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Abstract

An order is a subring of the ring of integers of an algebraic extension,

Peruginelli and Zanardo classified the lattices of orders with prime index

inside te ring of integers of quadratic extensions of the rational numbers.

The lattices are quite striking and have different layered structure depending

on whether the prime is inert, split, or ramified. This thesis considers the

orders which have prime power index inside the Gaussian integers. This is a

nice generalization of the work of Peruginelli and Zanardo, and succeeds in

a few classifications of specific instances of orders derived from inert primes.
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1 Introduction

Our primary objects of interests in algebraic number theory are algebraic num-

ber fields which commonly occur as some finite, algebraic extension of Q. A

quadratic number field is an algebraic extension of Q of degree 2, for example

Q[i]. For each algebraic number field Q[α], there is an associated ring of in-

tegers given by Z[α]. Algebraic number theory is largely concerned with the

extension of the properties of the integers to algebraic extensions of the integers,

i.e., rings of integers. A quadratic ring of integers is defined similarily as a degree

2 algebraic extension of Z, one such example is the Gaussian integers Z[i]. The

primary object whose sub-lattice we are investigating is an order. At its most ba-

sic, an order is a subring O of the ring of integers of a field that is a Z-module. For

an order O of a number ring OK , its conductor is given by F = {α ∈ K|αK ⊆ O},

the largest ideal of OK contained in O.

In this paper, we begin with the general theory and full characterizations of

the lattice of F-primary ideals of the number ring Z[αf ], for quadratic algebraic

integer α and prime f , formed by [PZ]. We then attempt to extend the general

theory to the case Z[αfσ], α and f the same, but now with f raised to a power.

Further, we characterize specific cases of these lattices, and show the existence of a

canonical sub-lattice associated to the conductor F. At the end of the Peruginelli

and Zanardo paper, we come across in the remarks that the Hasse diagram of a

number ring Z[αn] for quadratic α and integer n will be given by the disjoint union

of the lattices we are investigating above. This work is a small extension towards

a general characterization of all such lattices, and eventually, a characterization

of the lattices of all such integers themselves.
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2 Preliminary Algebraic Number Theoretic Re-

sults

Now, to establish some of the preliminary algebra necessary for our constructions

and discussion. As stated, the objects of primary interest are the lattices of

particular algebraic sub-objects of a common algebraic number theory setting, a

number field. A number field is some finite, algebraic extension of the rationals,

i.e., an algebraic number field is of the form Q(α1, α2, ..., αn), where α1, ..., αn are

algebraic over Q. [RS]

Remark 2.1 If K is an algebraic number field, then K is an algebra over Q.

An algebraic integer of an algebraic number field K is any element β ∈ K

whose monic minimal polynomial in Q has only integer coefficients instead of ratio-

nal coefficients. The collection of algebraic integers of K form a sub-ring called the

ring of numbers (colloquially, number ring), commonly denoted as OK . [Mat]

(Theorems 9.1 and 9.4 from Matsumara applied to number fields yield the above)

In this paper, we focus on an algebraic integers α of quadratic, i.e., algebraic

integers whose monic, irreducible minimal polynomial is of degree 2 (both rational

and integral by Gauss’ Lemma). So we have that there exists an irreducible polyno-

mial h(x) = x2+ax+b such that f(α) = 0 for a, b ∈ Z. This polynomial is unique.

So for fσ, this implies that there exists a monic, irreducible polynomial with coef-

ficients in Z such that g(x) = x2 +Ax+B, and g(αfσ) = α2f 2σ +Afσα+B = 0.

From this we see that A = fσa and B = f 2σb. We will refer to these as the alge-

braic equations, and use them further down the line to elucidate the structure

of particular ideals as modules.

These rings OK are no longer fields, but inherit a variety of nice structure

from K [S], as follows:
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Remark 2.2 If K is an algebraic number field then OK

i) is an integral domain

ii) is integrally closed in K

iii) is a Noetherian ring

iv) has Krull dimension 1

v) is a Dedekind domain

So, for all algebraic number fields K, its ring of integers OK is an integrally

closed Noetherian integral domain of Krull dimension 1, and thus a Dedekind do-

main. While not possessing the full structure of a field, it is clear that our rings

of integers inherit a lot of ’nice’ algebraic structure from the field that they are

derived from.

For a number field K, and it’s ring of integers OK , an order of OK is a

subring of OK , denoted O, that is also a Z-module. As we make explicit the

sructures we desire to investigate, we will put conditions on our order to make it

unique amongst the possibilities in a number ring.

In every order O of the ring of integers OK of number field K there is an

ideal called the conductor, denoted F. The conductor is given to us as the the

largest ideal of O contained in OK . For number ring and order OK , O, O ⊆ OK ,

the conductor of S in R is given as F = {s ∈ S|sR ⊆ S}. F, as mentioned is an

ideal of O, as shown below.

Lemma 2.1 For order O of ring of integers OK, the conductor of O is an ideal

of both rings.

Proof: Obviously O ⊆ OK ⊆ K are commutative so the conductor of O is

well defined. First to check that F is a subring of O. Let α, β ∈ O, then

(α + β)OK = αOK + βOK . αOK and βOK are both sub rings of O, which is

closed under addition, so αOK + βOK is certainly contained in O.
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To show F is an ideal of O, let α ∈ F, β ∈ O, then αβOK = α(βOK) = αOK ⊆ O,

so F defines an ideal.

Alternatively, for commutative rings S ⊆ R, the conductor can be character-

ized as F = (S :K R), the colon ideal of R and S over K.

Remark 2.3 If F is the conductor of O, then F = (OK :K O).

The conductor under non vacuous conditions is always a proper ideal, as shown

below.

Lemma 2.2 Let S ⊆ R be commutative rings. F = S ⇐⇒ S = R.

Proof: (←) let S = R. Then RS = R ⊆ S, which implies that F = S.

(→) let F = S, then 1 ∈ F, so RF = R ⊆ S. By definition, S ⊆ R, so we have

that S = R.

One notion we need from abstract algebra comes to us in a formulation of

Cox. [C] When we are considering an order O of a ring of integers OK of quadratic

number field K, he calls an ideal I of O proper if

{ω ∈ OK |ωI ⊂ I} = O. In other words, the set of elements multiplying I into

itself are all in O.

Theorem 2.3 Let O be an order of quadratic number field K. If I is a finitely

generated, non-zero ideal of O, then I is a proper ideal if and only if I is an

invertible ideal.

Given our common use of proper to refer to a set inclusion property, this will

be the last time we use the term in Cox’s sense. However, it should be noted that

any ideal that is a module of an order of OK containing O, or OK itself, then it

is NOT proper in the sense of Cox. So, the above essentially tells us that any O

ideal that is NOT a module of any ’upper’ order or OK is invertible.
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To explicitly represent the algebraic structure of ideals contained in the conduc-

tor of an order, we use a lattice. A lattice in its most general form is a categorial

object that we can build in the required algebraic categories (Grp, Mon, etc.) to

capture the notions we need. For a category C, C→ is the collection of arrows

of C, and Cobj is the collection of objects in C.. A pre-order is a category C in

which there is at most one arrow f : C → D for f ∈ C→, C,D ∈ CObj. Note,

this allows for two C-objects C,D to have 2 arrows between them, with opposite

domains/codomains (f : C → D, g : D → C). [Mac] A partial ordering is a

preorder in which for any two C-objects have at most one arrow between them, i.e.

for C,D ∈ COb there is either an arrow f : C → D or g : D → C or no arrows. The

meaning of the arrows is specific to the preorder, of which category the lattice is a

subcategory of. Partial orders can have a notion of supremum and infimum, both

globally and locally, called the join and meet respectively. If for any two objects

C,D in some partial order such that there exists object E such that there exists

f : C → E, g : D → E, and for any object W that also satisfies this property

(an arrow from C,D to W ), there exists an arrow from E to W , then E is called

the join of C and D. This captures our notion of least upper bound in a partial

order. If for any two objects C,D in a partial order such that there exists E such

that there exists f : E → C, g : E → D, and for any object W that also satisfies

this property (an arrow from W to C,D), there is an arrow from W to E, then

E is called the meet of C and D. A global maximum of a partial order is an

object in which every other (comparable) object has an arrow to it, and a global

minimum is an object in which it has an arrow to every other (comparable) object.

A lattice is a partial order in which any two elements have a join and a meet. [G]

The radical of an ideal J of ring R is the set

√
J = {x ∈ R|xn ∈ J for some n ∈ N}

which will be a prime ideal. We call J P -primary if J is a primary ideal and prime

5



ideal P is the radical of J [H]. In this thesis, we attempt to extend the previous

general theory of the lattice of F-primary ideals in the quadratic algebraic order

Z[αf ] for prime f , to the setting of Z[αfσ], and to provide a characterization

of the structure for inert primes. For order O, the F-primary lattice will be the

lattice of ideals of O who are F-primary ordered by inclusion. For the interests

of our paper, this will either be the lattice of subideals of (f, αfσ), whcih is the

conductor in the σ = 1 case.

Definition 2.1 For an order Z[αfσ] the maximal primary ideals are the ideals

primary to (f, αfσ). This will be the set of ideals whose radical is (f, αfσ). For

order Z[αf ], the maximal primary ideals are those whose radical is the conductor.

Theorem 2.4 If O is an order of ring of integers K, then the lattice of maximal

primary ideals ordered by inclusion forms a lattice bounded on top (i.e. lattice of

F-primary ideals).

Having established the basic algebraic objects underpinning our investigation,

we narrow our focus on the primes themselves. While an ideal P may be prime

when considered in Z, it’s extension in higher order rings containing Z may no

longer be prime, and have its own decomposition into prime factors. Generalizing

further, for prime ideals of some number ring OK we can classify their behavior

in order OF of extension field of K,F , though it is dependent on which extension

field F of K we consider.

For prime ideal of OK P , POF is an ideal in OF , so we can look at its decom-

position into prime ideals; POF = ΠPi
j If we have j > 1 for any of the products

components, we declare P to be ramified in this extension. By the nature of

multiplicativity, we can say [F : K] = Σjiai, some integers ai. If all ji, ai are

equivalent to one, then we say P splits completely, or is split in our extension. If

P remains prime in our extension, we say it is inert in our extension (in which

case POF = ΠP = P ). We give formulas that can determine the splitting type of

our ideals later on. As stated, the case we are most interested in is prime ideals of
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Z in field extensions of Q. In other words, we are generally looking at the splitting

type of ideals generated by prime integers in quadratic algebraic extensions of Q.

This ’splitting type’ of primes was shown to determine the F-primary lattice

structure of the conductor of a quadratic order Z[αf ] [PZ]. While splitting type

is not entirely sufficient for our generalization considered here, it is an essential

piece of information. In this thesis, we only specifically delve into the structure

of inert primes, however the general theory developed intially applies to all three

cases. Moreover, we present results from Peruginelli and Zanardo on the other

types of primes to fully illuminate the setting this machinery is being developed

to operate in.

This ends our account of the basic algebraic objects under consideration. To

reiterate, we are looking at the underlying theory determining the structure of the

maximal primary lattice of the quadratic order Z[αfσ].

3 Preliminary Results of Orders and F-Primary

Ideals

Here we go over the theory determining the actual structure of F and the ideals

associated to its f -primary lattice. Let d be a square-free integer. The ring of

integers of K = Q(
√
d) is equal to D = Z[ω], where either ω =

√
d, when d = 2, 3

modulo 4, or ω = (1 +
√
d)/2, when d = 1 modulo 4. In the latter case, we get

ω2 = θ − (1− d)/4. Let now f be a positive prime integer and O = Z[fω] be the

unique quadratic order in K such that [D : O] = f .

An important definition of this preliminary theory is the notion of F-basic ide-

als, or the F-primary ideals who are not contained by F2. A large part of this

theory is that we can rely on the F-basic layer to characterize our lattices. Addi-

tionally we can characterize elements of our order as basic and ideal-primary as

well. For t ∈ O, ideal I ⊂ O, t is I-primary if
√
tO = I. For our purposes, we

7



concentrate on the case of elements of the order who are primary to the conductor.

We call an element t ∈ O F-basic if tO is an F-basic ideal. For our single power of f

case, we get a number of simple results from the norms and above definitions. [PZ]

Remark 3.1 F is a prime ideal of O if and only if f is a prime number.

Remark 3.2 There are no intermediate ideals between F and fO since

|F : fO| = f .

Remark 3.3 An ideal I of O is F-primary if and only if N(I) = fa, some a ≥ 0.

Lemma 3.1 (Lemma 2.1 of [PZ]) Let ω ∈ F/fO. Then F = (f, ω).

Theorem 3.2 (Lemma 2.5 of [PZ]) Let Q be a F-primary ideal and let k =

max{n ∈ N|Q ⊂ Fn}. Then;

i) Q = fk−1Q′, where Q′ is a F-basic ideal.

ii) If Q/fm is F-basic for some m > 0, then m coincides with k − 1.

Lemma 3.3 (Proposition 2.6 of [PZ]) Let t = fx + fωy ∈ F be F-primary,

x, y ∈ Z. Then g.c.d(x, y) = fa, for some a ≥ 0. Moreover, t is F-basic if and

only if g.c.d(x, y) = 1. If the latter conditions hold, then t is an irreducible element

of O which is not prime.

Proof: Let t = fx + fωy ∈ F be F-primary, so
√
tO = F. Then by the above

lemma, N(tO) = |O/tO| = |(1)/f(x+ wy)| = fa, a > 0. But

|O/tO| = fgcd(x, y)⇒ gcd(x, y) = fa−1, a > 0. For any F-basic ideal

J,N(J) = |O/J | = |N : (fO)| = f This immediately implies tO is an F-basic

ideal if and only if gcd(x, y) by our previous work. To show the last condition, as

given by [PZ], let us use a proof by contradiction, and assume that t = rs, where

r, s ∈ O, and both r, s are not units in O. Since the norm is multiplicative on

O, r, s are F-primary elements. In particular, r, s ∈ F. But then t = rs ∈ F2, a

contradiction. Moreover, tO is not a prime ideal, since it is strictly contained in

8



the conductor F (the only prime ideal containing t), which is not principal.

We further characterize the basic ideals found between F and F2 by the basic

elements t ∈ O such that F2 ⊂ tO ⊂ F.

Lemma 3.4 (Lemma 3.4 of [PZ]) A principal ideal tO lies properly between F

and F2, i.e. t is F-basic if and only if t = fk, for a suitable unit of k ∈ D.

Moreover, fkO = fk′O if and only if k/k′ ∈ O.

Here, we give a characterization of the most important layer of these struc-

tures for all lattices, the first conductor layer composed of the conductor and the

conductor primary ideals where our number field is given by Q(ω), with ring of

integers D = Z[ω]. The order’s this theorem is concerned with are O = Z[fω].[PZ]

Theorem 3.5 (Theorem 3.3 of [PZ]) Let Q = (fk, fα) be an F-basic ideal dif-

ferent from fO. Then;

i) fk is the minimum power of F contained in Q

ii) If Q is a D-module, then there are exactly f + 1 ideals of O lying properly

between Q and fQ, namely the pairwise distinct ideals

J = {J = (fk, f 2α), Ja = (fk+1, afk + fkα)}

iii) If Q 6= QD, ∃! ideal of O lying properly between Q & fQ of the form

J = (fk, f 2α)

This theorem is meant to characterize the local lattice structure of any quadratic

order, where our order is given by O = Z[fα]. A key part of our work will be

extending this theorem to the case Z[αfσ]. This theorem is central in our research

9



into these objects, allowing us to build an unknown structure up piece by piece to

be investigated for its global properties. Moreover, it will be seen to be a key in

many proofs regarding the actual characterizations of our lattice’s of interest. As

an example;

Lemma 3.6 For number field D = Q[i], ring of integers Z[i], and order O =

Z[if ], the conductor F = (f, if) is a D-module.

Proof: Z[i]F = (1, i)(f, if) = (f) + (if) + (if)− (f) = (f, if) = F , which shows

the action of D on the generators of F preserve all of F , and satisfy F being a

D-module.

If f is an inert prime, this lemma combined with the above theorem actually

fully characterizes the f -primary lattice of the conductor in Z[αf ], as we will

come to see. This just illustrates the power and utility of the previous theorem.

Now, to determine which of the ideals of J is a D-module requires a little

more work and knowledge of whether or not f is inert/ramified/split. Let D∗, O∗

denote the multiplicative group of the two rings. The following gives us an easy

method to calculate the splitting type of f relative to the algebraic structures we

already have. [P&Z]

Lemma 3.7 (Proposition 3.5 of [PZ]) Let τ = |D∗/O∗|. Then we have;

i) if f is inert in D, then τ |f + 1.

ii) if f is split in D, then τ |f − 1.

iii) if f is ramified in D, the τ |f .

For the case which we will work in, where O = Z[αfσ], this lemma can still

help us determine the splitting type of f , we will just jave to replace O in the

above lemma with the single power case (σ = 1).

10



4 Preliminary Results of Lattice Structures

Drawing primarily from [PZ], we restate the results characterizing the lattices of

F-primary ideals of orders Z[fω], of the ring of integers D = Z[ω], where f ∈ Z

is a prime. As stated previously, the lattice structure of O is dependent upon

the splitting type of f , so we get three cases, each corresponding to when f is

inert/split/ramified (see previous section).

4.1 Inert Case

O

F

fO

F2

f 2O

F3

...J0 ... Jf−1

...fJ0 ... fJf−1

......... ... ...

Consider the case for O = Z[fω], where f is a prime element of Z

Theorem 4.1 (Theorem 4.1 of [PZ]) Suppose F = fD is a prime ideal of D.

Then every basic F− primary ideal of O containing F2, and lies in the following

set of pairwise distinct ideals J = {J = (f, f 2ω), Ja = (f 2, f(a+ ω)) for 0 ≤ a ≤

f − 1}.

11



4.2 Split Case

O

F = P 2

fO... ...Q2 Q2

F2......... ... ... ...Q3 Q3

f 2O...fQ2
.........Q4

... fQ2
... ... ... Q4

Consider the case for O = Z[fω], where f is a prime element of D = Z[ω]

as above, but F = fD splits as an ideal of D, i.e. ∃ ideals P, P such that

F = fD = PQ, where P 6= P . P, P principal if and only if f is not irreducible

in D, which by definition of f implies that P, P are not principal. However, since

the class group of D is finite, ∃ integers n such that P n is principal.

Lemma 4.2 (Lemma 4.2 of [PZ]) For ideals P, P such that F = PP , β a fixed

generator of P . ∀n ∈ Z, βn /∈ O.

This next theorem characterizes all the F-basic elements of O. Unlike the above

inert case, there are basic elements of arbitrarily large norms, and thus infinitely

many.

Theorem 4.3 (Theorem 4.3 of [PZ]) For each n ∈ N, let tn = fβn. An element

t ∈ O is basic if and only if t is associated in D either to tn or its conjugate,

for some n ∈ N. Moreover, the principal ideals tnwO, tn
−w′O, for n > 0 and

w,w′ ∈ D∗, w, w′ /∈ O, are pariwise incomparable and do not contain F2.

Note a Special Principal Ideal Ring (Special PIR) R is a principal ideal ring

with a unique prime ideal M, such that M is nilpotent. Special PIR’s are chained

rings i.e, have linearly ordered ideals.

Lemma 4.4 (Lemma 4.4 of [PZ]) The quotient ring O/tnO is a Special PIR for

all n ∈ N. In particular, the ideals (necessarily F-primary) that contain tnO are

equal to (f i, tn), for i = 1, ...,mn+ 2, and their norm of (f i, tn) is f i.

12



Lemma 4.5 (Proposition 4.5 of [PZ]) Let t ∈ O be a basic F-primary element

of norm fm, and let i ∈ N be such that i,m. Then the ideal I = (f i, t) of O is a

D-module, equal either to P iQ or PQi. In particular we get (f i, ti) = (f i, tn), for

every n ≥ i.

The next theorem gives a description of the ideals of O that contain a basic

element.

For every k ≥ 1, let Qk = (fk, tk) = P kP , and Q1 = F.

Theorem 4.6 (Theorem 4.6 of [PZ])

i) Let Q be a F-basic ideal, then exists k ≥ 1 such that

fQk ⊂ Q ⊆ Qk.

ii) The ideals Qk = (fk, tk), for k ∈ N, are pairwise distinct.

iii) An ideal Q of O contains Qk ⇐⇒ Q ∈ {Qi|i = 0, ..., k}.

iv) If Q contains a basic element and it is not principal, then either Q = Qk or

Q = Qk for some k ∈ N.

Now we characterize the ideals of O that do not conatin a F -basic element.

Theorem 4.7 (Theorem 4.7 of [PZ]) Let Q be a basic F-primary ideal not con-

taining any basic element. Then;

i) Q lies properly between Qk and fQk, for some k > 0.

ii) Q = (fk+1, afk + tk) for some 1 ≤ a ≤ f − 1.

iii) Q does not contain any other basic F-primary ideal.

iv) Q is an invertible ideal of O.

v) Q is not a D-module.

Combined the previous two theorems characterize the lattice of F-primary

ideals for a splitting prime.
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4.3 Ramified

O

F = P 2

fO...J1P 3 ... Jf−1

F2 = P 4............

f 2O...fJ1P 5 ... fJf−1

F3 = P 6............

Consider the case where O = Z[fω], where f is a prime element of D, but F =

fD = P 2,P a prime ideal of D. I.e. the conductor splits into two prime ideals.

Following results from [PZ].

Theorem 4.8 (Theorem 4.9 of [PZ])

i) If d ≡ 1, 2 (mod 4) or d ≡ 3 (mod 4) and f 6= 2, then we have P = fD +√
(2)dD. If d ≡ 3 (mod 4) and f = 2, then P = 2D + (1 +

√
(2)d)D.

ii) Let Q ⊆ F be a basic F-primary ideal. Then either P 4 ⊂ Q ⊆ P 2 or P 5 ⊂ Q ⊆

P 3.

iii) If F2 ⊂ Q ⊂ F2, then either Q = Ja = (f 2, f(a +
√

2d)), for some a =

0, 1, ..., f − 1, or Q = J = (f, f 2
√

2d) = fO.

iv) if fP 3 = P 5 ⊂ Q ⊂ P 3, then Q = Ha = (f 3, af 2 + f
√

2d), for some a =

0, 1, ..., f − 1, or Q = (f 2, f 2
√

(2)d) = fF = P 4, except when f = 2 and d ≡ 3

(mod 4); in this latter case, we either get Q = (8, 2(1 +
√

(2)d)), or Q = (4, 4(1 +√
(2)d)) = P 4.

This next result shows that besides the basic elements of t ∈ F such that

F 2 ⊂ tO ⊂ F, we have other basic elements dependent on whether or not P is a

principal ideal of D.
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Lemma 4.9 (Proposition 4.10 of [PZ]) There exists a basic element t ∈ O such

that P 5 ⊂ tO ⊂ P 3 if and ony if P is a principal ideal of D. If this condition

holds, say P = βD, for some β ∈ D, then every basic element is associated to fβ

by a unit of D.

So by the previous two results, we can characterize the lattice of F-primary

ideals of a ramified prime.

5 Extension of General Results to the Orders

Z[αfσ]

Now, to begin our study of the case of orders Z[αfσ] of the quadratic number ring

Z[α]. We show how our general theorems from above carry over into this new

setting, characterize the ideals our lattice will have, and note how the changed

structure differs in general from our prime case. We show that the original pri-

mary theorem used to characterize an ideals maximal properly contained ideals

by whether or not they were a module holds, if in a slightly different manner.

We will see our global maximum (bound in a lattice) changes, causing separation

in powers between αf and αfσ, and as we will see, many of our new properties

discovered can be characterized in terms of this ’separation’.

Theorem 5.1 Let V be an ideal in Z[αfσ], of the form (fk,
∑
cjf

j +αfσ), where

F = (fσ, αfσ) and m = (f, αfσ). Then;

i) if V is a Z[αfβ] module, where β ∈ {0, ..., k − 1}, then there uniquely exists

f + 1 pairwise distinct ideals between V and fV , of the form

J = {J = (fk,
∑

cjf
j+1 + αf l+1),

Ja = (fk+1, afk +
∑

bjf
j + αf l)for0 ≤ a ≤ f − 1}

15



ii) if V is NOT a Z[αfσ] module, then there is only one proper ideal between V

and fV .

Proof: i) V/fV =∼= Z/fZ ⊕Z/fZ as abelian groups. Z/fZ ⊕Z/fZ has exactly

f + 1 proper, non-zero subgroups, so it suffices to show that J, Ja are pairwise

distinct, as their containment and structure as ideals is obvious. To verify dis-

tinctness:

Suppose that Ja = Jb. Then for proper x0, x1, y0, and y1 ∈ Z, we have that

f δ(afk−δ +
∑

cjf
j−δ + αf l−δ) =

f δ((x0 + x1f
σα)fk−δ + (y0 + y1f

σα)(bfk−δ +
∑

cjf
j−δ + αf l−δ)

Which implies that

afk−δ +
∑

cjf
j−δ + αf l−δ − x0fk − y0(bfk−δ +

∑
cjf

j + αf l−δ) =

x1f
σfkα + y1f

σα(bfk−δ +
∑

cjf
j−δ + αf l−1)

which is an element of fσαV ⊂ V where δ is the smallest power of k, l, or j for a

non-zero cj term. So we get three cases depending on what δ is:

Case δ = k Then we have that (1 − y0)f
l−kα ∈ O where σ ≤ l < σ + k, so

(1− y0) ∈ fZ

Case δ = l Then we have that (1− y0)α ∈ O, so (1− y0) ∈ fZ.

Case δ = j Then for some cj, we have that (1− y0)cj ∈ O where

cj ∈ {1, 2, ..., f − 1}, so we have that (1− y0) ∈ fZ.

So in all cases, we get that (1− y0) ∈ fZ. By minimality of k

afk−δ − y0bf
k−1 ∈ V , so we can conclude that 1 ≡ y0, a ≡ y0b mod f , so

a ≡ b mod f , and so a = b since they are both in {0, 1, ..., f − 1}. So we have

shown that Ja = Jb if and only if a = b.

We have J 6= Ja for all a, as J contains fk whereas Ja does not.
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ii) Suppose V is NOT a module of Z[αfβ] for any 0 ≤ β ≤ α − 1. So V is

O-proper and thus invertible. Let D + Z[αfσ−1]. So fV ⊂ fDV ⊂ V since V is

O-proper. Let J be any proper ideal between I and fI. Let Q = JI−1, so Q is

f -primary, as it is the product of two f -primary ideals. So J = QI ⊂ Im = IfD,

but [V : fV ] = f 2 so we have that J = IfD = Im.

It should be immediately noted that this is the generalized version of our

Thereom 3.8, the thoerem [PZ] used to locally characterize the lattice structure,

and is similarily one of the central pieces of this work. Both in this fact it consti-

tuted significant work in its own right, and is relied upon by many of the results

to be given. Our Theorem 5.1 differs from [PZ] in two key ways. First, now

an ideal I will contain more than one proper ideal between itself and fI if it is

a module of any order between our O = Z[αfσ] and D = Z[αf ]. This largely

increases the complexity in determining if an ideal is a module in a relevant sense,

as it vastly expands the possible relevant orders to be considered as σ increases.

Secondly, there is no part of this theorem showing every ideal is contained by

some f multiple of F. As the conductor is no longer maximal, not all ideals satisfy

this property nymore, and much more of the structure is determined by ideals not

contained by F. However, it should be noted for all ideals in our lattice I, there

exists some postive integer n such that fnI is containe by some f multiple of F,

fmF. This has not been examined in any depth in this work, and may be relevant

to future undertakings.

As the above theorem is the only relevant context modules will come up again

in this paper, from here on out, whenever we are discussing whether or not an

f -primary ideal of Z[αfσ] is a module, we are referring to whether or not it is a

module of Z[αfβ], for any 0 ≤ β < α. We will only refer to ideals being modules

with respect to orders between ours and the base ring of integers.
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Note that the above theorems give two possibilities for the number of proper

sub-ideals containing the f -multiple and whether or not an ideal is a module, also

a Boolean possibility. Because of this, we get a new way to determine if an ideal

is a module in our orders as follows;

Theorem 5.2 Consider the f -primary lattice of ideals of Z[αfσ]. If I is an ideal

of our order, then;

i) I is a module of Z[αfβ], 0 ≤ β < α if and only if there exists f + 1 proper

sub-ideals of I properly containing fI

ii) I is NOT a module if and only if there uniquely exists 1 proper sub-ideal of I

properly containing fI

Proof: Theorem 5.1 above fulfills the forward directions of both i) and ii). For the

backwards direction of i), suppose I is not a module. Then Theorem 5.1 implies

we have a contradiction. Similarily, we have for the backwards direction of ii),

that assuming I is a module results in a contradiction by Theorem 5.1. So we

have the above.

To start characterizing these lattices, we must know which ideals will be in

these lattices in the first place. In the prime case described previously, there were

relatively few ideals. In our higher power case, we have far more ideals by several

orders of magnitude, and they may be quite similar but not arranged closely. As

such, it will be very useful to give a way to list all the ideals one will have, and

have a general notion of there location in the lattice, if a specific location cannot

always be given canonically. As such, while this wasn’t a particularly useful result

to give for our original case as it was fully characterized, a general treatment of

the theory will require it until a fully algorithmic characterization of all powers

can be given, so one can check they have obtained a correct characterization of a

constructed lattice. As such:
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Theorem 5.3 Consider the f -primary lattice of Z[αfσ]. All ideals whose integer

components are generated by fk, k ≥ 1, are given by (fk,
k−1∑
k/2

aif
i + αf δ) if k

is even, or (fk,
k−1∑

(k+1)/2

aif
i + αf δ) if k is odd, where ai is 0 for i = 0, and ai ∈

{0, 1, ..., f−1} for i ≥ 0, max(α, k/2 or (k+1)/2) ≤ σ ≤ k+α, and δ ≥ σ, except

for any ideal where (fk, αf δ) could generate any ideal of the form fγm. The only

such ideals of that form are fγm, γ ∈ Z+.

Proof: Consider the lowest term with the lowest power of f times our algebraic

element. Then any other term will have a totally rational residual when compared

to this lowest algebraic power element. So the residual will be divisible by the

lowest power rational power, so the whole ideal can always be generated by the

lowest rational power and term with lowest algebraic power.

Now consider an ideal of the form (fk, β+αfσ+k), where β is a linear combination

of the lower powers of f and some element of Z/fZ as a constant as allowed above.

Then we see this ideal contains αfσ+k as a lone element, and thus has β also as

a lone element, so we have gcd(fk, β), which will be some lower power of f , and

thus not actually of the supposed form if written in the manner above.

A key structural difference between the prime case and all other higher power

cases is that the conductor F is no longer the maximal ideal of our lattice. Our

lattice is still bounded, but our maximal lattice is now (f, αfσ) for number ring

Z[αfσ]. We denote our maximal ideal of Z[αfσ] by m, which will be of particular

interest to us, as in the previous case of Z[αf ], m and F were one and the same.

We denote ideals I found between m and F to be called m-basic.As it turns out,

like in our prime case the F-basic ideals characterized our lattice structure, it is

now the m-basic and F-basic ideals that induce our structure. A full characteriza-

tion of our lattices of interest will likely require a more articulated understanding

of the interactions between these two layers.
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Theorem 5.4 Consider the f -primary lattice of ideals of Z[αfσ]. The maximal

ideal m is given by (f, αfσ) and the conductor F is given by (fσ, αfσ).

Proof: Consider the above lattice. We want to show that the above ideal is our

maximal ideal, in other words, for all ideals I in our lattice, I ⊂ (f, αfσ). If I is

in the lattice, it’s f -primary, i.e., all element of I are generated by multiples and

powers of f and αfσ, which by definition is our m, so I ⊂ m for all I in our lattice.

Now we want to show that F = (fσ, αfσ) is the largest ideal of Z[α] that is still an

Z[αfσ] ideal. As αfσ is the lowest power of f times α in our structure, and any

algebraic component β + αfσ where β is a linear combination of lower powers of

f , or an integer component of fk, k < σ, would no longer be the same ideal under

multiplication by α. I.e, (fk, β + αfσ) would contain αfk, which would certainly

not be in Z[αfσ] much less our ideal, and it would also contain αβ + α2fσ, which

would result in far lower powers of f in the algebraic or integer component than

is possible. So we see that the largest ideal in both our number ring and order is

(fσ, αfσ).

Recall in the inert/ramified/split prime cases given above, the particular im-

portance of the conductor F and fO, and their various powers fkF and fkO. If we

were to take the sub-lattices given only by those ideals, they graphically represent

the ’center line’ of our diagrams. We want a formal definition of this structure,

and in our higher power case for it to include not only the conductor F and fO,

but also the maximal ideal m and the ideals between m and F.

Definition 5.1 Consider the order Z[αfσ]. The spine of this order is the set of

ideals

{(f, αfσ), (fk, αfσ)∀1 ≤ k ≤ σ, fn(fσ, αfσ), fn(fσ+1, αfσ)∀n}

We now show that for the case σ ≥ 2, all spinal ideals are modules.
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Theorem 5.5 Consider the f -primary lattice of ideals of Z[αfσ], σ ≥ 2. All

ideals of the spine of the f -primary lattice are modules of

Z[αfβ], some β ∈ {0, 1, ..., α− 1}.

Proof: Preliminarily, α is a quadratic algebraic integer, i.e, there exists a, b, c ∈ Z,

such that ax2 + bx+ c = 0 minimally in Z[α]. So we get that αfσ is an algebraic

integer solving Ax2+Bx+C = 0 minimally, where A = a,B = fσb, and C = 2fσc.

We know that we have three cases to consider along the spine. Ideals of the form;

i) (fk, αfσ), where 1 ≤ k < σ

ii) (f δ, αf δ) where σ ≤ δ

iii) (f δ, αf δ+1) where σ ≤ δ

i) Assume I is of the form in i). We want to show that it contains more than

one distinct proper sub-ideal that properly contains fI. We know if I is a module

what its proper sub-modules of the above form will be. Suppose I is not a module,

then all of its proper sub-ideals properly containing fI should be equivalent, so

we consider (fk+1, αfσ) to be equal to (fk+1, fk +αfσ). We have by a generalized

Bezout’s Identity, there exists x0, y0, x1, and y1 ∈ Z such that

(x0 + αfσy0)f
k+1 + (x1 + αfσy1)αf

σ = fk + αfσ, which implies

x0f
k+1 + y0αf

σ+k+1 + x1αf
σ + y1α

2f 2σ = fk + αfσ and

x0f
k+1+y0αf

σ+k+1+x1αf
σ−y1Aαf δ−y1B = fk+αf δ, matching up components

we see

x0f
k+1 − y1B = fk, so y1B = fk, but fσ divides B, which is a contradiction. So

we have the above ideals are not distinct.

Remark about the next two cases, they all follow the same argumentative struc-

ture.

ii) Let I be of the form in ii). Set the two sub-ideals to be equal;

(f δ+1, αfσ) = (f δ+1, af δ + αf δ)
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So we suppose there exists x0, y0, x1, and y2 such that

(x0 + αf δy0)f
δ+1 + (x1 + αf δy1)αf

δ = f δ + αf δ

so similiar to the above we have, x0f
δ+1 − y1B = f δ, but f δ+1 divides B, so

by Bezout’s identity we once again get a contradiction, and have that the two

supposed sub-ideals are distinct.

iii) Lastly, let I be of the form in iii). Suppose the sub-ideals (f δ+1, αf δ+1)

and (f δ+1, f δ + αf δ+1) are equivalent. So there exists x0, y0, x1, and y1 such that

(x0 + y0αf
σ)f δ+1 + (x1 + y1αf

σ)αf δ+1 = f δ + αf δ+1

so as above, we get that

x0f
δ+1 − y1B = f δ, which is again a contradiction by Bezout’s Identity.

All of the sub-ideals used are both proper and contain the ideal fI properly as

inspection of their powers readily shows. As any ideal that has more than one

proper sub-ideal properly containing itself times f is a module, we have finished

showing all spinal ideals of the f -primary lattice of Z[αfσ] are modules for σ ≥ 2.
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6 Bar Notation for Ideals

Our lattice structures quickly become too large to easily represent and work with

at a global level. However, we can take advantage of the two-generator structure

and the common structure of containmnet given to us by Theorem 5.1 and base

some notation off of these properties to more easily represent our lattices.

∣∣∣b
a
(O, σ)

F

(O, σ) (O, σ + a) ... (O, σ + (b− 1)a)

F

Definition 6.1 Let the first structure above be called a grouping, and to be equiv-

alent to the below set of ideals containing F. When we write a grouping with more

n-bars after the generators, we call it an n-grouping. The figure immediately be-

low is a two grouping, and is equivalent to the collection of groupings below it. We

apply multiple bars recursively as the further two equivalent figures below shows.

(O, σ)
∣∣∣b
a

∣∣∣d
c

F

(O, σ)
∣∣∣d
c

(O, σ + a)
∣∣∣d
c

... (O, σ + (b− 1)a)
∣∣∣d
c

F
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(α, β)
∣∣∣b1
a1

∣∣∣b2
a2
...
∣∣∣bn
an

F

(α, β)
∣∣∣b2
a2
...
∣∣∣bn
an

(α, β + a1)
∣∣∣b2
a2
...
∣∣∣bn
an

..... (α, β + a1(b1− 1))
∣∣∣b2
a2
...
∣∣∣bn
an

F

Note we start with the innermost bar, and work outwards from there. As

Theorem 5.1 shows, each ideal that is a module contains f ideals who differ by

an addition of some power of f . Now we give rules for groupings containing

other groupings, with the caveat that the the i-th grouping bar of both groupings

must have the same top number for 1 ≤ i ≤ min(n,m). For an n-grouping that

contains an m-grouping, we consider the j-th (n-1)-grouping to contain the j-th

(m-1) grouping for 1 ≤ j ≤ n as such;

(α, β)
∣∣∣b1
a1

∣∣∣b2
a2
...
∣∣∣bn
an

(η, γ)
∣∣∣d1
c1

∣∣∣d2
c2
...
∣∣∣dm
cm

(α, β)
∣∣∣b2
a2
...
∣∣∣bn
an

(α, β + a1)
∣∣∣b2
a2
...
∣∣∣bn
an

... (α, β + (b1− 1)a1)
∣∣∣b2
a2
...
∣∣∣bn
an

(η, γ)
∣∣∣d2
c2
...
∣∣∣dm
cm

(η, γ + c1)
∣∣∣d2
c2
...
∣∣∣dm
cm

... (η, γ + (d1− 1)c1)
∣∣∣d2
c2
...
∣∣∣dm
cm

These definitions allow us to work with this notation recursively, and to collapse

data in our lattices into an easier to interpret format. Essentially, when we have
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two ideals with multiple of our expansion bars, we delete the innermost bars on

top and bottom, and connect the lattices of like indice. This does mean that for

two expanded sets of lattices to be connected, they must have the same number

of multiples.

For any n-grouping (α, β)
∣∣∣b1
a1

∣∣∣b2
a2
...
∣∣∣bn
an

we refer to its base as the ideal (α, β).

7 The Canonical Conductive Sub-lattice

We have not fully characterized the structure of every single f -primary lattice of

Z[αfσ], however, there is one sub-lattice we were able to prove the existence of

and fully characterize for all number rings of the above form. This sub-lattice is

derived from the sub-lattice having the conductor F as the maximal ideal, and ig-

noring that the ideals in between multiples of the conductor are modules. In other

words, we get this sub-lattice by picking out the structural features most similar to

our original prime case, where the multiples of fO were not modules. Note, that

the following sub-lattice is characterized solely from applications of Theorem 5.1,

so is not dependent on the prime in question being inert/ramified/split. So, while

we did not manage to characterize any of the higher power lattices of ramified or

split primes, we are not at a complete loss of the structure of these lattices. The

characterization of this sub-lattice once again shows the importance of the con-

ductor, and how much structure it determines even when not the maximal ideal

of our lattice.

As stated, we are interested in the sub-lattice where the conductor F is the

maximal ideal, and all other sub-ideals of the conductor except the non-spinal

ideals that ideals of the form (fβ, αfβ+1) contain. In other words, we ignore that

(fβ, αfβ+1) is a Z[αf δ]-module, δ < α, and choose the structure most similar to

the spine of our prime case. To define this sublattice, we need the spine, and two

other different sets of ideals
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Definition 7.1 Consider the order Z[αfσ]. The co-spine is given to us by the

set of ideals;

CS = {(fσ+1, αfσ)
∣∣∣f
fσ
, (fσ+2, αfσ)

∣∣∣f
fσ

∣∣∣f
fσ+2

, ..., (f 2σ, αfσ)
∣∣∣f
fσ
...
∣∣∣f
f2σ−1

,

(f 2σ+k, αfσ+k)
∣∣∣f
fσ+k

...
∣∣∣f
f2σ+k−1

, (f 2σ+k, αfσ+k+1)},

all k ≥ 0

Furthermore, we need to define the in between ideals of the conductive sub-

lattice, in other words, the ideals between the cospine and spine;

Definition 7.2 Consider the order Z[αfσ]. An in between ideal is any ideal at

the k-th layer whose integral/algebraic powers are both between the integral/algebraic

power of the k-th layers spinal ideal and co-spinal base.

Now we can define the conductive sublattice;

Definition 7.3 Consider the order Z[αfσ]. The conductive sublattice of this

order is the sublattice containing the spine, cospine, and in between ideals.

This sublattice will be shown to exist and be fully characterized for al lattices

under our investigation regardless of power or the splitting type of our prime. This

gives a universal starting point to aid research focused on full characterizations of

such lattices. We now go about proving said existence and characterizing. As the

spines structure is already well known (and we are ignoring the module structure

of the ideals in between f multiples of the conductor), we begin by characterizing

the co-spine;

Theorem 7.1 Consider the conductive sub-lattice of Z[αfσ]. The first σ layers of

the cospine are given by (fσ+k, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+k−1

, all of which are modules except

the σ-th grouping itself (will either contain the next layer of spinal ideal or in

between ideals besides the next layer of cospinal ideals)
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The k-th cospinal grouping after the σ-th layer is;

a) if k is even, the cospinal grouping is, for v = k/2,

(f 2σ+v, αfσ+v)
∣∣∣f
fvfσ

...
∣∣∣f
fvf2σ−1

,

which are NOT modules

b) if k is odd, the cospinal grouping is, for n = ((k − 1)/2 and m = (k + 1)/2,

(f 2σ+n, αfσ+m)
∣∣∣f
fmfσ+1

...
∣∣∣f
fmf2σ−1

which are modules

Proof: We know the first co-spinal grouping (f 2σ+1, αfσ)
∣∣∣f
fσ

, is given to us by

Theorem 5.1 on F. The rest are given to us by induction on the k-th layer by

Theorem 5.1, and collecting all the ideals resulting form increasing the rational

power for the next cospinal layer, up until k = σ. We show they are modules

below.

To show the first σ co-spinal groupings are modules, consider the ideal

(fσ+k,
∑k−1

i=0 aif
σ+i + αfσ) for 0 < k < α. We see that the leading rational power

is not σ higher than the algebraic power, so the sub-ideal with a leading generator

one power higher is proper. Consider the ideals

(fσ+k+1, vfσ+k +
k−1∑
i=0

aif
σ+i + αfσ) and

(fσ+k+1, jfσ+k +
k−1∑
i=0

aif
σ+i + αfσ)

for distinct v, j ∈ Z mod f . If they are equal, then there exists x0, y0, x1, y1 ∈ Z

such that

(x0 + αfσy0)f
σ+k+1 + (x1 + αfσy1)(vf

σ+k +
k−1∑
i=0

aif
σ+i + αfσ)

= jfσ+k +
k−1∑
i=0

aif
σ+i + αfσ
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We see this implies that, along with our algebraic equations,

x0f
σ+k+1 + x1

∑
aif

σ+i + x1vf
σ+k − y1f 2σb

=
∑

aif
σ+i + jfσ+k

By subtraction, we see that

x0f
σ+k+1 + (x1 − 1)

∑
aif

σ+i + (x1v − j)fσ+k − y1f 2σb

= 0 if and only if x1 = 1 andx1v = j

But v 6= j, a contradiction.

Proof by Induction: Consider the k-th ideal after the σ-th layer. Let k=1 (base

case). We know that the σ-th layer grouping was NOT a module. So Theorem

5.1 tells us it contains (f 2σ, αfσ+1)
∣∣∣f
fσ+1

...
∣∣∣f
f2σ−1

. By the above we have that this

IS a module. Applying Theorem 5.1 to this first cospinal ideal and collecting all

ideals whose rationaly power increased shows shows the base case for when k is

even. The above once again tells us this ’even’ layered grouping is not a module.

Let k be odd, and assume this statement holds for all layers up to and including

k + 1-st layer. We will show this implies the k + 2-nd and k + 3-rd layers are as

hypothesized. The k + 1-st layer is not a module, so Theorem 5.1 gives us the

desired form. Recognizing the k+2-nd layer as f times the k-th layer, we see it is a

module. A further application of Theorem 5.1 and collection of ideals constituting

the ones with an increased rational power yields the desired form. This completes

the induction.

We want to characterize all the groupings found between the spine and co-

spine in this sub-lattice. We call a layer of the conductive sub-lattice conductive

if the k-th layer spinal ideal is of the form fnF for some integer n. A layer

which has a spinal ideal that is not such an f multiple of the conductor is sub-

conductive. With this notion in mind, we prove that at the k-th layer of the
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spinal conductive lattice, if β and δ are the rationals powers of the k-th spinal

ideal and the k-th co-spinal grouping, then there are as a many groupings between

the spine and co-spine as δ − β − 1, and whose forms are depndent upon whether

or not we are at a conductive or subcondctive layer. Note, we will refer to a func-

tion sepk for each conductive sub-lattice of Z[αfσ] as the difference in powers of

the rational components of the k-th layer spinal and co-spinal ideals, minus one.

I.e., if we are at the k-th layer of the conductive sub-lattice of Z[αfσ], and the

spinal and co-spinal ideals have base rational component as fβ, fγ respectively,

then sepk = γ − β − 1. So we claim that we have as many in between ideals at

the k-th level as sepk, a claim we show in the next theorem. One last notational

consideration, we denote the k-th layers t-th in-between ideals by St
k, and denote

the whole set of in-between ideals at the k-th layer by Sk.

Theorem 7.2 Consider Z[αfσ] and it’s spinal conductive lattice. All in-between

ideals are modules. The first in-between ideal exists at the third layer ⇐⇒

σ ≥ 3. There are as many in between ideals at the k-th layer as sepk, of the form

(assuming sepk > 0);

if the k-th layer is sub-conductive, then Sb
k is contained by/contains

Sb−1
k−1/Sb−1

k+1 and Sb
k−1/Sb

k+1. Moreover, Sb
k is a 2b− 1 grouping, or;

if the k-th layer is conductive, then then Sb
k is contained by/contains

Sb
k−1/Sb

k+1 and Sb+1
k−1/Sb+1

k+1. Moreover, Sb
k is a 2b grouping.

Proof:We wish to show that all of these in-between ideals are in fact modules.

Consider the (conductive layer) ideal

St
k = (fσ+v+t,

∑2t−1
i=0 aif

σ+v−t+i + αfσ+v−t) for k = 2v ≤ σ, t < v

Since the power of the rational term is not a full σ higher, we know that the

sub-ideal with leading generator fσ+v+t+1 is proper. As before, we will show the
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ideals

(fσ+v+t+1, jfσ+v+t +
2t−1∑
i=0

aif
σ+v−t+i + αfσ+v−t) and

(fσ+v+t+1, gfσ+v+t +
2t−1∑
i=0

aif
σ+v−t+i + αfσ+v−t) for distinct j, g ∈ Z modf

are distinct. If they contain each other, then there exists x0, y0, x1, y1 ∈ Z such

that

(x0 + αfσy0)f
σ+v+t+1 + (x1 + αfσy1)(jf

σ+v+t +
2t−1∑
i=0

aif
σ+v−t+i + αfσ+v−t)

= gfσ+v+t +
2t−1∑
i=0

aif
σ+v−t+i + αfσ+v−t)

Using the algebraic equations referenced in the first section on preliminary

algebra, we see this implies that

x0f
σ+v+t−1 + x1

∑
aif

σ+v−t+i − x1f 2σ+v−tb+ x1jf
σ+v+t

=
∑
aif

σ+v−t+i + gfσ+v+t

Subtracting the terms, we get that

x0f
σ+v+t−1 + (x1 − 1)

∑
aif

σ+v−t+i − x1f 2σ+v−tb+ (x1j − g)fσ+v+t = 0

which occurs if and only if x1 = 1 and x1j = g. But j 6= g, thus a contradiction. So

these ideals cannot be equal, so by previous theorems we have that our in-between

ideal is a module.

To show this for the sub-conductive case, we repeat the same argument above

with the algebraic power one higher. Similarily, we end with the equation

x0f
σ+v+t−1 + x1

∑
aif

σ+v−t+i+1 − x1f 2σ+v−t+1b+ x1jf
σ+v+t+1

=
∑

aif
σ+v−t+i+1 + gfσ+v+t+1

which results in the same argument under subtraction. So we conclude that all
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in-between ideals are themselves modules.

Let the first in-between ideal exist at the third layer. Supose σ < 3, Then the first

three cospinal base’s are of the form (fσ+1, αfσ), (fσ+2, αfσ), and (fσ+2, αfσ+1),

with the difference in cases being the rank as a grouping. The first three spinal

ideal’s after the conductor are (fσ, αfσ+1), (fσ+1, αfσ+1) and (fσ+1, αfσ+2). Ap-

plying Theorem 5.1 to these ideals (not the spinal subconductive ideals) shows

that only spinal and copsinal ideals are contained. Which implies no in between

ideal exists at the third level, a contradiction. Suppose σ ≥ 3. Then the first

three cospinal base’s are given by (fσ+1, αfσ), (fσ+2, αfσ), and (fσ+3, αfσ), ap-

plying Theorem 5.1 shows that the first cospinal base nly contains cospinal and

spinal ideals, but that the second cospinal base contains ideals not in the spine or

cospine, hence in between ideals (one in particular). Note, that the third spinal

ideal after the conductor will never be of the form of an f multiple of F, so the

first in between grouping will always occur on a sub-conductive layer.

Base Case(s): By the work immediately above, we know the first in-between

ideal occurs at the third layer on a subconductive level. We know σ ≥ 3,

so the spinal ideal and co-spinal grouping at the third layer are (fσ+1, αfσ+2)

and (fσ+3, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+2

. By Theorem 5.1 applied to the previous layers spinal

ideal (fσ+1, αfσ+1), we get that it contains the grouping (fσ+2, αfσ+1)
∣∣∣f
fσ+1

. Ob-

servation shows these are the collection all the mximally proper sub-ideals re-

sulting from increasing the algebraic power of the previous cospinal grouping

(fσ+2, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+1

when applying Theorem 5.1. So S1
3 is contained by S0

2 and

S1
2 as desired. Applying Theorem 5.1 (will show these in-between ideals are mod-

ules at the end) shows this first in-between grouping contains (fσ+3, αfσ+1)
∣∣∣f
fσ+1

∣∣∣f
fσ+2

(either the first in between grouping for a conductive layer, or the next co-spinal
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grouping for σ = 3) and (fσ+2, αfσ+2). This shows the next layers in-between

ideal, our base case for the conductive layers, exists. Moreover this shows that S1
3

contains S0
4 and S1

4, completing our base case for the sub-conductive layer. Con-

sider the first conductive in between grouping at the 4th layer (assuming σ > 3)

(fσ+3, αfσ+1)
∣∣∣f
fσ+1

∣∣∣f
fσ+2

. We know the previous in-between grouping is containted

by S1
4 by previous work and the third cospinal grouping (fσ+3, αfσ)

∣∣∣f
fσ
...
∣∣∣f
fσ+2

by

Theorem 5.1 (the collection of ideals resulting from raising the algebraic power).

So S1
4 is contained by S1

3 and S2
3. Applying Theorem 5.1 to S1

4 yields the desired

containments. This finishes the base case.

Next we prove existence of the bases of the groupings, then prove their complete

structure. Assume a strong induction on k. Now assuming our theorem holds

for all layers up to and for k − 1. Let βk, δk are the respective rational powers

of the k-th spinal ideal and co-spinal grouping. Let jk = max(δk − βk, 0), and

assume jk is greater than 0. We can list the ideals of interest, assume the k-th

spinal ideal is of the form (fβ, αf ι) and the co-spinal base grouping is of the form

(f η, αf ζ). By our inductive hypothesis that the bases groupings between the spine

and co-spine at the k-th layer are Jk = {(fβ+1, αf ι−1), ..., (f η−1, αf ζ+1)}

We get four cases dependent on the spinal ideal and co-spinal base grouping

of the k-1-th layer.

Case 1: k-1-th layer (fβ−1, αfβ)/(f η−1, αf ζ) The k-1-th layer implies that ι = β,

so

Sk−1 = {(fβ, αfβ−1), ..., (f η−1, αf ζ)}

and

Sk = {(fβ+1, αfβ−1), ..., (f η−1, αf ζ+1}

and so we clearly see the base ideals of Sk are contained in the base ideals of Sk−1,

the co-spine and the spine.

Case 2: (k − 1)-th layer (fβ, αfβ)/(f η−1, αf ζ) The (k − 1)-th layer implies that

ι = β + 1, so
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Sk−1 = {(fβ+1, αfβ−1), ..., (f η−1, αf ζ+1)}

and

Sk = {(fβ+1, αfβ), ..., (f η−1, αf ζ+1)}

and so we clearly see the base ideals of Sk are contained in the ideals of Sk−1, the

co-spine and the spine.

Case 3: (k− 1)-th layer (fβ−1, αfβ)/(f η, αf ζ−1) The (k− 1)-th layer implies that

ι = β, so

Sk−1 = {(fβ, αfβ−1, ..., (f η−1, αf ζ)}

and

Sk = {(fβ+1, αfβ−1), ..., (f η−1, αf ζ+1}

and so we clearly see the base ideals of Sk are contained in the ideals of Sk−1, the

co-spine and the spine.

Case 4: (k − 1)-th layer (fβ, αfβ)/(f η, αf ζ−1) The k-1-th layer implies that

ι = β + 1, so

Sk−1 = {(fβ+1, αfβ−1), ..., (f η−1, αf ζ+1)}

and

Sk = {(fβ+1, αfβ), ..., (f η−1, αf ζ+1)}

and so we clearly see the base ideals of Sk are contained in the ideals of Sk−1, the

co-spine and the spine. This completes our induction on the number of distinct

bases of groupings we have between layers, i.e., the number of distinct groupings

we have at each layer of our sub-lattice.

Now to use induction to fully characterize the structure for our in-between ideals.

Let this theorem hold for all layers up to k, k ≤ σ. Want to establish an induction

on the k-th layer’s collection of in-between ideals itself.

Supose k is a subconductive layer, so k = 2v + 1, v ∈ Z.

Base Case: Consider S1
k. The k-th and (k−1)-st spinal ideals and cospinal group-
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ings are given by

(fσ+v, αfσ+v+1), (fσ+v, αfσ+v) and

(fσ+k, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+k−1

, (fσ+k−1, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+k−2

respectively.

S1
k is contained by the k − 1-th spinal ideal, whose only other maximal proper

ideal is the k-th spinal ideal. Applying Theorem 5.1 and the previous inductive

hypothesis, this characterizes S1
k as a 1-grouping contained by S0

k−1 and S1
k−1.

S1
k = (fσ+v+1, αfσ+v)

∣∣∣f
fσ+v

. An application of Theorem 5.1 shows this grouping

contains the k+1-th spinal ideal (an f multiple of F, is the raised algebraic power)

and (fσ+v+2, αfσ+v)
∣∣∣f
fσ+v

∣∣∣f
fσ+1

. This completes the base case for our induction on

the subconductive collection of in between ideals Sk.

Assume our theorem holds for the first t − 1 in between groupings of layer k.

Consider St
k. By our inductive hypothesis, we have this grouping is contained

by St−1
k−1 and St

k−1 a 2t − 2 and 2t grouping respectively, and that St−1
k is a

2t− 3 grouping. Knowing these are all modules, by counting we have that St
k is a

2t−1-grouping. We have the forms of the t and t−1-th layers spinal ideals, so we

know St
k = (fσ+v+t, αfσ+v+1−t)

∣∣∣f
fσ+v+1−t

...
∣∣∣f
fσ+v+t−1

. By Theorem 5.1, this means

St
k contains

(fσ+v+t+1, αfσ+v+1−t)
∣∣∣f
fσ+v+1−t

...
∣∣∣f
fσ+v+t

and

(fσ+v+t, αfσ+v+2−t)
∣∣∣f
fσ+v+2−t

...
∣∣∣f
fσ+v+t−1

In other words, contains St−1
k+1 and St

k+1.

Suppose layer k is a conductive layer (so k is even, k = 2v). Assume a second

induction as above. Base Case: Consider S1
k, contained by S1

k−1 and S2
k−1. S1

k−1

also contains the k-th layers spinal ideal, and is a 1-grouping. As such, an applica-

tion of Theorem 5.1 shows us S1
k is a 2-grouping. Similarily, applying Theorem 5.1

to S1
k itself yields the desired containments. S1

k = (fσ+v+1, αfσ+v−1)
∣∣∣f
fσ+v−1

∣∣∣f
fσ+v

,

which Theorem 5.1 implies contains

S1
k+1 = (fσ+v+1, αfσ+v)

∣∣∣f
fσ+v

and

S2
k+1 = (fσ+v+2, αfσ+v−1)

∣∣∣f
fσ+v−1

∣∣∣f
fσ+v

∣∣∣f
fσ+v+1

. This completes the base case of the

conductive layer.
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Assume the same strong induction on t as above. Consider St
k =

(fσ+v+t, αfσ+v−t)
∣∣∣f
fσ+v−t

...
∣∣∣f
fσ+v+t−1

which is contained by St
k−1, a 2t-grouping. Since St

k−1 also contains the 2t − 2

grouping St−1
k, an application of Theorem 5.1 shows St

k is a 2t-grouping. Like-

wise, Theorem 5.1 shows it is also contained by St+1
k−1. Theorem 5.1 applied to

St
k itself shows it to contain

(fσ+v+t, αfσ+v−t+1)
∣∣∣f
fσ+v−t+1

...
∣∣∣f
fσ+v+t−1

and

(fσ+v+t+1, αfσ+v−t)
∣∣∣f
fσ+v−t

...
∣∣∣f
fσ+v+t

This completes our induction.

This theorem allows us to compute the number of groupings between the spine

and co-spine of each layer, given that we know the structure of the lattice up until

that layer. However, we can go further, and using the first σ layers of the conduc-

tive sub-lattice to characterize the full substructure. Much like the basic layer of

ideals in our original case characterized the structure fully, analogously the first

alpha layers of groupings determine the structure of the conductive sub-lattice. In

particular, we show that the σ− 1 and σ layer can be used to calculate the rest of

the sub-structure once the sub-lattice has been built up to that point. Note, we

will refer to a function sepk for each conductive sub-lattice of Z[αfσ] as the differ-

ence in powers of the rational components of the k-th layer spinal and co-spinal

ideals, minus one. In other words, if we are at the k-th layer of the conductive

sub-lattice of Z[αfσ], and the spinal and co-spinal ideals have base rational com-

ponent as fβ, fγ respectively, then sepk = γ − β − 1. Now we characterize the

’in between’ groupings of the conductive sub-lattice for the pre-σ layers of the

conductive sub-lattice.

Theorem 7.3 Consider the conductive sub-lattice of Z[αfσ]. If the k-th layer

has δ groupings in between the spine and co-spine, and the k-1-th layer has δ − 1

groupings, 1 ≤ k < σ, then the k+1-th layer will have δ groupings in between the
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spine and co-spine.

Proof: Let the above hold. Since each pre-σ cospinal layer has its rational power

increase by one level to level, and the sep function increases by 1 between the k

and k+1-th index, we have that the k-1-th and k-th layer of spinal ideals are given

by (fβ, αfβ) and (fβ, αfβ+1) respectively. So sepk−1 = k − 1 − β − 1 = δ and

sepk = k − β − 1 = δ. If the rational power of the spinal ideal increased instead,

the separation would remain constant. So the k+1-th layer spinal ideal is given

by (fβ+1, αfβ+1). So sepk+1 = k + 1− (β + 1)− 1 = (k − β)− 1 = δ.

Theorem 7.4 Consider the conductive sub-lattice of Z[αfσ]. If the k-th and k-1-

th layer has σ groupings in between the spine and cospine, 1 ≤ k < σ, then the

k+1-th layer will have δ + 1 groupings in between the spine and co-spine.

Proof: Let the above hold. So sepk−1 = sepk = σ + 1. We know the rational

power of the cospinal groupings increase by one each successive layer prior to the

α-th layer, so the rational power of the spinal ideals must also have increased by

one from the (k − 1)-th layer to the k-th layer. In other words, the (k − 1)-th

spinal ideal is of the form (fβ, αfβ+1) and the k-th spinal ideal is of the form

(fβ+1, αfβ+1). So the k+1-th spinal ideal will be of the form (fβ+1, αfβ+2).

So sepk = k − (β + 1)− 1 = k − β − 2 = δ which implies

sepk+1 = k + 1− (β + 1)− 1 = k − β − 1 = δ + 1.

Theorem 7.5 Consider the conductive sub-lattice of Z[αfσ]. If the σ-layer and

previous layer have δ in between groupings, then all subsequent layers will have δ

in between groupings.

Proof: Let the above hold. So sepσ = sepσ−1 = σ + 1. So the σ and σ − 1

layer spinal ideal are given by (fβ, αfβ) and (fβ−1, αfβ) respectively. So sepσ−1 =
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(2σ − 1) − (β − 1) − 1 = 2σ − β − 1 = sepσ = δ. Let i be odd. Then the σ + i-

th layer has spinal and co-spinal ideals of the form (fβ+(i−1)/2, αfβ+(i+1)/2) and

(f 2σ+(i−1)/2, αfσ+(i+1)/2) respectively. So

sepσ+i = 2σ + (i− 1)/2− β − (i− 1)/2− 1 = 2σ − β − 1 = δ

Let i be even. Then the σ + i-th layer has spinal and co-spinal ideals of the form

(fβ+i/2, αfβ+i/2) and (f 2β+i/2, αfβ+i/2) respectively. So sepσ+i = 2β + i/2 − β −

i/2− 1 = 2σ − β − 1 = δ.

Theorem 7.6 Consider the conductive sub-lattice of Z[αfσ]. If the σ-th layer has

δ in between groupings, and the previous layer has δ−1 in between groupings, then

the i-th layer after the σ-th layer has σ groupings if i is even, and σ− 1 groupings

if i is odd.

Proof: Let the above hold. So sepσ = δ and sepσ−1 = δ- 1. So the σ and

σ − 1 layer spinal ideal are given by (fβ, αfβ) and (fβ, αfβ−1) respectively. Let

i be odd. Then the σ + i-th layer has spinal and co-spinal ideals of the form

(fβ+(i+1)/2, αfβ+(i−1)/2) and (f 2σ+(i−1)/2, αfσ+(i+1)/2) respectively. So sepσ+i =

2σ + (i − 1)/2 − β − (i + 1)/2 − 1 = 2σ − β − 2 = σ − 1 Let i be even. Then

the σ+ i-th layer has spinal and co-spinal ideals of the form (fβ+i/2, αfβ+i/2) and

(f 2σ+(i/2), αfσ+i/2) respectively. Then

sepσ+i = 2σ + i/2− β − i/2− 1 = 2σ − β − 1 = sepσ = σ

These theorems allow us to know how many groupings we will have in between

the spine and co-spine by just being able to construct the first layer of the sub-

structure. They also show that the number of groupings in between the spine and

co-spine is either fixed or alternating after the first σ layers.
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We are now prepared to give our master theorem fully characterizing the con-

ductive sublattice for all of our f -primary, quadratic number rings.

Theorem 7.7 Consider the f -primary lattice of Z[αfσ]. The sub-lattice given

by all sub-ideals of the conductor F except those who are maximally proper to the

spinal ideals (fk, αfk+1), k ≥ σ. This sub-lattice exists and is characterized by;

i) The first σ layers of the cospine are given by (fσ+k, αfσ)
∣∣∣f
fσ
...
∣∣∣f
fσ+k−1

, all of

which are modules except the σ-th grouping itself (will either contain the next

layer of spinal ideal or inbetween ideals besides the next layer of cospinal ideals)

ii) The k-th cospinal grouping after the σ-th layer is;

a) if k is even, the cospinal grouping is, for v = k/2,

(f 2σ+v, αfσ+v)
∣∣∣f
fvfσ

...
∣∣∣f
fvf2σ−1

which are NOT modules

b) if k is odd, the cospinal grouping is, for n = ((k − 1)/2 and m = (k + 1)/2,

(f 2σ+n, αfσ+m)
∣∣∣f
fmfσ+1

...
∣∣∣f
fmf2σ−1

which are modules

iii) All in-between ideals are modules. There are as many in between ideals at

the k-th layer as sepk. The first in-between ideal exists at the third layer ⇐⇒

σ ≥ 3. If the first in-between ideal exists, the spinal ideal at that level is NOT an

f multiple of F.

iv) If sepk > 0, and the k-th spinal ideal is an f multiple of F, then Sb
k is

contained by/contains Sb
k−1/Sb

k+1 and Sb+1
k−1/Sb+1

k+1. Moreover, Sb
k is a 2b

grouping.

v) If sepk > 0, and the k-th spinal ideal is of the form (fβ, αfβ+1), then Sb
k
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is contained by/contains Sb−1
k−1/Sb−1

k+1 and Sb
k−1/Sb

k+1. Moreover, Sb
k is a

2b− 1 grouping.

vi) If the σ − 1 and σ layer have;

a) the same number of in -between groupings, all subsequent layers will have

the same number of in-between groupings.

b) β − 1 and β in-between groupings respectively, all subsequent layers will

alternately have β − 1 or β groupings.

Proof: First, to address existence. By nature of the objects considered, F cer-

tainly exists. By succesive application of Theorem 5.1 (and recalling all spinal

ideals are modules) we easily know that the spine exists. Defining our conduc-

tive sub-lattice as above, containing all sub-ideals of F, besides those maximally

proper to the ′fO′ ideals, we see that any two ideals would have a smallest ideal

that would contain them both, a largest ideal that both would contain, and can

only be maximally primary to one ideal. In other words, the structure has joins,

meets, and only one ’arrow’ between objects, so along with F obviously being the

maximal ideal, this sturcture is a sub-lattice. Addressing i), ii), and iii) show

existence of the rest of the non-spinal structures.

i) We know this by Theorem 6.1

ii) We know this by Theorem 6.1.

For iii), iv), and v) Theorem 6.2 shows all these statements.

vi) Theorem’s 6.5 and 6.6 provide the proof for these cases.

Q.E.D

It should be noted that the conductive sub-lattice for the prime case fully and
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completely characterizes the inert case, and forms the vast majority of the second

power. While we will see that in the higher power cases the conductive sub-lattice

constitutes far less of the lattice, a significant portion of the lattice is still quite

similar to the conductive sub-lattice in terms of structure.

8 Lattice of f-primary Ideals of Z[αfσ] for f Inert

Let f be some prime element of our quadratic number field D = Z[α]. Here,

m = (f, αfσ), and F = (fα, αfσ). Let an ideal found between mn and mn+1 be

called n-th m-layer ideals, and ideals found particulary between m and F, m-basic

ideals. Let an ideal found between fnF and fn+1F be called n-th F-layer ideals.

We will not delve into these notions deeply, or make use of the idea of basic to

a conductor as previous work has done. The relation between ’maximal basic’

and ’conductor basic’ is not fully elucidated. Instead, we take all the maximal

and conductor basics as a whole and attempt to derive a few lattices of particular

orders by examining the initial layers with the above theory. We will once again

find initial layers of ideals determine the rest of the structure. However, in contrast

to our initial prime case, the lattice structures of our higher power orders are

determined by the layers between the maximal ideal m and the conductor F, and

the layer between the conductor F and f 2F, not just the F-basic layer as in our

initial case.

8.1 Z[αf 2] Case for Inert Prime

Here, we characterize the lattice of f -primary ideals of Z[αf 2] for prime f inert.

Much like our other cases, the conductor F no longer being the maximal ideal of

our lattice induces a larger, more expansive structure than our original case of

Z[αf ]. However, unlike all other cases of Z[αfσ], our second power case is the

only other than our original case that has no proper ideals between the conductor

and maximal ideal. Because of this, while the structure of Z[αf 2] is quite different
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from our original case, it is also quit different than most of our other cases when

compared with each other. This illustrates how radically the changes to the struc-

ture of our lattices occur when the maximal ideal and conductor are ’separated’

by proper ideals between them along the spine. We will end up seeing that the lat-

tice of Z[αf 2] is essentially the conductive sub-lattice given above, and a disjoint

structure descending from the maximal ideal resembling our original case, joining

only along the spine. This separation of structure allows Z[αf 2] to be an excellent

example of how the structure of our lattices initially changes when the conductor

is no longer the maximal ideal, and the changes that occur from the maximal and

conductor ideals being separated by proper sub-ideals of the maximal ideal.
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(f, αf 2)

(f 2, αf 2)

(f 2, αf 3)

(f 3, αf 3)

(f 3, αf 4)

(f 4, αf 4)

(f 3, αf 2)
∣∣∣f
f2

(f 4, αf 2)
∣∣∣f
f2

∣∣∣f
f3

(f 4, αf 3)
∣∣∣f
f3

(f 5, αf 3)
∣∣∣f
f3

∣∣∣f
f4

(f 2, f + αf 2)
∣∣∣f−1
f

(f, αf 3)

(f 3, f 2 + αf 3)
∣∣∣f−1
f2

(f 2, αf 4)

(f 4, f 3 + αf 4)
∣∣∣f−1
f3

(f 3, αf 5)

... ...
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Theorem 8.1 Consider the lattice of f -primary ideals of Z[αf 2]. If ideal I is of

the form;

i) (fk, αfk+1), it is a module which contains (fk+1, αfk+1), (fk+1, fk+αfk+1)
∣∣∣f−1
fk

,

and (fk, αfk+2). All of these ideals are NOT modules except the initial module,

and all of whom contain (fk+1, αfk+2).

ii) (fk, αfk), it is a module containing (fk+1, αfk)
∣∣∣f
fk

and (fk, αfk+1). (fk+1, αfk)
∣∣∣f
fk

is a module containing the next layers spinal ideal and (fk+2, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

. This

grouping is not a module, and just contains f((fk+1, αfk)
∣∣∣f
fk

).

Proof: Let the above hold. We know all spinal ideals are modules whose existence

is easily shown by succesive applications of Theorem 5.1.

i)Ideals of the form (fk, αfk+1) are spinal ideals and thus modules. An appli-

cation of Theorem 5.1 shows that it contains the ideals (fk+1, αfk+1), (fk+1, fk +

αfk+1)
∣∣∣f−1
fk

, and (fk, αfk+2). We will show these latter ideals are not modules,

which will show they contain (fk+1, αfk+2) by Theorem 5.1.

Consider (fk, αfk+2)

(fk, αfk+2)(1, α) = (fk, αfk+2, αfk, α2fk+2) = (fk, αfk), so the ideal in question

is not a Z[α] module.

(fk, αfk+2)(1, αf) = (fk, αfk+2, αfk+1, α2fk+3) = (fk, αfk+1), so the ideal in

question is not a Z[αf ].

So (fk, αfk+2) is not a module of any relevant orders.

Consider (fk+1, afk + αfk+1).

(fk+1, afk + αfk+1)(1, α)

= (fk+1, afk + αfk+1, αfk+1, α2fk+1 + aαfk)

= (fk, αfk+1)
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So (fk+1, afk + αfk+1) is not a Z[α] module.

(fk+1, afk + αfk+1)(f, αf) = (fk+2, afk+1 + αfk+2, αfk+2, α2fk+2 + aαfk+2)

Note the first three generators of the last ideal are certainly contained by our ideal

in question. However, by our algebraic equations:

α2 = −αa− b which implies

α2fk+2 + aαfk+2

= −αafk+2 − bfk+2 + aαfk+1

Which would imply that our ideal in question contains aαfk+1, a contradiction.

ii) Ideals of the form (fk, αfk) are the f multiples of the conductor, so there

containments are given by the conductive sublattice. We see that our ideal contains

(fk+1, αfk)
∣∣∣f
fk

and (fk, αfk+1). The latter ideal is characterized above and is part

of the spine. The former grouping constitutes the cospine of the conductive sub-

lattice. As such, since (fk+1, αfk)
∣∣∣p
pk

is an σ − 1 grouping on the cospine, by

Theorem 5.1 we know that it is a module containing the next spinal ideal and

(fk+2, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

. As the latter is a σ grouping on the cospine, we know that it

isnt a module, and just contains the next cospinal layer.

This finsishes the characterization of the f -primary lattice of Z[αf 2].

8.2 Z[αf 3] Case for Inert Prime

Here, we characterize the lattice of f -primary ideals of Z[αf 3] for prime f in-

ert. This is our first lattice structure in which the maximal ideal (f, αf 3) does

not contain the conductor (f 3, αf 3) with no proper ideals separating them. As

44



we shall see, this causes a distinct departure in structural characteristics of our

lattice from our two earlier cases. Whereas our Z[αf 2] could be viewed as two

separate sub-lattices with only the spine in common, in our Z[αf 3] case we find

the ideals between our powers of the conductor are the meeting points of the sub-

lattice induced by both the maximal ideal and the ideal between the maximal

and conductor. While the structures branching off of the spine are still mostly

disjoint, we see that the sub-lattice induced by (f 2, αf 3), the ideal between m and

F, seems reminiscent of our conductive sub-lattice. As our first structure in which

separation between m and F occur, this structure is a prime example of the class

of structures given by Z[αfσ].

The figure for the lattice is given by the disjoint union of the following two figures.

Essentially, one can have the whole figure by identifying the spines of the two

figures together. (Was split up for formatting requirements)
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(f, αf 3)

(f 2, αf 3)

(f 3, αf 3)

(f 3, αf 4)

(f 4, αf 4)

(f 4, αf 5)

(f 5, αf 5)

(f 5, αf 6)

(f 6, αf 6)

(f 2, f + αf 3)
∣∣∣f−1
f

(f, αf 4)

(f 2, αf 4)

(f 3, f 2 + αf 4)
∣∣∣f−1
f2

(f 2, αf 5)

(f 3, αf 5)

(f 4, f 3 + αf 5)
∣∣∣f−1
f3

(f 3, αf 6)

(f 4, αf 6)

(f 5, f 4 + αf 5)
∣∣∣f−1
f4

(f 4, αf 7)

(f 5, αf 7)

... ...
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(f, αf 3)

(f 2, αf 3)

(f 3, αf 3)

(f 3, αf 4)

(f 4, αf 4)

(f 4, αf 5)

(f 5, αf 5)

(f 5, αf 6)

(f 6, αf 6)

(f 4, αf 3)
∣∣∣f
f3

(f 5, αf 3)
∣∣∣f
f3

∣∣∣f
f4

(f 5, αf 4)
∣∣∣f
f4

(f 6, αf 3)
∣∣∣f
f3

∣∣∣f
f4

∣∣∣f
f5

(f 6, αf 4)
∣∣∣f
f4

∣∣∣f
f5

(f 6, αf 5)
∣∣∣f
f5

(f 7, αf 4)
∣∣∣f
f4

∣∣∣f
f5

∣∣∣f
f6

(f 7, αf 5)
∣∣∣f
f5

∣∣∣f
f6

(f 3, f 2 + αf 3)
∣∣∣f−1
f2

(f 4, f 2 + αf 3)
∣∣f−1
f2

∣∣∣f
f3

(f 4, f 3 + αf 4)
∣∣∣f−1
f3

(f 5, f 3 + αf 4)
∣∣∣f−1
f3

∣∣∣f
f4

(f 5, f 4 + αf 5)
∣∣∣f−1
f4

(f 6, f 4 + αf 5)
∣∣∣f−1
f4

∣∣∣f
f5

(f 6, f 5 + αf 6)
∣∣∣f−1
f5

... ... ...
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Theorem 8.2 Consider the f -primary lattice of Z[αf 3]. If ideal I is of the form;

i) of our maximal ideal (f, αf 3), it is a module containing

(f 2, αf 3), (f 2, f + αf 3)
∣∣∣f−1
f

and (f, αf 4)

ii) (fk, fk−1+αfk+1)
∣∣∣f−1
fk−1

or (fk−1, αfk+2) are NOT modules and contain (fk, αfk+2),

a module containing

(fk+1, αfk+2), (fk+1, fk + αfk+1)
∣∣∣f−1
fk

, and(fk, αfk+3)

iii) (fk, αfk) is a module containing (fk+1, αfk)
∣∣∣f
fk

and (fk, αfk+1). For k=3,

(fk+1, αfk)
∣∣∣f
fk

is the first cospinal grouping containing (fk+1, αfk+1) and the first

iteration of (fk+2, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

, a module containing (fk+3, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

∣∣∣f
f3

and

(fk+2, αfk+1)
∣∣∣f
fk+1

. The former grouping are not module and contain

(fk+3, αfk+1)
∣∣∣f
fk+1

∣∣∣f
fk+2

. The latter constitute the rest of the iterations of (fk+1, αfk)
∣∣∣f
fk

,

in between modules containing (fk+3, αfk+2)
∣∣∣f
fk+1

∣∣∣f
fk+2

and (fk+2, αfk+2).

iv) (fk, αfk+1), for k ≥ 2, then it is a module containing

(fk+1, fk + αfk+1)
∣∣∣f−1
fk

, (fk+1, αfk+1), and (fk, αfk+2)

The latter two have been characterized above, (fk+1, fk + αfk+1)
∣∣∣f−1
fk

are modules

containg

(fk+2, fk + αfk+1)
∣∣∣f−1
fk

∣∣∣f
fk+1

and (fk+1, αfk+2)
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(fk+2, fk+αfk+1)
∣∣∣f−1
fk

∣∣∣f
fk+1

are NOT modules and contain (fk+2, fk+1+αfk+2)
∣∣∣f−1
fk+1

.

This fully characterizes the f -primary lattice of Z[αf 3].

Proof: Let the above assumptions hold and consider the f -primary lattice of

Z[αf 3].

i) (f, αf 3) is a spinal ideal, and thus a module. Theorem 5.1 tells us it contains

the supposed ideals. To show these containments modularity (or lack theoreof);

ii)Consider (fk, vfk−1 + αfk+1) v a non-zero integer mod f .

(fk, vfk−1 +αfk+1)(1, α) = (fk, vfk−1 +αfk+1, αfk, α2fk+1 +αvfk−1). Obviously

this ideal does not contain αfk, so is not a Z[α] module.

(fk, vfk−1+αfk+1)(1, αf) = (fk, vfk−1+αfk+1, αfk+1, α2fk+2+αvfk). Obviously

the ideal does not contain αfk+1, so is not an Z[αf ].

(fk, vfk−1 + αfk+1)(1, αf 2) = (fk, vfk−1 + αfk+1, αfk+2, α2fk+3 + αvfk+1). By

our algebraic equations;

α2fk+3 + αvfk+1 = −afk+3α − bfk+3 + vfk+1α which implies the above contains

vfk+1α a contradiction. So our ideal is not a Z[αf 2].

So we conclude α2fk+3 + αvfk+1 is not a module, and contains (fk, αfk+2).

Consider (fk−1, αfk+2).

(fk−1, αfk+2)(1, α) = (fk−1, αfk+2, αfk−1, α2fk+2). Which implies our ideal con-

tains αfk−1 a clear contradiciton. So our ideal is not a Z[α] module.

(fk−1, αfk+2)(1, αf) = (fk−1, αfk+2, αfk, α2fk+3). which implies our ideal con-

tains αfk a clear contradiction. So our ideal is not a Z[αf ] module.

(fk−1, αfk+2)(1, αf 2) = (fk−1, αfk+2, αfk+1, α2fk+4). Which implies our ideal

contains αfk+1 a clear contradiction. So our ideal is not a Z[αf 2].

So we see (fk−1, αfk+2) is not a module and contains (fk, αfk+2).

Consider (fk, αfk+2).

(fk, αfk+2)(1, αf 2) = (fk, αfk+2, αfk+2, α2fk+4). By our algebraic equations;
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α2fk+4 = −afk+4α−bfk+4 which is in our ideal. Thus we see our ideal is a Z[αf 2]

module, and by Theorem 5.1, has the supposed containments.

iii) (fk, αfk) are the f muliples of our conductor and thus spinal. So by The-

orem 5.1 (fk, αfk) contains (fk+1, αfk)
∣∣∣f
fk

and (fk, αfk+1).

Consider (fk+1, αfk)
∣∣∣f
fk

. For its first existing grouping, k = 3, this is the first

cospinal ideal. So we know its a module, and by Theorem 5.1 it contains the

next cospinal grouping, the first iteration of (fk+2, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

and (fk+1, αfk+1).

The first set of ideals are also cospinal and 2-groupings, so we see that they are

modules containing (fk+3, αfk)
∣∣∣f
fk

∣∣∣f
fk+1

∣∣∣f
fk+2

, a cospinal 3 grouping, and thus not

a module (and who contains the next cospinal layer (fk+3, αfk+1)
∣∣∣f
fk+1

∣∣∣f
fk+2

), and

(fk+2, αfk+1)
∣∣∣f
fk+1

. This latter grouping for

k > 3 constitutes the rest of the ideals of the form we first considered here, and

constitutes the in between ideals of our conductive sub-lattice. As such, this is a

grouping of modules containing (fk+3, αfk+1)
∣∣∣f
fk+1

∣∣∣f
fk+2

and (fk+2, αfk+2).

iv) Consider (fk, αfk+1). It is spinal, so a module containing

(fk+1, fk + αfk+1)
∣∣∣f−1
fk

, (fk+1, αfk+1), and (fk, αfk+2)

The latter two are given by a above work. Let v be a non-zero integer modulo

f . Consider (fk+1, vfk−1 + αfk+1).

(fk+1, vfk−1 + αfk+1)(1, αf 2) = (fk+1, vfk−1 + αfk+1, αfk+3, α2fk+3 + αvfk+2).

By our algebraic equations;

α2fk+3 + αvfk+2 = −afk+3α = bfk+3 + vfk+2α, which ends up implying our

ideal contains vfk+2α, which it does. So we have that (fk+1, vfk−1 + αfk+1) is a

Z[αf 2] module. Theorem 5.1 implies it contains (fk+2, fk + αfk+1)
∣∣∣f−1
fk

∣∣∣f
fk+1

and

(fk+1, αfk+2).
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Let v, w be non-zero integers modulo f . Consider:

(fk+2, vfk + wfk+1 + fk + αfk+1)

(fk+2, vfk + wfk+1 + fk + αfk+1)(1, α)

= (fk+2, vfk + wfk+1 + fk + αfk+1, αfk+2, α2fk+1 + αwfk+1 + αvfk)

implying our ideal contains αfk+2, a clear contradiction. So our ideal is not a

Z[α] module.

(fk+2, vfk + wfk+1 + fk + αfk+1)(1, αf) =

(fk+2, vfk + wfk+1 + fk + αfk+1, αfk+3, α2fk+2 + αwfk+2 + αvfk+1)

By our algebraic equations, we get:

α2fk+2 + αwfk+2 + αvfk+1

= −afk+2α− bfk+2 + wfk+2α + vfk+1α

which implies our ideal contains wfk+2α + vfk+1α, a clear contradiction. So

our ideal is not a Z[αf ].

(fk+2, vfk + wfk+1 + fk + αfk+1)(1, αf 2)

= (fk+2, vfk + wfk+1 + fk + αfk+1, αfk+4, α2fk+3 + αwfk+3 + αvfk+2)

By our algebraic equations, we get:

α2fk+3 + αwfk+3 + αvfk+2

= −afk+3α− bfk+3 + αwfk+3 + αvfk+2
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which implies that our ideal contains αvfk+2, a clear contradiction. So our

ideal is not a Z[αf 3]. So α2fk+3 + αwfk+3 + αvfk+2) is not a modules, and

contain (fk+2, fk+1 + αfk+2)
∣∣∣f−1
fk+1

. This completes our characterization.

9 Conclusion

To review. We began by listing out previously known results of the lattice struc-

ture of the conductor ideal in the order of an algebraic number ring of a number

field (ring of integers of Q with algebraic solutions adjoined). Specifically, we

were interested in the cases of our adjoined elements to be quadratic algebraic

integers multiplied by a known prime. The lattice structures corresponded with

the splitting type of the prime itself, with ideals generated by our integer compo-

nent and f -primary multiples of our algebraic integer, our algebraic component,

in accordance with our orders being Dedekind domains. Locally, the structure

around a particular ideal in the lattice corresponded with whether or not that

ideal was a module of the underlying number ring, Z[α]. It was found that the

structure as a whole depended on the first layer of f -basic, f -primary ideals. For

inert and ramified primes, our lattice structures were globally iterations of this

f -basic layer, and for the split case, a local recursion of this f -basic layer. Having

found full characterizations of the lattice structures of these objects, we turned

our attention to extending this theory to the lattice structures of the f -primary

ideals of a f -primary quadratic number ring, Z[αfσ].

The first major differences in the higher power case were twofold. Firstly, when

generalizing Theorem 3.8, for an ideal I to contain more than one proper ideal

between itself and fI, it could be a module of any order between the number ring

Z[α] and our order under study Z[αfσ]. This resulted in lattice structures above

the prime case being significantly larger than the original case. While no charac-

terizations of a ramified or split prime are presented in this paper, in pre-liminary

inestigations of these objects, they, like the inert case, also seemed far large in the
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higher power cases. Given that the split case itself already lends itself to large

lattics for the single power case, this points to the higher order lattices of the split

case to be very large indeed. It should be noted that the proof of the generalized

Theorem 5.1 we gave here was certainly guided and inspired by Peruginelli and

Zanardo. It’s safe to say the proof of the second statement was almost wholly

the same except for one minor alteration, and followed the same strategy. The

statement of the first proof did follow a similar stratagem, but had to be modi-

fied quiet heavily. It is a theme throughout this research that arithmetic analysis

of these ideals increases in complexity and difficulty when looking at the higher

power cases, but generally is inspired by and follows the same principles as the

single power case. Secondly, the maximal ideal of our lattices is no longer the

conductor. This contributes to our higher power cases resulting in much larger

lattices, but also has more subtle ramifications (and not just for the ramified case).

A major effect of this larger bound , is the F-basic layer can no longer be used

to characterize the lattice entirely, as ideals not contained by the conductor are

present and adding the structure of their own proper sub-ideals to the lattice. A

distinct mathematical effect of this is that our generalized Theorem 5.1 no longer

has the third statement that was present in [PZ].

We were not able to distinctly characterize all effects the ’seperation’ between

the conductor and maximal ideal caused, or distinclty clarify the relationship

between the maximal basic and conductor basic layers. However, attempts to ex-

plicate the nature of this seperation led us to proving the existence of, and fully

characterizing the conductive sub-lattice. This sub-structure is present in all lat-

tices of our orders of Z[αfσ], regardless of the splitting type of the prime or power

of f . In fact, this sub-structure can be used to fully characterize the single power

case with an inert prime, and provides an alternate proof to the one found in [PZ].

Arguably, Theorem 5.1 and Theorem 7.7 are the two most important theorems in

this paper, as they both allow the local analyses of our lattices in question, but

also a pre-constructed reference point to start an investigation into a lattice with.
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In investigating the nature of ideals around the spine post-conductor, we realized

the number of ’in between’ groupings corresponded to the difference in powers of

the spine and cospine. This property is directly measurable with and induced by

the seperation in powers between m and F. Another easy measure of how much

bigger the higher power cases become, is the increased number of groupings asso-

ciated to the conductive sub-lattice.

We were not able to provide a full characterization of any of the splitting types

of a prime. However, we were able to characterie the orders Z[αf 2] and Z[αf 3].

These orders provide important examples for the basis of further study of these

objects. Z[αf 2] is the only order where the conductor is not the maximal ideal,

but there are no proper ideals between m and F, so provides an example of what

effects the presence of m has without the added structure of any other ideals con-

taining F. Z[αf 3] is our first order with a proper ideal between the maximal ideal

and the conductor. As such, it is an excellent example to compare to Z[αf 2].

However, to get a full characterization of the inert primes, we will have to charac-

terize a few more powers beyond Z[αf 3] to have a full understanding of the effects

of seperation on these lattices.

For future research endeavors, several goals must be met to have fully ex-

tended the work of Peruginelli and Zanardo to the higher power cases. Namely,

a far greater explication of the maximal basic layers and conductor basic layers

interactions are required. It should be further noted, that the idea of conductor

basic itself may have to be extended. This could be a byproduct of the notation

developed and used in this paper, but there are ideals generated in the in between

not directly linked to the conductor that are not f -multiples of any ideal tradition-

ally considered conductor basic. Given that the conductive sub-lattice does not

’stabilize’ for σ layers, the notion of conductor basic may have to be extended out

to the first σ layers. Like [PZ] characterized structures with respect to the basic

layer, our lattices may require a characterization as the union (along the spine) of

iterated layers from the maximal basic and condcutor basic layers. In the same
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vein, the use of basic elements was required by [PZ] to characterize the split case,

which heavily points to a notion of maximal basic element being necessary for

higher power characterizations. However, it is certain that a much deeper analysis

of the difference between pre conductor ideals and post conductor ideals will be

necessary.
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