			5.77E-001
Y-88			3.59E-001
ZN-65	Not Detected		2.28E-002
2R-95	Not Detected		9.05E-002
υν <u>-</u> 30	Not Detected	~	4.88E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program

* Analyzed by: bevuly try 8/27/02 Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059692-003 Lab Sample ID : 20119102

Sample Description : 6640/1078-DF1-BH1-10-S

Sample Quartity : 730.600 gram

Sample Date/Time : 8/23/02 11:30:00 AM Acquire Start Date/Time : 8/27/02 12:38:58 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.40E-001
RA-226	1.54E+000	4.57E-001	5.96E-001
PB-214	6.49E-001	9.59E-002	4.90E-002
BI-214	5.27E-001	B.74E-002	4.83E-002
PB-210	Not Detected		2.52E+001
TH-232	7.11E-001	3.35E-001	1.71E-001
RA-228	6.14E-001	1.22E-001	1.13E-001
AC-228	5.72E-001	1.20E-001	9.86E-002
TH-228	9.87E-001	3.96E-001	5.53E-001
RA-224	8.10E-301	1.82E-001	7.05E-002
PB-212	6.41E-001	9.47E-002	3.62E-002
BI-212	6.87E-001	2.70E-001	3.66E-001
TL-208	5.85E-001	1.02E-001	7.25E-002
Ŭ-235	Not Detected		2.01E-001
TH-231	Not Detected		1.01E+001
PA-231	Not Detected		1.18E+000
TH-227	Not Detected		3.17E-001
RA-223	Not Detected		1.97E-001
RN-219	Not Detected		3.12E-001
PB-211	Not Detected		7.37E-001
TL-207	Not Detected		1.03E+001
AM-241	Not Detected		3.80E-001
PU-239	Not Detected		3.67E+002
NP-237	Not Detected		1.96E+300
PA-233	Not Detected		4.83E-002
TH-229	Not Detected	*	2.14E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)

AG-108m AG-110m	Not Detected	~	3.12E-002
BA-133	Not Detected		2.45E-002
	Not Detected		3.86E-002
BE-7	Not Detected		2.05E-001
CD-115	Not Detected		1.98E-001
CE-139	Not Detected		2.48E-002
CE-141	Not Detected		4.66E-002
CE-144	Not Detected		1.96E-001
CM-243	Not Detected		1.44E-001
CO-56	Not Detected		2.86E-002
CO-57	Not Detected		2.56E-002
CO-58	Not Detected		2.58E-002
CO-60	Not Detected		3.10E-002
CR-51	Not Detected		2.19E-001
CS-134	Not Detected	~=	3.778-002
CS-137	Not Detected		2.74E-002
EU-152	Not Detected		7.64E-002
EU-154 EU-155	Not Detected		1.43E-001
FE-59	Not Detected		1.17E-001
GD-153	Not Detected		5.98E-002
HG-203	Not Detected		8.75E-002
	Not Detected		2.81E-002
I-131 IR-192	Not Detected		3.49E-002
K-40	Not Detected	0 177 000	2.39E-002
MN-52	1.56E+001	2.11E+000	2.76E-001
MN - 54	Not Detected		3.89E-002
MO-99	Not Detected Not Detected		2.75E-002
NA-22			5.19E-001
NA-24			3.40E-002
ND-147	Not Detected Not Detected		2.32E+000
NI-57			2.03E-001
RU-103	Not Detected Not Detected		1.77E-001
RU-105	Not Detected		2.41E-002
SB-122	Not Detected		2.23E-001
SB-124	Not Detected		9.11E-002
SB-125	Not Detected Not Detected		2.38E-002
SN-113	Not Detected		6.65E-002
SR-85	Not Detected		3.16E-002
TA-182	Not Detected		3.10E-002
TA-183	Not Detected		1.27E-001
TL-201	Not Detected		5.66E-001
Y-88	Not Detected Not Detected		3.39E-001
ZN-65	Not Detected		2.42E-002
ZR-95	Not Detected		8.36E-002
	not becected		4.62E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program

8/27/02 4:07:13 PM

* Analyzed by: burnly King 8/27/02 Reviewed by: 4 9/5/1/19

: SANDERS M (6135) Customer

Customer Sample ID : 059693-003 Lab Sample ID : 20119103

: 6640/1078-DF1-BH2-5-S Sample Description

Sample Quantity : 766.900 gram
Sample Date/Time : 8/23/02 12:55:00 PM
Acquire Start Date/Time : 8/27/02 2:21:05 PM

: LAB02 Detector Name

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

	Nuclidé Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
)	U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.75E+000 7.18E-001 6.21E-001 Not Detected	4.67E-001 1.04E-001 9.89E-002	6.43E-001 5.83E-001 5.23E-002 4.62E-002 2.48E+001
	TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	6.16E-001 7.42E-001 7.30E-001 4.29E-001 8.16E-001 6.78E-001 7.68E-001 6.21E-001	2.95E-001 1.35E-001 1.40E-001 3.78E-001 1.81E-001 9.95E-002 2.67E-001 1.05E-001	1.70E-001 9.94E-002 9.56E-002 5.95E-001 6.22E-002 3.61E-002 3.48E-001 7.15E-002
	U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.02E-001 9.94E+000 1.20E+000 3.12E-001 2.02E-001 3.10E-001 7.00E-001 1.05E+001
	AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		3.87E-001 3.62E+002 1.93E+000 4.84E-002 2.06E-001

•	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected		0.555
	AG-110m	Not Detected		3.16E-002
	BA-133	Not Detected		2.44E-002
	BE-7	Not Detected		3.94E-002
	CD-115			2.00E-001
	CE-139	Not Detected		1.91E-001
	CE-141	Not Detected		2.50E-002
		Not Detected		4.76E-002
	CE-144	Not Detected		1.96E-001
	CM-243	Not Detected		1.46E-001
	CO-56	Not Detected		2.62E-002
	CO-57	Not Detected		2.53E-002
	CO-58	Not Detected		2.42E-002
	CO-60	Not Detected		3.04E-002
	CR-51	Not Detected		2.13E-001
	CS-134	Not Detected		3.862-002
	CS-137	Not Detected		2.65E-002
	EU-152	Not Detected		7.52E-002
	EU-154	Not Detected		1.45E-001
	EU-155	Not Detected		1.12E-001
	FE-59	Not Detected		5.61E-002
	GD-153	Not Detected		8.66E-002
	HG-203	Not Detected		2.86E-002
	I-131	Not Detected		3.43E-002
	IR-192	Not Detected		2.40E-052
	K-40	1.36E+001	1.85E+000	2.56E-001
)	MN-52	Not Detected		4.07E-002
•	MN-54	Not Detected		2.86E-002
	MO-99	Not Detected		5.01E-001
	NA-22	Not Detected		3.30E-002
	NA-24	Not Detected		2.43E+000
	ND-147	Not Detected		2.03E-001
	NI-57	Not Detected		1.82E-001
	RU-103	Not Detected		2.39E-002
	RU-106	Not Detected		2.25E-001
	SB-122	Not Detected		9.12E-002
	SB-124	Not Detected		2.32E-002
	SB-125	Not Detected		6.64E-002
	SN-113	Not Detected		3.18E-002
	SR-85	Not Detected		3.08E-002
	TA-182	Not Detected		1.26E-001
	TA-183	Not Detected		5.78E-001
	TL-201	Not Detected		3.45E-001
	Y-88	Not Detected		
	ZN-65	Not Detected		2.26E-002
	ZR-95	Not Detected		8.46B-002
			= -	4.52E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/28/02 7:41:45 AM

* Analyzed by: bevolg Kay 3/28/02 Reviewed by:

: SANDERS M (6135) Customer

Customer Sample ID : 059694-003 Lab Sample ID : 20119104

Sample Description : 6640/1078-DF1-BH2-10-S

Sample Quantity : 768.000 gram

Sample Date/Time : 8/23/02 1:30:00 PM Acquire Start Date/Time: 8/27/02 4:03:07 PM

: LAB02 Detector Name

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ******************

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
)	U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.69E+000 6.55E-001 5.61E-001 Not Detected	4.91E-001 9.74E-002 9.22E-002	6.46E-001 6.42E-001 5.41E-002 5.16E-002 2.49E+001
	TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	7.68E-001 6.61E-001 6.70E-001 1.07E+000 7.09E-001 6.94E-001 7.55E-001 6.45E-001	3.57E-001 1.28E-001 1.27E-001 4.15E-001 1.63E-001 1.02E-001 2.59E-001 1.06E-001	1.63E-001 1.17E-001 7.85E-002 5.78E-001 6.81E-002 3.63E-002 3.34E-001 6.40E-002
	U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.03E-001 9.90E+000 1.20E+000 3.19E-001 2.00E-001 3.17E-001 7.09E-001
	AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		3.91E-001 3.71E+002 1.97E+000 4.76E-002 2.11E-001

		•		
	Nuclide	Activity	2-sigma	34753
	Name	(pCi/gram)	- -	MDA
		(PCI/Gram)	Error	(pCi/gram)
	AG-108m	Not Detected		2.91E-002
	AG-110m	Not Detected	~ ~ ~	2.47E-002
	BA-133	Not Detected		3.88E-002
	BE-7	Not Detected		2.11E-001
	CD-115	Not Detected		2.01E-001
	CE-139	Not Detected		2.54E-002
	CE-141	Not Detected		
	CE-144	Not Detected		4.77E-002
	CM-243			2.01E-001
		Not Detected		1.46E-001
	CO-56	Not Detected		2.78E-002
	CO-57	Not Detected		2.65E-002
	CO-58	Not Detected		2.80E-002
	CO-60	Not Detected		3.03E-002
	CR-51	Not Detected		2.11E-001
	CS-134	Not Detected		3.80E-002
	CS-137	Not Detected		
	EU-152	Not Detected		2.60E-002
	EU-154	Not Detected		7.90E-002
	EU-155			1.34E-001
	FE-59	Not Detected		1.18E-001
		Not Detected		6.08E-002
	GD-153	Not Detected		8.52E-002
	HG-203	Not Detected		2.79E-002
k	I-131	Not Detected		3.46E-002
,	IR-192	Not Detected		2.33E-002
	K-40	1.66E+001	2.23E+000	2.56E-001
	MN-52	Not Detected		4.07E-002
	MN-54	Not Detected		2.83E-002
	MO-99	Not Detected		5.18E-001
	NA-22	Not Detected		
	NA-24	Not Detected		3.60E-002
	ND-147	Not Detected		2.73E+000
	NI-57			1.97E-001
	RU-103	· 		1.84E-001
				2.32E-002
	RU-106	Not Detected		2.22E-001
	SB-122	Not Detected		9.22E-002
	SB-124	Not Detected		2.37E-002
	SB-125	Not Detected		5.97E-002
	SN-113	Not Detected		3.23E-002
	SR-85	Not Detected		3.12E-002
	TA-182	Not Detected		1.26E-001
	TA-183	Not Detected		5.87E-001
	TL-201	Not Detected		
	Y-88	Not Detected		3.59E-001
	ZN-65	Not Detected		1.85E-002
	ZR-95			8.45E-002
	JJ	Not Detected		4.45E-002

8/27/02 9:07:19 PM

* Analyzed by: Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059695-003 Lab Sample ID : 20119106

Sample Description : 6640/1078-DF1-BH3-5-S

Sample Quantity : 753.700 gram

Sample Date/Time : 8/23/02 2:25:00 PM Acquire Start Date/Time : 8/27/02 7:27:04 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity	2-sigma Error	MDA (pCi/gram)
Name	(pCi/gram)	PITOI	(pcr/gram /
U-238	Not Detected		6.88E-001
RA-226	1.59E+000	5.06E-001	6.85E-001
PB-214	6.92E-001	1.02E-001	5.36E-002
BI-214	6.22E-001	9.98E-002	4.85E-002
) PB-210	Not Detected	~~~ ~ ~~~	2.57E+001
TH-232	7.67E-001	3.59E-001	1.74E-001
RA-228	7.48E-001	1.38E-001	1.10E-001
AC-228	7.84E-001	1.45E-001	8.43E-002
TH-228	3.81E-001	3.91E-001	6.23E-001
RA-224	7.94E-001	1.78E-001	6.94E-002
PB-212	7.99E-001	1.16E-001	3.69E-002
BI-212	8.51E-001	2.84E-001	3.64E-001
TL-208	6.58E-001	1.11E-001	7.48E-002
U-235	Not Detected		2.02E-001
TH-231	Not Detected		1.02E+001
PA-231	Not Detected		1.22E+000
TH-227	Not Detected		3.36E-001
RA-223	Not Detected		2.05E-001
RN-219	Not Detected		3.17E-001
PB-211	Not Detected	-	7.13E-001
TL-207	Not Detected		1.05E+001
AM-241	Not Detected		3.81E-001
PU-239	Not Detected		3.78E+002
NP-237	Not Detected		2.01E+000
PA-233	Not Detected		5.06E-002
TH-229	Not Detected		2.15E-001

AG-110m Not Detected	.28E-002 .49E-002 .13E-002 .14E-001
AG-110m Not Detected	.49E-002 .13E-002 .14E-001
BA-133 Not Detected	.13E-002 .14E-001
BE-7 Not Detected	.14E-001
CD-115 Not Detected	
CE-139 Not Detected 2 CE-141 Not Detected 4	. 12K-UUT
CE-141 Not Detected 4	
4	.59E-002
CE-144 Not Detected 2	.82E-002
CM 242	.10E-001
CO SS Not Date	.56E-001
CO 57	.78E-002
20-50	.77E-002
50.50	.67E-002
CD E1 No.	.04E-002
CC 124	.21E-001
77 100	.06E-002
PH-152 Non-Day-	.75E-002
DI 154 Not Do	.30E-002
	.51E-001
Pr EO MAL D	.20E-001 .03E-002
CD-152 Man Danier 1	.04E-002
HO 202 W	.93E-002
I-131 Not Detected 3	.46E-002
TO 100 National Contractions	.39E-002
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.49E-001
MM EO MAR DOLL	.18E-002
<i>ND</i> ,7 ⊆ <i>d</i>	.95E-002
MO 00	.24E-001
NTN OO 17 m	.56E-002
NTN Ord ST	.98E+000
ND-147 Not Detected 2	06E-001
NI-57 Not Detected 1	.90E-001
RU-IU3 NOC Detected >	.50E-002
RU-106 Not Detected 2	.39E-001
SB-122 Not Detected g	.82E-002
SB-124 Not Detected 2	.56E-002
	.98E-002
SN-113 Not Detected 3	.29E-002
SK-85 Not Detected 3	.22E-002
1A-182 Not Detected1	.32E-001
TA-183 Not Detected	.81E-001
Not Detected 3	.75E-001
Not Detected 2	.03E-002
2N-05 NOT Detected 8	.78E-002
	.95B-002

8/27/02 10:49:18 PM

Reviewed by: * Analyzed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059696-003 Lab Sample ID : 20119107

Sample Description : 6640/1078-DF1-BH3-10-S

: 779.700 gram

Sample Quantity
Sample Date/Time : 8/26/02 9:55:00 AM Acquire Start Date/Time: 8/27/02 9:09:03 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.05E-001
RA-226	1.52E+000	4.62E-001	6.13E-001
PB-214	6.24E-001	9.25E-002	4.93E-002
`√BI-214	5.26E-001	8.60E-002	4.45E-002
PB-210	Not Detected		2.36E+001
TH-232	5.20E-001	2.58E-001	1.76E-001
RA-228	6.84E-001	1.27E-001	9.73E-002
AC-228	6.62E-001	1.28E-001	8.79E-002
TH-228	3.88E-001	2.76E-001	4.25E-001
RA-224	6.56E-001	1.54E-001	7.61E-002
PB-212	6.54E-001	9.61E-002	3.33E-002
BI-212	5.90E-001	2.37E-001	3.22E-001
TL-208	5.26E-001	9.30E-002	6.93E-002
U-235	1.71E-001	1.54E-001	1.98E-001
TH-231	Not Detected		9.44E+000
PA-231	Not Detected		1.16E+000
TH-227	Not Detected		3.03E-001
RA-223	Not Detected		1.63E-001
RN-219	Not Detected		2.93E-001
PB-211	Not Detected		6.54E-001
TL-207	Not Detected		1.09E+001
AM-241	Not Detected		3.62E-001
PU-239	Not Detected		3.41E+002
NP-237	Not Detected		1.82E+000
PA-233	Not Detected		4.64E-002
TH-229	Not Detected		2.02E-001

7			
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
			(PCI/GIAM)
AG-108m	Not Detected		2.78E-002
AG-110m	Not Detected		
BA-133	Not Detected		2.20E-002
BE-7	Not Detected	~	3.85E-002
CD-115	Not Detected		1.94E-001
CE-139			8.26E-002
CE-141	Not Detected		2.37E-002
CE-144	Not Detected		4.28E-002
	Not Detected		1.93E-001
CM-243	Not Detected		1.40E-001
CO-56	Not Detected		2.47E-002
CO-57	Not Detected		2.50E-002
CQ-58	Not Detected		2.39E-002
CO-60	Not Detected		2.75B-002
CR-51	Not Detected		1.82E-001
CS-134	Not Detected		3.71E-002
CS-137	Not Detected		2.38E-002
EU-152	Not Detected		7.48E-002
EU-154	Not Detected		1.28E-001
EU-1S5	Not Detected		
FE-59	Not Detected		1.10E-001
GD-153	Not Detected		5.18E-002
HG-203	Not Detected		8.00E-002
I-131	Not Detected		2.57E-002
IR-192	Not Detected		2.42E-002
K-40	1.33E+001	1.81E+000	2.14E-002
MN-52	Not Detected	1.816+000	2.31E-001
MN-54	Not Detected		2.73E-002
MO-99	Not Detected		2.84E-002
NA-22			2.62E-001
NA-24	Not Detected		2.96E-002
ND-147	Not Detected		1.35E-001
	Not Detected		1.60E-001
NI-57	Not Detected		5.52E-002
RU-103	Not Detected		2.218-002
RU-106	Not Detected		2.19E-001
SB-122	Not Detected		4.40E-002
SB-124	Not Detected		2.22E-002
SB-125	Not Detected	~-~~~	6.66E-002
SN-113	Not Detected		2.80E-002
SR-85	Not Detected		2.80E-002
TA-182	Not Detected		1.188-001
TA-183	Not Detected		3.80B-001
TL-201	Not Detected		1.888-001
Y-88	Not Detected		
2N-65	Not Detected		2.23E-002
ZR-95	Not Detected		8.16E-002
			4.17E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program

8/28/02 7:45:51 AM

* Analyzed by: Barrly Key 8/28/02 Reviewed by: Francisco Customer : SANDERS M (6135)

Customer

Customer Sample ID : 059697-003 Lab Sample ID : 20119105

: 6640/1078-DF1-BH3-5-DU Sample Description

: 665.300 gram Sample Quantity

Sample Date/Time : 8/23/02 2:30:00 PM Acquire Start Date/Time : 8/27/02 5:45:06 PM

: LAB02 Detector Name

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity (pCi/gram)	2-sigma	MDA
Name		Error	(pCi/gram)
U-238)RA-226 PB-214 BI-214 PB-210	Not Detected 1.46E+000 7.41E-001 6.06E-001 Not Detected	4.73E-001 1.10E-001 9.92E-002	6.50E-001 6.36E-001 5.78E-002 5.10E-002 2.45E+001
TH-232	5.05E-001	2.58E-001	1.96E-001
RA-228	5.04E-001	1.11E-001	1.21E-001
AC-228	Not Detected		1.71E-001
TH-228	5.10E-001	3.88E-001	6.02E-001
RA-224	6.56E-001	1.57E-001	6.59E-002
PB-212	6.10E-001	9.12E-002	3.71E-002
BI-212	9.14E-001	2.83E-001	3.41E-001
TL-208	4.97E-001	9.36E-002	7.65E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.13E-001 1.04E+001 1.24E+000 3.17E-001 2.05E-001 3.34E-001 7.80E-001 1.11E+001
AM-241	Not Detected		3.91E-001
PU-239	Not Detected		3.82E+002
NP-237	Not Detected		2.00E+000
PA-233	Not Detected		5.27E-002
TH-229	Not Detected		2.14E-001

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected	~	3.28E-002
	AG-110m	Not Detected		2.61E-002
	BA-133	Not Detected		4.39E-002
	BE-7	Not Detected		2.18E-001
	CD-115	Not Detected		2.05E-001
	CE-139	Not Detected		2.64E-002
	CE-141	Not Detected		5.08E-002
	CE-144	Not Detected		2.13E-001
	CM-243	Not Detected		1.45E-001
	CO-56	Not Detected		2.91E-002
	CO-57	Not Detected		2.75E-002
	CO-58	Not Detected		2.54E-002
	CO-60	Not Detected		2.93E-002
	CR-51	Not Detected		2.15E-001
	CS-134	Not Detected		4.22E-002
	CS-137	Not Detected	~~~	2.80E-002
	EU-152	Not Detected		8.14E-002
	EU-154	Not Detected		1.51E-001
	EU-155	Not Detected		1.19E-001
	FE-59	Not Detected		6.34E-002
`	GD-153	Not Detected		8.85E-002
J	HG-203	Not Detected		2.78E-002
•	I-131	Not Detected		3.70E-002
	IR-192	Not Detected		2.47E-002
	K-40	1.31E+001	1.80E+000	2.54E-001
	MN-52	Not Detected		4.51E-002
	MN-54	Not Detected		3.00E-002
	MD-99	Not Detected		5.37E-001
	NA-22	Not Detected		3.56E-002
	NA-24	Not Detected		2.76E+000
	ND-147 NI-57	Not Detected		2.05E-001
		Not Detected		1.64E-001
	RU-103 RU-106	Not Detected		2.51E-002
	SB-122	Not Detected		2.31E-001
	SB-124	Not Detected		9.47E-002
		Not Detected		2.56E-002
	SB-125	Not Detected		6.89E-002
	SN-113	Not Detected		3.21E-002
	SR~85	Not Detected		3.24E-002
	TA-182	Not Detected	~ ~ ~ ~ ~ ~ ~ ~	1.29E-001
	TA-183	Not Detected		5.89E-001
	TL-201	Not Detected		3.53E-001
	Y-88	Not Detected		2.13E-002
	ZN-65	Not Detected		8.65E-002
	ZR-95	Not Detected		4.97E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/28/02 8:03:35 AM

* Analyzed by: Bevuly Key 9/28/02 Reviewed by:

: SANDERS M (6135) Customer

: SANDERD ... : 059698-003 : 1119108 Customer Sample ID : 20119108 Lab Sample ID

: 6643/1120-DW1-BH1-8-S Sample Description

Sample Quantity : 678.500 gram
Sample Date/Time : 8/22/02 11:40:00 AM Acquire Start Date/Time: 8/27/02 10:51:02 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. **************

Nuclide	Activity (pCi/gram)	2-sigma	MDA
Name		Error	(pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.55E+000 5.82E-001 5.66E-001 Not Detected	4.65E-001 9.11E-002 9.35E-002	6.68E-001 6.09E-001 5.94E-002 5.00E-002 2.61E+001
TH-232	6.93E-001	3.35E-001	2.02E-001
RA-228	6.17E-001	1.26E-001	1.22E-001
AC-228	6.30E-001	1.32E-001	1.08E-001
TH-228	6.78E-001	3.48E-001	5.10E-001
RA-224	7.65E-001	1.77E-001	7.12E-002
PB-212	6.41E-001	9.53E-002	3.98E-002
BI-212	5.69E-001	2.39E-001	3.26E-001
TL-208	5.93E-001	1.06E-001	7.94E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.10E-001 1.04E+001 1.26E+000 3.32E-001 2.27E-001 3.19E-001 7.20E-001 1.12E+001
AM-241	Not Detected		3.96E-001
PU-239	Not Detected		3.89E+002
NP-237	Not Detected		2.04E+000
PA-233	Not Detected		4.79E-002
TH-229	Not Detected		2.23E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
AG-110m	Not Detected		3.36E-002
BA-133	Not Detected		2.62E-002
BE-7	Not Detected		4.31E-002
CD-115	Not Detected		2.21E-001
CE-139	Not Detected		3.26E-001
CE-141	Not Detected		2.64E-002
CE-144	Not Detected		5.20E-002
CM-243	Not Detected		2.09E-001
CO-56			1.54E-001
CO-57			2.90E-002
CO-58			2.75E-002
CO-60			2.95E-002
CR-51	Not Detected		3.21E-002
CS-134	Not Detected	~~	2.33E-001
CS-134	Not Detected		4.17E-002
EU-152	Not Detected		2.79E-002
EU-154	Not Detected		8.23E-002
EU-154	Not Detected		1.54E-001
FE-59	Not Detected	~	1.20E-001
	Not Detected		6. 25E- 002
GD-153	Not Detected		9.12E-002
HG-203	Not Detected		3.04E-002
I-131	Not Detected		4.10E-002
IR-192	Not Detected		2.39E-002
) K-40	1.64E+001	2.22E+000	3.02E-001
MN-52	Not Detected		4.70E-002
MN-54	Not Detected		3.06E-002
MO-99	Not Detected		7-47E-001
NA-22	Not Detected		3.53E-002
NA-24	Not Detected		1.30E+001
ND-147	Not Detected		2.37E-001
NI-57	Not Detected		5.62E-001
RU-103	Not Detected		2.70E-002
RU-106	Not Detected		2.36E-001
SB-122	Not Detected		1.41E-001
SB-124	Not Detected		2.62E-002
SB-125	Not Detected		7.128-002
SN-113	Not Detected		3.32E-002
SR-85	Not Detected		3.33E-002
TA-182	Not Detected		1.39E-001
TA-183	Not Detected		7.15E-001
TL-201	Not Detected	**	4.95E-001
Y-88	Not Detected		2.34E-002
ZN-65	Not Detected		8.87E-002
ZR-95	Not Detected		5.06E-002
			J.066-002

8/28/02 7:59:59 AM

Customer Sample ID : 059699-003 Lab Sample ID : 20119109

Sample Description : 6643/1120-DW1-BH1-13-S

Sample Quantity : 672.600 gram Sample Date/Time : 8/22/02 12:05:00 PM Acquire Start Date/Time : 8/28/02 12:33:12 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ************************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 214 210	Not Detected 1.57E+000 6.31E-001 5.32E-001 Not Detected	4.98E-001 9.64E-002 8.99E-002	6.76E-001 6.68E-001 5.75E-002 5.33E-002 2.60E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	5.76E-001 7.00E-001 5.29E-001 7.71E-001 7.98E-001 6.64E-001 8.36E-001 5.62E-001	2.84E-001 1.37E-001 1.18E-001 4.18E-001 1.84E-001 9.85E-002 2.64E-001 1.15E-001	1.87E-001 1.20E-001 1.06E-001 6.22E-001 8.27E-002 3.75E-002 3.18E-001 1.16E-001
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	1.57E-001 5.69E+000 Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected	1.66E-001 4.91E+000	2.13E-001 1.07E+001 1.27E+000 3.29E-001 2.26E-001 3.27E-001 7.33E-001 1.10E+001
AM-241 PU-239 NP-237 PA-233	Not Detected Not Detected Not Detected Not Detected Not Detected		3.98E-001 3.87E+002 1.99E+000 5.13E-002 2.18E-001

AG-108m Not Detected 3.29E AG-110m Not Detected 2.53E	E-002 E-002 E-001
AG-108m Not Detected 3.29E AG-110m Not Detected 2.53E	E-002 E-002 E-002 E-001
AG-110m Not Detected 2.53E	E-002 E-002 E-001
	E-002 E-001
	E-001
BA-133 Not Detected 4.09E	
BE-7 Not Detected 2.26B	
CD-115 Not Detected 3.19E	E-001
CE-139 Not Detected 2.69E	E-0 0 2
CE-141 Not Detected 5.22E	E-002
CE-144 Not Detected 2.16E	G-601
CM-243 Not Detected 1.56E	E-001
CO-56 Not Detected 2.94E	E-002
CO-57 Not Detected 2.76E	E-002
CO-58 Not Detected 3.11E	
CO-60 Not Detected 3.12E	
CR-51 Not Detected 2.23E	
CS-134 Not Detected 4.15E	
CS-137 Not Detected 2.76E	
EU-152 Not Detected 8.22E	
EU-154 Not Detected 1.51E	
EU-155 Not Detected 1.21F	
FE-59 Not Detected 6.41E	
GD-153 Not Detected 8.98E	
HG-203 Not Detected 3.04E	
<u>I-131</u> Not Detected 3.95E	
(192 Not Detected 2.47E	
1.65E+001 2.24E+000 2.57E	
MN-52 Not Detected 5.33E	
MN-54 Not Detected 3.12E	
MO-99 Not Detected 8.16E	
NA-22 Not Detected 3.51E	
NA-24 Not Detected 1.37E	
ND-147 Not Detected 2.38E	
NI-57 Not Detected 5.74E	
RU-103 Not Detected 2.66E	
RO 100 NOU DECECTED	
bb 122 Not bedeeded 2.562	
SB 124 NOC Deceded 2.511	
0.001	
5.27	
	
Y-88 Not Detected 2.48E ZN-65 Not Detected 9.43E	
ZR-95 Not Detected 9.43E	
4,70D	

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/28/02 8:05:10 AM

* Analyzed by: Bevolykey 8/28/02 Reviewed by:

: SANDERS M (6135) Customer

: 059700-003 Customer Sample ID Lab Sample ID : 20119110

Sample Description : 6643/1079-DF1-BH2-11-S

Sample Quantity : 657.200 gram
Sample Date/Time : 8/23/02 8:40:00 AM Acquire Start Date/Time: 8/28/02 2:15:10 AM

: LAB02 Detector Name

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ******************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.40E+000 6.31E-001 5.11E-001 Not Detected	5.09E-001 9.75E-002 8.82E-002	7.08E-001 7.14E-001 6.12E-002 5.62E-002 2.67E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212	7.05E-001 6.84E-001 7.04E-001 7.72E-001 7.40E-001 7.08E-001 8.36E-001 5.81E-001	3.36E-001 1.34E-001 1.39E-001 4.50E-001 1.71E-001 1.04E-001 2.91E-001	1.83E-001 1.09E-001 9.78E-002 6.80E-001 5.84E-002 3.85E-002 3.76E-001 8.28E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected 2.48E-001 Not Detected Not Detected	2.75E-001	2.17E-001 1.06E+001 1.29E+000 3.48E-001 2.25E-001 3.28E-001 7.05E-001 1.23E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		4.06E-001 4.08E+002 2.10E+000 4.98E-002 2.25E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		
AG-110m	Not Detected		3-49E-002
BA-133	Not Detected		2.66E-002
BE-7			4.20E-002
CD-115	Not Detected		2.29E-001
CE-139	Not Detected		2.65E-001
_	Not Detected		2.74E-002
CE-141	Not Detected		5.1 <i>6</i> E-002
CE-144	Not Detected		2.17E-001
CM-243	Not Detected		1.61E-001
CO-56	Not Detected		3.07E-002
CO-57	Not Detected		2,87E-002
CO-58	Not Detected		2.86E-002
CO-60	Not Detected		3.50E-002
CR-51	Not Detected		2.302-001
CS-134	Not Detected		4.15E-002
CS-137	Not Detected		2.90E-002
EU-152	Not Detected		8.65E-002
EU-154	Not Detected		1.61E-001
EU-155	Not Detected		1.26E-001
FE-59	Not Detected		6.47E-002
GD-153	Not Detected		9.32E-002
HG-203	Not Detected		3.13E-002
I-131	Not Detected	_~_~~_	3.99E-002
IR-192	Not Detected		2.52E-002
/K-40	1.55E+001	2.10E+000	2.54E-001
MN-52	Not Detected		4.62E-002
MN-54	Not Detected		2.99E-002
MO-99	Not Detected	~	6.65E-001
NA-22	Not Detected		3.65E-001
NA-24	Not Detected		5.55E+000
ND-147	Not Detected		2.25E-001
NI-57	Not Detected		
RU-103	Not Detected		2.65E-001
RU-106	Not Detected		2.62E-002
SB-122	Not Detected		2.44E-001
SB-124	Not Detected		1.17E-001
SB-125	Not Detected		2.65E-002
SN-113	Not Detected		7.54E-002
SR-85	Not Detected	*	3.32E-002
TA-182			3.46E-002
TA-183	Not Detected		1.36E-001
TL-201	Not Detected		6.64E-001
Y-88	Not Detected		4.32E-001
ZN-65	Not Detected		2.44E-002
ZR-95	Not Detected		9.33E-002
ロバープコ	Not Detected		5.12E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/27/02 12:56:26 PM

* Analyzed by: Bevaly Key 8/27/02 Reviewed by: 4/2/02

: SANDERS M (6135)

Customer Sample ID : 059701-003 Lab Sample ID : 20119111

Sample Description : 6643/1079-DF1-BH2-16-S

Sample Quantity

: 791.300 gram : 8/23/02 8:55:00 AM Sample Date/Time Acquire Start Date/Time : 8/27/02 11:16:12 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ******************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.77E+000 6.10E-001 5.21E-001 Not Detected	5.37E-001 9.70E-002 9.14E-002	4.53E-001 7.10E-001 6.46E-002 5.73E-002 8.46E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212	5.59E-001 5.32E-001 Not Detected 5.20E-001 7.06E-001 5.84E-001 6.04E-001 4.54E-001	2.78E-001 1.51E-001 1.95E-001 1.79E-001 8.84E-002 2.85E-001 9.22E-002	1.87E-001 1.68E-001 1.89E-001 4.21E-001 8.04E-002 3.52E-002 3.99E-001 8.09E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		1.80E-001 5.98E+000 1.27E+000 3.01E-001 1.29E-001 3.54E-001 7.98E-001 1.39E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		1.59E-001 3.26E+002 1.75E+000 5.33E-002 1.74E-001

Juclide Name	Activity (pC1/gram)	2-sigma Error	MDA (pCi/gram)
AG~108m	Not Detected		3.85E-002
AG~110m	Not Detected		
BA~133	Not Detected		2.92E-002 3.84E-002
BE-7	Not Detected		2.34E-001
CD-115	Not Detected		2.13E-001
CE-139	Not Detected		2.33E-001 2.33E-002
CE-141	Not Detected		4.28E-002
CE-144	Not Detected		1.84E-001
CM-243	Not Detected		1.56E-001
CO-55	Not Detected		3.14E-002
CO-57	Not Detected		2.20E-002
CO-58	Not Detected		3.22E-002
CO-60	Not Detected		3.79E-002
CR-51	Not Detected		2.39E-001
CS-134	Not Detected		4.24E-002
CS-137	Not Detected		3.04E-002
EU-152	Not Detected		6.57E-002
EU-154	Not Detected		1.80E-001
EU-155	Not Detected		1.02E-001
FE-59	Not Detected		7.62E-002
GD-153	Not Detected		5.74E-002
HG-203	Not Detected		2.93E-002
I-131	Not Detected		3.58E-002
TR-192	Not Detected	~ 	2-68E-002
√K-40	1.36E+001	1.89E+000	3.02E-001
MN-52	Not Detected		5.12E-002
MN-54	1.00E-002 -	1.09E-002	
MO-99	Not Detected		1.72E-002 NOT DETERMED 45 8/07/02
NA-22	Not Detected		4.30E-002
NA - 24	Not Detected		3.14E+000
ND-147	Not Detected		2.44E-001
NI-57	Not Detected		3.17E-001
RU-103	Not Detected		2.78E-002
RU-106	Not Detected		2.65E-001
SB-122	Not Detected		1.08E-001
SB-124	Not Detected		2.70E-002
SB-125	Not Detected		7.88E-002
SN-113	Not Detected	~	3.49E-002
SR-85	Not Detected		3.41E+002
TA-182	Not Detected		1.56E-001
TA-183	Not Detected		2.37E-001
TL-201	Not Detected		1.87E-001
Y-88	Not Detected		3.14E-002
ZN-65	Not Detected		1.08E-001
ZR-95	Not Detected		5.82E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 8/27/02 2:38:47 PM

* Analyzed by: Beverly Rey 8127102 Reviewed by: \$127102

: SANDERS M (6135)

Customer Sample ID : 059702-003 : 20119112 Lab Sample ID

Sample Description : 6643/1079-DF1-BH3-11-S

Sample Quantity : 675.800 gram Sample Date/Time : 8/23/02 9:50: 9:50:00 AM Acquire Start Date/Time: 8/27/02 12:58:31 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. *************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.03E-001
RA-226	1.70E+000	5.65E-001	7.66E-001
PB-214	5.65E-001	9.20E-002	6.00E-002
BI-214	5.76E-001	1.02E-001	6.29 E -002
PB-210	Not Detected	~	8.66E+000
TH-232	7,10E-0 0 1	3.37E-001	1.70E-001
RA-228	5.56E-001	1.38E-001	1.73E-001
AC-228	6.00E-001	1.38E-001	1.17E-001
TH-228	5.61E-001	2.18E-001	4.58E-001
RA-224	6.98E-001	1.90E-001	1.17E-001
PB-212	6.67E-001	1.01E-001	3.85E-002
BI-212	5.99E-001	2.93E-001	4.11E-001
TL-208	5.92E-001	1.15E-001	9.33E-002
U-235	Not Detected		2.03E-001
TH-231	Not Detected		6.66E+000
PA-231	Not Detected		1.46E+000
TH-227	Not Detected		3.39E-001
RA-223	Not Detected		1.43E-001
RN-219	Not Detected		4.06E-001
PB-211	Not Detected		8.89E-001
TL-207	Not Detected		1.545+001
AM-241	Not Detected		1.78E-001
PU-239	Not Detected		3.52E+002
NP-237	Not Detected	~~~~~~	1.95E+000
PA-233	Not Detected		5.63E-002
TH-229	Not Detected		1.89E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG~108m	Not Detected		4 205 000
AG-110m	Not Detected		4.33E-002
BA-133	Not Detected		3.19E-002
BE-7			4.36E-002
CD-115	Not Detected		2.61E-001
CE-139	Not Detected		2.47E-001
CE-139	Not Detected		2.54E-002
	Not Detected		4.82E-002
CE-144	Not Detected		1.98 E -001
CM-243	Not Detected	7-7	1.79E-001
CO-56	Not Detected		3.85E-002
CO-57	Not Detected		2.52E-002
CO-58	Not Detected		3.56E-002
CO-60	Not Detected		4.19E-002
CR-51	Not Detected		2.67E-001
CS-134	Not Detected		4.85E-002
CS-137	Not Detected	. ~ =	3.67B-002
EU-152	Not Detected		7.52E-002
EU-154	Not Detected		2.01E-001
EU-155	Not Detected		1.14E-001
FE-59	Not Detected		9.32E-002
GD-153	Not Detected		6.76E-002
HG-203	Not Detected		3.40E-002
I-131	Not Detected		3.88 E- 002
TR-192	Not Detected		2.83E-002
įK-40	1.52E+001	2.13E+000	3.28E-001
MN-52	Not Detected		6.07E-002
MN-54	Not Detected		3.77E-002
MO-99	Not Detected		7.77E-002
NA-22	Not Detected		5.05E-002
NA-24	Not Detected		4.02E+000
ND-147	Not Detected		2.73E-001
NI-57	Not Detected		3.68E-001
RU-103	Not Detected		3.16E-001
RU-106	Not Detected		2.92E-001
SB-122	Not Detected		
SB-124	Not Detected		1.14E-001
SB-125	Not Detected		3.13E-002
SN-113	Not Detected		8.79E~002
SR-85	Not Detected		3.83E~002
TA-182	Not Detected		4.02E-002
TA-183	Not Detected		1.76E-001
TL-201	Not Detected		2.61E-001
Y-88	Not Detected		2.14E-001
ZN-65	Not Detected		3.37E-002
ZR-95	Not Detected		1.19E-001
))	Hor perecred		6.54E-002

8/27/02 4:21:06 PM

Reviewed by:

Customer SANDERS M (6135)

Customer Sample ID : 059703-003 Lab Sample ID : 20119113

Sample Description : 6643/1079-DF1-BH3-16-S

Sample Quantity : 715.800 gram

Sample Date/Time : 8/23/02 10:05:00 AM Acquire Start Date/Time: 8/27/02 2:40:53 PM

Detector Name : LAB01

Elapsed Live/Real Time 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. **********

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		4.89E-001
RA-226	1.05E+000	5.00E-001	7.39E-001
PB-214	5.57E-001	1.07E-001	1.08E-001
BI-214	4.73E-001	8.92E-002	6.80E-002
PB-210	Not Detected		8.22E+000
TH-232	6.34E-001	3.09E-001	1.89E-001
RA-228	6.98E-001	1.52E-001	1.50E-001
AC-228	Not Detected		2.08E-001
TH-228	6.63E-001	2.21E-001	4.24E-001
RA-224	6.14E-001	1.70E-001	1.05E-001
PB-212	5.8 9 E-0 01	8.98E-002	3.64E-002
BI-212	6.26E-001	3.04E-001	4.28E-001
TL-208	5.11E-001	1.01E-001	8.48E-002
U-235	Not Detected		1.93E-001
TH-231	Not Detected		6.11E+000
PA-231	Not Detected	~======	1.37E+000
TH-227	Not Detected		3.14E-001
RA-223	Not Detected		1.35E-001
RN-219	Not Detected		3.87E-001
PB-211	Not Detected		8.52E-001
TL-207	Not Detected		1.49E+001
AM-241	Not Detected		1.69E-001
PU-239	Not Detected		3.45E+002
NP-237	Not Detected		1.79E+000
PA-233	Not Detected		5.47E-002
TH-229	Nct Detected		1.90E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4.31E-002
AG-110m	Not Detected		
BA-133	Not Detected		2.73E-002 4.16E-002
BE-7	Not Detected		
CD-115	Not Detected		2.46E-001
CE-139	Not Detected		2.36E-001
CE-141	Not Detected		2.51E-002
CE-144	Not Detected		4.51E-002
CM-243	Not Detected		1.90E-001
CO-56	Not Detected		1.68E-001
CO-57	Not Detected		3.42E-002
CO-58	Not Detected		2.35E-002
CO-60	Not Detected		3.38E-002
CR-51	Not Detected Not Detected		4.23E-002
CS-134	Not Detected		2.43E-001
CS-137	Not Detected		4.47E-002
EU-152	Not Detected		3.21E-002
EU-154	Not Detected		7.01E-002
EU-155	Not Detected		1.97E-001
FE-59	Not Detected		1.06E-001
GD-153	Not Detected		8.44E-002
HG-203	Not Detected		6.31E-002
I-131	Not Detected		3.17E-002
IR-192	Not Detected		3.80E~002
▲ K-40	1.49E+001		2.73E-002
MN-52	Not Detected	2.08E+000	3.23E-001
MN - 54	Not Detected		5.13E-002
MO-99	Not Detected		3.59E-002
NA-22	Not Detected		7.72E-001
NA-24	Not Detected		4.72E-002
ND-147			4.06E+000
NI-57	Not Detected Not Detected		2.67E-001
RU-103			3.88E-001
RU~105			2.80E-002
SB-122	Not Detected Not Detected		2.91E-001
SB-124			1.20E-001
SB-125			2.89E-002
SN-113			8.36E-002
SR-B5			3.68E-002
TA-182	Not Detected		3.73E-002
TA-183	Not Detected		1.65E-001
TL-201	Not Detected		2.57 E-0 01
Y-88	Not Detected		2.02E-001
ZN-65	Not Detected		3.02E-002
ZR-95	Not Detected		1.08E-001
4パーコン	Not Detected		6.07E-002

8/27/02 6:03:25 PM

Analyzed by: 8/28/0- Reviewed by: 148/38/02

Customer : SANDERS M (6135)

Customer Sample ID : 059705-003 Lab Sample ID : 20119114

Sample Description : 6644/1080-DF1-BH1-5-S

Sample Quantity : 691.900 gram

Sample Date/Time : 8/26/02 11:25:00 AM Acquire Start Date/Time : 8/27/02 4:23:11 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity (pCi/gram)	2-sigma	M⊃A
Name		Error	(pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.75E+000 6.64E-001 5.85E-001 Not Detected	5.69E-001 1.05E-001 1.02E-001	5.26E-001 7.68E-001 6.76E-002 5.92E-002 8.87E+000
TH-232	7.16E-001	3.45E-001	1.98E-001
RA-228	6.25E-001	1.43E-001	1.48E-001
AC-228	6.16E-001	1.35E-001	1.04E-001
TH-228	5.50E-001	2.17E-001	4.79E-001
RA-224	7.70E-001	1.98E-001	9.30E-002
PB-212	7.39E-001	1.11E-001	3.89E-002
BI-212	8.39E-001	3.17E-001	4.10E-001
TL-208	6.31E-001	1.20E-001	9.60E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.00E-001 6.50E+000 1.45E+000 3.45E-001 1.19E-001 3.74E-001 8.64E-001 1.52E+001
AM-241	Not Detected		1.72E-001
PU-239	Not Detected		3.62E+002
NP-237	Not Detected		1.92E+000
PA-233	Not Detected		5.94E-002
TH-229	Not Detected		2.03E-001

uclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4
AG-110m	Not Detected		4.37E-002
BA-133	Not Detected		3.20E-002
BE-7	Not Detected		4.45E-002
CD-115	Not Detected		2.58E-001
CE-139			1.00E-001
CE-141			2.55E-002
CE-141	Not Detected		4.55E-002
CM-243	Not Detected		2.01E-001
CO-56	Not Detected		1.82E-001
	Not Detected		3.70E-002
CO-57	Not Detected		2.47E-002
CO-58	Not Detected		3.32E-002
CO-60	Not Detected		4.12E-002
CR-51	Not Detected		2.45E-001
CS-134	Not Detected		4.87E-002
CS-137	Not Detected		3.59E-002
EU-152	Not Detected		7.42E-002
EU-154	Not Detected		2.02E-001
EU-155	Not Detected		1.16E-001
FE-59	Not Detected		8.18E-002
GD-153	Not Detected		6.85E-002
HG-203	Not Detected		3.38E-002
I-131	Not Detected		2.90E-002
IR-192	Not Detected		2.80E-002
K-40	1.52E+001	2.13E+000	3.18E-001
MN-52	Not Detected		4.28E-002
MN-54	Not Detected		3.88E-002
MO-99	Not Detected		3.67E-001
NA-22	Not Detected		4.89E-002
NA-24	Not Detected		1.49E-001
ND-147	Not Detected		2.23E-001
NI-57	Not Detected		1.02E-001
RU-103	Not Detected		3.11E-002
RU-106	Not Detected		2.94E-001
SB-122	Not Detected		5.52E-002
SB-124	Not Detected		3.08E-002
SB-125	Not Detected		9.27E-002
SN-113	Not Detected		3.93E-002
SR-85	Not Detected		3.82E-002
TA-182	Not Detected		1.77E-001
TA-183	Not Detected		
TL-201	Not Detected		1.74E-001
Y-88	Not Detected		1.09E-001
ZN-65	Not Detected		3.48E-002
ZR-95	Not Detected		1.17E-001
			5.98E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program

8/27/02 7:45:43 PM

: SANDERS M (6135) -

Customer Sample ID

: 059706-003

Lab Sample ID

: 20119115

Sample Description

: 6644/1080-DF1-BH1-10-S

Sample Quantity

: 799.900 gram

Sample Date/Time

11:40:00 AM : 8/26/02

Acquire Start Date/Time : 8/27/02

6:05:30 PM

Detector Name

: LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. *****************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		4.47E-001
RA-226	1.233+000	4.81E-001	6.85E-001
	5.47E-001	8.78E-001	5.81E-002
PB-214		9.03E-002	5.46E-002
BI-214	5.19E-001	9.035-002	7.67E+000
PB-210	Not Detected		7.675,4000
TH-232	5.69E-001	2.77E-001	1.66E-001
RA-228	3.67E-001	1.32E-001	1.67E-001
AC-228	5,60E-001	1.20E-001	8.88E-002
TH-228	5.59E-001	1.98E-001	3.97E-001
RA-224	5.34E-001	1.48E-001	8.65E-002
PB-212	4.92E-001	7.57E-002	3.53E-002
BI-212	4.75E-001	2.51E-001	3.60E-001
TL-208	3.95E-001	8.31E-002	7.46E-002
U-235	7.77E-002	1.51E-001	1.77E-001
TH-231	Not Detected		5.95E+000
PA-231	Not Detected		1.23E+000
TH-227	Not Detected		2.81E-001
RA-223	Not Detected		1.06E-001
RN-219	Not Detected		3.33E-001
PB-211	Not Detected		7.51E-001
TL-207	Not Detected		1.37E+001
AM-241	Not Detected		1.46E-001
PU-239	Not Detected		3.17E+002
NP-237	Not Detected		1.67E+000
PA-233	Not Detected		5.10E-002
TH-229	Not Detected		1.71E-001

Nuclide	Activity	2-sigma	14Th 3
Name	(pCi/gram)	Error	MDA
	11 , 9-am ,	77177	(pCi/gram)
AG-108m	Not Detected		3.82E-002
AG-110m	Not Detected		2.54E-002
BA-133	Not Detected		3.85E-002
BE-7	Not Detected	~~	2.22E-001
CD-115	Not Detected		8.90E-002
CE-139	Not Detected		2.23E-002
CE-141	Not Detected		3.92E-002
CE-144	Not Detected		1.738-001
CM-243	Not Detected		1.56E-001
CO-56	Not Detected		3.20E-002
CO-57	Not Detected		2.18E-002
CO-58	Not Detected		3.18E-002
CO-60	Not Detected		3.29E-002
CR-51	Not Detected		2.02E-001
CS-134	Not Detected		4.26E-002
CS-137	Not Detected		2.96E-002
EU-152	Not Detected		6.55E-002
EU-154	Not Detected		1.76E-001
EU-155	Not Detected		9.80E-002
FE-59	Not Detected		7.62E-002
GD-153	Not Detected		5.76E-002
HG-203	Not Detected		2.76E-002
I-131	Not Detected		2.74E-002
IR-192	Not Detected		2.32E-002
K-40	1.43E+001	1.98E+000	2.46E-001
MN-52	Not Detected		3.85E-002
MN-54	Not Detected		3.19E-002
MO-99	Not Detected		3.24E-001
NA-22	Not Detected		4.12E-002
NA-24	Not Detected		1.46E-001
ND-147	Not Detected		1.87E-001
NI - 57	Not Detected		9.75E-0C2
RU-103	Not Detected		2.66E-002
RU-106	Not Detected		2.43E-001
SB-122	Not Detected		4.95E-002
SB-124	Not Detected		2.64E-002
SB-125 SN-113	Not Detected		7.36E-002
SR-85	Not Detected	70747-605	3.36E~002
	Not Detected		3.25E-002
TA-182	Not Detected		1.56E-001
TA-183	Not Detected		1.45E-001
TL-201 Y-88	Not Detected	*	9.39 E -002
I-88 ZN-65	Not Detected	~~	2.75E-002
ZR-95	Not Detected		1.04E-001
0K-90	Not Detected	~~	5.48E-002

8/27/02 9:28:02 PM

: SANDERS M (6135) Customer

: 059707-003 Customer Sample ID Lab Sample ID : 20119116

Sample Description : 6644/1080-DF1-BH2-5-S

: 738.100 gram

Sample Quantity
Sample Date/Time 1:05:00 Fm 7:47:49 PM : 8/26/02 Acquire Start Date/Time : 8/27/02

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Analyzed by:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. **********************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		4.83E-001
RA-226	1.62E+000	5.33E-001	7.22E-001
PB-214	5.93E-001	9.60E-002	6.59E-002
BI-214	5.14E-001	9.17E-002	5.95E-002
PB-210	Not Detected		8.58E+000
TH-232	6.70E-001	3.24E-001	1.90E-001
RA-228	6.39E-001	1.44E-001	1.56E-001
AC-228	6.32E-001	1.41E-001	1.19E-001
TH-228	5.41E-001	2.12E-001	4.74E-001
RA-224	8.59E-001	2.10E-001	8.26E-002
PB-212	6.49E-001	9.77E-002	3.57E-002
BI-212	7.73E-001	3.00E-001	3.92E-001
TL-208	5.59E-001	1.08E-001	8.97E-002
U-235	Not Detected	~==	1.93E-001
TH-231	Not Detected	~	6.46E+000
PA-231	Not Detected	~-~	1.45E+000
TH-227	Not Detected	*	3.18E-001
RA-223	Not Detected	~=	1.18E-001
RN-219	Not Detected	~	3.61E-001
PB-211	Not Detected		8.58E-001
TL-207	Not Detected		1.50E+001
AM-241	Not Detected	~~~_	1.65E-001
PU-239	Not Detected	~	3.42E+002
NP-237	Not Detected	~~~~~~	1.81E+000
PA~233	Not Detected		5.70E-002
TH-229	Not Detected	********	1.88E-001

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram }	Error	(pCi/gram)
	~		
AG-108m	Not Detected		4.25E-002
AG-110m	Not Detected		3.00E-002
BA-133	Not Detected		4.27E-002
BE - 7	Not Detected		2.48E-001
CD-115	Not Detected		1.01E-001
CE-139	Not Detected		2.45E-002
CE-141	Not Detected		4.38E-002
CE-144	Not Detected		1.87E-001
CM-243	Not Detected		1.72E-001
CQ-56	Not Detected		3.58E-002
CO-57	Not Detected		2.36E-002
CO-58	Not Detected		3.37E-002
CO-60	Not Detected		3.74E-002
CR-51	Not Detected		2.30E-001
CS-134	Not Detected		4.56E-002
CS-137	Not Detected		
EU-152	Not Detected		3.39E-002 7.10E-002
EU-154	Not Detected		
EU-155	Not Detected		1.99E-001
FE-59	Not Detected		1.07E-001
GD-153	Not Detected		7.96E-002
HG-203	Not Detected		6.51E~002
I-131	Not Detected		3.18E-002
, IR-192	Not Detected		3.00E-002
K-40	1.56E+001	2.16E+000	2.65E-002
MN-52	Not Detected	2,105+000	3.17E-001
MN-54	Not Detected		3.90E-002
MO-99	Not Detected		3.67E~002
NA-22	Not Detected		3.43E-001
NA-24	Not Detected		4.67E-002
ND-147	Not Detected		1.39E-001
NI-57	Not Detected		2.27E-001
RU-103	Not Detected		9.41E-002
RU-106	Not Detected	~~~~~	2.78E-002
SB-122	Not Detected		2.99E-001
SB-124	Not Detected		5.55E-002
SB-125	Not Detected		3.03E-002
SN-113	Not Detected		8.36E-002
SR-85	Not Detected		3.57E-002
TA-182	Not Detected		3.69E-002
TA-183	Not Detected		1.68E-001
TL-201			1.66E-001
Y-88	Not Detected Not Detected		1.03E-001
ZN-65	_		2.77E-002
ZR-95	Not Detected Not Detected		1.14E-001
	wor beredred		6.25E-002

Radiation Protection Sample Diagnostics Program

8/27/02 11:10:21 PM

Customer : SANDERS M (6135)

Customer Sample ID : 059708-003 Lab Sample ID : 20119117

Sample Description : 6644/1080-DF1-BH2-10-S

Sample Quantity : 746.700 gram

Sample Date/Time : 8/26/02 1:20:00 PM Acquire Start Date/Time : 8/27/02 9:30:08 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 -214 214 FB-210	Not Detected 1.24E+000 6.15E-001 5.53E-001 Not Detected	5.15E-001 9.85E-002 9.35E-002	4.75E-001 7.44E-001 6.63E-002 4.55E-002 7.78E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	5.46E-001 3.67E-001 Not Detected 5.36E-001 5.56E-001 5.12E-001 5.58E-001 4.48E-001	2.76E-001 1.28E-001 1.98E-001 1.59E-001 7.92E-002 2.61E-001 9.21E-002	1.97E-001 1.55E-001 1.94E-001 4.27E-001 1.10E-001 3.44E-002 3.59E-001 8.06E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	1.14E-001 Not Detected	1.58E-001	1.86E-001 5.80E+000 1.29E+000 2.89E-001 1.06E-001 3.71E-001 8.14E-001 1.42E+001
AM-241 PU-239 NP-237 PA-233	Not Detected Not Detected Not Detected Not Detected Not Detected		1.56E-001 3.18E+002 1.72E+000 5.20E-002 1.81E-001

lide	Activity	2-sigma	MDA
.me	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		4.09E-002
AG-110m	Not Detected		2.72E-002
- BA-133	Not Detected		3.93E-002
BE-7	Not Detected		2.36E-001
CD-115	Not Detected	~~~~~~	9.14E-002
CE-139	Not Detected		2.33E-002
CE-141	Not Detected		4.10E-002
CE-144	Not Detected		1.73E-001
CM-243	Not Detected		1.59E-001
CO-56	Not Detected		3.16E-002
CO-57	Not Detected		2.27E-002
CO-58	Not Detected		3.31E-002
CO-60	Not Detected		3.50E-002
CR-51	Not Detected		2.14E-001
CS-134	Not Detected		4.62E-002
CS-137	Not Detected		3.12E-002
EU-152	Not Detected		6.83E-002
EU-154	Not Detected		1.88E-001
EU-155	Not Detected		1.01E-001
FE-59	Not Detected		7.68E-002
GD-153	Not Detected		6.08E-002
HG-203	Not Detected		2.91E-002
J-131	Not Detected		2.76E-002
} 192	Not Detected		2.37E-002
40	1.34E+001	1.88E+000	2.77E-001
MN-52	Not Detected		4.08E-002
MN-54	Not Detected		3.39E-002
MO-99	Not Detected		3.32E-001
NA-22	Not Detected		4.49E-002
NA-24	Not Detected		1.52E-001
ND-147	Not Detected		2.02E-001
NI-57	Not Detected		9.84E-002
RU-103	Not Detected		2.77E-002
RU-106	Not Detected		2.73E-001
SB-122	Not Detected		5.38E-002
SB-124	Not Detected		2.79E-002
SB-125	Not Detected		8.47E-002
SN-113	Not Detected		3.31E-002
SR-85	Not Detected		3.34E-002
TA-182	Not Detected		1.67E-001
TA-183	Not Detected		1.59E-001
TL-201	Not Detected	·····························	1.01E-001
Y-88	Not Detected		2.63E-002
ZN-65	Not Detected		1.14E-001
ZR-95	Not Detected		5.74E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 8/28/02 12:52:39 AM

Reviewed by: : SANDERS M (6135) Reviewed by:

Customer

: SANDERS M : 059709-003 Customer Sample ID Lab Sample ID : 20119118

Sample Description : 6644/1080-DF1-BH3-4 Acquire Start Date/Time: 8/27/02 11:12:26 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.32E+000 6.95E-001 6.25E-001 Not Detected	5.01E-001 1.09E-001 1.08E-001	5.15E-001 7.01E-001 6.52E-002 6.16E-002 9.01E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	6.50E-001 5.93E-001 6.06E-001 8.63E-001 7.31E-001 6.52E-001 7.26E-001 5.05E-001	3.23E-001 1.42E-001 1.37E-001 2.54E-001 1.95E-001 9.91E-002 2.64E-001	2.18E-001 1.52E-001 1.11E-001 4.54E-001 1.07E-001 3.79E-002 3.20E-001 9.15E-002
U-235 TH-231 FA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected		2.03E-001 6.53E+000 1.35E+000 3.35E-001 1.22E-001 4.05E-001 6.87E-001 1.57E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		1.71E-001 3.67E+002 1.95E+000 5.65E-002 1.97E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
AG-110m	Not Detected		4-45E-002
BA-133	Not Detected		3.03E-002
BE-7			4.50E-002
CD-115	Not Detected		2.47E-001
CE-139	Not Detected		1.06E-001
CE-141	Not Detected		2.53E-002
CE-144	Not Detected	~- -	4.61E-002
	Not Detected		1.91E-001
CM-243	Not Detected		1.80E-001
CO-56	Not Detected		3.63E-002
CO-57	Not Detected		2.46E-002
CO-58	Not Detected		3.33E-002
CO-60	Not Detected		3.93E-002
CR-51	Not Detected		2.35E-001
CS-134	Not Detected		4.97E-002
CS-137	Not Detected		3.51E-002
EU-152	Not Detected		7.38E-002
EU-154	Not Detected		2.07E-001
EU-155	Not Detected		1.13E-001
FE-59	Not Detected		8.63E-002
GD-153	Not Detected		6.60E-002
HG-203	Not Detected		3.16E-002
<u>I</u> -131	Not Detected		3.12E-002
IR-192	Not Detected		2.70E-002
K-40	1.38E+001	1.94E+000	2.88E-001
MN-52	Not Detected		4.29E-002
MN-54	Not Detected		3.86E-002
MO-99	Not Detected		3.92E-001
NA-22	Not Detected		5.01E-002
NA-24	Not Detected		1.93E-001
ND-147	Not Detected		2.30E-001
NI-57	Not Detected		1.02E-001
RU-103	Not Detected		3.13E-002
RU-106	Not Detected		3.09E-001
SB-122	Not Detected	~	6.25E-002
SB-124	Not Detected		2.87E-002
SB-125	Not Detected		
SN-113	Not Detected	**-~	8.95E-002
SR-85	Not Detected	~~~~~~~	3.86E-002
TA-182	Not Detected	~~~~~~	3.64E-002
TA-183	Not Detected	~~~~~~	1.78E-001
TL-201	Not Detected	~=======	1.76E-001
Y-88	Not Detected	*	1.11E-001
ZN-65	Not Detected		3.20E-002
ZR-95	Not Detected Not Detected	*****	1.22E-001
- -	Hor Decedied	*	6.16E-002

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 8/28/02 2:34:58 AM

* Analyzed by: Reviewed by: Analyzed by: Analyzed by: Reviewed by: Analyzed by: Reviewed by: Rev

: SANDERS M (6135)

Customer Sample ID : 059710-003 Lab Sample ID : 20119119

: 6644/1080-DF1-BH3-11-S Sample Description

Sample Quantity : 741.300 gram Sample Date/Time : 8/26/02 2:10: 2:10:00 PM Acquire Start Date/Time: 8/28/02 12:54:44 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated. ************

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	8.68E-001	3.03E-001	4.17E-001
RA-226	1.05E+000	4.60E-001	6.67E-001
PB-214	5.32E-001	8.58E-002	5.82E-002
BI-214	5.40E-001	9.39E-002	5.52B-002
/PB-210	Not Detected		8.01E+000
TH-232	4.67E-001	2.37E-001	1.71E-001
RA-228	5.13E-001	1.29E-001	1.58E-001
AC-228	Not Detected		2.04E-001
TH-228	5.97 E-001	2.13E-001	4.42E-001
RA-224	7.03E-001	1.80E-001	7.48E-002
PB-212	5.55 E-001	8.50E-002	3.64E-002
BI-212	5.26 E -0 01	2.75E-001	3.93 E- 001
TL-208	4.81E-001	9.60E-002	8.05E-002
U-235	2.57E-001	1.64E-001	1.96E-001
TH-231	Not Detected		6.10E+000
PA-231	Not Detected		1.30E+000
TH-227	Not Detected		3.02E~001
RA-223	Not Detected		1.12E~001
RN-219	Not Detected	* * *	3.70E-001
PB-211	Not Detected		8.29E-001
TL-2,07	Not Detected		1.38E+001
AM-241	Not Detected	*	1.61E~001
PU-239	Not Detected		3.33E+002
NP-237	Not Detected		1.76E+000
PA-233	Not Detected		5.57E-002
TH-229	Not Detected		1.80 E -001

▶ Muclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
			(pcr/gram /
AG-108m	Not Detected		4.15E-002
AG-110m	Not Detected		2.79E-002
BA-133	Not Detected		4.00E-002
BE-7	Not Detected		2.23E-001
CD-115	Not Detected		9.66E-002
CE-139	Not Detected	+	2.30E-002
CE-141	Not Detected		4.36E-002
CE-144	Not Detected		1.76E-001
CM-243	Not Detected		1.56E-001
CO-56	Not Detected		3.32E-002
CO~57	Not Detected		2.25E-002
CQ-58	Not Detected		3.64E-002
CO-60	Not Detected		3.83E-002
CR-51	Not Detected		2.27E-001
CS-134	Not Detected		4.42E-002
CS-137	Not Detected		3.14E-002
EU-152	Not Detected		6.75E-002
EU-154	Not Detected		1.92E-001
«•EU-155	Not Detected		1.04E-001
FE-59	Not Detected		7.75E-002
GD-153	Not Detected		6.09E-002
HG-203	Not Detected		2.85E-002
I-131	Not Detected		2.90E-002
IR-192	Not Detected		2.57E-002
K-40	1.48E+001	2.06E+000	2.50E-001
MN-52	Not Detected		3.91E-002
MN-54	Not Detected		3.50E-002
MO-99	Not Detected		3.51E-001
NA-22	Not Detected		4.59E-002
NA-24	Not Detected		1.82E-001
ND-147	Not Detected		2.13E-0 0 1
NI-57	Not Detected		1.09E-001
RU-103 RU-106	Not Detected		2.79E-002
SB-122	Not Detected		2.66E-001
SB-122	Not Detected		5.63E-002
SB-124 SB-125	Not Detected Not Detected		2.64E-002
SN-113			8.28E-002
SR-85	Not Detected		3.63E-002
TA-182	Not Detected		3.34E-002
TA-182	Not Detected		1.69E-001
TL-201	Not Detected Not Detected		1.68E-001
Y-88			1.05E-001
ZN-65	Not Detected Not Detected		2.97E-002
ZR-95	Not Detected Not Detected		1.14E-001
	TOO DEFECTED		5.72E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 8/28/02 6:54:27 AM

Reviewed by: : SANDERS M (6135)

Customer Sample ID : LAB CONTROL SAMPLE USING CG-134

Lab Sample ID : 20119122

Sample Description : MIXED GAMMA STANDARD CG-134

: 1.000 Each

Sample Quantity Sample Date/Time : 11/01/90 12:00:00 PM Acquire Start Date/Time : 8/28/02 6:44:11 AM

: LABC2 Detector Name

Elapsed Live/Real Time : 600 / 604 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/Each)	Error	(pCi/Each)
			4 050 000
U-238	Not Detected		4.05E+003
RA-226	Not Detected		5.69E+003
PB-214	Not Detected	· - - -	5.78E+002
BI-214	Not Detected		4.56E+002
PB-210	Not Detected		2.69E+005
1	_		
TH-232	Not Detected	- -	1.86E+003
RA-228	Not Detected		1.72E+003
AC-228	Not Detected		1.03E+003
TH-228	Not Detected		4.29E+005
RA-224	Not Detected		1.66E+004
PB-212	Not Detected		3.23E+004
BI-212	Not Detected		2.08E+005
TL-208	Not Detected		5.15E+0 04
U-235	Not Detected		1.51E+003
TH-231	Not Detected		7.08E+004
PA-231	Not Detected		1.26E+004
TH-227	Not Detected		2.54E+003
RA-223	Not Detected		1.00E+026
RN-219	Not Detected		5.62E+003
PB-211	Not Detected		1,27E+004
TL-207	Not Detected		1.66E+005
AM-241	8.14E+004	1.21E+004	4.00E+003
PU-239	Not Detected	202221404	2.69E+006
NP-237	Not Detected		1.43E+004
PA-233	Not Detected		5.21E+002
TH-229	Not Detected		1.52E+003

Nuclide Name	Activity (pCi/Each)	2-sigma Error	MDA (pCi/Each)
AG-108m	Not Detected		2.28E+002
AG-110m	Not Detected		2.33E+008
BA-133	Not Detected		7.80E+002
BE-7	Not Detected		1.00E+002
CD-115	Not Detected		1.00E+026
CE-139	Not Detected		5.33E+011
CE-141	Not Detected		
CE-144	Not Detected		1.00E+026
CM-243	Not Detected		5.59E+007
CO-56	Not Detected		1.88E+003
CO-57	Not Detected		1.78E+019
CO-58	Not Detected		1.20E+007
CO-60	7.90E+004	1.03E+004	4.95E+020
CR-51	Not Detected	1.038+004	6.71E+002
CS-134	Not Detected		1.00E+026
CS-137	7.15E+004	9.04E+003	1.17E+004
EU-152	Not Detected	J.04E+003	2.84E+002
EU-154	Not Detected		1.09E+003
EU-155	Not Detected		2.54E+003
FE-59	Not Detected		4.91E+003
GD-153	Not Detected		1.00E+026
HG-203	Not Detected		1.54E+008
I-131			1.00E+026
IR-192	Not Detected Not Detected		1.00E+026
K-40	Not Detected		9.71E+019
MN-52	Not Detected		1.18E+003
MN-54	Not Detected		1.00E+026
MO-99	Not Detected		3.57E+006
NA-22	Not Detected		1.00E+026
NA-24	Not Detected		3.68E+003
ND-147	Not Detected		1.00E+026
NI-57	Not Detected		1.00E+026
RU-103	Not Detected		1.00E+026
RU-106	Not Detected		1.00E+026
SB-122	Not Detected		7.41E+006
SB-124	Not Detected		1.00E+026
SB-125	Not Detected		1.00E+026
SN-113	Not Detected		1.94E+004
SR-85	Not Detected		7.35E+013
TA-182	Not Detected		1.00E+026
TA-183	Not Detected		1.56E+014
TL-201	Not Detected	******	1.00E+026
Y-88	Not Detected	*****	1.00E+026
ZN-65	Not Detected Not Detected		2.14E+014
ZR-95			1.20E+008
	Not Detected		1.00E+026

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program

Quality Assurance Report

Report Date : 8/28/02 6:54:32 AM

QA File : C:\GENIE2K\CAMFILES\LCS2.QAF

Analyst : RPREESE Sample ID : 20119122

Sample Quantity : 1.00 Each

Sample Date : 11/01/90 12:00:00 PM
Measurement Date : 8/28/02 6:44:11 AM
Elapsed Live Time : 600 seconds
Elapsed Real Time : 604 seconds

Parameter	Mean	1S Error	New Value	<	LU	:	SD	:	UD	:	BS	>
				-								
AM-241 Activity CS-137 Activity	8.247E-002	3.739E-003	8.135E-002	<		:/		:		:	>	>
CS-137 Activity	7.191E-002	3.244E-003	7.149E-002	<	レ	:		:		:	:	>
CO-60 Activity	8.019E-002	3.861E-003	7.963E-002	<		:		:		:	;	>

Flags Key: LU = Boundary Test (Ab = Above , Be = Below)
SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)
UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by: 1828

8/28/02 7:00:14 AM

* Analyzed by: 728/02 Reviewed by: 728/02

: SANDERS M (6135)

Customer Sample ID

: LAB_CONTROL_SAMPLE_USING_CG-134

Lab Sample ID

: 20119123

Sample Description

: MIXED GAMMA STANDARD CG-134

Sample Quantity : 1.000 Each Sample Date/Time : 11/1/90 12:00:00 PM

Acquire Start Date/Time: 8/28/02 6:50:01 AM Detector Name : LAB01

Elapsed Live/Real Time : 600 / 604 seconds

Comments:

Nuclide Name			MDA (pCi/Each)
U-238	Not Detected		2.67E+003
RA-226	Not Detected		5.60E+003
PB-214	Not Detected		6.61E+002
BI-214	Not Detected		6.12E+002
PB-210	Not Detected		9.85E+004
TH-232	Not Detected		2.09E+003
RA-228	Not Detected		2.44E+003
AC-228	Not Detected		1.46E+003
TH-228	Not Detected		4.87E+005
RA-224	Not Detected		2.28E+004
PB-212	Not Detected		3.23E+004
BI-212	Not Detected		2.98E+005
TL-208	Not Detected		6.28E+004
U-235	Not Detected		1.38E+003
TH-231	Not Detected		4.08E+004
PA-231	Not Detected		1.39E+004
TH-227	Not Detected		2.55E+003
RA-223	Not Detected		1.00E+026
RN-219	Not Detected		6.72E+003
PB-211	Not Detected		1.52E+004
TL-207	Not Detected		2.34E+005
AM-241	8.92E+004	1.29E+004	1.89E+003
PU-239	Not Detected		2.35E+006
NP-237	Not Detected		1.22E+004
PA-233	Not Detected		5.88E+002
TH-229	Not Detected		1.25E+003

uclide Name	Activity (pCi/Each)	2-sigma Error	MDA (pCi/Each)
AG-108m	Not Detected		2 277 . 222
AG-110m	Not Detected		3.27E+002
BA-133	Not Detected		2.71E+008
BE-7	Not Detected		9.06E+002
CD-115	Not Detected		1.00E+026
CE-139	Not Detected		1.00E+026
CE-141	Not Detected		4.98E+011
CE-144	Not Detected		1.00E+026
CM-243	Not Detected		4.95E+007
CO-56	Not Detected		2.10E+003
CO-57	Not Detected		2.38E+019
CO-58	Not Detected		1.02E+007
CO-60	7.84E+004	1.04E+004	6.61E+020
CR-51	Not Detected	1.046+004	9.72E+002
CS-134	Not Detected		1.00E+026
CS-137	6.74E+004	8.56E+003	1.50E+004
EU-152	Not Detected	0.000+003	3.92E+002
EU-154	Not Detected		9.28E+002
EU-155	Not Detected		3.68E+003
FE-59	Not Detected		4.16E+003
GD-153	Not Detected		1.00E+026
HG-203	Not Detected		1.02E+008
I-131	Not Detected		1.00E+026
TR-192	Not Detected		1.00E+026
1-40	Not Detected		1.12E+020
MN-52	Not Detected		1.31E+003
MN-54	Not Detected		1.00E+026
MO-99	Not Detected		4.80E+006
NA-22	Not Detected		1.00E+026
NA-24	Not Detected		4.56E+003
ND-147	Not Detected		1.00E+026
NI-57	Not Detected		1.00E+026
RU-103	Not Detected		1.00E+026
RU-106	Not Detected		1.00E+026
SB-122	Not Detected		8.73E+006
SB-124	Not Detected		1.00E+026
SB-125	Not Detected		1.00E+026
SN-113	Not Detected		2.32E+004
SR-85	Not Detected		8.83E+013
TA-182	Not Detected		1.00E+026
TA-183	Not Detected		2.13E+014
TL-201	Not Detected	******	1.00E+026
Y-88	Not Detected		1.00E+026
ZN-65	Not Detected		2.21E+014
ZR-95	Not Detected		1.74E+008
	nou buttued		1.00E+026

Sandia National Laboratories Radiation Protection Sample Diagnostics Program

Quality Assurance Report *

Report Date : 8/28/02 7:00:18 AM

: C:\GENIE2K\CAMFILES\LCS1.QAF

QA File Analyst : RPREESE : 20119123 Sample ID

Sample Quantity : 1.00 Each
Sample Date : 11/1/90 12:00:00 PM
Measurement Date : 8/28/02 6:50:01 AM
Elapsed Live Time : 600 seconds
Elapsed Real Time : 604 seconds

Parameter	Mean	1S Error	New Value	<	LU :	SD :	UD	: F	3S >	>
										•
AM-241 ACTIVITY	8.570E-002	3.463E-003	8.924E-002	<	:	سنر	- :	i	>	
AM-241 ACTIVITY CS-137 Activity	6.836E-002	1.367E-003	6.744E-002	<	V	:	:	;	>	
CO-60 Activity	7.657E-002	3.478E-003	7.643E-002	<	:	:	:	:	>	

ags Key:	SD = Sample Driven N-Sigma Test		(In =		Ac	=	Action)
	UD =	User Driven N-Sigma Test	(In =	Investigate,	Аc	=	Action)
	BS =	Measurement Bias Test	(In =	Investigate,	Ac	=	Action)

Reviewed by: