University of New Mexico UNM Digital Repository

Regulatorily Completed

Sandia National Labs/NM Technical Reports

9-1-2005

Justification for Class III Permit Modification September 2005, DSS Site 1081, Operable Unit 1295, Building.6650 Septic System at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl_complete

Recommended Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification September 2005, DSS Site 1081, Operable Unit 1295, Building.6650 Septic System at Technical Area III." (2005). https://digitalrepository.unm.edu/snl_complete/166

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 2/2)

Summary of Data Used for NFA Justification

- Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, gross alpha/beta activity, and radionuclides by gamma spectroscopy.
- There were VOCs detected at the 19 sites, SVOCs were detected at 15 of the sites, PCBs were detected at 9 sites, and cyanide was identified at 14 of the sites. HE compounds were detected at one of the sites (AOC 1113)
- Barium was detected at concentrations above the background value at six sites. Chromium and arsenic were detected at concentrations above background values at five sites. Silver was detected at concentrations above the background value at three sites, lead was detected above the background value at two sites, and mercury was detected above the background value at one site. No other metals were detected above background concentrations.
- Uranium-235 was detected at an activity slightly above the background activity at 5 of the 19 sites and, although not detected, the MDA for U-235 exceeded the background activity at 14 sites and the MDA for U-238 exceeded the background activity at one site. Gross alpha activity was slightly above background activity at five of the 19 sites, and gross beta activity was above the background activity at one site.
- All confirmatory soil sample analytical results for each site were used for characterizing that site, for performing the risk screening assessment, and as justification for the NFA proposal for the site.

Recommended Future Land Use

This work supported by the

United States Department of Energy under contract DE-AC04-94185000

Industrial land use was established for these 19 AOC sites.

Results of Risk Analysis

- Risk assessment results for industrial and residential land-use scenarios are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process."
- Because COCs were present in concentrations greater than background-screening levels or because constituents were present that did not have background-screening numbers, it was necessary to perform risk assessments for these all of these AOCs. The risk assessment analysis evaluated the potential for adverse health effects for industrial and residential land-use scenarios.
- The maximum concentration value for lead was 22.2 J mg/kg at AOC 1081 and 11.9 mg/kg at AOC 1087: these exceed the background value of 11.8 mg/kg. The EPA intentionally does not provide any human health toxicological data on lead; therefore, no risk parameter values could be calculated. The NMED guidance for lead screening concentrations for construction and industrial land-use scenarios are 750 and 1,500 mg/kg, respectively. The EPA screening guidance value for a residential land-use scenario is 400 mg/kg. The maximum concentration for lead at these two sites are less than all the screening values; therefore, lead was eliminated from further consideration in the human health risk assessment for each
- The non-radiological total human health HIs for 18 of the 19 AOCs are below NMED guidelines for a residential land-use scenario.
- For four sites, the total estimated excess cancer risks are at or slightly above the residential land-use scenario guideline. However, the incremental excess cancer risk values for these four sites are below the NMED residential land-use scenario guideline.
- For one of the 19 sites (AOC 1081), the total HI and the estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario due to elevated levels of arsenic and silver. However, the total HI and estimated excess cancer risk values are below the NMED guidelines for the industrial land-use scenario.
- The total human health TEDEs for industrial land-use scenarios ranged from 0.001 to 0.46 mrem/yr, all of which are substantially below the EPA numerical guideline of 15 mrem/yr. The total human health TEDEs for residential land-use scenarios ranged from 0.0052 to 0.12 mrem/yr, all of which are substantially below the EPA numerical guideline of 75 mrem/yr. Therefore, these AOCs are eligible for unrestricted radiological release.
- Using the SNL predictive ecological risk and scoping assessment methodologies, it was concluded that a complete ecological pathway for each of 18 of the sites was not associated with the respective COPELs for that site. Thus, a more detailed ecological risk assessment to predict the level of risk was not deemed necessary for these sites.
- Ecological risks associated with AOC 1084 were predicted incorporating potential receptors and site-specific COPECs. The HQ values predicted were less than one, with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52%) of the HQ values. Therefore, ecological risks associated with this site are expected to be low.
- In conclusion, human health and ecological risks are acceptable for 18 sites for a residential land-use scenario and for all 19 for an industrial land-use scenario per NMED guidance. Thus, 18 of these sites are proposed for CAC without institutional controls, and one site (AOC 1081) is proposed for CAC with institutional controls.

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

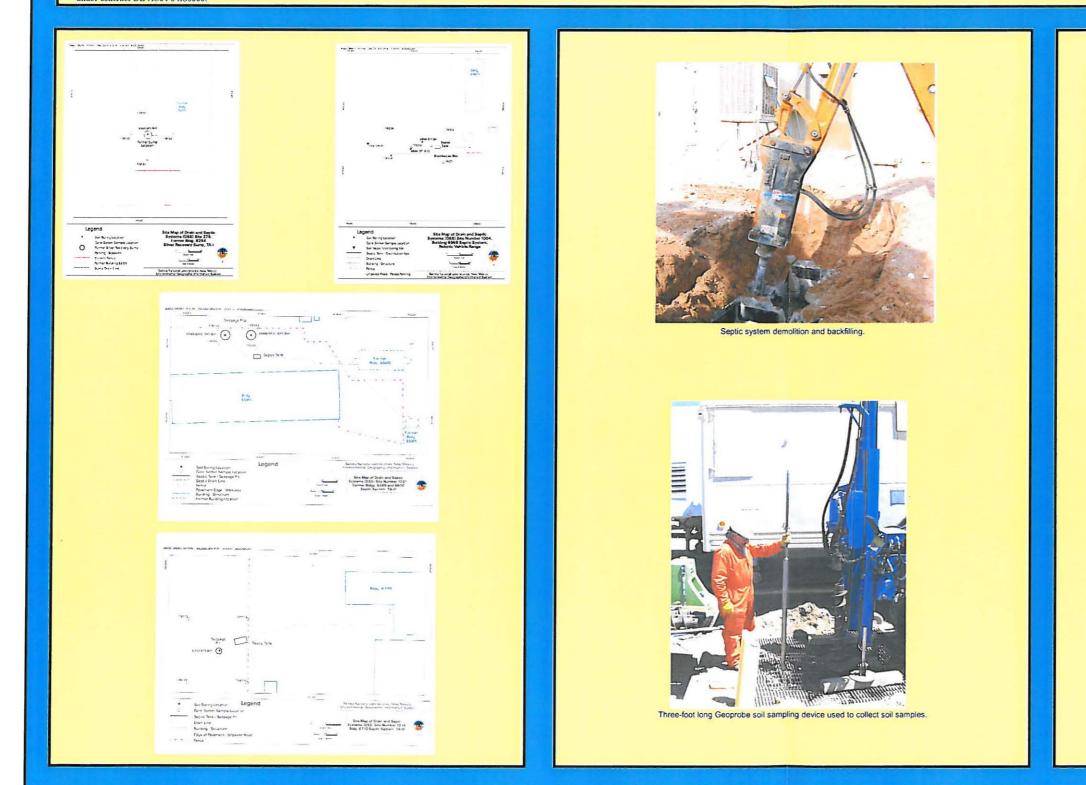
		Residential Land-Use Scenario		
AOC Number	Site Name	Total Hazard Index	Excess Cancer Risk	
276	Former Bldg 829X Silver Recovery Sump	0 27	2E-5 Total ^a /3.95E-6 Incrementa	
1004	Bldg 6969 Septic System	0.08	2E-6 Total	
1031	Former Bldgs. 6589 and 6600 Septic System	0.25	1E-5 Total ^a /2.55E-6 Incremental	
1034	Bldg 6710 Septic System	0.00	2E-9 Total	
1035	Bldg 6715 Septic System	0.04	3E-9 Total	
1036	Bldg 6922 Septic System	0.26	1E-5 Total ^a /8.35E-7 Incremental	
1052	Bldg 803 Seepage Pit	0.00	2E-6 Total	
1078	Bldg 6640 Septic System	0.27	1E-5 Total ² /3.72E-7 Incremental	
1079	Bldg 6643 Septic System	0.00	3E-8 Total	
1080	Bldg 6644 Septic System	0.00	4E-8 Total	
1084	Bldg 6505 Septic System	0.08	None	
1087	Bldg 6743 Seepage Pit	0.00	4E-9 Total	
1092	MO 228-230 Septic System	0.06	None	
1098	TA-V Plenum Rooms Drywell	0.03	3E-7 Total	
1102	Former Bldg 889 Septic System	0.00	IE-10 Total	
1104	Bldg 6595 Seepage Pit	0.00	2E-6 Total	
1113	Bldg 6597 Drywell	0.14	1E-7 Total	
1120	Bldg 6643 Drywell	0.12	1E-6 Total	
NMED Gu	idance for Residential Land Use	< 1	<1E-5	
AOC		Indus	trial Land-Use Scenario	
Number	Site Name		Excess Cancer Risk	

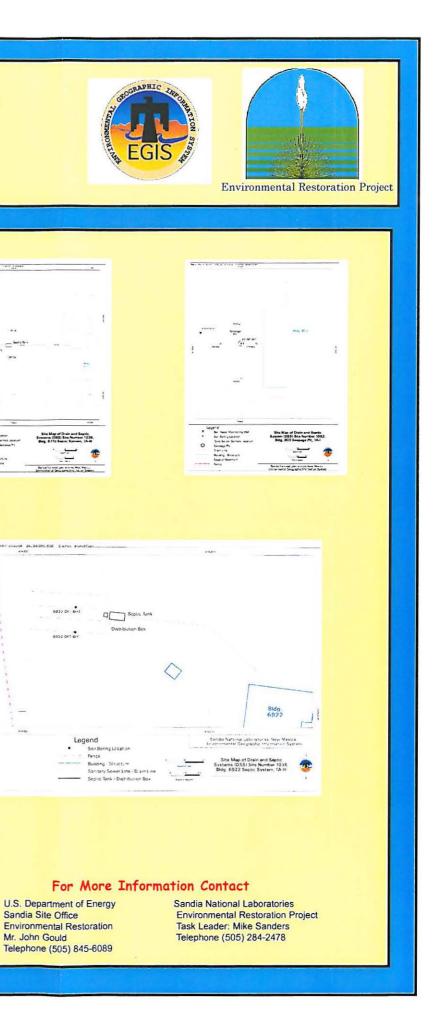
AOC		Industrial Land-Use Scenario	
Number	Site Name		Excess Cancer Risk
1081	Bldg 6650 Septic System	0.39	5E-6 Total
NMED Guidance for Industrial Land Use		<]	<1E-5

Maximum value exceeds NMED guidance for specified land-use scenario, therefore, incremental values are shown

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

For More Information Contact


U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089


Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

Drain and Septic Systems (DSS) Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035 1036, 1052

This work supported by the United States Department of Energy under contract DE·AC04:94185000.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 1/2)

This work supported by the United States Department of Energy under contract DE-AC04-94I85000.

Site History

Drain and septic system site histories for the 19 AOCs are as follows:

4OC Number	Site Name	Location	Year Building and System Built	Year Drain or Septic System Abandoned	Year(s) Septic Jank Effluent Sampled	Year Septic Tank Pumped For the law Time
276	1 otmer Bidg 829X Silver Recovery Sump	14.1	1048 1973	1994	No septic tank at this site	NA
1004	Bldg 6969 Septic System	Robotic Vehicle Range	1985	System is active	Periodically since 1992	Perindically
1031	Former Bidgs 6589 and 6600 Septic System	TAIII	1967	1991 (septic tank and seepage pits backfilled in 2002)	1992, 1094 1992, 1094	1996
1014	Bidg 6710 Septic System	TA-NI	1958	Farly 1990s	1990 1991,	1996
1035	Bldg 6715 Septic System	TA-IB	1962	Farly 1990s	1990-1991.	4991
1036	Bidg 6922 Septie System	1 A III	1955	1991	1990 1991. 1992, 1995 2005	2005
1052	Bidg 803 Seepage Pit	14-1	1957	Luknown	No septic tank at this site	NA
1078	Bldg 6640 Septic System	ТАШ	1959	1901:	1990-1991	Unknown (backfilled n 1991)
1079	Bldg 6643 Septic System	тали	1989	1901	1000 1001 1003 1004 2005	2005
1080	Bldg 6644 Septic System	LA-III	1989	1991	1993-1091	1996
1081	Bldg 6650 Septic System	TA JIL	1967 (Southern System) Early 1980s (northern system)	1601	(992-1995 (stuth septic tank) 2004 (north septic tank)	1996 (south septe tank 1 nktivitii (netth septe tank)
1084	Bldg 6505 Septic System	TA-III	1454	1661	10001001	Unknown thackfulied before 20(0)
1087	Bldg 6743 Seepage Pit	11.11	1967	2004 2005	No septic tank at this sate	NA
092	MO 228-230 Septic System	1A III	1988	1001	1990 1991	Unknown (baskfilled before 2007))
099	TA-V Plenum Rooms Drywell	14-1	1958	Latis 1990s	No septic tank at this site	NA
102	Former Bldg 889 Septic System	fA I	Early 1950s	Early 1990s	1993 1996	Unknown (removed prior to 1990)
104	Bldg 6595 Scepage Pit	TAV	1966	Larly 1990s	No septic tank, at this site	NA .
113	Bldg 6597 Drywell	IAV	1971	Prior to 2002	Ne septic tank at this site	NA
120	Bldg 6643 Drywell	ТАШ	1080	1601	No septic tank	NA

Depth to Groundwater

Depth to groundwater at these 19 AOCs is as follows:

AOC Number	Site Name	Location	Groundwater Depth (ft bgs)
276	Former Bldg 829X Silver Recovery Sump	TA-1	555
1004	Bldg 6969 Septic System	Robotic Vehicle Range	548
1031	Former Bldgs. 6589 and 6600 Septic System	TA-III	486
1034	Bldg 6710 Septic System	TA-III	470
1035	Bldg 6715 Septic System	TA-III	470
1036	Bldg 6922 Septic System	TA-III	490
1052	Bldg 803 Seepage Pit	TA-I	552
1078	Bldg 6640 Septic System	TA-III	476
1079	Bldg 6643 Septic System	TA-III	487
1080	Bldg 6644 Septic System	TA-III	480
1081	Bldg 6650 Septic System	TA-III	480
1084	Bldg 6505 Septic System	TA-III	508
1087	Bldg 6743 Seepage Pit	TA-III	461
1092	MO 228-230 Septic System	TA-III	488
1098	TA-V Plenum Rooms Drywell	TA-V	509
1102	Former Bldg 889 Septic System	TA-I	535
1104	Bldg 6595 Seepage Pit	TA-V	507
1113	Bldg 6597 Drywell	TA-V	515
1120	Bldg 6643 Drywell	TA-III	483

Constituents of Concern

- VOCs
- SVOCs PCBs
- HE Compounds
- Metals
- Cyanide
- Radionuclides

Investigations

- NMED.

The years that site-specific characterization activities were conducted and soil sampling depths at each of these 19 AOC sites are as follows:

-	
AOC Number 276	Site Forme 829X 1
1004	Recove Bldg 6 Septic
1031	Forme: 6589 a
1034	Septic Bldg to Septic
1035	Bldg 6 Septic
1036	Bldg 6 Septic
1052	Bldg 8 Seepag
1078	Bldg 6 Septic
1079	Bldg 6 Septic
1080	Bldg 6 Septic
1081	Bldg 6 Septic
1084	Bldg 6
1087	Septic Bldg 6 Septic
1092	MO 22

1092	NIC) 22
	Septic 1
1098	TA-VE
	Rooms
1102	Former
	889 Sc
	System
1104	Bldg 6
	Seepag
1113	Bldg 6
	Drywel
1120	Bldg 66

Mr. John Gould

A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil vapor samplers, and soil borings.

Ten of the 19 AOCs were selected by NMED for passive soil-vapor sampling to screen for VOCs; no significant VOC contamination was identified at any of the ten sites.

Soil samples were collected from directly beneath drainfield drain lines, seepage pits, and drywells to determine if COCs were released to the environment from drain systems.

Four of the sites were selected by NMED for active soil vapor sampling to screen for VOCs. Each of the active soil-vapor monitoring wells was 150 ft deep with vapor sampling ports at 5, 20, 70, 100, and 150-ft bgs. The VOC concentrations were significantly lower than the 10 ppmv action level established by

Name	Buried Components (Drain Lines, Drywells) Located With a Backhoe	Soil Sampling Beneath Drainlines. Seepage Pits. Drywells	Type(s) of Drain System, and Soil Sampling Depths (ft bgs)	Passive Soil Vapor Sampling	Active Soil Vapo Monitor Well Installation and Sampling
r Bldg Silver Srv Sump	Nene	1994, 2002	Silver Recovery Sump 8, 13	2002	None
969 System	2002	2002	Drainfield 8_13	2002	2003
Bldgs nd 6600 System	2002	2002	Seepage Pits, 15, 20	2002	None
710 System	None	2002	Scepage Pit 14, 19	2002	Nene
715 System	None	2002	Scepage Pit 11, 16	2002	None
922 System	1007	1998, 1999	Dramfield 5, 10	None	None
03 c Pit	None	2002	Seepage Pit 22, 27	2002	2003
640 System	2002	2002	Drainfield 5, 10	None	None
543 System	2002	2002	Dramfield 11, 16	None	None
644 System	2002	20012	Dramfield Borchole 1 & 2 & 5 10 Borchole 3 = 6, 11	None	None
650 System	2003 (nerth septic tank)	2002	South seepage pit 10, 12, 15, 17 North seepage pit 10, 12, 15, 17, 20, 24 25	2002	2003
505 System	2002	2002	Drainfield 3, 8	21812	None
43 System	None	2002	Scepage Pit 8, 13	2002	None
8-230 System	2002/2003	2002	Drainfield 6,11	None	2003
lenum Drywell	None	2002	Drywell 10, 15	None	Noac
Bidg	1999 2002	2002	Seepage Pit 25:30	None	None
s95 e Pit	None	2002	Seepage Pit 11 16	None	None
597 1	2002	2002	Drywell 5, 10	None	None
ыз 1	2002	2002	Drywell 8 13	2002	None

For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Telephone (505) 845-6089

Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

Sandia National Laboratories Justification for Class III Permit Modification September 2005 DSS Site 1081 Operable Unit 1295 Building 6650 Septic System at Technical Area III

CAC (SWMU Assessment Report) Submitted March 2005 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

CAC

National Nuclear Security Administration Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

DEC 1 6 2004

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Solid Waste Management Unit (SWMU) Assessment Reports and Proposals for Corrective Action Complete for Drain and Septic Systems (DSS) Sites 276, 1004, 1031, 1052, 1080, 1087, 1090, 1102, and 1113 at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518. These documents are compiled as DSS Round 7 and No Further Action (NFA) Batch 25.

This submittal includes descriptions of the site characterization work and risk assessments for the above referenced DSS Sites. The risk assessments conclude that for these sites: (1) there is no significant risk to human health under either the industrial or residential land-use scenarios; and (2) that there are no ecological risks associated with these sites.

Based on the information provided, DOE and Sandia are requesting a determination of Corrective Action Complete without controls for these DSS sites.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

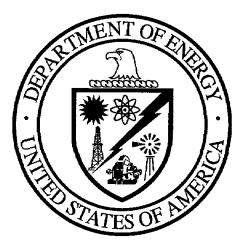
Potto Wognon

Patty Wagner Manager

Enclosure

Mr. J. Bearzi

cc w/enclosure: W. Moats, NMED-HWB (Via Certified Mail) L. King, EPA, Region 6 (Via Certified Mail) M. Gardipe, NNSA/SC/ERD C. Voorhees, NMED-OB Program Manager, NMED-OB


cc w/o enclosure: K. Thomas, EPA, Region 6 F. Nimick, SNL, MS 1089 D. Stockham, SNL, MS 1087 **B. Langko**f, SNL, MS 1087 M. Sanders, SNL, MS 1087 R. Methvin, SNL MS 1087 J. Pavletich, SNL MS 1087 A. Villareal, SNL, MS 1085 A. Blumberg, SNL, MS 1035 A. Blumberg, SNL, MS 1089 ESHSEC Records Center, MS 1087

Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR CORRECTIVE ACTION COMPLETE DRAIN AND SEPTIC SYSTEMS SITE 1081, BUILDING 6650 SEPTIC SYSTEM

March 2005

United States Department of Energy Sandia Site Office

TABLE OF CONTENTS

LIST (LIST (of tae of an <mark>i</mark>	BLES NEXES	BREVIATIONS	v vii		
1.0	PROJ	IECT BA	CKGROUND	1-1		
2.0	DSS	SITE 108	31: BUILDING 6650 SEPTIC SYSTEM	2-1		
	2.1 2.2		ary escription and Operational History			
		2.2.1 2.2.2	Site Description Operational History			
	2.3	Land U	lse	2-7		
		2.3.1 2.3.2	Current Land Use Future/Proposed Land Use			
3.0	INVE	INVESTIGATORY ACTIVITIES				
	3.1 3.2 3.3	Investig	ary gations 1 and 6—Septic Tank Sampling gation 2—Passive Soil-Vapor Sampling	3-1		
		3.3.1 3.3.2	Passive Soil-Vapor Sampling Methodology Soil-Vapor Survey Results and Conclusions			
	3.4	Investig	gation 3—Soil Sampling	3-3		
		3.4.1 3.4.2 3.4.3	Soil Sampling Methodology Soil Sampling Results and Conclusions Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results	3-3		
	3.5	Investig	gation 4—Active Soil-Vapor Sampling	3-24		
		3.5.1 3.5.2	Active Soil-Vapor Sampling Methodology Active Soil-Vapor Sampling Results			
	3.6 3.7		gation 5—Backhoe Excavation mpling Data Gaps			

TABLE OF CONTENTS (Concluded)

4.0	CONC	EPTUAL	SITE MODEL	4-1
	4.1 4.2 4.3	Environn	nd Extent of Contamination nental Fate essment	4-1
		4.3.1 4.3.2	Summary Risk Assessments	4-7 4-7
	4.4	Baseline Risk Assessments		4-9
		4.4.1 4.4.2	Human Health Ecological	
5.0			TION FOR CORRECTIVE ACTION COMPLETE WITHOUT	5-1
	5.1 5.2		Э	
6.0	REFEF	RENCES.		6-1

LIST OF FIGURES

Figure

2.2.1-1	Location Map of Drain and Septic Systems (DSS) Site Number 1081, Bldg. 6650 Septic System, TA-III	2-3
2.2.1-2	Site Map of Drain and Septic Systems (DSS) Site Number 1081, Bldg. 6650 Septic System, TA-III	2-5
3.4-1	Collecting soil samples with the Geoprobe™ at DSS Site 1081, Building 6650 Septic System. View to the south. August 29, 2002	3-5
3.5.2-1	A typical FLUTe [™] soil-vapor monitoring well completion showing five individual vapor sampling tubes exiting the wellhead. Each tube is connected to an individual, downhole soil-vapor sampling port on the side of the well. The sample ports are at depths of 5, 20, 70, 100, and 150 feet bgs.	3-25
4.2-1	Conceptual Site Model Flow Diagram for DSS Site 1081, Building 6650 Septic System	4-3

This page intentionally left blank.

4

,

LIST OF TABLES

Table

.

3.4-1	Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1081, Building 6650 Septic System Soil Samples
3.4.2-1	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, VOC Analytical Results, August 2002 (Off-Site Laboratory)3-10
3.4.2-2	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, VOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-11
3.4.2-3	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, SVOC Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-4	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, SVOC Analytical MDLs, August 2002 (Off-Site Laboratory)3-13
3.4.2-5	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, PCB Analytical Results, August 2002 (Off-Site Laboratory)3-15
3.4.2-6	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, PCB Analytical MDLs, August 2002 (Off-Site Laboratory)3-16
3.4.2-7	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, HE Compound Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-8	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, HE Compound Analytical MDLs, August 2002 (Off-Site Laboratory)
3.4.2-9	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Metals Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-10	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Metals Analytical MDLs, August 2002 (Off-Site Laboratory)3-20
3.4.2-11	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical Results, August 2002 (Off-Site Laboratory)
3.4.2-12	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, August 2002 (Off-Site Laboratory)

LIST OF TABLES (Concluded)

Table

3.4.2-13	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, August 2002 (On-Site Laboratory)	3-22
3.4.2-14	Summary of DSS Site 1081, Building 6650 Septic System, Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results, August 2002 (Off-Site Laboratory)	3-23
4.2-1	Summary of Potential COCs for DSS Site 1081, Building 6650 Septic System.	4-5
4.3.2-1	Summation of Incremental Nonradiological and Radiological Risks from DSS Site 1081, Building 6650 Septic System Carcinogens	4-8

LIST OF ANNEXES

Annex

- A DSS Site 1081 Septic Tank Sampling Results
- B DSS Site 1081 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results
- C DSS Site 1081 Soil Sample Data Validation Results
- D DSS Site 1081 Soil-Vapor Monitoring Well 1081-VW-01 Analytical Results and Data Validation Report
- E DSS Site 1081 Risk Assessment

This page intentionally left blank.

`

,

,

ACRONYMS AND ABBREVIATIONS

AOC AOP BA	Area of Concern Administrative Operating Procedure butyl acetate
bgs	below ground surface
CAC	Corrective Action Complete
COC	constituent of concern
DSS	Drain and Septic Systems
EB	equipment blank
EPA	U.S. Environmental Protection Agency
ER	Environmental Restoration
FIP	Field Implementation Plan
GS	Gore-Sorber™
HE	high explosive
HI	hazard index
HWB	Hazardous Waste Bureau
KAFB	Kirtland Air Force Base
kg	kilogram(s)
MDA	minimum detectable activity
MDL	method detection limit
mg	milligram(s)
mrem	millirem
NFA	no further action
NMED	New Mexico Environment Department
OU	Operable Unit
PCB	polychlorinated biphenyl
ppmv	parts per million by volume
RCRA	Resource Conservation and Recovery Act
RPSD	Radiation Protection Sample Diagnostics
SAP	Sampling and Analysis Plan
SNL/NM	Sandia National Laboratories/New Mexico
SVOC	semivolatile organic compound
SWMU	Solid Waste Management Unit
ТА	Technical Area
ТВ	trip blank
TEDE	total effective dose equivalent
TOP	Technical Operating Procedure
VOC	volatile organic compound
yr	year

This page intentionally left blank.

.

.

.

1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of

other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

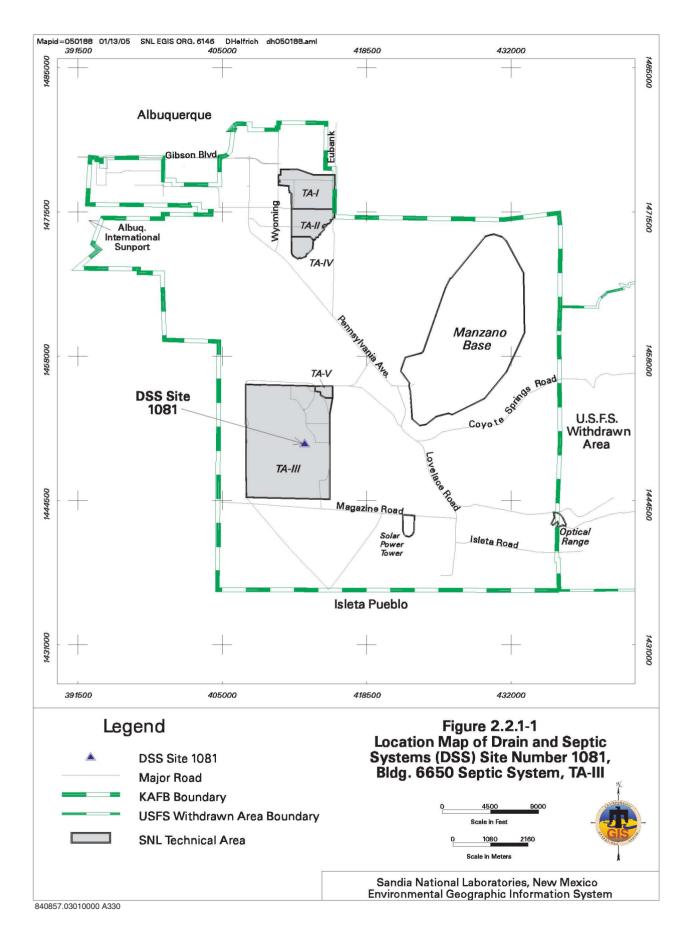
Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).

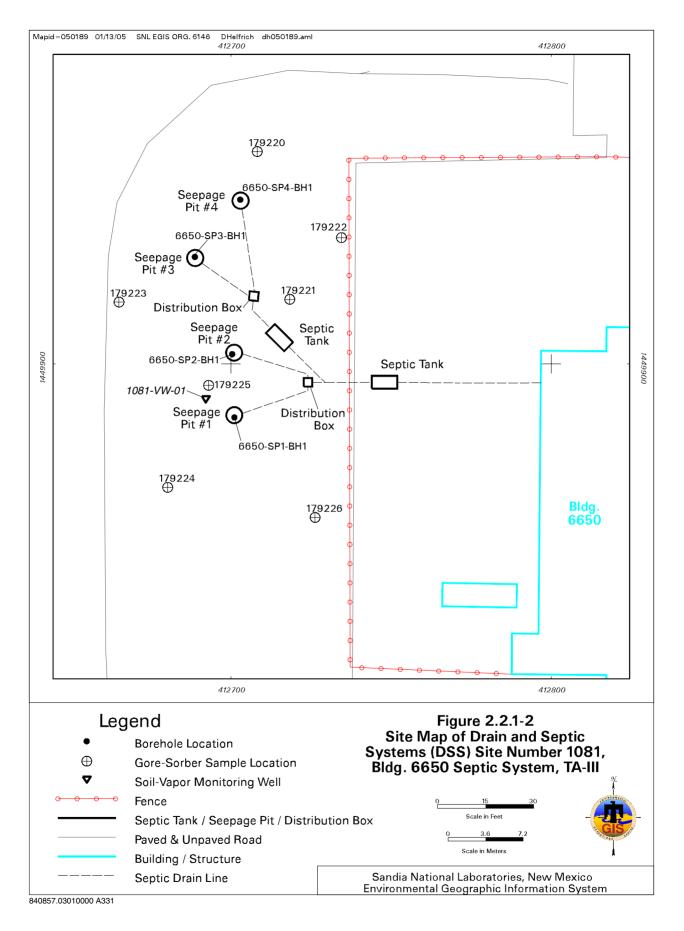
2.0 DSS SITE 1081: BUILDING 6650 SEPTIC SYSTEM

2.1 Summary

The SNL/NM ER Project conducted an assessment of DSS Site 1081, the Building 6650 Septic System. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report provides documentation that the site was specifically characterized, that no significant releases of contaminants to the environment occurred via the Building 6650 Septic System, and that it does not pose a threat to human health or the environment under either the industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment and septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for DSS Site 1081 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, a determination of Corrective Action Complete (CAC) without controls (NMED April 2004) is recommended for DSS Site 1081 based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk.


2.2 Site Description and Operational History


2.2.1 Site Description

DSS Site 1081 is located in SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy. The site is located approximately 5,400 feet southwest of the entrance to TA-III (Figure 2.2.1-1). The abandoned septic system is on the west side of Building 6650 and consisted of two individual septic systems. Each system consisted of a septic tank and distribution box connected to two seepage pits (Figure 2.2.1-2). Construction details are based upon engineering drawings (SNL/NM August 1980) and site inspections of the systems.

The surface geology at DSS Site 1081 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1081, and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic conductivities (SNL/NM March 1996). Site vegetation primarily consists of desert grasses, shrubs, and cacti.

This page intentionally left blank.

The ground surface in the vicinity of the site is flat to very slightly sloping to the west. The closest drainage lies south of the site and terminates in a playa just west of KAFB. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,400 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 480 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production wells to DSS Site 1081 are KAFB-4, approximately 3.6 miles to the northwest and KAFB-11, approximately 4.0 miles to the northeast. The nearest groundwater monitoring well is MWL-BW1, approximately 2,000 feet northwest of the site.

2.2.2 Operational History

Available information indicates that Building 6650, currently known as the Vibration Data and Control Center, was constructed in 1967 (SNL/NM March 2003), and it is assumed the original (southern) system was constructed at the same time. In the early 1980s the southern system was augmented or replaced by a second (northern) system. Because operational records are not available, the site investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations. By 1991, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system lines would have been disconnected, capped, and the system abandoned in place concurrent with this change (Romero September 2003).

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1081 is industrial.

2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1081 is industrial (DOE et al. September 1995).

This page intentionally left blank.

.

3.0 INVESTIGATORY ACTIVITIES

3.1 Summary

Six assessment investigations have been conducted at this site. In 1992 and 1995, waste characterization samples were collected from the assumed, southern septic tank, although it is not clear from the 1993 and 1995 septic tank sampling reports which of the two tanks were sampled (Investigation 1). In May 2002, a passive soil-vapor survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soil around the seepage pits (Investigation 2). In August 2002, subsurface soil samples were collected from four borings drilled through the center of, and beneath, the seepage pits (Investigation 3). In May and June 2003, a 150-foot-deep, active soil-vapor monitoring well was installed at DSS Site 1081. This was one of seven DSS sites selected by the NMED/HWB for additional, deep soil-vapor monitoring (Investigation 4). In December 2004, a backhoe was used to physically locate and inspect the northern septic tank, as the tank access was covered by dirt (Investigation 5). Additional waste characterization samples were collected from the northern septic tank in July 2004 (Investigation 6). Investigations 2, 3, and 4 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

3.2 Investigations 1 and 6—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

A sludge sample collected on August 17, 1992, was analyzed at an off-site laboratory for gross alpha/beta activity, tritium, and radionuclides by gamma spectroscopy. A fraction of the sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release (SNL/NM June 1993).

Aqueous samples collected on June 26, 1995, were analyzed at an off-site laboratory for VOCs, semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), total metals, total phenol, nitrates/nitrites, formaldehyde, fluoride, oil and grease, and for gross alpha/beta activity, isotopic analysis for tritium and uranium, and radionuclides by gamma spectroscopy. A fraction of each sample was also submitted to the SNL/NM RPSD Laboratory for gamma spectroscopy analysis prior to off-site release (SNL/NM December 1995).

The analytical results for these two sampling events are presented in Annex A. On February 21, 1996, the residual contents of the southern tank, approximately 710 gallons of waste and added water, were pumped out and managed according to SNL/NM policy (Shain August 1996). No information was available to determine whether samples or residual effluent had been removed from the northern septic tank in February 1996. It was therefore assumed that the northern tank contents had not been characterized or that the effluent had been removed from the tank.

The access cover to the northern tank was located and opened in December 2003, and the tank was found to still contain approximately 1.5 feet of liquid but no sludge. Waste characterization samples of the liquid were collected on July 12, 2004, and the analytical results for these samples are also presented in Annex A.

3.3 Investigation 2—Passive Soil-Vapor Sampling

In May 2002, a passive soil-vapor survey was conducted in the Building 6650 Septic System area. This survey was required at this site by NMED/HWB regulators and was conducted to determine whether significant VOC contamination was present in the soil at the site.

3.3.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber[™] (GS) passive soil-vapor survey is a qualitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. The technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil vapor chemistry over a two- to three-week period rather than at one point in time.

Each GS soil-vapor sampler consists of a 1-foot-long, 0.25-inch-diameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 3-foot-deep by 1.5-inch-diameter borehole was drilled with the Geoprobe[™]. A sample identification tag and location string were attached to the GS sampler and lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1 foot of the borehole, from the cork to the ground surface, was backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for the VOCs of interest are reported as mass (expressed in micrograms) of the individual VOCs absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

3.3.2 Soil-Vapor Survey Results and Conclusions

A total of seven GS passive soil-vapor samplers were placed in the seepage pit areas of the site (Figure 2.2.1-2). Samplers were installed at the site on May 6, 2002, and were retrieved on May 21, 2002. Sample locations are designated by the same six-digit sample number both on Figure 2.2.1-2 and in the analytical results tables presented in Annex B.

As shown in the analytical results tables in Annex B, the GS samplers were analyzed for a total of 30 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and transdichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 14 individual or groups of VOCs were detected in the GS samplers installed at this site. The analytical results indicated there were no areas of significant VOC contamination at the site that would require additional characterization.

3.4 Investigation 3—Soil Sampling

Soil sampling was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED. On August 29 and August 30, 2002, soil samples were collected from four seepage pit boreholes. Soil boring locations are shown on Figure 2.2.1-2. Figure 3.4-1 shows soil samples being collected at DSS Site 1081. A summary of the boreholes, sample depths, sample analyses, analytical methods, laboratories, and sample dates is presented in Table 3.4-1.

3.4.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals. In the boreholes drilled through the center of the seepage pits, the shallow sample interval started at the estimated base of the gravel aggregate in the seepage pit bottom, and the lower (deep) interval started at 5 feet below the top of the upper sample interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter Geoprobe[™] sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3 or 4 feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon[®] film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1081 are presented and discussed in this section.

This page intentionally left blank.

•

Figure 3.4-1 Collecting soil samples with the Geoprobe™ at DSS Site 1081, Building 6650 Septic System. View to the south. August 29, 2002

	1	

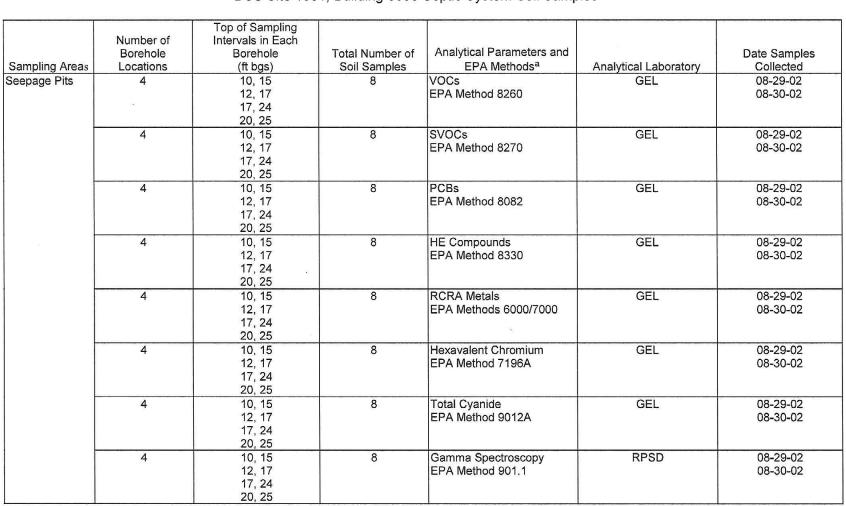


Table 3.4-1 Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1081, Building 6650 Septic System Soil Samples

Refer to footnotes at end of table.

AL/3-05/WP/SNL05:r5659.doc

3-7

Table 3.4-1 (Concluded) Summary of Areas Sampled, Analytical Methods, and Laboratories Used for DSS Site 1081, Building 6650 Septic System Soil Samples

Sampling Areas	Number of Borehole Locations	Top of Sampling Intervals in Each Borehole (ft bgs)	Total Number of Soil Samples	Analytical Parameters and EPA Methods ^a	Analytical Laboratory	Date Samples Collected
Seepage Pits (Continued)	4	10, 15 12, 17 17, 24 20, 25	8	Gross Alpha/Beta Activity EPA Method 900.0	GEL	08-29 - 02 08-30-02

^aEPA November 1986.

= Below ground surface. bgs

= Drain and Septic Systems. DSS

= U.S. Environmental Protection Agency. EPA

ft = Foot (feet).

GEL = General Engineering Laboratories, Inc. HE = High explosive(s). PCB = Polychlorinated biphenyl. RCRA = Resource Conservation and Recovery Act.

RPSD = Radiation Protection Sample Diagnostics Laboratory.

SVOC = Semivolatile organic compound.

= Volatile organic compound. VOC

3-8

VOCs

VOC analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-1. Method detection limits (MDLs) for the VOC soil analyses are presented in Table 3.4.2-2. The VOC 2-butanone was detected in six of the eight samples collected from the four boreholes. Both 2-butanone and methylene chloride were detected in the 12-foot-bgs sample from borehole SP2-BH1. These compounds were not detected in the associated trip blank (TB) but are common laboratory contaminants that may not indicate soil contamination at this site.

<u>SVOCs</u>

SVOC analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-3. MDLs for the SVOC soil analyses are presented in Table 3.4.2-4. Di-n-octyl phthalate was only detected in the 17-foot-bgs sample from borehole SP2-BH1. Bis(2-ethylhexyl) phthalate was detected in the 10-foot-bgs sample from borehole SP1-BH1 and in the 12- and 17-foot-bgs samples collected from borehole SP2-BH1. These compounds are common contaminants found in plastics and may not indicate soil contamination at this site.

PCBs

PCB analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-5. MDLs for the PCB soil analyses are presented in Table 3.4.2-6. Aroclor-1248, -1254, and -1260 were detected in the 10-foot-bgs sample and Aroclor-1254 was detected in the 15-foot-bgs sample from borehole SP1-BH1. Aroclor-1254 and -1260 were detected in both the 12- and 17-foot-bgs samples collected from borehole SP2-BH1, and Aroclor-1260 was detected in the 17-foot-bgs sample collected from borehole SP3-BH1.

HE Compounds

High explosive (HE) compound analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-7. MDLs for the HE soil analyses are presented in Table 3.4.2-8. No HE compounds were detected in the samples collected from the site.

RCRA Metals and Hexavalent Chromium

Resource Conservation and Recovery Act (RCRA) metals and hexavalent chromium analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-9. MDLs for the metals in soil analyses are presented in Table 3.4.2-10.

Arsenic, chromium, lead, mercury, and silver were detected above the NMED-approved background in the 10-foot-bgs sample collected from borehole SP1-BH1. Lead and silver were detected above the NMED-approved background in the 15-foot-bgs sample collected from

Table 3.4.2-1 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, VOC Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		VOCs (EPA Method 8260 ^a) (µg/kg)		
Record		Sample		Methylene	NI - HELDER AL AN ANY - HEMPINE - LECTRON
Number ^b	ER Sample ID	Depth (ft)	2-Butanone	Chloride	Toluene
605666	6650-SP1-BH1-10-S	10	7.02	ND (1.38)	ND (0.347)
605666	6650-SP1-BH1-15-S	15	6.02	ND (1.35)	ND (0.34)
605666	6650-SP2-BH1-12-S	12	4.45 J (4.9)	1.43 J (4.9)	ND (0.333)
605666	6650-SP2-BH1-17-S	17	ND (3.67)	ND (1.32)	ND (0.333)
605666	6650-SP3-BH1-17-S	17	ND (3.67)	ND (1.32)	ND (0.333)
605666	6650-SP3-BH1-24-S	24	4.91 J (5.1)	ND (1.38)	ND (0.347)
605666	6650-SP4-BH1-20-S	20	7.09	ND (1.38)	ND (0.347)
605666	6650-SP4-BH1-25-S	25	11	ND (1.35)	ND (0.34)
Quality Assurance/Quality Control Sample (µg/L)					
605666	6650-SP-TB°	NA	ND (2.31)	ND (3.3)	0.454 J (1)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

°ER sample ID reflects the final site for VOC samples included in this shipment.

- BH = Borehole.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).

ID = Identification.

- J () = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.
- MDL = Method detection limit.
- μg/kg = Microgram(s) per kilogram.
- μg/L = Microgram(s) per liter.
- NA = Not applicable.
- ND () = Not detected above the MDL, shown in parentheses.
- S = Soil sample.
- SP = Seepage pit.
- TB = Trip blank.
- VOC = Volatile organic compound.

Table 3.4.2-2 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, VOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8260 ^a
	Detection Limit
Analyte	(μg/kg)
Acetone	3.45-3.59
Benzene	0.441-0.459
Bromodichloromethane	0.48–0.5
Bromoform	0.48–0.5
Bromomethane	0.49–0.51
2-Butanone	3.67–3.82
Carbon disulfide	2.31–2.41
Carbon tetrachloride	0.48–0.5
Chlorobenzene	0.402-0.418
Chloroethane	0.794–0.827
Chloroform	0.51–0.531
Chloromethane	0.363-0.378
Dibromochloromethane	0.49-0.51
1,1-Dichloroethane	0.461-0.48
1,2-Dichloroethane	0.422-0.439
1,1-Dichloroethene	0.49-0.51
cis-1,2-Dichloroethene	0.461-0.48
trans-1,2-Dichloroethene	0.52-0.541
1,2-Dichloropropane	0.471-0.49
cis-1,3-Dichloropropene	0.422-0.439
trans-1,3-Dichloropropene	0.245-0.255
Ethylbenzene	0.373-0.388
2-Hexanone	3.7–3.85
Methylene chloride	1.32-1.38
4-Methyl-2-pentanone	3.95-4.11
Styrene	0.382-0.398
1,1,2,2-Tetrachloroethane	0.892-0.929
Tetrachloroethene	0.373-0.388
Toluene	0.333-0.347
1,1,1-Trichloroethane	0.52-0.541
1,1,2-Trichloroethane	0.529-0.551
Trichloroethene	0.441-0.459
Vinyl acetate	1.75–1.82
Vinyl chloride	0.549-0.571
Xylene	0.382-0.398

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

- μg/kg = Microgram(s) per kilogram.
- VOC = Volatile organic compound.

Table 3.4.2-3 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, SVOC Analytical Results August 2002 (Off-Site Laboratory)

Sample Attributes			SVOCs (EPA Met	nod 8270ª) (μg/kg)
Record		Sample		
Number ^b	ER Sample ID	Depth (ft)	Di-n-octyl phthalate	bis(2-Ethylhexyl) phthalate
605666	6650-SP1-BH1-10-S	10	ND (30.3)	2,290
605666	6650-SP1-BH1-15-S	15	ND (30.3)	ND (30)
605666	6650-SP2-BH1-12-S	12	ND (30.3)	1,130
605666	6650-SP2-BH1-17-S	17	210 J (333)	2,230
605666	6650-SP3-BH1-17-S	17	ND (30.3)	ND (30)
605666	6650-SP3-BH1-24-S	24	ND (30.3)	ND (30)
605666	6650-SP4-BH1-20-S	20	ND (30.3)	ND (30)
605666	6650-SP4-BH1-25-S	25	ND (30.3)	ND (30)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample.

SP = Seepage pit.

SVOC = Semivolatile organic compound.

Table 3.4.2-4 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8270 ^a		
	Detection Limit		
Analyte	(µg/kg)		
Acenaphthene	8		
Acenaphthylene	16.7		
Anthracene	16.7		
Benzo(a)anthracene	16.7		
Benzo(a)pyrene	16.7		
Benzo(b)fluoranthene	16.7		
Benzo(g,h,i)perylene	16.7		
Benzo(k)fluoranthene	16.7		
4-Bromophenyl phenyl ether	34		
Butylbenzyl phthalate	28.7		
Carbazole	16.7		
4-Chlorobenzenamine	167		
bis(2-Chloroethoxy)methane	12.3		
bis(2-Chloroethyl)ether	37.3		
bis-Chloroisopropyl ether	11		
4-Chloro-3-methylphenol	167		
2-Chloronaphthalene	13.7		
2-Chlorophenol	15.3		
4-Chlorophenyl phenyl ether	19.7		
Chrysene	16.7		
o-Cresol	26		
Dibenz[a,h]anthracene	16.7		
Dibenzofuran	17		
1,2-Dichlorobenzene	10		
1,3-Dichlorobenzene	11.3		
1,4-Dichlorobenzene	15.7		
3,3'-Dichlorobenzidine	167		
2,4-Dichlorophenol	20.7		
Diethylphthalate	17.7		
2,4-Dimethylphenol	167		
Dimethylphthalate	18.3		
Di-n-butyl phthalate	24		
Dinitro-o-cresol	167		
2,4-Dinitrophenol	167		
2,4-Dinitrotoluene	25.3		
2.6-Dinitrotoluene	33.3		
Di-n-octyl phthalate	30.3		
Diphenyl amine	22.3		
bis(2-Ethylhexyl) phthalate	30		
Fluoranthene	16.7		
Fluorene	4		

Refer to footnotes at end of table.

Table 3.4.2-4 (Concluded) Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8270 ^a
	Detection Limit
Analyte	(μg/kg)
Hexachlorobenzene	20
Hexachlorobutadiene	12.7
Hexachlorocyclopentadiene	167
Hexachloroethane	22
Indeno(1,2,3-cd)pyrene	16.7
Isophorone	16
2-Methylnaphthalene	16.7
4-Methylphenol	33.3
Naphthalene	16.7
2-Nitroaniline	167
3-Nitroaniline	167
4-Nitroaniline	37
Nitrobenzene	20.3
2-Nitrophenol	17
4-Nitrophenol	167
n-Nitrosodipropylamine	22.7
Pentachlorophenol	167
Phenanthrene	16.7
Phenol	12.7
Pyrene	16.7
1,2,4-Trichlorobenzene	12.7
2,4,5-Trichlorophenol	17.3
2,4,6-Trichlorophenol	27.3

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram. SVOC = Semivolatile organic compound.

Table 3.4.2-5 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, PCB Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes		PCBs (EPA Method 8082 ^a) (µg/kg)		
Record		Sample			
Number ^b	ER Sample ID	Depth (ft)	Aroclor-1248	Aroclor-1254	Aroclor-1260
605666	6650-SP1-BH1-10-S	10	32.2 J	48.7 J	6.6 J (16.7)
605666	6650-SP1-BH1-15-S	15	ND (1)	2.2 J (3.33)	ND (1)
605666	6650-SP2-BH1-12-S	12	ND (1)	3.5	1.2 J (3.33)
605666	6650-SP2-BH1-17-S	17	ND (1)	1.5 J (3.33)	1.6 J (3.33)
605666	6650-SP3-BH1-17-S	17	ND (1)	ND (0.5)	1.4 J (3.33)
605666	6650-SP3-BH1-24-S	24	ND (1)	ND (0.5)	ND (1)
605666	6650-SP4-BH1-20-S	20	ND (1)	ND (0.5)	ND (1)
605666	6650-SP4-BH1-25-S	25	ND (1)	ND (0.5)	ND (1)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

= Borehole. BH

J

= Drain and Septic Systems. DSS

= U.S. Environmental Protection Agency. EPA

= Environmental Restoration. ER ft

= Foot (feet). ID

= Identification.

= Analytical result was qualified as an estimated value.

= The reported value is greater than or equal to the MDL but is less than the practical quantitation J() limit, shown in parentheses.

= Method detection limit. MDL

μg/kg = Microgram(s) per kilogram.

ND () = Not detected above the MDL, shown in parentheses.

PCB = Polychlorinated biphenyl.

S = Soil sample.

SP = Seepage pit.

AL/3-05/WP/SNL05:r5659.doc

Table 3.4.2-6 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, PCB Analytical MDLs August 2002 (Off-Site Laboratory)

Analyte	EPA Method 8082ª Detection Limit (μg/kg)
Aroclor-1016	1–5
Aroclor-1221	2.82–14.1
Aroclor-1232	1.67-8.33
Aroclor-1242	1.67-8.33
Aroclor-1248	1–5
Aroclor-1254	0.5–2.5
Aroclor-1260	1–5

^aEPA November 1986.

DSS = Drain and Septic Systems. EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram.

PCB = Polychlorinated biphenyl.

Table 3.4.2-7

Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, HE Compound Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes	HE	
Record		Sample	(EPA Method 8330 ^a)
Number ^b	ER Sample ID	Depth (ft)	(μg/kg)
605666	6650-SP1-BH1-10-S	10	ND
605666	6650-SP1-BH1-15-S	15	ND
605666	6650-SP2-BH1-12-S	12	ND
605666	6650-SP2-BH1-17-S	17	ND
605666	6650-SP3-BH1-17-S	17	ND
605666	6650-SP3-BH1-24-S	24	ND
605666	6650-SP4-BH1-20-S	20	ND
605666	6650-SP4-BH1-25-S	25	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

- ft = Foot (feet).
- HE = High explosive(s).

ID = Identification.

µg/kg = Microgram(s) per kilogram.

ND = Not detected.

S = Soil sample.

SP = Seepage pit.

Table 3.4.2-8

Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, HE Compound Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 8330 ^a Detection Limit
Analyte	(µg/kg)
2-Amino-4,6-dinitrotoluene	18.1
4-Amino-2,6-dinitrotoluene	34.1
1,3-Dinitrobenzene	34.1
2,4-Dinitrotoluene	55
2,6-Dinitrotoluene	48
HMX	48
Nitrobenzene	48
2-Nitrotoluene	24
3-Nitrotoluene	24
4-Nitrotoluene	24
RDX	48
Tetryl	22.1
1,3,5-Trinitrobenzene	29
2,4,6-Trinitrotoluene	48

^aEPA November 1986.

= Drain and Septic Systems. DSS

EPA = U.S. Environmental Protection Agency.

= High explosive(s). ΗE

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram. RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

Tetryl = Methyl-2,4,6-trinitrophenylnitramine.

Table 3.4.2-9 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Metals Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes					Metals (EP	A Method 6000/7	000/7196A	^(a) (mg/kg)		
Record Number ^b	ER Sample ID	Sample Depth (ft)	Arsenic	Barium	Cadmium	Chromium	Chromium (VI)	Lead	Mercury	Selenium	Silver
605666	6650-SP1-BH1-10-S	10	8.54 J	112	0.259 J (0.485)	16.7 J	ND (0.0541)	21.9 J	0.126	0.66 J	1,690
605666	6650-SP1-BH1-15-S	15	3.03 J	59.2	0.151 J (0.481)	12.3 J	0.454	22.2 J	0.0182	ND (0.156)	184
605666	6650-SP2-BH1-12-S	12	4.35 J	89	0.757	11.2 J	ND (0.0516)	6.05 J	0.0923	0.155 J (0.45)	677
605666	6650-SP2-BH1-17-S	17	2.15 J	104	0.104 J (0.481)	7.99 J	ND (0.0532)	3.8 J	0.00171 J (0.00868)	ND (0.156)	2.25
605666	6650-SP3-BH1-17-S	17	2.07 J	59.5	0.0819 J (0.481)	6.93 J	ND (0.0529)	3.33 J	ND (0.000948 J)	0.439 J (0.481)	0.377 J (0.481)
605666	6650-SP3-BH1-24-S	24	3.41 J	49.3	0.248 J (0.467)	6.63 J	ND (0.0544)	5.03 J	ND (0.000896 J)	0.209 J (0.467)	0.246 J (0.467)
605666	6650-SP4-BH1-20-S	20	2.7 J	46.8	0.0851 J (0.481)	7.14 J	ND (0.0531)	3.23 J	0.00157 J (0.00965)	ND (0.156)	0.686 J
605666	6650-SP4-BH1-25-S	25	2.57 J	52.2	0.153 J (0.472)	7.46 J	ND (0.052)	5.3 J	ND (0.000942 J)	ND (0.153)	0.189 J (0.472)
Backgroui Supergrou	nd Concentration—Sout up ^c	hwest Area	4.4	214	0.9	15.9	1	11.8	<0.1	<1	<1

Note: Values in **bold** exceeded background soil concentrations.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

- ^cDinwiddie September 1997.
- BH = Borehole.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification. J = Analytical res
 - = Analytical result was qualified as an estimated value.
- J () = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- ND () = Not detected above the MDL, shown in parentheses.
- S = Soil sample.
- SP = Seepage pit.

Table 3.4.2-10 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Metals Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 6000/7000/7196A ^a Detection Limit
Analyte	(mg/kg)
Arsenic	0.186-0.2
Barium	0.0601-0.0648
Cadmium	0.0431–0.0464
Chromium	0.145-0.156
Chromium (VI)	0.0516-0.0544
Lead	0.256-0.275
Mercury	0.000854-0.000948
Selenium	0.146-0.157
Silver	0.0843–2.19

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

borehole SP1-BH1. Silver was detected above the NMED-approved background in the 12- and 17-foot-bgs samples collected from borehole SP2-BH1.

Total Cyanide

Total cyanide analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-11. MDLs for the cyanide soil analyses are presented in Table 3.4.2-12. Cyanide was detected in the 10- and 15-foot-bgs samples from borehole SP1-BH1 and in the 12-foot-bgs sample collected from borehole SP2-BH1.

Radionuclides

Analytical results for the gamma spectroscopy analysis of the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-13. No activities above NMED-approved background levels were detected in any sample analyzed. However, although not detected, the minimum detectable activity (MDA) for the uranium-235 analyses exceeded the corresponding background activity because the standard gamma spectroscopy count time for soil samples (6,000 seconds) was not sufficient to reach the NMED-approved background activity established for SNL/NM soils. Even though the MDAs may be slightly elevated, the values are still very low, and the risk assessment outcome for the site is not significantly impacted by their use.

Table 3.4.2-11 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes	Total Cyanide	
Record		Sample	(EPA Method 9012 ^a)
Number ^b	ER Sample ID	Depth (ft)	(mg/kg)
605666	6650-SP1-BH1-10-S	10	0.115 J (0.227)
605666	6650-SP1-BH1-15-S	15	0.0573 J (0.25)
605666	6650-SP2-BH1-12-S	12	0.0549 J (0.208)
605666	6650-SP2-BH1-17-S	17	ND (0.035)
605666	6650-SP3-BH1-17-S	17	ND (0.0381)
605666	6650-SP3-BH1-24-S	24	ND (0.0381)
605666	6650-SP4-BH1-20-S	20	ND (0.0419)
605666	6650-SP4-BH1-25-S	25	ND (0.035)

Note: Values in **bold** represent detected analytes. ^aEPA November 1986.

- ^bAnalysis request/chain-of-custody record.
- BH = Borehole.

= Drain and Septic Systems. DSS

- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- = Foot (feet). ft
- = Identification. ID
- = The reported value is greater than or equal to the MDL but is less J() than the practical quantitation limit, shown in parentheses.
- = Method detection limit. MDL
- mg/kg = Milligram(s) per kilogram.
- ND () = Not detected above the MDL, shown in parentheses.
- S = Soil sample.
- SP = Seepage pit.

Table 3.4.2-12

.

Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical MDLs August 2002 (Off-Site Laboratory)

	EPA Method 9012 ^a		
	Detection Limit		
Analyte	(mg/kg)		
Total Cyanide	0.035-0.0419		

^aEPA November 1986.

DSS = Drain and Septic Systems.

= U.S. Environmental Protection Agency. EPA

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

Table 3.4.2-13 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results August 2002 (On-Site Laboratory)

	Sample Attributes		Activity (EPA Method 901.1ª) (pCi/g)							
Record		Sample	Cesium-137 Thorium-232		Uranium-235		Uranium-238			
Number ^b	ER Sample ID	Depth (ft)	Result	Error	Result	Error ^c	Result	Error	Result	Error
605747	6650-SP1-BH1-10-S	10	ND (0.0238)		0.561	0.274	ND (0.188)		ND (0.59)	
605747	6650-SP1-BH1-15-S	15	ND (0.0237)		0.675	0.32	ND (0.19)		ND (0.574)	
605747	6650-SP2-BH1-12-S	12	ND (0.0252)		0.552	0.273	ND (0.192)		ND (0.607)	
605747	6650-SP2-BH1-17-S	17	ND (0.0235)		0.589	0.281	ND (0.19)		ND (0.572)	
605747	6650-SP3-BH1-17-S	17	ND (0.0247)		0.557	0.275	ND (0.194)		ND (0.611)	
605747	6650-SP3-BH1-24-S	24	ND (0.0225)		0.51	0.248	ND (0.175)		ND (0.549)	
605747	6650-SP4-BH1-20-S	20	ND (0.0237)		0.658	0.311	ND (0.192)		ND (0.589)	
605747	6650-SP4-BH1-25-S	25	ND (0.0275)		0.637	0.31	ND (0.209)		ND (0.652)	
Background	d Activity—Southwest Area	a	0.079	NA	1.01	NA	0.16	NA	1.4	NA
Supergroup					L					

3-22

Note: Values in **bold** exceed background soil activities.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

^dDinwiddie September 1997.

- BH = Borehole.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- MDA = Minimum detectable activity.
- NA = Not applicable.
- ND () = Not detected above the MDA, shown in parentheses.
- ND () = Not detected, but the MDA (shown in parentheses) exceeds background activity.
- pCi/g = Picocurie(s) per gram.
 - = Soil sample.
- SP = Seepage pit.
 - = Error not calculated for nondetect results.

S

Gross Alpha/Beta Activity

Gross alpha/beta activity analytical results for the eight soil samples collected from the four seepage pit boreholes are summarized in Table 3.4.2-14. No gross alpha or beta activity was detected above the background levels (Miller September 2003) in any of the samples. These results indicate no significant levels of radioactive material are present in the soil at the site.

Table 3.4.2-14 Summary of DSS Site 1081, Building 6650 Septic System Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results August 2002 (Off-Site Laboratory)

	Sample Attributes			Activity (EPA Method 900.0 ^a) (pCi/g)			
Record		Sample	Gross Alpha		Gross Beta		
Number ^b	ER Sample ID	Depth (ft)	Result	Error ^c	Result	Error ^c	
605666	6650-SP1-BH1-10-S	10	6.68	1.43	21.8	2.07	
605666	6650-SP1-BH1-15-S	15	6.76	1.55	16.7	2.12	
605666	6650-SP2-BH1-12-S	12	6.43	1.47	15.5	1.86	
605666	6650-SP2-BH1-17-S	17	4.94	1.68	17.6	2.01	
605666	6650-SP3-BH1-17-S	17	5.43	1.41	17.8	1.88	
605666	6650-SP3-BH1-24-S	24	5.36	1.46	20.3	1.97	
605666	6650-SP4-BH1-20-S	20	6.57	1.38	17.3	1.88	
605666	6650-SP4-BH1-25-S	25	2.21	0.866	2.1	1.6	
Backgroun	d Activity ^d		17.4	NA	35.4	NA	

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

^dMiller September 2003.

- BH = Borehole.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- NA = Not applicable.
- pCi/g = Picocurie(s) per gram.
- S = Soil sample.
- SP = Seepage pit.

3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS Project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicate, EB, and TB samples. Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 site samples. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical

results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all the samples in that batch. Toluene was detected in the TB for DSS Site 1081 (Table 3.4.2-1).

No duplicate or EB samples were collected at this site.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The data are acceptable for use in this request for a determination of CAC without controls. Annex C contains the data validation reports for the samples collected at this site.

3.5 Investigation 4—Active Soil-Vapor Sampling

3.5.1 Active Soil-Vapor Sampling Methodology

Active soil-vapor sampling typically involves directly pumping soil-vapor from the subsurface for analysis. Vapor collection can be accomplished either by simple open-pipe systems analogous to groundwater monitoring wells screened in the interval of interest or through sophisticated "down hole" systems with individual inlet port and collection tube sets placed at multiple sampling depths. The extracted soil vapor can be analyzed immediately, collected on adsorbent media, or collected into special canisters for later laboratory analysis.

3.5.2 Active Soil-Vapor Sampling Results

In May 2003, as part of the overall DSS project site investigations, a Flexible Liner Underground Technologies (FLUTe[™]) soil-vapor monitoring well was installed at a location specified by the NMED at DSS Site 1081 (Figure 2.2.1-2). This soil vapor well was constructed in accordance with deep soil-vapor well design specifications in the SAP (SNL/NM October 1999). Soil vapor well 1081-VW-01 was 150 feet deep with vapor sampling ports at depths of 5, 20, 70, 100, and 150 feet bgs. Figure 3.5.2-1 shows a typical FLUTe[™] soil-vapor monitoring well completion. After installation, subsurface conditions were allowed to equilibrate for more than three months before the well was sampled on September 9, 2003. Soil-vapor samples from each of the five sampling depths were collected in special canisters and sent to an off-site laboratory for analysis. Total VOC soil-vapor concentrations ranged from a low of 0.0014 parts per million by volume (ppmv) in the 20-foot-bgs interval to a maximum of 0.0234 ppmv in the 5-foot-bgs sample. The analytical results and data validation report for these samples are presented in Annex D.

Figure 3.5.2-1

A typical FLUTe[™] soil-vapor monitoring well completion showing five individual vapor sampling tubes exiting the wellhead. Each tube is connected to an individual, downhole soil-vapor sampling port on the side of the well. The sample ports are at depths of 5, 20,70, 100, and 150 feet bgs.

In accordance with previous agreements with the NMED (SNL/NM October 1999), because the total VOC concentration in the 150-foot-bgs sample from this well was less than 10 ppmv, no additional soil-vapor sampling was required from this well and no additional soil-vapor or groundwater monitoring wells were required at this site by the NMED (Kieling December 2003).

3.6 Investigation 5—Backhoe Excavation

On December 2, 2003, a backhoe was used to uncover and inspect the interior of the northern septic tank at DSS Site 1081. The septic tank was determined to be intact and contained liquid that required sampling. No samples were collected during the backhoe excavation at the site.

Waste characterization samples of the liquid were collected on July 12, 2004 (see Section 3.2). It is anticipated that the effluent will be removed from the tank and disposed of according to SNL/NM policy, and both the northern and southern septic tanks and four seepage pits will be backfilled in place with clean soil in mid-2005.

3.7 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1081.

This page intentionally left blank.

6

4.0 CONCEPTUAL SITE MODEL

The conceptual site model for DSS Site 1081, the Building 6650 Septic System, is based upon the COCs identified in the soil samples collected from beneath the seepage pits at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

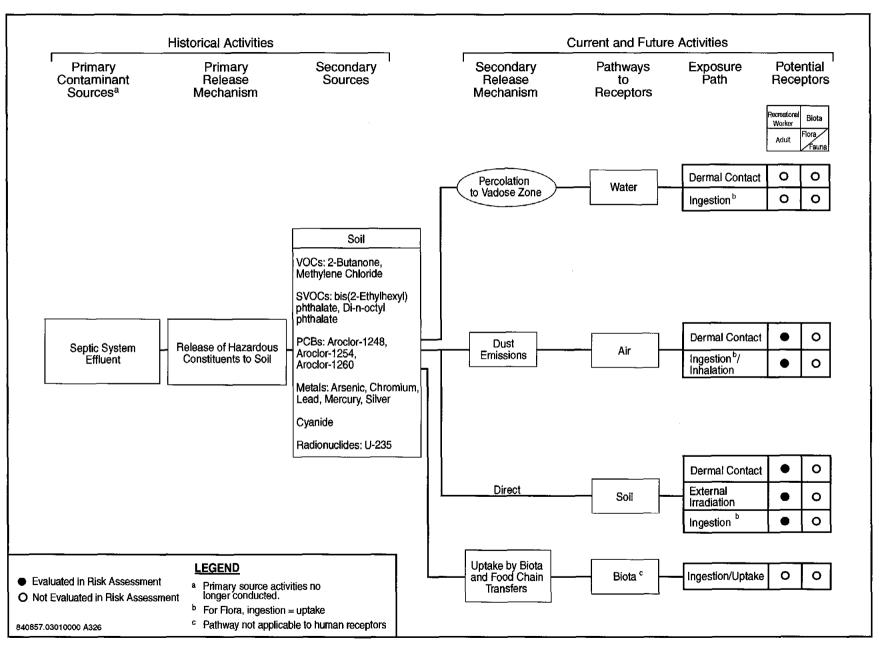
4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1081 are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, and radionuclides. Two VOCs, two SVOCs, and three PCBs were detected in these samples. No HE compounds were detected in any of the soil samples collected at this site. Arsenic, chromium, lead, mercury, and silver were detected at concentrations above the approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils. When a metal concentration exceeded its maximum background screening value, it was considered further in the risk assessment process. Cyanide was also detected in three samples, but because it does not have a quantified background screening concentration, it is unknown whether this COC exceeds background.

None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. However, the MDAs for all of the uranium-235 analyses exceeded the corresponding background activities. Finally, no gross alpha/beta activity was detected above the background levels.

4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system seepage pits. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the seepage pits (Figure 4.2-1). The depth to groundwater at the site (approximately 480 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex E provides additional discussion on the fate and transport of COCs at DSS Site 1081.


Table 4.2-1 summarizes the potential COCs for DSS Site 1081. All potential COCs were retained in the conceptual model and were evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1081 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The

This page intentionally left blank.

.

Conceptual Site Model Flow Diagram for DSS Site 1081, Building 6650 Septic System

4-3

		Number of	COCs Detected or with Concentrations Greater than Background or Nonquantified	Maximum Background Limit/Southwest Area Supergroup ^b	Maximum Concentration ^c (All Samples)	Average Concentration ^d	Number of Samples Where COCs Detected or with Concentrations Greater than Background or Nonquantified
	ОС Туре	Samples ^a	Background	(mg/kg)	(mg/kg)	(mg/kg)	Background ^e
VOCs		8	2-Butanone	NA	0.011	0.006	6
		8	Methylene chloride	NA	0.0014 J	0.0008	1
SVOCs		8	Di-n-octyl phthalate	NA	0.210 J	0.040	1
		8	bis(2-Ethylhexyl) phthalate	NA	2.29	0.80	3
PCBs		8	Aroclor-1248	NA	0.0322 J	0.0045	1
		8	Aroclor-1254	NA	0.0487 J	0.0071	4
		8	Aroclor-1260	NA	0.0066 J	0.0016	4
HE Compounds	i	8	None	NA	NA	NA	None
RCRA Metals		8	Arsenic	4.4	8.54 J	3.60	1
		8	Chromium	15.9	16.70 J	9.54	1
		8	Lead	11,8	22.20 J	8.86	2
		8	Mercury	<0.1	0.1260	0.0301	1
		8	Silver	<1	1,690	319.34	4
Hexavalent Chr	omium	8	None	1	NA	NA	None
Cyanide		8	Cyanide	NC	0.1150 J	0.0402	3
Radionuclides	Gamma Spectroscopy	8	Uranium-235	0.16	ND (0.209)	NC ^f	7
(pCi/g)	Gross Alpha	8	None	ŇÁ	NA	NA	None
	Gross Beta	8	None	NA	NA	NA	None

Table 4.2-1 Summary of Potential COCs for DSS Site 1081, Building 6650 Septic System

^aNumber of samples includes duplicates and splits.

^bDinwiddie September 1997.

^cMaximum concentration is either the maximum amount detected, or for radionuclides, the greater of either the maximum detection or the maximum MDA above background.

^dAverage concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect results, divided by the number of samples.

^eSee appropriate data table for sample locations.

^fAn average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

ΗE = High explosive(s).

J = Analytical result was gualified as an estimated value.

Table 4.2-1 (Concluded) Summary of Potential COCs for DSS Site 1081, Building 6650 Septic System

= Minimum detectable activity. MDA

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram. NA = Not applicable.

= Not calculated. NC

ND () = Not detected above the MDA, shown in parentheses.

= Polychlorinated biphenyl. PCB

 pCi/g
 = Picocurie(s) per gram.

 RCRA
 = Resource Conservation and Recovery Act.

 SVOC
 = Semivolatile organic compound.

 VOC
 = Volatile organic compound.

AL/3-05/WP/SNL05:r5659.doc

major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.

No pathways to groundwater and no intake routes through flora or fauna are considered appropriate for either the industrial or residential land-use scenarios. Annex E provides additional discussion of the exposure routes and receptors at DSS Site 1081.

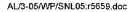
4.3 Site Assessment

Site assessment at DSS Site 1081 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex E discusses the risk assessment performed for DSS Site 1081 in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1081 poses no significant threat to human health under both the industrial and residential land-use scenarios.

Ecological risks were found to be insignificant because no pathways exist.


4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risk at DSS Site 1081. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1081 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because 2-butanone, methylene chloride, di-n-octyl phthalate, bis(2-ethylhexyl) phthalate, Aroclor-1248, Aroclor-1254, Aroclor-1260, arsenic, chromium, lead, mercury, silver, cyanide, and uranium-235 were detected, are present above background, or have MDAs above background, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex E provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both the industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1081 is 0.39 for the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.37. The estimated excess cancer risk for DSS Site 1081 is 5E-6 for an industrial land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the

excess cancer risk for this site is below the suggested acceptable risk value. The estimated incremental excess cancer risk is 2.62E-6. Both the incremental HI and excess cancer risk are below NMED guidelines.

The HI calculated for the COCs at DSS Site 1081 is 4.84 for the residential land-use scenario, which is above the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 4.64. The estimated excess cancer risk for DSS Site 1081 COCs is 2E-5 for a residential land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is slightly above the suggested acceptable risk value. The incremental excess cancer risk is 1.07E-5. Both the incremental HI and estimated incremental excess cancer risk are above NMED guidelines.

Although both the HI and estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario, maximum concentrations were used in the risk calculation. Because the site has been adequately characterized, average concentrations are more representative of actual site conditions. Using the mean concentrations for the main contributors to excess cancer risk and hazards, arsenic (3.6 milligrams [mg]/kilogram [kg], which is below background and eliminates arsenic from further evaluation) and silver (319 mg/kg), reduces the total HI and estimated excess cancer risk to 0.85 and 7E-8, respectively. The incremental HI and excess cancer risk are reduced to 0.85 and 7.15E-8, respectively. Thus, by using realistic concentrations in the risk calculations that more accurately depict site conditions, both the total and incremental HI and estimated excess cancer risk are below NMED guidelines.

For the radiological COCs, one of the constituents (uranium-235) had MDA values greater than the corresponding background values. The incremental total effective dose equivalent (TEDE) and corresponding estimated cancer risk from radiological COCs are much lower than the EPA guidance values; the estimated TEDE is 7.0E-3 millirem (mrem)/year (yr) for the industrial land-use scenario. This value is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding estimated incremental excess cancer risk value is 5.9E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional controls is 1.8E-2 mrem/yr with an associated estimated incremental excess cancer risk of 1.7E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1081 is eligible for unrestricted radiological release.

The incremental nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

Ta	able 4.3.2-1
Summation of Incremental Non	radiological and Radiological Risks from
DSS Site 1081, Building	6650 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	2.62E-6	5.9E-8	2.7E-6
Residential	7.15E-8ª	1.7E-7	2.4E-7

^aIncremental risk using the average concentration for the primary risk drivers. DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997b) also was performed as set forth by the NMED Risk-Based Decision Tree in the "RPMP [RCRA Permits Management Program] Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex E, Sections IV, VII.2, and VII.2.1). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.

All COCs at DSS Site 1081 are located at depths of 5 feet bgs or greater. Therefore, no complete ecological pathways exist at this site, and a more detailed ecological risk assessment is not necessary.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1081 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that no complete pathways exist at DSS Site 1081, a baseline ecological risk assessment is not required for the site.

This page intentionally left blank.

5.0 RECOMMENDATION FOR CORRECTIVE ACTION COMPLETE WITHOUT CONTROLS DETERMINATION

5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, a determination of CAC without controls is recommended for DSS Site 1081 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.
- None of the COCs warrant ecological concern because no complete pathways exist at the site.

5.2 Criterion

Based upon the evidence provided in Section 5.1, a determination of CAC without controls (NMED April 2004) is recommended for DSS Site 1081. This is consistent with the NMED's NFA Criterion 5, which states, "the SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

This page intentionally left blank.

.

•

,

6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shephard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment for Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, "List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program." July 8, 1996.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB. September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Gore, see Gore, W.L. and Associates.

Gore, W.L. and Associates (Gore), June 2002. "Gore-Sorber Screening Survey Final Report, Non-ER Drain and Septic, Kirtland AFB, NM," W.L. Gore Production Order Number 10960025, Sandia National Laboratories/New Mexico. June 6, 2002.

IT, see IT Corporation.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Kieling, J.E. (New Mexico Environment Department/Hazardous Waste Bureau), December 2003. Letter to K.L. Boardman (Sandia Site Office, National Nuclear Security Administration) and P.B. Davies (Sandia National Laboratories/New Mexico), regarding "Environmental Restoration Project Drain and Septic Systems (DSS) Soil Vapor Well Sample Results; Dated November 2003."

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding "State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples." September 12, 2003.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2002.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

New Mexico Environment Department (NMED), March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), April 2004. "Compliance Order on Consent Pursuant to New Mexico Hazardous Waste Act § 74-4-10," New Mexico Environment Department, Santa Fe, New Mexico. April 29, 2004.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), August 1980. SNL/NM Facilities Engineering Drawing 89453 showing the Building 6650 Septic System, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 1993. "Sandia National Laboratories/New Mexico Septic Tank Monitoring Report, 1992 Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1995. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Reports, December 1995," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

AL/3-05/WP/SNL05:r5659.doc

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous Sandia National Laboratories/New Mexico septic tanks at Sandia National Laboratories/New Mexico. Albuquerque, New Mexico. August 23, 1996.

SNL/NM, see Sandia National Laboratories/New Mexico.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

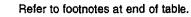
U.S. Environmental Protection Agency (EPA), 1997a. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997b. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

ANNEX A DSS Site 1081 Septic Tank Sampling Results

Building 6650 Area 3 Sample ID No. SNLA008588 Tank ID No. AD89018R

On August 17, 1992, a sludge sample was collected for radiochemical analysis from the septic tank serving Building 6650. During review of the radiological data, no parameters were detected that exceeded U.S. Department of Energy derived concentration guidelines or the radiological investigation levels (IL) determined during this investigation.


	Results of Septic Tan (Sludge Samp		<u> </u>
Building No./Area:	6650 A-3	•	
Tank ID No.:	AD89018R	·····	
Date Sampled:	8/17/92	······································	
Sample ID No.:	SNLA008588	<u> </u>	
Analytical Parameter	Measured Concentration	<u>+</u> 2 Sigma Uncertainty	Units
Gross Alpha	0E+02	5E+02	pCi/g
Gross Beta	0E+03	2E+02	pCi/g
Gross Alpha	2E+01	6E+01	pCi/g
Gross Beta	0E+02	2E+02	pCi/g
Tritium	1E+02	3E+02	pCi/L
Bismuth-214	<0.0333	NA	pCi/mL
Cesium-137	<0.0129	· NA	pCi/mL
Potassium-40	<0.188	NA	pCi/mL
Lead-212	0.00936	0.00512	pCi/mL
Lead-214	<0.0282	NA	pCi/mL
Radium-226	<0.365	NA	pCi/mL
Thorium-234	<0.285	NA	pCi/mL
Thallium-208	<0.0138	NA	pCi/mL

ND = Not Detected NA = Not Applicable

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:			Bidg 6650		······································
Sample ID Number: Date Sampled:			024387 6-26-95	<u> </u>	
Date Sampled			<u></u>		
Parameter	Result	Detection Limit	NM Discharge Limit ^a	COA Discharge Limit ^b	Comments
Volatile Organics (8260)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
None delected above DL	ND	various	various	TTO = 5.0	
Semivolatile Organics (8270)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
None detected above DL	ND	various	various	TTO = 5.0	
Pesticides/PCBs (8080)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
None detected above DL	ND	various	NR \ PCBs = 0.001	TTO = 5.0	
Metals (6010/7470)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Arsenic	0.0355	0.0100	0.1	2.0	
Barium	0.0312J	0.200	1.0	20.0	
Cadmium	ND	0.0050	0.01	2.8	
Chromium	ND	0.0200	0.05	20.0	
Copper	0.009J	0.0250	1.0	16.5	
Lead	ND	0.0030	0.05	3.2	
Manganese	0.0191	0.0100	0.2	20.0	
Nickel	ND	0.0400	0.2	12.0	
Selenium	ND	0.0050	0.05	2.0	
Silver	0.0022J	0.0100	0.05	5.0	
Thailium	0.0037J	0.0100	NR	NR	
Zinc	0.0151J	0.0200	10.0	28.0	
Mercury	ND	0.0002	0.002	0.1	
Miscellaneous Analyses	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Field pH, standard pH units	7.8 pH units	0 - 14 pH unils	6 – 9 pH units	5 – 11 pH units	
Formaldehyde (NIOSH 3500)	0.068	0.050	NR	260.0	
Fluoride (300.0)	ND	0.10	1.6	180.0	
Nitrate + Nitrite (353.1)	0.379	0.050	10.0	NR	

AL/9-95/WP/SNL:T3816-57/1

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Sample ID Number: Date Sampled:	024387 6-26-95									
Parameter	Result	Detection Limit	NM Discharge Limit ^a	COA Discharge Limit ^b	Comments					
Miscellaneous Analyses	(mg/L)	(mg/L)	(mg/L)	(mg/L)						
Oil + Grease (9070)	ND	0.94	NR	150.0						
Total Phenol (9066)	ND	0.050	0.005	4.0						

B = Analyte detected in method blank.

DL = Detection limit indicated on laboratory report.

_

IDL = Instrument detection limit.

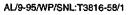
J = Estimate concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

TTO = Total toxic organics.

100000


RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:		Bidg 66	50		
Sample ID Number:	·	02438	7	· · · · · · · · · · · · · · · · · · ·	
Date Sampled:		6-26-9	5		<u> </u>
Parameter (Method)	Result	MDA	Critical Level	NM Discharge Limit*	Comments
Radiological Analyses	(pCi/L ± 2-3)	(рСіЛ_)	(pCi/L)	(pCi/L)	
Gross Alpha	46.3 ± 5.8	2.4	1.04	NR	
Gross Beta	23.4 ± 2.6	1.7	0.82	NR	
		<u> </u>	· .		
Isotopic Analyses	(pCi/L ± 2-σ)	(pCVL)	(pCI/L)	(pCi/L)	
Tritium (906.0)	-38 ± 58	100	49.5	NR	·
Uranium-238 ^b	0.38 ± 0.15	0.046	0.040	NR	sampled 7-13-95
Uranium-235/236 ^b	0.044 ± 0.054	0.064	0.053	NR	sampled 7-13-95
Uranium-234 ⁶	0.87 ± 0.26	0.076	0.055	NR	sampled 7-13-95
	·····		L		
Gamma Spectroscopy	(pCi/mL ± 2-3)	(pCi/mL)	(pCi/L)	(pCi/L)	
None detected above MDA	ND	various	NL	NR	

Notes:

Notes: ^a New Mexico Water Quality Control Commission Regulations (1990), Section 3-103, ^b Isotopic uranium analyzed by NAS-NS-3050, ^a Analyzed in-house by SNL/NM Department 7715. MDA = Minimum detectable activity. NL = Not listed.

NR = Not regulated. ND = Not detected.

CONTRACT LABORATORY

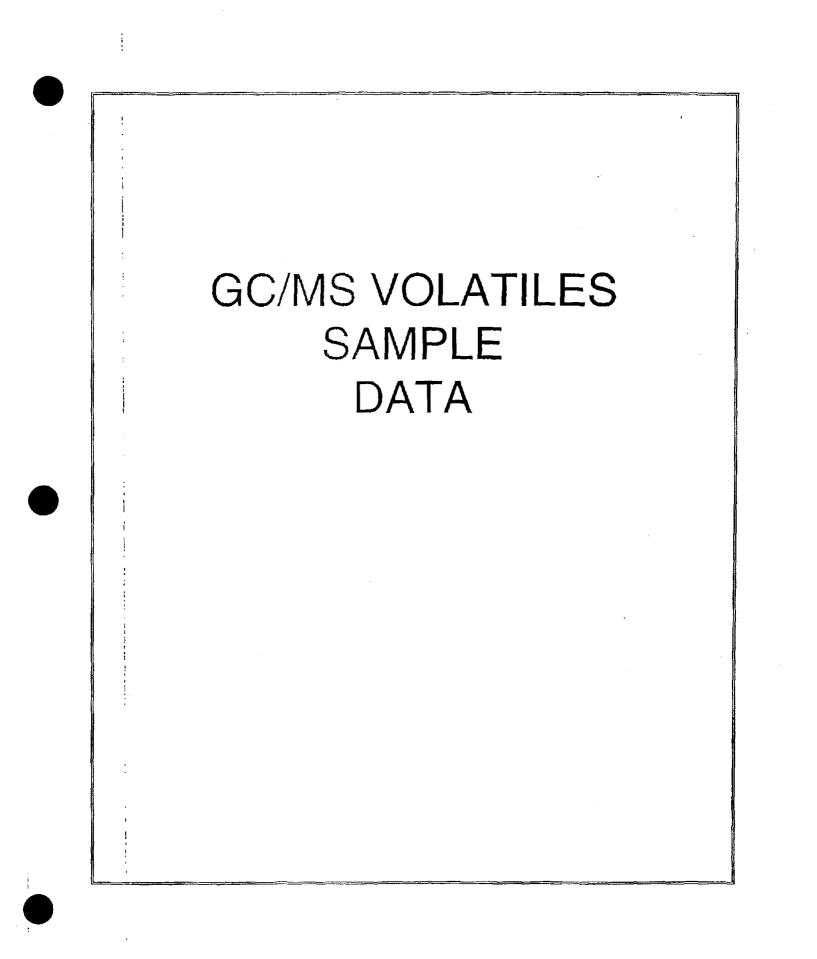
ANALYSIS REQUEST AND CHAIN OF CUSTODY

Page 1 of 2

	Batch No.	4			SMO Use							AR/COC	607	634
	Dept. No./Mail Stop: Project/Task Manager:	6133/1089 Mike Sander	Date Sampl Carrier/Way	bili No.	37916		SMO A	uthorizatio	7223.02.02.0 n:		Sme	-Send preliminary/copy re		<u></u>
	Project Name: Record Center Code: Logbook Ref. No.;	DSS NFA	Lab Contac Lab Destina SMO Contact	ation:	Edie Kent (843) 769- GEL Pam Puissant (505) 8		P	02167	y def			Released by COC No.:_ Validation Required		
	Service Order No.	CFO# 2304	Send Report		Wendy Palencia(505		2 44	ser pl	work con	vv. u/f.	PLYSh	Bill To:Sendla National Labs (A	ccounts Payab	ie)
	Location	Tech Area								,		P.O. Box 5800 MS 0154	•	
	Building	Room ER Sample ID or	ļ		Reference Date/Time(hr)				NO) Preserv-	Collo-Hood	Canada	Albuquerque, NM 87185- Parameter & Meth		Lab Sample
	Sample NoFraction	Sample Location Detail	Depth (ft)	ER Sile No.	Collected	Sample Matrix	Туре	ntainer Volume	ative	Collection Method	Sample Type	Requested		ID
82	065313-001	6650/1081-West-ST-W	NA	1081	071204/1103	w	G	3x40 ml	HCL	G	SA	VOCs (8260B)		
÷	065313-002	6650/1081-West-ST-W	NA	1081	071204/1127	w	AG	4x1Liter	4C	G	SA	SVOCs (8270C)		
r	065313-003	6650/1081-West-ST-W	NA	1081	071204/1130	w	AG	4x1Liter	4C	G	SA	PCBs (8082)		. /
9	065313-004	6650/1081-West-ST-W	NA	1081	071204/1122	w	AG	4x1Liter	.4C	G	SA	Pesticides (8081)		1000
5	065313-005	6650/1081-West-ST-W	NA	1081	071204/1120	w	G	1 Liter	H2S04	G	SA	Oil and Grease (9070)		1 .
٩,	065313-006	6650/1081-West-ST-W	NA	1081	071204/1121	w	P	500 ml	HNO3	G	SA	Tal Metals+ Molybdenum (6	020/7470A)	
Ì.	065313-007	6650/1081-West-ST-W	NA	1081	071204/1134	w	AG	4x1Liter	4C	G	SA	HE (8330)		
	065313-008	6650/1081-West-ST-W	NA	1081	071204/1121	W	AG	250 ml	H2SO4	G	SA	Phenols (9066)		261
5	065313-009	6650/1081-West-ST-W	NA	1081	071204/1119	w	P	250 ml	H2SO4	G	SA	NPN (353.1)		CIE
١	065313-010	6650/1081-West-ST-W	NA	1081	071204/1119	w	Р	250 ml	4C	G	SA	Fluoride (9056)	· · · · · · · · · · · · · · · · · · ·	
Ý	065313-011	6650/1081-West-ST-W	NA	1081	071204/1118	w	Р	500 ml	NAOH	G	SA	Cyanide (9012A)		
	RMMA		No.		Sample Tracking		Smo U		Special Ins			ements	Abnorma	
	Sample Disposal)isposal by la		Date Entered(mm/do		<u>zlai</u>	04		Yes 🗌		— 1	Condition	IS OF
	Turnaround Tim		iy <u>(*</u> 13	0 Day	Entered by:		AC.		Level D Pace Send repo		Yes	; <u>No</u>	Receipt	
	Return Samples By:	·····		the second s	ted TAT Company/Organ	QC inits.		ur	Matt Shain/		ALC 1097	1 784-7565		
	Sample	William J Gibson	AS IN	1000	Company/Organ Weston/6134/284-52	777730.7	367		Mar Shar	01.0.0133	1007	204-2505	1	Lab Use
	Team	Gilbert Quintana	JAP A	2.67	Shaw/6134/284-330	9/238-941	7						1	
	Members		<u>e aperes</u>	1 2000			<u>.</u>							
	1. Relinquished by	Villare BRich	Org. 6/3	Date	7-12-04 Time 14	<i>(</i> 17)	4 Relin	guished by	*Piease list	as separa	te report. Ora.	Date	 Time	2
		and the first of the	Org 6/33		-12-04 Time / 41		<u> </u>	aived by	' <u></u>	·····	Org.	Date	Time	
		affect Consul			7/13/61 Time C9			quished b	/		Org.	Date	Time	· · · · · · · · · · · · · · · · · · ·
	2. Received by	0	Org.	Date	Time	· · · · ·		eived by			Org.	Date	Time	3
	3.Relinquished by		Org.	Date	Time	······································	6.Relin	quished by	/		· Org.	Date	Time	the second s
	3. Received by	·	Org.	Date	Time		6. Rece	eived by			Org.	Date	Time	2

Internal Lab

.


OFF-SITE LABORATORY Analysis Request And Chain Of Custody (Continuation)

			•	·					- •			Page_2_ of _2_
											AR/COC-	60763
roject Name:		Project/Task M	anger:	Mike Sander			Project/Task	Na.:	7223.02.02.01	1		•
Location	Tech Area											l ab una
Building	Room		·	Reference	LOV (a	vaila			······	• · · · · · · · · · · · · · · · · · · ·		Lab use
Sample No- Fraction	ER Sample ID or	Pump	ER	Date/Time (hr)	Sample		ntainer		Collection			Lab Sample
	Sample Location detail	Depth (ft)	1	Collected	Matrix		Volume	ative	Method	Туре	Requested	ID
065313-014	6650/1081-West-ST-V	NA ·	1081	071204/1118	W	AG	250 ml	NONE	G	SA	Tritium (906.0)	113
065315-001	6650-West-ST-TB	NA	NA	071204/1103	DIW	G	3x40 mi	HCL	G	ТВ	VOCs (8260B)	12 4
]		
	-	[1	ţ	<u></u>		[<u> </u>		
<u></u>	·	<u> </u>					<u> </u>		<u> </u>	╂╼──•		
		<u> </u>		l	<u> </u>	<u> </u>		 	<u> </u>			
					<u> </u>		 	_				
			{		{	([–]	(
			1.							1	· · · · ·	
		<u>+</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	-{	<u> </u>	<u> </u>	<u> </u>	┼╌╌╴			
	<u></u>	ļ				 	ļ	ļ	<u> </u>			
		<u> </u>			<u> </u>		[[<u> </u>			
									1			
	· · · · · · · · · · · · · · · · · · ·				1		1		1			
······································						+	{	<u> </u>	+	╉┄╍╍		
								<u> </u>				
		<u> </u>							<u> </u>			
						1	Į			{		
		1	1					T	1			
	<u> </u>		1		1	1	1	1	1	-		
	+	 	+		+	 	 					·····
		<u> </u>	<u> </u>		<u> </u>		·	<u> </u>		<u> </u>		
		<u> </u>										
			1			1						
Abnormal Cond	itions on Receipt	·····	- -	LAB USI	<u>-</u>			÷				
Recipient initial	s											

...

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Sandia National J MS-0756 P.O. Box 5800 Albuquerque, Ne						R	cport Date: Au	gust 10,	2004	
Contact:	Ms. Pamela M. P	vissant						-	-		
Project:	Level C Data Pa	ickage						Pa	ge l	of	2
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	ID:	065313-001 116929001 Misc Liquid 12-JUL-04 11:03 14-JUL-04 Client	- <u></u>		CI	oiect: ient ID: ient Desc.	SNLS00401 SNLS002 : 66501/1081-	West-S7	F-W	
Parameter :	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Volatile Organics Federa	1								-		
8260B TCL Liquid Fede	ral										
1.1.1-Trichloroethane	ប	ND	0.	.340	1.00	ug/L	ŧ	DLS 07/25/0	4 0341	351984	1
1,1,2.2-Tetrachloroethan	e U	ND	0.	.490	1.00	ug/L	1				
1,1,2-Trichlorpethanc	U	ND	0.	.440	1.00	ug/L	1				
1.1-Dichloroethane	U	ND	0.	.410	1.00	ug/L	1				
1,1-Dichloroethylene	U	ND	0.	.410	1.00	ug/L	1				
1,2-Dichloroethanc	U	ND	0.	.290	1.00	ug/L	1				
1,2-Dichloropropane	U	ND	0.	.250	1.00	ug/L	1				
2-Butanone	υ	ND		2.31	5.00	ug/L	1				
2-Hexanone	U	ND		1.45	5.00	ug/L	1			-	
4-Methyl-2-pentanone	U	ND		1.78	5.00	ug/L	1				
Acetone		5.05		4.50	5.00	ug/L	1				
Benzene	U	ND		.330	1.00	. ug/L	1				
Bromodichloromethane	Ŭ	ND		380	1.00	ng/L	1				
Bromoform	U	ND		500	1.00	ug/L	1				
Bromonicthane	U	ND		500	1.00	ug/L	1				
Carbon disulfide	U	ND		1.91 290	5.00 1.00	ug/L	1				
Carbon tetrachloride Chlorobenzene	ប ប	ND ND		290 320	1.00	ug/L ug/L	1				
Chloroethane	U	ND		500	1.00	ug/L	1				
Chloroform	υ	ND		360	1.00	ug/L	1				
Chloromethané	Ŭ	ND		500	1.00	ug/L	· · ·				
Dibromochlorómethane	υ	ND		290	1.00	ug/L	i				
Ethylbenzene {	ບັ	ND		210	1.00	ug/L	i				
Methylene chloride	บั	ND		3.30	5.00	ug/L	i				
Styrene	Ū	ND		250	1.00	ug/L	Í				
Tetrachloroethylene	Ŭ.	ND		330	1.00	υg/L	í				
Toluene	Ū	ND		390	1.00	ug/L	1				
Trichloroethylene	บ	ND		360	1.00	ug/L	1				-
Vinyl acetate	Ũ	ND		.32	5.00	ug/L	1				
Vinyl chloride	U	ND	0.5	550	1.00	ug/L	i				
Xylenes (total)	U	ND		250	1.00	ug/L	l				
cis-1,2-Dichloroethylene		ND		300	1.00	ug/L	Ĩ				
cis-1.3-Dichloropropylen	e U	ND		300	1.00	ug/L	1				
trans-1,2-Dichloroethyler		ND		37 0	1.00	ug/L	1				
trans-1,3-Dichloropropyl	enc U	ND	0 2	290	1.00	ug/L	1				
The following Analytical		rtormed	••••••••••••••••••••••••••••••••••••••	<i>·</i>	·	nalyst Comm			-	•	• •
Method	Description				A	nauysi Comm	TELLIS				

ŧ

١

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

		•											
	Company : Address :	Sandia National L MS-0756	aborator	ics									
		P.O. Box 5800											
		Albuquerque, Nev	w Mexico	o 871850854				R	eport Date: A	ugust	10, 2	2004	
	Contact:	Ms. Pamela M. Pu	vissant						-	_			
	Projeci:	Level C Data Pac	ckage						3	Page	2	of	2
		Client Sample I Sample ID:	D:	065313-001 1 <u>16929001</u>			Proje	ect: at ID:	SNLS00401 SNLS002		.		
Paramet	ter	Qualifier	Resul	t	DL	RL	Units	DF	AnalystDate	e T	ime	Batch	Metho
The follow	ring Analytica	l Methods were pe	erforme	d							-		
Method		Description				Ar	alyst Comm	ents					
1							·						
* .		SW846 8260B D	OB-AL										
Surrogate/	Tracer recove		UE-AL			R	ecovery%	Accep	ptable Limits				
Surrogate/				Federal		R	ecovery% 94	?	ptable Limits 5%-115%)				
Bromofluor		ry Test	L Liquid			R		(76					_

Notes:

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the

effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

Z The percent difference is greater than 70%.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

C) Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Sandia National J MS-0756	Laboratories							
Address :	P.O. Box 5800								
,		Warion 07185	N854			'n		. 10 0000	
Contact:	Ms. Pamela M. P	w Mexico 87185 uissant	0004			л.	eport Date: Aug	gust 10, 2004	
Project:	Level C Data Pa	ckage					Pa	ge 1 of	2
								-	
1	Client Sample 1	D: 065315-	-001		Proj	ect:	SNLS00401		
,	Sample ID:	116929	002		Clie	nt ID:	SNLS002		
	Matrix:	Misc Li							
	Collect Date:		-04 11:03		Clie	nt Desc	:6650-West-ST	r_TB	
. 1	Receive Date:	14-JUL	-04		0110	m 2000		-10	
	Collector:	Client							
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time Bate	h Method
Volatile Organics Federal	l .								
8260B TCL Liquid Feder	al								
1.1.1-Trichlorocthane	U	ND	0.340	1.00	ug/L	J	DLS 07/25/04	0408 35198	4 1
1,1,2,2-Tetrachloroethand		ND	0.490	1.00	ug/L	1			
1,1,2-Trichloroethane	U	ND	0.440	1.00	ug/L	1			
1, I-Dichloroethane	U	ND	0.410	1.00	ug/L]			
1,1-Dichloroethylenc	U	ND	0.410	1.00	ug/L	1			
1,2-Dichloroethane	U	ND	0.290	1.00	ug/L	1			
1,2-Dichloropropane	U	ND	0.250	1.00	ug/L	1			
2-Butanone	U U	ND ND ·	2.31	5.00	ug/L	L I			
2-Hexanone 4-Methyl-2-pentanone	U	ND	1,45 1,78	5.00 5.00	ug/L ug/L	1			-
Acetone	U	ND	4,50	5.00	ug/L ug/L	1			
Benzene	Ŭ	ND	0.330	1.00	ug/L ug/L	1			
Bromodichloromethane	Ŭ	ND	0.380	1.00	ug/L	i			
Bromoform	บ	ND	D.500	1.00	ug/L	ī			
Bromomethane	บ	ND	0.500	1.00	ug/L	1			
Carbon disulfide	U	ND	1.91	5.00	ug/L	1			
Carbon tetrachloride	υ	ND	0.290	1.00	ug/L	1			
Chlorobenzene	U	ND	0.320	1.00	ug/L	1			
Chloroetbane	υ	ND	0.500	1.00	ug/L	1			
Chloroform	U	ND	0.360	1.00	ug/L	1			
Chloromethane	U	ND	0.500	1.00	ug/L	1			
Dibromochloromethane	U	ND	0.290	1.00	ug/L	1			
Ethylbenzene	U	ND	0.210	00.1	ug/L	1			
Mothylene chloride	U	ND	3.30	5.00	ug/L	I			
Styrene	บ บ	ND	0.250	1.00 1.00	ug/L	1			
Tetrachloroethylene	υ	ND ND	0.330 0.390	1.00	ug/L. ug/L	1			
Toluene Trichloroethylene	ប័	ND	0.360	1.00	ug/L	1			
Vinyl acetate	Ŭ	ND	1.32	5.00	ug/L	í			
Vinyl chloride	Ŭ	ND	0.550	1.00	ug/L	i			
Xylenes (total)	Ŭ	ND	0.250	1.00	ug/L	í			
cis-1.2-Dichlorocthylene	ΰ	ND	0.300	1.00	ug/L	Ĺ			
cis-1,3-Dichloropropylene		ND	0.300	1.00	ug/L	ī			
trans-1,2-Dichloroethylene	: U	ND	0.370	1.00	ug/L	1			
trans-1,3-Dichloropropyler		ND	0 290	1.00	ug/L	l			
The following Ameli-At-able	athada ware sa	formed							
The following Analytical M	Description				alyst Comme		—·		-
Method .	Description .			A13	aryst Comme	112			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address : Gontact:	Sandia National I MS-0756 P.O. Box 5800 Albuquerque, Ne Ms. Pamela M. F	w Mexico		-			R	eport Date: Au	gust 10,	2004	
Project:	Level C Data Pa	nckage						Pa	ge 2	of	2
,,	Client Sample Sample ID:	ID:	065315-001 116 <u>929002</u>				oiect: ent ID:	SNLS00401 SNLS002			
Parameter ·	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
The following Analytical	Methods were p	erformed									
Method	Description					Analyst Com	nents				
1	SW846 8260B 1	DOE-AL			·						_
Surrogate/Tracer recover	ry Test					Recovery%	Acce	ptable Limits			
Bromofluorobenzene	8260B TC	CL Liquid F	rederal		、	95	(7	<u>5</u> %-115%)			
Dibromofluoromethane	8260B TC	L Liquid F	ederal			102	(7)	2%-136%)			
Toluene-d8	8260B TC	CL Liquid F	rederal			99	(8	0%-116%)			
Notes:											

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

в The analyte was found in the blank above the effective MDL.

Н Analytical holding time was exceeded

Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL Ŧ

Ρ The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the

effective MDL. For radiochemical analytes the result is less than the Decision Level

х Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

Z The percent difference is greater than 70%.

Prep holding time exceeded h

1

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP confication, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

08-10-04 Reviewed by

GC/MS SEMIVOLATILES SAMPLE DATA

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National	Laboratori	es									
Address :	MS-0756											
	P.O. Box 5800											
	Albuquerque, Ne	w Mexico	871850854				R	eport Da	te: Aug	ust 10.	2004	
	Ms. Pamela M. H							•				
Project:	Level C Data Pa	arkaoe							Pag	(e 1	of	3
								······································				
	Client Sample	ID:	065313-002			Proj	ect:	SNLS	30401			
	Sample ID:		116929003			Clie	nt ID:	SNLS	JO2			
	Matrix:		Misc Liquid									
	Collect Date:		12-JUL-04 11	:27		Clie	nt Desc.	: 6650/3	1081-We	est-ST	-W	
	Receive Date:		14-JUL-04									
····	Collector:		Client	 _								
Parameter	Qualifier	Result		DL		Units	DF	Analy	stDate	Time	Batch	1 Metbo
emi-volatile Mass spec O												
3510/8270C TCL BNA Li	•					_						
1,2,4-Trichlorobenzene	ប	ND		0.710	10.0	ug/L	1	RMB	07/18/04	2026	349624	
1,2-Dichlorobenzene	U	ND		0.410	10.0	ug/L	1					
1,3-Dichlorobenzene	U	ND		0.410	10.0	ug/L	1					
1,4-Dichlorobenzene	U	ND		0.310	10.0	ug/L	1					
2,4,5-Trichlorophenol	U	ND		0.970	10.0	ug/L	1					
2,4,6-Trichlorophenol	U	ND		0.390	10.0	ug/L	. 1					
2,4-Dichlorophenol	U	ND		0.470	10.0	ug/L	1					
2,4-Dimethylphenol	U	ND		0.470	10.0	ug/1.	1					
2,4-Dinitrophenol	U	ND		5.00	20.0	ug/L	1					
2,4-Dinitrotoluene	U	ND		0.700	10.0	ug/L	1					
2,6-Dinitrotoluene	U	ND		0.500 0.400	10.0 1.00	ug/L ug/L	1					
2-Chloronaphthalene	ប ប	ND ND		0.400	10.0		1					
2-Chlorophenol				1.00	10.0	ug/L ug/L	1					
2-Methyl-4,6-dinitrophene 2-Methylnaphthalcne	ol U U	ND ND		0.500	1.00	ug/L ug/L	1					
2-Methymaphulaiche 2-Nitrophenol	บ บ	ND		0.590	10.0	ug/L	1					
3,3'-Dichlorobenzidine	υ	ND		0.510	10.0	ug/L	1					
4-Bromophenylphenylethe		ND		1.22	10.0	ng/L	1					
4-Chloro-3-methylphenol	ມ ບ ບ	ND		0.690	10.0	ng/L	1					
4-Chloroaniline	บั	ND		1.10	10.0	ug/L	i					
4-Chlorophenylphenylethe		ND		0.840	10.0	ug/L	ī					
4-Nitrophenol'	Ŭ	ND		5.00	10.0	ug/L	ĩ					
Acenaphthene	Ū	ND		0.500	1.00	ug/L	1					
Acenaphthylene	Ū	ND	•	0.500	1.00	ug/L	1					
Anthracene	U	ND		0.500	1.00	ug/L	1					
Benzo(a)anthracene	U	ND		0.500	1.00	ug/L	1					
Benzo(a)pyrene	υ	ND		0.500	1.00	ug/L	1					
Benzo(b)fluoranthene	U	ND		0.500	1.00	ug/L	1					
Benzo(ghi)perylene	U	ND		0.500	1.00	ug/L	1					
Benzo(k)fluoranthene	U	ND		0.500	1.00	ug/L	1					
Butylbenzylphthalate	U	ND		0.680	10.0	ug/L	1					
Carbazole	U	ND		0.500	10.0	ug/L	1					
Chrysene	U	ND		0.500	1.00	ug/L	1					
Di-n-butylphthalate	υ	ND		1.00	10.0	ug/L	1					
Di-n-octylphthalaie	υ	ND		0.870	10.0	ug/L	1					
Dibenzo(a,h)anthracene	ប	ND		0.500	1.00	ug/L	1					
Dibenzofuran	U	ND		0.420	10.0	ug/L	1					
Diethylphthalate	ប	ND		0.890	10.0	ug/L						

ţ i i

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National Laboratories
Address :	MS-0756
	P.O. Box 5800
	Albuquerque, New Mexico 87185-0854
Contact:	Ms. Pamela M. Puissant
Project:	Level C Data Package

ł ł

ł

Report Date: August 10, 2004

Page 2 of 3

110,000		chage					,	50 2	Ŷ.	5
· · · · · · · · · · · · · · · · · · ·	Client Sample I Sample ID:	D: 065313-0 11692900				oject: ent ID:	SNLS00401 SNLS002			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Semi-volatile Mass spec O	rganics Federal						*·			
3510/8270C TCL BNA Li	quiđ									
Dimethylphthalate	์ บ	ND	0.530	10.0	ug/L	1				
Diphenylamine	U	ND	0.790	10.0	ug/L	1				
Fluoranthene	U	ND	0.500	1.00	ug/L	1				
Fluorene	υ	ND	0.500	1.00	ug/L	1				
Hexachlorobenzene	U	ND	0.650	10.0	ug/L	1				
Hexachlorobutadienc	U	ND	0.320	10.0	ug/L	1				
Hexachlorocyclopentadie	ne U	ND	1.00	10.0	ug/L	1				
Hexachloroethane	U	ND	0.430	10.0	ug/L	1				
Indeno(1,2,3-cd)pyrene	U	ND	0.500	1.00	ug/L	1				
Isophorone	U	ND	0.590	10.0	ug/L	1				
N-Nitrosodipropylamine	U	ND	0.750	10.0	ug/L	1				
Naphthalene	U	ND	0.110	1.00	ug/L	1				
Nitrobenzene	U	ND	0.630	10. 0	ug/L	1				
Pentachlorophenol	U	ND	5.00	10.0	ug/L	1				
Phenanthrene	U	ND	0.500	1.00	ug/L	1				
Phenol	U	ND	0.300	10.0	ug/L	1				
Pyrene ·	U	ND	0.500	1.00	ug/L	1				
bis(2-Chloroethoxy)metha	ne U	ND	0.480	10.0	ug/L	1			. *	
bis(2-Chloroethyl) ether	U	ND	1.37	10.0	ug/L	1				
bis(2-Chloroisopropyl)eth		ND	0.800	10.0	ug/L	1				
bis(2-Ethylhexyl)phthalate	•' J	2.88	1.30	10.0	ug/L	1		•		
m,p-Cresols	U	ND	0.590	10.0	ug/L	1				
m-Nitroaniline	U	ND	1.00	10.0	ug/L	1				
o-Cresol	U	ND	0.450	10.0	ug/L	1				
o-Nitroaniline	U	ND	0.640	10.0	ug/L	1				
p-Nitroaniline	U	ND	0.670	10.0	ug/L	1				
The following Prep Metho	ds were perform	ed								
· · · · · · · · · · · · · · · ·	Description			Analyst	Date	Time	Prep Batch			
SW846 3510C	3510C BNA Liq.	Prep-8270C Analysi	s Feđ	NAG1	07/16/04	1605	349623			
1										
The following Analytical M		rformed					<u> </u>			·
	Description				Analyst Comm	ents				
J '	SW846 8270C									
Surrogate/Tracer recovery	Test				Recovery%	Accep	table Limits			
2,4,6-Tribromophenol	3510/82700	TCL BNA Liquid			96	(45	%-118%)			
2-Fluorobiphenyl		TCL BNA Liquid			81	-	5%-97%)			
2-Fluorophenol		CTCL BNA Liquid			38		2%-68%)			
Nitrobenzene-d5		TCL BNA Liquid			90	•	%-110%)			
	5510,02700	· · · · · · · · · · · · · · · · · · ·			20	(47				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result		DL	RL	Units	DF	AnalystDa	te T	ime	Batch	Method
	Client Sample ID: Sample ID:	065313-002 116929003			Project Client 1		SNLS0040 SNLS002	1			
Project:	Level C Data Package							Page	3	oſ	3
Contact:	Albuquerque, New Mexico Ms. Pamela M. Puissant	871850854				Rej	port Dale:	August	10, 2	2004	
Address :	MS-0756 P.O. Box 5800										
Company :	Sandia National Laboratorie	\$									

 Phenol-d5
 3510/8270C TCL BNA Liquid
 24
 (16%-75%)

 p-Terphenyl-d14
 3510/8270C TCL BNA Liquid
 98
 (56%-133%)

Notes:

;

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the

effective MDL. For radiochemical analytes the result is less than the Decision Level X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Presumptive evidence that the analyte is not press
 Z The percent difference is greater than 70%.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

oley

Reviewed by

EXPLOSIVES SAMPLE DATA

1

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

P.O. Box 5800 Albugurque, New Mexico 87185-0854 Contact: Report Date: August 9, 2004 Contact: Ms. Pamela M. Puissaut Page 1 of 2 Project: Level C Data Package Page 1 of 2 Client Sample ID: 116929008 Marrix: Project: SNL S00401 Client ID: Mise Lightd Collector: Client Lightd Collector: DL RL Units DF AnalystDate Time Batch Method Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method 330 EXPLOS at list Lightd Callector: U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349633 1 2,4-6 Tininrohenzene U ND 0.325 0.974 ug/L 2 2,4-6 Tininrohenzene U ND 0.325 0.974 ug/L 2 4/4-6 Timirohenzene U ND 0.325 0.974 ug/L 2 2,4-6 Timirohenzene U ND 0.162 0.486 ug/L 2 Aunino 4,6-dinintrohenzene U ND	Company :	Sandia National L	aborator	ies								
Abuquerupe, New Mexico 87185-0854 Report Date: August 9, 2004 Contact: Ms. Panela M. Puissant Page 1 of 2 Project: Level C Data Package Page 1 of 2 Client Sample ID: 065313-007 Project: SNL5002 Matrix: Mise Liquid Client ID: SNL5002 Collect Date: 116929008 Client Desc: 6650/1081-West-ST-W Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method 13.5 'Thinirobenzae U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4-6 Thinirobenzae U ND 0.312 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 4,2-15hintroblenze U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4-5 Thintroblenze U ND 0.162 0.4486 ug/L 2 2 349638 1	Address :	MS-0756										
Contact: Ms. Pamela M. Puissant Page 1 of 2 Project: Level C Data Package Project: SNL S00401 Client Sample ID: 116929008 Client ID SNL S002 Matrix: Mise Liquid Client Date: 12.7UL 04 1134 Client Desc.: 6650/1081-West-ST-W Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Methe HPLC Explosives Federal 13.5 Client D RL Units DF AnalystDate Time Batch Methe 4330 EXPLO. Std list Liquid Federal 13.5 Client 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2.4-Ofinitrotolace U ND 0.325 0.974 ug/L 2 4/4/2 2 4.6-Ofinitrotolace U ND 0.325 0.974 ug/L 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2 4/4/2 2			w Mexico	87185-0854				D.	anort Dotes Au		004	
Project: Level C Data Package Page 1 of 2 Client Sample ID: 065313-007 Sample ID: 116929008 Marrix: Project: SNL 500401 Client ID: SNL 5002 Marrix: Misc Liquid Collect Date: 12-70L-04 11:34 Receive Date: Client Desc.: 6650/1081-West-ST-W Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method 830 EXPLO. Sd tils Liquid Federal 13.5- Trinitroplemzene U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2.4-Dinitroplemzene U ND 0.325 0.974 ug/L 2 2.4-Dinitroplemzene U ND 0.162 0.486 ug/L 2 <th>Contact:</th> <th></th> <th></th> <th>07105-0054</th> <th></th> <th></th> <th></th> <th>K</th> <th>port Date. Aug</th> <th>just 9, 2</th> <th>004</th> <th></th>	Contact:			07105-0054				K	port Date. Aug	just 9, 2	004	
Client Sample ID: 065313-007 Sample ID: Project: SNL 5004 Marrix: Mise Liquid Collect Date: 12-7UL-04 Client ID: SNL 5002 Receive Date: 12-7UL-04 Client Date: SNL 5002 Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method HPLC Explosives Federal 13-57 13-57 Client Date: 12-7UL-04 11:34 d330 EXPLO. Std list Liquid Federal 13-57 NL DF AnalystDate Time Batch Method d13-57 Dimitroblenzene U ND 0.325 0.974 ug/L 2 4.46-71 Timitroblenzene U ND 0.325 0.974 ug/L 2 4.46-71 DI ND 0.325 0.974 ug/L 2 4.46-71 DI DD 0.162 0.486 ug/L 2 HMX U ND 0.162									Pac	na 1	of	2
Sample ID: 116929008 Client ID: SNLS002 Matrix: Miss Liquid Collect Date: 12-1/UL-04 11:34 Receive Date: Client Desc:: 6650/1081-West-ST-W Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method B3/0 EXPLO. Soft its: Liquid Federal 33/0 EXPLO. Soft its: Liquid Federal 1 1 2 MAP 07/24/04 2232 349638 1 2,4-6. Trinitroblence U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4-6. Trinitroblence U ND 0.325 0.974 ug/L 2 2 2 2,6-Dinitroblence U ND 0.162 0.486 ug/L 2 Admine 2,6-dinitroblence U ND 0.162 0.486 ug/L 2 Nitrobeazene U ND 0.325 0.974 ug/L 2 PNitroblence <	F10jeci:						, 	·		<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>
Receive Date: 14-JUL-04 Client Collector: Client Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Method HPLC Explosives Federal 8330 EXPLO. Std list Liquid Federal 13.5-Trinitrydemzene U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4-6 Trinitrydource U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4-6 Trinitrydource U ND 0.162 0.486 ug/L 2 2,4-6 Trinitrydource U ND 0.1325 0.974 ug/L 2 2,4-6 Trinitrydource U ND 0.132 0.540 ug/L 2 4-Amino-2,6-dinitrolource U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 HMX U ND 0.325 0.974 ug/L 2 Nitrolource U ND 0.		Sample ID: Matrix:	D:	116929008 Misc Liquid	t		Cli	ent ID:	SNLS002			
Parameter Qualifier Result DL RL Units DF AnalystDate Time Batch Metho 4330 EXPLO. Std its Liquid Federal		Receive Date:		14-JUL-04	r		CĿ	ent Desc.	: 6650/1081-We	est-ST-	W	
8330 EXPLO. Std list Liquid Federal 1,3,5-Trinitropenzene U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4,6-Trinitroplenzene U ND 0.162 0.486 ug/L 2 2,4-Dinitrotolnene U ND 0.132 0.974 ug/L 2 2,6-Dinitrotolnene U ND 0.132 0.974 ug/L 2 2,6-Dinitrotolnene U ND 0.132 0.974 ug/L 2 2,6-Dinitrotolnene U ND 0.132 0.974 ug/L 2 4-Amino-2,6-dinitrotolnene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 2 Nitrobenzene U ND 0.325 0.974 ug/L 2 2 PDinitrotoluene U ND 0.325 0.974 ug/L 2 2 PNitrotoluene U ND 0.325 0.974 ug/L	Parameter		Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
1,3,5-Trinitrobenzene U ND 0.325 0.974 ug/L 2 MAP 07/24/04 2232 349638 1 2,4,6-Trinitrotolucene U ND 0.162 0.486 ug/L 2 2,4-Dinitrotolucene U ND 0.325 0.974 ug/L 2 2,4-Dinitrotolucene U ND 0.325 0.974 ug/L 2 2,4-Dinitrotolucene U ND 0.325 0.974 ug/L 2 2,6-Dinitrotolucene U ND 0.182 0.540 ug/L 2 2,6-dinitrotolucene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 Nitobenzene U ND 0.162 0.486 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 o-Nitrotolucene U ND 0.325 0.974 ug/L 2 o-Nitrotolucene U ND 0.325 0.97	HPLC Explosives Federal	l	· · · · · · · · · · · · · · · · · · ·									
2,4-6 Trinitrotoluene U ND 0.162 0.486 ug/L 2 2,4-Dinitrotoluene U ND 0.325 0.974 ug/L 2 2,6-Dinitrotoluene U ND 0.325 0.974 ug/L 2 2,6-Dinitrotoluene U ND 0.325 0.974 ug/L 2 2,6-Dinitrotoluene U ND 0.162 0.486 ug/L 2 4-Amino-2,6-dinitrotoluene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 2 RDX U ND 0.162 0.486 ug/L 2 2 -		uid Federal										
2.4-Dinitrotolucne U ND 0.325 0.974 ug/L 2 2.6-Dinitrotolucne U ND 0.182 0.540 ug/L 2 2.6-Dinitrotolucne U ND 0.182 0.540 ug/L 2 2.Amino-4.6-dinitrotolucne U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 m-Dinitrobenzene U ND 0.425 0.974 ug/L 2 m-Dinitroburne U ND 0.325 0.974 ug/L 2 m-Nitrotolucne U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Date Time Prep Batch SW846 8330 PREP 8330 EXPLOS Std list Liquid Federal<	1,3,5-Trinitrobenzene	υ	ND	0	.325	0.974		2	MAP 07/24/04	2232	349638	1
2.6-Dinitrotolnene U ND 0.182 0.540 ug/L 2 2Amino-4,6-dinitrotolnene U ND 0.182 0.974 ug/L 2 4-Amino-2,6-dinitrotolnene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 RDX U ND 0.462 0.486 ug/L 2 m-Dinitrobenzene U ND 0.487 1.46 ug/L 2 o-Nitrotolnene U ND 0.325 0.974 ug/L 2 o-Nitrotolnene U ND 0.162 0.486 ug/L 2 p-Nitrotolnene U ND 0.162 0.486 ug/L 2 SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performe	2,4,6-Trinitrotoluene	\mathbf{U}	ND	0	.162	0.486	ug/L	2				
2-Amino-4,6-dinitrotoluene U ND 0.325 0.974 ug/L 2 4-Amino-2,6-dinitrotoluene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 m-Dinitrobenzene U ND 0.162 0.486 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 m-Dinitrobnene U ND 0.325 0.974 ug/L 2 m-Nitrotoluene U ND 0.325 0.974 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 <td>2,4-Dinitrotoluene</td> <td>U</td> <td>ND</td> <td>0</td> <td>.325</td> <td>0.974</td> <td>ug/L</td> <td>2</td> <td></td> <td></td> <td></td> <td></td>	2,4-Dinitrotoluene	U	ND	0	.325	0.974	ug/L	2				
4-Amino-2,6-dinitrotoluene U ND 0.162 0.486 ug/L 2 HMX U ND 0.162 0.486 ug/L 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 Tetryl U ND 0.487 1.46 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 o-Nitrotoluene U ND 0.325 0.974 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed	2,6-Dinitrotoluene	U	ND	0	.182	0.540	ug/L	2				
HMX U ND 0.162 0.486 ug/L 2 Nitrobenzene U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 Tetryl U ND 0.487 1.46 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 o-Nitrotohuene U ND 0.325 0.974 ug/L 2 p-Nitrotohuene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLO.STVES BY HPLC Prep in Higuid HMF1 07/19/04 0855 349637	2-Amino-4,6-dinitrotolue	ne U	ND	0	.325	0.974	ug/L	2				
Nitrobenzene U ND 0.162 0.486 ug/L 2 RDX U ND 0.162 0.486 ug/L 2 Tetryl U ND 0.487 1.46 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 m-Nitrotolucne U ND 0.325 0.974 ug/L 2 o-Nitrotolucne U ND 0.325 0.974 ug/L 2 o-Nitrotolucne U ND 0.162 0.486 ug/L 2 o-Nitrotolucne U ND 0.325 0.974 ug/L 2 P-Nitrotolucne U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed	4-Amino-2,6-dinitrotolue	ne U	ND	0	162	0.486	ug/L	2				
RDX U ND 0.162 0.486 ug/L 2 Tetryl U ND 0.487 1.46 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 m-Nitrotoluene U ND 0.325 0.974 ug/L 2 m-Nitrotoluene U ND 0.325 0.974 ug/L 2 p-Nitrotoluene U ND 0.162 0.486 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed	HMX	U	ND	0	.162	0.486	ug/L					
RDX U ND 0.162 0.486 ug/L 2 Tetryl U ND 0.487 1.46 ug/L 2 m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 m-Nitrotoluene U ND 0.325 0.974 ug/L 2 o-Nitrotoluene U ND 0.325 0.974 ug/L 2 o-Nitrotoluene U ND 0.162 0.486 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed	Nitrobenzene	U	ND	0	.162	0.486	ug/L	2				
m-Dinitrobenzene U ND 0.325 0.974 ug/L 2 m-Nitrotoluene U ND 0.325 0.974 ug/L 2 o-Nitrotoluene U ND 0.325 0.974 ug/L 2 o-Nitrotoluene U ND 0.162 0.486 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed <	RDX	U	ND	0	.162	0.486		2				
m-Nitrotolucne U ND 0.325 0.974 ug/L 2 o-Nitrotolucne U ND 0.162 0.486 ug/L 2 p-Nitrotolucne U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed	Tetryi	U	ND	0	.487	1.46	ug/L	2				
o-Nitrotoluene U ND 0.162 0.486 ug/L 2 p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed Method Description Analyst Comments I SW846 8330 Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%) Notes:	m-Dinitrobenzene	U	'ND	0	.325	0.974	ng/L	2				
p-Nitrotoluene U ND 0.325 0.974 ug/L 2 The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed Method Description Analyst Comments 1 SW846 8330 Swrogate/Tracer recovery Test Recovery% Acceptable Limits 3.4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	m-Nitrotolucne	U	ND	0	.325	0.974	ug/L	2				
The following Prep Methods were performed Method Description Analyst Date Time Prep Batch SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed Method Description Analyst Comments I SW846 8330 Swrogate/Tracer recovery Test Recovery% Acceptable Limits 3.4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	o-Nitrotoluene	U	ND	0.	.162	0.486	ug/L					
Method Description Analyst Date Time Prep Prep SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed Analyst Comments Analyst Comments Method Description Analyst Comments I SW846 8330 Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	p-Nitrotoluene	U	ND	D.	.325	0.974	ug/L	2				
SW846 8330 PREP 8330 EXPLOSIVES BY HPLC Prep in liquid HMF1 07/19/04 0855 349637 The following Analytical Methods were performed Analyst Comments Method Description Analyst Comments I SW846 8330 Sw846 8330 Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	The following Prep Meth	ods were perform	aed									
The following Analytical Methods were performed Method Description Analyst Comments I SW846 8330 Sw846 8330 Sturrogate/Tracer recovery Test Recovery% Acceptable Limits 3.4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%) Notes: Value State	Method	Description				Analyst	Date	Time	Prep Batch			
Method Description Analyst Comments I SW846 8330 Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	SW846 8330 PREP	8330 EXPLOSI	ES BY I	TPLC Prep in liquid	-	HMF1	07/19/04	0855	349637			
I SW846 8330 Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	The following Analytical	Methods were pe	rformed									
Surrogate/Tracer recovery Test Recovery% Acceptable Limits 3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%)	Method	Description					Analyst Comm	ents				
3,4-Dinitrotoluene 8330 EXPLO. Std list Liquid Federal 96 (64%-135%) Notes:	I	SW846 8330										
Notes:	Surrogate/Tracer recover	y Test					Recovery%	Accept	table Limits			
	3,4-Dinitrotoluene	8330 EXPL	.O. Std li	st Liquid Federal			96	(64	%-135%)	*·		
	Notes:											
		aport are defined	l as falls									

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

1

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National Laboratories				
Address :	MS-0756				
	P.O. Box 5800	•			
	Albuquerque, New Mexico 871850854			Report Date: August 9, 2004	
Contact:	Ms. Pamela M. Puissant				
Project:	Level C Data Package			Page 2 of 2	
	Client Sample ID: 065313-007 Sample ID: 116929008			Project: SNLS00401 Client ID: SNLS002	
Parameter	Qualifier Result	DL	RL	Units DF AnalystDate Time Batch Met	hod

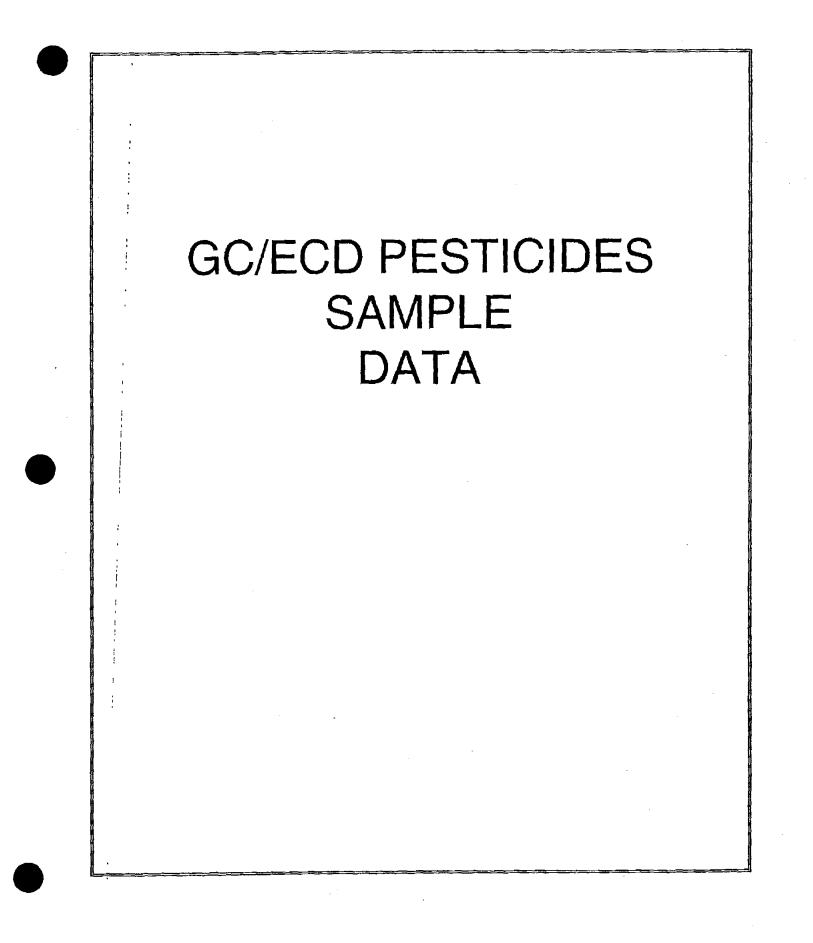
P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

Z The percent difference is greater than 70%.

h Prep holding time exceeded


The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

nauch Hep

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National Laboratories
Address :	MS-0756
	P.O. Box 5800
	Albuquerque, New Mexico 871850854
Contact:	Ms. Pamela M. Puissant
Project:	Level C Data Package

,

Report Date: August 11, 2004

Page 1 of 2

	Client Sample II Sample ID: Matrix: Collect Date:		065313-004 116929005 Misc Liquid 12-JUL-04 11:22		Cli	oiect: ent ID:	SNLS0040 SNLS002	-		
	Receive Date:		12-JUL-04 11:22		Cli	ent Desc.	: 6650/1081-	West-S	T-W	
; 	Collector:		Client			· ···, <u>· · · ·</u> · · ··· ·			<u></u> ,	
Parameter	Qualifier	Result	DI	, RI	L Units	DF	AnalystDat	e Tin	e Batch	1 Metho
Semi-Volatlles-Pesticide 1										
8081A 3510C TCL PEST	°H2O Federal									
4,4'-DDD	U	ND	0.0055	6 0.0404	ug/L	1	SJ 07/20	/04 205	5 349632	2 1
4,4'-DDE	ប	ND	0.0044	4 0.0404	սց/Լ	1				
4,4'-DDT	U	ND	0.01	1 0.0404	ug/L	1				
Aldrin	ប	ND	0.005	3 0.0202	ug/L	1				
Dieldrin	U	ND	0.0038	0.0404	ug/L	1				
Endosulfan I	U	ND	0.0062		ng/L	1				
Endosulfan II	U	ND	0.01	2 0.0404		1				
Endosulfan sulfate	Ū	ND	0.004		U .	î				
Endrin	Ū	ND	0.00384			1				
Endrin ketone	บั	ND	0.0046			1				
Heptachlor	Ŭ	ND	0.0059			1				
Heptachlor epoxide	Ŭ	ND	0.00303			1				
Methoxychlor	ប័	ND	0.023		Ŷ	3				
Toxaphene	บั	ND	0.100		ug/L	1				
alpha-BHC	Ŭ	ND	0.00140			1				
alpha-Chlordane	Ŭ	ND	0.00253			1				
beta-BHC	υ	ND	0.00288			1				
delta-BHC	บั	ND	0.00278			1				
gamma-BHC (Lindane)	U U	ND	0.00212		ug/L ug/L	1				
gamma-Chlordane	ប	ND	0.00369			1				
					-					
The following Prep Meth		ed							·	
Method	Description	· · · · · · · · · · · · · · · · · · ·		Analyst	Date	Time	Prep Bat	сь —		
W846 3510C	3510C PEST Prep	H2O Fe	ieral	JPB	07/16/04	1623	349631			
The following Analytical	Methods were per	formed								
Viethod	Description				Analyst Comm	nents				
• • • • • • • • • • • • • • • • • • •	SW846 8081A	·								
mrogate/Tracer recover	y Test				Recovery%	Accep	table Limits			
cmx	8081A 3510	C TCL P	EST H2O Federal		58	(4'	7%-96%)			
		C TCL P			63		%-102%)			

The Qualifiers in this report are defined as follows :

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National Laboratories			1 A A				
Address :	MS-0756							
,	P.O. Box 5800							
	Albuquerque, New Mexico 87185-0854			R	leport Date: A	ugust 11,	2004	
Contact:	Ms. Pamela M. Puissant							
Project:	Level C Data Package				1	Page 2	of	2
	Client Sample ID: 065313-004 Sample ID: 116929005			Project: Client ID:	SNLS00401 SNLS002	l	•	
Parameter	Qualifier Result	DL	RL	Units DF	AnalystDat	e Time	Batch	Method

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

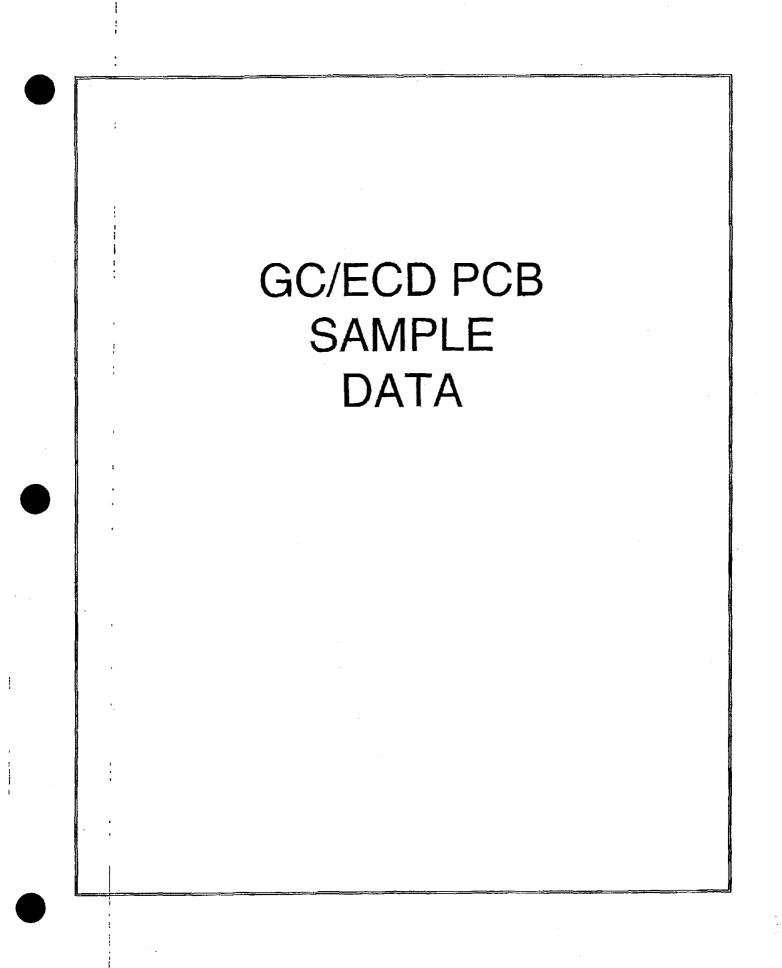
J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

Z The percent difference is greater than 70%.


h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

0. Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

andia National La 1S-0756 .O. Box 5800		es								
.O. Box 5800										
Iburniarona Mart										
aondacidac, isea	Mexico	871850854				Re	eport Date: Au	gust 9, 1	2004	
is. Pamela M. Pu	issant						-			
evel C Data Pac	kage						Pa	ge l	of	2
Sample ID: Aatrix:		065313-003 116929004 Misc Liquid					SNLS00401 SNLS002		— <u> </u>	
Receive Date:		14-JUL-04	1:30		Clie	ent Desc.:	: 6650/1081-₩	'est-ST	`-W	
Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	e Batch	Metho
1										
1										
U	ND		0.0515	0.103	ug/L	1	JSP 07/21/0	4 1829	349620	L
						1				
						1				
_	-					1				
						1				
						I				
U	ND		0.0515	0.103	ug/L	1				
ds were perform	ed									
Description				Analyst	Date	Time	Prep Batch	1	-	
3510C PCB Prep	H2O Fea	deral		AGS1	07/16/04	1400	349619			
Aethods were pe	rformed									
Description		<u> </u>			Analyst Comm	ents				
SW846 8082		······································	<u>. </u>							
SW846 8082										
Test	•				Recovery%	Accep	table Limits			
	1000 77				79	147	7%-96%)			
8082 35100	: РСВ Н.	20 Fea			12	(4)	170-9070}			
	Client Sample II Sample ID: Aatrix: Collect Date: Receive Date: Collector: Qualifier I U U U U U U U U U U U U U U U U U U	Sample ID: Matrix: Collect Date: Receive Date: Collector: Qualifier Result U ND U ND Store performed Description SW846 8082 SW846 8082	Client Sample ID: 065313-003 Sample ID: 116929004 Matrix: Misc Liquid Collect Date: 12-JUL-04 11 Receive Date: 14-JUL-04 Collector: Client Qualifier Result U ND U ND Store performed Description SW846 8082 SW846 8082	Client Sample ID: 065313-003 Sample ID: 116929004 Matrix: Misc Liquid Collect Date: 12-JUL-04 11:30 Receive Date: 14-JUL-04 Collector: Client Qualifier Result DL U ND 0.0515 U ND 0.0859 U ND 0.0515 U ND 0.0515 Store performed Description 3510C PCB Prep H2O Federal Methods were performed Description SW846 8082 SW846 8082	Client Sample ID: 065313-003 Sample ID: 116929004 Matrix: Misc Liquid Collect Date: 12-JUL-04 11:30 Receive Date: 14-JUL-04 Collector: Client Qualifier Result DL Receive Date: 14-JUL-04 Collector: Client Qualifier Result DL Receive Date: 14-JUL-04 Collector: Client Qualifier Result DL Receive Date: 0.0515 0.103 U ND 0.0515 0.103 ds were performed Description AGS1 Methods were performed Description SW846 8082	Client Sample ID: 065313-003 Proising the second seco	Client Sample ID: 065313-003 Project: Sample ID: 116929004 Client ID: Aatrix: Misc Liquid Client ID: Collect Date: 12-JUL-04 11:30 Client Desc. Collector: Client DL RL Units DF Qualitier Result DL RL Units DF U ND 0.0515 0.103 ug/L 1 ds were performed Date Time 3510C PCB Prep H2O	Chient Sample ID: 065313-003 116929004 Project: SNLS00401 Client ID: Misc Liquid Client ID: SNLS002 Aatrix: Misc Liquid Client ID: SNLS002 Collect Date: 12-JUL-04 11:30 Client Desc.: 6650/1081-W Collect Date: 14-JUL-04 Client Desc.: 6650/1081-W Collect Or: Client DL RL Units DF AnalystDate Qualifier Result DL RL Units DF AnalystDate U ND 0.0515 0.103 ug/L 1 JSP 07/21/0 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 1 Stop 10 3496	Chient Sample ID: 065313-003 Project: SNLS00401 Sample ID: 116929004 Client ID: SNLS002 Aatrix: Misc Liquid Client ID: SNLS002 Collect Date: 12-JUL-04 11:30 Client Desc.: 6650/1081-West-ST Collect Date: 14-JUL-04 Client Desc.: 6650/1081-West-ST Collect Or: Client DL RL Units DF AnalystDate Time Qualifier Result DL RL Units DF AnalystDate Time U ND 0.0515 0.103 ug/L 1 USP 07/21/04 1829 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 U U ND 0.0515 0.103 ug/L 1 U <td>Chient Sample ID: 065313-003 Project: SNL S00401 Sample ID: 116929004 Client ID: SNL S002 Atrix: Misc Liquid Client ID: SNL S002 Atrix: Misc Liquid Client Desc.: 6650/1081-West-ST-W Sollector: Client DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier ND 0.0515 0.103 ug/L 1 U ND 0.0619 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 <</td>	Chient Sample ID: 065313-003 Project: SNL S00401 Sample ID: 116929004 Client ID: SNL S002 Atrix: Misc Liquid Client ID: SNL S002 Atrix: Misc Liquid Client Desc.: 6650/1081-West-ST-W Sollector: Client DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier Result DL RL Units DF AnalystDate Time Batch Qualifier ND 0.0515 0.103 ug/L 1 U ND 0.0619 0.103 ug/L 1 U ND 0.0515 0.103 ug/L 1 <

Notes:

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

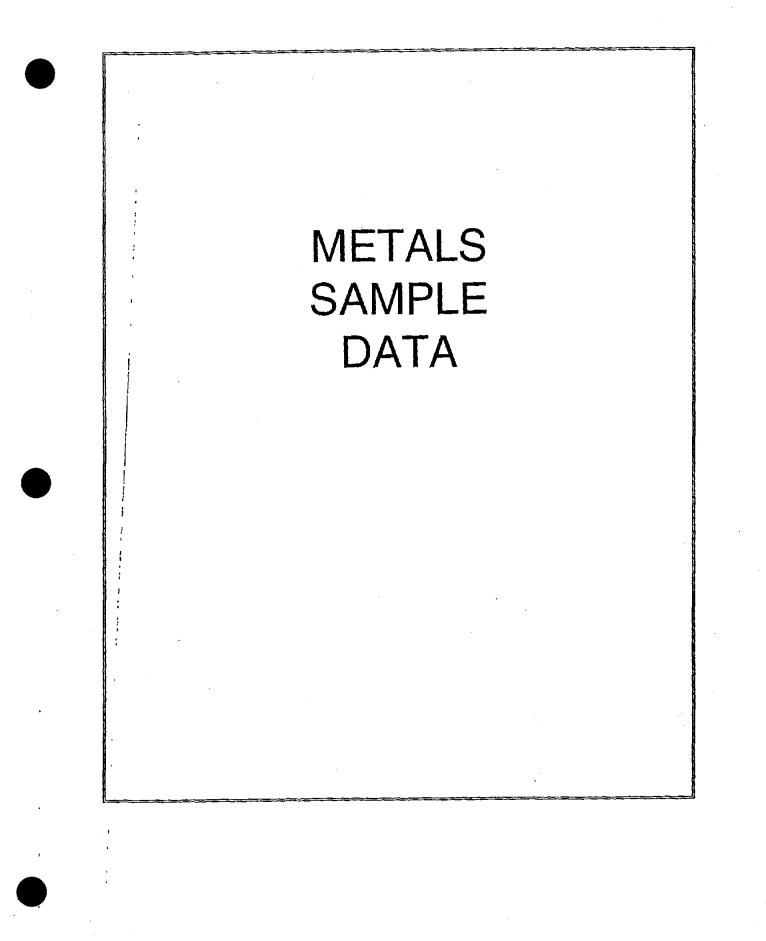
U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

	·		<u>Cert</u>	ificate o	of Analy	<u>vsis</u>						
	 Sandia National L MS-0756	Laboratori	ies									
ì	 P.O. Box 5800 Albuquerque, Nev Ms. Pamela M. Pu		871850854				1	Report Date:	Aug	ust 9,	2004	
	 Level C Data Pac								Pag	ge 2	2 of	2
	 Client Sample I Sample ID:	D:	065313-003 116929004			Projec Client		SNLS004 SNLS002				
arameter	 Qualifier	Result	· ·	DL	RL	Units	DF	F AnalystD	Date	Tim	e Bat	tch Metho

Ž The percent difference is greater than 70%.


h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

<u>Za</u> Compand. Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

ļ

Certificate of Analysis

	Company : Address :	Sandia Nationa MS-0756 P.O. Box 5800 Albuquerque, N	lew Mexico				Re	port Date: Aug	ust 9, 200	4	
	Contact: Project:	Ms. Pamela M. Level C Data I						Pag	je 1	of	2.
		Client Sample Sample ID: Matrix: Collect Date:	e ID:	065313-006 116929007 Misc Liquid 12-JUL-04 11:21			nt ID:	SNLS00401 SNLS002 : 6650/1081-We	the CITE XX		
		Receive Date:		14-JUL-04		Che	nt Dese.	. 0020/1081- 99			
Parameter		Collector: Qualifier	Result	ClientDI	, RL	Units	 DF	AnalystDate	Time I		Metho
fercury Ana	alysis-CVA										
-	Vapor Hg Li										
Mercury	uper ext La	U	ND	0.000047	0.0002	mg/L	,	BCD1 07/21/04	1225 35	0071	1 -
Aetals Analy	sis-ICP-MS			0.000017	0.0002		-	DC07 01121101	1265 55	0071	1.
6020 TAL M											
Aluminum	i i	U	ND	0.0908	0.150	me/l	1	BAJ 07/23/04	2039 34	0511	2,
Antimony	,	Ŭ	ND	0.0028		mg/L mg/L	1	DAJ 0//25/04	2059 54	9544	2.5
Arsenic		BJ	0.0101	0.010		mg/L	1				
Barium	!		0.0242	0.0019		mg/L	1				
Beryllium		U	ND	0.0008		mg/L	1				
Cadmium		Ŭ	ND	0.0004		mg/L	1				
Calcium		0	66.5	0.400		mg/L	1				
Chromium		U	ND	0.0038		mg/L	1	•			
Cobalt		1	0.00064	0.0006		mg/L	1				
Соррег		j	0.00762	0.0069		mg/L	1				
lron		5	0.00702	0.158		mg/L	1				
Lead		υ	ND	0.0005		mg/L	1				
Magnesium		Ŭ	12.1	0.0633		mg/L	í				
Manganese		J	0.0279	0.0161		mg/L	í			•	
Molybdenur		บ้	ND	0.002		mg/L	i				
Nickel		J	0.00649	0.0007		mg/L	1				
Selenium		บ้	ND	0.0064		mg/L	1				
Silver		Ģ	0.0143	0.0004		mg/L	1				
Sodium			128	0.0968		mg/L	1				
Thallium		J	0.00408	0.0002		mg/L	i				
Vanadium		Ů	ND	0.0544		mg/L	i				
Zinc		J.	0.0192	0.0109		mg/L	ĩ				
Potassium		•	101	0.151		mg/L	_	BAJ 07/26/04	0919 34	9544	3,
The followin	e Pren Met	bods were perfo	rmed								
Viethod	D h	Description		<u></u>	Analyst	Date	Time	Prep Batch			
W846 3005A	<u></u>	ICP-MS 3005	PREP		FGA	07/20/04	1100	349543			
W846 7470A	Prep	EPA 7470A M) Liquid	ETL.	07/20/04	1130	350060			
The followin	g Analytica] Methods were	performed								
viethod		Description		<u> </u>		Analyst Comme	nts			•	
		SW846 7470A		. <u></u>	•			·			
		SW846 3005/6	020								

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company :	Sandia National Laborator	ies								
Address :	MS-0756									
	P.O. Box 5800							-		
,	Albuquerque, New Mexico	o 871850854				R	eport Date:	August 9, 2	.004	
Contact:	Ms. Pamela M. Puissant									
Project:	Level C Data Package							Page 2	of	2
	Client Sample ID: Sample ID:	065313-006 116929007			Proie Clier	ect: nt ID:	SNLS0040 SNLS002	1		
Parameter	Qualifier Result	L	DL	RL	Units	DF	AnalysiDa	te Time	Batch	Method
, }	SW846 3005/6020									

Notes:

3

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the

effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

8/10/0 Reviewed by

GENERAL CHEMISTRY SAMPLE DATA

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	mpany :	Sandia National L MS-0756	aboratori	ics									
Ad	ldress :	P.O. Box 5800											
		Albuquerque, Nev	v Mexico	871850854				R	eport Date:	Augus	at 6, 20	004	
Co	ntact:	Ms. Pamela M. Pu							,	0			
Pro	oject:	Level C Data Pao	kage:							Pagé	1	of	1
		Client Sample I	D:	065313-005			Pro		SNLS0040)1			
		Sample ID:		116929006			Clie	nt ID:	SNLS002				
		Matrix:		Misc Liquid									
		Collect Date: Receive Date:		12-JUL-04 11:20			Clie	nt Desc.	:6650/1081	-West	t-ST-	w	
		Collector:		14-JUL-04 Client									
Parameter		Qualifier	Result		DL	RL	Units	DF	AnalystDa	te 7	lime	Batch	Method
Oil & Grease Ar	nalysis Fe	deral											
SW9070 OIL &	GREASE	E Federal											
Oil & Grease		1	1.54	1	.36	4.40	mg/L		POW1 08/0	3/04 1	002 3	353622	1
The following A	Analytica	l Methods were pe	rformed										
Method		Description				AI	nalyst Comm	ents					
1		SW846 9070											

Notes:

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

< For less than value for Flashpoint

В The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL. 3

The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the U effective MDL. For radiochemical analytes the result is less than the Decision Level

Presumptive evidence that the analyte is not present. Please see narrative for further information. х

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating proceedinges. Please direct any questions to your Project Manager, Edith Kent.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address : Contact:	Sandia National Laborator MS-0756 P.O. Box 5800 Albuquerque, New Mexico Ms. Pamela M. Puissant	· ·		Report Date: August 6, 2004						
Project:	Level C Data Package Page 1 of 1									
	Client Sample ID: Sample ID: Matrix: Collect Date:	065313-008 116929009 Misc Liquid 12-IUL-04 11:21			it ID:	SNLS00401 SNLS002 6650/1081-We	st-ST-1	v		
	Receive Date: Collector:	14-JUL-04 Client								
Parameter	Qualifier Resul		RL	Units	DF	AnalystDate	Time	Batch	Method	
Flow Injection Analysis I	Federal	······································	<u></u>				· ·			
SW 9066 Phenols, Total	Liquid									
Total Phenol	B 0.0163	0.00369	0.010	mg/L	1	ADF 07/30/04	1253 3	50749	1	
The following Prep Met	hods were performed									
Method	Description		Analyst	Date	Time	Prep Batch				
SW846 9066 Prep	SW 9066 Phenols, Total	in liquid-Fed PRE	KLP1	07/22/04	1408	350748				
The following Analytica	l Methods were performed	i								
Method	Description			Analyst Comme	nts					
1	SW846 9066	······································								

Notes:

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

< For less than value for Flashpoint

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Pleze direct any questions to your Project Manager, Edith Kent.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gei.com

Certificate of Analysis

Company :	Sandia National I	aborator	ies									
Address :	MS-0756 P.O. Box 5800											
Contact:	871850854				R	eport D	ate: Aug	15t 6, 2	2004			
Project:	Level C Data Pa			Pag	e 1	of	1					
	Client Sample I Sample ID: Matrix:	D:	065313-009 116929010 Misc Liquid				Project: Client ID:	SNLS SNLS	500401 5002			
	Collect Date: Receive Date:		12-ЛЛ-04 11:19 14-ЛЛ-04			(Client Desc	.: 6650/	50/1081-West-ST-W			
	Collector:		Client									
Parameter	Qualifier	Result	. D	L	RL	Units	5 DF	Anal	ystDate	Time	Batch	Method
Nutrient Analysis Federa	J			,							·	······
EPA 353.1 Nitrogen, (Ne	03/NO2)											
Nitrogen, Nitrate/Nitrite	J	0.030	0.0	.0 (0.050	mg/L	, 1	JXM	08/05/04	1119	355061	1
The following Analytical) Methods were pe	rformed										
Method	Description				An	alyst Co	mments				•	
ī	EPA 353.1							<u> </u>				
Notes: The Qualifiers in this	report are defined	l as follo	ws :									

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not

applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

< For less than value for Flashpoint

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company :	Sandia National L	aborator	ies								
	Address :	MS-0756										
		P.O. Box 5800										
	-	Albuquerque, New	871850854	Report Date: August 6, 2004								
	Contact:	Ms. Pamela M. Puissant Level C Data Package Page 1 of										
Project:	Project:											
	,	Client Sample II):	065313-010		Proi	ect:	SNLS00401				
		Sample ID:		116929011	Client ID:			SNLS002				
		Matrix:		Misc Liquid								
		Collect Date:		12-JUL-04 11:19		Client Desc.: 6650/1081-West-ST						
		Receive Date:		14-JUL-04						•		
		Collector:		Client								
Parameter	r 	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method	
Ion Chromat	ography Fe	deral										
SW846-905	6 Fluoride in	ı Liquid										
Fluoride		U	ND	0.0553	0.100	mg/L	1	MAR107/30/04	1211	350394	1	
The followir	ig Analytica	l Methods were per	formed									
Method		Description			,	Analyst Comm	ents					
1		SW846 9056			-			·····				

Notes:

The Qualifiers in this report are defined as follows :

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.

** Indicates analyte is a surrogate compound.

< For less than value for Flashpoint

B The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	: Sandia National L MS-0756	aborator	ies									
	P.O. Box 5800		07105 00 <i>54</i>		Report Date: August 6, 2004							
Contact:	Albuquerque, Nev Ms. Pamela M. Pa		871850854									
Project:	Level C Data Pa	ckag e		Page 1 of 1								
	Client Sample I Sample ID: Matrix:	D:	065313-011 116929012 Misc Liquid			icct: ent ID:	SNLS00401 SNLS002					
	Collect Date: Receive Date:		12-JUL-04 11:18 14-JUL-04		Client Desc		c.: 6650/1081-West-ST-W					
	Collector:		Client									
Parameier	Qualifier	Result	DL	, RL	Units	DF	AnalystDate	Time	Batch	Method		
Flow Injection Analysis	Federal			· · · · · · · · · · · · · · · · · · ·								
SW9012A Cyanide, Tor	tal Federal											
Cyanide, Total	U	ND	0.00172	0.005	mg/L	1	ADF 07/22/04	1758 3	51193	1		
The following Prep Me	thods were perform	ned										
Method	Description			Analyst	Date	Time	Prep Batch					
SW846 9010B Prep	SW846 9010B P	rep		KLP1	07/22/04	1129	351189					
The following Analytic	al Methods were pe	rformed										
Method	Description				Analyst Comm	ents						
1	SW846 9012A											

Notes:

1

1

The Qualifiers in this report are defined as follows :

Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not * applicable where the concentration falls below the effective PQL.

* Indicates analyte is a surrogate compound.

< For less than value for Flashpoint

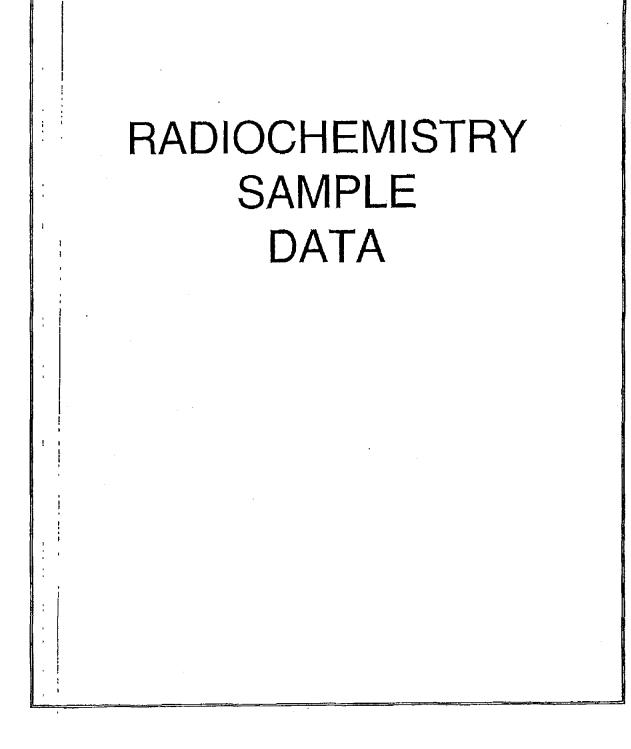
в The analyte was found in the blank above the effective MDL.

H Analytical holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

Presumptive evidence that the analyte is not present. Please see narrative for further information. х


Prep holding time exceeded h

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address : Coniact: Project:	MS-0756 P.O. Box 58 Albuquerqu	e, New Mexico 87 M. Puissant	1850854]	Report Da	te: August 10, 2 P	2004 age 1	of 1
•	Client Sam Sample ID Matrix: Collect Da Receive Da Collector:	te:	065313-0 1169290 Misc Lig 12-JUL-0 14-JUL-0 Client	13 aid 14		Project: Client ID: Client Desc.	SNLS0 SNLS0 .: 6650/1		W	
Parameter	Qualifier	Result	LC	TPU	MDA	Units	DF	AnalystDate	Time	Batch Mtd.
Rad Liquid Scintillation LSC, Tritium Dist, Liqui Tritium	d U	-169 ere performed	100	+/-113	206	pCi/L		JLB1 08/02/04	4 0842	350329 1

EPA 906.0 Modified

Notes:

TPU is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows :

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- Indicates analyte is a surrogate compound.
- The analyte was found in the blank above the effective MDL. В
- Н Analytical holding time was exceeded

Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL J

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level

Х Data rejected due to interference.

х Data rejected due to low abundance.

х Data rejected due to no valid peak.

х Uncertain identification for gamma spectroscopy.

h Prep holding time exceeded

The above sample is reported on an "as received" basis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Healen & Ou wal

Reviewed by

ANALYSIS REQUES TND CHAIN OF CUSTODY

	Internal Lab												1	age <u>1</u> of 1_
	Batch No.	207987		SAR/WR N	o.								AR/COC	607644
	Dept. No./Mail Stop;	6133/1089		Date Samp	es Shipp	ed: 7-12-04	SMO USE	Logged	By:			·····	Characteriz	ation Only
	Project/Task Manager:	Mike Sanders		Carrier/Way		HC	-		Task No.:		7223.02.0	2.01	Waste Char	acterization
	Project Name:	DSS		Lab Contac		Kathye Chavez (505) 84	4-3975	SMO A	uthorizatio	n: Asl			-RCRA Date	: =
	Record Center Code:			Lab Destina	tion:	RPSD			n:		Tech Area	·	-Send prelim	ninary/copy report to:
	Logbook Ref. No.:			SMO Contact	/Phone:	Doug Perry (505) 84	5-0867	Building	g:		Room:			
1	Service Order No.:	CFO 23-04			·								Release to	ERCL On-Site Lab Off-Site Lab
		ER Sample ID	or	Beginning	ER Site	Date/Time(hr)	Refe	erence	LOV(av	ailable at	SMO)		-This COC N	lumber Releases
	Sample NoFraction	Sample Location		Depth (ft)	No.	Collected		and the second value of th	ntainer				COC No(\$)	.:
		RPSD		Screen	Sample	Sample	Sample			Preserv-	Collection	Sample	 	
	RPSD NoFraction	Remarks/Aliquot A	mounts	CPM	Mass	Quantity	Matrix	Туре	Volume	ative	Method	Туре	Ana	lysis Request
~	065313-015	6650/1081-West-ST	-w	NA	1081	071204/1118	W	м	500 ml	None	G	SA	1	
							viinni	1111		mmm		///////////////////////////////////////		
		<u></u>		·			<i>4111111</i>	<u> </u>	<i></i>	<i><u> </u></i>			Gamma Spec	
9	065313-016	6650/1081-West-ST	-w	NA	1081	071204/1122	· W	G	40 ml	None	G	SA	Gross Alpha/Be	ta
j														
		·····				<u> </u>							{	
													1	
ł							mm	mm	mm	mmm	mmm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
l			· · ·	· · ·	· .								<u> </u>	
- {	RMMA	□Yes ☑No	Ref.	No.	1	Sample Tracking		Smo Us	Sê	Special Inst	ructions/G	C Requireme	nts	
ſ	Sample Disposal	Return to Client	Dispos	al by Lab	the second s	Date Entered(mm/dd	/yy)	07/2	104	EDD 2	_		•	
[Turnaround Time	Normal	Rush		and the second se	Entered by:		AC		Raw Data P	ackage	V Yes	No	
[F	Required R	eport Date			OC inits.		ir	*Please sen	d report to			<u></u>
ſ		Name	Sign	alure	Injt	Company/Organ	ization/Pl	hone/Ce	llular					
	Sample	William J Gibson	Mar	SUL	WA	Weston/6134/284-52	32/239-7	367						
-{	leam -	Gilbert Quintana	Juli 7 7	untire	241	Shaw/6134/284-3309	/238-941	7						
	Members				7		_							
										Please list a	s separate	e report.		
	Relinguished by	Illian Del				-12-04Time 140			uished by	·		Org.	Date	Time
	. Received by	Angulat V				-12-04 Time 140		4. Rece				Org.	Dale	Time
- 5	Relinquished by	Kaba				112/04 Time 160		_	uished by			Org.	Date	Time
	. Received by	and the second				Trizion Time 16		5. Rece		·····		Org.	Date	Time
	Relinquished by	tit. Las		Org By	Uate 7	114104 Time 11 10			uished by	, 		Org.	Date	Time
5		17 Julius	- "UC"	0182 2 2		17/04 Time 110	5	6. Rece	ivea by			Org.	Date	Time

Sandia National Laboratories Radiation Protection Sample Diagnostics Program * 7/12/04 6:24:14 PM Mm PKP 7-13-04 Analyzed by: ***** : SANDERS, M (6133) Customer Customer Sample ID : 065313-015 Lab Sample ID : 40098701 : 6650/1081-WEST-ST-W Sample Description Sample Quantity 0.529 Liter : : 7/12/04 11:18:00 AM Sample Date/Time Acquire Start Date/Time : 7/12/04 4:44:04 PM Detector Name : LAB03 6000 / Elapsed Live/Real Time : 6001 seconds Comments: MDA Nuclide Activity 2-sigma Name (pCi/Liter) Error (pCi/Liter) --------------_____ ______ U - 238Not Detected -----4.89E+002 3.75E+002 RA-226 Not Detected -----PB-214 Not Detected _ _ _ _ _ _ _ _ _ _ 4.23E+001 BI-214 Not Detected -----4.82E+001 ----Not Detected 1.45E+003 PB-210 TH-232 Not Detected ____ 1.09E+002 _____ RA-228 Not Detected 1.28E+002Not Detected ____ 6.82E+001 AC-228 TH-228 Not Detected ______ 4.00E+002 Not Detected -----1.51E+002 RA-224 ____ PB-212 Not Detected 3.32E+001 Not Detected _____ 2.62E+002 BI-212 TL-208 Not Detected ---------6.56E+001 **U-235** Not Detected 9.15E+001 _ _ _ _ _ _ _ _ _ _ TH-231 Not Detected. _____ 2.89E+003 PA-231 Not Detected _ _ _ _ _ _ _ _ _ _ 7.22E+002 1.19E+002 TH-227 Not Detected -----RA-223 Not Detected 4.91E+001 _____ RN-219 Not Detected 2.28E+002 PB-211 Not Detected ____ 4.83E+002 TL-207 Not Detected ______ 9.12E+003 AM-241 Not Detected _ _ _ _ _ _ _ _ _ _ 5.12E+001 PU-239 Not Detected _____ 1.35E+005 NP-237 Not Detected 7.45E+002 PA-233 Not Detected 3.23E+001 Not Detected _____ 8.39E+001 TH-229

[Summary Report] - Sample ID: : 40098701

Nuclide Name	Activity (pCi/Liter)	2-sigma Error	MDA (pCi/Liter)
222			
AG-108m	Not Detected		2.08E+001
AG-110m	Not Detected		1.72E+001
BA-133	Not Detected		2.47E+001
BE-7	Not Detected		1.38E+002
CD-115	Not Detected		3.09E+001
CE-139	Not Detected		1.21E+001
CE-141	Not Detected		1.99E+001
CE-144	Not Detected		8.24E+001
CM-243	Not Detected		9.44E+001
CO-56	Not Detected		2.11E+001
CO-57	Not Detected		1.05E+001
CO-58	Not Detected		1.83E+001
CO-60	Not Detected		2.53E+001
CR-51	Not Detected		1.32E+002
CS-134	Not Detected		2.26E+001
CS-137	Not Detected		2.04E+001
EU-152	Not Detected		3.20E+001
EU-154	Not Detected		9.29E+001
EU-155	Not Detected		4.46E+001
FE-59	Not Detected		3.77E+001
GD-153	Not Detected		3.37E+001
HG-203	Not Detected		1.70E+001
I-131	Not Detected		1.78E+001
IR-192	Not Detected		1.56E+001
K-40	Not Detected		3.46E+002
MN-52	Not Detected		2.24E+001
MN-54	Not Detected		2.08E+001
MO-99	Not Detected		1.52E+002
NA-22	Not Detected		2.39E+001
NA-24	Not Detected		3.40E+001
ND-147	Not Detected		1.22E+002
NI-57	Not Detected		3.66E+001
RU-103	Not Detected		1.52E+001
RU-106	Not Detected		1.87E+002
SB-122	Not Detected		2.55E+001
SB-124	Not Detected		2.07E+001
SB-125	Not Detected		5.19E+001
SN-113	Not Detected		2.16E+001
SR-85	Not Detected		2.52E+001
TA-182	Not Detected	*******	6.83E+001
TA-183	Not Detected		4.40E+001
TL-201	Not Detected		3.01E+001
Y-88	Not Detected		2.97E+001
ZN-65	Not Detected		4.37E+001
ZR-95	Not Detected		3.10E+001
211-20	NOU DELECLEU		3.100+001

Sandia Radiation Protection Sample Diagnostics Program 7-13-2004 **** LSC Windows Analysis Program - Version 1.3 Procedure RPSD-09-03 Customer : SANDERS, Org. 6133 (MRSANDE) Program ID : ER Sample Building/Room : Sample Category : SA Sample Description : 065313-016 6650/1081-WEST-ST-W 11:22 COC 607644 Analyst : KRSANSO Batch Number : 40098702 LSC System ID : UNIT02 - 403809 Protocol Number/Name : 22 H3AB -- LIQUID No. of Samples : 1 Collection Date : 07/12/2004 Received Date : 07/12/2004 Count Date : 07/12/2004 Count Time (min) : 100.00 Background cpm : 1.93E+01 Background tSIE : 2,42E+02 Background Eff : 2.42E-01 Sample Aliquot : 1.00E-02 Liter Efficiency = 9.67E-01 - Exp(-6.90E-04*tSIE^1.12E+00) MDA = 3.86E+02 pCi/LiterH-3 CL = 1.90E+02 pCi/LiterH-3 Reviewed by - 7/13/04 Customer Aliquot H-3 Activity Lab ID Liter pCi/Liter 2s Error Flag TD Eff cpm tSIE ----065313-016 1.00E-02 1.96E+01 001* 235 0.235 5.18E+01 2.55E+02

Sandia Radiation Protection Sample Diagnostics Program 7-13-2004 LSC Windows Analysis Program - Version1.3 Procedure RPSD-09-03 Customer : SANDERS, Org. 6133 (MRSANDE) Program ID : ER Sample Building/Room : Sample Category : SA Sample Description : 065313-016 6650/1081-WEST-ST-W 11:22 COC 607644 Analyst : KRSANSO Batch Number : 40098702 LSC System ID : UNIT02 - 403809 Protocol Number/Name : 22 H3AB -- LIQUID No. of Samples : 1 : 07/12/2004 Collection Date Received Date : 07/12/2004 Count Date : 07/12/2004 Count Time (min) : 100.00 Background cpm : 4.15E+00 Background tSIE : 2.42E+02 Background Eff : 9.85E-01 Sample Aliquot : 1.00E-02 Liter $Efficiency = 9.94E-01 - Exp(-1.73E-02*tSIE^{1.02E+00})$ Alpha MDA = 4.48E+01 pCi/Liter Alpha CL = 2.17E+01 pCi/Liter

Lab	Customer	Aliquot				Alpha Acti	vity	
ID	ID	Liter	cpm	tSIE	Eff	pCi/Liter	2s Error	Flag
001*	065313-016	1.00E-02	2.84E+00	235	0.983	-6.00E+01	2.80E+01	

rogram ID : ER ample Building/Room : ample Category : SA ample Description : 065313-016 6650/1081-WEST-ST-W 11:22 COC 607644 nalyst : KRSANSO atch Number : 40098702 SC System ID : UNIT02 - 403809 rotocol Number/Name : 22 H3AB LIQUID o. of Samples : 1 ollection Date : 07/12/2004 eccived Date : 07/12/2004 ount Date : 07/12/2004 ount Time (min) : 100.00 ackground cpm : 3.32E+01 ackground tSIE : 2.42E+02 ackground Eff : 9.28E-01	SC Windows Analysis	Program - Version1.3 Procedure	e RPSD-09-03	
nalyst : KRSANSO atch Number : 40098702 SC System ID : UNIT02 - 403809 rotocol Number/Name : 22 H3AB LIQUID o. of Samples : 1 ollection Date : 07/12/2004 eceived Date : 07/12/2004 ount Date : 07/12/2004 ount Time (min) : 100.00 ackground cpm : 3.32E+01 ackground tSIE : 2.42E+02 ackground Eff : 9.28E-01	ample Category	: ER : : SA		
Background Eff : 9.28E-01	No. of Samples Collection Date Received Date Count Date Count Time (min) Background cpm	: 40098702 : UNIT02 - 403809 : 22 H3AB LIQUID : 1 : 07/12/2004 : 07/12/2004 : 07/12/2004 : 100.00 : 3.32E+01		
$fficiency = 9.41E-01 - Exp(-3.82E-02*tSIE^{8.64E-01})$	ackground Eff ample Aliquot	: 9.28E-01 : 1.00E-02 Liter	· · · · · · · · · · · · · · · · · · ·	

							·		
Lab ID	Customer ID	Aliquot Liter	cpm	tSIE	Eff	Beta Activ pCi/Liter	ity 2s Error	Flag	
001*	065313-016	1.00E-02	3.44E+01	235	0.927	5.59E+01	8.48E+01		

.

ANNEX B DSS Site 1081 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

June 6, 2002

Mike Sanders Sandia National Laboratories Mail Stop 0719 1515 Eubank, SE Building 9925, Room 108 Albuquerque, NM 87123

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM Gore Production Order Number: 10960025

Dear Mr. Sanders:

Thank you for choosing a GORE-SORBER[®] Screening Survey.

The attached package consists of the following information (in duplicate):

- Final report
- Chain of custody and analytical data table (included in Appendix A)
- Stacked total ion chromatograms (included in Appendix A)

Please contact our office if you have any questions or comments concerning this report. We appreciate this opportunity to be of service to Sandia National Laboratories, and look forward to working with you again in the future.

Sincerely, W.L. Gore & Associates, Inc.

Norm

Jay W. Hodny, Ph.D. Associate

Attachments cc: Andre Brown (W.L. Gore & Associates, Inc.)

I:\MAPPING\PROJECTS\10960025\020606R.DOC

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

1 of 6

GORE-SORBER[®] Screening Survey Final Report

Non-ER Drain & Septic Kirtland AFB, NM

June 6, 2002

Prepared For: Sandia National Laboratories Mail Stop 0719, 1515 Eubank, SE Albuquerque, NM 87123

W.L. Gore & Associates, Inc.

Written/Submitted by: Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by: Jim E. Whetzel, Project Manager

Analytical Data Reviewed by: Jim E. Whetzel, Chemist

Aim Whetzel Aim Lalhot- 0

I:\MAPPING\PROJECTS\10960025\020606R.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

GORE-SORBER[®] Screening Survey Final Report

REPORT DATE: June 6, 2002

AUTHOR: JWH

SITE INFORMATION

Site Reference:Non-ER Drain & Septic, Kirtland AFB, NMCustomer Purchase Order Number:28518Gore Production Order Number:10960025Gore Site Code:CCT, CCX

FIELD PROCEDURES

Modules shipped: 142
Installation Date(s): 4/23,24,25,26,29,30/2002; 5/1,6/2002
Modules Installed: 135
Field work performed by: Sandia National Laboratories

Retrieval date(s): 5/8,9,10,14,15,16,21/2002 # Modules Retrieved: 131 # Modules Lost in Field: 4 # Modules Not Returned: 1 Exposure Time: ~15 [days] # Trip Blanks Returned: 3 # Unused Modules Returned: 3

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002@1:30PM By: MM Chain of Custody Form attached: $\sqrt{}$ Chain of Custody discrepancies: None Comments: Modules #179227, -228, and -229 were identified as trip blanks. Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field. Module #179231 was not returned. Modules #179230, 232, and -233 were returned unused.

GORE-SORBER[®] Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing $5\mu g$ BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Instrument ID: #2 Chemist: JW

Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1) **Deviations from Standard Method:** None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly.

Module #179101, no identification tag was returned with this module.

GORE-SORBER[®] Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

General Comments:

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER[®] Screening Survey Final Report

• Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:

- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: <u>123456</u>S.D represents module #<u>123456</u>).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour mapping was performed. Larger and more comprehensive soil gas surveys may be warranted at the individual sites where elevated soil gas levels were observed.

GORE-SORBER[®] Screening Survey Final Report

KEY TO DATA TABLE Non-ER Drain & Septic, Kirtland AFB, NM

UNITS	
μg	micrograms (per sorber), reported for compounds
MDL	method detection limit
bdl	below detection limit
nd	non-detect
ANALYTES	
BTEX	combined masses of benzene, toluene, ethylbenzene and total xylenes
	(Gasoline Range Aromatics)
BENZ	benzene
TOL	toluene
EtBENZ	ethylbenzene
mpXYL	m-, p-xylene
oXYL	o-xylene
C11,C13&C15	combined masses of undecane, tridecane, and pentadecane (C11+C13+C15)
	(Diesel Range Alkanes)
UNDEC	undecane
TRIDEC	tridecane
PENTADEC	pentadecane
TMBs	combined masses of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene
135TMB	1,3,5-trimethylbenzene
124TMB	1,2,4-trimethylbenzene
ct12DCE	cis- & trans-1,2-dichloroethene
t12DCE	trans-1,2-dichloroethene
c12DCE	cis-1,2-dichloroethene
NAPH&2-MN	combined masses of naphthalene and 2-methyl naphthalene
NAPH	naphthalene
2MeNAPH	2-methyl naphthalene
MTBE	methyl t-butyl ether
11DCA	1,1-dichloroethane
CHC1 ₃	chloroform
111TCA	1,1,1-trichloroethane
12DCA	1,2-dichloroethane
CC14	carbon tetrachloride
TCE	trichloroethene
OCT	octane
PCE	tetrachloroethene
CIBENZ	chlorobenzene
14DCB	1,4-dichlorobenzene
17000	
BLANKS	
TBn	unexposed trip blanks, travels with the exposed modules
method blank	QA/QC module, documents analytical conditions during analysis

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

APPENDIX A:

CHAIN OF CUSTODY DATA TABLE STACKED TOTAL ION CHROMATOGRAMS

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER[®] Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # _10960025

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkton, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Instructions: Customer must complete ALL sha	ded cells R	
Customer Name: SANDIA NATIONAL LABS	Site Name: NON-ER DUAIN+ SEI	TIC
Address: ACCOUNTS PAYABLE MS0154	Site Address: KIVL 2ND AFB, NM	•
P.O.BOX 5130	KIRTLAND	
ALBUQUERQUE NM 87185 U.S.A.	Project Manager: MIKE SANDERS	
Phone: 505-284-3303	Customer Project No.:	
FAX: 505-289-2616	Customer P.O. #: 28518 Qu	note #: 211946
Serial # of Modules Shipped	# of Modules for Installation 135 #	of Trip Blanks 7
# 179087 - # 179144 # /71 087 - # /77/34	Total Modules Shipped: 142	Pieces
# 179150 - # 179233 #179135 #179136	Total Modules Received: 142-	Pieces
# - # # 179139 - #	Total Modules Installed: 135	Pieces
# - # # 179142 #179144	Serial # of Trip Blanks (Client Decides)	# .
* # # 179150 * # 17115)	# 171227 . #	#
- # _ +	# #	#
# - # # - #	# #	# .
# - #	# #	#
# - # _ #	##	#
# - #	##	#
Prepared By: Chyperne 171/	# #	#
Verified By: Mary and Marghi	# #	#
Installation Performed By:	Installation Method(s) (circle those that a	ppły):
Name (please print): GIUSDET QUINTANA	Slide Hammer Hammer Drill	Auger
Company/Affiliation: <u>SNC/NM</u>	Other: GEOPRUBE	
Installation Start Date and Time: 4/23/02 108/	57 :	AM PM
Installation Complete Date and Time: 5/6/02 1094	o <u>/</u> :	AMD PM
Retrieval Performed By:	Total Modules Retrieved:	Pieces
Retrieval Performed By: Name (please print): <u>CAUSERT QUINTANA</u> Company/Affiliation:1 <u>SNL/NM</u>	Total Modules Lost in Field:	Pieces
Company/Affiliation:1_SNC/NM	Total Unused Modules Returned:	Pieces
Retrieval Start Date and Time: 5/8/02 /		AM PM
Retrieval Complete Date and Time: /	<u> </u>	AM PM
Relinquished By Date Time	Received By: Mike Sander	Date Time
Affiliation: W.L. Gore & Associates, Inc, 3-4-07 17:04	Affiliation: Sandia/ER	- 3-6-02
Relinquished By Date Time	Received By:	_ Date Time
ffiliation: <u>6135</u> <u>1</u> <u>5-14-02</u> 12:58		<u></u>
Relinquished By Date Time	Received By Merifland Ringhs	
Affiliation	Affiliation: W.L. Gore & Associates, Inc	51702 14:00

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 8R.8 1/08/01

GORE-SORBER[®] Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # ______10960025_

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkton, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Instructions: Customer must complete ALL sha		
Customer Name: SANDIA NATIONAL LABS	Site Name: NON-ER DEAIN+ SEP	TIC
Address: ACCOUNTS PAYABLE MS0154	Site Address: <u>KIVL 2ND AFB, NM</u>	•
P.O.BOX 5130	KIRTLAND	<u> </u>
ALBUQUERQUE NM 87185 U.S.A.	Project Manager: MIKE SANDERS	
Phone: 505-284-3303	Customer Project No.:	
FAX: 505-284-2616	Customer P.O. #: 28518 Qu	ote #: 211946
Serial # of Modules Shipped	# of Modules for Installation 135 #	of Trip Blanks <u>7</u>
# 179087 - # 179144 #119152 + # 174187	Total Modules Shipped: 142	Pieces
# 179150 - # 179233 #179138 - #179226	Total Modules Received:42	Pieces
# - # # - #	Total Modules Installed: 35	Pieces
# - # # - #	Serial # of Trip Blanks (Client Decides)	#
- # # - #	#17928 #	#
- # # - #	# 174229 #	#
* * * *	# #	#
# • # # - #	##	·#
# - # # - #	##	#
# - # # - #	##	#
Prepared By: Clysone 171	# #	#
Verified By: Mary and Marghi	-# #	#
Installation Performed By:	Installation Method(s) (circle those that a	oply):
Name (please print): CILISOUT QUINTANA	Slide Hammer Hammer Drill	Auger
Company/Affiliation: <u>SNC/NM</u>	Other: GESPRUBE	
Installation Start Date and Time: 4/23/02 108	57 :	AM PM
Installation Complete Date and Time: 5/6/02 1094		AM) PM
Retrieval Performed By:	Total Modules Retrieved: 74	Pieces
Name (please print): GUNTANA	Total Modules Lost in Field:	Pieces
Company/Affiliation:1_SNL/NM	Total Unused Modules Returned:	Pieces
Retrieval Start Date and Time: 5/8/02 1	/ :	AM PM
Retrieval Complete Date and Time: /	/ :	AM PM
Relinquished By Date Time	Received By: Mike, Sanders	- Date Time
Affiliation: W.L. Gore & Associates, Inc. 3-4-02 17: CU	Affiliation: Sandia ; 6133	-3-7-02
Relinquished By Ululana Till Date Time	Received By:	Date Time
Affiliation: Sandia N.L. 0 61350 5-21-02 0935	Affiliation:	
Relinquished By Date Time	Received By: Mary and Mary	Date Time
Affiliation	Affiliation: W.L. Gore & Associates, Inc	1 4

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 8R.8 1/08/01

	-	5								· · · ·			<u></u>		
1	GOR	E-SORBER	8 [®] S	creening S	Surve	y		SITE	NAME	& LOC	ATION				
		lation and i				- · · ·				-		·			
]						-		. ·			•			• • •	
	· 1.	of4		•											
								121/170		I TOTINO	,				
									ENCE OF OCARBOI		MODI	JLEIN			
	LINE	MODULE#	INS	TALLATION	RÉ	TRIEV	AL		or			TER	l l	- 	
	#	1	ם	ATE/TIME	על	ATE/FIN	4E		OCARBO		(chec	k one)		COMMENT	'S
			н., 1					(<i>Che</i> LPH	ck <i>as appr</i> ODOR		YES	NO			
		100000	-7					<u>LPN</u>	ODOR	NONE	IES			Terre de	
		179087	4/2	3/02,0815	05-05	<u>r-az</u>	0800		·····			4	1001	898-6	
2		179088	[]	0822											<u>5-3</u> 5-2
		179089		0930		 ,				_	<u> </u>	┝╾┽──			5-1
	<u>, </u>	179090		0840	┝╼╋──		1/								s -4
	5.	179091	<u> </u>	0852			1-22	· · · · ·			<u> </u>		1000		
	7.	179092		0952	- 4-	<u>.</u> C	30						7036	<u>/803 - 6:</u>	<u>>-/</u> -4
	3.	179093	 	1000				┝╾┉┈────		<u> </u>	<u> </u>		+	<u> </u>	-3
-	<u>,</u> ,	179094		1018			12				 	1			-2
	10.	179096		1/35	- 4	0	900	·					1020	16587-	
	11.	179097		1/51			1							1	-6
	12.	179098		/238		· · · · · · ·						,	1	f	4
	13.	179099		1247								-			-3
	14.	179100		1254											2
	15.	179101		4د3)			V								
਼ੁ	16.	179102		1347		00	120						1082	16620-	-4
-		179103		1355	<u> </u>		1								Ú,
	18.	179104		1404		· ·		·							-1
_	19,	179105		/431			<u> </u>								-3
	20.	179106		1440		· •	¥		·	ļ		L			-2
	21.	179107	4/2	4/02 0848	5-9	<u>-02, (</u>	930	Ļ				ļ	1108/	6531-	~5
	22.	179108		0853				 				 	│ ́∔		-6
	23.	179109	<u> </u>	0900	<u> </u>	_			 		<u> </u>	 	┡╾╴┞		-4
- i	24.	179110	<u> </u>	0907	<u> </u>			. <u> </u>		· · · · · ·	ļ	· · ·	┥──┽		<u>- Z</u>
- i	25.	179111		0916				├ ───					<u> </u> -		M
-	26. 27.	179112		0936	1 2 10	$\underline{\mathbf{V}}$	0.24	 	<u></u>				¥	····	
-	27. 28.	179113 179114	142	5/02 0746		106 (1016				<u> </u>		1027	4530-	-5
	20. 29.		- <u> </u> -	0754				{							<u> </u>
	29. 30.	179115 179116	+	0800	╉━───			 -	<u> </u>	 -		 	┼┥		년 1 1 1 1
	31.	179117	+			10	017	 			+				-41
	32.	179118	+	0813	610.	-07 0	711 905	<u> </u>		······································				11-00	
	33.	179119	+	0922		1							<u>10101</u>	6536-	56
-	34.	179120	+	0931	- <u>.</u>					· · · · · · · · · · · · · · · · · · ·				<u></u>	6
- H-	35.	179120	+	0942		+		†	1 .	<u> </u>	<u></u>			<u> </u>	4
	36.	179122		0947		+		¦	<u>}</u>	<u> </u>		<u> </u> -	┪╼───		2 1
	37.	179123		0956		11	02	†				┝━─~		<u> </u>	
	38.	179124	+	1026						<u> </u>		<u> </u>	1070	16560-	3
) .	179125	+	1043		1	<u> </u>	1		·		 -	1000	03 00-	
<u>ل</u> م ا	40.	179126	-	1052		<u> </u>		<u> </u>	1	1	1		+ .	<u> </u>	4327
	41.	179127		1103		VI	041	<u>†</u>	- <u> </u>					7	片킑
	42.	179128	+	1420		0-07.10		<u> </u>	<u> </u>	+	+	[102	6/6501-1	15

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

		R [®] Screening Retrieval Log	-	SITE	NAME	& LOC	ATION			
			2 		-		· · ·			
	of	•.	, <u> </u>							
LINE #	MODULE #	INSTALLATION DATE/TIME	RETRIEVAL DATE/TIME	hydr hydr	ENCE OF OCARBON OCARBON CARBON	NS (LPH) N ODOR	1	ILE IN TER k one)	COMMENT	rs
			-	LPH	ODOR	NONE	YES	NÔ	1	
13.	179129	4/25/02 1428	5-10-02,1047				1		1026/654-6	<- 3
<u>-</u>	179130		5-10-02, 10 51						V	
15.	179131	1442	5-10-02 1053			1			1025/650-	
6.	179132	1446				· ·			1 1	Ż
7.·	179133		5-10-02, 11:06							
18.	179134	and the second state of th	5-10-02 1247			<u>_</u>			1093/6584-	17
19.	179135	0914					1		T	4
50.	179136		5-10-02 1305		1		1			2
51.	179137	0938		1	T I		1			
52.	179138	094	the state of the second st				1			5
53.	179139	and the second	5-10-02, 1322						1031/6600-	
54.	179140	1024	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[- -		T		1-1/1	
55.	179141	/030							<u> - </u>	4
56.	179142		5-10-02,1343							1
57.	179143	1136		<u>├</u>		· · ·		·	276/829X-	
r.	179144	//42		<u> </u>					Cref Dente	
<u> </u>	179150	1150							╋╼┈╌┼╾╌╾╸	
60.	179151		5-10-02 11354	<u> </u>	<u> </u>		+			
61.	179152		5-14-0209:42			[<u>···</u>			1084/6505-	+
62.	179153	082			1		<u> </u>		1	5
63.	179154	082							†	3
64,	179155	090				·		(1-5
65.	179156		5-14-02 10321	1				<u> </u>	- V	4
66.	179157		05-14-02 0919				· · ·		1083/6570-	4
67.	179158	093		<u> </u>					x	
68.	179159	019		1		i	1		1 1	
69.	179160	614	8 4 0940	1	1	<u> </u>	 	·		
70,	179161		05-14-02,1026	1			<u> </u>	<u> </u>	1032/16/0-	,
71.	17.9162	// 01		1	<u> </u>		+	<u> </u>	1 71	
72.	179163	110			 -				<u> </u>	
73.	179164	11/4	the second s	1	+		+	<u> </u>	<u>∱∳</u>	+
74.	179165	1/2			<u> </u>	<u> </u>		┠╼──		┼╤
75.	179166			+	+	╆╌╌╌╼			- +	+ =
76.	179167	1120	05-14-02,11:03	+		<u> </u>		╎╴──	linglida	<u>*</u> +
77.	179167			+	+	<u> </u>		<u> </u>	1120/6643-	N A M LA NINM
<u>7</u> 8.	179168	(2.3		+					┉┼╌╌╴╼┥┤╌──╴╼━╾╸	+3
<u>78.</u> 79.	179109	123				╆		 	<u> </u>	4
<u>9.</u> 90.	and the second		205-14-02 11:32				·		+¥/	+-!
າບ. ;	179171		05-14-52-0844	+	-{	<u> </u>		<u> </u>	1034/6710-	432
<u></u>	179172	132		+		+	┩			<u> 3</u>
82.	179173	/33		+	+		+	 	···	$+^2$
83.	179174	/34	0 1 0855		1	1	1		I : V	

GORE-SORBER ® Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 29R.) 6/13/01

		R [®] Screening	-	SITE	NAME	& LOC	ATION	i			~
instal	llation and	Retrieval Log	3			<u> </u>					
						· · ·			······································		
<u>3.</u>	of <u>4</u> .		,					;	· · · ·	Ś.	•
~7					ENCE OF				1		
				•	CARBO	ns (lph)		JLE IN			
LINE #	MODULE #	INSTALLATION DATE/TIME	RETRIEVAL DATE/TIME		or ROCARBO	NODOR		TER k one)		MMENT	2
#		DATE/IME			eck as appr					7147141E914.1	5
				LPH	ODOR	NONE	YES	NO	1		
85.	179176	4/29/02 1431							10351	6715-6	<u>, s</u> -
86.	179177	1440							[
87.	179178	V 1445	5-14-02 08	37						\overline{V}	
88.	179179	4/30/02 0910	5-15-02 08-	12					1003/	915-	
89.	179180	0919							1		
90.	179181	0920			<u> </u>		L	L			
91.	179182	093			-			L	<u> </u>]		
92.	179183	094:			·	ļ		ļ			
93.	179184		75-15-02 091			ļ	<u> </u>		4	<u>(</u>	
94.	179185		5-15-02, 114	6				├ ───	1007/4	6730 -	
95.	179186	1113			<u></u>	<u> </u>	·	 	4 -4		-
)6.	179187	1/19				<u> </u>	<u> </u>	┢	╈╾╌┥		
97.	179188			7				<u> </u>			
98.	179189		5-15-02 12		- 			 	{ <u> </u>	1 TI CARL	-+-
100.	179190 179191	محمد الشكاك المكر ومخدا الجريز بالتكر الشريب المد	35-15-02 10:		- 	╉┈╧┈╼╼	<u> </u>	<u></u>	1029/	658AN	
100.	179191	1250			╶┨────			<u>├</u>	<u>}</u>	╉────	-{-
102.	179192	/3/					<u></u>	┝────		+	
103.	179195		3 5-15-02, +0 3	2	+	+	 	├── ─		↓~~~	-
104.	179195		5-15-02, 147		-			 	10061	6741-	
105.	179196	145	and second and an end of the local data in the				[1000/	<u>». n.</u>	
106.	179197	145				1			1	<u> </u>	
107.	179198	1502			+	1	1 .	1.		1	
108.	179199		3 5-15-02,11	43	1	T		·	1	V	T
109.	179200		5-5-02,10						108711	6743-	-
110.	179201	1534				T		1	1-1-1	1	
111.	179202	1530	¥								
112.	179203		05-15-02, 10	59					- `	V	T
113.	179204		25-16-02,080						1002/	6750	
114.	179205	083	5					-			
115.	179206	084				Ļ		<u></u>			
116.	179207		15-16-02,08			<u> </u>		1	لأسبل	<u> </u>	
117.	179208		4 5-16-02,03	41			1	<u> </u>	1004/6	569-	
118.	179209	095	2			<u></u>		<u> </u>	1		1.
119.	179210	100					l	<u> </u>			
120.	179211	(00)					ļ	<u></u>		/	
121.	179212		6 5-16-02,090		/			<u> </u>	1 1		
122.	179213		2 5-16-02 11 p	5		<u> </u>	.	<u></u>	1025/	9938-	<u> </u>
	179214	111		ļ		1			1 1	1	
23.							_			+ 7 ~~~~	
*23. 224. 125.	179215	1/2	2 5-16-02,11		-			1	1	442-	

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 29R.1 6/13/01

120 V V 3

	GORE-SORBER [®] Screening Survey Installation and Retrieval Log					SITE NAME & LOCATION							
	Instal	lation and	Retrieval Log	1						······			
	•												
	<u>4 ر</u>	of											
	LINE #	MODULE#			MODULE IN WATER (check one)		COMMENTS						
L	·				LPH	ODOR	NONE	YES	NO				
ſ	127.	179218	5/1/02 1225	5-16-02,0942						1094/LER-65-3			
ſ	128.	179219	/23/	5-16-02,0950						V -4			
1	129.	179220	5/6/02 0850	5-21-01 07:57						1081/6650 -1			
Ī	130.	179221	0857										
Γ	131.	179222	0707				_			-2			
Γ	132.	179223	0918							-4			
ſ	133.	179224	0926							-6			
Ī	134.	179225	0933							-5			
ſ	135.	179226	V 0940	5-21-01,0851						V. V-7			
Ī	136.	179227	······································						· _ ·				
ſ	137.	179228											
Ī	138,	179229						·					
Ī	139	179230					•						
	140.	179231											
Ī	141.	179232											
Ī	142.	179233											
	<u>.</u>												
را آ	144.												
	145.												
Ī	146.							[
Ì	147.												
	148.												
	149.												
	150,									·			
	151.												
	152.					•							
	153.									· · ·			
	154.												
	155.						_						
	156.												
	157.				1	1		·					
	158.	1			1 .	1	1						
	159,	1			1	1				1			
	160.	1	_ <u>}</u>			<u> </u>	 		t	1			
	161.	+	-	-				<u> </u>					
	162.	1			-		<u> </u>	1	 				
	163.	1		-	-{	- <u> </u>	†	1	<u> </u>	······			
	164.		·		+	┨────		+	<u> </u>				
	65,							+	<u> </u>				
~	166.			-		+		+	┼───	+			
_	167.				+			+	<u> </u>				
	167.	+					+		╉╌╌╌╼				

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

121 V V V

.

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCS (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

DATE	SAMPLE						10.0					
ANALYZED	NAME	BTEX, ug						C11, C13, &C15, ug				TMBs, ug
	MDL=		0.03	0.02		0.01	0.01		0.02	0.01	0.02	
5/29/2002	179210	nd	nd	nd		nd	nd	0.01	bdl		bdl	0.03
5/29/2002	179211	0.01	nd	nd		0.01	nd	0.00	bdl	bdl	bdl	0.00
5/29/2002	179212	0.12	nd	nd	0.03	0.08	0.02	0.00	bdl	bdl		0.00
5/29/2002	179213	0.01	nd	nd	nd	0.01	nd	0.21	0.02	0.19		0.00
5/29/2002	179214	0.11	nd	0.07	nd	0.04	nd	0.08	0.04	0.02	0.02	0.03
5/29/2002	179215	0.01	nd	nd	nd	0.01	nd	0.02	bdl	0.02	bdl	0.00
5/29/2002	179216	0.16	nd	0.07	nd	0.07	0.02	0.02	0.02	nd		0.04
5/29/2002	179217	0.35	0.10	0.10	0.03	0.09		0.07	0.03		bdi	0.16
5/29/2002	179218	0.37	0.09	0.11	0.03	0.11	0.03	0.04	0.02	0.01	bdl	0.05
5/29/2002	179219	0.23	nd	0.11	nd	0.10	0.03	0.00	bdl		bdl	0.00
 5/29/2002	179220	0.30	nd	nd		0.18	0.08	0.01	bdl		bdi	0.05
5/29/2002	179221	0.01	nd	bdl		0.01	nd	0.00	bdl	bdl	bdl	0.03
5/29/2002	179222	0.06	nd	0.05	nd	0.01	bdl	0.04	bdi		0.04	0.00
5/29/2002	179223	0.03	nd	nd		0.03	nd	0.09	bdl	nd	0.09	0.00
5/30/2002	179224	0.02	nď	bdi	nd	0.02	nd	0.07	bdl	1		0.00
5/30/2002	179225	0.01	nd	nd	nd	0.01	nd	0.09	bdl	0.01	0.08	0.00
5/30/2002	179226	0.01	nd	nd	nd	0.01	nd	0.13	0.03	0.04	0.06	0.09
 									٩			
5/20/2002	179227	nd		nd	nđ	nd	nd	0.00			bdl	nd
5/28/2002	179228	nd	nd	nd	nd	nd	nd	0.02	0.02	bdl	nd	nd
5/28/2002	179229	nd	nd	nd	nd nd	nd	nd	0.00	bdi	bdl	nd	nd
<u> </u>												
5/20/2002	method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5/21/2002	method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5/28/2002	method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5/29/2002	method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
5/29/2002	method blank	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
							1			1		
	Maximum	0.60	0.18	0.30	0.05	0.18	0.08	1.66	1.13	0.32	1.33	0.16
	Standard Dev.	0.11	0.03	0.05	0.01	0.03	0.01	0.28		a second s		0.03
	Mean	0.06	0.01	0.03	0.00	0.02	0.00	0.18	0.05	0.03		0.01

5/30/2002 Page: 4 of 12 . .

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

SAMPLE										[
NAME	124TMB, ug	135TMB, ug	ct12DCE, ug	t12DCE, ug	c12DCE, ug	NAPH&2-MN, ug	NAPH, ug	2MeNAPH, ug	MTBE, ug	11DCA, ug	111TCA, ug	12DCA, ug
MDL=	0.03	0.02		0.14	0.03		0.01	0.02	0.04	0.04	0.02	0.02
179210	0.03	bdl	nd	nd	nd	0.10	0.05	0.05	nd	nd	nd	nd
179211	bdl	nd	nd	nd	nd	0.00	nd	bdl	nd	nd	nd	nd
179212	bdl	nd	nd	nd	nd	0.00	nd	bdi	nd	nd	nd	nd
179213	bdl	nd	nd	nd	nd	0.02	nd	0.02	nd	nd	nd	nd
179214	0.03	bdl	nd	nd	nd	0.04	0.02	0.02	nd	nd	nd	nd
179215	bdl	nd	nd	nd	nd	0.09	0,03	0.06	nd	nd	nd	nd
179216	0.04	bdl	nd	nd	nd	0.00	nd	bdl	nd	nd	nd	nd
179217	0.11	0.05	nd	nd	nd	0.12	0.06	0.06	nd	nd	nd	nd
179218	0.05	bdl	nd	nd	nd	0.02	0.02	bdi	nd		nd	nd
179219	bdl	nd	nd			0.04	0.02	0.02	nd		nd	nd
179220	0.05	bdl	nd			0.08	0.04	And an address of the second se	nd		nd	nd
179221	0.03	bdl	nd			0.05	0.02	0.03	nd	nd	nd	nd
179222	bdl	nd	nd		nd	0.00	nd	bdl	nd	nd	nd	nd
179223	nd	bdl	nd					bdl	nd	nd	nd	nd
179224	bdi	nd	nd	nd	nd	0.00		bdl	nd nd	nd	. nd	nd
179225	bdi	, bdl	nd			0.02	0.02	bdi	nd	nd	nd	nd
179226	0.09	bdl	nd	nd	nd	0.20	0.08	0.11	nd	nd	nd	nd
179227	nd	nd	nd		the second se	nd	nd nd	nd	nd	nd	nd	nd
179228	nd	nd								nd	nd	
179229	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd				nd nd		nd	nd	nd	nd	nd
method blank	nd	nd						nd	nd	nd	nd	
method blank	nd	nd nd							nd	nd nd	nd	
method blank	nd	j nd						nd	nd nd	nd nd	nd	
method blank	nd	nd	nd	nd	nd	nd	nd	nd nd	nd	nd nd	nc	l nd
Maximum	0.11	0.05									0.05	
Standard Dev.	0.02	0.01	0.00	the second se	and the second						0.01	0.00
Mean	0.02	0.01	0.00	0.00	0.00	0.03	0.02	0.02	0.00	0.00	0.00	0.00

5/30/2002 Page: 8 of 12

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCS (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

SAMPLE							
NAME	TCE, ug	OCT, ug	PCE, ug	14DCB, ug	CHCI3, ug	CCI4, ug	CIBENZ, ug
MDL=	0.02	0.02	0.01	0.01	0.03	0.03	0.01
179210	nd	nd	bdl	nd	nd	nd	nd
179211	nd	nd	0.02	nd	nd	nd	nd
179212	nd	nd	bdl	nd	nd	nd	nd
179213	nd	nd	nd	nd	nd	nd	nd
179214	nd	nd	nd	nd	nd	nd	nd
179215	nd	nd	nd	nd	nd	nd	nd
179216	nd	nd	nd	nd	nd	nd	nd
179217	nd	0.02	0.01	nd	0.20	nd	nd
179218	nd	0.04	0.22	nd	0.05	nd	nd
179219	nd	0.05	0.17	nd	nd	bdl	nd
179220	nd	nd	nd	nd	nd	nd	nd
179221	nd	nd	0.03	nd	nd	nď	nd
179222	nd	nd	0.03	nd	nd	nd	nd
179223	nd	nd	bdl	nd	nd	nd	nd
179224	nd	nď	nd	nd	nd	nd	nd
179225	nd	nd	nd	nd	nd	bdl	nd
179226	nd	nd	bdl	nd	nd	nd	nd
179227	nd	nd	nd	nd	nd	nd	nd
179228	nd	nd	nd	nd	nd	nd	nd
179229	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd
method blank	nd	nd	nd	nd	nd	nd	nd
method blank	nd	лd	nd	nd	nd	nď	nd
Maximum	14.22	0.20	6.74	0.02	0.20	0.03	0.00
Standard Dev.	1.88	0.04	0.74	0.00	0.02	0.01	0.00
Mean	0.53	0.01	0.25	0.00	0.00	0.00	0.00

5/30/2002 Page: 12 of 12 No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

CCT_CCXrpt

ANNEX C DSS Site 1081 Soil Sample Data Validation Results

.

Page 1 of 1

CONTRACT LAL RATORY

						CUNIK	ACIL	-AL -	RAIU	K I					
nternal Lab	15/4		A	NAL'	YSIS	REQUE	EST /	AND	CHAI	N OF C	USTO	DY		Page 1	of <u></u>
Batch No.	M				SM	O Use							AR/COC	60	5666
Dept. No./Mall Stop:	6135/1089		Date Samp	les Ship	ped: 7	-3-02		Project/Task No. 7223.02.03.02				03.02	Waste Characterizatio	n	
Project/Task Manager:	Mike Sanders		Carrier/Wa		· · · · · · · · · · · · · · · · · · ·			SMO Authorization: Old Change					-Send preliminary/copy		endv Palend
Project Name:	DSS soil sampling		Lab Contac	•	Edie Ke	Edie Kent 803-556-8171 Contract #:						505-844-3132			
Record Center Code:	ER/1295/DSS/DAT		Lab Destina	ation:	GEL			1 ~		THEGOV	1 mere al		Released by COC No.:		•
Logbook Ref, No.:	ER 090		SMO Contac	t/Phone:	Pam Pu	issant 505- 8	44-3185	1 >	مور المصحى	trife gov	DOUD	CINON	Validation Required		
Service Order No.	CF032-02		Send Report	to SMO:		Palencia 505		32					Bill To:Sandia National Labs (A	Accounts Payal	ble)
Location	Tech Area		1									مریکا مار بر برد ^{اک سر} در بردان خاند.	P.O. Box 5800 MS 015		
Building 6650	Room		1			Reference	e LOV(availal	ble at S	MO)			Albuquerque, NM 87185		
	ER Sample II) or	Pump	ER Site	Date	/Time(hr)	Sample		ntainer	Preserv-	Collection	Sample	Parameter & Met		Lab Samp
Sample NoFraction	Sample Location	Detail	Depth (ft)	No.		ollected	Matrix	Туре	Volume	ative	Method	Type	Requested		ID
059775-001	6650/1081-SP1-BH1-	10-s	10'	1081	8-29-0	2/0900	s	AS	4oz	4c	G	SA	VOC (8260B)		
059776-001	6650/1081-SP1-BH1-	/ <u>5-</u> s	15'			0955	s	AS	4oz	4c	G	SA	VOC (8260B)		
059775-002	6650/1081-SP1-BH1-	15 70-5	123.		10	00 0915	S.	AG	500ml	4c	G	SA	see below for parameter		
059776-002	6650/1081-SP1-BH1-	/ <u>A</u> -S	10		0	115,000	S	AG	500ml	4c	G	SA	see below for parameter		
059777-001	6650/1081-SP2-BH1-	12-s	12'			1050	s	AS	4oz	4c	G	SA	VOC (8260B)		
059778-001	6650/1081-SP2-BH1-	<u>17-s</u>	17'			1145	<u>s</u>	AS	_4oz	4c	G	SA	VOC (8260B)		
059777-002	6650/1081-SP2-BH1-	17.s	175		ii	50 1055	Ø∕s_	AG	500ml	4c	G	SA	see below for parameter		
059778-002	6650/1081-SP2-BH1-	H2-S	12			055 450	M/s	AG	500ml	4c	G	SA	see below for parameter		
059779-001	6650/1081-SP3-BH1-	17-5	17'				s	AS	4oz	4c	G	SA	VOC (8260B)		
059780-001	6650/1081-SP3-BH1-	24-s	24'			1525	s	AS	4oz	4c	G	SA	VOC (8260B)		
RMMA	<u> </u>		<u>No.</u>			Tracking		Smo U	se	Special Ins			ents	Abnorm	
Sample Disposal	Return to Client		osal by lab		Date En	tered(mm/dd	(yy)		_	EDD 🗠	Yes 🗌			Conditio	
Turnaround Tim	e 🗸	Normal		Rush	Entered	by:		<u>.</u>	. .	Level C Pa	ckage	🗹 Yes		Receipt	•
Return Samples By:		Level of Ru	ush:				QC inits			*Send repo	ort to:		SVOC (8270C)		
	Name	Sigr	nature	Init	Co	mpany/Orgar	nization/F	hone/Ce	elluiar	Mike Sande	ərs		PCBs(8082)Cr6+(7197)		
Sample	J.Lee		Der.	Re		6135/505-28				Dept6135/N	AS/1089		HE(8330		Lab Us
Team	W.Gibson	Willie	an Artilla	the AD	MDM/6	35/505-845-	3267			Phone/505-	284/2478		Total Cyanide(9010)		· · ·
Members	G.Quintana	H.T.t.2	the fundance	140%	Shaw/6	135/505-284-	3309		· · ·	1			RCRA Metals(6020,7000,		
		7	/	10	T					1			7471)		
	1									*Please list	t as separat	te report.	Gross alpha/beta (900)		. ·
.Relinquished by	Mar Tur	•	Org. 613				745	4.Relin	quished b	التصوريون الجنادي والمتحد والمتحد والمتحد	·····	Org.	Date	Tim	e
1. Received by	They from	Sind	Org. 615				745	4. Rece	eived by			Org.	Date	Tim	e
2.Relinquished by	2X19 You	6 jugo	Org. 4/ 7	7 Date 4			240	5.Relin	quished b	y		Org.	Date	Tim	e
2. Received by	······································		Org.	Date	,_,_	Time		5. Rece	eived by			Org.	Date	Tim	
3.Relinquished by			Org.	Date		Time		6.Relin	quished b	y		Org.	Date	Tim	e
															e

OFF-SITE LABORATORY Analysis Request And Chain Of Custody (Continuation)

Page_2_of Z

10100

										AR/C	<u>oq</u>	60566
roject Name:	DSS soil sempling	Project/Task Manger:	Mike Sanders		1	Project/Task	No.:	7223.02.03.02				
Location	Tech Area										./	
Building	Room		Reference		valla	ble at	SMO)			66454	Χ	Lab Use
Sample No-	ER Sample ID or	Beginning Ef		Sample	Çor	ntainer	Preserv-	Collection	Sample	Parameter & Method		Lab Sample
Fraction	Sample Location detail	Depth (ft) Site	No. Collected	Matrix	Туре	Volume	ative	Method	Туре	Requested		ID
059779-002	6650/1081-SP3-BH1-17-S	12' 10	81 8-24-22/1450	S	AG	5 00ml	4c	G	SA	see below for parameter	11	013
059780-002	6650/1081-SP3-BH1-24-S	24' 1	1 1530	S	AG	500ml	4c	G	SA	see below for parameter	. 2.	014
059781-001	6650/1081-SP4-BH1-20-S	20'	8-30-02/0900	s	AS	4oz	4c	G	SA	VOC (8260B)	. /	<u>007</u>
059782-001	6650/1081-SP4-BH125'-S	25'	1 0940	. s	AS	4oz	4c	G	SA	VOC (8260B)	. /	008
059781-002	6650/1081-SP4-8H1-20-S	20'	0905	s	AG	500ml	40	G	SA	see below for parameter	. 2	015
059782-002	6650/1081-SP4-8H1-25-S	25'	0345	s	AG	500ml	4c	G	SA	see below for parameter	. 2	016
059783-001	5650/1081-SP-TB	NA	2350	DIW	G	3x40ml	HCL	G	ТВ	VOC (8260B)	0645	601
							l				Z	
											***	* * *
											**	N 7 9
												F. 18 . 32 . 3
		•									a second	8 M 8
											3	1. 1.
									1		F. 3	St. St. St.
											1. A	e la sistera and
	· · · · · · · · · · · · · · · · · · ·						1				(M.,	ar. C. S
									1		1	A
								1				
											4	18 A.S.
Abnormal Co Recipient Inti	nditions on Roceigi		LABUSE									
vecthieur nei		X X		1				48. I				r a 🐒

Contract Verification Review (CVR)

Project Leader	Collins	Project Name	DSS Soil Sampling	Case No.	7223_02.03.02
AR/COC No.	605666	Analytical Lab	GEL	SDG No.	66454

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In information

Line		Com	olete?		Res	olved?
No.	Item	Yes	No	If no, explain	Yes	No
1,1	All items on COC complete - data entry clerk initialed and dated	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	X			•	
1.4	Preservative correct for analyses requested	X				
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	×			1	·
1.7	Date samples received	X				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Com	biete?		Reso	olved?
No.	ltem	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided (if requested)	X				
2.5	Detection limits provided; PQL and MDL (or IDL), MDA and Lc	X				
2.6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X				
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	×				
2.10	Narrative provided	X				
2.11	TAT met	X				
2.12	Hold times met	X				
2.13	Contractual qualifiers provided	X				
2.14	All requested result and TIC (if requested) data provided	X				1

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

.

.

ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2 Quantitation limit met for all samples	X		
 3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples 		X	4-Amino=2,6DNT not within SNL acceptance limits but within GEL SPC limit
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 		X	PCB surrogate recovery for decachlorobiphenyl high for sample 059776-002
c) Matrix spike recovery data reported and met	×		
 3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples 	×		
b) Matrix spike duplicate RPD data reported and met for all organic samples		X	arsenic, chromium, lead, and silver not within RPD acceptance limits
 3.5 Blank data a) Method or reagent blank data reported and met for all samples 		×	bis(2-Ethylehexyl)phthalate detected in SVOC method blank
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		×	tokuene detected in VOC trip blank
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method biank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analysis done beyond the holding time	×		· · · · · · · · · · · · · · · · · · ·
3.7 Narrative addresses planchet flaming for gross alpha/beta	×		
3.8 Narrative included, correct, and complete	×	<u>}</u>	
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	×		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

ĸ,

ltem	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	×		
b) Initial calibration provided	X		
c) Continuing calibration provided	X		
d) Internal standard neuformanas data neuridad	×	+	
d) Internal standard performance data provided			
e) Instrument run logs provided	×	+	
4.2 GC/HPLC (8330 and 8010 and 8082)		1	
a) Initial calibration provided	X		· · ·
b) Continuing calibration provided	X		
c) instrument run logs provided	x		
4.3 inorganics (metals)		+	
a) Initial calibration provided	×		
	X	+	· · · · · · · · · · · · · · · · · · ·
b) Continuing calibration provided	^		
c) ICP interference check sample data provided	· X		
d) ICP serial dilution provided	×		
		<u> </u>	
e) Instrument run logs provided	X		
4.4 Radiochemistry			
a) Instrument run logs provided	X	<u> </u>	

Contract Verification Review (Concluded)

5.0 Problem Resolution

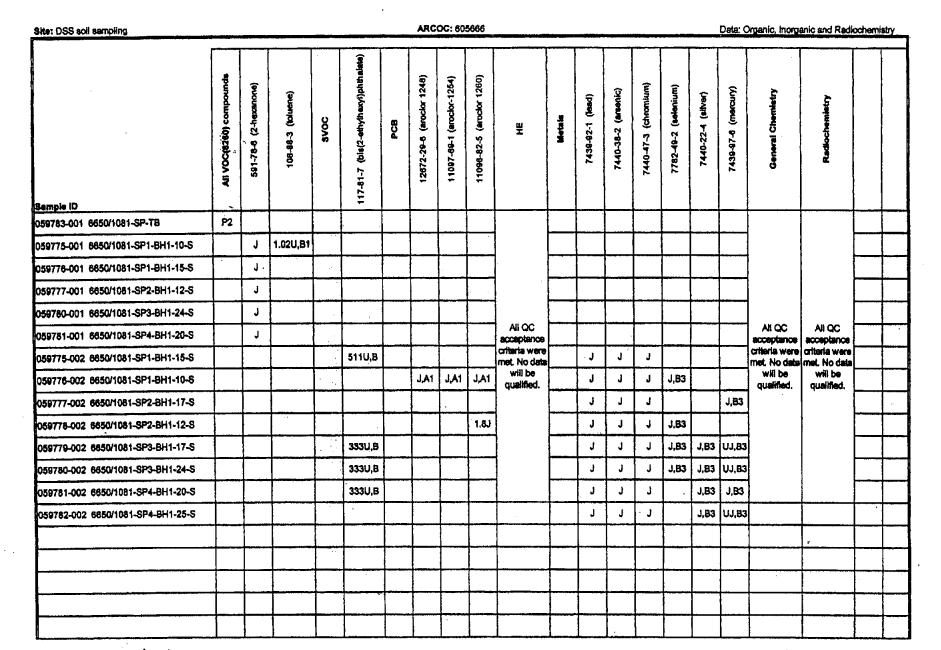
Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
QC Summary	VOC	missing page 1 and 2 of 4 for GC/MS Volatiles QC Summary
Were deficiencies unresolved?	No No	
Based on the review, this data package	is complete. Yes	
if no, provide: nonconformance report o	r correction request num	ber 4926 and date correction request was submitted: 10/08/02
Reviewed by: Ulf		: 10/08/02 Closed by: Utu Date: 10.14.02

RECORDS CENTER CODE: ER/1295/DSS/DAT

SMO ANALYTICAL DATA ROUTING FORM

PROJECT NAME:	DSS Soil Sampling	PROJECT/TASK: <u>7223_02.03.02</u>
SNL TASK LEADER:	Collins	ORG/MS/CF0#: 6133/1089/CF032-02
SMO PROJECT LEAD:	Herrera	SAMPLE SHIP DATE: 9/3/2002


					ED	
ARCOC	LAB	LAB ID	PRELIM DATE	FINAL DATE	EDD ON	<u>a</u> BY
605666	GEL	66454		10/2/2002	XX	JAC
	. <u> </u>					
	·				┝╼╌╢──	
					├ ──- │ ├──-	
·····					}∤	
	<u> </u>			·	┣━━╢━━	
<u>_</u>		······	,, <u></u> ,			
		i		·····	┝ ──-	
					├ ── /├ ──	
		······································				L

	NAME	DATE
CORRECTIONS REQUESTED/RECEIVED:	10.08.02	recid 10.14.02
PROBLEM #:_	4926	091008.02
REVIEW COMPLETED BY/DATE: _	Uł	10-08-02
FINAL TRANSMITTED TO/DATE:	<u>ut</u>	10-08-02
SENT TO VALIDATION BY/DATE:	_Conn	10/15/02
RUSH VALIDATION REQUIRED EST. TAT:		
VALIDATION COMPLETED BY/DATE:	NJ 10/29/02	
TO ERDMS OR RECORDS CENTER BY/DATE:	R. Kavanauf	11/4/02

-

COMMENTS:

Sample Findings Summary

.

Velidented By: & Mal

Date: 10/29/02

Data Validation Qualifiers and Descriptive Flags*

Note: Qualifiers may be used in conjunction with descriptive flags [e.g., J,A; UJ,P; U,B].

Qualifiers	Comment
j	The associated value is an estimated quantity.
J1	The method requirements for sample preservation/temperature were not met for the sample analysis. The associated value is an estimated quantity.
J2	The holding time was exceeded for the associated sample analysis. The associated value is an estimated quantity.
נט	The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
U	The associated result is less than ten times the concentration in any blank and is determined to be non-detect. The analyte is a common laboratory contaminant.
UI	The associated result is less than five times the concentration in any blank and is determined to be non-detect.
R	The data are unusable for their intended purpose. The analyte may or may not be present. (Note: Resampling and reanalysis is necessary for verification.)

Descriptive Flags

Α	Laboratory accuracy and/or bias measurements for the associated Laboratory Control Sample and/or duplicate (LCS/LCSD) do not meet acceptance criteria.
Al	Laboratory accuracy and/or bias measurements for the associated Surrogate Spike do not meet acceptance criteria.
A2	Laboratory accuracy and/or bias measurements for the associated Matrix Spike and/or duplicate (MS/MSD) do not meet acceptance criteria.
A3	Insufficient quality control data to determine laboratory accuracy.
В	Analyte present in laboratory method blank
Bl	Analyte present in trip blank.
B2	Analyte present in equipment blank.
В3	Analyte present in calibration blank.
Ρ	Laboratory precision measurements for the Laboratory Control Sample and duplicate (LCS/LCSD) do not meet acceptance criteria.
P۱	Laboratory precision measurements for the Matrix Spike Sample and associated duplicate (MS/MSD) do not meet acceptance criteria
P2	Insufficient quality control data to determine laboratory precision.
* This is not a definitive	list. Other qualifiers are potentially available, see TOP 94-03. Updated: September 14, 1999

Beginning January 2000

Application of Data Validation Qualifiers to Data Tables Laboratory Qualifier Application to Data Tables

T J (Reporting Limit) U ND (Detection Limit) None _____ Detected concentration; See Data Validation Report Laboratory Descriptive Flag Analyte concentration; See Data Validation Report, analyte В present in method blank **Data Validation Qualifier** (Estimated quantity) ------J ► I* * - See Data Validation Report UJ (Analyzed for but not detected; associated value is an _____ ND (Detection Limit J); See Data Validation Report estimate and may be inaccurate or imprecise) (Analyzed for but not detected) TT ND (Reporting Limit or Reported Value if > Reporting Limit); See Data Validation Report (Data unusable) ------R ▶ R* * - See Data Validation Report (Presumptive evidence of the presence of the material)_ N Detected concentration(N); See Data Validation Report NJ (Presumptive evidence of the presence of the material at an ▶ Detected concentration (NJ); See Data Validation estimated quantity) Report (Data conforms to QC requirements) None Use Laboratory Qualifier

Note: Both the laboratory and data validation qualifiers are required to assure the data is correctly qualified. The descriptive flags are meant to assist the user in understanding the qualification of the data and in writing up the results of the data validation process. They are not for incorporation into the data t^{phes} .

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE: 10/29/02

TO: File

FROM: Linda Thal

SUBJECT: Inorganic Data Review and Validation - SNL Site: DSS soil sampling ARCOC # 605666 GEL SDG # 66454 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 6010 (ICP-AES metals), SW-846 7471 (Hg), SW-846 9012A (total CN) and SW-846 7196A (hexavalent chromium).

Problems were identified with the data package that resulted in the qualification of data.

ICP-AES - Metals

Silver was detected in the continuing calibration blank (CCB) bracketing samples 66454-011, -013, -014, -015 and -016 at a value > DL but < RL. Sample 66454-013, -014, -015 and -016 had silver values < 5X the CCB value and will be qualified *J, B3*.

Selenium was detected in the ICB/CCB at a value > DL but < RL. Sample 66454-010, -012, -013 and -014 had selenium values < 5X the ICB/CCB value and will be qualified "J, B3".

The replicate RPDs for chromium (68%), lead (104%) and arsenic (68%) were > QC acceptance criteria (35%). All associated sample results were detect and will be qualified "J".

Hg

Mercury was detected in the ICB/CCB at a negative value, with an absolute value > DL but < RL. Sample 66454-011 and -015 had a mercury value < 5X DL and will be qualified "J, B3".

Sample 66454-013, 014 and --016 were non-detect for mercury and will be qualified "UJ, B3".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

All Analyses: The samples were analyzed within the prescribed holding time and properly preserved.

Calibration

All Analyses: The initial and continuing calibration data met QC acceptance criteria.

<u>Blanks</u>

<u>All Analyses</u>: All blank criteria were met except as mentioned above in the summary section and as follows:

ICP-AES - Metals

Silver was detected in the continuing calibration blank (CCB) bracketing samples 66454-011, -013, -014, -015 and -016 at a value > DL but < RL. Sample 66454-011 had a silver value > 5X the CCB value and will not be qualified.

Selenium was detected in the ICB/CCB at a value > DL but < RL. Sample 66454-009, -011, -015 and --016 were non-detect for selenium and will not be qualified.

Hq

Mercury was detected in the ICB/CCB at a negative value, with an absolute value > DL but < RL. Sample 66454-009, -010 and -012 had a mercury value > 5X DL and will not be gualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analyses

<u>All Analyses</u>: The LCS met QC acceptance criteria. No LCSD was performed. No data will be qualified as a result.

Matrix Spike (MS) Analysis

All Analyses: The MS met QC acceptance criteria except as follows:

Ha

The sample used for the MS was of similar matrix from SNL SDG 66195. No data will be qualified as a result.

Replicate Analysis

<u>All Analyses</u>: The replicate analysis met QC acceptance criteria except as mentioned above in the summary section and as follows:

Ha

The sample used for the replicate was of similar matrix from SNL SDG 66195. No data will be qualified as a result.

ICP Interference Check Sample (ICS)

ICP-AES: The ICS-AB met QC acceptance criteria except as follows:

The ICS-AB was not run at the end of the sequence for silver analysis on the 09/25.

All Other Analyses: No ICS required.

ICP Serial Dilution

ICP-AES: The serial dilutions met QC acceptance criteria.

All Other Analyses: No serial dilutions required.

Detection Limits/Dilutions

All Analyses: All detection limits were properly reported.

<u>ICP-AES soils</u>: All samples were diluted 2X. Sample 66454-009 (10X), -010 (50X) and -012 (20X) were further diluted for silver analysis in order to bring the values within the linear range of the instrument.

All Other Analyses: No dilutions were performed.

Other QC

<u>All Analyses</u>: No field duplicate, field blank or equipment blank was submitted on the ARCOC.

It should be noted that the ARCOC requests the metals to be run by method 6020 (ICP-MS).

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE: 10/28/02

TO: File

FROM: Linda Thal

SUBJECT: Organic Data Review and Validation - SNL Site: DSS soil sampling ARCOC # 605666 GEL SDG # 66454 and 66456 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 8260A/B (VOC), 8270C (SVOC), 8082 (PCBs) and 8330 (HEs). Problems were identified with the data package that resulted in the qualification of data.

VOC -- Batch 199914 soil

The CCV preceding samples 66454-001, -002, -003, -006 and -007 had a %D >20% with a negative bias for 2-butanone (27%). Sample 66454-001, -002 and -007 had 2-butanone values > RL and sample 66454-003 and -006 had 2-butanone values > DL. All 2-butanone values will be qualified "J".

The trip blank (TB) associated with samples 66454-001 through -008 had a toluene value > DL. Sample 66454-001 had a toluene value > DL, < RL and < 10X the TB value and will be qualified "U, B1" at the RL.

VOC - Batch 199493 water

No MS/MSD or replicate analysis was performed for the batch. The associated sample results will have the "P2" descriptor added due to lack of precision information.

SVOC - Batch 199277 soil

Bis (2-ethylhexyl) phthalate was detected in the method blank (MB) at a value > DL but < RL. Sample 66454-009 had a bis(2-ethylhexyl) phthalate value > RL but < 10X the MB value and will be qualified "U, B" at the reported value.

Sample 66454-013, -014 and -015 had a bis(2-ethylhexyl) phthalate value > DL but < RL and < 10X the MB value and will be qualified "U, B" at the RL.

PCB

The surrogate (DCB) recovery (161%) was > QC acceptance criteria (34 – 115%) in sample 66454-010 due to a dilution performed on the sample. Aroclor 1248 and –1254 had a value > RL, and aroclor 1260 had a value > DL. All will be qualified "J, A1".

Sample 66454-012 had an aroclor 1260 value > DL but < RL. The RPD (40%) between the primary and confirmation column was > QC acceptance criteria (25%). The reported value is changed to the highest detected value and will be qualified "J".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analysis</u>: The samples were properly preserved and analyzed within the method prescribed holding time.

Calibration

<u>All Analysis</u>: All initial and continuing calibration acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC - Batch 199914 soil

The CCV preceding samples 66454-004 and --005 had a %D >20% but < 40% with a negative bias for 2-butanone (27%). These sample results were non-detect and will not be qualified.

The CCV preceding samples 66454-001 through -007 had a %D >20% but < 40% with a negative bias for 2-hexanone (25%) and 4-methyl-2-pentanone (21%). These sample results were non-detect and will not be qualified.

VOC - Batch 199493 water

The CCV had a %D >20% but < 40% with a negative bias for bromomethane (24%) and chloromethane (39.6%). The sample results were non-detect and will not be qualified.

<u>SVOC</u>

The CCV had a %D > 20% but < 40% with a negative bias for hexachlorocyclopentadiene (39.9%), and with a positive bias for 4-nitroaniline (28%) and benzo(g,h,i)perylene (23%). The associated sample results were non-detect and will not be qualified.

Blanks

<u>All Analysis</u>: All method blank and trip blank acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC - Batch 199914 soil

The trip blank (TB) associated with samples 66454-001 through --008 had a toluene value > DL. Samples 66454-002 through --008 were non-detect for toluene and will not be qualified.

SVOC -- Batch 199277 soil

Bis (2-ethylhexyl) phthalate was detected in the method blank (MB) at a value > DL but < RL. Sample 66454-010, -011 and -012 had a bis(2-ethylhexyl) phthalate value > RL and >10X the MB value and will not be qualified. Sample 66454-016 was non-detect and will not be qualified.

Surrogates

<u>All Analysis</u>: All surrogate acceptance criteria were met except as mentioned above in the summary section.

Internal Standards (ISs)

All Analysis: All internal standard acceptance criteria were met.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

<u>All Analysis</u>: All MS/MSD acceptance criteria were met except as mentioned above in the summary section and as follows:

<u>SVOC</u>

Several compounds (see DV worksheet) had %R < QC acceptance criteria (75 – 125%). Using professional judgment, no data will be qualified.

HE

It should be noted that the sample used for the MS/MSD was of similar matrix from SNL SDG 66610. No data will be qualified as a result.

Laboratory Control Samples (LCS/LCSD) Analysis

<u>All Analysis</u>: The LCS acceptance criteria were met except as mentioned above in the summary section and as follows:

<u>VOC</u> – Soils and Waters

It should be noted that no compound was associated with internal standard 1,4dichlorobenzene-d4. No data will be qualified as a result.

SVOC

It should be noted that no compound was associated with internal standard perylene-d12. No data will be qualified as a result.

Detection Limits/Dilutions

All Analysis: All detection limits were properly reported. Samples were not diluted.

Confirmation Analyses

VOC and SVOC: No confirmation analyses required.

PCB: All confirmation acceptance criteria were met except as mentioned above in the summary section.

HE: The sample results were non-detect and therefore no confirmation analysis was required.

Other QC

<u>VQC</u>: A trip blank was submitted on the ARCOC. No equipment blank or field duplicate was submitted on the ARCOC.

SVOC, PCB and HE: No equipment blank, field blank or field duplicate was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE:	October	29,	2002
-------	---------	-----	------

TO: File

FROM: Linda Thal

SUBJECT: Radiochemical Data Review and Validation - SNL Site: DSS soil sampling ARCOC 605666 GEL SDG # 66454 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with approved procedures using method EPA 900.0 (Gross Alpha/Beta). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses:</u> All samples were analyzed within the prescribed holding times and properly preserved.

Calibration

All Analyses: The case narrative stated the instruments used were properly calibrated.

Blanks

No target analytes were detected in the method blank at concentrations > the associated MDAs.

Matrix Spike (MS) Analysis

The MS/MSD analyses met all QC acceptance criteria except as follows:

The MS/MSD was performed on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

Laboratory Control Sample (LCS) Analysis

The LCS analyses met all QC acceptance criteria.

Replicates

The replicate analyses met all QC acceptance criteria except as follows:

The replicate analysis was performed on a sample of similar matrix from another SNL SDG. No data will be qualified as a result.

Tracer/Carrier Recoveries

No tracer/carrier required.

Negative Blas

All sample results met negative bias QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

Other QC

No field duplicate, field blank or equipment blank was submitted on the ARCOC.

It should be noted that, according to the case narrative, sample 66454-016 did not meet the beta required detection limit. No more volume could be used due to not exceeding the maximum net weight limit. The samples counted for 500 min.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Data Validation Summary

	on Summary
Site/Project: OSS Soll Sampling Project/Task #: 7223.02.03.02	# of Samples: 16 & 1 Matrix: 50113 & TB
AR/COC #: 605666	Laboratory Sample IDs: <u>66454 - 001 Hrv - 016</u>
Laboratory: CAL	66456 - 001 (78-VOC)
Laboratory Report #:66454	

					Analy	ysis 🛛				
QC Element		Org	anics			Inc	rganics			Heraval a
	5 VOC N	SVOC	Pesticide/ PCB	HPLC (HE)	ICP/AES	GFAA/ AA	CVAA (Hg)	CN	RAD	Other Chromium
1. Holding Times/Preservation	~	\checkmark	V	V	V	NA	V	V	V	V
2. Calibrations	JV	V	V	V	V		V	·V	V	V
3. Method Blanks	U, BI	υ _I B	~	V	J.B3		JUJ, B3	V	V	V
4. MS/MSD	V P2	V	V	r	V		V	V	V	V
5. Laboratory Control Samples	V	V	~	V	~		V	V	V	V
6. Replicates					5		V	~	V	V
7. Surrogates	V	V	J,AI	~					A Nasala Marina di Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén K Marina Kabupatén Kabu	NA
8. Internal Standards	V	~								
9. TCL Compound Identification	V	V.								
10. ICP Interference Check Sample					V					
11. ICP Serial Dilution					\checkmark					
12. Carrier/Chemical Tracer Recoveries									NA	
13. Other QC	TB	NA	NA	NA	NA		NA	NA	NA	
J == Estimated U == Not Detected UJ == Not Detected, Estimated R == Unusable	Shaded Cells	 Not Provide 	In PPO	•	Ву:	α	, Ual	`` I	Date: <u>/0</u> .	29.02

ſ	atory:	<u>55 5611 Sampling</u> GRA 1-846 8260 A	_ I	abora	tory Repor	t #: _		6648	54			L	aborat	ory San	nple II)s: _6	645	4-0	007	the	- 0	08		6645	2-00
	ds: <u>کلر</u>)-846 8260 A	1ß	,								E	Batch #	s:	99	9146	D ₍₅₀	ijs)		19	Q.Y	93 ^D	(76	?)	
	CAS #	1	ł		intercept	Calii RF	b ,	Calib. RSD/ R ³ <20%/	c ,	CV 6D	!	Wethod Blks				1	MSD	1			ulp. nks	Tr Blai	ip		
					1 2	/ ^{>.0:}	2	1 0.99 2		0%		1 2	1	2		1 2	1/2	1 2						L	
	71-55-6	1,1,1-trichloroethane		0.10		Ĭ~		¥_¥	K.			44	1		NA	ļ		1	NA NA		NA		\leq		
	79-34-5	1,1,2,2-tetrachloroethane	_	0.30	Į		++	╉╍╍╌┠╴	╟╋	ĮĮ.		- -	 	Ļ	┝━┥╍	+		+	┢╌┝╸			┯┥	<u> </u>	<u> </u>	
	79-00-5	1,1,2-trichlorosthans	_	0.10	 		+	╶┼╾╍╌┠╴	╂-┠	┼╉┷	╫	╺┼╾╍╌┟╴			┝╍╍┥╍╸	· · · ·			+ + +		+	┟╍╍┙	┝───┤		
	75-34-3	1,1-dichloroethene		0.10	<u> </u>		┿╋	┽╍╌┼	╋╋	╂╴	╫	┽╍╍╂╴	11	1	┝─┼╍	1	12	1.7	+			┢╼╌┥			
-		1,2-dichloroethane		0.10			┽╉	+		+	╫	┽──╉╸	μex	<u>⊢.⊬</u>	┝╼╌┼╍╸	¥	+ r	₩~	┼╌┼╴		+	╉╍╌┥			+
	540-59-0	1.2-dichloroethene(total)	+-	0.01	·		++	++		H	++-	++	t		┝╍┼╍	+	+	1	++		+	<u>+</u>	[]	<u> </u>	<u>+</u>
-	78-87-5	1,2-dicidoropropune	レ	0.01			+	- †-	t t	th	11	- †	1	t		+		1		1	+	t			1
-	78-93-3	2-butmene (MEK) (19xblk)	+	0.01			T		1				T					T							<u> </u>
-	110-75-8	2-chloroethyl vizyl ether	t^{-}	t			┿╋	++	ť٧	<u>t</u>	tt	┼╌╌┼	t		┝╍╌┼╍╸	1	+	1	1 - 	+	+	t	[]	(t
	591-78-6	2-bexance (MBK)	17	0.01	1		┉		रंग		_		1			1		1		+	-			h	+
1	108-10-1	4-mothyl-2-pentanone (MIBK)		0.10					2		T													}	<u> </u>
	67-64-1	acetome(10xhik)	\mathbf{H}	0.01			∕∕	7 7	٢v	11	Ħ	++					1-	1	╋╼┿	1					<u>+</u>
	71-43-2	bensene	<u> </u>	0.50		Ĺ			L	ΤT														<u> </u>	<u>†</u>
	75-27-4	bromodichioromethane		0.20							Ш					1									
	75-25-2	bromoform	_	0,10	$V \overline{V}$	K_	\mathbf{Z}	\checkmark		II.	1		1		LT										
-	74-83-9	bromomethane		0.10	L		-41		Ц.	Ļ	2				ЦĹ						_	\vdash		L	
-	75-15-0	carbon disulfide	_	0.10	i	┝╼┝╸	-+-+	++	++	÷+-	11	++	<u> </u>		┝╍┥╸		_	- 	┢╍┼			┢	 	L	_
	56-23-5	carbon tetrachioride		0.10		┢╍┿╍	++		┿╇	44	╢╋	┥╍╍╸	+		┢╍╌┼╍	+		+	╉━┥				$\left - \right $	ļ	
-	108-90-7	chlorobennese	-	0.50		┝╼┼╍	+	┽╍╍┼	╈	╀		┿╍╍╋	124	V	┢╌┼┙	<u> </u>	<u> </u>	<u> </u>	╉╌┼╴			┢┉┉╵	┟╾╾┙	 	
	75-00-3	chloroethane chloroferm	╉┥	0.01	 	┝─┾─	┽┨	┉┼╺╍╍╾╄╸	╉╋	┼┼	╫	+	╉┉┉┉	 	┠╌┼╌	+		+	╋╼┼╴		-	<u> </u>	┥──┤	<u> </u>	+
-	07-00-3 74-87-3	chioromethane	╉┥	0.10	+	┝╾┼┉	┿╉	╺┿╼╾┼	+	╀╋		╞┼───┼	+	<u> </u>	┝╾┼╌		-+	- 	+			┼───	┟┈┉┦	<u> </u>	
		cis-1,3-dichloropropeae	╉┥	0.20	+	\vdash	-+-	-+	╈	+	C	┼╌╌┼	+	<u> </u>	<u></u> + <u>+</u>	+	+	+	╉┈┼╸	+		+	<u></u>		+
	124-48-1	dibromochloromethane	++	0.10	12	┢╱┷	+t	 +	++	++	÷¥†	+	†	<u> </u>	╞╼╼┿╍		+	1	╈	+		+	<u>├</u> ──┤		+
	100-41-4	ethylbenzenc	+	0.10	ſ	T	11		++	$^{++}$	t	++	1	1		1	1	1				1			+
	75-09-2	methylene chloride (10xblk)		0.01	VV	Z	$\overline{\mathbf{v}}$		11	T				1				1	1 +	1		1			<u> </u>
	100-42-5	styrene	\Box	0.30		1		T (\square	П	·														
-	127-18-4	tetrachioroethene		0.20						Π												I			
	108-88-3	iniuene(10xblk)	\Box	0.40			Π		\square	\prod	<u>II</u>		I.	[V		V	V	V	\square			O.HJ	545	3	
	and the second se	trans-1,3-dichloropropene	_	0.10	V	<u> </u>		\checkmark	++	44	, 		$ \rightarrow $		- 1	+		4	+			1-V		\leq	
	79-01-5	trichloroethese		0.30	·	19. A. 1			╆╇	╇	₩		<u>47/</u> 2		}}_	¥			┿			┣		<u></u>	4
	75-01-4	vinyl chioride	_	0.10	+	Ĩ-¥			╋	÷	₩	┥──┥	+	╂	┢╍┠╸	+			╉╍╌╄╴	+		╂────	┢╾┛	<u> </u>	
	1330-20-7	xylenes(total)		0.30	+	┝╼┾╸	-		╉┿	┿╋	÷] -	┥╌╾┧	+		┼-┼-			+	╈╌╋			<u> </u>	┢╾┯┙	 	+
		than - 1,2 - Dichorne	44		<u> </u>	┢╍┾╸		┝┿╾╍┽		+				 	+	+			╉╾╾┾╸		-+-	+	ᡰ᠆᠆᠆┙	<u> </u>	+

.

Volatile Organics		Pa	age 2 of 2
Site/Project:	AR/COC #: 605666	Batch #s:	·
Laboratory:	Laboratory Report #:	# of Samples: Matrix:	

Surrogate Recovery and Internal Standard Outliers (SW 846 Method 8260)

Sample	SMC 1	SMC 2	SMC 3	IS 1 Агеа	IS 1 RT	iS 2 area	IS 2 RT	IS 3 area	IS 3 RT
IN OUTORA									
								l	
			F						
				<u> </u>		+			
									() 720
SMC 1: 4-Bromofluorobenzen SMC 2: Dibromofluoromethan SMC 3: Toluene-d8	ie IS 2: Cho	robenzene robenzens-d5 Dichlorobenzen	⊷d4	Com	nents: CCV	1 501/3	8:09 20:58	SA 1- SA 8.	0 700 AN 2 5 400 1

raw dera. NO

TB NO replicate No MJ/MJO All Pa. Ð VOA 9

+/	Denian	05.5	Soil Sampling,	<u>/ ت</u> ۵		- 60	1566	Viali (a		iAa	nics (S		Sample	- IDe-	270)	664	54	- 01	10 _4	rage 4 au	1 of 3
	riojec	. <u>000</u>				. <u> </u>	/ 3 8 4	L. M.	54			vi avri y	oampi	·					<u> </u>	170	0/6
					ratory	Keport #:_	6	670	57												
	-		- 846 8270C							·							· · · · · · · · · · · · · · · ·		······	·····	
of	Sampl	es:	<u>∂</u> Matrix	:	Ų	oils					Bat	ch #s:		/ 9	927	<u> </u>					
IS	BNA	CAS #	NAME	TC	Min. RF	intercept	Calib. RF	Calil RSD R ²	w) 53	CV SD	Method Blanks	LCS	LCSD	LCS RPD	MS	MSD	MS RPD	Field Dup. RPD	Equip. Bianks	Field Blanks	
							>.05	<20% 0.99		0%											
;	BN	120-82-1	1,2,4-Trichlorobenzene	K	0.20		K	K	L	\leq	<u> </u>		NA		X		K	MA			
			1,2-Dichlorobenzene	\square	0.40											[[
			1,3-Dichlorobenzene	\downarrow	0.60			\downarrow	_				\square			ļ					
1			1,4-Dichlorobenzene	-1-1	0.50			+	_				<u> </u>	ļ	<u> </u>	V		ļ	ļ		
)			2,4,5-Tricklorophanol	\square	0.20			┢				X			V		V		_		
		the second se	2,4,6-Trichlorophenol	\square	0.20										62	60	K				
2		and the state of the state of	2,4-Dichiorophenoi	-1-1	0.20							ļ				}	ļ		<u> </u>	}	
2		·····	2,4-Dimethylphenol	\square	0.20							ļ	$ \rightarrow $			ļ	<u> </u>		Ц	ļ	
3	h		2,4-dinitrophenol		0.01		L.	ĻΥ	_			<u> </u>				<u> </u>			↓↓	<u> </u>	
3			2,4-Dinitrotoluene	-	0.20		┨	+					<u> </u>	¥				 	<u> </u>		
3		Ļ	2,6-Dinitrotoluene		0.20		┣┝-	++				<u> </u>	ļ			ļ	Į		<u> </u>	<u> </u>	
3			2-Chloromaphthalens	$+\!\!\!+\!\!\!\!+$	0.80		┨─┤─	╉┈╄				 	<u> </u>	<u> </u>			<u> </u>		<u>↓</u>	<u> </u>	
1		95-57-8	2-Chiorophenoi	┿	0.80	i 	┨	┿┽		-		<u>+ / _</u>	<u> </u>					<u> </u>	<u> </u>	<u>↓</u>	
<u>z</u>			2-Methylnapithalene	╶╫┥	0.40			╺╋╍╌┼╸				 	<u> </u>				<u> </u>	<u> </u>	<u>}</u> }	<u> </u>	<u> </u>
1		95-48-7	2-Methylphenol (o-cresol)	┥┥	0.70		-	╉┈┼		+		$+ \checkmark$		┼┼──	60	56			┼───┤	<u> </u>	<u> </u>
3		88-74-4	2-Nitroaniline	++	0.01		┢╌┼╌	╉╼╇		+	<u>├</u>	 	+	++-			<u> </u>	 	 	}	<u> </u>
-		88-75-5	2-Nitrophenol	╍┟┥	0.10	ļ	$\left \cdot \right $	+			┝──┼──	+	+	╋┈┼──		<u>+</u>			<u> </u>	/	
<u>ງ</u>		91-94-1	3,3'-Dichlorobenzidine	╍╂┥	0.01		┟─┼─੶	╉╍┼		+	┝╍╍┥╍╍	+		╀╌┼──		┨	<u> </u>		 	+	
3	+	99-09-2	3-Nitroaniline	+	0.01		┨──┤╾┉	╉╾┼	_	-	┝───┤──	+		┼╌┼╌	}	<u> </u>		<u> </u>	+	┼-∖	┝────
4		1	4,6-Dinitro-2-methylphenol	╺┼┤	0.01		╋╼┼╍╍	╉╼╌┼					+	┢╌┼╍			+		+	┼──┼───	<u> </u>
4			4-Bromophenyl-phenylether 4-Chlorophenyl-phenylether	╌╂┤	0.10	<u> </u>	+ +	++			┝	1	+	╉╍╌┠╌	<u> </u>		<u> </u>	<u> </u>	+	+	
				-++	0.40		╋╍╢	++				+		┼─┼╴	 	<u> </u>	<u> </u>	<u> </u>		╂	<u> </u>
2	A	59-50-7	4-Chloro-3-methylphenol	╍╂┥	-		┼╌┼╌	┥╌┤		+				╉╼╼┾╴		$\vdash \checkmark$	<u> </u>	<u> </u>	 -	┼┾	
2	BN	106-47-8	4-Chloroaniline	- 11	0.01) .	1 1	1 1	}			}	I I	1 1	1	1	L	1	1	1 \	1

B-20

R,

			<u> </u>								Batch										
rai	tory: _			Labora	tory R	cport #;				_	# of Sa	umples:				M	strix: _				
	BNA	CAS #	NAME	TC	Min. RF	Intercept	Calib. RF	Calib. RSD/ R ²	CCV %D	Method Blanks	LCS	LCSD	LCS RPD	MS	MSD	MS RPD	Field Dup.	Equip. Blanks	Field Blanks		
							>.05	<20%/ 0.99	20%]							RPD			• •	
ļ	BN	100-01-6	4-Nitrogailine		0.01	1	V	V	+28	V	1	NA			سانية الإيرابيية المر ا		NA	1		ļ	
1	٨	100-02-7	4-Nitrophenol		0.01	1			V		V		1	V	V	V		1			
I	BN	\$3-32-9	Acenaphthene		0.90	1					V			V	V	~			1		
,	BN	208-96-8	Acenaphihylene		0.90												T	1			Τ
I	BN	120-12-7	Anthracene		0.70									<u> </u>				T			
5	BN	56-55-3	Benzo(a)anthracene		0.80													<u>I</u>			T
5	BN	50-32-8	Benzo(a)pyrene		0.70			1V										1			
5	BN	205 -99 -2	Benzo(b)fluoranthese		0.70		[Λ			
5	BN	191-24-2	Benzo(g,h,i)perylene		0.50	V	\checkmark		+23									1			
5	BN	207-08-9	Benzo(k)fiuoraathene		0.70	1	Í				T										
2	BN	111-91-1	bin(2-Chloroethoxy)me	thane	0.30				1									\Box			Τ
i	BN	111-44-4	bis(2-Chloroethyl)ether	· 11	0.70	1		T											1		
1	BN	108-60-1	bis(2-chloroisopropyl)e	ther	0.01														T		
\$	BN	117-81-7	bis(2-Ethylhescyl)phtha	iste	0.01	V	V	V		89.03	<u> </u>					1					T
5	BN	85-68-7	Butylbenzylphthalate		0.01					V			A								T
4	BN	86-74-8	Carbazole		0.01																
5	BN	218-01-9	Chrysene		0.70	ŀ							Π							1	Τ
6	BN	53-70-3	Dibenz(a,h)anthracone		0.40		V	V													
3	BN	132-64-9	Dibenzofuran		0.80														X		T
3	BN	84-66-2	Diethylphthalate		0.01								Π						Λ		
3	BN	131-11-3	Dimethylphthalate		0.01														Γ		
4	BN	84-74-2	Di-o-butylphthalate		0.01								\Box					1	T		
6	BN	117-84-0	Di-o-octylphthelate		0,01		1	V											\Box		
4	BN	206-44-0	Fluoranthene		0.60														\Box		
3	BN	86-73-7	Fluorenc		0.90	1			1				TT			T			\top	1	
4	BN	118-74-1	Hexachiorobenzene		0.10	1					V	1	1	V	V	V			1	1	
2	BN	87-68-3	Hexachlorobutadiene		0.01	1					17	1	1*1	47	40	11/		1	\uparrow	1	1
3	+	77-47-4	Hexachiorocyclopentas	diene	0.01	1			-29.0			1				T			1	1	
5	<u> </u>	67-72-1	Hexachioroethage		0.30	1		1-1-	TV		1.7	1	¥	33	29	1.7	1	-	1	1	+

Semivolatile Organics

Page 2 of 3

Comments:

B-11

Semivolatile Organics

Page 3 of 3

te/Pro	oject:									E	latch #s									
aborat	ory:			Laborator	y Report #	•				#	of San	nples: _				Matrix				
BNA	CAS #	NAME	TCL	Min. RF	intercept	Calib. RF	Calib. RSD/ R ²	CCV %D	Method Blanks	LCS	LCS D	LCS RPD	MS	MSD	MS RPD	Field Dup.	Equip. Blanks	Field Blanks		
						>.05	<20%/ 0.99	20%					l _			NPD .				
BN	193-39-5	Indeno(1,2,3-od)pyrene	V	0.50	$\mathbf{\nabla}$	\checkmark	$\mathbf{\nabla}$	\checkmark			NA				1	NA				
BN	78-59-1	Isophorone	Π	0,40												[]				
BN	91-20-3	Naphthalene		0.70																
BN	98-95-3	Nitrobenzene		0.20						V		X	48	HH	V					
BN	86-30-6	N-Nitrosodiphenylamine (1)		0.01							. \						$\left \right\rangle$			
			\checkmark	0.50							, '	K	V	V	V		$\left[\right]$			
A	87-86-5	Pentachlorophenoi		0.05					1	V		\square	V	V	V					
BN	85-01-8	Phenanthrene		0.70				ŀ												
A	108-95-2	Phenol		0.80						V		\sum	V		~			$\left \right\rangle$		
BN	129-00-0	Ругеве	Π	0.60						\checkmark			V	V	V			\Box		
		Diptery lane																$\left - \right\rangle$		
	BNA BN BN BN BN BN BN BN A BN A	BNA CAS # BN 193-39-5 BN 78-59-1 BN 91-20-3 BN 92-03 BN 86-30-6 BN 621-64-7 A 87-86-5 BN 85-01-8 A 108-95-2	boratory: BNA CAS # NAME BN 193-39-5 Indeno(1,2,3-od)pyrene BN 78-59-1 Isophorone BN 91-20-3 Naphthalene BN 98-95-3 Nitrobenzene BN 86-30-6 N-Nitrosodiphenylamine BN 621-64-7 N-Nitrosodiphenylamine A 87-86-5 Pentachlorophenoi BN 85-01-8 Phenanthrene A 108-95-2 Phenol BN 129-00-0 Pyrene	BNA CAS # NAME TCL BN 193-39-5 Indeno(1,2,3-od)pyrene // BN 193-39-5 Indeno(1,2,3-od)pyrene // BN 78-59-1 Isophorone // BN 91-20-3 Naphthalene // BN 98-95-3 Nitrobenzene // BN 86-30-6 N-Nitrosodiphenylamine // BN 621-64-7 N-Nitroso-di-propylamine // A 87-86-5 Pentachlorophenoi // BN 85-01-8 Phenanthrene // A 108-95-2 Phenol // BN 129-00-0 Pyrene //	boratory: Laborator BNA CAS # NAME Tcl. Min. RF BN 193-39-5 Indeno(1,2,3-od)pyrene 0.50 BN 193-39-5 Indeno(1,2,3-od)pyrene 0.50 BN 78-59-1 Isophorone 0.40 BN 91-20-3 Naphthalene 0.70 BN 98-95-3 Nitrobenzene 0.20 BN 86-30-6 N-Nitrosodiphenylamize 0.01 BN 621-64-7 N-Nitroso-di-propylamine 0.50 A 87-86-5 Pentachiorophenoi 0.05 BN 85-01-8 Phenanthrene 0.70 A 108-95-2 Phenol 0.80 BN 129-00-0 Pyrene 0.60	boratory: Laboratory Report # BNA CAS # NAME Tcl. Min. RF Intercept BN 193-39-5 Indeno(1,2,3-od)pyrene 0.50 / / BN 193-39-5 Indeno(1,2,3-od)pyrene 0.50 / / BN 78-59-1 Isophorone 0.40 // / BN 91-20-3 Naphthalene 0.70 // // BN 98-95-3 Nitrobenzene 0.20 // // BN 86-30-6 N-Nitroso-di-propylamine 0.01 // // BN 621-64-7 N-Nitroso-di-propylamine 0.50 // // A 87-86-5 Pentachlarophenoi 0.05 // // BN 85-01-8 Phenanthrene 0.70 // // A 108-95-2 Phenol 0.80 // // BN 129-00-0 Pyrene // 0.60 //	boratory: Laboratory Report #: BNA CAS # NAME TcL Min. RF Intercept Callb. RF BN 193-39-5 Indeno(1,2,3-od)pyrene 0.50 ✓ >.05 BN 193-39-5 Indeno(1,2,3-od)pyrene 0.40 ✓ >.05 BN 78-59-1 Isophorone 0.40 ✓ ✓ BN 98-95-3 Nitrobenzene 0.70 ✓ ✓ BN 98-95-3 Nitrobenzene 0.01 ✓ ✓ BN 66-30-6 N-Nitroso-di-propylamine ✓ 0.50 ✓ ✓ BN 621-64-7 N-Nitroso-di-propylamine ✓ 0.50 ✓ ✓ A 87-86-5 Pentachlarophenoi 0.05 ✓ ✓ BN 85-01-8 Phenanthrene 0.70 ✓ ✓ A 108-95-2 Phenol 0.80 ✓ ✓ BN 129-00-0 Pyrene ✓ 0.60 ✓ ✓	boratory:	boratory:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	boratory: Laboratory Report #: # BNA CAS # NAME TCL Min. RF Intercept Calib. RSD/ RF RSD/ Provide RF RSD/ RSD/ RSD/ RSD/ RSD/ RSD/ RSD/ RSD/	boratory:	boratory: Laboratory Report #; # of Samples: BNA CAS # NAME TCL Min. RF Intercept Callb. RSD/ RF $RSD/$ $RSD/$ $RSD/$ Method Blanks LCS LCS D RPD BN 193-39-5 Indeno(1,2,3-od)pyrene \checkmark 0.50 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \land	Boratory:	boratory:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	boratory:	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Surrogate Recovery Outliers

Sample	SMC 1	SMC 2	SMC 3	SMC 4	SMC 5	SMC 6	SMC 7	SMC 8
IN CRITCR	14							
	•		· · ·					
SMC 1: Nitrobenzer	10-45 (BN)		SMC 2: 2-	Fluorobiphe	nyi (BN)	SM	C 3: p-Terp	henyl-d14 (

SMC 1: Nitrobenzene-d5 (BN) SMC 4: Phenol-d6 (A) SMC 7: 2-2-Chlorophenol-d4 (A)

SMC 5: 2-Fluorophenol (A) SMC 8: 1,2-Dichlorobenzeno-d4 (BN)

SMC 3: p-Terphenyl-d14 (BN) SMC 6: 2,4,6-Tribromophenol (A)

Internal Standard Outliers

Sample	IS 1-area	IS 1-RT	is 2-area	18 2-RT	is 3-area	IS 3-RT	IS 4-area	15 4-RT	is 5-area	18 5-RT	is 6-area	IS 6-RT
IN C	TER	2										
	+											
IS 1: 1,4-Dichlorol	enzeno-d4 ()	BN)	IS 2: Napht	balene-d8 (BN)	IS 3	: Acenaphti	ene-d10 (B	N)			

IS 4: Phenathrene-d10 (BN)

IS 5: Chrysene-d12 (BN)

الأسبر بديد المجد ديد

IS 6: Peryleno-d12 (BN)

< 75°% but > hab established % e for LCS. NO Q. Comments: 💥

B-22

Lapo Meth	Project: DJJ J ratory: <u>GFA</u> oda: <u>J</u> J	<u>.</u>	- 846	18083 8082	tory Report	#:	<u>067</u>	27						a .	······		
	lamples:					•				Batch	#s:	19	992	7/			
CAS	Name	T C	Intercept	Callb RSD/R ¹	CCV %D	Method Blanks	LCS		LCS RPD	MS	MSD	MS RPD	Fleid Dup. RPD	Equip. Bienks	Field Blanks		
<u></u>		F		<20%/0.99	20%	1			20%	[20%	100				
	-2 Aroclor-1016	11	NA			K_	<u> </u>	NA		ļ		ļ	NA	·			
the second s	-2 Aroclor-1221	\downarrow						₽		[<u></u>		+	
the second se	-5 Aroclor-1232	++		<u></u>	<u> </u>	V	÷	┢╍╲				╂		<u> </u>	- 		
	-9 Arcclor-1242 -6 Arcclor-1248	++	·····	V_				<u> </u>	<u> </u>				<u> </u>	<u> </u>			
	-0 Arocior-1248	┼┤					+	+	$\overline{}$			┼───			╄─────		
	-5 Aroclor-1260								$\overline{}$	1V	K	K					
		+		 								_					
Г	Sample			MC REG _{US}	SMC RI		San	nple			NC REC		SMC F	π Co	Millionári	66454	- 010 A.A
516	6454 -010		V	161%			·					-+		{		of over	Manee
"5" 6	DF = SX															llue to of over analyks	- 7 -
L]		Confirmat	iou					•					u dava ID ar	
ידין דיין			1	8#	RPD > 28			npie		-	A8 #		2PD > 2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00011

£

Det II Detus J Report Lignest

Reviewed By:

Alhal

Date: 10.28.02

High Explosives (SW 846 Method 8330)

Site/Proje	Site/Project: DJJ_SO// Sampling AR/COC #: 605666 Laboratory: GEL Laboratory Report #: 66 H 54										_ Lab	statory S	ample	IDs	:	645	4 - 6	<u>09 7</u>	hru -	016	· ····································
Laborator	v: CF1	Q	Laboratory	Repo	ort#:		66,	454													
Mail 1	JW-846 83	22~						·													·····
Methods:	560-046 00	30		·······														·····			
# of Sam	oles: <u>8</u> 1	Metri	ix: <u> </u>	<u> </u>							Bato	h#s:		99	930	5					
	, 1				rve -		CY	Met				LCS				M8	Maria	Equip.	Field		
CAS #	NAME		Intercept	F	1 ⁴		ίΩ .	Bia		LCS	LCSD		i m	8	MSD	RPD	Field. Dup.	Blanks	Sienks	1	1
		li		.5	19	20	0%	ι	J	1		20%				20%	RPD	U	U		l
2691-41-0	HMX	\mathbf{V}	NA	1	/	5	\mathcal{I}	. ,	/	V	NA			2	V	\mathbf{V}	NA		i i i		
121-82-4	RDX						Ċ										\mathbf{N}				
99-35-49	1,3,5-Trinitrobenzene										$\langle \rangle$					·	\sum				
99-65-0	1,3-dinitrobenzene	IT							[
98-95-3	Nitrobenzene																	\wedge			
479-45-8	Tetryl											M									
118-96-7	2,4,6-trinitrotoluene																				i
35572-78-2	2-amino-4,6-dinitrotoluene				1		ŀ								1	l i					
19406-51-0	4-amino-2,6-dinitrotoluene					-						\square									
121-14-2	2,4-dinitrotoiuene				·				1										\land		
606-20-2	2,6-dinitrotoluene																				[
88-72-2	2-nitrotoluene			\																	
99-99-0	4-nitrotoluene								1												
99-08-1	3-nitrotoluene								T												
78-11-5	PETN																				
				1																	
			I]]		{

P.17

Sample	SMC %REC	SMC RT	Sample	SMC %REC	SMC RT
W CRIT	ELIA				
				•	

Confirmation

		CONTRA THE		ويستبعث ليبون ويجرب فبالجريب وال	
Sample	CAS #	RPD > 25%	Sample	CAS#	RPD > 25%
NA					
	-				

Solids-to-aqueous conversion:

mg/kg = µg/g: {(µg/g) x (sample mass {g} / sample vol. (ml}) x (1000 ml/1 liter)] / Dilution Factor = µg/l Reviewed By:

Comments: MS/MSD 66610 Sort SOL

Allial

Date: 10.009.00

Inorganić Metals

# of Samples: 8 Matrix: 50//								<u>) _010</u>	<u>,</u>	<u> </u>	Batch	¥s: <u>∕9</u>	9386	(14	<u>r) </u>	1990	46 1	<u>mēras)</u>		
CAS#/				19							Elemei		Ø	,¥	Øц			ć		
Analyte	TAL	ICV	CCV	ІСВ	ССВ	Method Blanks	LCS	LCSD	LCSD RPD	MS	MSD	msd RPD	35% Rep. RPD	ICS AB	Serial Diu- /.Dtion	Field Dap. RPD	Equip. Bianks	Field Binaks		
29-90-5 AI								NO			NA					NA				
40-39-3 Ba	V	K			X	¥	V			K			N	V		1				
40-41-7 Bc								<u> </u>						ļ		<u> </u>		ļ		j
40-43-9 Cd		X	<u> </u>		×			↓	ļ	V			NA	-2-	NA	_	<u> </u>	<u> </u>	└──── ┥	
40-70-2 Ca						~		┟───┤──	 					<u> </u>	+-,-+		{	<u> </u>	┟┦	
40-47-3 Cr 40-48-4 Co	<u></u>	<u> </u>		<u> </u>	V			┟───┤──	<u> </u>	┝┸┈┤			68				h	<u> </u>	┝────┥	
40-50-8 Cu							<u> </u>	+	<u> </u>	<u>├</u>		<u> </u> -	t	<u> </u>	<u>†</u>		+\	<u> </u>	<u>├</u>	·
39-89-6 Fe				<u> </u>		·····	<u> </u>	┼	<u> </u>	<u> </u>			†		<u> </u>		<u> </u>	<u> </u>	<u>├</u> ───┤	l
39-95-4 Mg				1			1	1	t				1	[†		<u> - ∖</u>	t	1	
39-96-5 Mn								1				1	1							
40-02-0 Ni									Λ			Λ.								
40-09-7 K																				
40-22-4 Ag	N.	X		K		2 2	V.			A/A		<u>[]</u>		V	X					ļ
40-23-5 Na						·	ļ	ļ	↓-\			<u> </u>	ļ	ļ			\\	<u></u>	Ļ	
40-62-2 V				<u>}</u>			<u>}</u>]	\downarrow	ļ				ļ			ļ	A	<u> </u>	
40-66-6 Zn							 	<u></u>	+	╂────		<u> </u> \	<u> </u>				<u> </u>	↓	┟────┤	
139-92-1 Pb	-7	-12-					1		┼			├\	104			· · · · · · · · · · · · · · · · · · ·	<u> </u>	╆╋╋	┢┈┈╸┦	
782-49-2 Se	×7-	1		1.71	3.09				+				NA					<u>+</u> \	╆━━━━┥	
40-38-2 Ar	<u></u>			<u>1.2</u>			15		1	12			68	1-17	1241	NA		+	<u>}</u> ∤	
40-36-0 Sb		¥		┼╴╩──			<u> </u>	1	++				+-×	<u>├×-</u>	4		<u>†</u>			
40-28-0 TI			t	1			1	ļ	1				1	1	1		1		1	
															ŀ					
139-97-6 Hg	V.	Y		<u>F059</u>	.0722]		1.V		<u> </u>	TZ.			NR					<u> </u>		<u> </u>
yanide CN																				
					ļ	L		ļ	ļ	<u> </u>	[<u> </u>	Ļ				<u></u>	<u> </u>	
		ļ		_		<u> </u>	<u> </u>	<u> </u>		·		<u> </u>		<u> </u>	1				<u> </u>	Į
			<u> </u>	+	<u> </u>	<u> </u>		 	+	+	 		+	 	╉┯┯┯┯┥		<u> </u>	<u> </u>	┟────┘	
		DODA	1	1	L.,	L	. / 1	1	L		(m) / mm	1	1)) - (100	L	1	ting Fast-	/////////			
lotes: Shaded									(g) x (sam	THE THESE	(R) v sanut	де чог. (П	ua})x(100	N RU / [L	war)] / Uniti	THOIL L SCIOL	μg/1		1	
Commen	.ts: (00	60.	20																
	Å	4a	را مير	as i	66195	SML	504								V /1	1				
) AI C~) AI ~	1	\mathcal{I}	/ ·			•			ч		Revie	wed By	;	0	<u>riva</u>	<u>L</u>		r)ate: /0	-29.1
) AS C~	Рb	Lail	RPD	A11 7	SY P	L Den	Cr . T	" NO	05								/0Y	SOX 20		7 00 1

General Chemistry

atory: ids:	9 FL 360 - 8	34	6 9	Lai 20/2/4	xoratory 7/7	Report #: C/V }		145	x (x)							-			
amples:	8		N	Astrix: _	5	oils				B;	atch #s:		9940	8 (7 (N)		200	893 (0	n 6)
										_	QC E	lemen	nt						
CAS#	Annlyte	T A L	ICV	ĊĊV	ICB	ССВ	Method Blanks	LCS	LCSD	LCSD NPD	MS	MSD	MSD RPD	Rep. RPD	ICS AB	Serial Dilu- tica	Field Dup. RPD	Equip. Blanks	Field Blanks
	Total Cycrude		V	v	r	\checkmark	V	VV	MA		V	īVA		NA	NA				
	Ikraveler Chomiun	II	√	\checkmark	~	~	V	V			V			V			/		/
	}							↓											
	·																		
										ر									
									ļ										

Comments:

Reviewed By: Mal

<u>P-16</u>

Date: 10. 9.02

Radiochemistry

site/Project: DJJ JOIN Sampling ARVCOC#: 605666	Laboratory Sample IDs: 66454 - 009 thru - 016
Laboratory: <u>OFZ</u> Laboratory Report #: <u>66454</u>	
Methods: LT Jtd EPA 900.0	·
# of Samples: 8 Matrix: Solly	Batch #s: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

· ·]								QC Element					
Analyte	Method Blanks	LCS	MS	Rep RER	Equip. Blanks	Field Dup. RER	Field Blanks	Sample ID	Isotope	IS/Trace	Sample ID	Isotope	IS/Trace
Criteria	U	20%	25%	<1.0	U	<1.0	U			50-105			50-105
H3					NA			NA					
U-238					\square								
U-234													
U-235/-236													
Th-232													
Th-228													
Th-230					\ `								[
Pu-239/-240						Ν							
Gross Alpha 🗸	V		VX	1 v		\Box							
Nonvolatile Beta 🗸			VV										
Ra-226													
Ra-28 Ni-63							N						
Ni-63													
Gamma Spec. Am-241		1			·]
Gamma Spec. Cs-137			1			1						X	[
Gamma Spec. Co-60									•				-
		1	T										

Parameter	Method	Typical Tracer	Typical Carrier
Iso-U	Alpha spec.	U-232	NA
Iso-Pu	Alpha spec.	Pu-242	NA
lso-Th	Alpha spec.	Th-229	NA
Am-241	Alpha spec.	Am-242	NA
Sr-90	Beta	Y ingrowth	NA
Ni-63	Beta	NA	Ni by ICP
Rs-226	Deamination	NA	NA
Ra-226 Alpha spec.		Ba-133 or Ra-225	NA
Ra-228	Gamma spec.	Ba-133	NA

Gamma spec. LCS contains: Am-241, Cs-137, and Co-60

Comments: DUP MJ/MJD

510 66195

Allal

SNA SOG.

Reviewed By: _

Date: 10.29.02

B-16

ANNEX D DSS Site 1081 Soil-Vapor Monitoring Well 1081-VW-01 Analytical Results and Data Validation Report

September 19, 2003

STL LOT NUMBER: E3I150164 PO/CONTRACT: CF023-03

Pam Puissant SANDIA NATIONAL LABORATORIES 1515 Eubank St. SE Mail Stop 1042 Org 7578 Building T6 Room 8 Albuquerque, NM 87185-0154

Dear Ms. Puissant,

This report contains the analytical results for the 6 samples received under chain of custody by STL Los Angeles on September 12, 2003. These samples are associated with your DSS SOIL VAPOR WELL SAMPLING project.

STL Los Angeles certifies that the test results provided in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative. The case narrative is an integral part of the report. NELAP Certification Number for STL Los Angeles is E87652.

Any matrix related anomaly is footnoted within the report. Historical control limits for the LCS are used to define the estimate of uncertainty for a method. All applicable quality control procedures met method-specified acceptance criteria.

This report shall not be reproduced except in full, without the written approval of the laboratory.

This report contains 000149 pages.

If you have any questions, please feel free to call me at (714) 258-8610.

Sincerely,

Hans X Takinan

Marisol Tabirara Project Manager

cc: Project File

1

Internal Lab

CONTRACT LABORATORY

ANALYSIS REQUEST AND CHAIN OF CUSTODY

Page <u>1</u> of <u>(</u>

Batch No.	4				SMO Use							AR/COC	606	6758
Dept. No./Mail Stop:	6132/1089		Date Sampl	les Shipp	ed: 9/10/03		Project/	Task No.:	_7223.02.02.01	_		Waste Characterization	n	
	Mike Sanders		Carrier/Way	bill No.	26418		SMO A	uthorizatio	on: Other	1 54	no	-Send preliminary/copy	report to:	
Project Name:	DSS Soil Vapor Well		Lab Contac		Mark Loeb(800)333-	3305	Contrac	xt #:	20 21675					
Record Center Code:			Lab Destina	ation:	Severn Trent St.Lo	Jis		530	BOTTLE	enpor		Released by COC No.:		
Logbook Ref. No .:			SMO Contact	/Phone:	Pam Puissant(505)8	44-3185	1	100	n Curco	UTCD ON	•	Validation Required		
Service Order No.	CF023-03		Send Report	to SMO:	Wendy Palencia(505)844-313	2					Bill To:Sandia National Labs (A	ccounts Payabl	e)
Location	Tech Area 3	<u>.</u>										P.O. Box 5800 MS 0154	,	
Building	Room		1		Refere	nce LC	V(ava	ilable a	t SMO)			Albuquerque, NM 87185-	0154	
Sample NoFraction	ER Sample ID Sample Location		Pump Depth (ft)	ER Site No.	Date/Time(hr) Collected	Sample Matrix	Co Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Met Requested	hod	Lab Sample ID
063065-001	1081-VW-01-5-SV		5		9-9-03/1125	SG	sc	6L	none	G	SA	TO-14 summa#12184		
063066-001	1081-VW-01-20-SV	/	20		9-9-03/1130	SG	sc	6L	none	G	SA	TO-14 summa#93040		
063067-001	1081-VW-01-70-SV		70		9-9-03/1135	SG	sc	6L	none	G	SA	TO-14 summa#12631		1
063068-001	1081-VW-01-100-S		100		9-9-03/1140	SG	sc	6L	none	G	SA	TO-14 summa#93102		
○ 063069-001	1081-VW-01-150-S		150		9-9-03/1145	SG	sc	6L	none	G	SA	TO-14 summa#A-174		
© 063070-001	1081-VW-01-150-E		150	1	9-9-03/1150	SG	sc	6L	none	G		TO-14 summa#93124		
0	1001-04-01-100-2	<u></u>	1.50		3-3-03/1130		- 30		none			10-14 5000000000000		
03							1			1				
	Yes ⊻No							<u> </u>		<u> </u>	<u> </u>	· · · · ·		<u> </u>
RMMA			. No.		Sample Tracking		Smo U	se	Special Instructio			5	Abnorma	-
Sample Disposal Turnaround Tim	Return to Client	·····································	posal by lab	0 Day	Date Entered(mm/de Entered by:	1/ <u>yy)</u>	<u>. </u>		EDD 🗹	Yes 🗌) NO V Ye:	s 🗌 No	Condition Receipt	IS ON
Return Samples By:		T		Negotia	ited TAT	QC inits			*Send report to:			·····	1 '	
	Name	Sig	nature	Init	Company/Orga	nization/F	hone/Ce	ellular	Mike Sanders					
Sample	J Lee	1.11	O.L.	JDL	Weston Solutions 6				Dept.6132 Mail st	top 1089				Lab Use
Team		The		1		····· ·			505-284-2478					
Members	·····			1					Tim Jackson Mai	l stop 1087	,			
		1			1		******	<u></u>	505-284-2547	· · · · ·				
		1	· · · · ·	1	1				*Please list as se	oarate ren	ort.			
1.Relinquished by	71102		Org. Col 3	7 Date	9/10/07 Time 08	OT.	4.Relin	quished b			Org.	Date	Time	
1. Received by	THE J	Grus	Org. 613			705		eived by	<u> </u>		Org.	Date	Time	
2.Relinguished by	rate c	mo	Org. 615							Org.	Date	Time		
2. Received by	CH_1		Org. 3/7		-12-03 Time 10			eived by	<u>, , , , , , , , , , , , , , , , , , , </u>		Org.	Date	Time	
3.Relinguished by	7	- ···· ,···	Org.	Date	Time	<u> </u>	6.Relinquished by Org.				Date	Time)	
3. Received by			Org.	Date	Time		-	eived by			Org.	Date	Time	

Project Leader	Collins	Project Name	DSS-NFA	Case No.	7223_02.02.01
AR/COC No.	606758	Analytical Lab	GEL	5DG No.	E31150164

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information								
Line		Comp	lete?		Resolved?			
No,	Item		No	If no, explain	Yes	No		
1,1	All items on COC complete - data entry clerk initialed and dated	X		· · · · ·		1		
1.2	Container type(s) correct for analyses requested	X						
1.3	Sample volume adequate for # and types of analyses requested	X						
1.4	Preservative correct for analyses requested	X						
1.5	Custody records continuous and complete	X				T		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X						
1.7	Date samples received	X		· · ·				
1.8	Condition upon receipt information provided	X						

2.0 Analytical Laboratory Report

4

Line	Item		lete?		Res	olved?
No.			No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				[
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2,4	Matrix spike/matrix spike duplicate data provided (if requested)	X				
2.5	Detection limits provided; PQL and MDL (or IDL), MDA and Le	X				
2,6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X		· · ·		
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	X			1	1
2,11	TAT met	X				1
2,12	Hold times met	X	l			
2.13	Contractual qualifiers provided	X	ŀ		1	1
2.14	All requested result and TIC (if requested) data provided	X			1	<u> </u>

Contract Verification Review (Continued)

4

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2 Quantitation limit met for all samples	X		
 3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples 	×		
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	N/A		
c) Matrix spike recovery data reported and met	N/A		
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		·
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
 3.5 Blank data a) Method or reagent blank data reported and met for all samples 	×		i in fasti i fa
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A	1	
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analysis done beyond the holding time	×		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	N/A		

د.

4.0 Calibration and Validation Documentation

	Item	Yes .	No	Comments
4.1 GC/	/MS (8260, 8270, etc.)			
α)	12-hour tune check provided	×		
b)	Initial calibration provided	×		· ·
¢)	Continuing calibration provided	X		
d)	Internal standard performance data provided	x		
e)	Instrument run logs provided	×		
4.2 GC	/HPLC (8330 and 8010 and 8082)			
۵)	Initial calibration provided	N/A		
b)	Continuing calibration provided	N/A		
c)	Instrument run logs provided	N/A		
4.3 In	organics (metals)			
α)	Initial calibration provided	N/A		
b)	Continuing calibration provided	N/A		
c)	ICP interference check sample data provided	N/A		
d)	ICP serial dilution provided	N/A		
e)	Instrument run logs provided	N/A		
	diochemistry			
	Instrument run logs provided	N/A		

.

. -

Contract Verification Review (Concluded)

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions					
	· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·							
		· ·					
			·				
	· · · · · · · · · · · · · · · · · · ·						
			4				
	·						
Were deficiencies unresolved? Ye	s (No)						
	mplete. (Yes No						
If no, provide: nonconformance report or correction request number and date correction request was submitted							
Reviewed by:	Date: 09/25/03	_Closed by:Date:					

Internal Lab

Batch No.

Dept. No./Mail Stop:

Project/Task Manager:

Record Center Code:

Logbook Ref. No.:

Service Order No.

Sample No.-Fraction

063065-001

063066-001

063067-001

063068-001

063069-001

063070-001

RMMA

Location

Building

Project Name:

6132/1089

CF023-03

Room

Tech Area 3

TYes

⊡No

1081-VW-01-5-SV

1081-VW-01-20-SV

Mike Sanders

CONTRACT LABORATORY

ANALYSIS REQUEST AND CHAIN OF CUSTODY

Page 1 of 1 606758 AR/COC SMO Use Date Samples Shipped: 9/10/03 Project/Task No.:_7223.02.02.01 Waste Characterization Carrier/Waybill No. 26418 SMO Authorization: Of Lun 5 Miles -Send preliminary/copy report to: **DSS Soil Vapor Well Sampling** Contract #: **₽**0 21678 Lab Contact: Mark Loeb(800)333-3305 Released by COC No.: Lab Destination: Severn Trent St.Louis 500 BOTTLE ENDOR Validation Required SMO Contact/Phone: Pam Puissant(505)844-3185 Send Report to SMO: Wendy Palencia(505)844-3132 Bill To:Sandia National Labs (Accounts Payable) P.O. Box 5800 MS 0154 Reference LOV(available at SMO) Albuquerque, NM 87185-0154 ER Sample ID or ER Site Collection Sample Lab Sample Pump Date/Time(hr) Sample Container Preserv-Parameter & Method Sample Location Detail Depth (ft) No. Collected Matrix Volume Method Requested Type ative Type iD 5 6L G SA TO-14 summa#12184 . 9-9-03/1125 SG SC none 20 9-9-03/1130 SG SC 6L G SA TO-14 summa#93040 none 70 SC G SA 1081-VW-01-70-SV 9-9-03/1135 SG 6L TO-14 summa#12631 none 100 G 1081-VW-01-100-SV 9-9-03/1140 SG SC 6L SA TO-14 summa#93102 none G 1081-VW-01-150-SV 150 9-9-03/1145 SG SC 6L SA TO-14 summa#A-174 none 1081-VW-01-150-DU 150 9-9-03/1150 SG SC -6L G DU TO-14 summa#93124 none . . Ref. No. Sample Tracking Smo Use Special Instructions/QC Requirements Abnormal

				Conversion of Construction States and Construction Stat States and Construction States and Construc			dan annanna		
Sample Disposal	Return to Client	Disposal by lat)	Date Entered(mm/dd/yy)	29/ 11 los	EDD 🗹 Yes 🗌	No		Conditions on
Turnaround Tim	e 🗌 7 Day 🗄	🗹 15 Day 🗌		Entered by:	SACI	Level C Package	Yes	No	Receipt
Return Samples By:			Negotia	ted TAT QC init	ts. RK	*Send report to:			
	Name	Signature	Init	Company/Organization/	Phone/Cellular	Mike Sanders			
Sample	J Lee	Ulla Le	JDL	Weston Solutions 6134 (505	-284-3309)	Dept.6132 Mall stop 1089		1	Lab Use
Team		1 me				505-284-2478			
Members		1				Tim Jackson Mail stop 1087	7		
		1				505-284-2547			
						*Please list as separate rep	ort.		
1.Relinquished by	up Col-	- Org. (1)	7 Date	9/10/07 Time 0805	4.Relinquished b	ý	Org.	Date	Time
1. Received by	My Jon	Grus Org. 613	5 Date	1/10/03 Time 0805	4. Received by	· · · · · ·	Org.	Date	Time
2.Relinquished by	ZFF S	mas Org. 613	3 Date	9/10/03 Time (160	5.Relinguished b)y	Org.	Date	Tìme
2. Received by		Org.	Date	Time	5. Received by		Org.	Date	Time
3.Relinquished by		Org.	Date	Time	6.Relinquished t	ρ γ	Org.	Date	Time
3. Received by	· · · ·	Org.	Date	Time	6. Received by	· · · · · · · · · · · · · · · · · · ·	Org.	Date	Time

J Lee 505	204	-5509	11		05-044-	4013				· · ·			· · ·
SERIAL#	(DA/SU):	IRCAND.	idatie: Ifioirainii	iestied NAL VA			it DĀJ	D. VAG/	Arter s NGO @ S	amelling 400)			
9340B	9-4	-03	9.4.	03	26	9-	9-03			·	9-	10-1	03
04340 12341		• · · ·		• 	25		1			<u> </u>		/	<u> </u>
12341			ŀ	<u> </u>	25		1			·			
12607 A-331					22		1						. <u>.</u>
<u>A-331</u>					24	·	<u> </u>						
12943_		·			26		_	ļ					
93102					24			ļ				<u> </u>	
93124					26		1			·			
<u>A-174</u>			 		26 24 26 25		<u> </u>	ļ		. <u>.</u>			
12592	┝──┤		·		26				····	. <u> </u>			
93243	┝┣		·		25								
9118B	┝				25							<u> </u>	,
93227				<u></u>	25								
0060				<u> </u>	25		· ·	 					
12485		<u>-</u>			25			<u> </u>				{	
A-239	╞──┤	~			25			·		·			<u> </u>
12166					26 26 25 25								
12167	{				26			} .		·		{	
<u>CL ALAL</u>				·	40								.
GL0101			·	<u> </u>	120			 				-{	
60-A					25								
93276			·		26								
12261					25							· [
93108				· · ·	26							1-	···
04751					26				·····			1	
อเเา				<u> </u>	26				·	<u> </u>		1-	
A-277					26						-)	
02856					26		1	1				1	•
12184		·			26				·	····			
93040					25			1					
1263)					25								
0182					20								
9305BE	• ·				24								
13260-								1		<u>.</u>	_		
2620					24			L		·		1	
9339B	<u> </u>				18			<u> </u>				¥.	
·			·····				. <u> </u>						
	 							<u> </u>					
·								ļ					
											<u> </u>		
<u> </u>								<u> </u>					
· · · · · · · · · · · · · · · · · · ·								<u> </u>		- <u></u>	<u></u>		
<u>.</u>								 	······				
								<u> </u>			_	•	

.

ŝ

EXECUTIVE SUMMARY - Detection Highlights

E3I150164

PARAMET	<u>BR</u>	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
063065-001/108	1-VW-01-5-SV 09/09/03 1	1:25 001			
Dichlor	odifluoromethane	0.50 J	2.0	ppb(v/v)	EPA-21 TO-14A
Chlorom	ethane	1.4 J	4.0	ppb(v/v)	EPA-21 TO-14A
Chloroe	thane	2.0 J	4.0	ppb(v/v)	EPA-21 TO-14A
Carbon	disulfide	7.3 J	10	ppb(v/v)	EPA-21 TO-14A
Acetone		8.5 J	10	ppb(v/v)	EPA-21 TO-14A
Benzene		1.3 J	2.0	ppb(v/v)	EPA-21 TO-14A
Y Toluene		2.4	2.0	ppb(v/v)	EPA-21 TO-14A
063066-001/108	1-VW-01-20-SV 09/09/03	11:30 002			
Dichloro	odifluoromethane	0.51 J	2.0	ppb(v/v)	EPA-21 TO-14A
Toluene		0.89 J	2.0	ppb(v/v)	EPA-21 TO-14A
063067-001/108	1-VW-01-70-SV 09/09/03	11:35 003			
Dichlore	odifluoromethane	0.55 J	2.0	ppb(v/v)	EPA-21 TO-14A
Benzene		3.9	2.0	ppb(v/v)	EPA-21 TO-14A
Toluene		13	2.0	ppb(v/v)	EPA-21 TO-14A
Tetrach	loroethene	0.78 J	2.0	ppb(v/v)	EPA-21 TO-14A
063068-001/108	L-VW-01-100-SV 09/09/03	11:40 004			
Dichlor	difluoromethane	0.59 J	2.0	ppb(v/v)	EPA-21 TO-14A
Toluene		3.3	2.0	ppb(v/v)	EPA-21 TO-14A
Tetrach.	loroethene	0.89 J	2.0	ppb(v/v)	EPA-21 TO-14A
063069-001/108	L-VW-01-150-SV 09/09/03	11:45 005			
Dichloro	odifluoromethane	0.55 J	2.0	ppb(v/v)	EPA-21 TO-14A
Trichlo	coethene	1.1 J	2.0	ppb(v/v)	EPA-21 TO-14A
Toluene	•	3.1	2.0	ppb(v/v)	EPA-21 TO-14A
Tetrach	loroethene	1.0 J	2.0	ppb(v/v)	EPA-21 TO-14A
063070-001/1083	L-VW-01-150-DU 09/09/03	11:50 006	•		
	difluoromethane	0.60 J	2.0	ppb(v/v)	EPA-21 TO-14A
Trichlor	roethene	0.54 J	2.0	ppb(v/v)	EPA-21 TO-14A
Toluene		3.6	2.0		EPA-21 TO-14A
	oroethene	1.2 J	2.0		EPA-21 TO-14A
m-Xylene	e & p-Xylene	1.5 J	2.0		EPA-21 TO-14A
o-Xylene	2	0.66 J	2.0	ppb(v/v)	EPA-21 TO-14A

ANALYTICAL METHODS SUMMARY

E3I150164

PARAMETER	ANALYTICAL METHOD					
Volatile Organics by TO-14A	EPA-21 TO-14A					
References:						

EPA-21 "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air", Second Edition, EPA/625/R-96/010b, January 1999

SAMPLE SUMMARY

B3I150164

<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
F0C4T	001	063065-001/1081-VW-01-5-SV	09/09/03	11:25
F0C4W	002	063066-001/1081-VW-01-20-SV	09/09/03	11:30
F0C4X	003	063067-001/1081-VW-01-70-SV	09/09/03	11:35
F0C40	004	063068-001/1081-VW-01-100-SV	09/09/03	11:40
F0C41	005	063069-001/1081-VW-01-150-SV	09/09/03	11:45
F0C42	006	063070-001/1081-VW-01-150-DU	09/09/03	11:50

.

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.

- All calculations are performed before rounding to avoid round-off errors in calculated results.

- Results noted as "ND" were not detected at or above the stated limit.

- This report must not be reproduced, except in full, without the written approval of the laboratory.

- Results for the following parameters are never reported on a dry weight basis: color. corrosivity, density. flashpoint, ignitability, layers, odor,

paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: 063065-001/1081-VW-01-5-SV

GC/MS Volatiles

Lot-Sample #: E3I150164-001	Work Order #: F0C4T1AC	Matrix AIR
Date Sampled: 09/09/03	Date Received: 09/12/03	
Prep Date: 09/15/03	Analysis Date: 09/15/03	
Prep Batch #: 3261409	Analysis Time: 18:31	
Dilution Factor: 1		
Analyst ID: 117751	Instrument ID: MSA	

Instrument ID..: MSA Method.....: EPA-21 TO-14A

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	0.50 J	2.0	ppb(v/v)	0.50
Chloromethane	1.4 J	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane				
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	2.0 J	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	7.3 J	10	ppb(v/v)	2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	8.5 J	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	· ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	1.3 J	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	ND	2.0	ppb(v/v)	0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone (MIBK)	ND	10	ppb(v/v)	2.0
Toluene	2.4	2.0	ppb(v/v)	0.50
trans-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	ND	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ND	2.0	ppb(v/v)	0.50
- · · ·			~~	

(Continued on next page)

Client Sample ID: 063065-001/1081-VW-01-5-SV

GC/MS Volatiles

Lot-Sample #...: E3I150164-001 Work Order #...: F0C4T1AC

Matrix....: AIR

		REPORTIN	G	·
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chlorobenzene	ND	2.0	ppb(v/v)	0.50
Ethylbenzene	ND	2.0	ppb(v/v)	0.50
m-Xylene & p-Xylene	ND	2.0	ppb(v/v)	1.0
o-Xylene	ND	2.0	ppb(v/v)	0.60
Styrene	ND	2.0	ppb(v/v)	0.60
Bromoform	ND	2.0	ppb(v/v)	0.50
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0.50
Benzyl chloride	ND	10	ppb(v/v)	0.80
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70
1,4-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trichloro-	ND	5.0	ppb(v/v)	1.0
benzene				
Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0

NOTE(S):

J Estimated result. Result is less than RL.

Client Sample ID: 063066-001/1081-VW-01-20-SV

GC/MS Volatiles

Lot-Sample #: E3I150164-002	Work Order #: F0C4W1AC	Matrix AIR
Date Sampled: 09/09/03	Date Received: 09/12/03	
Prep Date: 09/15/03	Analysis Date: 09/15/03	
Prep Batch #: 3261409	Analysis Time: 19:17	
Dilution Factor: 1		
Analyst ID: 117751	Instrument ID: MSA	

Method.....: EPA-21 TO-14A

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	0.51 J	2.0	ppb(v/v)	0.50
Chloromethane	ND	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane				
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	ND	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	ND	10	ppb(v/v)	2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	ND	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	ND	2:0	ppb(v/v)	0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone (MIBK)	ND	10	ppb(v/v)	2.0
Toluene	0.89 J	2.0	ppb(v/v)	0.50
trans-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	ND	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ŃD	2.0	ppb(v/v)	0.50

(Continued on next page)

,

Client Sample ID: 063066-001/1081-VW-01-20-SV

GC/MS Volatiles

Lot-Sample #...: E31150164-002 Work Order #...: F0C4W1AC Matrix...... AIR

		REPORTIN	REPORTING	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chlorobenzene	ND	2.0	ppb(v/v)	0.50
Ethylbenzene	ND	2.0	ppb(v/v)	0.50
m-Xylene & p-Xylene	ND	2.0	ppb(v/v)	1.0 -
o-Xylene	ND	2.0	ppb(v/v)	0.60
Styrene	ND	2.0	ppb(v/v)	0.60
Bromoform	ND	2.0	ppb(v/v)	0.50
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0.50
Benzyl chloride	ND	10	ppb(v/v)	0.80
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70
1,4-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trichloro-	ND	5.0	ppb(v/v)	1.0
benzene				
Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0

NOTE (S) :

J Estimated result. Result is less than RL.

24

. •

.

Client Sample ID: 063067-001/1081-VW-01-70-SV

GC/MS Volatiles

Lot-Sample #:	E3I150164-003	Work Order #:	F0C4X1AC	Matrix: 2	AIR
Date Sampled:	09/09/03	Date Received:	09/12/03		
Prep Date:	09/15/03	Analysis Date:	09/15/03		
Prep Batch #:	3261409	Analysis Time:	19:53		
Dilution Factor:	1 .				
Analyst ID:	117751	Instrument ID:	MSA		

Instrument ID..: MSA Method.....: EPA-21 TO-14A

PARAMETER	RESULT	REPORTIN LIMIT	G UNITS	MDL
Dichlorodifluoromethane	0.55 J	2.0	$\frac{000000}{\text{ppb}(v/v)}$	0.50
Chloromethane	ND	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane			PP- () / / /	0.00
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	ND	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	ND	10	(v/v) dqq	2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	ND	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	3.9	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	ND	2.0	ppb(v/v)	.0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone (MIBK)	CIM	10	ppb(v/v)	2.0
Toluene	13	2.0	ppb(v/v)	0.50
trans-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	0.78 J	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ND	2.0	ppb(v/v)	0.50

(Continued on next page)

Client Sample ID: 063067-001/1081-VW-01-70-SV

GC/MS Volatiles

Lot-Sample #...: E3I150164-003 Work Order #...: F0C4X1AC

Matrix..... AIR

		REPORTIN	RTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Chlorobenzene	ND	2.0	ppb(v/v)	0.50	
Ethylbenzene	ND	2.0	ppb(v/v)	0.50	
m-Xylene, & p-Xylene	ND	2.0	ppb(v/v)	1.0	
o-Xylene	ND	2.0	ppb(v/v)	0.60	
Styrene	ND	2.0	ppb(v/v)	0.60	
Bromoform	ND	2.0	ppb(v/v)	0.50	
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0.50	
Benzyl chloride	ND	10	ppb(v/v)	0.80	
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70	
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80	
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80	
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70	
1,4-Dichlorobenzene	ND	2.0 .	ppb(v/v)	0.80	
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80	
1,2,4-Trichloro-	ND	5.0	ppb(v/v)	1.0	
benzene Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0	

NOTE (S):

J Estimated result. Result is less than RL.

Client Sample ID: 063068-001/1081-VW-01-100-SV

GC/MS Volatiles

Lot-Sample #: E3I150164-004	Work Order #: F0C401AC	Matrix AIR
Date Sampled: 09/09/03	Date Received 09/12/03	
Prep Date: 09/15/03	Analysis Date: 09/15/03	
Prep Batch #: 3261409	Analysis Time: 20:38	
Dilution Factor: 1		
Analyst ID: 117751	Instrument ID: MSA	

Method..... EPA-21 TO-14A

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	0.59 J	2.0	ppb(v/v)	0.50
Chloromethane	ND	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane				
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	ND	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	ND	10	ppb(v/v)	2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	ND	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	ND	2.0	ppb(v/v)	0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone (MIBK)	ND	10	ppb(v/v)	2.0
Toluene	3.3	2.0	ppb(v/v)	0.50
trans-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	0.89 J	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ND	2.0	ppb(v/v)	0.50

(Continued on next page)

Client Sample ID: 063068-001/1081-VW-01-100-SV

GC/MS Volatiles

Lot-Sample #...: E3I150164-004 Work Order #...: F0C401AC

Matrix....: AIR

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chlorobenzene	ND	2.0	ppb(v/v)	0.50
Ethylbenzene	ND	2.0	ppb(v/v)	0.50
m-Xylene & p-Xylene	ND	2.0	ppb(v/v)	1.0
o-Xylene	ND	2.0	ppb(v/v)	0.60
Styrene	ND	2.0	ppb(v/v)	0.60
Bromoform	ND	2.0	ppb(v/v)	0.50
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0,50
Benzyl chloride	ND	10	ppb(v/v)	0.80
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70
1,4-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trichloro-	ND	5.0	ppb(v/v)	1.0
benzene				
Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0

NOTE (S) :

J Estimated result. Result is less than RL.

Client Sample ID: 063069-001/1081-VW-01-150-SV

GC/MS Volatiles

Lot-Sample #: E3I150164-005	Work Order #: F0C411AC	Matrix AIR
Date Sampled: 09/09/03	Date Received: 09/12/03	
Prep Date: 09/15/03	Analysis Date: 09/15/03	
Prep Batch #: 3261409	Analysis Time: 21:18	-
Dilution Factor: 1		
Analyst ID: 117751	Instrument ID: MSA	

Method....: EPA-21 TO-14A

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	0.55 J	2.0	ppb(v/v)	0.50
Chloromethane	ND	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane				
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	ND	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	ND	10	ppb(v/v)	2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	ND	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	1.1 J	2.0	ppb(v/v)	0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone (MIBK)	ND	10	ppb(v/v)	2.0
Toluene	3.1	2.0	ppb(v/v)	0.50
trans-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	1.0 J	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ND	2.0	ppb(v/v)	0.50

(Continued on next page)

39

Client Sample ID: 063069-001/1081-VW-01-150-SV

GC/MS Volatiles

Lot-Sample #...: E3I150164-005 Work Order #...: F0C411AC

Matrix..... AIR

		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chlorobenzene	ND	2.0	ppb(v/v)	0.50
Ethylbenzene	ND	2.0	ppb(v/v)	0.50
m-Xylene & p-Xylene	ND	2.0	ppb(v/v)	1.0
o-Xylene	ND	2.0	ppb(v/v)	0.60
Styrene	ND	2.0	ppb(v/v)	0.60
Bromoform	ND	2.0	ppb(v/v)	0.50
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0.50
Benzyl chloride	ND	10	ppb(v/v)	0.80
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70
1,4-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trichloro-	ND	5.0	ppb(v/v)	1.0
benzene				
Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0

NOTE(S):

J Estimated result. Result is less than RL.

Ł

Client Sample ID: 063070-001/1081-VW-01-150-DU

GC/MS Volatiles

Lot-Sample #: E31150164-00	6 Work Order #: F0C421AC	Matrix AIR
Date Sampled: 09/09/03	Date Received: 09/12/03	
Prep Date: 09/15/03	Analysis Date: 09/15/03	
Prep Batch #: 3261409	Analysis Time: 22:02	
Dilution Factor: 1		
Analyst ID: 117751	Instrument ID: MSA	

Method..... EPA-21 TO-14A

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Dichlorodifluoromethane	0.60 J	2.0	ppb(v/v)	0.50
Chloromethane	ND	4.0	ppb(v/v)	1.0
1,2-Dichloro-	ND	2.0	ppb(v/v)	0.80
1,1,2,2-tetrafluoroethane				
Vinyl chloride	ND	2.0	ppb(v/v)	0.80
Bromomethane	ND	2.0	ppb(v/v)	1.0
Chloroethane	ND	4.0	ppb(v/v)	0.80
Trichlorofluoromethane	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethene	ND	2.0	ppb(v/v)	0.50
Carbon disulfide	ND	10	ppb(v/v)	.2.0
1,1,2-Trichloro-	ND	2.0	ppb(v/v)	0.50
1,2,2-trifluoroethane				
Acetone	ND	10	ppb(v/v)	2.0
Methylene chloride	ND	2.0	ppb(v/v)	0.80
trans-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.50
1,1-Dichloroethane	ND	2.0	ppb(v/v)	0.50
Vinyl acetate	ND	10	ppb(v/v)	2.0
cis-1,2-Dichloroethene	ND	2.0	ppb(v/v)	0.80
2-Butanone (MEK)	ND	10	ppb(v/v)	2.0
Chloroform	ND	2.0	ppb(v/v)	0.80
1,1,1-Trichloroethane	ND	2.0	ppb(v/v)	0.50
Carbon tetrachloride	ND	2.0	ppb(v/v)	0.50
Benzene	ND .	2.0	ppb(v/v)	0.80
1,2-Dichloroethane	ND	2.0	ppb(v/v)	0.80
Trichloroethene	0.54 J	2.0	ppb(v/v)	0.50
1,2-Dichloropropane	ND	2.0	ppb(v/v)	0.80
Bromodichloromethane	ND	2.0	ppb(v/v)	0.80
cis-1,3-Dichloropropene	ND	2.0	ppb(v/v)	0.50
4-Methyl-2-pentanone	ND	10	ppb(v/v)	2.0
(MIBK)				
Toluene	3.6	2.0	ppb (v/v)	0.50
trans-1,3-Dichloropropene	ND .	2.0	ppb(v/v)	0.80
1,1,2-Trichloroethane	ND	2.0	ppb(v/v)	0.60
Tetrachloroethene	1.2 J	2.0	ppb(v/v)	0.60
2-Hexanone	ND	10	ppb(v/v)	1.0
Dibromochloromethane	ND	2.0	ppb(v/v)	0.50
1,2-Dibromoethane (EDB)	ND	2.0	ppb(v/v)	0.50

(Continued on next page)

E3I150164

Client Sample ID: 063070-001/1081-VW-01-150-DU

GC/MS Volatiles

Lot-Sample #...: E3I150164-006 Work Order #...: F0C421AC Matrix...... AIR

		REPORTIN	G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Chlorobenzene	ND	2.0	ppb(v/v)	0.50
Ethylbenzene	ND	2.0	ppb(v/v)	0.50
m-Xylene & p-Xylene	1.5 J	2.0	ppb(v/v)	1.0
o-Xylene	0.66 J	2.0	ppb(v/v)	0.60
Styrene	ND	2.0	ppb(v/v)	0.60
Bromoform	ND	2.0	ppb(v/v)	0.50
1,1,2,2-Tetrachloroethane	ND	2.0	ppb(v/v)	0.50
Benzyl chloride	ND	10	ppb(v/v)	0.80
4-Ethyltoluene	ND	2.0	ppb(v/v)	0.70
1,3,5-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trimethylbenzene	ND	2.0	ppb(v/v)	0.80
1,3-Dichlorobenzene	ND	2.0	ppb(v/v)	0.70
1,4-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2-Dichlorobenzene	ND	2.0	ppb(v/v)	0.80
1,2,4-Trichloro- benzene	ND	5.0	ppb(v/v)	1.0
Hexachlorobutadiene	ND	4.0	ppb(v/v)	1.0

NOTE (S) :

J Estimated result. Result is less than RL.

The remaining portions of this report:

- QA/QC;
- 1081-VW-01 Extended Raw Data,

are available through the SNL/NM Environmental Safety & Health and Security Record Center

CONTRACT LABORATORY

ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab

1

Page 1 of 4

Batch No. NA	4				SMO Use							AR/COC	60	6758
Dept. No./Mail Stop:	6132/1089		Date Samp	les Shipp	ed: 9 10 03	and a start of the start	Project	Task No.	7223.02.02.01_			Waste Characterizati	on	
Project/Task Manager:	Mike Sanders		Carrier/Wa	ybili No.	26418		SMO A	uthorizatio	on: Ott	y GM	110	-Send preliminary/cop	y report to:	
Project Name:	DSS Soll Vapor Well	Sampling	Lab Contac	31 ,	Mark Loeb(800)333-	3305	Contrac	:t #:	PO 2167	5				
Record Center Code:			Lab Destin	ation:	Severn Trent St.Lo		<u> </u> .	500	BOTTO	prom	_	Released by COC No		
Logbook Ref. No.:			SMO Contac	VPhone:	Pam Puissant(505)8		j '	/00			-	Validation Required		
Service Order No.	CF023-03		Send Report	to SMO:	Wendy Palencia(50)	5)844-313	<u> </u>					Bill To:Sendia National Labs		ole)
Location	Tech Area 3											P.O. Box 5800 MS 01	54	
Building	Room	n 4-ni				ence LO			1. S.			Albuquerque, NM 8718		
Sample NoFraction	ER Sample I Sample Location	r	Pump Depth (ft)	ER Site No.	Date/Time(hr) Collected	Sample Matrix	Со Туре	nteiner Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Me Requested		Lab Sample ID
063065-001	1081-VW-01-5-SV		5		9-9-03/1125	SG	sç	6L.	none	G	SA	TO-14 summa#12184		
063066-001	1081-VW-01-20-S	V.	20		9-9-03/1130	SG	sc	6L	none	G	SA	TO-14 summa#93040		
063067-001	1081-VW-01-70-S	V	70		9-9-03/1135	SG	SC	6L	none	G	SA	TO-14 summa#12631	· · · · · · · · · · · · · · · · · · ·	
063068-001	1081-VW-01-100-	5V	100	<u>[</u>	9-9-03/1140	SG	SC	6L	поле	G	SA	TO-14 summa#93102		
063069-001	1081-VW-01-150-	sv	150	<u> </u>	9-9-03/1145	SG	SC	6L	none	G	SA	TO-14 summa#A-174		
063070-001	1081-VW-01-150-	DU	150		9-9-03/1150	SG	sc	6L.	none	G	DU	TO-14 summa#93124		
						<u>_</u>		ļ	<u></u>					
·							ļ							
		<u></u>		<u> </u>	<u> </u>		ļ	ļ	<u> </u>					
	1			<u> </u>			an all the first second			_L				
RMMA	Yes No		No.		Sample Tracking		Smo U		Special Instruct			8	Abnorma	
Sample Disposal	Return to Client		posal by lab		Date Entered (mm/d	di <u>yy) (7</u>	9111	<u> </u>	EDD 🗹		No	r=-1	Conditio	
Turnaround Tim	and the second state of th	✓ 15 Day		30 Day	Entered by:		JK		Level C Packag	the second s	🖸 Ye	s 🗌 No	Receipt	
Return Samples By		. 			sted TAT	QC Inits		<u>K</u>	*Send report to	1				
	Name	Sic	nature	Init	Company/Orga				Mike Sanders					n da ser da s Na ser da ser d
Sample	JLee	(4)e	Q. Lee	JDL	Weston Solutions 6	134 (505-2	284-3309	9)	Dept.6132 Mail	stop 1089				Lab Use
Team									505-284-2478					
Members				4				ي مروك في المتحديد ال	Tim Jackson M	ail stop 1087				
									505-284-2547 *Please list as a	separate.ren	ort.			
1.Relinquished by	711-24	and an	Org. CH	7 Date	9/10/07 Time 08	305	4.Relin	quished b		dad adara Andrawiji kata ata	Org.	Date	Tim	8
1. Received by	Story Share	Greet	Org.LIT		110/07 Time O			eived by	- T -iii		Org.	Date	Tim	
2.Relinquished by	of the Article Art	Mas	Org. 613		9/10/03 Time 17	10	and the second se	guished b	by .		Örg.	Date	Tim	6
2. Received by	C		Org.	Date	Time		the second s	elved by			Org.	Date	Tim	e
3.Relinquished by			Org.	Date	Time			quished b	ру		Org.	Date	Tìm	e
3. Received by			Org.	Date	Time		8. Rec	elved by			Org.	Date	Timi	8

Contract Verification Review (CVR)

Project Leader	Collins	Project Name	DSS-NFA	Case No.	7223_02.02.01
AR/COC No.	606758	Analytical Lab	<u>GEL</u>	SDG No.	E3I150164

In the tables below, mark any information that is missing or incorrect and give an explanation.

- Analysis Request and Chain of Custody Record and Log-In Information 1.0 Complete? Resolved? Line If no, explain Yes Yes No No No. Item All items on COC complete - data entry clerk initialed and dated X 1.1 X Container type(s) correct for analyses requested 1.2 X Sample volume adequate for # and types of analyses requested 1.3 X Preservative correct for analyses requested 1,4 X Custody records continuous and complete 1.5 X Lab sample number(s) provided and SNL sample number(s) cross referenced and 1.6 correct X Date samples received 1,7 X 1.8 Condition upon receipt information provided
 - 2.0 Analytical Laboratory Report

Line		Comp	lete?		Reso	plived?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2,4	Matrix spike/matrix spike duplicate data provided (if requested)	X				
2.5	Detection limits provided: PQL and MDL (or IDL), MDA and Le	X	{			
2,6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X		· · · ·		
2,8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	X				
2.11	TAT met	X				
2.12	Hold times met	X				
2.13	Contractual qualifiers provided	X				,
2,14	All requested result and TIC (if requested) data provided	X				

3.0 Data Quality Evaluation

1.1

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2 Quantitation limit met for all samples	X		
 3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples 	×		
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	N/A		
c) Matrix spike recovery data reported and met	N/A		
 3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples 	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
 3.5 Blank data a) Method or reagent blank data reported and met for all samples 	x		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analysis done beyond the holding time	×		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	N/A		

.

Contract Verification Review (Continued)

Item	Yes .	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	×		
b) Initial calibration provided	×		
c) Continuing colibration provided	×		
d) Internal standard performance data provided	×		· ·
e) Instrument run logs provided	×		
4,2 GC/HPLC (8330 and 8010 and 8082)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 Inorganics (metals)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) ICP interference check sample data provided	N/A		
d) ICP serial dilution provided	N/A		
e) Instrument run logs provided	N/A		
4.4 Radiochemistry			
a) Instrument run logs provided	N/A		

Ser. St.

Contract Verification Review (Concluded)

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Anatysis	Problems/Comments/Resolutions				
	· · · · · · · · · · · · · · · · · · ·					
-						
	· · · · · · · · · · · · · · · · · · ·					

Were deficiencies unresolved? Ye	IS NO					
Based on the review, this data package is complete. (Yes) No						
If no, provide: nonconformance report or co	If no, provide: nonconformance report or correction request number and date correction request was submitted					
· · · · ·		Closed by:Date:				

Site: DSS-NFA					Sample C: 606		ngs Sur		Data T							
	74-87-3 (chioromethane)															
		·		· · ·										·		
083065-001 / 1081-VW-01-5-SV	<u> </u>				<u> </u>			ļ					 		 	
		<u> </u>														
	ļ	ļ	ļ	}	ļ	ļ	ļ	 	ļ	ļ	ļ		ļ	ļ	<u> </u>	ļ
	<u> </u>					<u> </u>			<u> </u>	 					<u> </u>	
	<u> </u>	<u> </u>	{	{	[[{	{	{		[{		{	f	
	 	ļ			ļ		 	ļ	ļ	<u> </u>	ļ		ļ		ļ	
	<u> </u>				<u> </u>		} -		 	<u> </u>	<u> </u>		 		}	
<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>	ļ			<u> </u>	<u> </u>	j	
		[
· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	ļ		ļ	 		 	↓	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			 	<u> </u>	<u> </u>	╂	<u> </u>
		<u> </u>	<u> </u>	<u> </u>			<u> </u>	┼	<u> </u>	<u> </u>	 		 		<u>+</u>	<u> </u>
			<u> </u>				<u> </u>			<u> </u>					<u>†</u>	
	L											1				
Validated By: Kum Maran	but													Date: (09/26/03	3

,

i

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123 Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

- DATE: September 26, 2003
- TO: File
- FROM: Kevin Lambert
- SUBJECT: Organic Data Review and Validation SNL DSS-NFA, AR/COC No. 606758, SDG No. E31150164 (STCA), and Project/Task No. 7223.02.02.01

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with accepted procedures using method EPA21 TO-14A. All compounds were successfully analyzed. Problems were identified with the data package that result in the qualification of data.

 <u>TO-14A</u>: The calibration RF for chloromethane (0.089) was < the specified minimum RF (0.10). Sample results for E31150164-001 was detect and will be qualified "J." All other associated sample results were non-detect (ND) and as a result based on professional judgment no data will be qualified.

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

All samples were analyzed within the prescribed holding times.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the summary section and as follows.

The calibration RSD for benzyl chloride (29%) and bromoform (25%) were > 20% but \leq 40%. Associated sample results were ND and as a result based on professional judgment no data will be qualified.

<u>Blanks</u>

No target analytes were detected in the blanks.

Surrogates

Surrogate assessment is not required for this analysis.

Internal Standards

Internal standards data met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD is not required. The LCS/LCSD is used to assess accuracy and precision.

Laboratory Control Sample (LCS)

The LCS/LCSD met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported; no dilutions were required

Other QC

A field duplicate pair was submitted on the ARCOC. There are no "required " review criteria for field duplicate analyses comparability. No equipment blank (EB) or trip blank (TB) was submitted on the ARCOC.

No other specific issues were identified which affect data quality.

RECORDS CENTER CODE:

SMO ANALYTICAL DATA ROUTING FORM

PROJECT NAME:	DSS-NFA	PROJECT/TASK:	7223_02.02.01
SNL TASK LEADER:	Collins	ORG/MS/CF0#:	6133/1087/CF023-03
SMO PROJECT LEAD:	Palencia	SAMPLE SHIP DATE:	9/10/2003

ARCOC	LAB	LAB ID	PRELIM DATE	FINAL DATE	EDD	EDD ON Q	Cust CD	RC CD
606758	STCA	E3I150164	<u> </u>	9/24/2003	X	x		
		<u></u>			 			
		<u></u>					 	
<u></u>						┝╍╌┙	┣╡	
	<u> — </u>		~~ <u>~~~~~</u>				┝──┤	
			····			 	$\left - \right $	
·····			<u></u>		[]			

DATA PACKAGE TAT:	RUSH	X NORMAL
CORRECTIONS REQUESTED BY/DATE:		
PROBLEM #/DATE CORRECTION RECEIVED:		
CVR COMPLETED BY/DATE:	L.Henrie	09.25-03
FINAL TRANSMITTED TO/DATE:	M. Sundui	09.25.03
SENT TO VALIDATION BY/DATE:	J. Conn	09/25/03
REVISIONS REQUESTED/REVISIONS RECEIVED (DATE):		
VALIDATION COMPLETED BY/DATE:		
COPY TO WM BY/DATE:		
CD REQUESTED BY/DATE	TCOM	09/25/03
CD RECEIVED BY/DATE		
TO ERDMS OR RECORDS CENTER BY/DATE:		

COMMENTS:

		Data Validat	Soil GAS (Ain	
Site/Projec	#: <u>DSS-NFA</u>	Project/Task #: 7223,02.02.01	# of Samples: <u>6</u>	Matrix: 7223.02.02.01 KAL
AR/COC #	606758		Laboratory Sample IDs:	E31150164-001 to -006
Laboratory	STCA			
SDG #:	E3I150164			

QC Element	70-14	4 Orga				Inorg				
	voc	SVOC	Pesticide/ PCB	HPLC (HE)	ICP/AES	GFAA/ AA	CVAA (Hg)	CN	RAD	Other
1. Holding Times/Preservation										
2. Calibrations	J									
3. Method Blanks	~									
4. MS/MSD	NA				/	Λ				
5. Laboratory Control Samples	\checkmark				N t	#				
6. Replicates					\square					
7. Surrogates	NA					$\frac{1}{2}$				
8. Internal Standards	\checkmark					\sim				
9. TCL Compound Identification							λ			
10. ICP Interference Check Sample										
11. ICP Serial Dilution										
12. Carrier/Chemical Tracer Recoveries									1	
13. Other QC	NA]						

J = Estimated

Check (\checkmark) = Acceptable Shaded Cells = Not Applicable (also "NA")

NP

U = Not Detected

UJ = Networked, Estimated

R = Uble = Not Provided

Other:

Re

d By: Kivin A Lambert Date: 9-2 03

						1			v	'olat	tile (nics	(TO-	14)						Pas	
Site/Project:	DSS-NFA		AR/	/coc	#:	606	758					•	# of S	amples:	,	6		Matr	ix:	Air 01 to		-
	STCR	_				port #:		-14	- nu	14			Tabaa				527	150	11.11-1	of to	-006	
		2	_ Lao	orato	ry Re	рогт #:	<u> </u>	12	0/0	57									67 0	UT LO	-000	
Methods:	EPA 21 (TO-14)	<u>4</u> 2				$\overline{\mathbf{A}}$	\bigcirc						Batch	#s:		<u>26</u>	140	1				
					1 Mail	134 M	Callo. FSD/		Cyni			關觀			计算机		國際開					
	Name		Min. RE	Inter			RSDI		X 0	1.65	ihod ika	1.00		LCS RPD			MS	Field.	Equip. Blanks	Trip		
			RF				<20%/	r nestr	28,69119	- 8	ke		WARAN	RPD.			17 P.	RPD	Blanks	Blanks		
					推稳	>,05	0.99	1 3	20%		副制制											
74-87-3	Chloromethane	7	0.10	Ň	A	0.089		Í.	7		/				Ν							
74-83-9		\checkmark	0.10	1		1		1	Ł	1					\Box							
		把曲	0.10			di Bah	ine sin								HIPPLY						虹解酸器 用	Innanan
75-00-3	Chloroethane		0.01										1			L				\bot		
75-09-2		\checkmark	0.01						1			V				\square		CHIMASON AND INTO		a shari i tana dinakan filia ministra ti	AND NO RESUMPTION AND AND AND	e sura (ANEX has a science)
GRAN			0.01				HALL															
75-35-4	Li di		0.520																			
750943		R.	0.10														N					
67-66-3			0.20		HE			Hite H														的目前的
107-06-2	12 dealoroethane		010														HEREALS					
78-23-311		١Y.	0.01				相關人名蒂									的思想			的是多时间的演		和時間時間	
		M.	0.10																			
6.23 5		BRUDE	0.10		劉憲																	
78-87-5		DO HER I	001	相思語	Wala	DERIV ITE				Silwall					開始開始				的關鍵的		制建的增加的	
	cis-1,3-dichloropropene		0.20	i. Nistrace	n ann an a			1949-009 -	4 319 1459 14	2 (1971) 1970)		A REPORT		N STEPHENE AND	2011-000-00-00-00-00-00-00-00-00-00-00-00	-Reactions -	N-RAP (JS-0.0001-1	दर्श्वयदार स्वत्रम्य	e veneration arrest		Regelation of Bury Lessing services	1 7858212002010020
79.01-6		-	0.30					S D HA	HIR									TER DATE:				
79-00-5	1,1,2-trichloroethane		0.10	10161699546	i Henrice	Hadanska or Caro	1111111111111	38 (89.00)	। अक्षार स्थानन	6) (Higher 1, 1936)	1000230	Generation	1	a and the second second	anticenterit	ANS ADDRESS OF A	ATHICTORY	a partanas u	AT LOSS STREET	STATE BELLEVER BERGE	15255-2255-2512010) OF GRAND AND AND AND AND AND AND AND AND AND
100001	Bergere				调强感				FILTER										IIIIIIN			
and the second	trans-1,3-dichloropropene		0.10	<u> </u>	+	<u> </u>		+	<u> </u>	 		<u> </u>	<u> </u>	<u>}</u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u>├</u>	<u> </u>	<u> </u>	<u></u>
108-10-1	4-methyl-2-pentatione		0.10	100 P05330	11 (345)	Section of the sectio		4 189764		114151251444	NAL IN ISDAM	Astronomic	1.0000000000000000000000000000000000000	States - States	A CHEVE A CREAT	Tess carees	i Kennengender	ANTA MATANANA	ACCESSION OF STREET, ST	I VALENDER RECEPTIONS		199195-1940-00
127-18-4	Terrechtoroetoene				N SETU	THE REAL PROPERTY AND		明我能	ustiti									品品創作作				
79-34-5	1,1,2,2-tetrachloroethane		0.30	<u> </u>	+	H	1-5		<u> </u>	+		$+ \rightarrow$		4	f	{	 		ļ	+	f	
108-88-3	toluene(10xblk)		0.40	ane and a state of the	19 19 SOC		L	10 10 20 42	anto nastr	NAMES AND	ing mesaran	A STATERALING	Lange and the	I ISTREEMEN	11205114:120	TELETH	Net Barriston	C. AND STORE		CONTRACTOR DA READING		
102.90-7	Eihylbenzene		0.10		N BAR			<u>i i i i i i i i i i i i i i i i i i i </u>	明麗敏	回题编辑				和中国的法			目的影响是	和的出出				
100-41-4	Styrene		0.30	+		1.5	+	+	ŧ		+	+	<u> </u>	+	<u> </u>	<u> </u>	+	<u> </u>		┿]	+
107-03-01	Ailyr anoride	Ŀ	2.30				<u> </u>	1	<u> </u>	1			<u>t</u>	<u> </u>						<u>}</u>	<u>A</u>	
100-44-7	Benzyl chloride	7		+		1	29	+				<u> </u>	+	+		+				+	<u> </u>	+
106-93-4	1,2-dibromoethane	Ž		<u> </u>		1-5-		+-+				<u> </u>	ł	+		+	+	ŀ		+	+	+
95-50-1	1,2-dichlorobenzene	ľ		<u>†</u>	+	1-3-		+-+		+	-	+	<u>+</u>	1		+	+			+	<u>├≻</u>	<u></u>
541-73-1	1.3-dichlorobenzene	17		<u>†</u>	+	+ž-		+-1		1		┾	+	+	<u> </u>	<u>+</u>	+	 		+	<u>├</u> \	}
106-46-7	1.4-dichtorobenzene	\mathbf{V}	┝━┅╼╼╼╼╼	t	+	tř	1-2		 	+	+	†	+	+	<u> </u>	+	<u>+</u>			+	<u> </u>	₭
75-71-8	dichlorodifluoromethane	17	h	1	\checkmark		1-2-	$+\overline{}$	7	+	$\sqrt{-}$	t	<u> </u>	+	<u> </u>	<u> </u>	<u> </u>			+	<u> </u>	+
+		t d	<u> </u>	<u> </u>		†*	<u> </u>	+	.	+		†	†	1	t	t	<u> </u>			t	<u> </u>	$+ \cdot -$
	······································			1		<u> </u>		+		1		†	†	1	<u> </u>	+	†	<u>†</u>		†	t	+
	······································	†'	<u> </u>	1		<u> </u>	·	1-				†	<u> </u>	+	+	+	†	<u> </u>	<u> </u>	+	<u> </u>	+

() Calib RFL min RF for chloromethane, Sample ESIIS0164-001 was defecte and well be g All other sample tesulto were ND and will Not be qualified Reviewed By: Kwin A Lambert Date: 9-26-03

					2 . 1	- 10	,			0.90		(TO-	-						-	ge 2 of
boratory: _	وافرا مستجري والمرجوع ويستعلن والمستعل والمرجوع والمرجوع والمرجوع		_ Labo	oratory Re	eport #:						Labora	tory Sa	mple II)s:				·····		
ethods:												#s:			•					
					Inappunk	SCHER				服滑稽	使補約		area fi	的制度					HARA SHALL	TARTERN
	Name	T	Min.			RSDI	C 3					CS.			MS	Field	Equip.	Trip Bianks		的限制的
	Neme	Ŷ	I FRI	Desided					BIKS	nes Heis		5:20			RPD		Blanks	Blanks		
					>.05	0.99	20	6 🗄												
	1,2-dichloro-1,1,2,2-	1	114442404199		2	/		····	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		1014113333551			STERREY IN A D	19931020100100	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	Contract of the Contract of Contract		THE REPORT OF A STREET	lighted and deal with
1/0-14-2	tetrafluoroethane			NA			V		<u> </u>	į			Δ					<u>_</u>		ļ
and a statement of the second	cis-1,2-dichloroethene	V	[+ +		·									<u> </u>		
	trans-1,2-dichloroethene	-13	,							ļ		ļ						ļ	ļ	}
	hexachlorobutadiene	Ť		<u> </u>	│×		┝──╋											<u>}</u>		╂
75-15-0	carbon disulfide	ŤŽ								<u> </u>		}		<u> </u>			l			{
	trichlorofluoromethane	-13	<u> </u>				┼──┼	<u> </u>		<u> </u>	<u> </u>	ļ		$ \rightarrow $	}		}	<u>}</u>		
	1,2,4-trimethylbenzene	Ť			+ 5		┼──╆			<u> </u>	<u> </u>	<u>├</u>		·	k		↓	<u> </u>	<u> </u>	<u> </u>
	1.3.5-trimethylbenzene	ŤŽ			1-5		1-1		-+	1.	<u> </u>	<u> </u>							t	t
	1,1,2-trichloro-1,2,2-						††-			<u> </u>								1		
76-13-1	trifluoroethane	1			1	L				<u> </u>								<u> </u>		<u> </u>
136777-61- 2	m-, p-xylene	J			/											N	A			{
95-47-6	o-xylene	1					$\Box T$									N	VV.	1		
622-96-8	4-ethyltoluene	V																		
	vinyl acetate																Ν			
75-27-4	bromodichloromethane	1											L		L				L	
591-78-6	2-hexanone									_	ļ	Ļ	ļ	ļ	ļ			ļ	Ļ	<u> </u>
124-48-1	dibromoch loromethane	V		<u> </u>	\downarrow		$\frac{1}{1}$			ļ		ļ	<u> </u>	ļ	<u></u>	<u> </u>		<u> </u>	<u> </u>	
75-25-2	bromoform		<u> </u>			25	V			ļ	ļ	ļ	<u> </u>	ļ	ļ	j		ļ	<u> </u>	<u> </u>
64-17-5	ethanol					+				ļ	 	<u> </u>	h		 		<u>`</u>	\	+	<u> </u>
67-56-1	methanol		<u> </u>		<u> </u>		<u> </u>			╉┯┯┯	┢───-	<u> </u>	<u> </u>	 		<u> </u>		╄───		. <u> </u>
80-62-6	methyl methacrylate				÷		+				ļ					┨─────			<u> </u>	<u> </u>
107-02-8	acrolein			<u> </u>		<u> </u>	┼───	{			<u> </u>	{	<u> </u>	{	∤	<u> </u>	<u> </u>			
75-05-8	acetonitrile		+	<u> </u>		+	+		·	+	┼	<u> </u>	<u> </u>	<u> </u>	 	<u>+</u>	<u> </u>	┿	<u> </u>	+
67-63-0	isopropanol		+			+	+			+	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>├</u>	<u> </u>		┼	<u> </u>	+
107-13-1	acrylonitrile		+	<u> </u>	-+		+			+	<u>+</u>		t	<u> </u>	<u> </u>	<u> </u>	f	f	∖	+
and the second secon	1,4,-dioxane		1	<u> </u>	1	+	+			1	ţ	<u> </u>	†	<u> </u>	<u> </u>	<u>}</u>	<u>+</u>	<u> </u>	+	<u>+</u>
1		-	1		1	1	†	-+			<u> </u>	<u> </u>	t		<u> </u>	<u> </u>	<u> </u>	<u>† </u>	+	+
1			1	1	1	1	1			1	1	1	1	<u> </u>	1	t	<u> </u>	1	+-	t
			T				1			1	1	<u> </u>	<u> </u>	[1	1	1		t
						1]	J						<u> </u>	$\overline{\mathbf{N}}$
		_																		
<u> </u>			1																	[]
<u> </u>		_	KA	1	ļ	ļ					ļ	1	ļ			<u> </u>	<u> </u>			
1	<u> </u>	51	7		[1	1	1		1	1	Ĺ	f .	1.	f	1	1	[pounds. Gua	1

(TO 14) .

~ ~ ~ ~

Volatile Organics (TO-14)	Page 3 of 3
Site/Project: AR/COC #:606758	Batch #s:
Laboratory Report #:	# of Samples: Matrix:
	# of Samples: Matrix:

Surrogate Recovery and Internal Standard Outliers (TO-14)

Sample	SMC 1	SMC 2	SMC 3	IS 1 area	IS 1 RT	IS 2 area	IS 2 RT	IS 3 area	IS 3 RT
				x			1		
		NAA				ME)	* A	
		10.					Riter		

SMC 1: 4-Bromofluorobenzene IS 1: Bromochloromethane SMC 2: 1,2-Dichloroethane-d4 SMC 3: Toluene-d8

- IS 2: 1,4-Difluorobenzene
- IS 3: Chlorobenzene-d5

Comments:

ANNEX E DSS Site 1081 Risk Assessment

TABLE OF CONTENTS

I.	Site De	scription and History	E-1
II.	Data Q	uality Objectives	E-2
III.		ination of Nature, Rate, and Extent of Contamination	
	HI.1	Introduction	E-5
	111.2	Nature of Contamination	E-5
	111.3	Rate of Contaminant Migration	ĖE-5
	111.4	Extent of Contamination	E-6
IV.	Compa	rison of COCs to Background Levels	E-6
V.	Fate an	nd Transport	E-10
VI.	Human	Health Risk Assessment	E-11
	VI.1	Introduction	E-11
	VI.2	Step 1. Site Data	E-11
	VI.3	Step 2. Pathway Identification	E-12
	VI.4	Step 3. Background Screening Procedure	E-12
		VI.4.1 Methodology	
		VI.4.2 Results	E-15
	VI.5	Step 4. Identification of Toxicological Parameters	E-15
	VI.6	Step 5. Exposure Assessment and Risk Characterization	
		VI.6.1 Exposure Assessment	E-17
		VI.6.2 Risk Characterization	E-18
	VI.7	Step 6. Comparison of Risk Values to Numerical Guidelines	
	VI.8	Step 7. Uncertainty Discussion	E-20
	VI.9	Summary	E-22
VII.	Ecologi	cal Risk Assessment	E-23
	VII.1	Introduction	E-23
	VII.2	Scoping Assessment	E-23
		VII.2.1 Data Assessment	E-24
		VII.2.2 Bioaccumulation	E-24
		VII.2.3 Fate and Transport Potential	E-24
		VII.2.4 Scoping Risk-Management Decision	E-24
VIII.	Referer	nces	
Appe	endix 1		E-29

3/10/2005

.

This page intentionally left blank.

LIST OF TABLES

Table	Pag	е
1	Summary of Sampling Performed to Meet DQOs E-	-2
2	Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1081 E-	-3
3	Summary of Data Quality Requirements for DSS Site 1081 E-	-4
4	Nonradiological COCs for Human Health Risk Assessment at DSS Site 1081 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K _{ow} E-	-7
5	Radiological COCs for Human Health Risk Assessment at DSS Site 1081 with Comparison to the Associated SNL/NM Background Screening Value and BCFE-	.9
6	Summary of Fate and Transport at DSS Site 1081 E-1	1
7	Toxicological Parameter Values for DSS Site 1081 Nonradiological COCs E-1	6
8	Radiological Toxicological Parameter Values for DSS Site 1081 COCs Obtained from RESRAD Risk Coefficients	7
9	Risk Assessment Values for DSS Site 1081 Nonradiological COCs E-1	9
10	Risk Assessment Values for DSS Site 1081 Nonradiological Background Constituents E-1	9
11	Summation of Incremental Nonradiological and Radiological Risks from DSS Site 1081, Building 6650 Septic System Carcinogens	:3

LIST OF FIGURES

Figure		Page
1	Conceptual Site Model Flow Diagram for DSS Site 1081, Building 6650 Septic System	E-13

RISK ASSESSMENT FOR DSS SITE 1081

3/10/2005

This page intentionally left blank.

-

DSS SITE 1081: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1081, the Building 6650 Septic System at Sandia National Laboratories/New Mexico (SNL/NM), is located in Technical Area-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE). The abandoned system consisted of a two individual septic systems. Each system consisted of a septic tank connected to two seepage pits. Building 6650 was constructed in 1967 (SNL/NM March 2003), and it is assumed that the original (southern) system was also constructed at that time. Based upon construction details in engineering drawings (SNL/NM August 1980), it is assumed that the original system was augmented or replaced by the second (northern) system. By 1991, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system lines were disconnected and capped, and the systems were abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1081 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic systems at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations.

The ground surface in the vicinity of the site is flat or slopes slightly to the west. The closest major drainage lies south of the site and terminates in the playa just west of KAFB. No springs or perennial surface-water bodies are located within 2 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface is flat or slopes slightly to the west. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1081 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1081 lies at an average elevation of approximately 5,400 feet above mean sea level (SNL/NM April 2003). The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 480 feet below ground surface (bgs). Groundwater flow is thought to be to the west in this area (SNL/NM March 2002). The nearest groundwater monitoring well is MWL-BW1 located approximately 2,000 feet northwest of the site. The nearest production wells are northwest and northeast of the site and include KAFB-4 and KAFB-11, which are approximately 3.6 and 4.0 miles away, respectively.

II. Data Quality Objectives

The Data Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), identified the site-specific sample locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1081 was effluent discharged to the environment from the seepage pits at this site.

DSS Site 1081 Sampling Areas	Potential COC Source	Number of Sampling Locations	Sample Density (samples/acre)	Sampling Location Rationale
Soil beneath the septic system seepage pits	Effluent discharged to the environment from the seepage pits	4	NA	Evaluate potential COC releases to the environment from effluent discharged from the seepage pits

Table 1Summary of Sampling Performed to Meet DQOs

COC = Constituent of concern.

DQO = Data Quality Objective.

DSS = Drain and Septic Systems.

NA = Not applicable.

Using a Geoprobe[™], the soil samples were collected from 3- or 4-foot-long sampling intervals at four borehole locations at DSS Site 1081. Seepage pit sampling intervals started at 10 and 15 feet bgs in SP1, 12 and 17 feet bgs in SP2, 17 and 24 feet bgs in SP3, and 20 and 25 feet bgs in SP4. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

Table 2
Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1081

Sample Type	VOCs	SVOCs	PCBs	HE	RCRA Metals	Hexavalent Chromium	Cyanide	Gamma Spectroscopy Radionuclides	Gross Alpha/Beta
Confirmatory	8	8	8	8	8	8	8	8	8
Duplicates	0	0	0	0	0	0	0	0	0
EBs and TBs ^a	1	0	0	0	0	0	0	0	0
Total Samples	9	8	8	8	8	8	8	8	8
Analytical Laboratory	GEL	GEL	GEL	GEL	GEL	GEL	GEL	RPSD	GEL

^aTBs for VOCs only.

DSS

EΒ

Drain and Septic Systems.
Equipment blank.
General Engineering Laboratories, Inc. GEL

 GEL
 = General Engineering Laboratories, Inc.

 HE
 = High explosive(s).

 PCB
 = Polychlorinated biphenyl.

 QA/QC
 = Quality assurance/quality control.

 RCRA
 = Resource Conservation and Recovery Act.

 RPSD
 = Radiation Protection Sample Diagnostics Laboratory.

 SVOC
 = Semivolatile organic compound.

 TB
 = Trip blank.

 VOC
 = Velatile creatile compound.

VOC = Volatile organic compound. The soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), high explosive (HE) compounds, Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

Analytical Method ^a	Data Quality Level	GEL	RPSD
VOCs EPA Method 8260	Defensible	8	None
SVOCs EPA Method 8270	Defensible	8	None
PCBs EPA Method 8082	Defensible	8	None
HE Compounds EPA Method 8330	Defensible	8	None
RCRA Metals EPA Method 6000/7000	Defensible	8	None
Hexavalent Chromium EPA Method 7196A	Defensible	8	None
Total Cyanide EPA Method 9012A	Defensible	8	None
Gamma Spectroscopy Radionuclides EPA Method 901.1	Defensible	None	8
Gross Alpha/Beta Activity EPA Method 900.0	Defensible	8	None

Table 3
Summary of Data Quality Requirements for DSS Site 1081

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

^aEPA November 1986.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- QA/QC = Quality assurance/quality control.
- RCRA = Resource Conservation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

QA/QC samples were collected during the sampling effort according to the Environmental Restoration (ER) Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only). No significant QA/QC problems were identified in the QA/QC samples.

All of the soil sample results were verified/validated by SNL/NM according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data" Administrative Operating Procedure (AOP) 00-03" (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1081 request for a determination of Corrective Action Complete (CAC) without controls. The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The gamma spectroscopy results are presented in the CAC proposal. The reviews confirmed that the analytical data are defensible and therefore acceptable for use in the request for a determination of CAC without controls. Therefore, the DQOs have been fulfilled.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1081 is based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive and active soil-vapor sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual site model for DSS Site 1081, which is presented in Section 4.0 of the associated request for a determination of CAC without controls. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1081 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, PCBs, HE compounds, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and potential degradation products at DSS Site 1081.

III.3 Rate of Contaminant Migration

The septic systems at DSS Site 1081 were deactivated in 1991 when Building 6650 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the septic systems at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic systems was discontinued has been predominantly dependent upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this

RISK ASSESSMENT FOR DSS SITE 1081

characterize the rate of COC migration at DSS Site 1081.

III.4 Extent of Contamination

Subsurface soil samples were collected from boreholes drilled at four locations beneath the effluent release points and areas (seepage pits) at the site to assess whether releases of effluent from the septic systems caused any environmental contamination.

The soil samples were collected at sampling depths starting at 10 and 15 feet bgs in SP1, 12 and 17 feet bgs in SP2, 17 and 24 feet bgs in SP3, and 20 and 25 feet bgs in SP4 beneath the seepage pits. Sampling intervals started at the depths at which effluent discharged from the seepage pits would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS-type sites at SNL/NM. The soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1081 request for a determination of CAC without controls describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs evaluated in this risk assessment include all detected organic and all inorganic and radiological COCs for which samples were analyzed. When the detection limit of an organic compound is too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound is retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation uses only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 and 5.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs are evaluated. The nonradiological COCs included in this risk assessment consist of both inorganic and organic compounds.

Table 4 lists the nonradiological COCs and Table 5 lists the radiological COCs for the human health risk assessment at DSS Site 1081. All samples were collected from depths greater than 5 feet bgs; therefore, evaluation of ecological risk was not performed. Both tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4 discusses the results presented in Tables 4 and 5.

AL/3-05/WP/SNL05:rs5659.doc

3/10/2005

Table 4Nonradiological COCs for Human Health Risk Assessment at DSS Site 1081 withComparison to the Associated SNL/NM Background Screening Value, BCF, and Log K_{ow}

сос	Maximum Concentration (All Samples) (mg/kg)	SNL/NM Background Concentration (mg/kg) ^a	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	Log K _{ow} (for organic COCs)	Bioaccumulator? ^b (BCF>40, Log K _{ow} >4)
Inorganic						
Arsenic	8.54 J	4.4	No	44 ^c	-	Yes
Barium	112	214	Yes	170 ^d	-	Yes
Cadmium	0.757	0.9	Yes	64°	-	Yes
Chromium, total	16.7 J	15.9	No	16 ^c	-	No
Chromium VI	0.454	1	Yes	16°	-	No
Cyanide	0.115 J	NC .	Unknown	NC	-	Unknown
Lead	22.2 J	11.8	No	49 ^c		Yes
Mercury	0.126	<0.1	No	5,500 ^c		Yes
Selenium	0.66 J	<1	Yes	800 ^e	-	Yes
Silver	1,690	<1	No	0.5 ^c	-	No
Organic					· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••
2-Butanone	0.011	NA	NA	1 ^f	0.29 ^f	No
Di-n-octyl phthalate	0.21 J	NA	NA	9,334 ^g	5.22 ^g	Yes
bis(2-Ethylhexyl) phthalate	2.29	NA	NA	851 ^h	7.6 ^g	Yes
Methylene chloride	0.00143 J	NA	NA	5 ^f	1.25 ^f	No
PCBs, Total ⁱ	0.0875	NA	NA	31,200°	6.72 ^c	Yes

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

^aDinwiddie September 1997, Southwest Area Supergroup.

^bNMED March 1998.

°Yanicak March 1997.

^dNeumann 1976.

^eCallahan et al. 1979.

^fHoward 1990.

⁹Micromedex, Inc. 1998.

^hHoward 1989.

ⁱSum of Aroclor-1248, Aroclor-1254, and Aroclor-1260 in the sample with the highest PCB concentrations.

840857.03.01 03/10/05 2:35 PM

RISK ASSESSMENT FOR DSS SITE 1081

Table 4 (Concluded) Nonradiological COCs for Human Health Risk Assessment at DSS Site 1081 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K_{ow}

Ъ

_

BCF = Bioconcentration factor. COC = Constituent of concern.

- DSS = Drain and Septic Systems.
 - = Estimated concentration.
- K_{ow} = Octanol-water partition coefficient.
- Log = Logarithm (base 10).
- mg/kg = Milligram(s) per kilogram.
- NA = Not applicable.
- NC = Not calculated.
- NMED = New Mexico Environment Department.
- PCB = Polychlorinated biphenyl.
- SNL/NM = Sandia National Laboratories/New Mexico.
 - Information not available.

сос	Maximum Activity (All Samples) (pCi/g)ª	SNL/NM Background Activity (pCi/g) ^b	Is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	ls COC a Bioaccumulator?⁰ (BCF >40)
Cs-137	ND (0.0275)	0.079	Yes	3,000 ^d	Yes
Th-232	0.675	1.01	Yes	3,000 ^d	Yes
U-235	ND (0.209)	0.16	No	900 ^d	Yes
U-238	ND (0.652)	1.4	Yes	900 ^d	Yes

Note: Bold indicates COCs that exceed the background screening values and/or are bioaccumulators.

^aValue listed is the greater of either the maximum detection or the highest MDA.

^bDinwiddie September 1997, Southwest Area Supergroup.

^eNMED March 1998.

^dBaker and Soldat 1992.

- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- MDA = Minimum detectable activity.
- ND () = Not detected above the MDA, shown in parentheses.
- ND () = Not detected, but the MDA (shown in parentheses) exceeds background activity.
- NMED = New Mexico Environment Department.
- pCi/g = Picocurie(s) per gram.

SNL/NM = Sandia National Laboratories/New Mexico.

Щ-0

840857.03.01 03/10/05 2:35 PM

V. Fate and Transport

The primary releases of COCs at DSS Site 1081 were to the subsurface soil resulting from the discharge of effluents from the Building 6650 septic systems. Wind, water, and biota are natural mechanisms of COC transport from the primary release point; however, because the discharge was to subsurface soil, none of these mechanisms are considered to be of potential significance as transport mechanisms at this site. Because the seepage pits are no longer active, additional infiltration of water is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1081, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 480 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1081 include both inorganic and organic constituents. The inorganic COCs include both radiological and nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-life of the radiological COC (U-235), the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms are expected to result in significant losses or transformations of the inorganic COCs.

The organic COCs at DSS Site 1081 are limited to VOCs, SVOCs, and PCBs. Organic COCs may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of 2-butanone and methylene chloride through volatilization is expected to be minimal.

Table 6 summarizes the fate and transport processes that can occur at DSS Site 1081. The COCs at this site include both radiological and nonradiological inorganic analytes as well as organic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low, and loss through decay of the radiological COC is insignificant because of its long half-life.

Transport and Fate Mechanism	Existence at Site	Significance
Wind	Yes	Low
Surface runoff	Yes	Low
Migration to groundwater	No	None
Food chain uptake	Yes	Low
Transformation/degradation	Yes	Low to moderate

 Table 6

 Summary of Fate and Transport at DSS Site 1081

DSS = Drain and Septic Systems.

VI. Human Health Risk Assessment

VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

Step 1.	Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.
Step 2.	Potential pathways are identified by which a representative population might be exposed to the COCs.
Step 3.	The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.
Step 4.	Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.
Step 5.	Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and estimated incremental cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide.
Step 6.	These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED, and the DOE to determine whether further evaluation and potential site cleanup are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.
Step 7.	Uncertainties of the above steps are addressed.

VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1081. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1081 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust and volatiles. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated soil. No water pathways to the groundwater are considered. Depth to groundwater at DSS Site 1081 is approximately 480 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual site model flow diagram for DSS Site 1081.

Nonradiological Constituents	Radiological Constituents
Soil ingestion	Soil ingestion
Inhalation (dust and volatiles)	Inhalation (dust)
Dermal contact	Direct gamma

Pathway Identification

VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

VI.4.1 Methodology

Maximum concentrations of nonradiological COCs are compared to the approved SNL/NM maximum screening levels for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Section VI.6.2. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or that do not have either a quantifiable or calculated background screening level are considered further in risk assessment analyses.

For radiological COCs that exceed the SNL/NM background screening levels, background values are subtracted from the individual maximum radionuclide concentrations. Those that do not exceed these background levels are not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have a background value and are detected above the analytical minimum detectable activity (MDA) are carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

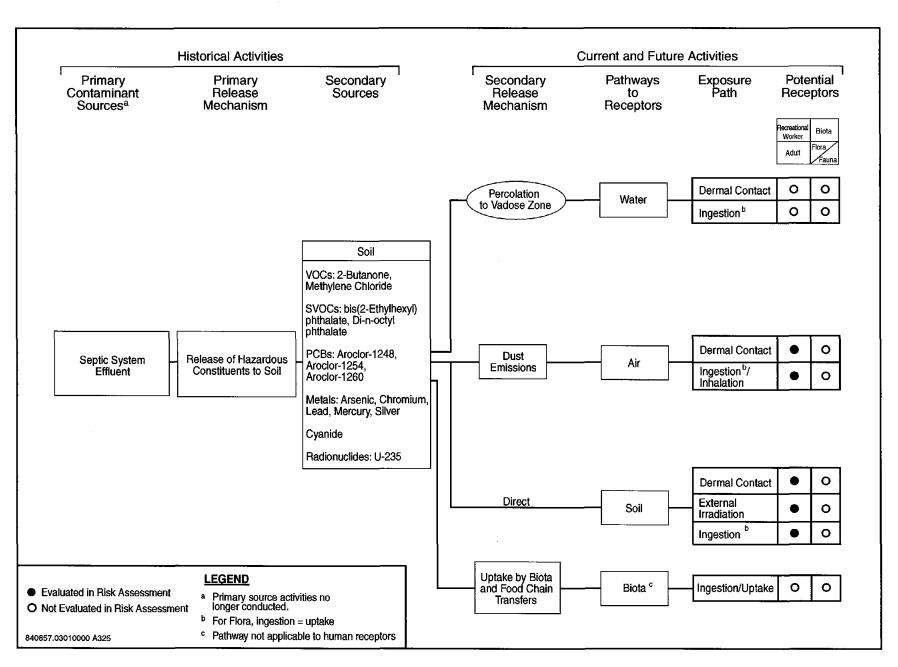


Figure 1 Conceptual Site Model Flow Diagram for DSS Site 1081, Building 6650 Septic System

E-13

RISK ASSESSMENT FOR DSS SITE 1081

VI.4.2 Results

Tables 4 and 5 show the DSS Site 1081 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, five constituents were measured at concentrations greater than the background screening values. One constituent does not have a quantified background screening concentration; therefore it is unknown whether this COC exceeds background. Five constituents are organic compounds that do not have corresponding background screening values.

The maximum concentration value for lead is 22.2 milligrams (mg)/kilogram (kg). The EPA intentionally does not provide any human health toxicological data on lead; therefore, no risk parameter values could be calculated. However, the NMED guidance for lead screening concentrations for construction and industrial land-use scenarios are 750 and 1,500 mg/kg, respectively (Olson and Moats March 2000). The EPA screening guidance value for a residential land-use scenario is 400 mg/kg (Laws July 1994). The maximum concentration value for lead at this site is less than all the screening values; therefore, lead is eliminated from further consideration in the human health risk assessment.

The maximum concentration value for total PCBs (the sum of Aroclor-1242, Aroclor-1254, and Aroclor-1260 in the sample with the highest PCB concentrations) is 0.0875 mg/kg. This concentration is less than the EPA screening level of 1 mg/kg (Title 40, Code of Federal Regulations, Part 761). Because the maximum concentration for PCBs at this site is less than the screening value, PCBs are eliminated from further consideration in the human health risk assessment.

For the radiological COCs, one constituent (U-235) exhibited an MDA greater than its background screening level.

VI.5 Step 4. Identification of Toxicological Parameters

Tables 7 (nonradiological) and 8 (radiological) list the COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 7 were obtained from the Integrated Risk Information System (IRIS) (EPA 2004a), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), the Technical Background Document for Development of Soil Screening Levels (NMED February 2004), and the EPA Region 6 (EPA 2004b) and Risk Assessment Information System (ORNL 2003) electronic databases. Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways were the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA 1988).
- DCFs for surface contamination (contamination on the surface of the site) were taken from DOE/EH-0070, "External Dose-Rate Conversion Factors for Calculation of Dose to the Public" (DOE 1988).

RISK
ASSE
ASSESSMEN
Ţ
OR D
OR DSS SITE 1
TE 1081
~

Table 7
Toxicological Parameter Values for DSS Site 1081 Nonradiological COCs

	RfDo		RfDinh		SF _o	SFinh		
200	(mg/kg-d)	Confidence ^a	(mg/kg-d)	Confidence ^a	(mg/kg-d) ⁻¹	(mg/kg-d) ⁻¹	Cancer Class ^b	ABS
Inorganic								
Arsenic	3E-4°	M		-	1.5E+0°	1.5E+1°	A	0.03 ^d
Chromium, total	1.5E+0 ^c	L	_	-	-	-	D	0.01 ^d
Cyanide	2E-2°	M	-	_	_	_	D	0.1 ^d
Mercury	3E-4 ^e	_	8.6E-5 ^c	M	_	-	D	0.01 ^d
Silver	5E-3 ^c	L			-	-	D	0.01 ^d
Organic		······································						
2-Butanone	6E-1°	L	2.9E-1°	L		_	D	0.1 ^d
Di-n-octyl phthalate	2E-2 ^e		2E-2 ^f		_	_	_	0.1 ^g
bis(2-Ethylhexyl)	2E-2 ^f	-	2E-2 ^f	_	1.4E-2 ^f	1.4E-2 ^f	_	0.01 ^g
phthalate								
Methylene chloride	6E-2°	M	8.6E-1 ^e		7.5E-3°	1.6E-3°	B2	0.1 ^d

E-16

^aConfidence associated with IRIS (EPA 2004a) database values. Confidence: L = low, M = medium.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2004a):

A = Human carcinogen.

B2 = Probable human carcinogen. Sufficient evidence in animals and inadequate or no evidence in humans.

D = Not classifiable as to human carcinogenicity.

^cToxicological parameter values from IRIS electronic database (EPA 2004a).

^dToxicological parameter values from NMED (February 2004).

^eToxicological parameter values from HEAST (EPA 1997a).

^fToxicological parameter values from EPA Region 6 (EPA 2004b).

⁹Toxicological parameter values from Risk Assessment Information System (ORNL 2003).

ABS	= Gastrointestinal absorption coefficient.	(mg/kg-d) ⁻¹	= Per milligram per kilogram-day.
COC	= Constituent of concern.	NMED	= New Mexico Environment Department.
DSS	= Drain and Septic Systems.	RfD _{inh}	= Inhalation chronic reference dose.
EPA	= U.S. Environmental Protection Agency.	RfD	= Oral chronic reference dose.
HEAST	= Health Effects Assessment Summary Tables.	SFinh	= Inhalation slope factor.
IRIS	= Integrated Risk Information System.	SF	= Oral slope factor.
mg/kg-d	= Milligram(s) per kilogram-day.	-	= Information not available.

	Table 8
Radiological	Toxicological Parameter Values for DSS Site 1081 COCs
	Obtained from RESRAD Risk Coefficients ^a

COC	SF _O (1/pCi)	SF _{inh} (1/pCi)	SF _{ev} (g/pCi-yr)	Cancer Class ^b
U-235	4.70E-11	1.30E-08	2.70E-07	A

^aYu et al. 1993a.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

1/pCi = One per picocurie.

COC= Constituent of concern.DSS= Drain and Septic Systems.EPA= U.S. Environmental Protection Agency.g/pCi-yr= Gram(s) per picocurie-year.SFev= External volume exposure slope factor.SFev= Level start and slope factor.

SF_{inh} = Inhalation slope factor.

 SF_o = Oral (ingestion) slope factor.

- DCFs for volume contamination (exposure to contamination deeper than the immediate surface of the site) were calculated using the methods discussed in "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil" (Kocher 1983) and in ANL/EAIS-8, "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil" (Yu et al. 1993b).
- VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for the industrial and residential land-use scenarios. The incremental TEDE and estimated incremental cancer risk are provided for the background-adjusted radiological COC for both the industrial and residential land-use scenarios.

VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways. The appendix shows parameters for both industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED February 2004), as well as other EPA and NMED guidance documents, and reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For the radiological COC, the coded equation provided in RESRAD computer code is used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a). Although the designated land-use scenario for this site is industrial, risk and TEDE values for a residential land-use scenario are also presented.

VI.6.2 Risk Characterization

Table 9 shows an HI of 0.39 for the DSS Site 1081 nonradiological COCs and an estimated excess cancer risk of 5E-6 for the designated industrial land-use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 10 shows an HI of 0.02 and an estimated excess cancer risk of 3E-6 for the DSS Site 1081 associated background constituents under the designated industrial land-use scenario.

For the radiological COC, contribution from the direct gamma exposure pathway is included. For the industrial land-use scenario, a TEDE was calculated that results in an incremental TEDE of 7.0E-3 millirem (mrem)/year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997b), an incremental TEDE of 15 mrem/yr is used for the probable land-use scenario (industrial in this case); the calculated dose value for DSS Site 1081 for the industrial land-use scenario is well below this guideline. The estimated excess cancer risk is 5.9E-8.

For the nonradiological COCs under the residential land-use scenario, the HI is 4.84 with an estimated excess cancer risk of 2E-5 (Table 9). The numbers in the table include exposure from soil ingestion, dermal contact, and dust and volatile inhalation. Although the EPA (1991) guidelines generally recommend that inhalation not be included in a residential land-use scenario, this pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 10 shows an HI of 0.20 and an estimated excess cancer risk of 1E-5 for the DSS Site 1081 associated background constituents under the residential land-use scenario.

For the radiological COC, the incremental TEDE for the residential land-use scenario is 1.8E-2 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1081 for the residential land-use scenario is well below this guideline. Consequently, DSS Site 1081 is eligible for unrestricted radiological release as the residential land-use scenario resulted in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 1.7E-7. The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 "Establishment of Cleanup Levels for CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] Sites with Radioactive Contamination" (EPA 1997b). This summation is tabulated in Section VI.9, Summary.

	Maximum	Industrial Land-Use Scenario ^a		Residential Land-Use Scenario ^a	
coc	Concentration (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Inorganic					
Arsenic	8.54 J	0.03	5E-6	0.39	2E-5
Chromium, total	16.7 J	0.00	_	0.00	
Cyanide	0.115 J	0.00	_	0.00	_
Mercury	0.126	0.00		0.01	_
Silver	1690	0.35	_	4.44	_
Organic					<u> </u>
2-Butanone	0.011	0.00		0.00	_
Di-n-octyl phthalate	0.21 J	0.00	_	0.00	
bis(2-Ethylhexyl) phthalate	2.29	0.00	1E-8	0.00	5E-8
Methylene chloride	0.00143 J	0.00	9E-9	0.00	2E-8
Total		0.39	5E-6	4.84	2E-5

 Table 9

 Risk Assessment Values for DSS Site 1081 Nonradiological COCs

^aEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

J = Estimated concentration.

mg/kg = Milligram(s) per kilogram.

= Information not available.

Table 10

Risk Assessment Values for DSS Site 1081 Nonradiological Background Constituents

	Background	Industrial Land-Use Scenario ^b		Residential Land-Use Scenario ^b	
coc	Concentration ^a (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Arsenic	4.4	0.02	3E-6	0.20	1E-5
Chromium, total	15.9	0.00		0.00	-
Cyanide	NC	-	_	-	_
Mercury	<0.1	_	_	-	_
Selenium	<1	_		-	_
Silver	<1	_	_	-	_
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
T	otal	0.02	3E-6	0.20	1E-5

^aDinwiddie September 1997, Southwest Area Supergroup.

^bEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

NC = Not calculated.

- = Information not available.

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluates the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.39 (less than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). The estimated excess cancer risk is 5E-6. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determines risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. Assuming the industrial land-use scenario, there is neither a quantifiable HI nor an excess cancer risk for nonradiological COCs. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background screening concentrations are assumed to have a hazard quotient of 0.00. The incremental HI is 0.37 and the estimated incremental excess cancer risk is 2.62E-6 for the industrial land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under an industrial land-use scenario.

For the radiological COCs under the industrial land-use scenario, the incremental TEDE is 7.0E-3 mrem/yr, which is significantly lower than EPA's numerical guideline of 15 mrem/yr (EPA 1997b). The estimated incremental excess cancer risk is 5.9E-8.

The calculated HI for the nonradiological COCs under the residential land-use scenario is 4.84, which is above numerical guidance. The estimated excess cancer risk is 2E-5. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is slightly above the suggested acceptable risk value. The incremental HI is 4.64 and the estimated incremental cancer risk is 1.07E-5 for the residential land-use scenario. These incremental risk calculations indicate risk to human health from nonradiological COCs under the residential land-use scenario.

The incremental TEDE for a residential land-use scenario from the radiological component is 1.8E-2 mrem/yr, which is significantly lower than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 1.7E-7.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1081 is based upon an initial conceptual model that was validated with sampling conducted at the site. The sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) and the DQOs contained in these two documents are appropriate for use in risk assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM

procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk assessment at DSS Site 1081.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Based upon the COCs found in the near-surface soil and the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach is used to calculate the risk assessment values. Specifically, the parameter values in the calculations are conservative and calculated intakes are probably overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 7 shows the uncertainties (confidence levels) in nonradiological toxicological parameter values. There is a combination of estimated values and values from the IRIS (EPA 2004a), HEAST (EPA 1997a), EPA Region 6 (EPA 2004b), Technical Background Document for Development of Soil Screening Levels (NMED February 2004), and the Risk Assessment Information System (ORNL 2003). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2004a), Technical Background Document for Development of Soil Screening Levels (NMED February 2004), Risk Assessment Information System (ORNL 2003), or EPA regions (EPA 2004b, EPA 2002a, EPA 2002b). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Although both the HI and estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario, maximum concentrations were used in the risk calculation. Because the site has been adequately characterized, average concentrations are more representative of actual site conditions. Using the mean concentrations for the main contributors to excess cancer risk and hazards, arsenic (3.6 mg/kg, which is below background and eliminates arsenic from further evaluation) and silver (319 mg/kg), reduces the total HI and estimated excess cancer risk to 0.85 and 7E-8, respectively. The incremental HI and excess cancer risk are reduced to 0.85 and 7.15E-8, respectively. Thus, by using realistic concentrations in the risk calculations that more accurately depict site conditions, both the total and incremental HI and estimated excess cancer risk are below NMED guidelines.

Risk assessment values for nonradiological COCs are within the acceptable range for human health under the industrial and residential land-use scenarios compared to established numerical guidance.

For the radiological COC, the conclusion of the risk assessment is that potential effects on human health for both the industrial and residential land-use scenarios are below background and represent only a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

AL/3-05/WP/SNL05:rs5659.doc

VI.9 Summary

DSS Site 1081 contains identified COCs consisting of some inorganic, organic, and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site include soil ingestion, dermal contact, and dust and volatile inhalation for chemical COCs, and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways are applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the industrial land-use scenario the HI (0.39) is lower than the accepted numerical guidance from the EPA. The estimated excess cancer risk is 5E-6; thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.37 and the estimated incremental excess cancer risk is 2.62E-6 for the industrial land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the residential land-use scenario the HI (4.84) is above the accepted numerical guidance from the EPA. The estimated excess cancer risk is 2E-5. Thus, excess cancer risk is slightly above the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 4.64 and the estimated incremental excess cancer risk is 1.07E-5 for the residential land-use scenario. The incremental risk calculations indicate risk to human health for the residential land-use scenario.

Although both the HI and estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario, maximum concentrations were used in the risk calculation. Because the site has been adequately characterized, average concentrations are more representative of actual site conditions. Using the mean concentrations for the main contributors to excess cancer risk and hazards, arsenic (3.6 mg/kg, which is below background and eliminates arsenic from further evaluation) and silver (319 mg/kg), reduces the total HI and estimated excess cancer risk to 0.85 and 7E-8, respectively. The incremental HI and excess cancer risk are reduced to 0.85 and 7.15E-8, respectively. Thus, by using realistic concentrations in the risk calculations that more accurately depict site conditions, both the total and incremental HI and estimated excess cancer risk are below NMED guidelines.

The incremental TEDE and corresponding estimated cancer risk from the radiological COC are much lower than EPA guidance values. The estimated TEDE is 7.0E-3 mrem/yr for the industrial land-use scenario, which is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997b). The corresponding estimated incremental cancer risk value is 5.9E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional control is 1.8E-2 mrem/yr with an associated risk of 1.7E-7. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1081 is eligible for unrestricted radiological release.

The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 (EPA 1997b). The summation of the nonradiological and radiological carcinogenic risks is tabulated in Table 11.

Table 11Summation of Incremental Nonradiological and Radiological Risks fromDSS Site 1081, Building 6650 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	2.62E-6	5.9E-8	2.7E-6
Residential	7.15E-8ª	1.7E-7	2.4E-7

^aIncremental risk when using average concentrations for the primary risk drivers. DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under the industrial and residential land-use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1081. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological risk assessment that corresponds with that presented in EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment if warranted by the results of the scoping assessment. Initial components of NMED's decision tree (a discussion of DQOs, data assessment, and evaluations of bioaccumulation as well as fate and transport potential) are addressed in previous sections of this report. At the end of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data with respect to the existence of complete ecological exposure pathways, an evaluation of bioaccumulation potential, and a summary of fate and transport potential. A scoping risk-management decision (Section VII.2.4) summarizes the scoping results and assesses the need for further examination of potential ecological impacts.

VII.2.1 Data Assessment

As indicated in Section IV, all COCs at DSS Site 1081 are at depths of 5 feet bgs or greater. Therefore, no complete ecological exposure pathways exist at this site, and no COCs are considered to be COPECs.

VII.2.2 Bioaccumulation

Because no COPECs are associated with this site, bioaccumulation potential was not evaluated.

VII.2.3 Fate and Transport Potential

The potential for the COCs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 6 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COCs at this site. Degradation, transformation, and decay of the radiological COC also are expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it is concluded that complete ecological pathways are not associated with COCs at this site. Therefore, no COPECs exist at the site, and a more detailed risk assessment was not deemed necessary to predict the potential level of ecological risk associated with the site.

VIII. References

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Howard, P.H., 1989. Volume I: "Large Production and Priority Pollutants," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc., Chelsea, Michigan.

Howard, P.H., 1990. Volume II: "Solvents," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc., Chelsea, Michigan.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Kocher, D.C. 1983. "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil," *Health Physics*, Vol. 28, pp. 193–205.

Laws, E. (U.S. Environmental Protection Agency), July 1994. Memorandum to Region Administrators I-X, "Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities," U.S. Environmental Protection Agency, Washington, D.C. July 14, 1994.

Micromedex, Inc., 1998, Hazardous Substances Databank.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," *NCRP Report* No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," *in* New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), February 2004. "Technical Background Document for Development of Soil Screening Levels, Revision 2," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

Oak Ridge National Laboratory (ORNL), 2003. "Risk Assessment Information System," electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Olson, K., and W. Moats (New Mexico Environment Department), March 2000. Memorandum to File, "Proposed ER Site 8 Cleanup Levels," Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

ORNL, see Oak Ridge National Laboratory.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), August 1980. SNL/NM Facilities Engineering Drawing 89453 showing the Building 6650 Septic System, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories/New Mexico.

U.S. Department of Energy (DOE), 1988. "External Dose-Rate Conversion Factors for Calculation of Dose to the Public," DOE/EH-0070, Assistant Secretary for Environment, Safety and Health, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1988. "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997a. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

AL/3-05/WP/SNL05:rs5659.doc

U.S. Environmental Protection Agency (EPA), 1997b. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 2002a. "Region 9 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.

U.S. Environmental Protection Agency (EPA), 2002b. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.

U.S. Environmental Protection Agency (EPA), 2004a. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 2004b. "Region 6 Preliminary Remediation Goals (PRGs) 2004," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.

Whicker, F.W., and V. Schultz, 1982. *Radioecology: Nuclear Energy and the Environment*, Volume II, CRC Press, Boca Raton, Florida.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

Yu, C., A.J. Zielen, J.-J. Cheng, Y.C. Yuan, L.G. Jones, D.J. LePoire, Y.Y. Wang, C.O. Loureiro, E. Gnanapragasam, E. Faillace, A. Wallo III, W.A. Williams, and H. Peterson, 1993a. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD," Version 5.0. Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois.

Yu, C., C. Loureiro, J.-J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace, 1993b. "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil," ANL/EAIS-8, Argonne National Laboratory, Argonne, Illinois.

APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous. radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- · Ingestion of contaminated soil

3/10/2005

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- · Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different landuse scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following five potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- · Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

Industrial	Recreational	Residential
Ingestion of contaminated drinking water	Ingestion of contaminated drinking water	Ingestion of contaminated drinking water
Ingestion of contaminated soil	Ingestion of contaminated soil	Ingestion of contaminated soil
Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)
Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only
External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces

Table 1 Exposure Pathways Considered for Various Land-Use Scenarios

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS Il projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

$$= C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
(1)

where;

C = contaminant concentration (site specific) CR = contact rate for the exposure pathway EFD= exposure frequency and duration BW = body weight of average exposure individual AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimated dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_{s} = \frac{C_{s} * IR * CF * EF * ED}{BW * AT}$$

- = Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)
- l₅ Č₅ = Chemical concentration in soil (mg/kg)
- IR^{n} = Ingestion rate (mg soil/day)
- CF = Conversion factor (1E-6 kg/mg)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_{s} = \frac{C_{s} * IR * EF * ED * \left(\frac{1}{VF} \text{ or } \frac{1}{PEF}\right)}{BW * AT}$$

where:

- = Intake of contaminant from soil inhalation (mg/kg-day)
- I Čs = Chemical concentration in soil (mg/kg)
- IR = Inhalation rate (cubic meters [m³]/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- VF = soil-to-air volatilization factor (m³/kg)
- PEF = particulate emission factor (m³/kg)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Soil Dermal Contact

$$D_{a} = \frac{C_{s} * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

- D_a = Absorbed dose (mg/kg-day)
 C_s = Chemical concentration in soil (mg/kg)
- CF = Conversion factor (1E-6 kg/mg)
- SA = Skin surface area available for contact (cm²/event)
- AF = Soil to skin adherence factor $(m\alpha/cm^2)$
- ABS= Absorption factor (unitless)
- EF = Exposure frequency (events/year)

3/10/2005

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{BW * AT}$$

where:

- $I_{w} = \text{Intake of contaminant non-water (mg/liter [L])}$ = Chemical concentration in water (mg/liter [L]) = Intake of contaminant from water ingestion (mg/kg/day)

- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from aroundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{BW * AT}$$

where:

- = Intake of volatile in water from inhalation (mg/kg/day)
- = Chemical concentration in water (mg/L)
- Κ = volatilization factor (0.5 L/m³)
- $IR_i = Inhalation rate (m³/day)$
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1x10-5 and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land-use scenarios for nonradiological and radiological COCs,

respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

.

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			
		8.7 (4 hr/wk for	
Exposure Frequency (day/yr)	250 ^{a,b}	52 wk/yr) ^{a,b}	350 ^{a,b}
Exposure Duration (yr)	25 ^{a,b,c}	30 ^{a,b,c}	30 ^{a,b,c}
	70 ^{a,b,c}	70 Adult ^{a,b,c}	70 Adult ^{a,b,c}
Body Weight (kg)		15 Child ^{a,b,c}	15 Child ^{a,b,c}
Averaging Time (days)			
for Carcinogenic Compounds (= 70 yr x 365 day/yr)	25,550 ^{a,b}	25,550 ^{a,b}	25,550 ^{a,b}
for Noncarcinogenic Compounds (= ED x 365 day/yr)	9,125 ^{a,b}	10,950 ^{a,b}	10,950 ^{a,b}
Soil Ingestion Pathway			
Ingestion Rate (mg/day)	100 ^{a,b}	200 Child ^{a,b}	200 Child ^{a,b}
2 . 2		100 Adult ^{a,b}	100 Adult ^{a,b}
Inhalation Pathway			
		15 Child ^a	10 Child ^a
Inhalation Rate (m³/day)	20 ^{a,b}	30 Adult ^a	20 Adult ^a
Volatilization Factor (m ³ /kg)	Chemical Specific	Chemical Specific	Chemical Specific
Particulate Emission Factor (m ³ /kg)	1.36E9ª	1.36E9ª	1.36E9ª
Water Ingestion Pathway			
	2.4ª	2.4ª	2.4ª
Ingestion Rate (liter/day)			
Dermal Pathway	· · · · · · · · · · · · · · · · · · ·		
_		0.2 Child ^a	0.2 Child ^a
Skin Adherence Factor (mg/cm ²)	0.2ª	0.07 Adult ^a	0.07 Adult ^a
Exposed Surface Area for Soil/Dust		2,800 Child ^a	2,800 Child ^a
(cm²/day)	3,300ª	5,700 Adult ^a	5,700 Adulta
Skin Adsorption Factor	Chemical Specific	Chemical Specific	Chemical Specific

Table 2 Default Nonradiological Exposure Parameter Values for Various Land-Use Scenarios

^aTechnical Background Document for Development of Soil Screening Levels (NMED December 2000). ^bRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

^cExposure Factors Handbook (EPA August 1997).

ED = Exposure duration.

- EPA = U.S. Environmental Protection Agency.
- = Hour(s). hr
- = Kilogram(s). kg
- = Meter(s). m
- mg = Milligram(s). NA = Not available.
- wk = Week(s).
- = Year(s). yr

Parameter	Industrial	Recreational	Residential
General Exposure Parameters	•		
	8 hr/day for		
Exposure Frequency	250 day/yr	4 hr/wk for 52 wk/yr	365 day/yr
Exposure Duration (yr)	25 ^{a,b}	30 ^{a,b}	30 ^{a,b}
Body Weight (kg)	70 Adult ^{a,b}	70 Adult ^{a,b}	70 Adult ^{a,b}
Soil Ingestion Pathway			
Ingestion Rate	100 mg/day ^c	100 mg/day ^c	100 mg/day ^c
Averaging Time (days) (= 30 yr x 365 day/yr)	10,950 ^d	10,950 ^d	10,950 ^d
Inhalation Pathway	1	. 1	· · ·
Inhalation Rate (m ³ /yr)	7,300 ^{d,e}	10,950 ^e	7,300 ^{d,e}
Mass Loading for Inhalation g/m ³	1.36 E-5 ^d	1.36 E-5 ^d	1.36 E-5 ^d
Food Ingestion Pathway			
Ingestion Rate, Leafy Vegetables		N14	40.50
(kg/yr)	NA	NA	16.5°
Ingestion Rate, Fruits, Non-Leafy Vegetables & Grain (kg/yr)	NA	NA	101.8 ^b
Fraction Ingested	NA	NA	0.25 ^{b,d}

 Table 3

 Default Radiological Exposure Parameter Values for Various Land-Use Scenarios

aRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

^bExposure Factors Handbook (EPA August 1997).

^cEPA Region VI guidance (EPA 1996).

^dFor radionuclides, RESRAD (ANL 1993).

eSNL/NM (February 1998).

EPA = U.S. Environmental Protection Agency.

- g = Gram(s)
- hr = Hour(s).
- kg = Kilogram(s).
- m = Meter(s).
- mg = Milligram(s).
- NA = Not applicable.
- wk = Week(s).
- yr = Year(s).

References

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

DOE and USAF, see U.S. Department of Energy and U.S. Air Force.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment," Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force. U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.

· · ·

RSI

.

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

APR 7 2005

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi,

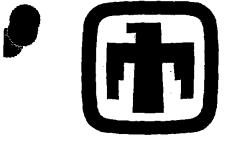
On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Quality Control (QC) Report, and copies of gamma spectroscopy analytical results for the entire Drain and Septic Systems (DSS) project, in response to the New Mexico Environment Department Request for Supplemental Information: Environmental Restoration Project SWMU Assessment Reports and Proposals for Corrective Action Complete: Drain and Septic Systems Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120, (DSS Round 6); September 2004, Environmental Restoration Project at Sandia National Laboratories, New Mexico, EPA ID No. NM589011518, dated January 14, 2005.

One hardcopy (consisting of seven volumes) will be delivered to Will Moats (NMED), and an electronic CD will be sent by certified mail to you and Laurie King (EPA).

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner Manager


Enclosure

Mr. J. Bearzi

APR 7 2005

cc w/ enclosure: W. Moats, NMED-HWB (via Certified Mail) L. King, EPA, Region 6 (Via Certified Mail) M. Gardipe, NNSA/SC/ERD J. Volkerding, DOE-NMED-OB

cc w/o enclosure: D. Pepe, NMED-OB J. Estrada, NNSA/SSO, MS 0184 F. Nimick, SNL, MS 1089 R. E. Fate, SNL, MS 1089 M. J. Davis, SNL, MS 1089 D. Stockham, SNL, MS 1087 B. Langkopf, SNL, MS 1087 P. Puissant, SNL, MS 1087 M. Sanders, SNL, MS 1087 A. Blumberg, SNL, MS 0141

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 1 of 7 Master Index

and

Field Duplicate Relative Percent Difference Tables

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories/New Mexico Drain and Septic Systems Project Quality Control Report April 2005

In response to the New Mexico Environmental Department (NMED) request for supplemental information dated January 14, 2005, the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) project is providing a complete set of laboratory analytical quality control (QC) documentation for approximately 1,200 soil and associated field blank and duplicate samples collected at the SNL/NM Drain and Septic System (DSS) sites from 1998 to 2002.

The documentation set is comprised of seven report binders. The first binder contains a master index sorted by DSS Site number, and then by analytical parameter. The master index also includes the site names, binder number in which the pertinent QC information can be found for any individual sample, Analytical Request/Chain of Custody (AR/COC) numbers, ER sample IDs, ER sample numbers, sample collection dates, sample matrix, analytical laboratory, and the laboratory analytical batch number for these DSS samples. The first binder also contains tables of calculated relative percent differences (RPDs) for primary and field duplicate sample pairs collected at the DSS sites from 1998 to 2002.

Binders 2 through 5 include the detailed QC information for General Engineering Laboratories (GEL). Binder 6 includes the same type of information for the ER Chemistry Laboratory (ERCL). Binders 2 through 6 include general narratives which address condition on receipt at the laboratory, and sample integrity issues (proper preservation, shipping, AR/COC, etc.). Technical narratives are also provided for each analytical method used. These narratives address holding time and any other specific QC method conformance issues. QC summaries are included for each QC batch. These include the result data and applicable calculations (percent recovery, RPD) for analytical blanks, spikes, and replicates. Finally, Binder 7 includes both complete gamma spectroscopy data documentation, and the associated batch QC from the SNL Radiation Protection Sample Diagnostic (RPSD) Laboratory. For each data set indicated by the AR/COC number, an individual cross reference summary sheet is provided.

DRAIN AND SEPTIC SYSTEMS PROJECT QC MASTER INDEX

Site #	Site Name	Binder #	COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1080	Bldg. 6644 SS	Volume 3	605654	6644/1080-DF1-BH2-10-S	059708-002	26-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1080	Bldg. 6644 SS	Volume 3	605654	6644/1080-DF1-BH2-5-S	059707-002	26-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1080	Bldg. 6644 SS	Volume 3	605654	6644/1080-DF1-BH3-6-S	059709-002	26-AUG-02	SOIL	RCRA METALS	GEL	197718, 197762
1080	Bldg. 6644 SS	Volume 3	605654	6644/1080-DF1-BH3-11-S	059710-002	26-AUG-02	SOIL	HE-8330	GEL	198044, 203606
1080	Bidg. 6644 SS	Volume 3	605654	6644/1080-DF1-BH3-11-S	059710-002	26-AUG-02	SOIL	RCRA METALS	GEL	199132, 199386
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	PCB-8082	GEL	199271
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	BNA-8270	GEL	199277
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	TOTAL-CN	IGEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	TOTAL-CN	GEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	TOTAL-CN	GEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	TOTAL-CN	GEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	TOTAL-CN	GEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	ISOIL	TOTAL-CN	IGEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	TOTAL-CN	GEL	199408
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	TOTAL-CN	IGEL	199408
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP-TB	059783-001	30-AUG-02	AQUEOUS	VOA-8260	GEL	199493
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059775-001	29-AUG-02	SOIL	VOA-8260	GEL	199914
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059776-001	29-AUG-02	SOIL	VOA-8260	GEL	199914
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059777-001	29-AUG-02	SOIL	VOA-6260	GEL	199914
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059778-001	29-AUG-02	SOIL	VOA-8260	GEL	199914
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-001	29-AUG-02	ISOIL	VOA-8260	IGEL	199914
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	and a second	The second secon	Construction and the construction of	a second construction and the second second second	and the second s	the property contract of the second
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-001	29-AUG-02	SOIL	VOA-8260	GEL	199914 199914
	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-001	30-AUG-02	SOIL	VOA-8260	IGEL	- Second and the second s
1081	Bidg. 6650 SS	ាន ខេត្តិ នេះ មានសមារមានសមារស្រាំពាក់ កើតមួយ ស្ត្រីប្រ		and a second	059782-001	30-AUG-02	SOIL	VOA-8260	GEL	199914
1081		Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	HE-8330	GEL	199935
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	HE-8330	IGEL	199935
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	HE-8330	GEL	199935
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	HE-8330	GEL	199935


.

Site #	Site Name	Binder #	COC#	ER Sample ID	Sample #	SAMPLE DATE	MATRIX	LAB TEST	Lab	BATCH #
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	HE-8330	GEL	199935
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	HE-8330	GEL	199935
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	HE-8330	GEL	199935
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL.	HE-8330	GEL	199935
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	GROSS-A/B	GEL	200142
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	Cr+6	GEL	200893
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP1-BH1-10-S	059775-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP1-BH1-15-S	059776-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP2-BH1-12-S	059777-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP2-BH1-17-S	059778-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP3-BH1-17-S	059779-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP3-BH1-24-S	059780-003	29-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP4-BH1-20-S	059781-003	30-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 7	605747	6650/1081-SP4-BH1-25-S	059782-003	30-AUG-02	SOIL	GAMMA SPEC	RPSD	201248
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-10-S	059776-002	29-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP1-BH1-15-S	059775-002	29-AUG-02	SOIL	RCRA METALS		199346, 199386
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-12-S	059778-002	29-AUG-02	SOIL	RCRA METALS		199346, 199386
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP2-BH1-17-S	059777-002	29-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-17-S	059779-002	29-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1081	Bidg. 6650 SS	Volume 4	605666	6650/1081-SP3-BH1-24-S	059780-002	29-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-20-S	059781-002	30-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1081	Bldg. 6650 SS	Volume 4	605666	6650/1081-SP4-BH1-25-S	059782-002	30-AUG-02	SOIL	RCRA METALS	GEL	199346, 199386
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH1-10-S	041078-002	23-JUN-98	SOIL	BNA-8270	GEL	125102
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH1-5-S	041077-002	23-JUN-98	SOIL	BNA-8270	GEL	125102
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH2-10-S	041252-002	23-JUN-98	SOIL	BNA-8270	GEL	125102
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH2-5-S	041079-002	23-JUN-98	SOIL	BNA-8270	GEL	125102
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH3-10-S	041254-002	23-JUN-98	SOIL	BNA-8270	GEL	125102
1082	Bldg. 6620 SS	Volume 2	600396	ER-1295-6620-DF1-BH3-5-S	041253-002	23-JUN-98	SOIL	BNA-8270	GEL	125102

NOTE: Multiple batch numbers are listed for reanalysis and RCRA metals for the ICP run and the mercury CVAA run.

.

4/11/2005

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 4 of 7

General Engineering Laboratories, Inc. (GEL) QC Data

Environmental Restoration Project

United States Department of Energy Sandia Site Office

COC 605666

,		1	1	· · ·	SAMPLE	1	1	
Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	DATE	MATRIX	LAB TEST	BATCH #
1081	Bldg. 6650 SS	059775	001	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	VOA-8260	199914
1081	Bidg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	BNA-8270	199277
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	HE-8330	199935
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	PCB-8082	199271
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	TOTAL-CN	199408
1081	Bldg. 6650 SS	059776	001	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	VOA-8260	199914
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	BNA-8270	199277
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	HE-8330	199935
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	PCB-8082	199271
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	TOTAL-CN	199408
1081	Bidg. 6650 SS	059777	001	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	VOA-8260	199914
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	BNA-8270	199277
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	HE-8330	199935
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	PCB-8082	199271
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	TOTAL-CN	199408
1081	Bldg. 6650 SS	059778	001	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	VOA-8260	199914
1081	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	BNA-8270	199277
1081	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	HE-8330	199935

COC 605666

Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	SAMPLE DATE	MATRIX	LAB TEST	BATCH #
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	HE-8330	199935
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	PCB-8082	199271
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	RCRA METALS	199346, 199386
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	TOTAL-CN	199408
1081	Bldg. 6650 SS	059783	001	6650/1081-SP-TB	30-AUG-02	AQUEOUS	VOA-8260	199493

Sandia National Laboratories Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 7 of 7 Radiation Protection & Sample Diagnostics (RPSD) Laboratory Data

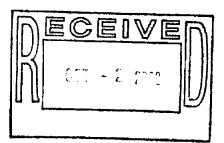
> Environmental Restoration Project

United States Department of Energy Sandia Site Office

RPSD QC CROSS REFERENCE

COC 605747 BATCH NO. 201248

Site #	Site Name	SAMPLE#	F#	ER SAMPLE ID	SAMPLE DATE	MATRIX	LAB TEST
1081	Bidg, 6650 SS	059775	003	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059776	003	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059777	003	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059778	003	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059779	003	6650/1081-SP3-BH1-17-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059780	003	6650/1081-SP3-BH1-24-S	29-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059781	003	6650/1081-SP4-BH1-20-S	30-AUG-02	SOIL	GAMMA SPEC
1081	Bldg. 6650 SS	059782	003	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	GAMMA SPEC
1083	Bldg. 6570 SS	059784	003	6570/1083-DW1-BH1-9-S	03-SEP-02	SOIL	GAMMA SPEC
1083	Bidg. 6570 SS	059785	003	6570/1083-DW1-BH1-14-S	03-SEP-02	SOIL	GAMMA SPEC
1031	Bldg. 6589/660 SS	059788	003	6589-6600/1031-SP1-BH1-15-S	05-SEP-02	SOIL	GAMMA SPEC
1031	Bldg. 6589/660 SS	059789	003	6589-6600/1031-SP1-BH1-20-S	05-SEP-02	SOIL	GAMMA SPEC
1031	Bldg. 6589/660 SS	059790	003	6589-6600/1031-SP2-BH1-10-S	05-SEP-02	SOIL	GAMMA SPEC
1031	Bldg. 6589/660 SS	059791	003	6589-6600/1031-SP2-BH1-15-S	05-SEP-02	SOIL	GAMMA SPEC
1086	Bldg. 6523 SS	059793	003	6523/1086-SP1-BH1-10-S	06-SEP-02	SOIL	GAMMA SPEC
1086	Bldg. 6523 SS	059794	003	6523/1086-SP1-BH1-15-S	06-SEP-02	SOIL	GAMMA SPEC
1102	F. Bldg 889 SS	059795	003	889/1102-SP1-BH1-25-S	06-SEP-02		GAMMA SPEC
1102	F. Bidg 889 SS	059796	003	889/1102-SP1-BH1-30-S	06-SEP-02		GAMMA SPEC
1083	Bldg. 6570 SS	059858	001	6570/1083-DW1-BH1-9-DU			GAMMA SPEC


COC# 605666

*

RECORDS CENTER/ ORIGINAL COPY

CASE NARRATIVE for Sandia National Laboratories ARCOC-605666 SDG#66454 Case No. 7223.02.03.02

October 1, 2002

Laboratory Identification:

General Engineering Laboratories, Inc.

Mailing Address:

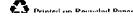
P.O. Box 30712 Charleston, South Carolina 29417

Express Mail Delivery and Shipping Address:

2040 Savage Road Charleston, South Carolina 29407

Telephone Number:

(843) 556-8171


Summary:

Sample receipt

Sandia collected sixteen soil samples and one aqueous sample on August 29th and 30th, 2002. The samples arrived at General Engineering Laboratories, Inc., (GEL) Charleston, South Carolina on September 4th, 2002, for environmental analyses. Cooler clearance (screening, temperature check, etc.) was done upon login. The coolers arrived without any visible signs of tampering and with custody seals intact. The samples were delivered with chain of custody documentation and signatures. The temperature of the samples was 2.4°C, as measured from the temperature control bottles.

The samples were screened according to GEL Standard Operating Procedures (SOP) EPI SOP S-007 rev. 2 "The Receiving of Radioactive Samples." The samples were stored properly according to SW-846 procedures and GEL SOP.

GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

The laboratory received the following samples:

Laboratory ID	Description
66454001	059775-001
66454002	059776-001
66454003	059777-001
66454004	059778-001
66454005	059779-001
66454006	059780-001
66454007	059781-001
66454008	059782-001
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
66456001	059783-001

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Internal Chain of Custody:

Custody was maintained for the samples.


Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Qualifier Flag and Data Package Definitions, Laboratory Certifications, Volatiles Data, Volatiles QC Summary, Semivolatiles Data, Semivolatiles QC Summary, PCB Data, PCB QC Summary, Explosives Data, Explosives QC Summary, Metals Data, Metals QC Summary, General Chemistry Data, General Chemistry QC Summary, Radiochemistry Data, Radiochemistry QC Summary, and Level C Data Package.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Edith M. Kent Pdike W?

Project Manager / GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG # 66454

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8260A
Prep Method:	SW846 5030A
Analytical Batch Number:	199914
Prep Batch Number:	199910

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

75-001
76–001
77-001
78-001
79-0 01
30-001
31-001
32001
KOI (Blank)
K01LCS (Laboratory Control Sample)
KO2 (Blank)

SDG#66454 -- VOA

Page 1 of 4

 1200296540
 VBLK02LCS (Laboratory Control Sample)

 1200296535
 059775–001MS (Matrix Spike)

 1200296538
 059775–001MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the calibration verification standard (CCV) requirements were met. Quality Control (OC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blanks.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control samples were within the acceptance limits.

QC Sample Designation

The following sample was designated for matrix spike analysis: 66454001 059775-001

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

SDG#66454 -- VOA

Page 2 of 4

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um SDG#66454VOA

Page 3 of 4

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&W 1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J &W1	Trap C
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J&W1	Trap K
VOA9	HP6890/HP5973	J&WI	Trap C

Review Validation:

EL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

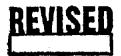
Reviewer: ____

Som

Date: 09-27-02

SDG#66454 -- VOA

Page 4 of 4


REVISED

Report Date: October 11, 2002 Page 1 of 4

Client :	Sandis National Laboratories
	MS-0756
	P.O. Box 5800
	Abuquerque, New Mexico
Contact:	Pamela M. Puissant

Workorder: 66454

Parmname	NOM	Sample	Qual	<u> </u>	Units	RPD %	REC%	Range	Anist	Da <u>te</u>	Time
Volatilo-GC/MS Federal											
Batch 199914											
QC1200296539 LCS											
1,1-Dichloroethylene	50.0			40.3	ug/kg		81	(75%-134%)	RMB	09/09/0	2 08:43
Benzene	50.0			44.8	ug/kg		90	(80%-120%)			
Chiorobenzene	50.0			48.4	ag/kg		97	(82%-118%)			
Toluene	50.0			47.2	ug/kg		94	(74%-115%)			
Trichloroednylene	50.0			44.6	ug/kg		89	(80%-119%)			
*Bromofluorobenzene	50.0			49.2	ug/kg		9 8	(69%-138%)			
*Dibromofluoromethane	50.0			49.3	ug/kg		99	(67%-137%)			
*Taluene-d8	50.0			46.1	ug/kg		92	(67%-139%)			
QC1200296540 LC5								-			
1,1-Dichloroethylene	50.0			38.7	ug/kg		77	(75% 134%)		09/09/0	2 21:24
Benzene	50.0			43.4	ug/kg		87	(80%-120%)			
Chlorobenzene	50.0			44.6	ug/kg		89	(82%-118%)			
Toluene	50.0			44.2	ng/kg		88	(74%-115%)			
Trichloroethylene	50.0			42.9	ug/kg		86	(80%-119%)			
*Rromofluorobenzene	50.0			46.8	ug/kg		94	(69%-138%)			
*Dibrumofluoromethane	50.0			49.2	ug/kg		98	(67%-137%)			
*Talame-d8	50.0			45.2	og/kg		90	(67%-139%)			
QC1200296331 MB					-0-0			(,			
1.1.1-Trichloroethane			υ	ND	ug/kg					09/09/00	2 11:13
1,1,2,2-Tetrachloroethanc			ΰ	ND	ug/kg						
1,1,2-Trichloroethane			ù	ND	ug/kg						
1,1-Dichloroethonc			Ū	ND	ng/kg						
1,1-Dichloroethylene			Ŭ	ND	ug/kg						
1.2-Dichloroothane			บั	ND	ug/kg						
1,2-Dichioropropane			บ	ND	ng/kg						
2-Butanone			Ű	ND	ug/kg						
2-Hexanone			Ŭ	DA	ug/kg						
4-Methyl-2-pentanone			υ	ND	ug/kg						
Accune			Ŭ	ND	u <u>g/kg</u>						
Benzene			ບັ	ND	ug/kg						
Bromodichloromethane			ŭ	ND	ug/kg						
Bromotorm			ŭ	ND	ug/kg						
Bromomethane			ŭ								
Carbon disulfide			น บ	ND ND	ug/icg						
			-		ug/kg						
Carbon tetrachloride			U	נוא	≤g/kg						
Chlorobenzene			U	ND	<i>n</i> ₿\k₿						
Chioroethane			U	ND	ug/kg						
Chloroform			U	ND	ug/kg						
Chloromethana			. U	ND	ug/kg						
Dibromochloromethane			IJ	ND	ng/kg						
Ethylbenzene			U	ND	uy/kg						
Methylens chloride			ប	ND	U2/kg						

1		X	CDM	nmary							
Workorder: 66454				÷				Page 2	of 4		
Parmanc	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Aplst	Date	Time
Yolatlik-GC/MS Federal											
Barch 199914											
Styrene			τı	ND	ug/kg						
Tetrachloroethylene			Û	ND	ug/kg						
Toluene			Ū	ND	ug/kg						
Trichloroethylene			ົ້	ND	ug/kg						
Vinyl acetate			Ū	ND	ug/kg						
Vinyl chloride			Ū	ND	ug/kg						
Xylenes (total)			Ù	ND	ug/kg						
cis-1,2-Dichloroethylene			ΰ	ND	ug/kg						
cis-1,3-Dichloropropylene			Ŭ	ND	ug/kg						
trans-1,2-Dichloroethylene			υ	ND	ug/kg						
rans-1,3-Dichloropropylene			U.	ND	ug/kg						
*Brumufluorobenzene	50.0	•	-	55.9	ug/kg		112	(69%-138%)			
Dibromofluoromethane	50.0			48.0	ug/kg		96	(67%-137%)			
*Tolucne-d8	50.0			47.0	ug/kg			(67%-139%)			
QC1200296532 MB					- \$ • \$						
1,1,1-Trichloroethane			U	ND	ug/kg					09/09/0	2 23:09
1,1,2,2-Teurschloroethane			υ	ND	ug/kg						
1,1,2-Trichloroethane			U	ND	ng/kg						
I,1-Dichloroethane			U	ND	ug/kg						
1,1-Dichloroethylene			U	ND	ug/kg						
1,2-Dichlomethane			U	ND	ug/kg						
1,2-Dichloropropane			Ų	ND	ug/kg						
2-Bulanne			Ŭ	ND	ug/kg						
2-Hexanone			υ	ND	ug/kg						
4-Methyl-2-pentanone			Ŭ	ND	ug/kg						
Acetone			U	ND	ng/kg						
Benzene			ΰ	ND	ng/kg						
Dromodichloromethane			υ	ND	ug/kg						
Bromoform			Ū	ND	ug/kg						
Bromomethane			U	ND	ug/kg						
Carbon disultide			U	ND	ug/kg						
Carbon tetrachloride			Ū	ND	ug/log						
Chlorobenzene			U	ND	ug/kg						
Chloroethane			U	ND	ug/kg						
Caloroform			U	ND	ug/kg						
Chloromethane			Ŭ	ND	ug/kg						
Dibromethane			U	ND	ug/kg						
Ethylbenzene			U	ND	ug/kg						
Methylene chloride			υ	ND	ug/kg						
Styrene			ប	ND	ug/kg						
Tetrachloroethyleue			υ	ND	ug/kg		-				
Tolnene			บั	ND	ug/kg						
Trichloroethylone			Ū	ND	ug/kg						
Vinyl acetale	,		Ū	ND	ug/kg					•	
Vinyl chloride			บั	ND	ug/kg						
Xylencs (total)			ū	ND	ag/kg						
cis-1,2-Dichloroethylene			ŭ	ND	ag/kg						
cis-1,3-Dicbloropropylene			Ŭ	ND	Lg/kg						

			<u>VC Su</u>	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						
Workorder: 66454								Page 3	of 4	
Parmaame	NOM	Sam	iple Qual	QC	Units	RPD%	REC%	Range	Anist	Date Tim
Volatile-QC/MS Federal Batch 199914										
trans-1,2-Dichlorocthylene			U	ND	ug/kg					
trans-1.3-Dichloropropykne			ប	ND	ug/kg					
**Bromofluorabenzene	50.0			53.0	ug/kg		106	(69%-138%)		
**Dibromofluoromethane	50.0			46.9	ug/kg		94	(67%-137%)		
**Toivene-d8	50.0			46.0	ug/kg		92	(67%-139%)		
QC1200296713 MB										
1,1.1-Trichloroethane			U	ND	ug/kg					09/09/02 10:4
1.1,2,2-Tetrachloroethme			U	ND	ug/kg					
I,1,2-Trichloroethane			υ	ND	ug/kg			•		
1,1-Dichloroethane			U	ND	ug/kg					
1,1-Dichloroethylene			- U	ND	ug/kg					
1.2-Dichloroothane			U	ND	ug/kg					
1,2-Dichloropropane			ប	ND	ug/kg					
2-Butanone			ប	ND	ug/kg					
2-Hexanone	•		U	ND	ug/kg					
4-Methyl-2-pentanone			υ	ND	ug/kg					
Acetone			C C	ND	ug/kg					
Benzene			υ	ND -	ug/kg					
Brunodichloromethane			U	ND	ug/kg					
Bromoform			U	ND	ug/kg					
Bromomethene			U	ND	ug/kg					
Carbon disulfide			U	ND	ug/kg					
Carbon tetrachlotide			υ	ND	ug/kg					•
Chlorobenzene			Ľ	ND	ug/kg					
Chloroethane			บ	ND	ug/kg					
Chloroform	*		υ	ND	ug/kg					
Chloromethane			ប	ND	ug/kg					· •
Dibromochloromethane			Ū	ND	ug/kg					
Ethylbenzene			Ŭ	ND	ug/kg					
Methylene chloride			Ū	ND	ug/kg					
Styrene			Ū	ND	ug/kg					
Tetrachloroethylene			υ	ND	ug/kr					
Toluene			Ũ	ND	ug/kg					
Trichloroethylene			Ū	ND	ug/kg					
Vinyl acetate			Ū	ND	ug/kg					
Vinyl chloride			Ŭ	ND	ug/kg					
Xylenes (total)			Ŭ,	ND	ug/kg					
cis-1.2-Dichloroethylenc			Ŭ	ND	ug/kg					
cis-1,3-Dichloropropylene			Ū	ND	ug kg					
uans-1,2-Dichloroethylene			Ũ	ND	ug/kg					
trans-1,3-Dichloropmpylene			Ŭ	ND	ug/kg					
*Bromafluorobenzene	50.0		Υ.	5080	ug/kg		102	(69%-138%)		
*Dibromoflupromethans	50.0	-		4570	ug/kg			(67%-137%)		
*Toluene-d8	50.0			4570	ug/kg			(67%-139%)		
QC1200296535 66454001				7375	₩ 6 /*€		* 1	(*************************************		
1,1-Dichloroetbylene	50.0	U	ND	35.5	ug/L		71	(55%-128%)		09/09/02 17:1
Benzene	50.0		ND	41.1	ug/L			(53%-118%)		
Chlorobenzene	50.0	Ū			-0					

Workorder: 66454								Page 4	of 4	
Parmname	NOM	í	Sample Qual	QC	Units	RPD%	REC%	Rauge	Anist	Date Time
Volatile-GC/MS Federal Batch 199914										
Saun (222)*										
Toluene	50.0	J	0.349	43.2	ug∕L		86	(56%-113%)		
Trichloroethyleac	50.0	υ	ND	40.8	սք/Լ		82	(54%-119%)		
**Bromofluorobeuzene	50.0		53.3	49,0	ug/L		98	(69%-138%)		
**Dibromofluoromethane	50.0		47.8	49.1	ug/L		98	(67%-137%)		
**Tolucne-d8	50.0		46.9	45.8	ug/L		92	(67%-139%)		
QC1200296538 66454001 PSD					v					
1,1-Dichloroothylene	50.0	U -	ND	35.2	ug/L	1	70	(0%-21%)		09/09/02 17:36
Benzene	50.0	υ	ND	40.3	սը/Ն	2	81	(0%-17%)		
Chlorobenzene	50.0	U	ND	43.4	ug/L	1	87	(0%-21%)		
Toluene	50.0	J	0.349	42.7	ug/L	1	85	(0%-25%)		
Trichloroethylene	50.0	υ	ND	40.2	ug/L	2	80	(0%-25%)		
**Brumofluorobenzene	50.0		53.3	47,2	ug/L			(69%-138%)		
**Dibromofluoromethane	50.0		47.8	49.1	-9 щ/L		98	(67%-137%)		
**Toluene-d8	50.0		46.9	45.7	uy/L	· .	92	(67%-139%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- 1 Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. Por Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presemptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG 66454-1

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8260B
Prep Method:	SW846 5030B
Analytical Batch Number:	199493

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
66456001	059783-001
1200295591	VBLK01 (Blank)
1200295594	VBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

SDG#66454-1-VOA

Page 1 of 4

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

QC Sample Designation

Since the samples in this sample delivery group/work order were field QC samples (i.e.: trip blank, equipment blank, etc.), the analysis of a matrix spike (MS) and a matrix spike duplicate (MSD) was not required.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually

SDG#66454-1-VOA

Page 2 of 4

generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

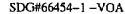
System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB624, 75m x 0.53mm, 3.0um


Instrument Configuration </Paragraph>

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOAI	HP6890/HP5973	J&WI	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&W1	Тгар К
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J&WI	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 3 of 4

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	Charles Wilson	Date:	09-27.02

SDG#66454-1 -VOA

Page 4 of 4

Report Date: September 27, 2002 Page 1 of 2

Client : Contact:	Sandia National Laborato MS-0756 P.O. Box 5800 Albuquerque, New Mexic Pameja M. Puissant		_					NCDVI C DA	Page 1	•	V2	
Workorder:	66456											
Parmname	······································	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time

		and the second secon			the second s			
Volatile-GC/MS Federal Betch 199493								
QC1200295594 LCS								
1,1-Dichloroethylene	50.0		49.8	ug/L	100	(7 8%-14D%)	SHJ	09/05/02 10:41
Benzene	50.0		52.1	ug/L	104	(78%-119%)		
Chlorobenzeue	50.0		52.8	பதிட	106	(82%-120%)		
Toluene	50.0		52.6	ug/L	105	(68%-133%)		
Trichloroethylene	50.0		50.8	ug/L	102	(80%-123%)		
*Bromofluorobenzene	50.0		46.9	ug/L	94	(67%-136%)		
*Dibromofluoromethane	50.0		48.7	ug/L	97	(62%-148%)		
*Toluesc-d8	50.0		48.3	ug/L.	97	(58%-139%)		
QC1200295591 MB								
1,1,1-Trichloroethane		υ	ND	ug/L				09/05/02 12:20
1,1,2,2-Tetrachloroethage		U	ND	ug/L				
1,1,2-Trichloroethane		U	ND	ug/L.				
1,1-Dichloroethanc		U	ND	ug/L				
l, 1-Dichloroethylens		ប	ND	ug/L				
1,2-Dichloroethane		U	ND	ug/L				
1,2-Dichloropropane		U	ND	ug/L				
2-Butanone		U	ND	ug/L				
2-Hexanone		U	ND	ug/L		•		
4-Methyl-2-pentanone		U	ND	ug/L				
Acetone		U	ND	ug/L				
Benzene		U	ND	ug/L				
Bromodichloromethane		U	ND	ug/L				
Bromoform		U	ND	ug/L				
Bromomethane		U	ND	ug/L				
Carbon disulfide		U	ND	ug/L				
Carbon tetrachloride		U	ND	ug/L				
Chlorobenzene		U	ND	ug/L				
Chloroethane		U	ND	ug/L				
Chloroform		υ	ND	ug/L				
Chloromethane		U	ND	ug/L				
Dibromochloromethane		υ	ND	ug/L				
Ethylbenzene		υ	ND	ug/L				
Methylene chloride		· U	ND	ug/L				
Styrene		U	ND	บฐ/โ.	-			
Tetrachloroethylene		υ	ND	ug/L				
Toluene		U	ND	ug/L				
Trichloroethylene		Ū	ND	ug/L				,
Vinyl chloride		Ū,	ND	ug/L				
Xylenes (total)		บ	ND	ug/L				
cis-1,2-Dichloroethylenc		Ŭ	ND	ug/L				
AND A REPORT OF THE PARTY OF TH		-						
cis-1,3-Dichloropropylene		ប	ND	ug/L				

workerner: 00450						Page 2 of 2					
Parmame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range /	Inlst	Date	Time
Volatile-GC/MS Federal					-						
Batch 199493											
trans-1,3-Dichloropropylene			υ	ND	ug/L						
**Bromofluorobenzene	50.0			48.9	ug/L		98	(67%-136%)			
**Dibromofluoromethane	50.0			47.3	ug/L		95	(62%-148%)			
**Tolucne-d8	50.0			48.4	ug/L		97	(58%-139%)			

Notes:

Works where

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where d

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded

10400

- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL, 1

- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more-

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

39

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer							
Analytical Method:	SW846 8270C							
Prep Method:	SW846 3550B							
Analytical Batch Number:	199277							
Prep Batch Number:	199276							
<u> </u>								

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295103	SBLK01 (Blank)
1200295104	SBLK01LCS (Laboratory Control Sample)
1200295105	059775-002MS (Matrix Spike)
1200295106	059775-002MSD (Matrix Spike Duplicate)

Page 1 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitrosodiphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

Target analytes were detected in the blank below the reporting limit.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 66454009(059775-002).

MS Recovery Statement

The matrix spike (MS) recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: deraft	Marez.	Date:	69/26/02	
------------------	--------	-------	----------	--

Report Date:	September 25, 2002
	Page 1 of 4

Client :	Sandia National MS-0756 P.O. Box 5800	Laboratories						veholt b	Page 1		
Contact:	Albuquerque, N Pamela M. Paiss										
Workorder:	66454								,		
Parmuame		NOM	Sample	Qual	QC	Units	RPD%		Range	Anlst	Date Time
Semi-Volatiles-G											
	199277										
QC12002951		1/20			740			15	070 0100	CAN	09/09/02 15:15
1,2,4-Trichlorol		1670			742 511	ug/kg		45 31	(27%-91%)	CAN	09/09/02 13:13
1,4-Dichlorober		1670 3330			2250	ug/kg ug/kg		51 68	(25%-85%) (42%-96%)		
2,4,5-Trichloroj 2,4,6-Trichloroj		3330			1890	ug/kg		57	(32%-91%)		
2,4-Dinipotoluc		1670			1890	ug/kg		75	(50%-109%)		
2-Chlorophenol		3330			1240	ug/kg		41	(31%-85%)		
4-Chioro-3-met		3330			2020	ug/kg		41 61	(34%-97%)		
4-Nitrophenol	ny ipitettoi	3330			1980	ug/kg		59	(22%-128%)		
Accuaphthene		1670			1050	ug/kg		63	(39%-98%)		
Hexachlorobena	7 8 B P	1670			1260	ug/kg		76	(41%-105%)		
Hexachlorobuta		1670			693	ug/kg		42	(21%-94%)		•
Hexachloroetha		1670			462	ug/kg		28	(25%-86%)		
N-Nitrosodiproj		1670			731	ug/kg		44	(34%-90%)		
Nitrobenzene	pyramine.	1670			689	ug/kg		41	(30%-84%)		
Pentachloropher	nal	3330			2570	ug/kg		77	(27%-109%)		
Phenol	(i)(3330			1500	ug/kg		45	(31%-83%)		
Pyrene		1670			1130	ug/ng ug/kg		4J 68	(37%-110%)		
m,p-Cresols		3330			1740	ug/kg		52	(40%-83%)		
o-Cresol		3330			1660	ug/kg		50	(34%-86%)		
**2,4,6-Tribrome	ohenol	3330			2610	ug/kg		78	(23%-111%)		
**2-Fluorobiphon	•	1670			858	ug/kg		52	(21%-104%)		
**2-Fluorophenol	J +	3330			1330	ug/kg		40	(22%-93%)		
**Nitrobenzene-di	5	1670			624	ug/kg		37	(24%-97%)		
**Phenol-d5	5	3330			1580	ug/kg		48	(22%-99%)		
**p-Terphenyl-dl	4.	1670			1190	ug/kg		71	(30%-133%)		
QC120029510					1170	<i>∎₿~₽</i>			(50 10-100 10)		
1,2,4-Trichlorol				U.	ND	ug/kg					09/09/02 21:48
1,2-Dichlorober				Ū	ND	ug/kg					•••••••
1,3-Dichlorober				ບົ	ND	ug/kg					
1,4-Dichlorober	nzene			Ū	ND	ug/kg					
2,4,5-Trichlorop				ū	ND	ug/kg					
2,4,6-Trichlorog				Ū	ND	ug/kg					
2,4-Dichlorophe				Ū	ND	ug/kg					
2,4-Dimethylph				U	ND	ug/kg					
2,4-Dinitrophen				U	ND	ug/kg					
2,4-Dinitrotolue				បី	ND	ng/kg					
2,6-Dinitrotolue				Ũ	ND	ug/kg					
2-Chloronaphth				ŭ	ND	ug/kg					
2-Chlorophenol				Ũ	ND	ug/kg					
2-Methyl-4,6-di				Ŭ	ND	ug/kg					
2-Methyinaphth				U U	ND	ug/kg					
2-Nitrophenol				Ŭ	ND	ug/kg					
T 1-reobuonot				U	10	~8~K					

6 f

Workorder: 66454					Page 2 of 4					
Parmname	NOM	Sample Qu	ual	QC	Units	RPD%	REC%	Range	Ankt	Date Time
Semi-Yolatiles-GC/MS Federal			•							
Batch 199277										
3,3'-Dichlorobenzidine			U	ND	ug/kg					
4-Bromophenylphenylether			บ	ND	ng/kg					
4-Chloro-3-methylphenol			U	ND	ug/kg					
4-Chloroaniline			ັ້	ND	ug/kg					
4-Chlorophenylphenyleiher			U	ND	ug/kg					
4-Nurophenol			Ū	ND	ug/kg					
Accnaphthene			U	ND	ug/kg					
Aconaphthylene			Ū	ND	ug/kg					
Anthracene			ັບ	ND	ug/kg					
Benzo(a)anthracene			Ų	ND	ug/kg					
Велго(а)ругеве			Ü	ND	ug/kg					
Benzo(b)fluoranthene			Ū.	ND	ug/kg					
Benzo(ghi)perylene			Ū	ND	ug/kg					
Benzo(k)fluoranthene			υ	ND	ug/kg					
Butyloenzylphthalate			Ŭ	ND	ug/kg					
Carbazole			Ŭ	ND	ug/kg					
Chrysene			υ	ND	ug/kg					
Di-n-butylphthalate			Ū	ND	ug/kg					
Di-n-octylphthalate			Ū	ND	ug/kg					
Dibenzo(a,h)anthracene			บ	ND	ug/kg					
Dibenzofuran			Ū	ND	ug/kg					
Diethylphthalate			Ū	ND	ug/kg					
Dimethylphthalate			Ū	ND	ug/kg					
Diphenylamine			บ	ND	ug/kg					
Fluoranthene	•		Ū	ND	ug/kg					
Fluorene			Ū	ND	ug/kg					
Hexachlorobenzene			Ū	ND	ng/kg					
Hexachlorobuladiene			Ū	ND	ug/kg					
Hexachlorocyclopentadiene			Ŭ	ND	ug/kg					
Hexachloroethane			ΰ	ND	ug/kg					
Indeno(1,2,3-od)pyrene			Ũ	ND	ug/kg					
Isophorone			υ	ND	ug/kg					
N-Nitrosodipropylamine			Ū	ND	ug/kg					
Naphthalenc			Ū	ND	ug/kg					
Nitrobenzene			ΰ	ND	ug/kg					
Pentachlorophenol			Ū.	ND	ug/kg					
Phenanthrene			Ũ	ND	ug/kg					
Phenol			Ū	ND	ug/kg					
Pyrene			Ū	ND	ug/kg					
bis(2-Chloroethoxy)methane			บ	ND	ug/kg					
bis(2-Chloroethyl) cther			Ū	ND	ug/kg					
bis(2-Chloroisopropyl)ether			Ŭ	ND	ug/kg					
bis(2-Ethylhexyl)phthalate			J	89.0	ug∕kg					
m,p-Cresols			บ้	ND	ug/kg					
m-Nitroaniline			U	ND	ug/kg	-				
o-Cresol			Ŭ	ND	ug/kg					
o-Nitroaniline			υ	ND	ug/kg					
p-Nitroaniline			υ.	ND	ug/kg					
/ • ··- ······			<u>ب</u>	100	4E, v S					

6,

1	•		<u>YC NU</u>	ABLEAGE 7						
Workorder: 66454								Page 3	of 4	
Parmeame	NOM		Sample Qual	<u>QC</u>	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-GC/MS Federal Batch 199277										
**2,4,6-Tribromophenol	3330		•	2050	ug/kg		62	(23%-111%)		
**2-Pluorobiphenyl	1670			805	ug/kg		48	(21%-104%)		
**2-Fluorophenol	3330			1590	ug/kg		48	(22%-93%)		
**Nitrobenzene-d5	1670			689	ug/kg		41	(24%-97%)		
**Phenol-d5	3330			1360	ug/kg		41	(22%-99%)		
**p-Terphenyl-d14	1670			1180	ug/kg		71	(30%-133%)		
QC1200295105 66454009 MS										
1,2,4-Trichlorobenzene	1670	U	ND ·	785	ug/kg		47	(15%-112%)		09/09/02 16:51
1,4-Dichlorobenzene	1670	U	ND	624	ug/kg		37	(19%-89%)		
2,4,5-Trichlorophenol	3330	Ų	ND	2650	ug/kg		80	-		
2,4,6-Trichlorophenol	3330	U	ND	2060	ug/kg		62			
2,4-Dinitrotolucne	1670	U	ND	1390	ug/kg			(32%-117%)		
2-Chlorophenol	3330	U	ND	1660	ug/kg		50	(13%-101%)		
4-Chloro-3-methylphenol	3330	Ľ	ND	2410	ug/kg		72	(23%-114%)		
4-Nitrophenol	3330	U	ND	2150	ug/kg		65	(20%-126%)		
Acenaphthene	1670	Ū	ND	1040	ug/kg			(15%-114%)		
Hexachlorobenzene	1670	U	ND	1400	ug/kg		84	(
Hexachlorobutadiene	1670	Ū	ND	786	ug/kg		47			
Hexachloroeibane	1670	Ū	ND	555	u <u>e</u> /kg		33			
N-Nitrosodipropylamine	1670	Ū	ND	826	ug/kg			(18%-106%)		
Nitrobenzene	1670	Ũ	ND	803	ug/kg		48	(10/0-100/0)		
Pentachlorophenol	3330	Ũ	ND	2860	ug/kg			(34%-110%)		
Phenol	3330	Ŭ	ND	1740	ug/kg			(17%-104%)		
Pyrene	1670	Ũ	ND	1310	ug/kg			(26%-130%)		
mp-Cresols	3330	Ũ	ND	1890	ug/kg		57	(10/0-150/0)		
o-Cresol	3330	ŭ	ND	2010	ug/kg		60			
**2,4,6-Tribromophenol	3330	č		2950	ug/kg			(23%-111%)		
**2-Fluorobiphenyl	1670			819	ug/kg			(21%-104%)		
**2-Fluorophenol	3330			1680	ug/kg		50	(21 2 %·04 %) (22 %·93 %)		
**Nitrobenzene-d5	1670			709	ug/kg		43	(24%-97%)		
**Phenol-d5	3330			• 1740	ug/kg		43 52	(22%-99%)		
**p-Terphenyl-d14	1670			1350	ug/kg			(30%-133%)		
QC1200295106 66454009 MSD	1070			1990	ug/kg		01	(30%-133%)		
1,2,4-Trichlorobenzene	1670	U	ND	742	ug/kg	6	45	(0%-31%)		09/09/02 17:10
1,4-Dichlorobenzene	1670	ũ	ND	547	ug/kg	13	33	(0%-36%)		07/07/08 11:10
2,4,5-Trichlorophenol	3330	Ū	ND	2450	ug/kg	8	73	(070-3070)		
2,4,6-Trichlorophenol	3330	Ũ	ND	1990	ug/kg	4	60			
2,4-Dinitrotoluene	1670	Ū	ND	1330	ug/kg	5	80	(0%-37%)		
2-Chiorophenol	3330	ŭ	ND	1600	ug/kg	3	48	(0%-34%)		
4-Chloro-3-methylphenol	3330	Ŭ	ND	2390	ug/kg	1	48 72	(0%-34%)		
4-Nitrophenel	3330	Ŭ	ND	2390		14	74	(0%-34%)		
Accaphthene	1670	υ	ND	925	ug/kg ug/kg	14	74 56			
Hexachlorobenzene	1670	υ υ						(0%-33%)		
Hexachlorobutadiene	1670	υ	ND	1330 702	ug/kg	5	80			
Hexachloroethane		υ υ	ND		ug/kg	11	42			
N-Nitrosodipropylamine	1670		ND	480	ug/kg	14	29	100 0000		
Nitrobenzene	1670	U	ND	775	ug/kg	6	47	(0%-29%)		
Pentachlorophenol	1670	U	ND	738	ug/kg	9	44	104 1000		
селиногорасион	3330	U	ND	2590	ug/kg	10	78	(0%-40%)		

Workorder: 00454								Page 4 of 4	
Parmame	NOM		Sample Qual		Units	RPD%	REC%	Range Anlsi	Date Time
Semi-Volatiles-GC/MS Federal									
Batch 199277									
Phenol	3330	U	ND	1650	ng/kg	5	50	(0%-37%)	
Pyrene	1670	U	ND	1210	ug/kg	8	73	(0%-39%)	
m.p-Cresols	3330	U	ND	1790	ug/kg	6	54		
o-Cresol	3330	U	ND	1850	ug/kg	8	56		
**2,4,6-Tribromophenol	3330			2900	ug/kg		87	(23%-111%)	
**2-Fluorobiphenyl	1670			792	ug/kg		48	(21%-104%)	
**2-Fluorophenol	3330			1570	ug/kg		47	(22%-93%)	
**Nitrobenzene-d5	1670			666	ug/kg		40	(24%-97%)	
**Phenol-43	3330			1680	ug/kg		51	(22%-99%)	
**p-Terphenyl-d14	1670			1260	ug/kg		76	(30%-133%)	

Notes:

Workorder

CRAE A

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where it

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

б!

HPLC Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)
Analytical Method:	SW846 8330
Prep Method:	SW846 8330 PREP
Analytical Batch Number:	199935
Prep Batch Number:	199934

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200296584	XBLK01 (Blank)
1200296585	XBLK01LCS (Laboratory Control Sample)

Page 1 of 4

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Page 2 of 4

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

One of the required spiking analytes was not within the SNLS 80-120 acceptance limits in the laboratory control sample (LCS). 4-Amino-2,6DNT failed at 79.9% put passed the GEL SPC limit. The SPC limits are on the Certificate of Analysis. The data is reported per the client without reextraction. Please see the email in the Miscellaneous Section. Please see nonconformance report 4307.

QC Sample Designation

A matrix spike was performed on a client sample in SDG 66610

MS Recovery Statement

All the matrix spike recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4307 was generated for this SDG.

One of the required spiking analytes was not within the SNLS 80-120 acceptance limits in the laboratory control sample (LCS). 4-Amino-2,6DNT failed at 79.9% put passed the GEL SPC limit. The SPC limits are on the Certificate of Analysis. The data is reported per the client without reextraction. Please see the email in the Miscellaneous Section. Please see nonconformance report 4307.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: Reviewert Maren Date: 10/01/02

Page 4 of 4

Client :	Sandia Nat	ional Laboratories		Q	<u>C Su</u>	<u>mmary</u>			Report D	ate: October		
02000	MS-0756									Page 1	01 2	
	P.O. Box 58	300										
		ue, New Mexico										
Contact:	Pamela M.	Puissant										
Workorder:	66454											
Parmoame		NOM	[Sample	Quai	QC	Units	RPD%	REC%	Range	Anlst	Date Time
HPLC Explosive Batch	s Federal 199935											
QC12002965	85 LCS											
1,3,5 Trinitrobe		800				723	ug/kg		90	(77%-124%)	JLW	09/14/02 21:57
2,4,6 Trinitroto	luene	800				735	ug/kg		92	(80%-120%)		
2,4-Dinitrotoluc	ene	800				693	ug/kg		87	(77%-122%)		
2,6-Dinitrotolue	ene	800				740	ug/kg		93	(74%-121%)		
2-Amino-4,6-di	nitrotoluene	800				711	ug/kg		89	(81%-125%)		
4-Amino-2,6-di	nitrotoluene	800				639	ug/kg		80	(79%-123%)		
HMX		800				776	ug/kg		.97	(84%-131%)		
Nitrobenzene		800				684	ug/kg		86	(75%-125%)		
RDX		800				755	ug/kg		94	(80%-123%)		
Tetryl		800				586	ug/kg		73	(65%-124%)		
m-Dinitrobenze	nc	800				717	ug/kg		9 0	(77%-124%)		
m-Nitrotoluene		800				689	ug/kg		86	(77%-117%)		
o-Nitrotoluene		800				688	ug/kg		86	(75%-119%)		
p-Nitrotolucne		800				701	ug/kg		88	(76%-121%)		
** 1,2-dinitrobenz	ене	400				373	ug/kg		93	(71%-118%)		
QC12002965	84 MB						•.•					
1,3,5-Trinitrobe	enzene				U	ND	ug/kg					09/14/02 21:16
2,4,6-Triniiroio	luenc				ບ	ND	ug/kg					
2,4-Dinitrotolue	ene				U	ND	ug/kg					
2,6-Dinitrotolu	ene				υ	ND	ug/kg					
2-Amino-4,6-di	initrotoluene				U	ND	ug/kg					
4-Amino-2,6-di	initrotoluene				U	ND	ug/kg			•		
HMX					υ	ND	ug/kg					
Nitrobenzene					υ	ND	ug/kg					
RDX					U	ND	ug/kg					
Tetryl					U	ND	ug/kg					
m-Dinitrobenze	ene				υ	ND	ug/kg					
m-Nitrotolucue					U	ND	ug/kg					
o-Nitrotoluene					U	ND	ug/kg					
p-Nitrotoluene					U	ND	ug/kg					
**1,2-dinicrobenz	ene	40 0				378	ug/kg		94	(71%-118%)		
QC12002965	86 66610009	M\$					•••					
1,3,5-Trinitrob	enzene	800	U	ND		760	ug/kg		95	(66%-133%)	•	09/14/02 23:21
2,4,6-Trinitroto	luene	800	U	ND		761	ug/kg		95	(77%-132%)		
2,4-Dinitrotolu	cne	800	U	ND		744	ug/kg		93	(61%-134%)		
2,6-Dinitrotolu	ene	800	Ų	ND		811	ug/kg		101	(70%-121%)		
2-Amino-4,6-d		800	Ū	ND		729	ug/kg		91	(79%-124%)		
4-Amino-2,6-di	•	800	Ū	ND		629	ug/kg		79	(71%-120%)		
HMX		800	Ū	ND		789	ug/kg		99	(75%-138%)		
Nitrobenzene		800	Ū			732	ug/kg		92	(72%-120%)		
RDX		800	Ũ	ND		760	ug/kg		95	(61%-136%)		
Tetryl		800	Ŭ	ND		654	ug/kg		82	(65%-135%)		

			$\underline{\mathbf{v}}$	THINK					
Workorder: 66454								Page 2 of 2	
Parmname	NOM	[Sample Qual	QC	Units	RPD%	REC%	Range Anis	t Date Time
HPLC Explosives Federal Batch 199935									
m-Dinitrobenzene	800	ប	ND	770	ug/kg		96	(75%-125%)	
m-Nitrotoluene	800	U	ND	741	ag/kg		93	(73%-1)6%)	
o-Nitrololuene	800	U	ND	740	ug/kg		93	(68%-122%)	
p-Nitrotoluene	800	U	ND	769	ug/kg		96	(67%-125%)	
** 1,2-dinitrobenzene	800		377	726	ug/kg		91	(71%-118%)	
QC1200296587 66610009 MSD					-				
1,3,5-Trinitrobenzene	800	U	ND	797	'ug∕kg	5	100	(0%-20%)	09/15/02 00:03
2,4,6-Trinitrotoluene	800	U	ND	805	ug/kg	6	101	(0%-20%)	
2,4-Dinitrotoluene	800	ប	ND	777	ug/kg	4	97	(0%-24%)	
2.6-Dinitrotoluene	800	U	ND	845	ug/kg	4	106	(0%-21%)	
2-Amino-4,6-dinitrotoluene	800	U	ND	757	ug/kg	4	95	(0%-20%)	
4-Amino-2,6-dinitrotoluene	800	Ç	ND	631	ug/kg	0	79	(0%-20%)	
HMX	800	U	ND	825	ug/kg	4	103	(0%-38%)	
Nitrobenzene	800	Ų	ND	759	ug/kg	4	95	(0%-21%)	
RDX	800	U	ND	788	ug/kg	4	99	(0%-35%)	
Tetryl	800	U	ND	663	ug/kg	1	83	(0%-30%)	
m-Dinitrobenzene	800	U	ND	814	ug/kg	5	102	(0%-23%)	
m-Nitrotoluene	800	U	ND	764	ug/kg	3	96	(0%-20%)	
o-Nitrotoluene	800	U	ND	763	ug/kg	3	95	(0%-23%)	
p-Nitrotoluene	800	U	ND	786	ug/kg	2	98	(0%-22%)	
**1,2-dinitrobenzene	400		377	454	ug/kg		113	(71%-118%)	

OC Summary

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- Н Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- Р The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- Х Presumptive evidence that the analyte is not present. Please see narrative for further information.
- х Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- х Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/tha RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless gualified on the QC Summary.

PCB Case Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Polychlorinated Biphenyls by Method 8082
Analytical Method:	SW846 8082
Prep Method:	SW846 3550B
Analytical Batch Number:	199271
Prep Batch Number:	199270

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295091	PBLK01(method Blank)
1200295092	PBLK01LCS(Laboratory Control Sample)
1200295093	059781-002MS(Matrix Spike)
1200295094	059781-002MSD(Matrix Spike Duplicate)

SNLS SDG#66454 - PCB

Page 1 of 5

System Configuration

Chromatographic Columns

Coiuma ID	Column Description						
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um						
J&₩2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um						
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um						
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um						
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um						
J&W6	DB-5(5%-Phenyl)-methylsiloxanc 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um						
RESTEK	Rtx-CLPesticides30m x 0.25mm x 0.25umRtx-CLPesticides II30m x 0.25mm x 0.20um						
	* Durabond and DB-XLB are trademarks of J & W.						

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

SNLS SDG#66454 - PCB

Page 2 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CVS Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were not within the established acceptance criteria for this SDG. The surrogate recovery for sample 66459010 was outside the surrogate recovery criteria due to dilution.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID#	Laboratory Sample ID#
059781-002	66454015

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

SNLS SDG#66454 - PCB

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All samples underwent sulfur and alumina cleanup procedure.

Sample Dilutions

The following sample was diluted due to the presence of over range target analytes in the sample:

Sample ID	Dilutions
66454010	5X

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and samples required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations are performed, copies of all manual integration peak profiles will be included in the raw data section of this package.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm". Some samples contained more than one PCB. The quantitation of PCB may be elevated due to overlapping PCB patterns.

SNLS SDG#66454 - PCB

Page 4 of 5

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Date: 9/26/02 : Cao Reviewer:

SNLS SDG#66454 - PCB

					Q	C Su	mmary			Denort D	ate: Septembe	-26 3	007
Client : Costaci:	MS-0756 P.O. Box Atbuguer	ational Labo 5800 que, New M L Puissant								Jedon D	Page 1		
Workorder:	66454												
Parmname	· - ·· ·	• • •	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-PC Batch	- IB Federal 199271					,				•	· 		
QC120029509	2 LCS												
Aroclor-1260			33.3				25.9	ug/kg		78	(48%-116%)	GH1	09/13/02 15:49
**4cmx			6,67				4 .77	ug/kg		72	(31%-120%)		
**Decachlorobiph	-		6.6 7				5.10	ug/kg		77	(34%-115%)		
QC120029509	1 MB												
Aroclor-1016						U	ND	ug/kg					09/13/02 15:37
Aroclor-1221						U	ND	ug/kg					
Arocior-1232						Ų	ND	ug/kg					
Aroclor-1242						U	ND	ug/kg					
Acoclor-1248		•				U	ND	ug/kg					
Aroclor-1254						U	ND	ug/kg					
Aroclor-1260						U	ND	ug/kg					
**4cmx			6.67				4.64	ug/kg		70	(31%-120%)		
**Decachlorobiph	ienyl		6.67				5.30	ug/kg		80	(34%-115%)		
OC120029509	3 66454015	MS											
Aroclor-1260			33.3	υ	ND		28.1	ug/kg		84	(36%-134%)		09/13/02 18:51
**4cmx			6.67				4.30	ug/kg	,	65	(31%-120%)		
**Decachlorobiph	enyl		5.67				5.99	ug/kg		90	(34%-115%)		
QC120029509		MSD						- •			•		
Aroclor-1260			33.3	U	ND		27.3	ug/kg	3	82	(0%-30%)		09/13/02 19:04
**4cmx			6.67				4.68	ug/kg		70	(31%-120%)		
**DecachIorobiph	enyl		6.67				5.06	ug/kg		76	(34%-115%)		
	•							•••					

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation

X Uncertain identification for gamma spectroscopy

Workorder: 66454					Page	2 of 2	
Parmname	NOM	Sample Qual (C Units	RPD% REC%	Range	Anlst Date Time	
N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.							

 The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Inorganic Case Narrative for Sandia National Laboratory SDG# 66454

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295257	Method Blank (MB) ICP-199346/ 199345
1200295261	Laboratory Control Sample (LCS)
1200295259	059775-002L (66454009) Serial Dilution (SD)
1200295258	059775-002D (66454009) Sample Duplicate (DUP)
1200295260	059775-002S (66454009) Matrix Spike (MS)
1200295327	Method Blank (MB) CVAA-199386/199385
1200295330	Laboratory Control Sample (LCS)

Method/Analysis Information:

Analytical Batch #:	199346, 199386
Prep Batch #:	199345, 199385
Standard Operating Procedure:	GL-MA-E-013 REV.6; GL-MA-E-010 REV.10
Analytical Method:	SW846 6010B; SW846 7471A
Prep Method:	SW846 3050B; SW846 7471A

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits except selenium.

Continuing Calibration (CCV) Requirements

All CCV standards associated with samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) associated with samples from this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

<u>Ouality Control (QC) Information:</u>

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 059775-002(66454009) was designated as the quality control sample for the ICP batch. Sample 059710-002(66195002) from SNLS SDG 66189-1 was designated as the quality control sample for ICP and the CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria, with the exceptions of arsenic, chromium, lead, and silver, as indicated by the "*" qualifiers on the QC summary.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw

element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. Several samples required further dilution for silver in order to bring the raw values within the linear range of the instrument. No dilutions were required for the CVAA analysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: all soll Sur

Date: 9/30/=-

Contact:	Sandia Nat MS-0756 P.O. Box 5	ional Labo	ratories										
	Albuquerq	ue, New M	exico								Page 1	of 2	
	Pamela M.	Puissant											
Workorder:	66454	· ·								 .			
Parmname			NOM	·	Sample	Qual	QC	Units	RPD%	RÉC%	Range	Anlst	Date Time
Metals Analysis-IC Batch 19	IP Federal 99346												
QC1200295258	8 66454009	DUP					<i>.</i>	- D	601		(00 000)		00/02/02 02 4
Arsenic					3.03		6.14	mg/kg	68*		(0%-20%)		09/23/02 22:4
Barium				-	59.2		58.6	mg/kg	1		(0%-20%)		
Cadmium				J	0.151	ì	0.281	mg/kg	N/A	1	(+/-0.495)		
Chromium					12.3		24.9	mg/kg	68*		(0%-20%)		•
Lead					22.2		70.2	mg/kg	104*		(0%-20%)		
Selenium				U	ND	J	0.380	mg/kg	N/A		(+/-0.495)		
Silver					184		241	mg/kg	27*		(0%-20%)		09/25/02 22:43
QC1200295261	I LCS							-					
Arsenic			132				138	mg/kg		104	(79%-121%)		09/23/02 22:20
Barium			781				813	mg/kg		104	(80%-120%)		
Cadmium			51.5			•	53.1	mg/kg		103	(81%-119%)		
Chromium			142	•			149	mg/kg		105	(77%-123%)		
Lead			52.9				59.4	mg/kg		112	(78%-123%)		
Sclenium			60.9				66.1	mg/kg		109	(72%-128%)		
Silver			125				138	mg/kg		111	(55%-145%)		
QC1200295257	7 MB												00/00/00 00:00
Arsenic						U	ND	mg/kg			•		09/23/02 22:20
Barium						U	ND	mg/kg					
Cadmium						U	ND	mg/kg					
Chromium						U	ND	mg/kg					
Lead						U	ND	mg/kg					
Selenium						U	ND	mg/kg					
Silver						U	ND	mg/kg					
QC1200295250	66454009	MS								100	(720 LACO)		
Arsenic Barium			24.3		3.03	•	27.3	mg/kg		100	(75%-125%)		09/23/02 22:50
			24.3		59.2		82.9	mg/kg		98	(75%-125%)		
Cadmium			24.3	3	0.151		23.5	mg/kg		96	(75%-125%)		
Chromium			24.3		12.3		40.0	mg/kg		114	(75%-125%)		
Lead			24.3	• •	22.2		49.9	mg/kg		114	(75%-125%)		
Scientium			24.3	U	ND		23.1	mg/kg		94	(75%-125%)		
Silver			24.3		184		217	mg/kg		N/A	(75%-125%)		09/25/02 22:49
QC1200295259 Arsenic	y 66454009	SDILT							10.2				09/23/02 22:38
Barium					31.5		5.53	ug/L	12.3				09123104 22:38
Cadmium					616	**	121	ug/L	1.53				
				1	1.58	U ·	ND	ug/L	N/A				
Cbromium	÷				128		26.2	ug/L	1.93				
Lead					231	-	46.9	ug/L	1.55				
Selenium				U	ND	J	2.86	ug/L	N/A				
Silver Metak Analysis-M					383		74:1	ug/L	3.26				09/25/02 22:37

QC1200295328 66195002 DUP

Workorder: 66454									Page 2 of 2	
Parmname	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Metals Analysis-Mercury Federal Batch 199386										
Mercury		Ĵ	0.00106	U	ND	mg/kg	N/A		(+/-0.00908) NOR1	09/12/02 11:24
QC1200295330 LCS Mercury	4.50				3.54	mg/kg		79	(68%-132%)	09/12/02 11:20
QC1200295327 MB Mercwy				U	ND	mg/kg				09/12/02 11:18
QC1200295329 66195002 MS Mercury	0.0984	J	0.00106		0.104	mg/kg		104	(75%-125%)	09/12/02 11:26

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than live times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

General Chemistry Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Total Cyanide
Analytical Method:	SW846 9012A
Prep Method:	SW846 9010B Prep
Analytical Batch Number:	199408
Prep Batch Number:	199407

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295377	MB for batch 199408
1200295378	LCS for batch 199408
1200295379	DUP of 66454009
1200295380	MS of 66454009
1200295392	LCS for batch 199407

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

<u>Quality Control (QC) Information:</u>

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66454009.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200295392.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure:	Hexavalent Chromium
Analytical Method:	SW846 7196A
Prep Method:	SW846 3060A
Analytical Batch Number:	200893
Prep Batch Number:	200892

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200298925	MB for batch 200893
1200298926	DUP of 66454009
1200298927	DUP of 66610011
1200298928	MS of 66454009
1200298929	MS of 66610011
1200298930	LCS for batch 200893

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 66454009, 66610011.

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for sample 66610011 are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable. The Relative Percent Difference between the sample and duplicate for sample 66454009 was within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

9124202 **Reviewer:** Date:

Report Date: September 25, 2002 Page 1 of 2

Client : Contact:	MS-0756 P.O. Box 5	ue, New M									Page 1 of 2		
Workorder:	66454												
Parmname		, . .	- NOM	• • •	Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time	
Rapid Flow Analy Batch	sis Federa l 199408												
QC120029537 Cyanide, Total	9 66454009	DUP		J	0.0573	J	0.0664	mg/kg	N/A ^		(+/-0.208) ADF	09/09/02 10:27	
QC120029537 Cyanide, Total			2,50				2.27	mg/kg		91	(81%-125%)	09/09/02 10:23	
QC120029539 Cyanide, Total OC120029537			27 7				286	mg/kg		103	(81%-125%)	09/09/02 10:25	
Cyanide, Total OC120029538	•	MS				ប	ND	mg/kg				09/09/02 10:22	
Cyanide, Total Spectrometric An Batch	alysis Federal 200893	1	4.17	J	0.0573	•	4.27	mg/kg		101	(55%-145%)	09/09/02 10:28	
QC120029892 Hexavalent Chro		DUP			0.454		0.412	mg/kg	10 ^		(+/-0.0959) BEP2	09/21/02 07:00	
QC120029892 Hexavalent Chro OC120029893	mium	DUP		l	0.0704	1	0.0593	mg/kg	N/A ^		(+/-0.0988)		
Hexavalent Chro QC120029892	mium		0.971				0.932	mg/kg		96	(72%-121%)		
Hexavalent Chro QC120029892	8 66454009	мѕ				U	ND	mg/kg		·			
Hexavalent Chro QC120029892	9 66610011	MS	1:01	I	0.454).54 0.928	mg/kg			(49%-130%)		
Hexavalent Chro			0.998	1	0,0704		V.926	mg/kg		80	(49%-130%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.]

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy,

Workorder: 66454			_		Page 2 of 2	
Parmname	NOM	Sample Qual QC	Units RPD%	REC%	Range Anist	Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than

five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than SX the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

14:

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 66454

Method/Analysis Information

Batch Number:200142Procedure:Determination of Gross Alpha And Gross Non-Volatile Beta in WaterAnalytical Method:EPA 900.0

Client ID 059775-002 059776-002 059777-002 059778-002 059780-002 059781-002 059781-002 059782-002 MB for batch 200142 059710-002(66195002DUP) 059710-002(66195002MSD) LCS for batch 200142

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 13, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample(s) was used for QC: 66195002. The QC sample is from SNLS work order 66195.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellancous Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Additional Comments

Sample 66454016 did not meet the beta required detection limit. No more volume could be used due to not exceeding the maximum net weight limit. The samples counted for 500 min.

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

Reviewer: M.	mone	Date:	255402002

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary

Report Date: September 25, 2002 Page 1 of 2

Client ;	Sandia National Laboratorics
	MS-0756
	P.O. Box 5899
	Albuquerque, New Mexico
Contact:	Pamela M. Puissant
Workorder:	66454

Parmaane	NOM	Sample C	(aut)	QC	Units	RER	RECT	Range	Andre	Date Time
Gravimetric Solida			_							
Baich 199224										
OC1200295000 66454009 DOP				•						
Maistare		3.90		3.59	percent	8		(0%-24%)	MLA	09/04/02 14:30
					-					
Rad Gas Flow Batch 200142						. .				
QC1200297098 66195002 DUP					-					
Alpha		19.3		20.8	pCi/g	0.271		(0%-20%)	J\$1	09/18/02 01:56
	. Uncert:	+/-2.30		+/-2.42						
	TPU:	2.73		2.86			.:			
Beta		20.8		20.5	pCive	0.0654		(0%-20%)		
•	Uncert:	+/-1.94		+/-2.10		•				
	TPU:	2.12		2.29						
QC1200297101 LCS										
Alpha	9.89			10.3	pCi/g		104	(75%-125%)		09/18/02 09:53
	Uncert			+/-1.10						
	TPU:			1.43						
Beta	39.7			42.2	pCi/z		106	(75%-125%)		
	Uncert			+/-2.58						
	TPU:			3.07						
QC1200297097 MB			••		رسم					
Alpha			U	0.0251	pCi/g					
	Upcert			+/-0.145	• •					
•	TPU:		**	0.145	~					
Beta			U	-0.0009	pCi/g					
	Uncert:		•	+/-0.139						
	TPU:			0.139						
QC1200297099 66195002 MS Alpha	96.9	19.3		97.9	pCi/g		61	(75%-125%)		
Vilit	Uncert	+/-2,30		+/-13,5	pen g		61	(13%-123%)		
	TPU:	2.73		14.6						
Вена	390	20.8		389	pCi/g		05	(75%-125%)		
Deta	Uncert;	±0.a +/-1.94			head		33	(75%-125%)		
				+/•14.* 27.7						
07120207100 66105007 1462	TPU:	2.12		2).7						
QC1200297100 66195002 MSD Alpha	95.1	19.3		94.0	pCi/g		79			
• 	Uncert	+/-2_30		+/-13.0	fr					
•	TPU:	2,73		13.8						
Beta	382	2.73		380	pCi/g		94			
12.44	Uncert:	+/-1.94		+/-23.9	Pure		77			
	TPU;	2.12		29.3						

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Printed on Recycled Paper.

GENERAL ENGINEERING LABORATORIES

· Meeting today's needs with a vision for tomorrow.

OC Summary

Workerder;	66454							Page 2 of 2	
Patroname	·····	NOM	Sample Qual	QC	Units	RER	REC%	Range Anist	Date Time
Manamat									

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- Ħ Holding time was exceeded
- 3 Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- х Presumptive evidence that the analyte is not present, Please see narrative for further infromation.
- х Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result. For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

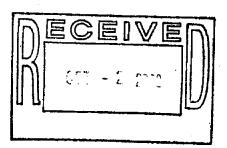
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

> P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

10000

COC 605666

Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	SAMPLE DATE	MATRIX	1	BATCH#			
1081	Bldg. 6650 SS	059775	001	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	VOA-8260	199914			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	BNA-8270	199277			
1081	Bidg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	Cr+6	200893			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	GROSS-A/B	200142			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	HE-8330	199935			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	PCB-8082	199271			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386			
1081	Bldg. 6650 SS	059775	002	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	TOTAL-CN	199408			
1081	Bldg. 6650 SS	059776	001	6650/1081-SP1-BH1-15-S	29-AUG-02	SOIL	VOA-8260	199914			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	BNA-8270	199277			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	Cr+6	200893			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	GROSS-A/B	200142			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	HE-8330	199935			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	PCB-8082	199271			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386			
1081	Bldg. 6650 SS	059776	002	6650/1081-SP1-BH1-10-S	29-AUG-02	SOIL	TOTAL-CN	199408			
1081	Bldg. 6650 SS	059777	001	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	VOA-8260	199914			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	BNA-8270	199277			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	Cr+6	200893			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	GROSS-A/B	200142			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	HE-8330	199935			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	PCB-8082	199271			
1081	Bldg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	RCRA METALS	199346, 199386			
	Bidg. 6650 SS	059777	002	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	TOTAL-CN	199408			
	Bldg. 6650 SS	059778	001	6650/1081-SP2-BH1-17-S	29-AUG-02	SOIL	VOA-8260	199914			
	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	BNA-8270	199277			
	Bidg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	Cr+6	200893			
and the second se	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	GROSS-A/B	200142			
	Bldg. 6650 SS	059778	002	6650/1081-SP2-BH1-12-S	29-AUG-02	SOIL	HE-8330	199935			


GEL QC CROSS REFERENCE

COC 605666

Site #	Site Name	SAMPLE#	F#	DISP_ER_SAMP_LOC	SAMPLE DATE	MATRIX	LAB TEST	BATCH #
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	Cr+6	200893
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	GROSS-A/B	200142
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	HE-8330	199935
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	PCB-8082	199271
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	RCRA METALS	199346, 199386
1081	Bldg. 6650 SS	059782	002	6650/1081-SP4-BH1-25-S	30-AUG-02	SOIL	TOTAL-CN	199408
1081	Bidg. 6650 SS	059783	001	6650/1081-SP-TB	30-AUG-02	AQUEOUS	VOA-8260	199493

RECORDS CENTER/ ORIGINAL COPY

CASE NARRATIVE for Sandia National Laboratories ARCOC-605666 SDG#66454 Case No. 7223.02.03.02

October 1, 2002

Laboratory Identification:

General Engineering Laboratories, Inc.

Mailing Address:

P.O. Box 30712 Charleston, South Carolina 29417

Express Mail Delivery and Shipping Address:

2040 Savage Road Charleston, South Carolina 29407

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

Sandia collected sixteen soil samples and one aqueous sample on August 29th and 30th, 2002. The samples arrived at General Engineering Laboratories, Inc., (GEL) Charleston, South Carolina on September 4th, 2002, for environmental analyses. Cooler clearance (screening, temperature check, etc.) was done upon login. The coolers arrived without any visible signs of tampering and with custody seals intact. The samples were delivered with chain of custody documentation and signatures. The temperature of the samples was 2.4°C, as measured from the temperature control bottles.

The samples were screened according to GEL Standard Operating Procedures (SOP) EPI SOP S-007 rev. 2 "The Receiving of Radioactive Samples." The samples were stored properly according to SW-846 procedures and GEL SOP.

GENERAL ENGINEERING LABORATORIES P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178 The laboratory received the following samples:

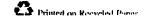
Description
059775-001
059776-001
059777-001
059778-001
059779-001
059780-001
059781-001
059782-001
059775-002
059776-002
059777-002
059778-002
059779-002
059780-002
059781-002
059782-002
059783-001

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Internal Chain of Custody:

Custody was maintained for the samples.


Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Qualifier Flag and Data Package Definitions, Laboratory Certifications, Volatiles Data, Volatiles QC Summary, Semivolatiles Data, Semivolatiles QC Summary, PCB Data, PCB QC Summary, Explosives Data, Explosives QC Summary, Metals Data, Metals QC Summary, General Chemistry Data, General Chemistry QC Summary, Radiochemistry Data, Radiochemistry QC Summary, and Level C Data Package.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Edith M. Kent

Project Manager / GENERAL ENGINEERING LABORATORIES PO Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

2

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG # 66454

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer						
Analytical Method:	SW846 8260A						
Prep Method:	SW846 5030A						
Analytical Batch Number:	199914						
Prep Batch Number:	199910						

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
66454001	059775-001
66454002	059776-001
66454003	059777-001
66454004	059778001
66454005	059779-001
66454006	059780001
66454007	059781-001
66454008	059782-001
1200296531	VBLK01 (Blank)
1200296539	VBLK01LCS (Laboratory Control Sample)
1200296532	VBLK02 (Blank)

SDG#66454 -- VOA

Page 1 of 4

 1200296540
 VBLK02LCS (Laboratory Control Sample)

 1200296535
 059775-001MS (Matrix Spike)

 1200296538
 059775-001MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the calibration verification standard (CCV) requirements were met. <u>Quality Control (OC) Information</u>

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blanks.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control samples were within the acceptance limits.

QC Sample Designation

The following sample was designated for matrix spike analysis: 66454001 059775-001

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

SDG#66454 -- VOA

Page 2 of 4

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W 2	DB-624, 75m x 0.53mm, 3.0um SDG#66454VOA
	DB-624, 75m x 0.53mm, 3.0um

Page 3 of 4

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

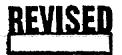
Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J &W1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&Wi	Тгар К
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J&W1	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

Review Validation:

EL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

U 09-27.02 **Reviewer:** Date:


REV ISED

Client :

Sandia National Laboratories

Report Date: October 11, 2002 Page 1 of 4

F	IS-0756 -O. Box 5800 Mbuquergue, N	w Mexico							Page 1	or 4	-
	amela M. Puisa										
Workorder: 🖌	6454										
Parmame	·····	NOM	Sample	Qual	QC	Units	RPD%	BEC%	Range	Anlst	Date Time
Volatile-GC/MS Fed								-			
Batch 199	9914										
QC1200296539	LCS										
1,1-Dichloroethyie	:ne	50.0	-		40.3	ug/ leg		81	(75%-134%)	RMB	09/09/02 08:43
Benzene		50.0			44.8	nti,yza		90	(80%-120%)		•
Chiorobenzene		50.0			48.4	og/kg		97	(82%-118%)		
Toluene		50.0			47.2	ug/kg		94	(74%-115%)		
Trichloroethylene		50.0			44.6	ug/kg		89	(80%-119%)		
**Bromofluorobenze		50.0			49.2	ug/kg		98	(69%-138%)		
**Dibromofluoromet	June	50.0			49.3	ug/kg		99	(67%-137%)		
**Toluene-d8		50.0			46.1	uş/kş		92	(67%-139%)		
QC1200296340	LCS	-				_					
i, i-Dichloroethyle		50.0			38.7	ug/kg		77	(75% 134%)		09/09/02 21:24
Benzens		50.0			43.4	ug/kg		81	(80%-120%)		
Chlorobenzene	•	50.0			44.6	ug/kg		19	(82%-118%)		
Toluene		50.0			44.2	ug/kg		88	(74%-115%)		
Trickloroethylene		50.0			42.9	u g/kg		86	(80%-119%)		
**Bromofluorobenze		50.0			46.8	uy/ky		94	(69%-138%)		
**Dibrumafluoromet	ane	50.0			49.2	ug/kg		98	(67%-137%)		
**Tolume-d8		50.0			45.2	ug/kg		90	(67%-139%)		
QC1200296531	MB										
1,1,1-Trichloroeth				U	ND	ug/kg					09/09/02 11:13
1,1,2,2-Tetrachlord				U	ND	ug/kg					
1,1,2-Trichioroeth	ene -			U	ND	ug/kg					
1,1-Dichioroethone	3			U	ND	ug/kg					
1,1-Dichloroethyle	382			U	ND	ug/kg					
1,2-Dichloroethane	B			U	ND	ug/kg					
1,2-Dichloropropa	nc			IJ	ND 1	ug/kg					
2-Butanone				υ	ND	ug/kg					
2-Hexanone				υ	D	ug/kg					
4-Methyl-2-pentan	ÓDE			Ū	ND	ug/kg					
Account				บิ	ND	ug/kg					
Benzene				Ŭ	ND	ug/kg					
Bromodichloromet	thane			Ŭ	ND	uę/kg					
Bromotorm				Ū	ND	ug/icg					
Bromomethane				Ŭ	ND	ug/kg					
Carbon disulfide				บั	ND	vg/kg					-
Carbon tetrachlorie	ic.			Ū	UN UN	ag/icg					
Chiorobenzene				U	ND						
Chloroethane						ug/kg					
Chloroform				U	ND	ug/kg					
Chloromethana				U	ND	ug/kg					
				. <u>U</u>	ND	ug/kg					
Dibromochlorome	oane			U U	ND	ng/ kg					
Ethylbenzens				U	ND	ug/kg					
Methylene chloride	Ę			ប	ND	ug/kg					

			<u>, 2m</u>	nmary							
Workorder: 66454								Page 2	of 4	.	
Parmname	NOM	Sumple Q	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Yolatik-G C/MS Federal											
Baich 199914											
Styrene			τı	ND	ug/kg						
Tetrachloroethylene			ΰ	ND	ug/kg						
Toluene			บ	ND	ug/kg						•
Trichloroethylene			ັບ	ND	ug/kg						
Vinyl acetate			Ū	ND	ug/kg						
Vinyl chloride			Ū	ND	ug/kg						
Xylenes (total)			Ŭ	ND	ug/kg						
cis-1,2-Dichloroethylene			ΰ	ND	ug/kg						
is-1,1-Dichloropropylene			Ŭ	ND	ug/kg						
rans-1,2-Dichloroethylene			ΰ	ND	ug/kg						
rans-1,3-Dichloropropylene			Ū.	ND	ug/kg						
Bromotluorobenzene	50.0	•	-	55.9	ug/kg		112 (69%-138%)			
Dibromofluoromethane	50.0			48.0	ug/kg		96 (67%-137%)			
Tolucae-d8	50.0			47.0	ug/kg			67%-139%)			
QC1200296532 MB					•••						
1,1,1-Trichloroethane			Ų	ND	ug/kg					09/09/0	2 23:09
1,1,2,2-Tetrachloroethane			υ	ND	og/kg			· .			
1,1,2-Trichloroethane			υ	ND	ng/kg						
1,1-Dichloroethane			U	ND	ug/kg						
1,1-Dichloroethylene			ប	NÐ	ug/kg						
,2-Dichlomethane			ឋ	ND	ug/kg						
1,2-Dichknopropane			υ	NU	ug/kg						
2-Bulanone			U	ND	ug/kg						
2-Hezanone	÷		U	ND	ug/kg						
4-Methyl-2-penlanone			U	ND	ug/kg						
Acetone			υ	ND	ug/kg						
Benzene			σ	ND	. ng/kg						
Dromodichloromethans			σ	ND	ug/kg						
Bromoform			U	ND	ug/kg						
Bromoincthanc			Ŭ	ND	uy/kg						
Carbon disulfide			U	ND	ug/kg						
Carbon tetrachloride			U	ND	ug/kg						
Chlorobeazene			U	ND	ug/kg						
Chloroethane			U	ND	ug/kg						
Chloroform			υ	ND	ug/kg						
Chloromethane			U	ND	ug/kg						
Dibrostochloromethane			U	ND	ug/kg						
Ethylbenzene			U	ND	ug/kg						
Methylene chloride			U	ND	ug/kg						
Styrene •			U	ND	ug/icg						
Tetrachioroediyleue			U	ND	ug/kg						
Toluene			ប	ND	ug/kg						
Trichloroethy leac			ប	ND	ug/kg						
Vipyl acetate			ប	ND	ug/kg						
Vinyl chloride			υ	ND	ug/kg						
Xylencs (total)			Ū	ND	ug/kg						
cis-1,2-Dichloroethylene			Ũ	ND	ug/kg						
cis-1,3-Dichlompropylene			Ũ	ND	og/kg						

.

Workorder: 66454			¥,	<u> </u>		•						
									Page 3			
Parmaame	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Volatile-CC/MS Federal Batch 199914												
trans-1,2-Dichloroethylene				U	ND	ug/kg						
trans-1.3-Dichloropropylene				ប	ND	ug/kg						
*Bromofluorobenzene	50.0				53.0	ug/kg		106	(69%-138%)			
**Dibromofluoromethane	50.0				46.9	ug/kg		94	(67%-137%)			
**Toluene-d8	50.0				46,0	ug/kg		92	(67%-139%)			
QC1200296713 MB 1,1.1-Trichlomethane	•			U	ND	ug/kg			•		09/09/0	1 10.4.
1.1.2.2. Temchloroethaue				U	ND						07/07/0	6 10.4
1,1,2-Trichloroethane				-	ND	ug/kg						
				U		ug/kg						
I.1-Dichloroethane				U	ND	ug/kg						
1,1-Dichloroethylenc			-	υ	ND	ug/kg						
1.2-Dichloroethane				U	ND	ug/kg						
1,2-Dichloropropane				ប	ND	ug/kg						
2-Butanone				U	ND	ug/kg						
2-Hexanone				U	ND	ug/kg						
4-Methyl-2-pentanone				υ	ND	ug/kg						
Acetone				U	ND	ug/kg						
Benzene				U	ND -							
Brunodichloromethane				U	ND	ug/kg						
Bromoform				U	ND	ug/kg						
Bromomethane				U	ND	vgʻkg						
Carbon disulfide				U	ND	ug/kg						
Carbon tetrachlotide				U	ND	ug/kg						
Chlorobenzene				ប	ND	ug/kg						
Chloroethane				υ	ND	ug/kg						
Chioroform				υ	ND	ug/kg						
Chloromethane				ប	ND	ug/kg					•	
Dibromochloromethane				Ũ	ND	ug/kg		·				
Ethylbenzenc				Ű	ND	ug/kg						
Methylene chloride				Ũ	ND	ug/log						
Styrene				Ŭ	ND	ug/kg						
Tetrachloroethylenc				Ŭ	ND	nő\jct						
Toluene				Ŭ	ND	ug/kg					•	
Trichloroethylenc				ŭ	ND	ug/kg			÷			
Vinyl acetate				Ŭ	DN	ug/kg						
Vinyl chloride				σ	ND	ug/kg						
Xylenes (total)				U-	םא סא	ug/kg						
cis-1.2-Dichloroethylene				U U	מא סא	ug/kg						
cis-1,3-Dichloropropylenc				U U	ND							
• • • •						eg/kg					•	
trans-1,2-Dichloroethylene				U	ND	ug/kg						
trans-1,3-Dichloropropylene				U	ND	ug/kg						
**Bromofluorobenzene	50.0				5080	ugikg			(69%-138%)			
**Dibromofluoromethane	50.0				4570	ug/kg			(67%-137%)			
**Toluene-d8	50.0				4570	ug/kg		91	(67%-139%)			
QC1200296535 66454001					.							
1,1-Dichioroetbyleue	50.0	U	ND		35.5	ug/L			(55%-128%)		09/09/02	17:10
Benzene	50.0	U	ND		41.1	սց/Լ			(53%-118%)			
Chlorobenzene	50.0	υ	ND .		43.7	ug/L		88	(53%-116%)			

3€

Workorder: 66454			•			Page 4 of 4					
Parmame	NOM	1	Sample Qual	QC	Units	RPD%	REC%	Rauge	Anist	Date Time	
Volatile-QC/MS Federal Batch 199914											
Toluene	50.0	J	0.349	43.2	ug/L		86	(56%-113%)			
Trichloroethylene	\$0.0	Ų	ND	40.8	սց/Ն		82	(54%-119%)			
**Bromofhuorobenzene	50.0		53.3	49,0	ug/L		98	(69%-138%)			
**Dibromofluoromethane	50.0		47.8	49.1	ug/L		98	(67%-137%)			
**Toluene-d8	50.0		46.9	45.8	ug/L		92	(67%-139%)			
QC1200296538 66454001 PSD											
1,1-Dichloroothylene	50.0	ប	ND	35.2	ug/L	1	70	(0%-21%)		09/09/02 17:36	
Benzone	5 0.0	υ	ND	40.3	ug/L	2	81	(0%-17%)			
Chlorobenzene	50.0	U	ND	43.4	ug/L	1	87	(0%-21%)			
Tolucae	50.0	1	0.349	42.7	ug/L	1	85	(0%-25%)			
Trichloroethylene	50.0	υ	ND	40.2	սջ/Լ	2	80	(0%-25%)			
**Brumofluorobenzene	50.0		53.3	47.2	ug/L		\$ 5	(69%-138%)			
**Dibromofluoromethanc	50.0		47.8	49.)	ug/L		98	(67%-137%)			
**Toluene-d8	50.0		46.9	45.7	ug/L	•	92	(67%-139%)			

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where d

Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

I Estimated value, the analyte concentration foll above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. Por Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information,

X Presomptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG 66454-1

Method/Analysis Information

Procedure:	Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8260B
Prep Method:	SW846 5030B
Analytical Batch Number:	199493

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
66456001	059783-001
1200295591	VBLK01 (Blank)
1200295594	VBLK01LCS (Laboratory Control Sample)

Preparation/Analytical Method Verification

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

SDG#66454-1-VOA

Page 1 of 4

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

QC Sample Designation

Since the samples in this sample delivery group/work order were field QC samples (i.e.: trip blank, equipment blank, etc.), the analysis of a matrix spike (MS) and a matrix spike duplicate (MSD) was not required.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program, referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually

SDG#66454-1-VOA

Page 2 of 4

J

generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data and package. The data validator will always sign and date the case narrative. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration </Paragraph>

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOAI	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J &W1	Тгар К
VOA5	HP5890/HP5972	J&W1	Тгар С
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J &W1	Тгар К
VOA9	HP6890/HP5973	J&W1	Trap C

Comments

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

SDG#66454-1-VOA

Page 3 of 4

21

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative: $\int O dx dx dx$

Reviewer:	Charles	Wilan	Date:	09-27.0	a

SDG#66454-1 -- VOA Page 4 of 4

Report Date: September 27, 2002 Page 1 of 2

N	andis National AS-0756 .O. Box 5800	Laboratories	2	Cou	<u>mnary</u>	•		Report D	ate: Septemb Page 1		002	
	lbuquerque, N 'amela M. Puis											
Workorder: 6	6456											
Parmatne		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Volatile-GC/MS Fed												
Batch 199	493											
QC1200295594	LCS											
1,1-Dichloroethyle	tie	50.0			49.8	ug/L		100	(78%-140%)	SHI	09/05/02	10:41
Benzene		50.0			52.1	ug/L		104	(78%-119%)			
Chlorobenzeae		50.0			52.8	ug/L		106	(82%-120%)			
Tolucac		50.0			52.6	ug/L		105	(68%-133%)			
Trichloroethylene		50.0			50.8	ug/L		102	(80%-123%)			
**Bromofluorobenzer	ne	50.0			46.9	ц g/L		9 4	(67%-136%)			
**Dibromofluoromet	hané	50.0			48.7	ug/L		97	(62%-148%)			
**Toluese-d8		50.0			48.3	ug/L		97	(58%-139%)			
QC1200295591	MB											
1,1,1-Trichloroerha				U	ND	ug/L					09/05/02	12:20
1,1,2,2-Tetrachloro				U	ND	ug/L						
1,1,2-Trichloroetha	ne			U -	ND	ug/L.						
1,1-Dichioroethanc	;			U	ND	ug/L						
1,1-Dichloroethyle	ne			ប	ND	ug/L						
1,2-Dichloroethane	:			U	ND	ug/L						
1,2-Dichloropropar	ue			U	ND	ug/L	•					
2-Butanone	•			U	ND	ug/L.				-		
2-Hexanone				U	ND	ug/L.			•			
4-Methyl-2-pentaru	one			U	ND	ug/L						
Acetone			•	υ	ND	ug/L						
Benzene				U	ND	ug/L						
Bromodichlorometi	hane			ប	ND	ug/L						
Bromoform				U	ND	ug/L			,			
Bromomethane				ប	ND	ug/L						
Carbon disulfide				U	ND	ug/L						
Carbon tetrachlorid	e			U	ND	ug/L						
Chlorobeazeae				U	ND	ug/L						
Chioroethane				υ	ND	ug/L						
Chloroform				Ų	ND	ug/L						
Chloromethane				Ŭ	NÐ.	ug/L						
Dibromochloromet	hane			Ū	ND	ug/L	•					
Ethylbenzene				บิ	ND	ug/L						
Methylene chloride	:			Ū	ND	ug/L						
Styrene				Ū	ND	սջ/Լ						
Tetrachloroethylen	<u>è</u>			Ŭ	ND	ug/L						
Toluene	-			ບັ	ND	ug/L						
Trichloroethylene				·ΰ	ND	ug/L					•	
Vinyl chloride				υ·	ND	ug/L						
Xylenes (total)				Ŭ	ND	ug/L ug/L						
cis-1,2-Dichloroeth	ulone	•		ប	ND	ug/L						
cis-1,3-Dichloropro				U U	ND							
						ug/L.						
trans-1,2-Dichloroe	thylene			U	ND	ug/L						

38

and the second se					Page 2 of 2					
NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date	Time
				·						
		U	ND	ug/L						
50.0			48.9	ug/L		98	(67%-136%)			
50.0			47.3	ug/L		95	(62%-148%)			
50.0			48.4	ug/L		97	(58%-139%)			
	50.0 50.0	50.0 50.0	U 50.0 50.0	U ND 50.0 48.9 50.0 47.3	U ND ug/L 50.0 48.9 ug/L 50.0 47.3 ug/L	U ND ug/L 50.0 48.9 ug/L 50.0 47.3 ug/L	U ND ug/L 50.0 48.9 ug/L 98 50.0 47.3 ug/L 95	U ND ug/L 50.0 48.9 ug/L 98 (67%-136%) 50.0 47.3 ug/L 95 (62%-148%)	U ND ug/L 50.0 48.9 ug/L 98 (67%-136%) 50.0 47.3 ug/L 95 (62%-148%)	U ND ug/L 50.0 48.9 ug/L 98 (67%-136%) 50.0 47.3 ug/L 95 (62%-148%)

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where if

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

....

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer
Analytical Method:	SW846 8270C
Prep Method:	SW846 3550B
Analytical Batch Number:	199277
Prep Batch Number:	199276
Sample Analysis	

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

	Sample ID	Client ID
	66454009	059775-002
-	66454010	059776-002
	66454011	059777-002
	66454012	059778-002
	66454013	059779-002
	66454014	059780-002
	66454015	059781-002
	66454016	059782-002
	1200295103	SBLK01 (Blank)
	1200295104	SBLK01LCS (Laboratory Control Sample)
	1200295105	059775-002MS (Matrix Spike)
	1200295106	059775-002MSD (Matrix Spike Duplicate)

Page 1 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitrosodiphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

Target analytes were detected in the blank below the reporting limit.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 66454009(059775-002).

MS Recovery Statement

The matrix spike (MS) recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Additional Comments

No additional comments are needed for this SDG.

Page 3 of 5

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

AERORETA MARIEZ E9/26/02 Date: Reviewer:_

OC Summary

Client :

Sandia National Laboratories

Report Date: September 25, 2002 Page 1 of 4

Contact:	MS-0756 P.O. Box 5810 Albuquerque, N Pamela M. Pniss							Page I	UL 4	
Workorder:	66454									
Parmame		NOM	Sample	Qual	QC	Units	RPD% REC%	Range	Anlst	Date Time
Semi-Volatiles-G Batch	C/MS Federal 199277									
QC12002951										
1,2,4-Trichlorol		1670			7,42	ug/kg	45	(27%-91%)	CAK	09/09/02 15:15
1,4-Dichlorober		1670			511	ug/kg	31	(25%-85%)		
2,4,5-Trichlorop		3330			2250	ug/kg	68	(42%-96%)		
2,4,6-Trichloroj		3330			1890	ug/kg	57	(32%-91%)		
2,4-Dinitrotoluc		1670			1240	ug/kg	75	(50%-109%)		
2-Chlorophenol		3330			1360	ng/kg	41	(31%-85%)		
4-Chloro-3-met	hyiphenol	3330			2020	ug/kg	61	(34%-97%)		
4-Nitrophenol		3330			1980	ug/kg	59	(22%-128%)		
Accuaphthene		1670			1050	ug/kg	63	(39%-98%)		
Hexachlorobenz	-	1670			1260	ug/kg		(41%-105%)		
Hexachlorobuta		1670			693	ug/kg	42	(21%-94%)		
Hexachloroetha		1670			462	ug/kg	28	(25%-86%)		
N-Nitrosodiproj	pylamine	1670			731	ug/kg	44	(34%-90%)		
Nitrobenzene		1670			689	ug/kg	41	(30%-84%)		
Pentachloropher	noi	3330			2570	ug/kg	77	(27%-109%)		
Phenol		3330			1500	ug/kg	45	(31%-83%)		
Pyrene		1670			1130	ug/kg		(37%-110%)		
m,p-Cresols		3330			1740	ug/kg	52	(40%-83%)		
o-Cresol		3330			1660	ug/kg	50	(34%-86%)		
**2,4,6-Tribromo		3330			2610	ug/kg		(23%-111%)		
**2-Fluorobiphon		1670			858	ug/kg	52	(21%-104%)		
**2-Fluoruphenol		3330			1330	ug/kg	40	(22%-93%)		
**Nitrobenzene-di	5	1670			624	ug/kg	37	(24%-97%)		
**Phenol-d5		3330			1580	ug/kg	48	(22%-99%)		
**p-Terphenyl-dl QC120029510	D3 MB	1670			1190	ug/kg	71	(30%-133%)		
1,2,4-Trichlorot				Ū	ND	ug/kg				09/09/02 21:48
1,2-Dichlorober			•	U	ND	ug/kg				
1,3-Dichlorober				υ	ND	ug/kg				
1,4-Dichlorober				U	ND	ug/kg				
2,4.5-Trichlorop				U	ND	ug/kg				
2.4,6-Trichlorog				Ŭ	ND	ug/kg		-		
2,4-Dichlorophe				U	ND	ug/kg				
2,4-Dimethylph	-			U	ND	ug/kg				
2,4-Dinitrophen				U	ND	ug/kg				
2,4-Dinitrotolue				U	ND	ug/kg				
2,6-Dinitrotolue				υ	ND	ug/kg				
2-Chloronaphth				Ų	ND	ug/kg				
2-Chlorophenol				U	ND	ug/kg				· .
2-Methyl-4,6-di				U	ND	ug/kg				
2-Methylnaphth	alene			ប	ND	ug/kg				
2-Nitrophenol				U	ND	ug/kg				

		<u>ve su</u>	<u>unar y</u>						
Workorder: 66454							Page 2	of 4	
Parmame	NOM	Sample Qual		Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal									
Batch 199277									
3,3'-Dichlorobenzidiae		U	ND	ug/kg					
4-Bromophenylphenylether		Ŭ	ND	ug/kg					
4-Chloro-3-methylphano)		Ū	ND	ug/kg					
4-Chloroaniline		U	ND	ug/kg					
4-Chlorophenylphenylether		U	ND	ug/kg					
4-Nitrophenol		U	ND	ug/kg		1			
Acenaphthene		U	ND	ug/kg					
Aconaphihylene		U	ND	ug/kg					
Anthracene		υ	ND	ug/kg					
Benzo(a)anthracene		Ų	ND	ug/kg					
Benzo(a)pyrene		U	ND	ug/kg					
Benzo(b)fluoranthene		σ	ND	ug/kg					
Benzo(ghi)perylene		U	ND	ug/kg					
Benzo(k)fluoranthene		υ	ND	ug/kg					
Butylbenzylphthalate		U	ND	ug/kg					
Carbazole		U	ND	ug/cg					
Chrysene		U	ND	ug/kg					
Di-n-butylphthalate		- U	ND	ug/kg					
Di-n-octylphthalate		υ	ND	ug/kg					
Dibenzo(a,h)anthracene		U	ND	ug/kg					
Dibenzofuran		· U	ND	ug/kg					
Diethylphthalate		U	ND	ug/kg					
Dimethylphthalate		U	ND	ug/kg					
Diphenylamine		ប	ND	ug/kg					
Fluoranthene		U	ND	ug/kg					
Fluorene		U	ND	ug/kg					
Hexachlorobenzene		U	ND	ug/kg					
Hexachlorobutadiene		U	ND	ug/kg					
Hexachlorocyclopentadiene		U	ND	ug/kg					
Hexachloroethane		U	ND	ug/kg					
Indeno(1,2,3-cd)pyrene Isophorone		ប ប	ND	ug/kg				-	
N-Nitrosodipropylamine		U U	ND ND	ug/kg				•	
Naphthalenc		U	ND	ug/kg					
Nitrobenzene		່ປ	ND	ug/kg ug/kg					
Pentachlorophenol		Ŭ	ND	ug/kg					
Phenanthrene		Ŭ	ND	ug/kg					
Phenol		Ŭ	ND	ug/kg					
Pyrene		Ŭ	ND	ug/kg					
bis(2-Chloroethoxy)methane		Ŭ	ND	ug/kg					
bis(2-Chloroethyl) other		Ŭ	ND	ug/kg					
bis(2-Chloroisopropyl)ether		Ŭ	ND	ug/kg					
bis(2-Ethylhexyl)phthalate		1	89.0	ug/kg		-			
m.p-Cresols		ប	ND	ug/kg					
m-Nitroaniline		Ū	ND	ug/kg					
o-Cresol		Ū	ND	ug/kg					
o-Niroaniline		U	ND	ug/kg					
p-Nitroaniline		U	ND	ug/kg	_				
					-				

·				•		•				
Workorder: 66454							Page 3	of 4		_
Parmane	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
Semi-Votatiles-GC/M5 Federal Batch 199277										
**2,4,6-Tribromophenol	3330		2050	ug/kg		62	(23%-111%)			
**2-Fluorobiphenyl	1670		805	ug/kg		48	(21%-104%)			
**2-Flaorophenol	3330		1590	ug/kg		48	(22%-93%)		·	
**Nitrobenzene-d5	1670		689	ug/kg		41	(24%-97%)			
**Phenol-d5	3330		1360	ug/kg		41	(22%-99%)			
**p-Terphenyl-d14	1670		1180	ug/kg		71	(30%-133%)			
QC1200295105 66454009 MS										
1,2,4-Trichlorobenzene	1670 U	ND	785	ug/kg		47	(15%-112%)		09/09/0:	2 16:51
1,4-Dichlorobenzene	1670 U	ND	624	ug/kg		37	(19%-89%)			
2,4,5-Trichlorophenot	. 3330 U	ND	2650	ug/kg		80				
2,4,6-Trichlomphenol	3330 U	ND	2060	ug/kg		62				
2,4-Dinitrotoluene	1670 U	ND	1390	ug/kg		83	(32%-117%)			
2-Chlorophenol	3330 U	ND	1660	ug/kg		50	(13%-101%)			
4-Chlom-3-methylphenol	3330 U	ND	2410	ug/kg		72	(23%-114%)			
4-Nitrophenol	3330 U	ND	2150	ug/kg		65	(20%-126%)			
Acenaphthene	1670 U	ND	1040	ug/kg		62	(15%-114%)			
Hexachlorobenzene	1670 U	ND	1400	ug/kg		84				
Hexachlorobutadiene	1670 U	ND	786	ug/kg		47				
Hexachloroetbane	1670 U	ND	555	u <u>e</u> /kg		33				
N-Nitrosodipropylamine	1670 U	ND	826	ug/kg		50	(18%-106%)			
Nitrobenzene	1670 ປ	ND	803	ug/kg		48	•			
Peniachlorophenol	3330 U	ND	2860	ug/kg		86	(34%-110%)			
Phenol	3330 U		1740	ug/kg			(17%-104%)			
Pyrene	1670 U		1310	ug/kg		-	(26%-130%)			
m,p-Cresols	3330 U		1890	u <u>c</u> /kg		57	(
o-Cresol	3330 U		2010	ug/kg		60				
**2,4,6-Tribromophenol	3330	• -	2950	ug/kg			(23%-111%)			
**2-Fluorobiphenyl	1670		819				(21%-104%)		-	•
**2-Fluorophenol	3330		1680	ug/kg		50	(22%-93%)			
**Nitrobenzene-d5	1670		709	ug/kg		43	(24%-97%)			
**Phenol-d5	3330		1740	ug/kg		52	(22%-99%)			
**p-Terphonyl-d14	1670		1350	ug/kg			(30%-133%)			
QC1200295106 66454009 MSD							• ••• •			
1,2,4-Trichlorobenzene	1670 U	ND	742	ug/kg	6	45	(0%-31%)		09/09/02	17:10
1,4-Dichlorobenzene	1670 U	ND	547	ug/kg	i3	33	(0%-36%)			
2,4,5-Trichlorophenol	3330 U	ND	2450	ug/kg	8	73				
2,4,6-Trichlorophenol	3330 U	ND	1990	ug/kg	4	60				
2,4-Dinitrololuene	1670 U	ND	1330	ug/kg	5	80	(0%-37%)			
2-Chloropheuol	3330 U	ND	1600	ug/kg	3	48	(0%-34%)			
4-Chloro-3-methylphenol	3330 U	ND	2390	ug/kg	1	72	(0%-34%)			
4-Nitrophenol	3330 U	ND	2470	ug/kg	14	74	(0%-35%)			
Accnaphthene	1670 U		925	ug/kg	11	56	(0%-33%)			
Hexachlorobenzene	1670 U	ND	1330	ug/kg	5	80				
Hexachlorobutadiene	1670 U	ND	702	ug/kg	11	42				
Hexachloroethane	1670 U		480	ug/kg	14	29				
N-Nitrosodipropylamine	1670 U	ND	775	ug/kg	6	47	(0%-29%)			
Nitrobenzene	1670 U	ND	738	ug/kg	9	44				
Pentachlorophenol	3330 U		2590	ug/kg	10	78	(0%-40%)			
		- 1407	AL	- H - P	14		10/0-10/07			

Workorder: 66454								Page 4 of 4	
Parimianie	NOM		Sample Qual		Units	RPD%	REC%	Range Anist	Date Time
Semi-Volatiles-GC/MS Federal Batch 199277									
Phonol	3330	U	ND	1650	ug/kg	5	50	(0%-37%)	
Pyrene	1670	U	ND	1210	ug/kg	8	73	(0%-39%)	
m.p-Cresols	3330	Ų	ND	1790	ug/kg	6	54		
o-Cresol	3330	U	ND	1850	ug/kg	8	56		
**2,4,6-Tribromophenol	3330		•	2900	ug/kg		87	(23%-111%)	
**2-Fluorobiphenyl	1670			792	ug/kg		48	(21%-104%)	
**2-Fluorophenol	3330			1570	ug/kg		47	(22%-93%)	
**Nitrobenzene-d5	1670			666	ug/kg		40	(24%-97%)	
**Phenol-45	3330			1680	ug/kg		51	(22%-99%)	•
**p-Terphenyl-d14	1670			1260	ng/kg		76	(30%-133%)	

Notes:

RER is calculated at the 95% confidence level (2-sigma). The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where it

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

HPLC Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Nitroaromatics and Nitramines by High Performance Liquid Chromatography (HPLC)
Analytical Method:	SW846 8330
Prep Method:	SW846 8330 PREP
Analytical Batch Number:	199935
Prep Batch Number:	199934

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200296584	XBLK01 (Blank)
1200296585	XBLK01LCS (Laboratory Control Sample)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV)requirements have been met for this SDG.

Page 2 of 4

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

One of the required spiking analytes was not within the SNLS 80-120 acceptance limits in the laboratory control sample (LCS). 4-Amino-2,6DNT failed at 79.9% put passed the GEL SPC limit. The SPC limits are on the Certificate of Analysis. The data is reported per the client without reextraction. Please see the email in the Miscellaneous Section. Please see nonconformance report 4307.

QC Sample Designation

A matrix spike was performed on a client sample in SDG 66610

MS Recovery Statement

All the matrix spike recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 4307 was generated for this SDG.

One of the required spiking analytes was not within the SNLS 80-120 acceptance limits in the laboratory control sample (LCS). 4-Amino-2,6DNT failed at 79.9% put passed the GEL SPC limit. The SPC limits are on the Certificate of Analysis. The data is reported per the client without reextraction. Please see the email in the Miscellaneous Section. Please see nonconformance report 4307.

Manual Integration

No manual integrations were required for any data file in this SDG.

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

The samples were concentrated prior to analysis to achieve the required detection limit.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: thele at Maren Date: 10/01/02

Page 4 of 4

Report Date: October 1, 2002 Page 1 of 2

			<u> </u>	CBU	unnar y			Penort D	ate: October	1 2002		
Client : Soudia Nation MS-0756		Laboratories						VCM11 D	Page 1		•	
	P.O. Box 5800											
	Albuquerque, N	ew Mexico										
Contact:	Pamela M. Pulss	ant										
Workorder:	66454											
Рагтоате	······································	NOM	Sample	Qual	QČ	Units	RPD%	REC%	Range	Anlst	Date	Time
HPLC Explosive	s Federal											
Batch	199935											
OC1200296	SES LCS								1			
1,3,5-Trinitrob		800			723	ug/kg	. ·	90	(77%-124%)	ЛW	09/14/0	2 21:57
2.4.6 Trinitroto		800			735	ug/kg		92	(80%-120%)			
2,4-Dinitrotolu		800			693	ug/kg		87	(77%-122%)			
2,6-Dinitrotolu		800			740	ug/kg		93	(74%-121%)			
2-Amino-4,6-d	initrotoluene	800			711	ug/kg		89	(81%-125%)			
4-Amino-2,6-d		800			639	ug/kg		80	(79%-123%)			
HMX		800			776	ug/kg		97	(84%-131%)			
Nitropenzene		800			684	ug/kg		86	(75%-125%)			
RDX		800			755	ug/kg		94	(80%-123%)			
Tetryl		800			586	ug/kg		73	(65%-124%)			
m-Dinitrobenz	ene	800			717	ug/kg		90	(77%-124%)			
m-Nitrotoluene		800	,		689	ug/kg		86	(77%-117%)			
o-Nitrotoluene	-	800			688	ug/kg		86	(75%-119%)			
p-Nitrotalucne		800			701	ug/kg		88	(76%-121%)		•	
**1,2-dinitrobenz		400	•		373	ug/kg		93	(71%-118%)			
QC1200296					515	49.49		22	(/1%-110%)			
1,3,5-Trinitrob				U	ND	ug/kg					09/14/0	2 21:16
2,4,6-Trinitrou				ັບ	ND	ug/kg						
2.4-Dinitrotolu				Ū	ND	ug/kg						
2,6-Dinitrotola				Ũ	ND	ug/kg						
2-Amino-4,6-0				Ŭ	ND	ug/kg						
4-Amino-2,6-d				Ŭ	ND	ug/kg		•				
HMX				ŭ	ND	ug/kg						
Nitrobenzene				Ŭ	ND	ug/kg						
RDX				Ŭ	ND	ug/kg						
Tetryl				Ü	DN	ug/kg						
m-Dinitrobenz				Ŭ	ND	ug/kg						
m-Nitrotolueus				Ŭ	ND	ug/kg						
o-Nitrololuene				Ŭ	ND	ug/kg						
p-Nitrotoluene				បី	ND	ug/kg						
**1,2-dinitroben:		400		Ū	378	ug/kg		94	(71%-118%)			
	586 66610009 MS	400			3/4	05/Kg		~	(71/0-116/0)			
1,3,5-Trinitrob		800	U ND		760	ug/kg		95	(66%-133%)		09/14/02	2 23:21
2,4,6-Trinitrote			U ND		761	ug/kg		95	(77%-132%)			
2,4-Dinitrotolu		800	U ND		744	ug/kg		93	(61%-134%)			
2,6-Dinitrotolu			U ND	•	811	ug/kg		101	(70%-121%)			
2-Amino-4,6-d		800	U ND		729	ug/kg		91	(79%-121%)			
4-Amino-2,6-d		800						91 79				
4-Amino-2,6-0 HMX	unition cinene		-		629	ug/kg		•	(71%-120%)			
Nitrobenzene		800	U ND U ND		789	ug/kg		99 00	(75%-138%) (70% 100%)			
RDX					732	ug/kg		92 95	(72%-120%)			
		800	U ND		760	ug/kg		95	(61%-136%)			
Tetryi		800	U ND		654	ug/kg		82	(65%-135%)			

38

Workorder: 66454					Page 2 of 2					
Parmname	NOM	〔 <u> </u>	Sample Qual	QC	Units	RPD%	REC%	Range	Anki	Date Time
HPLC Explosives Federal Batch 199935										
m-Dinitrobenzone	800	U	ND	770	ug/kg		96	(75%-125%)		
m-Nitrotoluene	800	U	ND	741	ug/kg		93	(73%-116%)		
o-Nitrololuene	800	° U	ND	740	ug/kg		93	(68%-122%)		
p-Nitroiolvene	800	U	ND	769	ng/kg		96	(67%-125%)		
**1,2-dinitrobenzene	800		377	726	ng/kg	·	91	(71%-118%)		
QC1200296587 66610009 MSD										
1,3,5-Trinitrobenzene	800	U	ND	797	ug/kg	5	100	(0%-20%)		09/15/02 00:03
2,4,6-Trinitrotoluene	800	U	ND	805	ug/kg	6	101	(0%-20%)		
2,4-Dinitrosoluenc	800	U	ND	, 77 7	ug/kg	4	97	(0%-24%)		
2,6-Dinitratoluene	800	U	ND	845	ug/kg	4	106	. (0%-21%)		·.
2-Amino-4,6-dinitrotoluene	800	U	ND	757	ug/kg	4	95	(0%-20%)		
4-Amino-2,6-dinitrotolucae	. 800	Ų	ND	631	ug/kg	0	79	(0%-20%)		
HMX	800	Ŭ	ND	\$25	ug/kg	4	103	(0%-38%)		
Nitrobenzene	800	υ	ND	759	ug/kg	4	95	(0%-21%)		
RDX	800	Ŭ	ND	788	ug/kg	4	99	(0%-35%)		
Tetryl	800	U	ND	663	ug/kg	1	83	(0%-30%)		
m-Dinitrobenzene	800	U	ND	814	ug/kg	5	102	(0%-23%)		
m-Nitrotoluene	800	U	ND	764	ug/kg	3	96	(0%-20%)		
o-Nitrotoluene	800	U	ND	763	ug/kg	3	95	(0%-23%)		
p-Nitrotoluene	800	U	ND	786	ug/kg	2	98	(0%-22%)		
**1,2-dinitrobenzene	400		377	454	ug/kg		113	(71%-118%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where ti

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

PCB Case Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Polychlorinated Biphenyls by Method 8082				
Analytical Method:	SW846 8082				
Prep Method:	SW846 3550B				
Analytical Batch Number:	199271				
Prep Batch Number:	199270				

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295091	PBLK01(method Blank)
1200295092	PBLK01LCS(Laboratory Control Sample)
1200295093	059781-002MS(Matrix Spike)
1200295094	059781-002MSD(Matrix Spike Duplicate)

SNLS SDG#66454 - PCB

Page 1 of 5

System Configuration

Chromatographic Columns

Column ID	Column Description						
J&W1	3-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um 3-608 Durabond stationary phase* 30m x 0.53mm x 0.5um						
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um						
J&W3	B-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um B-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 5um						
J&₩4	B-608 Durabond stationary phase* 30m x 0.53mm x .83um B-XLB* 30m x 0.53mm x 1.5um						
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um						
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um						
RESTEK	Rtx-CLPesticides30m x 0.25mm x 0.25umRtx-CLPesticides II30m x 0.25mm x 0.20um						
	* Durabond and DB-XLB are trademarks of J & W.						

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

SNLS SDG#66454 - PCB

Page 2 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CVS Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were not within the established acceptance criteria for this SDG. The surrogate recovery for sample 66459010 was outside the surrogate recovery criteria due to dilution.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was selected for the PCB method QC:

Client	Sam	ple ID#	

Laboratory Sample ID#

059781-002 66454015

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

SNLS SDG#66454 - PCB

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All samples underwent sulfur and alumina cleanup procedure.

Sample Dilutions

The following sample was diluted due to the presence of over range target analytes in the sample:

Sample ID	Dilutions
66454010	5X

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and samples required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations are performed, copies of all manual integration peak profiles will be included in the raw data section of this package.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a nondetect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm". Some samples contained more than one PCB. The quantitation of PCB may be elevated due to overlapping PCB patterns.

SNLS SDG#66454 - PCB

Page 4 of 5

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

SNLS SDG#66454 • PCB

Page 5 of 5

QC Summary

Report Date: September 26, 2002 Page 1 of 2

Client :	Sandia National Laboratories
	MS-0756
	P.O. Box 5800
	Albuquerque, New Mexico
Contact:	Pamela M. Puissant

Workorder: 66454

Parmname	NOM		Sample	Quai	QC	Units	RPD%	REC	A Range	Anist	Date Time
Semi-Volatiles-PCB Federal Batch 199271				,							
QC1200295092 LCS									· · · .		
Aroclor-1260	33.3				25.9	ug/kg		78	(48%-116%)	GH1	09/13/02 15:49
**4cmx	6,67				4.77	ug/kg		72	(31%-120%)		
**Decachlorobiphenyl	6.67				5.10	ug/kg		77	(34%-115%)		
QCI200295091 MB											
Arocior-1016				U	ND	ug/kg					09/13/02 15:37
Aroclor-1221				U	ND	ug/kg					
Aroclor-1232				Ų	ND	ug/kg					
Arccior-1242				υ	ND	ug/kg					
Araclar-1248				U	ND	ug/kg					
Aroclor-1254			•	υ	ND	ug/kg					
Aroclor-1260				U	ND	ug/kg					
**4cmx	6.67				4.64	ug/kg		70	(31%-120%)		
**Decachlorobiphenyl	6.67				5.30	ug/kg		80	(34%-115%)		
QC1200295093 66454015 MS									,,		
Arocker-1260	33.3	υ	ND		28.1	ug/kg		84	(36%-134%)		09/13/02 18:51
**4cmx	6.67				4.30	ug/kg		65	(31%-120%)		
**Decachlorobiphenyl	6.67				5.99	ug/kg		90	(34%-115%)	•	
QC1200295094 66454015 MSD						00		• •	V		
Aroclor-1260	33.3	U	ND		27.3	ug/kg	3	82	(0%-30%)		09/13/02 19:04
**4cmx	6.67				4.68	ug/kg		70	(31%-120%)		
**Decachlorobiphenyl	6.67				5.06	ug/kg		76	(34%-115%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation

X Uncertain identification for gamma spectroscopy

QC Summary

Workorder:	66454				-		Page 2	of 2		
Parmname		NOM	Sample Qual	QC	Units RPD	6 REC%	Range	Anlst	Date Time	-
N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.										

 The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than SX the RL, a control limit of +/the RL is used to evaluate the DUP result.

105

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Inorganic Case Narrative for Sandia National Laboratory SDG# 66454

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295257	Method Blank (MB) ICP-199346/ 199345
1200295261	Laboratory Control Sample (LCS)
1200295259	059775-002L (66454009) Serial Dilution (SD)
1200295258	059775-002D (66454009) Sample Duplicate (DUP)
1200295260	059775-002S (66454009) Matrix Spike (MS)
1200295327	Method Blank (MB) CVAA-199386/199385
1200295330	Laboratory Control Sample (LCS)

Method/Analysis Information:

Analytical Batch #:	199346, 199386
Prep Batch #:	19934 5, 1993 85
Standard Operating Procedure:	GL-MA-E-013 REV.6; GL-MA-E-010 REV.10
Analytical Method:	SW846 6010B; SW846 7471A
Prep Method:	SW846 3050B; SW846 7471A

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits except selenium.

Continuing Calibration (CCV) Requirements

All CCV standards associated with samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) associated with samples from this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 059775-002(66454009) was designated as the quality control sample for the ICP batch. Sample 059710-002(66195002) from SNLS SDG 66189-1 was designated as the quality control sample for ICP and the CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria, with the exceptions of arsenic, chromium, lead, and silver, as indicated by the "*" qualifiers on the QC summary.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw

element concentrations that are at least 50X the instrument detection limit (IDL) for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. Several samples required further dilution for silver in order to bring the raw values within the linear range of the instrument. No dilutions were required for the CVAA analysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: allisool Se

Date: 930/2

Client :	Sandia Nat	ional Labo	pratories								Report D	ate: Septembi Page 1		0213.1 -11388.0**
	MS-0756 P.O. Box 54 Albuquerq Pamela M.	ue, New M	lexico					,						
Workorder:	66454	A MISSALIT												
Parmname			NOM	<u> </u>	Sample	Qual	Q	Ċ	Units	RPD%	RĖC Ś	Range	Anist	Date Time
Metals Analysis-IC					• • •				·····					
	99346													
QC1200295258	66454009	DUP			2.07			6 14		£0±		()) Ø. 10.07 \	uec	09/23/02 22:44
Arsenic Bariom					3.03 59.2			5.14 58 <i>.</i> 6	mg/kg mg/kg	68* 1		(0%-20%) (0%-20%)	HSC	U7/23/UZ 22:44 /
Cadmium				J	0.151	J		281	mg/kg	N/A ^		(+/-0.495)		
Chromium				•	12.3	,		24.9	mg/kg	68*		(0%-20%)		
Lead					22.2			70.2	mg/kg	104*		(0%-20%)		
Selenium				ប	ND	J		380	mg/kg	N/A		(+/-0.495)		
Silver					184			241	mg/kg	27*		(0%-20%)		09/25/02 22:43
QC1200295261	LCS		·											
Arsenic	•		132					138	mg/kg		104	(79%-121%)		09/23/02 22:26
Bariom			781					813	mg/kg		104	(80%-120%)		
Cadmium			51.5					53.1	mg/kg		103	(81%-119%)		·
Chromium			142					149	mg/kg		105	(77%-123%)		
Lend			52.9					59.4	mg/kg	•	112	(78%-123%)	-	
Scienium			60.9					56.1	mg/kg		109	(72%-128%)		
Silver	100		125					138	mg/kg		111	(55%-145%)		
QC1200295257 Arsenic	MB					ប		ND	mg/kg					09/23/02 22:20
Barium						័ប័		ND	mg/kg					UN EUI VA 25.60 '
Cadmium						័ប		ND	mg/kg			•		
Chromium						ŭ		ND	mg/kg					
Lead	•					Ŭ		ND	mg/kg	· .				
Selenium						ບັ		ND	mg/kg					
Silver						Ŭ		ND	mg/kg	•				
QC1200295250	65454009	MS										1		
Arsenic			24.3		3.03	•		27.3	mg/kg		100	(75%-125%)		09/23/02 22:50
Barium			24.3		59.2			32.9	mg/kg		98	(75%-125%)		
Cadmium			24.3	J	0.151			23.5	mg/kg		96	(75%-125%)		
Chromium			24.3		12.3			40.0	mg/kg		114	(75%-125%)		
Lead .			24.3		22.2			19.9	mg/kg		114	(75%-125%)		
Scienium			24.3	U	ND			23.1	mg/kg		94	(75%-125%)		
ilver QC1200295255	66454009	SDILT	24.3		184			217	mg/kg		N/A	(75%-125%)		09/25/02 22:49
Arsenic					31.5		5	5.53	ug/L	12.3				09/23/02 22:38 -
Barium					616			121	ug/L	1.53				
Cadmium				J	1.58	U		ND	ug/L	N/A				
Chromium					128			26.2	ug/L	1. 93				
Lead					231		. 4	16.9	ug/L	1.55				
Selenium				U	ND	J		2.86	ug/L	N/A				
Silver					383			/4:1	ug/L	3.26				09/25/02 22:37

-

QC1200295328 66195002 DUP

QC Summary

Workorder: 66454			,						Page 2	of 2		
Parmname	NOM	•	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date T	ime
Metals Analysis-Mercury Federal Batch 199386												
Mercury		J	0.00106	U	ND	mg/kg	N/A		(+/-0.00908)	NOR1	09/12/02 I	1:24
QC1200295330 LCS · · · ·	4.50	÷			3,54	mg/kg	-	79	(68%-132%)		09/12/02 1	11.20
OC1200295327 MB	4.50					1118/114			(00/0-[52/0]		0,1201	
Mercury				U	ND	mg/kg					09/12/02 1	11:18
QC1200295329 66195002 MS Mercury	0.0984	J	0.00106		0.104	mg/kg		104	(75%-125%)		09/12/02 1	1:26

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

* Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the

- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample doplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

General Chemistry Narrative Sandia National Labs (SNLS) SDG 66454

Method/Analysis Information

Procedure:	Total Cyanide
Analytical Method:	SW846 9012A
Prep Method:	SW846 9010B Prep
Analytical Batch Number:	199408
Prep Batch Number:	199407

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200295377	MB for batch 199408
1200295378	LCS for batch 199408
1200295379	DUP of 66454009
1200295380	MS of 66454009
1200295392	LCS for batch 199407

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

<u>Quality Control (QC) Information:</u>

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 66454009.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200295392.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure:	Hexavalent Chromium
Analytical Method:	SW846 7196A
Prep Method:	SW846 3060A
Analytical Batch Number:	200893
Prep Batch Number:	200892

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
66454009	059775-002
66454010	059776-002
66454011	059777-002
66454012	059778-002
66454013	059779-002
66454014	059780-002
66454015	059781-002
66454016	059782-002
1200298925	MB for batch 200893
1200298926	DUP of 66454009
1200298927	DUP of 66610011
1200298928	MS of 66454009
1200298929	MS of 66610011
1200298930	LCS for batch 200893

42.

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 66454009, 66610011.

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for sample 66610011 are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable. The Relative Percent Difference between the sample and duplicate for sample 66454009 was within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Date: 9/24/02

QC Summary

Report Date: September 25, 2002 Page 1 of 2

Range

Anist

REC%

Date Time

Client :	Sandia Nat MS-0756 P.O. Box 5 Albuquerq	800 Jue, New N							
Contact:	Pamela M.	Puissant							
Workarder:	66454						-		
Parmname			NOM	~ .	Sample	Qual	QC	Units	RPD%
Repid Flow Ans Baith	iysis Federal 199408								
QC12002953 Cyanide, Total	66454009	DUP		1	0.0573	J	0.0664	mg/kg	N/A ^
QC1200295 Cyanide, Total			2.50				2.27	mg/kg	
QC12002953 Cyanide, Total	• • • • •		277				286	mg/kg	
OC12002055	77 MB								

dia National Y aba

e.

Rapid Flow Analysis Federal Batch 199408										
QC1200295379 66454009 DUP Cyanide, Total		1	0.0573	J	0.0664	mg/kg	N/A ^		(+/-0.208) ADF	09/09/02 10:27
QC1200295378 LCS Cyanide, Total	2,50				2.27	mg/kg		91	(81%-125%)	09/09/02 10:23
QC1200295392 LCS Cyanide, Total	277				286	mg/kg		103	(81%-125%)	09/09/02 10:25
QC1200295377 MB	417				-			100	(01,0-123,0)	
Cyanide, Total QC1200295380 66454009 MS				U	ND	mg/kg				09/09/02 10:22
Cyanide, Total Spectrometric Analysis Federal	4.17	J	0.0573		4.27	mg/kg		101	(55%-145%)	09/09/02 10:28
Batch 200893							•			
QC1200298926 66454009 DUP Hexavalent Chromium			0.454		0.412	mg/kg	10 ^		(+/-0.0959) BEP2	09/21/02 07:00
QC1200298927 66610011 DUP Hexavalent Chromium		J	0.0704	1	0.0593	mg/kg	N/A ^		(+/-0.0988)	
QC1200298930 LCS Hexavalent Chromium QC1200298925 MB	0.971				0.932	mg/kg		96	(72%-121%)	
Hexavalent Chromium QC1200298928 66454009 MS				U	ND	mg/kg				
Hexavalent Chromium	1.01		Q.4 5 4		1.54	mg/kg		108	(49%-130%)	
QC1200298929 66610011 MS Hexavalent Chromium	0.998	J	0.0704		0.928	mg/kg		86	(49%-130%)	

Notes:

~12

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the sample or the duplicate RPD's are not applicable where the sample of the sample or the duplicate RPD's are not applicable where the sample of the sample or the sample of th

** Indicates analyte is a surrogate compound.

B The analyte was found in the blank above the effective MDL.

H Holding time was exceeded

J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

P The response between the confirmation column and the primary column is >40%D

U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1

X Presumptive evidence that the analyte is not present. Please see narrative for further information.

X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.

X Uncertain identification for gamma spectroscopy,

QC Summary

Workorder:	66454		·					Page 2	i of 2		
Parmname		NOM	Sample Qual	QC.	Units	_RPD%	REC%	Range	Anist	Date Time	
N/A indicates that miles account limits do an analy when comple constanting exceeds to its acce by a factor of 4 or more											

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than

five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 66454

Method/Analysis Information Batch Number: 200142

Batch Number: Procedure: Analytical Method:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water EPA 900.0

Client ID 059775-002 059776-002 059777-002 059778-002 059780-002 059780-002 059781-002 059782-002 MB for batch 200142 059710-002(66195002DUP) 059710-002(66195002MSD) LCS for batch 200142

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 13, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample(s) was used for QC: 66195002. The QC sample is from SNLS work order 66195.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

44

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Additional Comments

Sample 66454016 did not meet the beta required detection limit. No more volume could be used due to not exceeding the maximum net weight limit. The samples counted for 500 min.

Comments

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

Reviewer:	h.	none	Date:	25 Sup	2002

....

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary

•			- OC	: Su	mmary						
Client :	Sandia National	Laboratorics	بريد الكري					Keport L	ate: Septemb Page 1		002
-	MS-9756								Y affe T	01 2	
	P.O. Box 5840 Alhaquerque, N	iew Merico									
	Pamela M. Puis										
Workorder:	66454										
Раналае		NOM	Sample (Jual	QC	Units	RER	REC%	Range	Aniat	Date Tim
Gravingtrie Solids				-							
Batch . 19	9224				•	•					
	66454009 DU	P ·							10.00 m (m)		6 5 6 6 6 6 6 6 6
Moistore	•		3.90		3.59	percent	8		(0%-24%)	MLA	09/04/02 14:3
Rad Gas Flow											
Batch 20	0142	•									
QC1200297098	66195002 DUI	Þ				•					
Alpha			19,3		20.8	pCi/g	0.271		(0 %-20%)	JŠI	09/18/02 01:50
		. Uncert	+/-2.30		+/-2.42						
•		Ť TP U:	2.73		2.86			•:			
Beta .	•		20.8		20.5	pCVg	0.0654		(0%-20%)		
•		Uncert	+/-1.94		+/-2.10		•				
		TPU:	2.12		2.29						
QC1200297101	LCS	9.89	•		10.3	-0%		104	CIEC. 10600		09/18/02 09:53
Alpha		9.89 Uncert			+/-1.10	pCi/g		104	(75%-125%)		09/18/02 09:53
		TPU:			1.43						
Beta		39.7			42.2	pCi/g		106	(75%-125%)		
		Uncert			+/-2.58	hear 2		100	(7,2,4-1,22,0)		
		TPU:		·	3.07						
QC1200297097	MB	24 44									
Alpha				U	0.0251	pCi/g					
-,		Uncerc			+/-0.145						
		TPU:	•		0.145						
Beta				ប	-0.0009	pCi/g					
		Uncert			+/-0.139	-					
		TPU:			0.139						
	66195002 MS	• •									
Alpha		96.9	19.3		97.9	pCi/g		81	(75%-125%)		
		Uncert	+/-2.30		+/-13.5						
		TPU:	2.73		14.6	-0%		95	MEAL 10841		
Beta		390 17	20.8	•	389	pCi/g		CK CK	(75%-125%)		
		Uncert;	+/-1.94 2.12		+/-24.4 27.7		-				
0(*1300387100	66195002 MSI	TPU:	£.1£		41.(
Alpha	WINDUL MISL	95.1	19,3		94.0	pCi/g		79			
		Uncert	+/-2.30		+/-13.0	4					
	•	TPU:	2.73		13.8						
Beta	•	382	20.8	•	380	pCi/g		94			
		Uncert	+/-1.94		+/-23.9	r9					
		TPU:	2.12		29.3						

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary

AA OLKOLOGL ¹ . 00424				,			Page 24	of 2		
Parmane	NOM	Sample Qual	QC	Units	RER	REC%	Range	Ankst	Date Time	
Notes:										

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc, by a factor of 4 or more. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result. For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

C Printed on Recycled Paper.

COC #605747

.

¥

****** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/11/02 4:25:38 PM ********************* - 9/11/0Z Reviewed by: Analyzed by: ******** : SANDERS, M (6135) Customer Customer Sample ID : 059775-003 Lab Sample ID : 20124801 : 6650/1081-SP1-BH1-10-S Sample Description Sample Quantity 828.070 gram : Sample Date/Time : 8/29/02 9:20:00 AM Acquire Start Date/Time : 9/09/02 1:17:02 PM : LAB02 Detector Name Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238	Not Detected		5.90E-001
RA-226	1.43E+000	4.50E-001	6.07E-001
PB-214	5.59E-001	8.54E-002	5.32E-002
BI-214	4.78E-001	7.89E-002	4.32E-002
PB-210	Not Detected		2.27E+001
			•
TH-232	5.61E-001	2.74E-001	1.75E-001
RA-228	7.30E-001	1.32E-001	1.03E-001
AC-228	6.68E-001	1.26E-001	7.97E-002
TH-228	7.04E-001	3.77E-001	5.63E-001
RA-224	8.55E-001	1.86E-001	6.33E-002
PB-212	6.76E-001	9.87E-002	3.34E-002
BI-212	6.23E-001	2.42E-001	3.27E-001
TL-208	6.14E-001	1.02E-001	6.72E-002
U-235	Not Detected		1.88E-001
TH-231	Not Detected		9.18E+000
PA-231	Not Detected		1.14E+000
TH-227	Not Detected		2.90E-001
RA-223	Not Detected		2.78E-001
RN-219	Not Detected		2.94E-001
PB-211	Not Detected		6.45E-001
TL-207	Not Detected		1.04E+001
	•		
AM-241	Not Detected		3.50E-001
PU-239	Not Detected		3.49E+002
NP-237	Not Detected		1.84E+000
PA-233	Not Detected		4.41E-002
TH-229	Not Detected		2.02E-001

[Summary Report] - Sample ID:

: 20124801

	· .	the second se	· · · · · · · · · · · · · · · · · · ·
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
		********	·
AG-108m	Not Detected		2.88E-002
AG-110m	Not Detected		2.20E-002
BA-133	Not Detected		3.95E-002
BE-7	Not Detected		2.16E-001
CD-115	Not Detected		1.67E+000
CE-139	Not Detected		2.43E-002
CE-141	Not Detected		5.24E-002
CE-144	Not Detected		1.92E-001
CM-243	Not Detected		1.41E-001
CO-56	Not Detected		2.75E-002
CO-57	Not Detected		2.51E-002
CO-58	Not Detected		
CO-60	Not Detected		2.70E-002
CR-51	Not Detected		2.87E-002
CS-134	Not Detected		2.39E-001
CS-137	Not Detected		3.17E-002
EU-152		₽ ∊ ∊∊ ∊ ∊	2.38E-002
EU-152 EU-154	Not Detected		7.37E-002
	Not Detected		1.33E-001
EU-155 FE-59	Not Detected		1.09E-001
	Not Detected		6.65E-002
GD-153	Not Detected		8.33E-002
HG-203	Not Detected		2.99E-002
I-131	Not Detected	~	5.77E-002
IR-192	Not Detected		2.37E-002
K-40	1.55E+001	2.09E+000	2.48E-001
MN-52	Not Detected		9.00E-002
MN-54	Not Detected		2.61E-002
MO-99	Not Detected		3.04 E+00 0
NA-22	Not Detected		3.11E-002
NA-24	Not Detected		5.81E+003
ND-147	Not Detected		3.06E-001
NI-57	Not Detected		6.85 E +000
RU-103	Not Detected		2.51E-002
RU-106	Not Detected		2.24E-001
SB-122	Not Detected		5.13E-001
SB-124	Not Detected		2.49E-002
SB-125	Not Detected		6.46E-002
SN-113	Not Detected		3.14E-002
SR-85	Not Detected		3.08E-002
TA-182	Not Detected		1.20E-001
TA-183	Not Detected		1.37E+000
TL-201	Not Detected		1.66E+000
Y-88	Not Detected		2.12E-002
ZN-65	Not Detected		7.68E-002
ZR-95	Not Detected		4.69E-002
			4.076-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/11/02 4:26:52 PM

: SANDERS, M (6135) : 059776-003 : 20124802 : 6650/1081-SP1-BH1-15-S

Sample Description: 6650/1081-SP1-BH1-15-SSample Quantity: 881.110 gramSample Date/Time: 8/29/02 10:05:00 AMAcquire Start Date/Time: 9/09/02 2:59:06 PMDetector Name: LAB02Elapsed Live/Real Time: 6000 / 6003 seconds

fr 9/11/02

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Reviewed by:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238	Not Detected		5.74E-001
RA-226	1.64E+000	4.49E-001	5.73E-001
PB-214	6.09E-001	9.02E-002	5.08E-002
BI-214	5.04E-001	8.23E-002	4.50E-002
PB-210	Not Detected		2.32E+001
		• . ·	
TH-232	6.75E-001	3.20E-001	1.76E-001
RA-228	6.22E-001	1.16E-001	9.95E-002
AC-228	6.79E-001	1.30E-001	9.17E-002
TH-228	4.99E-001	3.63E-001	5.63E-001
RA-224	7.61E-001	1.67E-001	5.88E-002
PB-212	6,44E-001	9.40E-002	3.27E-002
BI-212	5.36E-001	2,22E-001	3.05E-001
TL-208	6.00E-001	9.99E-002	6.63B-002
•			
U-235	Not Detected		1.90E-001
TH-231	Not Detected		9.29E+000
PA-231	Not Detected		1.10E+000
TH-227	Not Detected		2.80E-001
RA-223	Not Detected		2.82E-001
RN-219	Not Detected		2.85E-001
PB-211	Not Detected		6.51E-001
TL-207	Not Detected	~	1.03E+001
•		•	
AM-241	Not Detected		3.48E-001
PU-239	Not Detected		3.38E+002
NP-237	Not Detected		1.86E+000
PA-233	Not Detected		4.37E-002
TH-229	Not Detected		1.99E-001
		2 - N	

[Summary Report] - Sample ID: : 20124802

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		2.73E-002
AG-110m	Not Detected		2.19E-002
BA-133	Not Detected		3.88E-002
BE-7	Not Detected		2.07E-001
CD-115	Not Detected		1.71E+000
CE-139	Not Detected		2.39E-002
CE-141	Not Detected		5.26E-002
CE-144	Not Detected		1.88E-001
CM-243	Not Detected		1.34E-001
CO-56	Not Detected		2.78E-002
CO-57	Not Detected		2.56E-002
CO-58	Not Detected		2.68E-002
CO-60	Not Detected		2.94E-002
CR-51	Not Detected		2.27E-001
CS-134	Not Detected		3.08E-002
CS-137	Not Detected		2.37E-002
EU-152	Not Detected		7.53E-002
EU-154	Not Detected		1.26E-001
EU-155	Not Detected		1,10E-001
FE-59	Not Detected	BBBBBBBBBBBBB	6.52E-002
GD-153	Not Detected		8.32E-002
HG-203	Not Detected		2.85E-002
I-131	Not Detected		5.62E-002
IR-192	Not Detected		2.25E-002
K-40	1.81E+001	2.41E+000	2.21E-001
MN-52	Not Detected		8.37E-002
MN-54	Not Detected		1.39E-002
MO-99	Not Detected		2.95E+000
NA-22	Not Detected		3.34E-002
NA-24	Not Detected		6.53E+003
ND-147	Not Detected		2.89E-001
NI-57	Not Detected		7.48E+000
RU-103	Not Detected		2.40E-002
RU-106	Not Detected	· · · · · · · · · · · · · · ·	2.12E-001
SB-122	Not Detected		5.11E-001
SB-124	Not Detected		2.42E-002
SB-125	Not Detected		6.53E-002
SN-113	Not Detected		3.02E-002
SR-85	Not Detected		2.99E-002
TA-182	Not Detected		1.24E-001
TA-183	Not Detected		1.37E+000
TL-201	Not Detected		1.67E+000
Y-88	Not Detected		2.27E-002
ZN-65	Not Detected		8.07E-002
ZR-95	Not Detected		4.49E-002
-			

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/09/02 6:21:42 PM ***** Analyzed by: ****** Reviewed by: ****** ************ Customer : SANDERS, M (6135) Customer Sample ID : 059777-003 Lab Sample ID : 20124803 : 6650/1081-SP2-BH1-12-S Sample Description 791.740 gram Sample Quantity : Sample Date/Time 8/29/02 11:00:00 AM : Acquire Start Date/Time : 9/09/02 4:41:14 PM Detector Name : LAB02

Comments:

Elapsed Live/Real Time :

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

6000 / 6003 seconds

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238 RA-226 PB-214	Not Detected 1.03E+000 5.90E-001	4.48E-001 9.00E-002	6.07E-001 6.55E-001 5.59E-002
BI-214	4.97E-001	8.29E-002	4.79E-002
PB-210	Not Detected		2.37E+001
TH-232	5.52E-001	2.73E-001	1.87E-001
RA-228	6.35E-001	1.24E-001	1.19E-001
AC-228	5.80E-001	1.19E-001	9.51E-002
TH-228	4.98E-001	3.67E-001	5.69E-001
RA-224	5.42E-001	1.34E-001	7.60E-002
PB-212	6.10E-001	8.99E-002	3.34E-002
BI-212	7.08E-001	2.34E-001	2.92E-001
TL-208	5.20E-001	9.26E-002	7.06E-002
U-235 TH-231	Not Detected Not Detected		1.92E-001 9.55E+000 1.12E+000
PA-231 TH-227 RA-223	Not Detected Not Detected Not Detected		2.90E-001 2.89E-001
RN-219	Not Detected		3.07E-001
PB-211	Not Detected		6.93E-001
TL-207	Not Detected		1.09E+001
AM-241	Not Detected		3.55E-001
PU-239	Not Detected		3.53E+002
NP-237	Not Detected		1.88E+000
PA-233	Not Detected		4.77E-002
TH-229	Not Detected		2.03E-001

[Summary Report] - Sample ID: : 20124803

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		3.14E-002
AG-110m	Not Detected		2.36E-002
BA-133	Not Detected		4.07E-002
BE-7	Not Detected		2.20E-001
CD-115	Not Detected		1.76E+000
CE-139	Not Detected		2.50E-002
CE-141	Not Detected		5.23E-002
CE-144	Not Detected		2.02E-001
CM-243	Not Detected		1.40E-001
CO-56	Not Detected		2.92E-002
CO-57	Not Detected		2.57E-002
CO-58	Not Detected		2.85E-002
CO-60	Not Detected		3.15E-002
CR-51	Not Detected		2.45E-001
CS-134	Not Detected		3.27E-002
CS-137	Not Detected		2.52E-002
EU-152	Not Detected		7.49E-002
EU-154	Not Detected		1.45E-001
EU-155	Not Detected		1.11E-001
FE-59	Not Detected		6.97E-002
GD-153	Not Detected		8.53E-002
HG-203	Not Detected		2.95E-002
I-131	Not Detected		6.02E-002
IR-192	Not Detected		2.44E-002
K-40	1.86E+001	2.49E+000	2.79E-001
MN-52	Not Detected		9.70E-002
MN-54	Not Detected		2.84E-002
MO-99	Not Detected	***** <u>*</u> ***	3.09E+000
NA-22	Not Detected		3.48E-002
NA-24	Not Detected		6.92E+003
ND-147	Not Detected		3.05E-001
NI-57	Not Detected		7.65E+000
RU-103	Not Detected		2.71E-002
RU-106	Not Detected		2.20E-001
SB-122	Not Detected		5.86E-001
SB-124	Not Detected		2.59E-002
SB-125	Not Detected		6.83E-002
SN-113	Not Detected		3.20E-002
SR-85	Not Detected		3.26E-002
TA-182	Not Detected		1.34E-001
TA-183	Not Detected		1.41E+000
TL-201	Not Detected		1.70E+000
Y-88	Not Detected		2.11E-002
ZN-65	Not Detected		8.40E-002
ZR-95	Not Detected		4.52E-002
			11020-VV2

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/09/02 8:03:50 PM ****** Reviewed by: Analyzed by: ******* ****** :: SANDERS, M (6135) Customer Customer Sample ID : 059778-003 Lab Sample ID : 20124804 Sample Description : 6650/1081-SP2-BH1-17-S Sample Quantity 772.690 gram : : 8/29/02 11:55:00 AM Sample Date/Time Acquire Start Date/Time : 9/09/02 6:23:32 PM Detector Name : LAB02

Comments:

Elapsed Live/Real Time : 6000 /

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

6002 seconds

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238	Not Detected	4.28E-001	5.72E-001
RA-226	1.44E+000		5.60E-001
PB-214 BI-214 PB-210	4.66E-001 4.36E-001 Not Detected	7.57E-002 7.40E-002	5.52E-002 4.30E-002 2.25E+001
TH-232	5.89E-001	2.81E-001	1.57E-001
RA-228	5.32E-001	1.09E-001	1.07E-001
AC-228 TH-228 RA-224	4.74E-001 3.60E-001	1.01E-001 3.65E-001 1.44E-001	8.20E-002 5.81E-001 6.82E-002
PB-212	5.41E-001	B.07E-002	3.04E-002
BI-212	5.78E-001	1.94E-001	2.34E-001
TL-208	4.71E-001	8.62E-002	6.75E-002
U-235	Not Detected		1.90E-001
TH-231	Not Detected		9.08E+000
PA-231	Not Detected		1.10E+000
TH-227	Not Detected		2.73E-001
RA-223	Not Detected		2.83E-001
RN-219	Not Detected		2.82E-001
PB-211	Not Detected		6.35E-001
TL-207	Not Detected		1.10E+001
AM-241	Not Detected		3.51E-001
PU-239	Not Detected		3.35E+002
NP-237	Not Detected		1.84E+000
PA-233	Not Detected		4.42E-002
TH-229	Not Detected		1.90E-001

[Summary Report] - Sample ID:

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
-	AG-108m	Not Detected		2.83E-002
	AG-110m	Not Detected		2,28E-002
	BA-133	Not Detected	* * - * = = = - +	3.85E-002
	BE-7	Not Detected		2.05E-001
	CD-115	Not Detected		
	CE-139	Not Detected		2.42E-002
	CE-141	Not Detected	·	5.25E-002
	CE-144	Not Detected		1.91E-001
	CM-243	Not Detected		1.32E-001
	CO-56	Not Detected		2.75E-002
	CO-57	Not Detected		2.44E-002
	CO-58	Not Detected		2.78E-002
	CO-60	Not Detected		2.78E-002
	CR-51	Not Detected		2.29E-001
	CS-134	Not Detected		3.10E-002
	CS-137	Not Detected		2.35E-002
	EU-152	Not Detected		7.13E-002
	EU-154	Not Detected		1.30E-001
	EU-155	Not Detected		1.10E-001
	FE-59	Not Detected		6.51E-002
	GD-153	Not Detected		8.09E-002
	HG-203	Not Detected		2.83E-002
		Not Detected		5.61E-002
	IR-192	Not Detected		2.27E-002
Ľ	K-40	1.57E+001	2.12E+000	2.44E-001
	MN-52	Not Detected		9.98E-002
	MN-54	Not Detected		2.64E-002
	MO-99	Not Detected		2.94E+000
	NA-22	Not Detected		3.27E-002
	NA-24 ND-147	Not Detected Not Detected		7.02E+003 2.97E-001
	NI-57	Not Detected		7.76E+000
	RU-103	Not Detected		2.74E-002
	RU-106	Not Detected		2.11E-001
	SB-122	Not Detected		5.43E-001
	SB-122 SB-124	Not Detected		2.46E-002
	SB-124 SB-125	Not Detected		6.39E-002
	SN-113	Not Detected		2.92E-002
	SR-85	Not Detected		3.00E-002
	TA-182	Not Detected		1.21E-001
	TA-183	Not Detected		1.40E+000
	TL-201	Not Detected		1.66E+000
	Y-88	Not Detected		1.99E-002
	ZN-65	Not Detected		7.81E-002
	ZR-95	Not Detected		4.72E-002
•				

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/09/02 9:45:54 PM Analyzed by: Reviewed by: ****** *********** : SANDERS, M (6135) Customer Customer Sample ID : 059779-003 Lab Sample ID : 20124805 : 6650/1081-SP3-BH1-17-S Sample Description Sample Quantity 703.790 gram : Sample Date/Time : 8/29/02 2:55:00 PM Acquire Start Date/Time : 9/09/02 8:05:35 PM

Comments:

Detector Name

Elapsed Live/Real Time

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

6002 seconds

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-23B	Not Detected	4.35E-001	6.11E-001
RA-226	1.08E+000		6.22E-001
PB-214	5.14E-001	8:19E-002	5.56E-002
BI-214	4.90E-001	8.21E-002	4.50E-002
PB-210	Not Detected		2.50E+001
TH-232	5.57E-001	2.75E-001	1.82E-001
RA-228	5.33E-001	1.13E-001	1.15E-001
AC-228	5.38E-001	1.10E-001	7.76E-002
TH-228	3.16E-001	3.42E-001	5.46E-001
RA-224	6.41E-001	1.57E-001	8.84E-002
PB-212	5.59E-001	8.40E-002	3.40E-002
BI-212	4.58E-001	2.26E-001	3.21E-001
TL-208	4.84E-001	8.89E-002	6.79E-002
U-235	Not Detected		1.94E-001
TH-231	Not Detected		9.61E+000
PA-231	Not Detected		1.14E+000
TH-227	Not Detected		2.90E-001
RA-223	Not Detected		3.01E-001
RN-219	Not Detected		3.15E-001
PB-211	Not Detected		6.90E-001
TL-207	Not Detected		1.08E+001
AM-241	Not Detected		3.74E-001
PU-239 NP-237	Not Detected		3.59E+002 1.97E+000
PA-233	Not Detected Not Detected		4.71E-002
TH-229	Not Detected		2.10E-001

: LAB02

: 6000 /

[Summary Report] - Sample ID: : 20124805

	• • • • • • • • • • • • • • • • • • • •		
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		2.91E-002
AG-110m	Not Detected		2.38E-002
BA-133	Not Detected		4.16B-002
BE-7	Not Detected		2.258-001
CD-115	Not Detected		1.77E+000
CE-139	Not Detected		2.55E-002
CE-141	Not Detected		5.48E-002
CE-144	Not Detected		1.96E-001
CM-243	Not Detected		1.43E-001
CO-56	Not Detected		2.85E-002
CO-57	Not Detected		2.60E-002
CO-58	Not Detected		2.91E-002
CO-60	Not Detected	·	2.69E-002
CR-51	Not Detected	· · · · · · · · · · · · · · · · · · ·	2.52E-001
CS-134	Not Detected		3.43E-002
CS-137	Not Detected		2.47E-002
EU-152	Not Detected		7.65E-002
EU-154	Not Detected		1.34E-001
EU-155	Not Detected		1.14E-001
FE-59	Not Detected		6.67E-002
GD-153	Not Detected		8.80E-002
HG-203	Not Detected		2.99E-002
I-131	Not Detected		6.08E-002
IR-192	Not Detected		2.47E-002
K-40	1.50E+001	2.03E+000	2.72E-001
MN-52	Not Detected		1.03E-001
MN-54	Not Detected		2.91E-002
MO-99	Not Detected		3.02E+000
NA-22	Not Detected		3.59E-002
NA-24	Not Detected		6.74E+003
ND-147	Not Detected		3.10E-001
NI-57	Not Detected		7.82E+000
RU-103	Not Detected		2.78E-002
RU-106	Not Detected		2.18E-001
SB-122	Not Detected		5.61E-001
SB-124	Not Detected		2.65E-002
SB-125	Not Detected		6.81E-002
SN-113	Not Detected		3.16E-002
SR-85	Not Detected		3.32E-002
TA-182	Not Detected		1.29E-001
TA-183	Not Detected		1.48E+000
TL-201	Not Detected		1.69E+000
Y-88	Not Detected		1.89E-002
ZN-65	Not Detected		8.25E-002
ZR-95	Not Detected		5.04E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/09/02 11:27:58 PM ******* - 9/10/02 Analyzed by: Reviewed by: ***** : SANDERS, M (6135) Customer Customer Sample ID : 059780-003 Lab Sample ID : 20124806 : 6650/1081-SP3-BH1-24-S Sample Description gram Sample Quantity 901.820 2 Sample Date/Time 8/29/02 3:35:00 PM : Acquire Start Date/Time : 9/09/02 9:47:39 PM : LAB02 Detector Name Elapsed Live/Real Time 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.08E+000 5.17E-001 . 4.55E-001 Not Detected	3.95E-001 7.93E-002 7.52E-002	5.49E-001 5.56E-001 5.06E-002 4.19E-002 2.13E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	5.10E-001 4.39E-001 3.67E-001 4.59E-001 4.82E-001 5.41E-001 4.51E-001	2.48E-001 9.30E-002 9.14E-002 3.29E-001 1.13E-001 7.17E-002 2.07E-001 7.99E-002	1.56E-001 1.05E-001 7.09E-002 5.19E-001 6.09E-002 2.98E-002 2.76E-001 5.92E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		1.75E-001 8.46E+000 1.04E+000 2.48E-001 2.65E-001 2.60E-001 5.95E-001 9.96E+000
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		3.09E-001 3.16E+002 1.66E+000 4.25E-002 1.71E-001

:

[Summary Report] - Sample ID:

: 20124806

			•
Juclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Debected		
AG-110m	Not Detected		2.59E-002
BA-133	Not Detected		2.03E-002
	Not Detected		3.68E-002
BE-7	Not Detected		1.99E-001
CD-115	Not Detected		1.53E+000
CE-139	Not Detected		2.20E-002
CE-141	Not Detected		4.76E-002
CE-144	Not Detected		1.76E-001
CM-243	Not Detected		1.27E-001
CO-56	Not Detected	********	2.51E-002
CO-57	Not Detected		2.33E-002
CO-58	Not Detected		2.43E-002
CO-60	Not Detected		2.62E-002
CR-51	Not Detected		2.14E-001
CS-134	Not Detected		2.96E-002
CS-137 EU-152	Not Detected		2.25E-002
EU-152 EU-154	Not Detected		6.83E-002
EU-154 EU-155	Not Detected Not Detected		1.19E-001
E-59	Not Detected	********	1.03E-001
GD-153	Not Detected		6.16E-002 7.40E-002
HG-203	Not Detected		2.69E-002
I-131	Not Detected		5.24E-002
IR-192	Not Detected		2.19E-002
K-40	1.76E+001	2.36E+000	2.47E-001
MN-52	Not Detected	2.302+000	9.13E-002
MN-54	Not Detected		1.36E-002
MO-99	Not Detected		2.66E+000
NA-22	Not Detected	* - +	3.20E-002
NA-24	Not Detected		6.17E+003
ND-147	Not Detected		2.57E-001
NI-57	Not Detected		6.79E+000
RU-103	Not Detected		2.28E-002
RU-106	Not Detected		2.06E-001
SB-122	Not Detected		5.04E-001
SB-124	Not Detected		2.32E-002
SB-125	Not Detected		6.02E-002
SN-113	Not Detected		2.75E-002
SR-85	Not Detected		2.86E-002
TA-182	Not Detected		1.17E-001
TA-183	Not Detected		1.23E+000
TL-201	Not Detected		1.50E+000
Y-88	Not Detected		2.01E-002
ZN-65	Not Detected		7.44E-002
ZR-95	Not Detected		4.34E-002

******** *********** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 7:52:53 AM ********** Analyzed by: Reviewed by: : SANDERS, M (6135) Customer Customer Sample ID : 059781-003 Lab Sample ID : 20124807 : 6650/1081-SP4-BH1-20-S Sample Description Sample Quantity : 834.540 gram Sample Date/Time : 8/30/02 9:10:00 AM Acquire Start Date/Time : 9/09/02 11:29:43 PM : LAB02 Detector Name 6000 / Elapsed Live/Real Time : 6003 seconds

Comments:

. . .

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.89E-001
RA-226	1.82E+000	4.63E-001	5.68E-001
PB-214	5.61E-001	8.50E-002	5.11E-002
BI-214	5.11E-001	8.34E-002	4.39E-002
PB-210	Not Detected		2.25E+001
TH-232	6.58E-001	3.11E-001	1.65E-001
RA-228	6.12E-001	1.16E-001	9.81E-002
AC-228	6.00E-001	1.16E-001	7.89E-002
TH-228	6.31 E-001	3.69E-001	5.58E-001
RA-224	5.61E-001	1.37E-001	8.00E-002
PB-212	6.13E-001	9.01E-002	3.31E-002
BI-212	6.21E-001	2.34E-001	3.12E-001
TL-208	5.24E-001	9.13E-002	6.63E-002
U-235	8.58E-002	1.50E-001	1.92E-001
TH-231	Not Detected		9.17E+000
PA-231	Not Detected		1.11E+000
TH-227	Not Detected		2.79 E-001
RA-223	Not Detected		2.68E-001
RN-219	Not Detected		2.98 E-0 01
PB-211	Not Detected		6.75 E-001
TL-207	Not Detected		9.80E+000
AM-241	Not Detected		3.40E-001
PU-239	Not Detected	_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3.37E+002
NP-237	Not Detected		1.74E+000
PA-233	Not Detected		4.45E-002
TH-229	Not Detected		1.97E-001

. .

[Summary Report] - Sample ID:

: 20124807

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m			
AG-110m	Not Detected		2.66E-002
BA-133	Not Detected		2.19E-002
BE-7	Not Detected		3.93E-002
CD-115	Not Detected		2.17E-001
CE-139	Not Detected		1.37E+000
	Not Detected		2.43E-002
CE-141	Not Detected		5.11E-002
CE-144	Not Detected		1.91E-001
CM-243	Not Detected	******	1.37E-001
CO-56	Not Detected		2.78E-002
CO-57	Not Detected	******	2.54E-002
CO-58	Not Detected		2.60E-002
CO-60	Not Detected		3.03E-002
CR-51	Not Detected		2.318-001
CS-134	Not Detected		3.12E-002
CS-137	Not Detected		2.37E-002
EU-152	Not Detected		7.41E-002
EU-154	Not Detected		1.22E-001
EU-155	Not Detected		1.08E-001
FE-59	Not Detected		6.52E-002
GD-153	Not Detected		8.09E-002
HG-203	Not Detected		2.88E-002
I-131	Not Detected		5.53E-002
IR-192	Not Detected		2.32E-002
K-40	1.67E+001	2.24E+000	2.39E-001
MN-52	Not Detected		8.06E-002
MN-54	Not Detected	**** *****	2.68E-002
MO-99	Not Detected	******	2.54E+000
NA-22	Not Detected		3.08E-002
NA-24	Not Detected		3.29E+003
ND-147	Not Detected		2.90E-001
NI-57	Not Detected	~~~~~~	5.39E+000
RU-103	Not Detected		2.53E-002
RU-106	Not Detected		2.15E-001
SB-122	Not Detected	*****	4.58E-001
SB-124	Not Detected		2.30E-002
SB-125	Not Detected		6.48E-002
SN-113	Not Detected		3.02E-002
SR-85	Not Detected		3.02E-002
TA-182	Not Detected		1.30E-001
TA-183	Not Detected		1.23E+000
TL-201	Not Detected		1.39E+000
Y-88	Not Detected		2.26E-002
ZN-65	Not Detected		7.94E-002
ZR-95	Not Detected		4.75E-002

******** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 2:52:11 AM ******* Reviewed by: Analyzed by: Keviewen ~; -****** Customer : SANDERS, M (6135) Customer Sample ID : 059782-003 Lab Sample ID : 20124808 : 6650/1081-SP4-BH1-25-S Sample Description Sample Quantity 679.100 gram :

Sample Date/Time : 8/30/02 9:55:00 AM Acquire Start Date/Time : 9/10/02 1:11:56 AM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.52E-001
RA-226	1.07E+000	4.69E-001	6.84E-001
PB-214	5.30E-001	8.58E-002	6.16E-002
BI-214	4.84E-001	8.35E-002	5.23E-002
PB-210	Not Detected		2.58E+001
		•	
TH-232	6.37E-001	3.10E-001	1.92 E -001
RA-228	5.69E-001	1.19E-001	1.18E-001
AC-228	5,76E-001	1.25E-001	1.08E-001
TH-228	6.28E-001	3,99E-001	6.07E-001
RA-224	7.42E-001	1.72E-001	6.67E-002
PB-212	6.04E-001	9.04E-002	3,75E-002
BI-212	8.05E-001	2.79E-001	3.58E-001
TL-208	5.15E-001	9.31E-002	6.89E-002
U-235	Not Detected		2.09E-001
TH-231	Not Detected		9.80E+000
PA-231	Not Detected		1.20E+000
TH-227	Not Detected		3.10E-001
RA-223	Not Detected		2.96E-001
RN-219	Not Detected		3.18E-001
PB-211	Not Detected		6.97E-001
TL-207	Not Detected		1.11E+001
AM-241	Not Detected		3.74E-001
PU-239	Not Detected		3.70E+002
NP-237	Not Detected		2.04E+000
PA-233	Not Detected		4.99E-002
TH-229	Not Detected		2.09E-001

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected	* ~ * * * * * * *	2.95E-002
	AG-110m	Not Detected		2.48E-002
•	BA-133	Not Detected		4.48E-002
	BE-7	Not Detected		2.33E-001
	CD-115	Not Detected		1.58E+000
	CE-139	Not Detected		2.70E-002
	CE-141	Not Detected		5.61E-002
	CE-144	Not Detected		2.04E-001
	CM-243	Not Detected		1.49E-001
	CO-56	Not Detected		3.17E-002
	CO-57	Not Detected		2.76E-002
	CO-58	Not Detected		2.90E-002
	CO-60	Not Detected		3.46E-002
	CR-51	Not Detected		2.63E-001
	CS-134	Not Detected		3.55E-002
	CS-137	Not Detected		2.75E-002
	EU-152	Not Detected		8.08E-002
	EU-154	Not Detected		1.36E-001
	EU-155	Not Detected		1.22E-001
	FE-59	Not Detected		6.80E-002
	GD-153	Not Detected		8.60E-002
	HG-203	Not Detected		3.10E-002
	I-131	Not Detected		6.05E-002
	IR-192	Not Detected		2.58E-002
	K-40	1.59E+001	2.16E+000	2.66E-001
T	MN-52	Not Detected		8.73E-002
	MN-54	Not Detected		2.79E-002
	MO-99	Not Detected		2.78E+000
	NA-22	Not Detected		3.49E-002
	NA-24	Not Detected		3.96E+003
	ND-147	Not Detected		3.10E-001
	NI-57	Not Detected		5.73E+000
	RU-103	Not Detected		2.80E-002
	RU-106	Not Detected		2.44E-001
	SB-122	Not Detected		4.81E-001
	SB-124	Not Detected		2.74E-002
	SB-125	Not Detected		6.94E-002
	SN-113	Not Detected		3.20E-002
	SR-85	Not Detected		3.50E-002
	TA-182	Not Detected		1.35E-001
	TA-183	Not Detected		1.37E+000
	TL-201	Not Detected		1.58E+000
	Y-88	Not Detected		2.48E-002
	ZN-65	Not Detected		8.76E-002
	ZR-95	Not Detected		4.99E-002
			•	

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 4:34:09 AM ****** Analyzed by: Reviewed by: ********** : SANDERS, M (6135) Customer Customer Sample ID : 059784-003 Lab Sample ID : 20124809 Sample Description : 6570/1083-DW1-BH1-9-S Sample Quantity 615.440 gram : Sample Date/Time 9/03/02 8:55:00 AM : Acquire Start Date/Time : 9/10/02 2:53:54 AM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds Comments: ******************** ****** MDA Nuclide 2-sigma Activity Name (pCi/gram) (pCi/gram) Error _ _ _ _ _ _ _ _ -----_ _ _ _ _ _ _ _ _ _ _ _ -----U-238 Not Detected 7.83E-001 RA-226 Not Detected 7.63E-001 PB-214 8.27E-001 1.23E-001 6.90E-002 BI-214 7.84E-001 1.24E-001 5.45E-002 PB-210 Not Detected 3.08E+001 TH-232 7.86E-001 3.82E-001 2.42E-001 RA-228 8.37E-001 1.60E-001 1.43E-001 AC-228 1.75E-001 9.47E-001 1.01E-001 3.81E-001 TH-228 5.66E-001 5.83E-001 2.21E-001 7.83E-002 RA-224 9.90E-001 PB-212 8.71E-001 1.27E-001 4.17E-002 BI-212 8.19E-001 3.06E-001 4.05E-001 TL-208 1.31E-001 8.51E-002 7.78E-001 2.50E-001 U-235 2.11E-001 1.95E-001 TH-231 Not Detected 1.22E+001 Not Detected PA-231 1.43E+000 Not Detected TH-227 3.81E-001 Not Detected RA-223 2.85E-001 RN-219 Not Detected 3.85E-001 _ _ _ _ _ _ _ _ _ _ PB-211 Not Detected 8.69E-001 Not Detected TL-207 1.30E+001 AM-241 Not Detected 4.60E-001 PU-239 Not Detected 4.29E+002NP-237 Not Detected 2.38E+000 PA-233 Not Detected 5.86E-002 ______ TH-229 Not Detected _____ 2.54E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.83E-002
AG-110m	Not Detected	= =	2.91E-002
BA-133	Not Detected		5.52E-002
BE-7	Not Detected		2.50E-001
CD-115	Not Detected		5.64E-001
CE-139	Not Detected		3.08E-002
CE-141	Not Detected		6.14E-002
CE-144	Not Detected		2.43E-001
CM-243	Not Detected		1.80E-001
CO-56	Not Detected		3.57E-002
CO-57	Not Detected		3.15E-002
CO-58	Not Detected		3.30E-002
CO-60	Not Detected		3.35E-002
CR-51	Not Detected		2.68E-001
CS-134	Not Detected		4.26E-002
CS-134 CS-137	Not Detected		3.00E-002
EU-152	Not Detected		9.29E-002
	-		1.76E-001
EU-154	Not Detected Not Detected		1.40E-001
EU-155			7.13E-002
FE-59	Not Detected		1.02E-001
GD-153	Not Detected Not Detected		3.56E-002
HG-203			5.17E-002
I-131	Not Detected		2,88E-002
IR-192	Not Detected	2.24E+000	2.88E-002 3.34E-001
K-40	1.64E+001	2.246+000	6.34E-001
MN-52	Not Detected		2.17E-002
MN-54	Not Detected		1.21E+000
MO-99	Not Detected		
NA-22	Not Detected		3.98E-002
NA-24	Not Detected		6.00E+001
ND-147	Not Detected		2.76E-001
NI-57	Not Detected		1.11E+000
RU-103	Not Detected		2.88E-002
RU-106	Not Detected		2.81E-001
SB-122	Not Detected	*****	2.19E-001
SB-124	Not Detected		3.01E-002
SB-125	Not Detected		8.47E-002
SN-113	Not Detected		3.83E-002
SR-85	Not Detected		3.88E-002
TA-182	Not Detected		1.59E-001
TA-183	Not Detected		9.89E-001
TL-201	Not Detected		7.94E-001
Y-88	Not Detected		2.42E-002
ZN-65	Not Detected		1.02E-001
ZR-95	Not Detected		5.68E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 6:16:08 AM Analyzed by:

Customer Customer Sample ID Lab Sample ID : SANDERS, M (6135) : 059785-003 : 20124810

Sample Description	:	6570/1083-	DW1-BH1-14-S
Sample Quantity	:	1002.730	gram 🛩
Sample Date/Time	:	9/03/02	9:25:00 AM
Acquire Start Date/Time	:	9/10/02	4:35:53 AM
Detector Name	:	LAB02	
Elapsed Live/Real Time	:	6000 /	6003 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238	Not Detected		5.29E-001
RA-226	9.41E-001	3.74E-001	5.38E-001
PB-214	4.89E-001	7.42E-002	4.60E-002
BI-214	4.65E-001	7.53E-002	4.03E-002
PB-210	Not Detected		1.93E+001
TH-232	4.87E-001	2.48E-001	1.94E-001
RA-228	4.81E-001	9.57E-002	9.56E-002
AC-228	5.06E-001	1.01E-001	7.76E-002
TH-228	2.97E-001	3.13E-001	5.00E-001
RA-224	6.20E-001	1.39E-001	5.71E-002
PB-212	5.23E-001	7.67E-002	2.82E-002
BI-212	4.58E-001	1.77E-001	2.37E-001
TL-208	4.42E-001	7.48E-002	4.82E-002
U-235	1.28E-001	1.36E-001	1.73E-001
TH-231	Not Detected		8.27E+000
PA-231	Not Detected		9.78E-001
TH-227	Not Detected		2.42E-001
RA-223	Not Detected		1.95 E-0 01
RN-219	Not Detected		2.54E-001
PB-211	Not Detected		5.85E-001
TL-207	Not Detected		8.87E+000
AM-241	Not Detected		3.08E-001
PU-239	Not Detected		3.08 E+00 2
NP-237	Not Detected		1.63E+00 0
FA-233	Not Detected		3.99E-002
TH-229	Not Detected		1.75E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		2.29E-002
AG-110m	Not Detected		1.93E-002
BA-133	Not Detected		3.46E-002
BE-7	Not Detected		1.85E-001
CD-115	Not Detected		3.73E-001
CE-139	Not Detected		2.10E-002
CE-141	Not Detected		4.35E-002
CE-144	Not Detected		1.67E-001
CM-243	Not Detected		1.26E-001
CO-56	Not Detected		2.24E-002
CO-57	Not Detected		2.18E-002
CO-58	Not Detected		2.27E-002
CO-60	Not Detected		2.53E-002
CR-51	Not Detected		1.84E-001
CS-134	Not Detected		2.82E-002
CS-137	Not Detected		2.17E-002
EU-152	Not Detected		6.43E-002
EU-154	Not Detected		1.06E-001
EU-155	Not Detected		9.76E-002
FE-59	Not Detected		5.44E-002
GD-153	Not Detected	~	7.19E-002
HG-203	Not Detected		2.45E-002
I-131	Not Detected		3.51E-002
IR-192	Not Detected	0.000.000	1.93E-002
K-40	1.75E+001	2.33E+000	1.97E-001
MN-52	Not Detected		4.73E-002
MN-54	Not Detected		2.28E-002 8.07E-001
MO-99	Not Detected		2.84E-002
NA-22	Not Detected Not Detected		4.59E+001
NA-24	Not Detected		1.93E-001
ND-147 NI-57	Not Detected		8.04E-001
RU-103	Not Detected		2.00E-002
RU-105 RU-106	Not Detected		1.83E-001
SB-122	Not Detected		1.51E-001
SB-122 SB-124	Not Detected		2.19E-002
SB-125	Not Detected		5.78E-002
SN-113	Not Detected		2.63E-002
SR-85	Not Detected		2.46E-002
TA-182	Not Detected		1.08E-001
TA-183	Not Detected		6.67E-001
TL-201	Not Detected		5.30E-001
Y-88	Not Detected		1.70E-002
ZN-65	Not Detected		6.59E-002
ZR-95	Not Detected		3.74E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 9:40:19 AM

Sample Description : 6589/6600-1031-SP1-BH1-15-S Sample Quantity 761.010 gram : Sample Date/Time 9/05/02 10:50:00 AM : Acquire Start Date/Time : 9/10/02 7:59:57 AM Detector Name : LAB02 Elapsed Live/Real Time 6000 / 6003 seconds :

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.79E-001
RA-226	1.74E+000	5.11E-001	6.74E-001
PB-214	6.96E-001	1.04E-001	5.96E-002
BI-214	6.85E-001	1.08E-001	5.13E-002
PB-210	Not Detected		2.59E+001
TH-232	8.72E-001	4.06E-001	1.91E-001
RA-228	7.81E-001	1.44E-001	1.24E-001
AC-228	7.94E-001	1.49E-001	9.61E-002
TH-228	1.03E+000	4,15E-001	5,83E-001
RA-224	9.21E-001	2.01E-001	7.10E-002
PB-212	7.99E-001	1.16E-001	3.65E-002
BI-212	5.83E-001	2.86E-001	4.14E-001
TL-208	6.91E-0 01	1.14E-001	7.36E-002
U-235	Not Detected		2.05E-001
TH-231	Not Detected		1.06E+001
PA-231	Not Detected		1.26E+000
TH-227	Not Detected	~~ ~ ~~~~~	3,29E-001
RA-223	Not Detected		2.22E-001
RN-219	Not Detected		3,15E-001
PB-211	Not Detected		7.32E-001
TL-207	Not Detected	********	1.11E+001
AM-241	Not Detected	••••••	3.85E-001
PU-239	Not Detected		3.87E+002
NP-237	Not Detected		2.05E+000
PA-233	Not Detected		5.13E-002
TH-229	Not Detected	********	2.24E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.17E-002
AG-110m	Not Detected	* = * • •	2.40E-002
BA-133	Not Detected		4.55E-002
BE - 7	Not Detected		2.16E-001
CD-115	Not Detected		2.76E-001
CE-139	Not Detected		2.67E-002
CE-141	Not Detected	********	4.92E-002
CE-144	Not Detected		2.13E-001
CM-243	Not Detected		1.53E-001
CO-56	Not Detected		2.82E-002
CO-57	Not Detected		2.74E-002
CO-58	Not Detected		2.79E-002
CO-60	Not Detected		2.93E-002
CR-51	Not Detected		
CS-134	Not Detected		2.23E-001
CS-137			3.65E-002
EU-152	Not Detected		2.73E-002
EU-152 EU-154	Not Detected		8.20E-002
EU-155	Not Detected		1.46E-001
	Not Detected		1.21E-001
FE-59	Not Detected		5.94E-002
GD-153	Not Detected	*	9.05E-002
HG-203	Not Detected		2.99E-002
I-131	Not Detected		3.66E-002
IR-192	Not Detected		2.45E-002
K-40	1.53E+001	2.06E+000	2.67E-001
MN-52	Not Detected		4.87E-002
MN-54	Not Detected	********	3.01E-002
MO-99	Not Detected		6:43E-001
NA-22	Not Detected		3.48E-002
NA-24	Not Detected		6.06E+000
ND-147	Not Detected		2.18E-001
NI-57	Not Detected		2.78E-001
RU-103	Not Detected		2.73E-002
RU-106	Not Detected		2.28E-001
SB-122	Not Detected		1.22E-001
SB-124	Not Detected		2.49E-002
SB-125	Not Detected		7.00E-002
SN-113	Not Detected		3.30E-002
SR-85	Not Detected		3.31E-002
TA-182	Not Detected	*	1.36E-001
TA-183	Not Detected		6.43E-001
TL-201	Not Detected		4.28E-001
Y-88	Not Detected		2.29E-002
ZN-65	Not Detected		8.65E-002
ZR-95	Not Detected		4.87E-002
* *			

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 3:05:14 PM ****** Analyzed by: Reviewed by: * Analyzed by: : SANDERS, M (6135) Customer Customer Sample ID : 059789-003 Lab Sample ID : 20124813 Sample Description : 6589-6600-1031-SP1-BH1-20-S Sample Quantity : 694.690 gram Sample Date/Time : 9/5/02 11:10:00 AM Acquire Start Date/Time : 9/9/02 1:24:59 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

***************************************	***********

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214	Not Detected 1.47E+000 7.73E-001	5.49E-001 1.17E-001	5.46E-001 7.71E-001 6.26E-002
BI-214 PB-210	6.49E-001 Not Detected	1.09E-001	5.62E-002 8.91E+000
TH-232 RA-228 AC-228	7.45E-001 7.32E-001 7.72E-001	3.44E-001 1.59E-001 1.59E-001	1.41E-001 1.63E-001 1.11E-001
TH-228 RA-224 PB-212	6.30E-001 8.46E-001 7.30E-001	2.32E-001 2.10E-001 1.10E-001	5.06E-001 8.09E-002 4.38E-002
BI-212 TL-208 U-235	5.55E-001 7.37E-001 Not Detected	2.80E-001 1.31E-001	3.95E-001 9.21E-002 2.14E-001
TH-231 PA-231 TH-227	Not Detected Not Detected Not Detected Not Detected		6.81E+000 1.51E+000 3.33E-001
RA-223 RN-219 PB-211	Not Detected Not Detected Not Detected Not Detected		1.48E-001 4.01E-001 9.48E-001
TL-207	Not Detected		1.59E+001 1.82E-001
PU-239 NP-237 PA-233	Not Detected Not Detected Not Detected		3.71E+002 2.04E+000 6.21E-002
TH-229	Not Detected		1.98E-001

: 20124813

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4.45E-002
AG-110m	Not Detected		3.29E-002
BA-133	Not Detected		4.70E-002
BE-7	Not Detected		2.69E-001
CD-115	Not Detected		2.56E-001
CE-139	Not Detected	******	2.69E-002
CE-141	Not Detected		5.04E-002
CE-144	Not Detected		2.12E-001
CM-243	Not Detected		1.88E-001
CO-56	Not Detected		3.60E-002
CO-57	Not Detected		2.54E-002
CO-58	Not Detected		3.61E-002
CO-60	Not Detected		4.21E-002
CR-51	Not Detected		2.67E-001
CS-134	Not Detected		4.68E-002
CS-137	Not Detected		3.55E-002
EU-152	Not Detected		7.57 E- 002
EU-154	Not Detected		2.06E-001
EU-155	Not Detected		1.18E-001
FE-59	Not Detected		8.75E-002
GD-153	Not Detected		6.82E-002
HG-203	Not Detected		3.62E-002
I-131	Not Detected		4.13E-002
IR-192	Not Detected		2.90E-002
K-40	1.57E+001	2.19E+000	3.24E-001
MN-52	Not Detected		6.46E-002
MN-54	Not Detected		3.92E-002
MO-99	Not Detected		7.78E-001
NA-22	Not Detected		5.32E-002
NA-24	Not Detected		3.96E+000
ND-147	Not Detected	*******	2.62E-001
NI-57	Not Detected		3.92E-001
RU-103	Not Detected		3.38E-002
RU-106	Not Detected		3.02E-001
SB-122	Not Detected		1.25E-001
SB-124	Not Detected	********	3.45E-002
SB-125	Not Detected		8.63E-002
SN-113	Not Detected		4.01E-002
SR-85	Not Detected	~~~~~~~~	4.09E-002
TA-182	Not Detected		1.84E-001
TA-183	Not Detected		2.69E-001
TL-201	Not Detected		2.06E-001
Y-88	Not Detected		3.38E-002
ZN-65	Not Detected		1.22E-001
ZR-95	Not Detected		6.74E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 4:47:42 PM ***** Analyzed by: * Analyzed by: Reviewed by: : SANDERS, M (6135) Customer Customer Sample ID : 059790-003 Lab Sample ID : 20124814 Sample Description : 6589-6600-1031-SP2-BH1-10-S Sample Quantity : 682.150 gram Sample Date/Time 11:40:00 AM : 9/5/02 Acquire Start Date/Time : 9/9/02 3:07:20 PM Detector Name : LAB01 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.45E-001
RA-226	2.03E+000	5.96E-001	7.76E-001
PB-214	7.06E-001	1.11E-001	6.78E-002
BI-214	6.56 E -001	1.14E-001	7.01E-002
PB-210	Not Detected	· • • • • • • • • • • • •	9.34E+000
TH-232	6.47E-001	3.23E-001	2.23E-001
RA-228	7.87E-001	1.64E-001	1.41E-001
AC-228	7.00E-001	1.49E-001	1.12E-001
TH-228	6.97 E-001	2.44E-001	5.11 E-001
RA-224	7.95E-001	2.03E-001	9.10E-002
PB-212	7.61E-001	1.14E-001	3.75E-002
BI-212	4.82E-001	2.72E-001	3.92E-001
TL-208	6.62E-001	1.23E-001	9.32E-002
U-235	Not Detected		2.09E-001
TH-231	Not Detected		6.96E+000
PA-231	Not Detected		1.45E+000
TH-227	Not Detected		3.46E-001
RA-223	Not Detected		1.54E-001
RN-219	Not Detected		4.13E-001
PB-211	Not Detected		9.11E-001
TL-207	Not Detected		1.64E+001
AM-241	Not Detected		1.82E-001
PU-239	Not Detected		3.70 B +002
NP-237	Not Detected		2.02E+000
PA-233	Not Detected		6.12E-002
TH-229	Not Detected		2.08E-001

: 20124814

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4.40E-002
AG-110m	Not Detected		3.26E-002
BA-133	Not Detected		4.75E-002
BE-7	Not Detected		2.76E-001
CD-115	Not Detected		2.64E-001
CE-139	Not Detected		2.65E-002
CE-141	Not Detected		4.92E-002
CE-144	Not Detected		2.11E-001
CM-243	Not Detected	********	1.86E-001
CO-56	Not Detected		3.96E-002
CO-57	Not Detected		2.62E-002
CO-58	Not Detected	*	3,62E-002
CO-60	Not Detected		4.25E-002
CR-51	Not Detected		2.89E-001
CS-134	Not Detected		4.65E-002
CS-137	Not Detected	****	3.55E-002
EU-152	Not Detected		7.82E-002
EU-154	Not Detected		2.07E-001
EU-155	Not Detected	** * *****	1.21E-001
FE-59	Not Detected		9.45B-002
GD-153	Not Detected	*****	7.13E-002
HG-203	Not Detected		3.53E-002
I-131	Not Detected		4.39E-002
IR-192	Not Detected		3.06E-002
K-40	1.64E+001	2.27E+000	3.27E-001
MN-52	Not Detected		6.02E-002
MN-54	Not Detected		4.01E-002
MO-99	Not Detected		8.13E-001
NA-22	Not Detected		5.16E-002
NA-24	Not Detected		4.09E+000
ND-147	Not Detected		3.00E-001
NI-57	Not Detected		4.14E-001
RU-103	Not Detected		3.44E-002
RU-106	Not Detected		3.17E-001
SB-122	Not Detected		1.26E-001
SB-124	Not Detected		3.35E-002
SB-125	Not Detected		9.16E-002
SN-113	Not Detected		4.17E-002
SR-85	Not Detected	****	4.08E-002
TA-182	Not Detected		1.91E-001
TA-183	Not Detected		2.71E-001
TL-201	Not Detected		2.21E-001
Y-88	Not Detected		3.44E-002
ZN-65	Not Detected	********	1.29E-001
ZR-95	Not Detected		6.96E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 6:30:11 PM 9/10/12 Reviewed by: Analyzed by: ***** : SANDERS, M (6135) Customer Customer Sample ID : 059791-003 Lab Sample ID : 20124815 🛩 : 6589-6600-1031-SP2-BH1-15-S Sample Description Sample Quantity 670.400 gram : Sample Date/Time : 9/5/02 12:10:00 PM Acquire Start Date/Time : 9/9/02 4:49:50 PM : LAB01 Detector Name Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

- . .

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238	Not Detected		5.55 E- 001
RA-226	1.69E+000	5.46E-001	7.32E-001
PB-214	8.06E-001	1.24E-001	7.26E-002
BI-214 ·	7.70E-001	1.27E-001	6.30E-002
PB-210	Not Detected		9.74E+000
		2 F CT 0 01	0.048.001
TH-232	7.27E-001	3.56E-001	2.24E-001
RA-228	7.88E-001	1.66E-001	1.52E-001
AC-228	7.51E-001	1.58E-001	1.18E-001
TH-228	9.14E-001	2.76E-001	5.28E-001
RA-224	8.99E-001	2.26E-001	1.10E-001
PB-212	7.66E-001	1.15E-001	4.10E-002
BI-212		2.99E-001	3.89E-001
TL-208	7.59E-001	1.38E-001	1.05E-001
U-235	Not Detected		2.16E-001
TH-231	Not Detected		7.15E+000
PA-231	Not Detected	·	1.55E+000
TH-227	Not Detected		3.53E-001
RA-223	Not Detected		1.57E-001
RN-219	Not Detected	*	4.25E-001
PB-211	Not Detected		9.74E-001
TL-207	Not Detected		1.56E+001
10 20,			210021002
AM-241	Not Detected		1.83E-001
PU-239	Not Detected		3.87E+002
NP-237	Not Detected		2.00E+000
PA-233	Not Detected		6.20E-002
TH-229	Not Detected	****	2.04E-001

: 20124815

Nuclide Activity 2-sigma MDA Name (pCi/gram) Error (pCi/gram) ----_ _ _ _ _ _ _ _ _ AG-108m Not Detected ----4.63E-002 AG-110m Not Detected 3.40E-002 BA-133 Not Detected ---------5.24E-002 **BE-7** Not Detected -------2.858-001 CD-115 Not Detected -------2.76E-001 CE-139 Not Detected _____ 2.70E-002 Not Detected CE-141 -------5.11E-002 CE-144 Not Detected -----2.10E-001 CM-243 Not Detected _____ 1.97E-001 CO-56 Not Detected -----3.79E-002 CO-57 Not Detected ---------2.69E-002 CO-58 Not Detected -------3.89E-002 CO-60 Not Detected ---------4.20E-002 CR-51 Not Detected _____ 2.80E-001 CS-134 Not Detected --------4.95E-002 CS-137 Not Detected 3.78E-002 EU-152 Not Detected _ - - - - - - - - -8.01E-002 EU-154 Not Detected 2.17E-001 Not Detected EU-155 1.19E-001 FE-59 Not Detected -------9.31E-002 GD-153 Not Detected -----6.87E-002 HG-203 Not Detected ____ 3.68E-002 I-131 Not Detected _____ 4.31E-002 IR-192 Not Detected -----3.02E-002 K-40 1.56E+001 2.18E+000 3.60E-001 MN-52 Not Detected -----6.65E-002 MN-54 Not Detected 4.06E-002 MO-99 Not Detected --------7.80E-001 NA-22 Not Detected ______ 5.33E-002 NA-24 Not Detected -------4.54E+000ND-147 Not Detected ______ 2.85E-001 NI-57 Not Detected 4.59E-001 --------Not Detected **RU-103** -----3.51E-002 RU-106 Not Detected -------3.31E-001 SB-122 Not Detected -------1.30E-001 SB-124 Not Detected ------3.42E-002 SB-125 Not Detected --------9.62E-002 SN-113 Not Detected ------4,42E-002 Not Detected SR-85 4.22E-002 Not Detected TA-182 _____ 1.94E-001 TA-183 Not Detected 2.75E-001 TL-201 Not Detected 2.28E-001 Y-88 Not Detected 2.92E-002 ZN-65 Not Detected --------1.27E-001 ZR-95 Not Detected 6.55E-002

****** Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 8:12:40 PM ***** ******************* * Analyzed by: Reviewed by: ** 4**** 9 410 82 **** ********** : SANDERS, M (6135) Customer Customer Sample ID : 059793-003 Lab Sample ID : 20124816 : 6523-1086-SP1-BH1-10-S Sample Description Sample Quantity : 691.450 gram : 9/6/02 Sample Date/Time 9:20:00 AM Acquire Start Date/Time : 9/9/02 6:32:19 PM : LAB01 Detector Name

Comments:

Elapsed Live/Real Time :

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

6002 seconds

6000 /

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.41E-001
RA-226	1.52E+000	5.91E-001	8.42E-001
PB-214	7.89E-001	1.20E-001	6.74E-002
BI-214	6.88E-001	1.17E-001	6.95 E -002
PB-210	Not Detected		9.69E+000
TH-232	6.19E-001	3.17E-001	2.40E-001
RA-228	7.93E-001	1.64E-001	1.50E-001
AC-228	7.78E-001	1.59E-001	1.09E-001
TH-228	5.96E-001	2.36E-001	5.31E-001
RA-224	8.11E-001	2.02E-001	7.02E-002
PB-212	8.46E-001	1.25E-001	4.23E-002
BI-212	1.24E+000	3.96E-001,	4.87E-001
TL-208	7.66E-001	1.34E-001	8.86E-002
U-235	9.12E-002	1.78E-001	2.09E-001
TH-231	Not Detected		7.06E+000
PA-231	Not Detected		1.57E+000
TH-227	Not Detected		3.50E-001
RA-223	Not Detected		1.42E-001
RN-219	Not Detected		4.11E-001
PB-211	Not Detected	*******	9.48E-001
TL-207	Not Detected		1.61E+001
AM-241	Not Detected		1.83E-001
PU-239	Not Detected		3.81E+002
NP-237	Not Detected		2.02E+000
PA-233	Not Detected		6.24E-002
TH-229	Not Detected		1.99E-001

: 20124816

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		4.71E-002
AG-110m	Not Detected		3.05E-002
BA-133	Not Detected		5.05E-002
BE-7	Not Detected		2.80E-001
CD-115	Not Detected		2.14E-001
CE-139	Not Detected		2.72E-002
CE-141	Not Detected		4.88E-002
CE-144	Not Detected		2.05E-001
CM-243	Not Detected		1.87E-001
CQ-56	Not Detected		3.90E-002
CO-57	Not Detected		2.61E-002
CO-58	Not Detected		3.79E-002
CO-60	Not Detected		4.59E-002
CR-51	Not Detected		2.47E-001
CS-134	Not Detected		4.82E-002
CS-137	Not Detected		3.53E-002
EU-152	Not Detected		7.79E-002
EU-154	Not Detected		2.21E-001
EU-155	Not Detected		1.19E-001
FE-59	Not Detected		9.19E-002
GD-153	Not Detected		6.77E-002
HG-203	Not Detected		3.59E-002
I-131	Not Detected		3.96E-002
IR-192	Not Detected		2.938-002
K-40	1.60E+001	2.22E+000	2.99E-001
MN-52	Not Detected		5.72E-002
MN-54	Not Detected		4.15E-002
MO-99	Not Detected		6.31E-001
NA-22	Not Detected		5.18E-002
NA-24	Not Detected		1.71E+000
ND-147	Not Detected		2.70E-001
NI-57	Not Detected		2.97E-001
RU-103	Not Detected		3.33E-002
RU-106	Not Detected		3.01E-001
SB-122	Not Detected		1.06E-001
SB-124	Not Detected		3.39E-002
SB-125	Not Detected		9.20E-002
SN-113	Not Detected		3.91E-002
SR-85	Not Detected		4.14E-002
TA-182	Not Detected		1.90E-001
TA-183	Not Detected		2.50E-001
TL-201	Not Detected		1.90 E -001
Y-88	Not Detected	· · · · · · · · · · ·	3.11E-002
ZN-65	Not Detected		1.27E-001
ZR-95	Not Detected		6.69E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 9:55:08 PM Analyzed by: Reviewed by: : SANDERS, M (6135) Customer Customer Sample ID : 059794-003 Lab Sample ID : 20124817 Sample Description : 6523-1086-SP1-BH1-15-S Sample Quantity 676.410 gram : Sample Date/Time : 9/6/02 9:40:00 AM Acquire Start Date/Time : 9/9/02 8:14:48 PM Detector Name : LAB01 Elapsed Live/Real Time 6000 / 6002 seconds :

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.22E-001
RA-226	1.78E+000	5.83E-001	7.90E-001
PB-214	7.05E-001	1.10E-001	6.76E-002
BI-214	6.44E-001	1.11E-001	6.49E-002
PB-210	Not Detected		9.63E+000
TH-232	6.63E-001	3.33E-001	2.37E-001
RA-228	6.69E-001	1.51E-001	1.53E-001
AC-228	7.78E-001	1.60E-001	1.09E-001
TH-228	8.06E-001	2.46E-001	4.56E-001
RA-224	8.44E-001	2.16E-001	1.14E-001
PB-212	7.86E-001	1.17E-001	4.21E-002
BI-212	9.32E-001	3.43E-001	4.42E-001
TL-208	6.66E-001	1.24E-001	9.62E-002
U-235	1.34E-001	1.86E-001	2.19E-001
TH-231	Not Detected		6.81E+000
PA-231	Not Detected		1.56E+000
TH-227	Not Detected		3.44E-001
RA-223	Not Detected		1.35E-001
RN-219	Not Detected		4.12E-001
PB-211	Not Detected		9.20E-001
TL-207	Not Detected		1.66E+001
AM-241	Not Detected		1.74E-001
PU-239	Not Detected		3.89E+002
NP-237	Not Detected		2.01E+000
PA-233	Not Detected		6.09E-002
TH-229	Not Detected		2.12E-001

··- 7*

	Nuclide	Ac	tivity	2-sigma	MDA
Γ.	Name	(pC	i/gram)	Error	(pCi/gram)
	AG-108m	Not	Detected		4.48E-002
	AG-110m		Detected		3.42E-002
	BA-133		Detected		4.93E-002
	BE-7		Detected		2.79E-001
	CD-115		Detected		2.09E-001
	CE-139		Detected		2.63E-002
	CE-141		Detected		5.03E-002
	CE-141 CE-144		Detected		2.06E-001
	CM-243				1.85E-001
			Detected		
	CO-56		Detected	********	3.81E-002
	CO-57		Detected		2.64E-002
	CO-58		Detected		3.60E-002
	CO-60		Detected		4.82E-002
	CR-51		Detected		2.52E-001
	CS-134		Detected		4.57E-002
	CS-137		Detected		3.60E-002
	EU-152		Detected		7.87E-002
	EU-154		Detected		2.11E-001
	EU-155		Detected		1.20E-001
			Detected		9.05E-002
	GD-153		Detected		6.96E-002
	HG-203	Not	Detected		3.47E-002
	I-131		Detected		3.95E-002
	IR-192	Not	Detected		2.88E-002
Ĺ.	K-40	1	63E+001	2.27E+000	3.18E-001
,	MN-52	Not	Detected		5.56E-002
	MN-54	Not	Detected		4.04E-002
	MO-99	Not	Detected		6.21E-001
	NA-22	Not	Detected		4.98E-002
	NA-24	Not	Detected		1.65E+000
	ND-147		Detected		2.83E-001
	NI-57		Detected		3.03E-001
	RU-103		Detected		3,29E-002
	RU-106		Detected		3.31E-001
	SB-122		Detected		1.06E-001
	SB-122 SB-124		Detected		3.23E-002
	SB-124 SB-125		Detected		8.62E-002
			-		4.15E-002
	SN-113		Detected		4.02E-002
	SR-85		Detected		
	TA-182		Detected		1.81E-001
	TA-183		Detected		2.37E-001
	TL-201		Detected		1.93E-001
	Y-88		Detected		3.71E-002
	ZN-65		Detected		1.27E-001
	ZR-95	Not	Detected		6.62E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/9/02 11:37:37 PM 9/10/02 Reviewed by: Analyzed by: ***** Customer : SANDERS, M (6135) Customer Sample ID : 059795-003 Lab Sample ID : 20124818 : 889/1102-SP1-BH1-25-S Sample Description : 776.900 gram Sample Quantity

Sample Date/Time: 9/6/021:50:00 PMAcquire Start Date/Time: 9/9/029:57:15 PMDetector Name: LAB01Elapsed Live/Real Time: 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Net Detected		5.55E-001
	Not Detected		
RA-226	1.72E+000	5.94E-001	8.24E-001
PB-214	8.45E-001	1.25E-001	6.62E-002
BI-214	7.68E-001	1.25E-001	6.09E-002
PB-210	Not Detected		9.49E+000
TH-232	8.28E-001	4.01E-001	2.48E-001
RA-228	9.70E-001	1.87E-001	1.70E-001
AC-228	9.93E-001	1.87E-001	1.09E-001
TH-228	9.25E-001	2.58E-001	4.55B-001
RA-224	1.07E+000	2.46E-001	7.97E-002
PB-212	1.01E+000	1.47E-001	4.33E-002
BI-212	8.67E-001	2.87E-001	3.47E-001
TL-208	9.05E-001	1.50E-001	9.25E-002
U-235	3.51E-001	1.84E-001	2.17E-001
TH-231	Not Detected		7.24E+000
PA-231	Not Detected		1.50E+000
TH-227	Not Detected		3.53E-001
RA-223	Not Detected		1.50E-001
RN-219	Not Detected		4.10E-001
PB-211	Not Detected		9.29E-001
TL-207	Not Detected		1.56E+001
AM-241	Not Detected		1.83E-001
PU-239	Not Detected		3.83E+002
NP-237	Not Detected		2.05E+000
PA-233	Not Detected	**	6.04E-002
TH-229	Not Detected		2.11E-001

'	Juclide	Activity	2-sigma	MDA
>	Name	(pCi/gram)	Error	(pCi/gram)
	AG-108m	Not Detected		4.55E-002
	AG-110m	Not Detected		3.46E-002
	BA-133	Not Detected		5.028-002
	BE-7	Not Detected		2.68E-001
	CD-115	Not Detected		2.14E-001
	CE-139	Not Detected		2.80E-002
	CE-141	Not Detected		4.90E-002
	CE-144	Not Detected		2.11E-001
	CM-243	Not Detected		1.85E-001
	CO-56	Not Detected		3.76E-002
	CO-57	Not Detected		2.61E-002
	CO-58	Not Detected		3.55E-002
	CO-60	Not Detected		4.10E-002
	CR-51	Not Detected		2.63E-001
	CS-134	Not Detected		4.61E-002
	CS-137	Not Detected		3.62E-002
	EU-152	Not Detected	**********	7.79E-002
	EU-154	Not Detected		2.15E-001
	EU-155	Not Detected		1.19E-001
	FE-59	Not Detected		8.77E-002
	GD-153	Not Detected		6.82E-002
	HG-203	Not Detected		3.50E-002
	I-131	Not Detected		3.92E-002
ł	IR-192	Not Detected		3.02E-002
	K-40'	1.63E+001	2.25E+000	3.00E-001
)	MN-52	Not Detected		5.61E-002
	MN-54	Not Detected		4.00E-002
	MO-99	Not Detected		6.42E-001
	NA-22	Not Detected		4.82E-002
	NA-24	Not Detected		1.49E+000
	ND-147	Not Detected		2.72E-001
	NI-57	Not Detected		2.82E-001
	RU-103	Not Detected		3.10E-002
	RU-106	Not Detected		3.06E-001
	SB-122	Not Detected		1.03E-001
	SB-124	Not Detected		3.22E-002
	SB-125	Not Detected	********	9.58E-002
	SN-113	Not Detected		3.858-002
	SR-85	Not Detected		3.91E-002
	TA-182	Not Detected	********	1.81E-001
	TA-183	Not Detected		2.45E-001
	TL-201	Not Detected		1.85E-001
	Y-88	Not Detected		3.47E-002
	ZN-65	Not Detected		1.25E-001
	ZR-95	Not Detected		6.21E-002
				····

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 1:19:58 AM . ******** 9/10/02 Analyzed by: Reviewed by: ******* ****** : SANDERS, M (6135) Customer Customer Sample ID : 059796-003 Lab Sample ID : 20124819 : 889/1102-SP1-BH1-30-S Sample Description Sample Quantity : 761.200 gram Sample Date/Time : 9/6/02 2:35:00 PM Acquire Start Date/Time : 9/9/02 11:39:44 PM : LAB01 Detector Name

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
U-238 RA-226 PB-214 BI-214	Not Detected 1.84E+000 7.05E-001 7.07E-001	5.32E-001 1.09E-001 1.15E-001	5.32E-001 6.86E-001 6.55E-002 5.39E-002
PB-210	Not Detected		9.13E+000
TH-232	7.97E-001	3.75E-001	1.82E-001
RA-228	8.86E-001	1.77E-001	1.64E-001
AC-228	8.15E-001	1.63E-001	1.12E-001
TH-228	7.03E-001	2.26E-001	4.43E-001
RA-224	9.33E-001	2.27E-001	1.15E-001
PB-212 BI-212	1.11E+000		3.90E-002 4.35E-001
TL-208	8.32E-001	1.40E-001	8.83E-002
U-235	Not Detected		2.06E-001
TH-231 PA-231	Not Detected Not Detected Not Detected		6.80E+000 1.45E+000
TH-227	Not Detected		3.32E-001
RA-223	Not Detected		1.39E-001
RN-219	Not Detected		3.89E-001
PB-211	Not Detected		8.75E-001
TL-207	Not Detected		1.58E+001
AM-241	Not Detected		1.82E-001
PU-239	Not Detected		3.72E+002
NP-237	Not Detected		1.97E+000
PA-233	Not Detected		5.95E-002
TH-229	Not Detected		1.98E-001

	Nuclide	Activity	2-sigma	MDA
	Name	(pCi/gram)	Error	(pCi/gram)
	AG-108m	Not Detected		4.55E-002
	AG-110m	Not Detected		3.30E-002
	BA-133	Not Detected		4.58E-002
	BE-7	Not Detected		2.74E-001
	CD-115	Not Detected		2.00E-001
	CE-139	Not Detected		2.58E-002
	CE-141	Not Detected		4.83E-002
	CE-144	Not Detected		2.03E-001
	CM-243	Not Detected		1.78E-001
	CO-56	Not Detected		3.61E-002
	CO-57	Not Detected		2.63E-002
•	CO-58	Not Detected		3.67E-002
	CO-60	Not Detected		3.97E-002
	CR-51	Not Detected		2.54E-001
	CS-134	Not Detected		4.41E-002
	CS-137	Not Detected		3.67E-002
	EU-152	Not Detected		7.87E-002
	EU-154	Not Detected		2.13E-001
	EU-155	Not Detected		1.18E-001
	FE-59	Not Detected		8.59E-002
	GD-153	Not Detected		6.92E-002
	HG-203	Not Detected		3.39E-002
	I-131	Not Detected		3.66E-002
	IR-192	Not Detected	*******	2.84E-002
	K-40	1.61E+001	2.22E+000	2.93E-001
J	MN-52	Not Detected		5.30E-002
	MN-54	Not Detected		3.77E-002
	MO-99	Not Detected		6.66E-001
	NA-22	Not Detected		4.95E-002
	NA-24	Not Detected		1.65E+000
	ND-147	Not Detected		2.67E-001
	NI-57	Not Detected		2.85E-001
	RU-103	Not Detected		3.10E-002
	RU-106	Not Detected		3.07E-001
	SB-122	Not Detected		1.03E-001
	SB-124	Not Detected		3.09E-002
	SB-125	Not Detected		8,86E-002
	SN-113	Not Detected		4.02E-002
	SR-85	Not Detected		4.01E-002
	TA-182	Not Detected		1.82E-001
	TA-183	Not Detected		2.47E-001
	TL-201	Not Detected		1.82E-001
	Y-88	Not Detected		3.42E-002
	ZN-65	Not Detected		1.27E-001
	ZR-95	Not Detected		6.51E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 7:58:13 AM **************** 8/10/02 Reviewed by: Analyzed by: ****** : SANDERS, M (6135) Customer Customer Sample ID : 059858-001 Lab Sample ID : 20124811 Sample Description : 6570/1083-DW1-BH1-9-DU Sample Quantity 704.530 gram : Sample Date/Time 9/03/02 9:10:00 AM :

Acquire Start Date/Time : 9/10/02 6:17:52 AM Detector Name : LAB02 Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.93E-001
RA-226	2.11E+000	5.51E-001	6.87E-001
PB-214	9.65E-001	1.36E-001	5.96E-002
BI-214	8.12E-001	1.26E-001	4.87E-002
PB-210	Not Detected		2.60E+001
TH-232	7.27E-001	3.43E-001	1.79E-001
RA-228	6.42E-001	1.28E-001	1.18E-001
AC-228	6,05E-001	1.25E-001	9.76E-002
TH-228	4.17E-001	3.36E-001	5.24E-001
RA-224	6.32E-001	1.54E-001	8.51E-002
PB-212	6.34E-001	9.41E-002	3.65E-002
BI-212	7.47E-001	2.61E-001	3.35E-001
TL-208	4.75E-001	9.26E-002	8.28E-002
U-235	Not Detected		2.13E-001
TH-231	Not Detected		1.03E+001
PA-231	Not Detected		1.29E+000
TH-227	Not Detected	********	3.13E-001
RA-223	Not Detected		2.47E-001
RN-219	Not Detected	*	3.26E-001
PB-211	Not Detected		7.17E-001
TL-207	Not Detected		1.11E+001
AM-241	Not Detected		3.88E-001
PU-239	Not Detected		3.87E+002
NP-237	Not Detected		2.05E+000
PA-233	Not Detected		5.15E-002
TH-229	Not Detected		2.12E-001

Nuclide	Not in iter	0	
Name	Activity	2-sigma	MDA
Ivallie	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		
AG-110m	Not Detected	*********	3.10E-002
BA-133			2.60E-002
BE-7	Not Detected		5.06E-002
CD-115	Not Detected		2.19E-001
	Not Detected	~	4.92E-001
CE-139	Not Detected		2.68E-002
CE-141	Not Detected		5.29E-002
CE-144	Not Detected		2.12E-001
CM-243	Not Detected		1.54E-001
CO-56	Not Detected		2.86E-002
CO-57	Not Detected		2.84E-002
CO-58	Not Detected		2.89E-002
CO-60	Not Detected		3.01E-002
CR-51	Not Detected		2.41E-001
CS-134	Not Detected		3.98E-002
CS-137	Not Detected		2.72E-002
EU-152	Not Detected		8.44E-002
EU-154	Not Detected		1.42E-001
EU-155	Not Detected		1.25E-001
FE-59	Not Detected		6.52E-002
GD-153	Not Detected		9.16E-002
HG-203	Not Detected		3.08E-002
 I-131	Not Detected		4.42E-002
IR-192	Not Detected		2.52E-002
K-40	1.25E+001	1.72E+000	2.55E-001
MN-52	Not Detected		5.91E-002
MN-54	Not Detected		2,90E-002
MO-99	Not Detected		1.09E+000
NA-22	Not Detected		3.36E-002
NA-24	Not Detected		5.78E+001
ND-147	Not Detected		2.53E-001
NI-57	Not Detected	· · · · · · · · · · · · · · · · · · ·	1.08E+000
RU-103	Not Detected		2.50E-002
RU-106	Not Detected		2.28E-001
SB-122	Not Detected		1.96E-001
SB-122	Not Detected		2.63E-001
SB-124 SB-125	Not Detected		
SN-113			7.40E-002
SR-85	Not Detected		3.40E-002
	Not Detected		3.27E-002
TA-182	Not Detected		1.45E-001
TA-183	Not Detected		8.49E-001
TL-201	Not Detected		6.78E-001
Y-88	Not Detected		2.56E-002
ZN-65	Not Detected		9.17E-002
ZR-95	Not Detected		4.76E-002

********************** ************ Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/10/02 7:58:01 AM ************ ******* *************** 9/10/02 Reviewed by: Analyzed by: ****** : SANDERS M (6135) Customer Customer Sample ID : LAB CONTROL SAMPLE USING CG-134 : 20124820 Lab Sample ID : MIXED GAMMA STANDARD CG-134 Sample Description 1.000 Each Sample Quantity : : 11/1/90 Sample Date/Time 12:00:00 PM Acquire Start Date/Time : 9/10/02 7:47:41 AM Detector Name : LAB01 Elapsed Live/Real Time 600 / 604 seconds : Comments: ***** ******************************** Nuclide Activity 2-sigma MDA (pCi/Each) Name (pCi/Each) Error --------_ _ _ _ _ _ _ -----_ _ _ _ _ _ _ _ _ _ _ _ U-238 Not Detected 2.57E+003 RA-226 Not Detected 5.69E+003 Not Detected PB-214 ------6.61E+002 BI-214 -----Not Detected 5.81E+002 PB-210 Not Detected 9.56E+004 Not Detected TH-232 2.08E+003 _____ Not Detected RA-228 -------2.49E+003AC-228 Not Detected 1.44E+0034.90E+005 TH-228 Not Detected --------6.73E+003 RA-224 Not Detected -----PB-212 Not Detected 3.41E+004 BI-212 Not Detected 3.03E+005 TL-208 6.40E+004 Not Detected --------U-235 Not Detected --------1.39E+003 TH-231 Not Detected ---------4.03E+004Not Detected PA-231 ------1.38E+004 TH-227 Not Detected * - - - - - - - - -2.69E+003 RA-223 Not Detected 1.00E+026 RN-219 Not Detected 6.60E+003 PB-211 Not Detected --------1.50E+004 TL-207 Not Detected ------2.33E+005 AM-241 8.90E+004 1.28E+004 1.87E+003 PU-239 Not Detected _____ 2.32E+006 NP-237 Not Detected 1.24E+004PA-233 Not Detected 5.98E+002 TH-229 Not Detected -----1.28E+003

.

: 20124820

Nuclide Name	Activity (pCi/Each)	2-sigma Error	MDA (pCi/Each)
AG-108m	Not Detected	*********	3.23E+002
AG-110m	Not Detected		2.51E+008
BA-133	Not Detected		9.30E+002
BE-7	Not Detected		1.00E+026
CD-115	Not Detected		1.00E+026
CE-139	Not Detected		5.30E+011
CE-141	Not Detected		
CE-144	Not Detected		1.00E+026
CM-243	Not Detected		5.04E+007
CO-56	Not Detected		2.17E+003
CO-57	Not Detected		2.70E+019
CO-58			1.06E+007
CO-60	Not Detected		7.54E+020
CR-51	7.90E+004	1.05E+004	9.60E+002
	Not Detected		1.00E+026
CS-134	Not Detected		1.50E+004
CS-137	6.76E+004	8.58E+003	4.27E+002
EU-152	Not Detected	**********	9.40E+002
EU-154	Not Detected		3.62E+003
EU-155	Not Detected		4.30E+003
FE-59	Not Detected		1.00E+026
GD-153	Not Detected		1.07E+008
HG-203	Not Detected		1.00E+026
I-131	Not Detected		1.00E+026
IR-192	Not Detected		1.25E+020
K-40	Not Detected		1.57E+003
MN-52	Not Detected		1.00E+026
MN-54	Not Detected		4.89E+006
MO-99	Not Detected	******	1.00E+026
NA-22	Not Detected		4.20E+003
NA-24	Not Detected		1.00E+026
ND-147	Not Detected		1.00E+026
NI-57	Not Detected		1.00E+026
RU-103	Not Detected		1.00E+026
RU-106	Not Detected		9.40E+006
SB-122	Not Detected		1.00E+026
SB-124	Not Detected		1.00E+026
SB-125	Not Detected		2.30E+004
SN-113	Not Detected		9.64E+013
SR-85	Not Detected		1.00E+026
TA-182	Not Detected		2.32E+014
TA-183	Not Detected		1.00E+026
TL-201	Not Detected		1.008+026
Y-88	Not Detected		2.57E+014
ZN-65	Not Detected		1.75E+008

	***************************************	×
	Sandia National Laboratories	*
, r	Radiation Protection Sample Diagnostics Program	*
,	Quality Assurance Report	*
	**********************	*

Report Date	:	9/10/02 7:58:09 AM
QA File	;	C:\GENIE2K\CAMFILES\LCS1.QAF
Analyst	:	KICHAVE
Sample ID	:	20124820
Sample Quantity	-	1.00 Each
Sample Date		11/1/90 12:00:00 PM
		9/10/02 7:47:41 AM
		600 seconds
Elapsed Real Time	:	604 seconds

Parameter	Mean	1S Error	New Value	< - ·	LU : 3	SD :	UD :	BS >
AM-241 ACTIVITY	8.572E-002	3.463E-003	8.900E-002	<	:	:	:	>
CS-137 Activity	6.836E-002	1.365E-003	6.760E-002	<	<u>ب</u>	·.	:	>
CO-60 Activity	7.658E-002	3.471E-003	7.776E-002	<	-	:	:	>

flags Key:

LU = Boundary Test SD = Sample Driven N-Sigma Test UD = User Driven N-Sigma Test BS = Measurement Bias Test (Ab = Above , Be = Below) (In = Investigate, Ac = Action) (In = Investigate, Ac = Action) (In = Investigate, Ac = Action)

Reviewed by: