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A PRECIPITATION MODEL AND EXPERIMENTAL
CORRELATION WITH VARIOUS PROPERTIES OF
PENTAERYTHRITOL TETRANITRATE
Thomas Rivera, Ph. D.

Department of Chemistry
The University of New Mexico, 1975
ABSTRACT

A continuous pfecipitation method for the preparation of crystal-
line pentaerythritol tetranitrate (PETN) has been developed. The pro-
cess involves the precipitation of PETN from an acetone solution by
the addition of water in a static mixer. The principal independent
variable is the ratio, R, of the acetone-PETN solution flow rate to the
flow rate of water.

A mathematical model based on dispersed plug-flow equations
adequately represents the physical process. The relationships devel-
oped can be used to predict particle size distributions, two explosion
properties of PETN, and estimate the effective kinetics involved in the
precipitation process. The mass-weighted mean particle size, L, of
the precipitated PETN is a linear function of R. The initial nucleation
and growth rates are exponentially decaying functions of R. The
nucleation exponent is 3. 75 * 0, 05; the growth rate exponent is 1. 56 %
0.02. The value of the diffusion parameter, Pe, is 51 £ 1, Experi-
mentally determined PETN initiation-threshold voltages can be
expressed as a second degree polynomial in L, with a minimum at

about 50 pm. Observed PETN explosion transit times follow a third

degree polynomial in L, increasing with increasing particle size.
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I. INTRODUCTION

An important consideration in the applications of high explosives
is the ability to predict the physical and explosion properties of the
material. In the case of a crystalline explosive, the particle size

t.1192° Batch processes

distribution and crystal habit are importan
commonly used inthe preparation of high explosives frequently result
in large variations in the products® and usually provide little informa-
tion about the kinetics of the process. A method for the preparation of
a reproducible crystalline pr;aduct having a known parti;:le size distri-
bution and crystal habit is desirable.

The method of recrystallization employed in this work involves the
precipitation of PETN f_rom an acetone solution by the addition of water

in a static mixer. The primary independent variable is the ratio, R,

of the PETN-acetone solution flow rate to the flow rate of water.







II. OBJECTIVES

The objectives of this study are to develop a continuous repro-
ducible recrystallization technique for the preparation of the high
explosive, pentaerythritol tetranitrate (PETN), which has definite
crystalline properties, and to develop a model that provides some
information on the kinetics and predicts the crystalline and explosion

properties of the product.







III. PROPERTIES OF PETN

PETN is a symmetrical, nonpolar organic compound,

[C(CH,ONO,),], namely,

CH.
O\ | -

N~O—CHy~C ~CH. . O—N
|

@)
>
~

s o

having a formula weight of 316. 15. It forms colorless, nonhygroscopic
crystals., PETN is readily compressible and has a maiirnum density

of 1.77 g/cm®. It melts at 141°C and decomposes rapidly at tempera-
tures above its melting point. PETN is insoluble in water, and soluble

in acetone. Figure 1 gives the solubility of PETN in mixtures of

acetone and water, *°
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Figure 1.

Solubility of PETN in Aqueous Acetone Solutions.
PETN has an ignition temperature of approximately 215°C, which
is slightly higher than that of nitroglycerin. It is of the same order of

sensitivity to impact as nitroglycerin., PETN detonates or decomposes

according to the equation

C(CH,ONO), - 2CO + 3CO, + 4H,0 + 2N, .

Its heat of detonation lies between 1466 and 1543 cal/g.! The high
explosive strength of PETN has been attributed to the fact that its
oxygen deficiency is small (10. 1%). The decomposition products of the
ideally_oxygen—bala.nced material would be CO,, H;O, and N,, without
the formation of CO. The ability to compréss PETN to a relatively
high density is also a major contributing factor.

PETN has a detonation velocity of 5330 m/s for compacted material

(density 0.85 g/cm®), 7600 m/s for material having a density of







1.5 g/cm®, and 8300 m/s for highly compressed material (density
1.70 g/cm®). The brisance or shattering power of PETN is much
greater than that of nitroglycerin. Its explosive strength is at least
50% greater than TNT.®

Because of its great explosive power and brisance, PETN is
widely used as a military and industrial explosive. Its ease of initia-
tion and its high explosive power combine to make PETN exceptionally
serviceable in detonators as the donor charge that initiates a less
sensitive acceptor explosive. PETN has also been used in percussion
caps and grenades and as a propellant in smokeless 1:.'oo§vde:rs'..3‘1*5

PETN can be used in the treatment of angina pectoris as a long-
acting coronary vasodilator, which is capable of reducing the frequency

and severity of the attack.?







IV. EBW DETONATORS

Chemical explosives comprise two main types: (1) detonating or
"high'' explosives, characterized by very high rates of reaction and
high pressures and (2) deflagrating or "low' explosives, which burn
more slowly and develop much lower pressures. Detonating explosives
may be further subdivided into (a) primary and (b) secondary explo-
sives. Primary explosives nearly always detonate by simple ignition
such as by a spark, flame, impact, or other primary heat sources of
appi-opriate magnitude. Secondary explosives require, in practical
applications, the use of a detonator and frequently, a bboster. A
booster is a sensitive secondary high explosive that reinforces the
detonation wave from the primary explosive or detonator and delivers
a more powerful detonation wave to the main explosive charge.®

A problem encountered in explosive operations is that of initiating
the detonation wave in the explosive. Often, this problem is compli-
cated by the provisions of simplicity and safety, and the necessity of
precisely controlled timing at widely separated points. A variety of
devices, called detonators, have been developed to perforrh the func-
tion of initiation. The exploding bridgewire (EBW) detonator has an
explosive train with a secondary explosive requiring an elaborate
power source to vaporize or ''explode'" a wire by extremely rapid
deposition of electrical energy to initiate detonation in the material.??

The basic circuit for exploding a wire consists of a power source

to charge a capacitor, a capacitor for storage of electrical energy, a







spark gap and trigger switch to discharge the capacitor across the
bridgewire, a transmission line to the bridgewire, and a bridgewire.
As the switch is closed, voltage is applied to the transmission line and
bridgewire circuit which cat;ses current to begin to flow at a rate con-
trolled by the RLC characteristics of the circuit. The rate of current
flow (approximately 1000 A/us) and the amount of energy are so great
that the wire is heated to vaporization but the physical shape of the
wire is maintained by inertia. As vaporization occurs, the resistance
of the wire increases greatly. At this point, the current reduces within
approximately one microsecond. Within a few nanosecbnds after
vaporization, the inertia of the wire material is overcome and the wire
explodes giving off a shock wave and the contained thermal energy.!®

The problem of finding a secondary explosive sufficiently sensitive
to be initiated by the small shock developed by the exploding wire is
resolved by utilizing an intrinsically sensitive secondary explosive.
Generally, PETN loaded as a low density granular powder of con-
trolled particle size and shape is used. Even though the effective sen-
sitivity of secondary explosives may be increased by the proper selec-
tion of physical parameters, such materials are still 3 to 4 orders of
magnitude less sensitive than primary explosives.??

The basic inert components of an EBW detonator consist of a
header that contains the electrical wire leads and the bridgewire.
Header material may vary from plastic to a metal/ceramic combina-

tion. The electrical connection may be hookup wire leads or a coaxial







or multipin assembly into which the cable mates directly. The sleeve,
which actually contains the explosive, may be a part of the header or a
separate part that is threaded or crimped into place. End caps may be
used. The explosive is generally pressed in two increments. The
first increment, next to the bridgewire, is pressed into the header at a
density of approximately 50% of that of the crystal density. The second
increment, called the output charge, is pressed to approximately 90%
of that of the crystal density.!®

The shock wave and thermal energy released from the exploding
bridgewire are transferred into the low density secondéry' explosive
next to the bridgewire. In general, the shock wave from the wire
travels at about 1500 m/s. As the wave travels into the explosive,
a detonation of the explosive is initiated and builds up to the normal
detonation velocity of the initial pressing explosive (approximately
5000 m/s). As the shock wave moves through the initial pressing and
into the output pellet, the velocity of the wave again increases, because
of the higher density pellet, to approximately 8000 m/s.*® The time
from bridgewire burst to shock wave breakout is called the function or
transit time of the detonator (tm). This time is on the order of one to
several microseconds, depending on the overall length of the detonator.
Another quantity that is often used is the threshold voltage (E,.s). The
threshold voltage is the firing set capacitor voltage level at which one

half of the detonators will fire.



........




EBW detonators are used for many applications including the
following:1®8

e The production of accurate and refined metal forming or welding

e The generation of shock waves for physics research studies

® The creation of small point energy or light sources

® The closure of an electrical switch in a very short and pre-

dictable time.
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V. CRYSTALLIZATION THEORY

The techniques for interpreting crystal size distributions from
crystallization processes to ascertain the nature of the controlling
mechanism developed rapidly over the period from 1962 to 196484
(Randolph and Larson,'® Hulburt and Katz!®). The work began with
the first attempts to rationalize, model, and predict crystal size dis-
tributions from realistic mixed-magma crystallizers and is based on
the concept of a population balance of crystal particles along the
particle size axis.n The detailed development of the particle-number
continuity equations and the moment transformation of the population
balance may be found in Ref. 17. A brief description of f.his work can

be found in Appendix A.

A. Plug Flow Model

At steady state, with negligible breakage, the population balance

is given by*?

Ve Vn+=— (Gn)=0 , (1)

where n is the number population density of the system, and G is the
linear growth rate, -3—1:?. The internal coordinate is taken as the Stoke's
diameter L, as determined by sedimentation techniques. The external
coordinate system is represented by the single crystallizer length
dimension, x. For small particles, and high velocities, Vx, the

external linear velocity, may be taken as the plug flow velocity, u_.

Assuming that growth rate G remains independent of size, an
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empirical observation known as McCabe's AL law, which often holds

true, then Eq. (1) reduces to

on on _
uxbx+GbL 0 s (2)

Equation (2) is the plug flow equation that includes the following

assumptions:
e Steady state is achieved
e Linear velocity = plug flow velocity = constant
e Negligible breakage is achieved
e Growth rate is independent of size.
Multiplying Eq. (2) by Lj dL, and integrating from zero to infinity, we

have

3y R jn2n
fLuxbde+fLGdeL '+ (3)
(o] o

or
D j g
B_f ndL+Gden—0. (4)
(]

Taking the second integral by parts, we have

o0
u—Q-fLJndL+GLJn -jfLJ'lndL=o. (5)
x0x
(o]
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Let us introduce the jth moment of the population defined by the
o]
integral, rnj = f L’n dL. If N is the total number of particles, the

o
initial population density is n; = (dN/dL) __, and the nucleation rate is

0
0 sps 0 - RO w
Bx = (dN/dt)L_.o. The boundary conditions are n_ Bx{Gx and n_ 0.

Here, the notation r; = r(x, L) is used. Equation (5) becomes

dm, :
==+ (0FB® - jGm, , =0 (6)

where j = 0,1,2,..., and__(O)j = 0 when j # 0 and (0)j = 1 when j = 0,
The equations given by Eq. (6) are the moment equatioﬁs for the plug
flow model.

We will now introduce the retention time, 7, defined by T = ;tz'/ule
where X is the effective length of the plug flow reactor in cm, and u_
is the plug flow velocity in cm®/s. For an ideal plug flow reactor,
each infinitesimal reactant volume will have the same retention time.?
The quantities C,, the initial concentration (x = 0), and CS, the con-
centration of the saturated solution, will also be used.

It will be more convenient to use dimensionless quantities in the
discussion, The new quantities will be normalized in terms of the
initial conditions where x = 0. The dimensionless external coordinate
becomes z = x/x, the dimensionless internal coordinate becomes £ =
L/GyT, and the dimensionless population density becomes y = n/ng

where nd = B /Gy. The dimensionless concentration becomes 8 = C/G,

and the dimensionless saturated concentration becomes Bs - CS/CO.







The dimensionless moments of the population, f, are

@

. m,
f.=/ gjy d€ = l__ .
. B3 (GoT)'T

o]

The dimensionless plug flow moment equations are

o
| [ J B ..__G- - o
f (0) -:é-g j Gofj-l 0 , 320,131, 8,640

where f; = dfj/dz. The initial conditions are fj(O) = 0, 330,31,2, .00
The total solids concentration per unit volume of solids-free

liquid is

Mr = kama (x) = [Co - C(x)]

where p is the crystal density of PETN, 1.77 g/cm®, and Kv is the

13

(7)

(8)

(9)

volume shape factor based on Stokes' law. In terms of the dimension-~

lec s quantities, Eq. (9) becomes

PK_Bo(GoT)’T
Co

[1-B8(z)]= fs(z) .

At the exit of the reactor, z = 1. If the reaction is complete at

z = 1, then M; /C, + Bs = 1 and

8, = B(1) .

(10)

(11)
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This relationship is verified experimentally by weighing the pro-

duct for a given volume of solids-free liquid. The experimental M;

results are given in Table 1.

tion of the completeness of reaction at z

The table is an experimental verifica-

TABLE 1

l.

EXPERIMENTAL M; RESULTS

Measured My

Sample (g/cm?®)
3848 0. 0008
3849 0.0148
3851 0.0008
3852 0.000775
3853 0. 00081
3856 0.00144
3857 0.00135
3858 0.00134
3861 0.00177
3862 0.00171
3863 0.00169
3864 0.00161
3866 0.00114
3867 0.00114
3868 0.00114
3871 0. 00205
3872 0.00182
3873 0.00177
3874 0.00195
3876 0.0218
3877 0.0213
3878 0. 0221
3881 0.0128
3issg2 a
3883 0.0154

Co

(g/em®)

0. 0008
0.03
0.0008
0.0008
0.0008
0.00133
0.00133
0.00133
0.002
0,002
0. 002
0.002
0.001
0.001
0. 001
0,002
0. 002
0.002
0. 002
0. 0267
0.0267
0.0267
0.03
0.03

0.03

B

0.000
0.453
0.000
0.000
0.000
0. 000
0.000
0.000
0.1125
0.1125
0.1125
0, 1125
0. 000
0,000
0. 000
0. 1125
0. 1125
0.1125
0.1125
0. 162
0. 162
0. 162
0.453
0.453

0.453

.Mr not measured because of filtering difficultiea.

M:/Co + F'

1.00
0.95
1.00
0.97
1.01
1.08
1.01
1.01
9.99
0.97
0.96
0.92
1.14
1. 14
1. 14
1.14
1.02
1.00
1. 09
0.98
0.96
0.99
0.88

0.97
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Using these results and substituting Eq. (11) into Eq. (10),

PKng (G TPT

ol S (1) , (12)

dividng Eq. (10) by Eq. (12) and rearranging,

_ f3 (z) f5 (z)
B(Z)_1+}Z—mﬁs-f§—m : (13)

This is the relationship for the concentration as a function of the
normalized external coordinate. The normalized external coordinate,
z, will be referred to as the reaction coordinate.

For the case in which ﬁs = 0,

A

1) * (14)

—

Blz) = 1 -

B. Dispersed Plug Flow Model

Consider the plug flow of a fluid, on top of which is superimposad
some degree of intermixing, the magnitude of which is independent of
position within the vessel. This is called the dispersed plug flow
model.®

For molecular diffusion in the x-direction, the governing differen-

tial equation is given by Fick's law

bu, b8 _ ndn
uxbx + G L D—xéb (15)

where the parameter D, called the axial diffusion coefficient, uniquely

characterizes the degree of backmixing between adjacent reactant
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volume elements during flow. The dimensionless group (D/ux-:E),
called the vessel dispersion number, is the parameter that measured

the extent of axial dispersions. Thus

-1-1*9: -0 negligible dispersion, hence, plug flow,
%

u—-Di- - ® large dispersion, hence, mixed flow.
x

This model usually represents quite satisfactorily flow that deviates

not too greatly from plug flow. =

Equation (15) may be rewritten as

ghn, om0
<Dt u 2=t Garsl , (16)

Multiplying by L’ dL and integrating from zero to infinity gives

f( gxn)LJdL-l-f( )LJdL-i-f( )L’dL"O »  (17)
o [=]

or

_ng_g.fnLJdL +u% nLJdL +Gf nrdan=0 . (18)

o

o]
Defining the jth moment as before, mj = f nLJ dL, we have

d®*m. dm, o
—D-Eg‘l+u ——1+GfL’dn=o. (19)
L]
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Integrating by parts and evaluatingn =0 as L - andn = B°/Gas L =0

d®*m dm, y
-Diegrl b - OPF° - jom =0 o8

m
X L G j
P EEm Cbsmmm e e : j
x ? : } B3(GeT)
we have
af df
1 ] J+1) j 1)( _] J+1) =3
D(x )(BOG dz2 ~ "x\% Bo G dz
T J-1 J -
+(@QyB" + 3G (BC,C‘:cJ )fj—l =0 . (21)
Simplifying:
e
D J j G &
EE + (0) ——o- i g, =0 . (22)
Define the Péclet number, the reciprocal of the vessel dispersion
number, Pe = ux':»'i/D. The resulting dispersed plug flow moment
equations are
L oo j B G .
Pe fJ f F4(0)" w4 § == Gy fJ ¥ 0 (23)
with the boundary conditions*’22 f.(0) - -fPl- £1(0) = 0, and f‘%(l) =105
J ¢ J
Equation 13 from Section A holds for the dispersed plug flow model,
£2 fa(z) o,  f3(z) a _ f1(z)
namely, B(z) = 1 + ==—= £ (1) B £ (1) and for Bs =0, B(z) =1 £, (1)
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C. Kinetics

Equations (8) and (23) contain the quantities B® /B3 and G/G,,
which represent the normalized nucleation and growth rate functions,
respectively. In order to solve these equations, some kinetic assump-

tions must be made.

1. Nucleation. The initial nucleation rate, B3, is the rate of

formation of nuclei at z = 0, the entrance of the reactor. The assump-
tion is made that the initial nucleation rate is a function of the ratio R.

Equation (12) may be written in the form

o [ S 1 ok lo)
BS = [pKv(Gmana(l)] Co(1 - B,) = B3(R) . (24)

The total nucleation, B°, is assumed to be the product of the initial

nucleation and a decay function of the form (1 - z)a. The expression

for B° is
B° = B3(R)(1 - z)* (25)

and the nucleation ratio B°/BJ is

o]
Ses (12" . (26)
o Vi

2. Growth. The initial growth rate at the entrance is Gy. The

initial growth rate is related to the mass-weighted mean particle size,

L, as followss;
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1, the mass-weighted mean particle size, is defined by the ratio of the

4th and 3rd moments (L, 3 in Ref. 17)

+ _my(1)
T g (1) e
and by Eq. (7),
=  Blo.T)Th(l) £, (1)
L= B (Gor Pt (1) - T Ea(1) Ees

Go is assumed to be a function of the experimental parameter, R. The
total growth rate, G, is assumed to be the product of the initial growth

rate and decay function of the form (1 - z)b, namely,
b
G =Go(R)(1 - 2) . (29)
The growth ratio G/ G, is

G b
Go_(l-z; " (30)

The moment equations, including the kinetic assumptions, are
" J N b .
Plug Flow: fj - (0)(1 - z) - 3(1 - =z) fj A 0 (31)

. e R j Bl 4 b v
Dispersed Plug Flow: Pe fj fj £ {0y (1 = z) +3(1 = =) fj-l =0. (32)

Equations (31) and (32), together with the appropriate boundary

conditions, can be solved numerically to obtain the jth moments of the
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of the distribution. A discussion of the numerical methods can be
found in Appendix B.

D. Inversion of the Moments

The solution of either the plug flow or dispersed plug flow moment
equations by methods given in the Appendixes, gives a set of {fj}
dimensionless moments. The number of moments used in this study
is ten, thatis, j=0,1,...,9.

The set of moments can be approximated by the equation

9 . : :
=3 86, =
from which the dimensionless population distribution function, Yir
may be calculated for a given gk and A.ﬁk using matrix inversion
techniques.

The cumulative weight fraction distribution ist’

L

pk_ f pn(p) dp
o

M, ;

WW(L) = (34)

where n(p) is the population density of particles having size less than

L. Substituting the value for M; from Eq. (9), and cancelling pkv,

L

f p°n(p) dp

WW(L) = — ) (35)
fLan(L) dL
[o]
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Substituting the dimensionless quantities given in Section V. A, namely,

n =n3y and L = GyT£, we have

3

f py(p) dp

W) ===

(36)

where y(p) is the dimensionless population density of particles having
dimensionless size less than £.

Equation (36) may be approximated by the sum

£
1
WW(L) = =53 ; p{y;(p) Ap; (37)

- o l = 1
that 18, WW(LO) i fa(l) (EgYO Ago): WW(LI) = fa(” (ESYO AEO +
: b §
Elyr D& ), WW(L,) ='f_3(1) (Eyo A& + £y, AL + B3y, At,), etc.

E. Comparison of Theory with Experiment

The differential equations representing the dispersed plug flow
model are solved for a given set of parameters a, b, and Pe. The
resulting dimensionless moments are inverted to obtain the population
distribution functions and finally, the cumulative weight fraction dis-
tribution is calculated by means of Eq. (37). This cumulative weight
fraction distribution can be directly compared with experimentally
determined distributions.

The moments of the population may be compared directly without

inversion by converting cumulative weight fraction distribution data to
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moments based on weight distribution, and then converting to moments
based on a population distribution.

The weight distribution function is defined by*’

_dWW(L)
W(L) = =31, (38)
and the jth moment of the weight distribution function is
m, (wt) =/ LIw(L) dL (39)
o
or, approximately,
N j
m, (wt) = Zl: L, AWW(L,)] . (40)
The weight distribution may be converted to population distribu-
tion by the equa.tionl7
1
W(L) = L®n(L 41
from which the following relationships are derived:
m. _(popl.)
j+3
(wt) = 42
2507 = s (popl. ) o8

and

- f.
m. (wt) = (CoT) -}ﬁ (43)
J 3
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Equation (43) allows the comparison of experimental data with cal-
culated quantities derived from the theoretical model directly, without
moment inversion. An alternate method, which utilizes three of the
moments, is the calculation of the coefficient of variation (C, V. ) of
the distribution. The coefficient of variation, or relative dispersion,
is the measure of dispersion stated as a function of its average, that

is,
(o)
C. V. == 44
= (44)

where 0 is the standard deviation from the mean for the distribution.

The coefficient of variation may be calculated from the moments

2
=
C. V. =(m 3 1) (45)

and by
()
C. V. = %l-l) : (46)
4

(Note that mg(wt) = 1.)
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VL EXPERIMENTAL

A. Apparatus

The crystallization apparatus consists of three sections: (1) the
constant flow feed system, (2) the static mixer, and (3) the filtering

system. A diagram of the apparatus is shown in Fig. 2.

| _FEEDBACK
LOOP

~f

“SRESERVOIR

ROTAMETER
BALL VALVE

GLASS POLYPROPLYENE

Y-TUBE CONNECTOR

O-RING

CONNECTOR STATIC MIXER

VACUUM /-—a-FILTER SCREEN

Figure 2.

PETN Crystallization Apparatus.
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1, Constant Flow Feed System. There are two identical feed

systems, one for the acetone-PETN solution, and one for the water.
Each solution is held in a 24-liter capacity polyethylene bottle equipped
with a polyethylene stopcock located through the sidewall at the bottom
of the bottle. The solution is allowed to flow into a polyethylene reser-
voir (about 1 liter) situated just below the bottle and about 2 m above
the static mixer. The polyethylene stopcock outlet extends into the
reservoir. The liquid level is controlled in the reservoir by an air-
tight, 1.27-cm-o.d. polyethylene tube (feedback loop) that connects the
top sidewall of the reservoir to the top of the bottle. If the liquid level
in the reservoir drops below the tube inlet, the pressure above the
liquid in the bottle increases to atmospheric allowing more liquid to
pour into the reservoir. If the tube inlet is full of liquid, the feed
solution will not flow into the reservoir. The solution is fed through a
1.27-cm-o0.d. polyethylene tube to a rotameter ahead of the static
mixer. The rotameters were calibrated using either pure acetone or
water. FEach solution is fed to the static mixer through a 0.635-cm-
o.d. polyethylene tube.

The flow limitations of the system, including the rotameters, are:

Minimum acetone flow rate 1.3 cm®/s
Maximum acetone flow rate 15.0 cm®/s

Minimum water flow rate 1.0 em® /s

Maximum water flow rate 15.0 g/cm®
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2. Static Mixer. The effluent from the rotameters mix together

at the first element of the static mixer by means of a glass Y-tube with
a glass divider. The Y-tube is connected to the static mixer by means
of an O-ring connector. Figure 3 is a schematic of the static mixer

and Y -tube connector.

Stainless
steel elements

O-ring connector
Glass divider

Glass Y-tube

Figure 3.
Static Mixer.

The static mixer contains no moving parts. The mixing is
achieved by the bow tie-shaped blades or elements. Their configura-
tion imparts four basic motions to the flowing material:'?

e Flow division--Each element divides material received from
the preceeding element,
e Flow reversal--The opposite twist of each succeeding element

constantly reverses the circular direction of flow.

B UREEREE - R LSRR
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e Flow inversion--The material migrates from the center of the

pipe to the outside walls and back.

e Backmixing--There is a constant change in flow profile.

Velocity, pressure, and time have no influence upon the degree of
mix. Pressure drop is low, and radial temperature differences are
effectively eliminated.

Because of the continuous flow division reversal and flow inversion
at every element of the mixer, ideal plug flow conditions are
approached. ®

The static mixer is a 0.635-cm-i.d. glass tube, 36. 5 cm long,
containing 24 stainless steel bow tie elements. The volume, as
measured by water delivery at 20°C, is 9.0 cm?®.

The holding time of the static mixer is calculated by the equation

Volume of mixer (cm®)
Total volume flow rate (cm®/s)

Holding time(s) = . (47)

Table 2 gives the scheme for holding times and flow rates used in

the experiments.
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Table 2
EXPERIMENT HOLDING TIMES AND FLOW RATES

Holding Time = 0.5 s
Total Flow Rate = 18.0 cm?®/s

Acetone
Solution Water
Flow Rate Flow Rate

(cm® /s) (cm®/s) R
3.6 14. 4 1
6.0 12.0 1
9.0 9.0 1
Holding Time - 2.0 s
Total Flow Rate - 4.5 em®/s
1, 13" 3.38 1
2. 25 2. 25 1
B0 1.5 2
3. 38 1. 13 3

a’I‘his is below the rotameter measurement
limit. The flow rate was measured with a
graduate and stopwatch.,

3. Filtering System. Small samples (about 2 g) were collected

on a 350-cm® tared Buchner funnel with a fritted glass disc (medium
porosity) mounted on a 2-liter suction flask. The volume of the solids-
free liquid collected in the flask was measured. The PETN sample
was washed with distilled water and dried under vacuum for 18 h at
65°C. The dried sample was weighed on a single-pan analytical

balance. The data were used to calculate the M; value for the run.
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Large samples (30 to 50 g) were collected on a 29-cm-diam stain-
less steel screen n.omina.lly rated at 5 pm. The screen was mounted
on a holder that was on a stainless steel can (about 10-liter capacity)
equipped with a vacuum connection.

B. Materials

¢ PETN--The PETN used was recrystallized Cap Grade (Lof
4-28-32) purchased from Du Pont. The material was analyzed
for Group WX-3 use. The result of the nitrogen analysis is
17.26% N. The theoretical value is 17.72% N.

® Acetone--The acetone used was Analytical Reagént Grade.

e Water--Distilled water was used.

e Static Mixer--A Kenics Static Mixer, * purchased from Kenic's
Corporation, Danvers, MA, was used.

® Metal Filter Screen--A furnace-sintered woven wire mesh
filter screen nominally rated at 5 pm was purchased from
Pall Trinity Micro Corporation, Cortland, NY. A type 304
stainless steel filter screen, nominally rated at 5 pm, was
purchased from The Bendix Corporation, Filter Division,
Madison Heights, MI.

e Plastic Fittings--All connections exposed to the acetone-PETN
solution were made frompolypropylene tube fittings purchased

from United States Plastic Corporation, Lima, OH.

*Registered trademark.
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C. Procedure

The acetone-PETN solution (about 10 liters) was adjusted to 20
3°C and placed into the polyethylene bottle. The PETN concentration
was 0.5 wt% for R < 1, and 5.0 wt% for R > 1. The distilled water
(about 20 liters) was adjusted to 20 = 3°C and placed in the second
polyethylene bottle. The solutions were allowed to flow into their
respective reservoirs and the bottles and feedback loops were checked
for air leaks. The control valves were adjusted for the proper R-value
to be used. The total flow rate was checked with a stopwatch and
graduate. After allowing at least 30 s for equilibration, the metal
screen was placed into position for collection of the sample. During
the run, the rotameters were monitored for proper flow. Usually no
further adjustment was necessary unless precipitated PETN began
plugging the mixer. Precipitate buildup was significant for R > 1 runs.
If precipitate buildup did occur, the sample collection was stopped and
the mixer was '"cleared'' by opening the acetone solution to maximum
flow until the precipitate redissolved in the acetone. After clearing
the mixer, the flow was readjusted and the sample collection began
again. During the run, the small sample was collected in a Buchner
funnel with a fritted glass disc for M; measurements. The procedures

for each R value are summarized below:
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R = 1 (Batches 3848, 3851, * 3852, and 3853

The acetone-PETN feed solution consisted of 39.75 g of PETN in

10 liters of acetone (0.5 wt%). The acetone-PETN flow rate was

3.6 cm®/s, and that of the water was 14.4 cm®/s. The holding

time for the reactor was 0.5 s. Some difficulties were encountered

in filtering the product. There was a tendency for a slight buildup

of liquid on the filter. This problem was circumvented by supple-
a

menting the metal filter with three additional 600-cm® Buchner

funnels with fritted glass discs that were used in rotation so that

little or no fluid accumulation occurred. The precipitated PETN
collected on the filters was combined to form a single batch.

R = % (Batches 3866, 3867, and 3868)

The acetone-PETN flow rate was 1. 13 cm® /s and that of the water
was 3.37 cm®/s. The reactor holding time was 2.0 s. The feed
solutions were similar to the R = § runs. The same filtering pro-

cedure was used.

R = 7 (Batches 3856, 3857, and 3858)

The acetone-PETN flow rate was 6.0 cm® /s and that of the water
was 12.0 cm®/s. The reactor holding time was 0.5 s. The feed
solutions were similar to the R = % and R = %— runs. The filtering

procedure was the same.

*Batch 3851 was found to be contaminated with a fibrous material
originating from the acetone stock. The batch was not included in the

study.




.............
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R = 1 (Batches 3861, 3862, 3863, 3864,3871, 3872, 3873, and 3874)

Two reactor holding times were used. Batches 3861 through 3864
were made with an acetone-PETN solution flow rate of 9.0 cm® /s
and water flow rate of 9.0 cm® /s, giving a holding time of 0.5 s.
Batches 3871 through 3874 were made with an acetone-PETN solu-
tion flow rate of 2.25 cm®/s and water flow rate of 2.25 cm®/s,
giving a holding time of 2.0 s. The feed solutions were similar to
the R=%, R=%, and R = 3 runs. No filtering difficulties were
encountered, and there was no need to supplement the metal filter.

R = 2 (Batches 3876, 3877, and 3878)

The acetone-PETN feed solution consisted of 416.3 g of PETN in
10 liters of acetone (5.0 wt%). The PETN concentration was
increased because of its large solubility in the combined acetone-
water solvent. .The acetone-PETN solution flow rate was 3.0 cm®/
s and that of the water was 1.5 cm®/s. The reactor holding time
was 2.0 s. A 0.5-s holding time was not used because of a rapid
irreversible plugging that occurred at the higher flow rates. No
filtering problems were encountered.

R = 3 (Batches 3881, 3882, and 3883)

The acetone-PETN feed concentration was 5.0 wt%. The acetone-
PETN flow rate was 3.33 cm® /s and that of the water was 1. 11
cm®/s. The reactor holding was 2.0 s. Higher flow rates were

not used because of irreversible plugging in the mixer. Difficulties
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with product filtering were encountered. It was necessary to
supplement the 29-cm-diam metal filter with the three fritted glass
filters and with an additional 29-cm-diam metal filter.,

D. Particle Measurement

1. Photelometer Technique. 713 The estimation of particle size

distribution for subsieve particles below the 45-um sieve size was made
possible by a particle sedimentation-in-liquid method. In this method,
a representative PETN sample is dispersed homogeneously in a 50-vol%
mixture of n-octane and 1, 1, 2, 2-tetrachloroethane in a sedimentation
tube. The intensity of a collimated beam of light passed through the
suspension is measured after varying sedimentation times, and at
varying levels. The particle size distribution is calculated by means

of Stoke's law.

About one gram of each PETN sample was placed in about 300 cm?®

of the dispersing medium. The slurry was stirred for about 30 min by
means of an air-driven rotary stirrer. The suspension was examined
microscopically at 60X magnification to ensure total deagglomeration.
Duplicate photelometer runs were made.

The samples were wet sieved using PETN-saturated ethanol as the
transfer fluid. The following sieve sizes were used: 250, 177, 125,
88, 62, and 45 um. Photelometer results were used for sub 45-ym
particles. Sieve analyses were used for the large particle size. The
The correlation of photelometer results with sieve analyses for HMX

(octahydro-1, 3,5,7-tetranitro-s-tetrazocine) is shown in Fig. 4.7
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Figure 4.
Cumulative logarithmic plot of photelometer analysis of HMX
and of sieve analysis of coarse fraction above 45 ym. Curve
is average of four runs #* one standard deviation.

2. Scanning Electron Microscopy. FEach sample was photographed

at 100, 300, and 1000X. The samples were gold shadowed to avoid any
thermal effects on the heat-sensitive particles.

E. Detonator Test Firing

The PE;TN samples that were used in the detonators had the
following pressed characteristics:
PETN pressed density 0.88 g/cm®
PETN pressed diameter 4.064 mm
PETN pressed length 2.540 mm
PETN pressed mass 29 mg

1. Threshold Voltage Tests. Ten PETN pressings per sample

were used. The PETN samples were initiated by a bursting gold
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bridgewire 0.0381 mm diam and 1.016 mm long. The firing capaci-
tance was 1 uF per detonator. The firing cables consisted of a 4,41-
m-long cable (21-C-31) connected to a 0.457-m-long cable (31-1L.-121)
by means of a double-ended connector. The inductance of the cables
plus bridgewire was 1.0413 pH and the resistance was 0.266 .. The
Bruceton '"'up and down' method® of determining the 50% values of the
firing voltages (E, s ) was used.

2. Transit Time Tests. Two detonators per sample were fired.

A high density (1.65 g/cm®) PETN pressing 7.62 mm diam by 1.143 mm
long was added to the PETN sample to increase the output light inten-
sity. The transit time contribution of the high density PETN
is a known constant for the tests. Any resulting variations in tm are
due to the PETN samples. The measured tm value is the difference in
time of the appearance of light between the bursting bridgewire and the
shock wave breakout. The light appearances are observed with a
rotating mirror camera (RMC).

The bridgewire used in the tm tests is the same type as that used
in the E,_ s measurements. The firing capacitance was 1 uF with a
firing voltage of 2500 V per detonator. The firing cables used con-
sisted of a 1. 524-m-long cable (21-C-31) connected to a 0, 762-m-long

cable (31-L-121) by means of a double-ended connector. The
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inductance of the cables plus bridgewire was 0. 5389 pH and the resis-

tance was 0.191 &







37

VII. RESULTS

A. Experimental Particle Size Distributions

The cumulative weight distribution curves for all R-values are
shown in Figs. 5a through 5f. The error bars represent standard
deviations. Photelometer runs were sufficient for R < 1; for R = 1, the
photelometer method was supplemented by sieves. Table 3 summa-
rizes the particle size characteristics of the products.

Table 3

PARTICLE SIZE CHARACTERISTICS

Average
Average Coefficient
b of

R-Value (pm) Variation
1 12,2 0. 34
% 12. 7 0. 35
1 13,3 0. 40
1 30.2 0.49
2 41.0 0,47
3 63.5 0.52

Representative product scanning electron micrographs are shown in

Figs. 6a through 6g.
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Figure ba.
Scanning Electron Micrographs, PETN-3848 (R = %)
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Figure 6d.
Scanning Electron Micrographs, PETN-3861 (R = 1, v = 0.5 s).
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Figure be.
Scanning Electron Micrographs, PETN-3871 (R =1, v = 2.0 s).
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Figure 6g. :
Scanning Electron Micrographs, PETN-3883 (R = 3).
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B. Theoretical Model Predictions

1. Particle Size Distribution. The plug flow model calculations

predict distributions that are significantly narrower than the experi-
mentally determined ones. The coefficients of variation predicted by
the plug flow model range from 0. 11 to 0.21. The inclusion of the
Péclet number causes the predicted distributions to broaden as Pe is
lowered. The Péclet value of 250 gives results very nearly approach-
ing plug flow values. The results described were obtained from the
calculations based on the dispersed plug flow model.

A series of about 500 computer runs was made with combinations
of the nucleation parameter, a, ranging from 1.0 to 4. 0; the growth
parameter, b, ranging from 0.5 to 1. 7; and the diffusion parameter,
Pe, ranging from 25 to 250. Additional runs were made to refine the
calculations.

2. Effect of Varying Parameters. The effect of decreasing a

(longer nuéleation period) is primarily to increase the coefficient of
variation. It also tends to decrease the mean particle size. It predicts
a wider distribution of slightly smaller particles. The primary effect of
increasing b (shorter growth period) is to decrease the mean particle
size. It also increases the coefficient of variation. It predicts smaller
particles having a wider distribution. The primary effect of decreasing
Pe (increasing diffusion) is to increase the coefficient of variation with

-

a small increase of particle size. The resulting best fit parameters

are a=3.75+ 0,05, b =1.56 £ 0,02, and Pe = 51 £ 1, The resulting
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predicted particle size distributions, compared with experimental
results, are shown in Figs. 7a through 7f. Any further attempts to
obtain a closer fit or to increase the coefficient of variation without
deviation from a best fit gave unstable results. The resulting particle
size distribution curves were not smooth, but rather the points were
scattered in an oscillatory pattern.

3. Kinetics. A least-squares linear fit for L vs R gives the

equation, for L in pm:
L = (6.90 + 18.56R) (48)

with a linear correlation factor of 0.99. From Eq. (28), we have

Go'r=f‘(1)L ; (49)

For a = 3.75, b = 1.56, and Pe = 51, the ratio [f53(1)/f,(1)] is 2. 44.

For Go7 in pm, GyT = 2.44 (6.90 + 18.56R) or
GoT = 16.84 + 45.29R . (50)

Four experimental runs were made with R = 1 and a 0. 5-s holding
time. Four more runs were made with R = 1 and a 2. 0-s holding time.
The resulting particle size distributions, using the two holding times,
were essentially the same. This information suggests that the true

holding time of the system is either equal to, or less than 0.5 s.

T<0.5s . (51)
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If T is taken equal to 0.5 s, the resulting calculations result in limiting
quantities, subject to the flow rate range of the system used. The
resulting kinetic quantities are limiting, or effective, kinetic quanti-
ties. These effective kinetics are valid for this system, but may not
be valid if significantly higher flow rates are used, either by increasing
the height of the column of solution above the static mixer, or by using
a mechanical pump.

The effective initial growth rate in pm/s is

G = 33.68 + 90. 58R (52)

or
Gy, =4.880 . (53)
The total effective growth rate kinetics are

G = (33.68 + 90.58R)(1 - z)'*B€ (54)

with G in ym/s. For purposes of simplicity, the quantity B /Cy (1 - BS)

will be used in the discussion so that Eq. (24) becomes

B 4 1
Coll - B,) ~ PE_(GoTV°Th (1) (59)

where P = 1,77 g/cm?, K _=m/6, f5(1) = 0.006745 (using best fit

parameters), 7 = 0.5 s, and

BY __K
Coll - B) ~ (GotP il
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where K = [pKvaa(l)]"l = 320 cm® /g-s. Also,

B3 ) K ra
Co(l - B,) (16.84 + 45.29R)® °

The total effective nucleation rate kinetics are
B° = 320 (16.84 + 45.29R)™° Co(1 - B)(1 - z)27° (58)

with B° in nuclei/cm?3. S.

Experimental values for G and B° are those in which the kinetic
quantities were calculated from experimentally measured L using
Eqs. (49) and (56). These data, compared with those calculated
directly from R by Eqs. (48), (50), and (57), are presented in Table 4.

Figure 8 is a plot of the normalized concentration of PETN in the
acetone-water solvent, B(z); the normalized growth rate, G(z); and the
rormalized nucleation rate, B°(z); as fuanctions of the reaction coor-
dinate z. The early part of the reaction appears to be due to the com-
bination of a rapidly decaying nucleation with a nearly linearly decaying
growth. In the later part of the reaction, there is practically no
nucleation, the growth rate being the primary mechanism at this stage.

The change of the growth rate as a function of concentration is
shown in Fig. 9. The reaction proceeds from right to left along the
concentration axis, The relationship is nearly linear, except for the

initial and final stages of the reaction.







55

TABLE 4
CALCULATED KINE'I‘IC‘ QUANTITIES
b Standard Average
T Deviation T Deviation Deviation
R (experimental) _ (um) (calculated) Residual (%) (%)
i 12,2 %], 1 11.5 -0.7 6.1
4 12. 7 1,8 13,1 0.4 3.0
1 13.3 2.3 16. 2 2.9 17.9 8.9
l 30. z *9. o 25. 5 '4. 7 18. 4
2 41,0 +5,2 44.0 3.0 6.8
3 63.5 +10.4 62.6 -0.9 1.4
- Aver'age
G S Deviation Deviation

R  (experimental) (calculated) Residual (%) (%)

3 59. 54 56. 33 «3.21 5.7

i 61. 98 . 63. 87 l. 89 3.0

1 64. 90 78. 97 14. 07 17.8 i

1 147. 38 124. 26 <23 12 18.6 y

2 200. 08 214. 84 14. 76 6.9

3 309, 88 205, 42 -4.46 1.5

4 Average
BS B Deviation Deviation
R (experimental) (calculated) Residual (%) (%)
i- 0.97 x 107 1,14 x 107 0.17 x 107 14,9
# 1.07 x 107 0.98 x 107 -0,09 x 107 9.2
1 1.24 x 107 0.69 x 107 -0.55 x 107 79.7 58 ¢
1 1,42 x 10° 2.36 x 10° 0.94 x 108 39.8
2 7.16 x 108 5.77 x 10°® -1.39 x 10°® 24.1
3 1.41 x 10° 1.47 x 10° 0.06 x 10°® 4.1
®Effective kinetic quantities.
bIZ J
in pm.

CGO in um/s,
ng in nuclei/cm?®. s.
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The variation of the first four moments along the reaction coor-
dinate is shown in Fig. 10. The Oth moment may be thought of as the
total number of crystals in the volume under consideration. The rather
large slope at the early part of the reaction may be due to the large
nuclegtion occurring at this stage. The first moment represents the
sum of the lengths of all the crystals in the distribution. This moment
is controlled principally by growth. There appears to be an increase
in the slope of the curve after the initial ""surge' of nucleation. The
second moment is related to the specific surface area and the third

moment is related to the specific mass of crystals in the distribution.

&
O Zeroth
3 O First
A Second
-+ Third

oo | 5o 0.430 u.soa o 1.000
REARCTION COO?D[NHTE Z
Figure 10.

Variation of Moments Along Reaction Coordinate.
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C. Detonation Characteristics

The results of the threshold voltage measurements for the PETN
samples are shown in Fig. 11. A polynomial regression was per-
formed on the experimental data. The resulting second-degree poly-
nomial curve is represented by the solid line in Fig. 11, and is
referred to as the theoretical curve. The average percent deviation of
the experimental data from the theoretical curve is 4.1. The experi-
mental points are indicated in Fig. 11 by circles. Since the value for
b2 may be calculated from an R-value using Eq. (48), a correlation was
made between Ep z and L. The data are presented in Table 5. The

equation for the calculation of Eo.s. from L is
Eos = 1029.977 - 18.56256 L + 0.19019 L2 (59)

with L in pm and Eo g in V.

The results of the transit time measurements for the PETN sam-
ples are shown in Fig. 12. The curve represented by the solid line
resulted from a polynomial regression performed on the experimental
data. The third-degree polynomial curve is referred to as the theo-
retical curve. The average percent deviation of the experimental data
from the theoretical curve is 4.4. The correlation between tm and L is

presented in Table 6. The equation for the calculation of tm from L is

t =0.5562 + 0.03913 I - 0.001227 T2 + 0.00001726 1.2 (60)

with L in pm and ty, in ps.
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TABLE 5

53.22

22.59 .20

CORRELATION OF THRESHOLD VOLTAGE WITH L

30.2
41.0

63.5

Average Standard Theoretical
Eo.s Deviation Eo.5 Deviation
(V) (%) (V) (%)
800 4.4 832 3.8
825 1.3 825 0.5
875 3.5 817 7.6
650 7.0 432 03
600 = AL 589 0.5
625 2.8 618 0.5

59
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g - = Theoretical Curve
O Experimental
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Figure 12,
PETN Detonator Transit Times.

'10.000 20600

TABLE 6

CORRELATION OF TRANSIT TIME WITH L

Average Standard Theoretical
h tm Deviation L Deviation
(pm) (ns) (%) (ns) (%)
12.2 0. 882 1.6 0. 882 0.0
12.7 0.878 0.5 0. 891 1.5
13.3 0. 890 O: 7 0. 900 s 1
30.2 1. 099 7.3 1.094 0.5
41.0 1.422 12.1 1.287 10. 5

63.5 2.385 10. 9 2,513 5.1
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vii. CONCLUSIONS

For a given R-value, the various quantities, including effective
nucleation and growth rates, mass-weighted mean particle size, con-
centration function, transit time, and threshold voltage may be calcu-
lated using the equations summarized in Table 7.

The crystals obtained from the continuous plug'flow crystallizer
have narrow distributions and are fairly uniform in crystal habit. The
dispersed plug flow model calculations provide a reasonably good pre-
diction of these properties.

The objectives for developing a continuous reproducible recrystal-
lization technique and a predictive model far the preparation of PETN

have been achieved.
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APPENDIX A
CRYSTALLIZATION THEORY*

Particle Phase Space

Particle phase space consists of the least number of independent
coordinates of a particle distribution that gives a complete description
of the properties of the distribution. Particle phase space is divided
into two subregions given by internal and external particle coordinates.
External coordinates refer to the spacial distribution of these particles.
The prime example of an internal coordinate property is particle size.
The definition of the linear size, L, of a particle is often a difficult
choice and depends on how particle size is measured.

The linear growth rate is the rate of change of L. Thus, G =
dL/dt, where G is the convective velocity of a particle along the
L-axis. An important restriction to be made is that each particle
behaves identically at a given point in particle phase space.

Particle Number Continuity Equation

A population balance for particles in some fixed subregion of
particle phase space is stated as
Accumulation = Input + Output + Net Generation
The resulting population balance equation is

g—t’l+v-ﬁr“n)-B+D=0, (61)

*This material has been abstracted from Ref. 17 (Randolph and
Larson).
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in which B and D represent birth and death functions, respectively, of
the particle distribution where particles suddenly appear or disappear
at a point in the internal phase space, and n is the number population

distribution function. V is the velocity vector of the particle in phase

space.

Moment Transformation of the Population Balance

The solution of the partial differential equation in conjunction with
side conditions and auxiliary equations would, in principle, uniquely
défine the particle-size distribution at each point in particle phase
space. However, there is often an incompatibility of dimension with
regard to the various equations involved. The resulting incompatibility
of dimension results in a difficult-to-solve integro-partial-differential
form of equations. In many systems of interest, some average or total
quantities are sufficient to represent the particle distribution.

Often, in such cases, a type of transformation may be employed in
order to simplify the calculations. One such transformation is the
moment transformation of the population balance equation. Such a
transformation results in a tradeoff in which the dimensionality of the
system is reduced by one at the expense of obtaining average, rather
than distributed, information concerning the particle size distribution.

Recovery of the Particle-Size Distribution Function From the Moments

Although a continuous distribution function containing an infinite
amount of information cannot be exactly specified with the finite infor-

mation contained in the finite set of numbers, {mj} , we might hope to







65

recover n to an accuracy adequate for a simulation of a particulate
process. A useful technique for the approximate recovery of the
distribution function is outlined below.

The transformation that will be used is the moment transformation

where mj is given by the definition

m, =/ ST ML . (62)
(o]

This integral, to a first-order approximation, is given as

N -
% J
mj = E n'kLk ALk (63)
k=1

where o is the value of n at the midpoint, L., of a size range AL

k k’
The equation can be rewritten as a linear combination of the N ordinate

values of the distribution, {nk}, thus,

S G)
= (64)

where

0Y e
as” =L AL, . (65)

The set of moments to (N-1)th order can then be written in matrix

notation as

(66)

12
4
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where the matrix A is the N x N matrix of coefficients 31(3)' Thus we
write the elements of the matrix A as

<2
The matrix equation represents a set of N linear algebraic equations
in terms of N values of population density and can be inverted by
standard techniques to obtain an approximate distribution function
given at N values of I.. The question of how many moments should be
included in the inversion must be determined by numerical experimen-

tation.
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APPENDIX B
NUMERICAL METHODS

The plug flow differential equation solutions were obtained by means of a Runge
Kutta method. The IBM System/360 Scientific Subroutine Package, DRKG, was used.
The IBM System/360 Scientific Subroutine Package, SIMQ, was used to obtain the solu-
tions of the simultaneous linear equations. The runs were made on an IBM-360 Model 50
computer. Brief descriptions of DRKG and SIMQ are given below.

DRKG FROM THE SCIENTIFIC SUBROUTINE PACKAGE

SUBROUTINE DRKGS

PURPOSE
TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL

EQUATIONS WITH GIVEN INITIAL VALUES.

USAGE
CALL DRKGS (PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)
PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT,

DESCRIPTION OF PARAMETERS

PRMT - DOUBLE PRECISION INPUT AND OUTPUT VECTOR WITH
DIMENSION GREATER THAN OR EQUAL TO 5, WHICH
SPECIFIES THE PARAMETERS OF THE INTERVAL AND OF
ACCURACY AND WHICH SERVES FOR COMMUNICATION
BETWEEN OUTPUT SUBROUTINE (FURNISHED BY THE USER)
AND SUBROUTINE DRKGS. EXCEPT PRMT(5) THE COMPO-
NENTS ARE NOT DESTROYED BY SUBROUTINE DRKGS AND
THEY ARE

PRMT(1) - LOWER BOUND OF THE INTERVAL (INPUT),

PRMT(2) - UPPER BOUND OF THE INTERVAL (INPUT),

PRMT(3)~- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE
(INPUT),

PRMT(4) - UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR IS
GREATER THAN PRMT(4), INCREMENT GETS HALVED., IF
INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE ERROR
LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED. THE
USER MAY CHANGE PRMT(4) BY MEANS OF HIS OUTPUT
SUBROUTINE.

PRMT(5)- NO INPUT PARAMETER. SUBROUTINE DRKGS INITIALIZES
PRMT(5)=0. IF THE USER WANTS TO TERMINATE SUB-
ROUTINE DRKGS AT ANY OUTPUT POINT, HE HAS TO
CHANGE PRMT(5) TO NON-ZERO BY MEANS OF SUBROUTINE
OUTP. FURTHER COMPONENTS OF VECTOR PRMT ARE
FEASIBLE IF ITS DIMENSION IS DEFINED GREATER THAN 5.
HOWEVER SUBROUTINE DRKGS DOES NOT REQUIRE AND
CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL
FOR HANDLING RESULT VALUES TO THE MAIN PROGRAM
(CALLING DRKGS) WHICH ARE OBTAINED BY SPECIAL
MANIPULATIONS WITH OUTPUT DATA IN SUBROUTINE
OUTP.

Y - DOUBLE PRECISION INPUT VECTOR OF INITIAL VALUES
(DESTROYED). LATER ON Y IS THE RESULTING VECTOR OF
DEPENDENT VARIABLES COMPUTED AT INTERMEDIATE
POINTS X.
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DERY - DOUBLE PRECISION INPUT VECTOR OF ERROR WEIGHTS
(DESTROYED). THE SUM OF ITS COMPONENTS MUST BE
EQUAL TO 1l. LATER ON DERY IS THE VECTOR OF
DERIVATIVES, WHICH BELONG TO FUNCTION VALUES Y AT
INTERMEDIATE POINTS X.

NDIM - AN INPUT VALUE, WHICH SPECIFIED THE NUMBER OF
EQUATIONS IN THE SYSTEM.
IHLF - AN OUTPUT VALUE, WHICH SPECIFIED THE NUMBER OF

BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS
GREATER THAN 10, SUBROUTINE DRKGS RETURNS WITH
ERROR MESSAGE IHLF-11 INTO MAIN PROGRAM, ERROR
PRMT(3)=0 OR IN CASE SIGN(PRMT(3)). NE. SI GN(PRMT(2)-
MESSAGE IHLF=12 OR IHLF=13 APPEARS IN CASE
PRMT(1)) RESPECTIVELY.
FCT - THE NAME OF AN EXTERNAL SUBROUTINE USED. THIS
SUBROUTINE COMPUTES THE RIGHT HAND SIDES DERY OF
THE SYSTEM TO GIVEN VALUES X AND Y. ITS PARAME-
TER LIST MUST BE X, Y, DERY. SUBROUTINE FCT SHOULD
NOT DESTROY X AND Y.
OUTP - THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED,
ITS PARAMETER LIST MUST BE X, Y, DERY, IHLF, NDIM,
PRMT. NONE OF THESE PARAMETERS (EXCEPT, IF
NECESSARY, PRMT(4), PRMT(5),...) SHOULD BE CHANGED
BY SUBROUTINE OUTP. IF PRMT(5) IS CHANGED TO NON-
ZERO, SUBROUTINE DRKGS IS TERMINATED.
AUX DOUBLE PRECISION AUXILIARY STORAGE ARRAY WITH 8
: ROWS AND NDIM COLUMNS.
REMARKS
THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM,
IF
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE
NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE
IHLF= 11),
(2) INITIAL INCREMENT IS EQUAL TO 0 OR HAS WRONG SIGN
(ERROR MESSAGES IHLF=12 OR IHLF=13,
(3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,
(4) THE SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED THE EXTERNAL
SUBROUTINES FCT(X, Y, DERY) AND OUTP(X, Y, DERY, IHLF, NDIM,
PRMT) MUST BE FURNISHED BY THE USER.

METHOD
EVALUATION IS DONE BY MEANS OF FOURTH ORDER RUNGE-KUTTA
FORMULAE IN THE MODIFICATION DUE TO GILL., ACCURACY IS
TESTED COCMPARING THE RESULTS OF THE PROCEDURE WITH SINGLE
AND DOUBLE INCREMENT.
SUBROUTINE DRKGS AUTOMATICALLY ADJUSTS THE INCREMENT
DURING THE WHOLE COMPUTATION BY HALVING OR DOUBLING. IF
MORE THAN 10 BISECTIONS OF THE INCREMENT ARE NECESSARY TO
GET SATISFACTORY ACCURACY, THE SUBROUTINE RETURNS WITH
ERROR MESSAGE IHLF=11 INTO MAIN PROGRAM.
TO GET FULL FLEXIBILITY IN OUTPUT, AN OUTPUT SUBROUTINE
MUST BE FURNISHED BY THE USER.
FOR REFERENCE, SEE
RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL COM-
PUTERS, WILEY, NEW YORK/LONDON, 1960, PP. 110-120.







69

SIMQ FROM THE SCIENTIFIC SUBROUTINE PACKAGE
SUBROUTINE SIMQ

PURPOSE
OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EQUATIONS,
AX= B

USAGE
CALL SIMQ(A, B, N, KS)

DESCRIPTION OF PARAMETERS

A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE
DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS
N BY N.

B - VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE
REPLACED BY FINAL SOLUTION VALUES, VECTOR X,

N - NUMBER OF EQUATIONS AND VARIABLES. N MUST BE .GT. ONE,

KS - OUTPUT DIGIT
0 FOR A NORMAL SOLUTION
1 FOR A SINGULAR SET OF EQUATIONS

REMARKS
MATRIX A MUST BE GENERAL,
IF MATRIX IS SINGULAR, SOLUTION VALUES ARE MEANINGLESS,
AN ALTERNATIVE SOLUTION MAY BE OBTAINED BY USING MATRIX
INVERSION (MINV) AND MATRIX PRODUCT (GMPRD).

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL
DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTER -
CHANGING ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO
OR SMALL ELEMENTS.
THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN N
STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS
CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION
VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(1),
VARIABLE 2 in B(2),.c000:.- , VARIABLE N IN B(N).
IFF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0,
THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST
STATEMENT.

The dispersed plug flow differential equation solutions were obtained by means of
finite difference techniques. The-runs were made on a CDC-7600 computer. The com-
plete program listings are giv;n in Appendix C.

General discussions on Rung-Kutta methods, finite difference techniques, and

solutions of simultaneous linear equations may be found in Refs. 8, 14, and 21.
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APPENDIX C
DISPERSED PLUG FLOW MODEL LISTINGS

PROGRAM DRVR(OUTY,FSET6=20UT)
DIMENSION B(1#Q)
COMMON/EPSILON/FPS,EPS2
COMMON/VARY/NA,NB,NP
EPS=2,0xx(=47)
EPSZ=(2.E**{-’!B)J*(l.ﬂ-?.@*i(-aa))
D0 1929A NA=2,2
A=3,T+FLOAT(NA=1)*,05

DO 1004 NB=2,2
D=1,54+FLOAT(NR={)*,02

DO 100 NP=2,2

PzlUb, +FLOAT(NP=1)%5,
WRITE(6,2R20)A,0,P

CALL PROG1 (B,N)

CALL PROG2 (B,N)

CONT INUE

FORMAT(SX,UHA = ,Fb6,2,6H, B ¥ pFb,2s6H, P =2 ,F6,2)
stop

END

SUBROUTINE PROGI(B,ND)
FINITE DIFFERENCE SOLUTION OF THE SECOND ORDER ODE
LCU) = =UXS/P 4 U¥ = F ON (ALEFT,ARIGHT)
B(U) = @ DIRICHLET/NEUMANN/MIXED BC
DIMENSION Q(16480), 1T(4R97), B8(100)
COMMON /DIFEQU/ ISIDEC,XSIDEC(1@),P,NMOM,JDE
COMMON /FOMESH/ ALEFT,ARIGHT,H,N
COMMON ZAPPROX/ U(1@25@) , NH
COMMON /OTHER/ ™MODE,MXITER,MXMESH
PRINT S99
FORMAT (/% PRORBLEM#, 15X, ~BY FINITE DIFFERENCES2//)
WRITE THE TITLE

MODE = 1}
CALL SOLUCL,X,V)
SET VARIOUS PARAMETERS FOR THE ODE
MODE = 2
CALL SOLUCT,XsV)
SOLVE THE JDE=TH EQGUATION, FOR 0O ,LE, JDE ,LE, NMOM
JDE = ¢
IJDE = ¢
COMTINUE
FROM THE FD ERUATIONS AND SIDE CONDITIONS,
GENERATE THF BANDED SYSTEM MATRIX IN Q@ AND THE RHS IN U
#ODE = 3
CALL FDEQU(Q,U(CIJDE))
COMPUTE THE APPROXIMATE SOLUTION U BY BAND/BANST
CALL BAND(N,1,1,0,N,1T,DET)
IFC(ABS(DET) oLEo 1,E=7) PRINT 6021,J0E,DET
FORMAT(2X, 2%+ FOR MOMENT EQUATION#*, I4,% DET =2, E1d4,7,% ter)
CALL- BANS1(N,1,1,8,N,IT,U(IJDE))
IF(JDE L,EN, NMOM) GO YO 3@
JDE = JDE +1
1JODE = 1JDE ¢ N
GO TO 2@
THFE SYSTF™ IS SOLVED
OUTPUT THE MOMENTS U
CONTINUE
IST = NMOM ¢ |
IP = NMOMaN & |
18T@=0
IST1=]ST~1
PRINT S@1, (I,I=18T@,IS8T1)
FORMAT (= IX &, 10(= Ur,12,6X))
18T=16
DO 31 1I=1,N,IST
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31
se2

an

AR

iIGY=1=1

PRINT Sp2, (IGT,(UCK),K=I,IP,N))
1P = IP + 1S7

FORMAT(IS,17E12,4)

NG = NMOM + |

DO 4@ IFB = 1,NQ

IFU = IFBaN

B(IFB) = U(IFU)

CONTINUE

END FD

SUBROUTINE FOFQU(G,U)
FILL SYSTEM MATRIX G AND RHS U
COMMON /DIFEGU/ ISIDEC,XSIDEC(1@),P,NMOM,JDE
COMMON /FOMESH/ ALEFT,ARIGHT,H,N
DIMENSION QC1),U(1)
FIRST ZERC G AND U , THEN FILL BY ROWS
12 = N
I3 = 12 ¢ N
DO 1 I=j,N

12 = 12 + |

IS & 139 1§

U1l = @,

8C1) = @,

Q(l12) = o,

G(I3) = @,
HH = HwH
ISIDEC =
I =1
I2 =1 ¢ N
13 =2 12 ¢ N
X = ALEFT
PO THE 1«TH RO
FIRST CHECK FOR SIDE CONDITIONS
1IF{X ,EQ, XSIDFC(ISIDEC)) GO TO 3
THIS IS NOT A SIDE CONDITION ROW
QCI) = =y, = A, SaPrp
@(I2) = 2,
B(I3) = =1, ¢ 1,52PxH
CALL SOLU(CL,x,V)
UCI) = HHay

G0 70 4
THIS IS A SINDE CONDITION ROW
J =1+ (2 = ISIDFC)aN
CALL FDSID(I,QC¢J),uCI))
RETURN IF ALL ROwS FILLED
IFLY €0, %) RETURN
UPDATE FOR NFXT ROW
X = ALEFY ¢ FLOAT(I)=H
1 =21+
12 = 12 + 1
13 = 13 ¢+ |
G0 Y0 2

END FDEGU
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SUBROUTINE FDSID(1,0,U)
a% FILL QO AND U AT THE SIDE CONDITION RONWS
COMMON /DIFFQU/ ISIDEC,XSIDEC(1@),P,NMOM,JDE
COMMON /FDMESH/ ALEFT,ARIGHT,H,N
DIMENSION G(1)
it 60 10 (190;22,99);I8IDEC
&4 MIXED BC P=UCALEFT) = U#(ALEFT) = U¥CARIGHT) = @
10 X = XSIDFC(ISIDEC)
0(1) = {, ¢+ Pap
Q(Ne1) = =},
e 60 T0 90
28 X = XSIDEC(ISIDEC)
0‘1) = -2-
QI(N+1) = 2,
CALL SOLUCTI X,V)
U = HHaV
IDEC = ISIDEC ¢ 1
o Rt L SERHN.

END FDSID

SUBROUTINE SOLUCIX,X,V)

COMMON/VARY/NA,NB, AP

COMMON /DIFEQGI/ ISIDEC,XSIDEC(10),P,NMOM, JDE

COMMON /FDMESH/ ALEFT,ARIGHT H,N

COMMON /ZAPPROX/ U(C10250),NH

COMMON /OTHER/ MODE,MXITER,MXMESH _

60 YO0 (10,20,30,47),MODE

#® WRITE OUTPUT HFADING
10 CONTINUE '

Pegb6,+Fl DAT(NP=1)a5,

NMOM = 9

NH = &4

PO 1% 1=1,5

IF(FLOATI(NKH} L,GE, P) 60 70 12

11 NH 2 NH ¢ AH
12 CONTINUE

NH = NH ¢ MH ¢ NH ¢ AH

PRINT 10808, NMOM,P,NM

' RETURN
100 FORMAT(uaH =UJKR/P + UJ¥ = F1 + F2auUM , 8 _LE, J LE.,13,
. /% UJCALEFT) = UJK(ALFEFT)/P = 2 4, UJN(ARIGHT) = D=,
’ //x P 2r,Eld4,8,5X,2NH Ba,15//)
x2 INITIALIZF EVERYTHING
20 CONYIMUE
ALEFT = o,
ARIGHT = ¢,
XSIDEC(1) = ALEFT
XSICEC(2) = ARIGHT
H = (ARIGHTY = ALEFT)/FLOAT(NH).
N = NH ¢ |
RETURN

#x PROVIDE VALUE AT X OF RHS Fi ¢+ FerulJ=1)
30 CONTINUE
V' FI(IXgX)
IF(JDE .EQ, ©) RETURN
1 = (JDE = 1)»xN ¢+ IX
VB YV ¢ F2(IX,X)2UC(])
RETURN
2% PROVIDE VALUE AY X OF THE EXACT SOLUTION IF KNOWN
ag CONTINUE
V = VALUE
RETURN
END SOLU
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FUNCTION F1CIX,X)
COMMON/VARY/NA, NB, NP
COMMON /DIFEGU/ 1SIDEC,XSIDEC(1@),P,NMOM,JDE
Fi = 0,
IF(JDE ,NE, 0) RETURN
‘.3. TQFLOthNl-l)..GS
Fi = Pr(i, = X)#%A
RETURN
END F1i

FUNCTION F2(1X,X)
COMMON/VARY/NA,NB, NP

COMMON /DIFEGU/ ISIDEC,XSIDECC10),P,NMOM,JDE

Fe = @,

IF(JDE ,EQ, @) RETURN

Del,SU+FLOAT(NB=1)n,02

F2=P2FLOAT(JDE)n (i ,=X)x=D
: RETURN

END F2

SUBROUTINE BAND(N ML, MU, A, TA, INT,DET)
DIYENSION ACIA,1),INT(Y)
DATA XND/D3T7777777771/

IF(MeLT 1, 0R, IA, LT NyOR ML,LT,8,0R,MU,LT,Q)
IF(N,EQ,1,0R ML,EQ,Q) GO T0 9
MA = IA -

LL = ML ¢+ MU #+ 1|
NM =2 N =« |
CET = 1,
SHIFT THF FIRST =ML# ROWS OF #Aax YO THE LEFY
K = MU + 1
KJ =2 MLaMA
DC 3 1I=1,M
19 = ]
IL =2 1 ¢ xJ
DU | JElK
ACIJ) =.A(C1IL)
IJd = 1J &+ MA
IL 2 IL ¢ MA

K2 K + !
DO 2 J=K,LL
ACIJ) = @,

I3’z 1d & ¥A

KJ 2 KJ = MA
BEGIN GAUSS ELIMINATION LOOP
L = ML
KK = LL = 1
IL = KK&MA
DO B8 K=mji,NM

KP = K + §

IFLLLTSN) L om L & 1}

GO 7O 12
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C =a
a
C =ax
-
C ar
6
7
8
Cc ®R
C =a
9
1@
L =22
i1
C ®a
12

IF(KK,GT o N=K) KK 2 N = K
SEARCH FOR PIVOY ELEMENT IN COLUMN nKn
1=K
X = ABSCA(K))
DO 4 J=KP,L
IF(ABS(A(J)),LE(X) GO 70 &
1 =J
X = ABS(AC(J))
CONTINUE
INT(K) = 1
IF(1.EQ,K) G0 TO &
INTERCHANGE ROwS OF #Ax IF NECESSARY
) {17 (SME S
KJ = K
DO 5 J=1,LL
X =2 A(KJ)
A(KJ) = A(1J)
ACIJ) = X
1J = 1J + MA
KJ 2 KJ ¢ MA
DET = =DET
BEGIN THE EXCHANGE STEP LOOP
X o= ACK)
IF(X . FO,Q,) GD 10 11
X = - /X
IK 2 X ¢ MA
KJ = K & IL
PO 7 I1=2KP,L
KJ = KJ ¢ MA
XX = A(I)aX
A(RJ) = XX
CALL ADDVECIKK XX, ACER), MA,ACYOMA) , MA,AC2) , MA)
ACI+IL) = 0,
CONTINUE
END GAUSS ELIMINATION LOOP
IFCACN) EQ,0,) GO 70 {1
INT(NY) =z @
RETURN
IN THIS CASE #A# IS UPPER TRIANGULAR
DO, 10 Ke=i,M
IFCACK)EG,2,) GO TO {1
INT(K) = K
DET = |,
INTI(N) = @
RETURN
MATRIX =As MAY BE SINGULAR
DET = @2,
INTIN) = K
RETURN
ERROR IN THME SYSTEM FPARAMETERS #Na, =M_L=, aMU%
DET = XND
RETURN
END
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SUBROUTINF BANSI(N,ML,MU,A, 1A, INT,Y)
DIMENSION ACIA,1),INTC1),Y (1)

IF(N,EQ, 1) GO T0 S
NM =2 N = |

MA = 1A

L = ML ¢« MU

IF(ML,EQ.Q) GC 70 3

LP = (L #+ 1)aMA _
2 BEGIN FORWARD SUBSTITUTION LOOP FOR COMPUTING THE SOLUTION aYa
KK = ML
DO 2 K=mi,NM
KP = K ¢ |
IF(KK,GT,N=K) KK = N = K
IFCINT(K) GEQLK) G0 70 1§
nad INTERCHANGE ROwS OF #Ya JUST AS WITH #Aw
J = INT(K)
X = Y(K)
Y(K) = Y(J)
Y(J) = X
CALL ADDVEC(KK,YCK),A(K+LP) MA,Y(KP),1,Y(KP), 1)
CONTINUE
BEGIN BACK SUBSTITUTION
YIN) = Y(N)/A(N)
DO 4q I“c””
K s N=1
KP =2 K + |
KK = L
!F‘KK.GT.I] KK = I
Y(K) 2 (Y(K) = DOTPRO(KK,ACK#MA) ;MA,Y(KP),1))/A(K)
4 CONTINUE

W N e

RETURN
®% MATRIX =A» IS | BY 1
5 Y(1) = Y({(1)/A(1)
RETURN
END

SUBROUT INE PROGZ (B,N)
DIMENSION XI(1OA),DXI(100),A01008),80108),X(122),TEMP(SRA),wWw(10D),
*XS1(173)
00 3 J=1q,N
XI(J)=,05 + (FLOAT(J) = {,)/10,
XSI1(J)=x1I(J)
3 DXI(J)=,1
CALL FCT(A,X1,DXI,N)
ClLL UNSL!?(N;l,l,N,B,N.X,N.TEMP;OET.IE!.L)
CALL QUTPIN,X,»1)
F3=1,0/8(4)
DO 1 J=g,N
1 XICJI)=XT(J)=»=3
WRCL)SF3aXTCi)aDXT(L)xx(])
po 2 J:E.N
2 AN(JI)=dw(J=1)+F3xXTICJ)20XI(J)2aX(J)
WRITE(6,2005)
cPBS FORMAT(SX, 19HWEIGHT DISTRIBUTION)
WRITE(6,2022)(wW(J) J=1,N)
2002 FORMAT(10X,5E14,7)
WRITE(6,20021)
CALL PRNPLT(XSI WW,1,p)e01,1,24,025,3,0,N)
2281 FORMAT(1H1)
RETURN
END
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SUBROUTINE FCT(A,XI,DXI,N)
DIMENSION A(Ns1)sXI(N),DXI(N)
DO 18 Jmi,N
TaXI(J)
A(1,J)=DXI(J)
DO 18 I=2,N
10 ACI,J)=A(1=1,])nT
RETURN
END

SUBROUTINE OUTP(N,X,1IX)
DIMENSION X(1)

Nx=(N-l)iIXQI
HRITE(6'3BBHJ(X(J),J:i,nx,;x)

3000 FORMAT(10X,SE14,7)

RETURN
END

SUBRUUTINE UNSLIT(N,M,A,IA,B,IB,X,IX,SCR,DET,IEX,L)
GIVES CORRECTLY ROUNDED SOLUTIONS OF AxX = B , WHERE A 1S
UNSYMMETRIC AND H IS N BY M , PROVIDED A IS NOT T0C
ILL=CONDITIONED, USES PROCEDURES UNSDET, UNSACC, UNSSOL,
INRPRO, COMPUTES THE DETERMINANT OF A IN THF FORM
DETY & 2xalEX , L IS THE NUMBER OF REFINEMENT STEPS,
SCR IS WORKING STORAGE OF LENGTH AT LEAST N=x(IA #+ 1) ¢ MalIB ,
THE PROCFNURF FATLS, AND PRINTS ERROUR MESSAGES, I1F THE LU
FACTORIZATION OF A OR THE ITERATIVE REFINEMENT OF X FAILS,
10 FORMAT(1MO, 3THMATRIX HAS ZFRO ROw IN UNSDETY AT STEP,I4/)
11 FORMAT(1HY,d43HMATRIX IS NEARLY SINGULAR IN UNSDET AT STEP,14/)
12 FORMAT(I1HQ, 32HN0 CONVERGENCE IN UNSACC AT STEP,I14/)
DIMENSION ACIA,1),B(IB,1),X(IX,1),SCR(1)
AA  STARTS IN SCR(LA) , BB IN SCR(LB) , INT 1IN SCR(LI)
DO § J=i,N
Kz (J = 1)*x]A
DO 1 I=1,N
e KWl
i SENELL) = AT1.d)
o B
LB = LA & IA=%N
LY = LA + IRaM
FORM L1} FACTORS
CALL UNSDFT(N,SCRCLA),IA,DET,IEX,SCR(LI),SCRCLI),ILL)
IFCILLME, D) GO T0 2
ITERATIVE REFINFMENT
CALL UNS#CC(NprArSCRle)tI“chSCR(LR)rIRJXJIX!SCR(LI)aLoILL)
IFCILL,EG,@) RETURN
ITERATIVE REFINEMENT FAILED
PRINT 12,1ILL

RETURN
LU FACTORIZATION FAILED
2 IFCILL,GT,.0) PRINT 11,ILL
ILL = =ILL
IFCILL,GT,.2) PRINT 10, ILL
RETURN

END
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ACCUMULATES THE SUM OF PRODUCTS X(K)=Y(K) AND ADDS IY
YO THE INITIAL VALUE Ci « C2 1IN DOUBLE PRECISION,
DY IS THF SINGLE PRECISION VALUE OF THE DOUBLE PRECISION
SUM D, D2 IS THE SINGLE PRECISION DIFFERENCE D = D,
JF THE VECTYCR LENGTYH L IS NOT POSITIVE, THEN O = C1 ¢ C2,
SPEED OF EXECUTION OF YHIS ROUTINE CAN BE GREATLY INCREASED
BY HAND CODING, wHAT IS REQUIRED IS THAT THE SUMS AND
MULTIPLICATIONS BE PERFORMED IN DOUBLE PRECISION,

DIMENSION X(1),Y(1)

DOUBLE PRECISION D,DX,DY

OX = (1}

DY = C2

D = DX + DY

IF (L.LE.Q) GO T0 2

I =1

J = |

bo 1% Kzi,L

DX = X(I)

RETURN

SUBROUTINE UNSDFY(N,A,TA,DET,1EX,INT,SCA,ILL)

FORMS LU FACTORS OF A HY CROUT METHOD WITH ROW EQUILIBRATION
AND PARTIAL PIVOTING, OVERWRITES L AND U ON A, OMITTING
UNIT DIAGONAL OF U, AND RECORDS ROw INTERCHANGES 1IN INY,
COMPUTES THE OFTERMINANT OF A IN THE FORM DET & 2#elEX,
THE PROCEDURE FAILS IF A, AS MODIFIED BY RUUNDING ERRORS, 18
SINGULAR OR NEARLY SINGULAR, USFS PROCEDURE INRPRO, EPS IS
THE (MACHINF=DFPENDENT) LEAST NUMBER X 80 THAT {, ¢ X LG, 1,
DIMENSIOM ACTIA,1),INTC3),SCA(1)
DATA EPS /2,7xa(=47)/
COMMON/FPSILON/EPS,EPS2
ILL = @ _
SCALE SO THAT SCA(YI)«(A(I,,)) HAS UNIT SUP NORM LENGTH
P02 1=%,N
X = @,
DO i J=1,N
i IF(ABS(ACTI,J)),.GT, . X) X = ABSCA(1,J))
IF(X) 2eliye
g SCA(I) = 1,/X%
DET = 1%,
1EX = @
DO 1€ K=i,N
COMPUTE ENTRIES OF L IN COLUMN K
L =K
X = @,
DO 3 I:K'N
CALL INRPRO(K=1,=A(I K) 0,0ACY,1)p1A,AC1,K),1,Y,YY)
A(l,K) = =Y
Y = ABS(Y=SCA(I))

IF(Y,LE.X) GO TO 3
X =Y
L =1
3 CONTINUE
IF(L,EQ.K) G0 70 S

INTERCHANGE ROWS IF NECESSARY, SAVING INTERCHANGE INFORMATION
DET = =DEY

[
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vu 4 JELpN
Y = A(K,J)
ACK,J) = A(L,J)
4 ACL,J) =Y
SCACL) = SCA(K)
- INT(K) = L
UPDATF NETERMINANT AND CHECK FOR NEARLY SINGULAR A
DET = DET*A(K,K)
IF(X,LT,8,W*EPS) GO TO 12
A IS 0K THROUGH ROMW K
SCALE DETFRMINANT TO AVOID OVERFLOW
6 IFCABS(DET) LT,.1.) GO T0 7
DET = DET#2,.0625
IEX = IEX ¢ 4

GO T0 &
7 IFCARS(DET),GE,0,0625) GO 70 8
DEY = DET#16,0
IEX = IFX = 4
GO TO0 7
COMPUTE ENTRIFS OF U IN ROW K
é IF(K,EQ,N) GO 70 19
X = =) /JA(K,K)
KP =2 K ¢+ |

DO 9 JeKP,N
CALL INRPRO(Kw1,=A(K,J) @, pA(K 1) TA,ACL,J)01,Y,YY)

9 A(KyJ) = XnY
19 CONT INUE
RETURN
A I8 SINGULAR
11 ILL = =]
RETURN
A IS NEARLY SINGULAR
12 ILL = X
RETURN
END

SUBROUTIME UNSSOLIN,MpA,1A,B,IB,INT)
SOLVES A=xX = B WHERE A IS UNSYMMETRIC AND B IS N BY M,
MUST BE PRECFDFD BY PROCEDURE UNSDETY TO0 PRODUCE LU FACTORS
IN A «ITH RECORD OF ROW INTERCHANGES IN INT, OVERWRITES
X ON B, USES PRCCEDURE 1INRPRO,
DIMENSION A(IA,1),BCIB,1),INT(1)
INTERCHANGE R0DAS OF B
Do 2 I=i, N
IFCINTCT) EG, 1) GO Y0 2
J = INT(1)
PO 1 K=i,M
X = B(1,K)
B(1,K) = B(J,K)
1 B(J,x) = X
e CONTINUF
DD 5 K=zi,M™
SOLVE LaY = 8
DO 3 I=i,N
CALL INRPRO(I=1,BCI K),@A,p,ACL, 1), TA,BCL KYp1,X,XX}

3 BC(I,K) = «X/A(I,I)
SOLVE uyU=sx = Y
B(N,K) = =B(CN,K)
DO 4 1Ir1=2,N
1L & N¢ = .11
CALL INRPROCITI={,B(1,K),8,,A °
” Beteis % ax 17BUI,K) @, pACT,141),1A,BCI41,K),1,X,XX)
5 CONTINUE

RETURN
END
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SUBROUTINE UNS!CC(N,H,‘;A!;II;BJBﬂoTHerIXiINTthILL)
SOLVES AxX = B WHFRE A IS UNSYMMETRIC AND B IS N BY My
USING PROCEDURE UNSSOL, MUST BF PRFCFDFD BY PROCEDURF UNSDET
YO PRODUCE LU FACTORS OF A IN AA WITH RECCRD OF ROW
INTERCHANGES IN INT, COMPUTES RESIDUALS BB = B = AaX USING
PROCEDURF INRPRO, AND SOLVES A*D = BR, OVERWRITING DO ON BB,
THEN OVERWRITFS THE REFINEMENT X ¢D ON X, REPFATS THE
REFINEMENT SO LONG AS THE MaX CORRECTION AT ANY STEP 1S LESS THAN
HALF THAT AT THE PREVIOUS STEP, UNTIL THE MAX CORRECTINN 18 LESS
THAN 2*EPS#(SUP NORM OF X), EXITS WITH ILL ,NE, © IF THE
SOLUTION FAILS TO IMPROVE, L IS THE NUMBER OF ITERATIONS,
EPS 1S THE (MACHINE=DEPENDENT) LEAST NUMBER T SUCH THAT
$1, + T ,CT, 1.0 AND EPS2 IS THE (MACHINE=DEPENDENT) GREATEST
NUMBER T SUCH THAT 1, ¢ T .EQ, 1,

DIMENSION A(IA:1Jfll(ll:l)iatlavljtaaflﬂf1):X(IX:!J:INT(1)

DATA EPS /2,@#x(=u7)/ , EPS2 /(2,8%x%(=4B))" (1,0 » 2,0%x(=48))/

COMMON/EPSILON/EPS,EPS2

ILL =@

SET UP FOR FIRST APPROXIMATE SOLUTION

DO § J=i,M

PO 1 I=1,N
X(1,J) = @,
i BB(1,J) = B(1,J)
L =0
Pe = 6,0

COMPUTE AND ADD THE CORRECTION
2 CALL UNSSOL(N,M,AA,TA,88,1B,INT)
S I
ID = @
DI = 0,0
00O 3 J=i,M
DO 3 1I=1,N
3 X(1,J) = X(1,J) ¢ BB(I,J)
COMPUTE NEw RFSIDUALS
DO 5 J=i,M
XMAX = 0,0
BBMAX = 0,9
DO 4 I=1,N
IFCABSIX(I,J)),GT XMAX) XMAX = ABS(X(I,J))
~ IF(ABS(BB(1,J)),GT,BBMAX) BBMAX = ABS(BB(I,J))
CALL INRPRO(N,=B(Y,J),@,,AC1,1),1A,X(1,J),1,C,CC)
4 BB(1,J) = =C
IF(BBMAX,GT,D1aXMAX) D1 = BBMAX/XMAX
S IF{BBMAX ,GT,2,P*EPSaXMAX) 1D = |
IF(2,82D1,6T7,D@ ,AND, L4NE.1) ILL = L
DB = D{
IF(ID,ER, 1) GO T0 2
RETURN
END

SUBROUTINF PHNPLT(X,Y.XM!K,XINCR,YHAX,YINCR,IS!,ISY,NPTS)
PRINTER PLOT ROUTINE MeS,ITZKOWITZ MAY, 1967

PLOTS THE *NPT1S’ POINTS GIVEN BY *XCI),YCI)? ON A S1 X 121 GRID
USING A TOTAL OF S6 LINES ON THE PRINTER
IF *1SX* OR “1SY’ ARE NON=ZERO, THE CORRESPONDING MAXIMUM AND
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901
902
903
se4
985S
9800

14

16
11
15

12

13

i0

29

INCREMENTAL STFP SIZE ARE COMPUTFD
IF EITHER INCREMENTAL STEP SIZE IS ZERO, THE PROGRAM EXITS
NEITHER OF THE INPUT ARRAYS ARE DESTROYED, IF SCALING IS DONE
THE CORRESPONDING NEW VALUES OF MAXIMUM AND STEP SIZE ARE RETURNED

DIMENSION X(NPTS),Y(NPTS),IGRID(185),XAXIS(11)

INTEGER BLANK,DOT,STAR,IGRID,PLUS
DATA BLANK,DOT,STAR,PLUS / 1H ;1H, 1H%, {He /

FORMAT(1u4Xx,1054A1)

FORMAT(1XE19,3,2X,1H%,1085A1, 1H+)

FORMAT(1SX,1@3(1H,))

FORMAT(7X,11(F12,2),2H (,14,5H4 PTS) )
FORMAT (16X, 11(1H+,9X))

FORMAT(46HISCALING ERROR IN PRNPLY, EXECUTION TERMINATED )

IF(XINCR,EO,?, ,OR,YINCR,EG,B3,) GO TO 800
YAXMIN=A,@1+YINCR
XAXMINzZQ, 12X IMNCR
1ZERO=YMAX/YINCR¢1,5
JZERO=1@3,5=XMAX/XINCR
IF(JZERD,GT,123,0RJZERD,LT,4) JZERO=2
PRINT 9095

PRINY 943

PO 10 1=1,51

IFC 1,NE,TZFRO) GO TO 16

DO 14 J=1,1025

IGRID(J)=PLUS

GO T0 1S

DO 11 J=1.105

IGRID{JY=RLANK

IGRID(JZERD)=PLUS

TGRID(1Q4)=DOT

IGRID(2)=NOT

DO 12 K=1,NPTS

ITEST =(YMAX=Y(K))/YINCR¢1,5

IF( ITEST ,NEL,I) GO TO {2

JEID3, Sw=(XMAX=X(K))/XINCR
1IF(J,GT,103)J=125

IF(J LT, 3) J=1

IGRID(J)=STAR

CONT INUE

IF(MODC(TI,1#),EQ. 1) GO YO 13

PRINT 921, IGRID

G0 10 1@

YAXISzYMAX=(]=]1)xYINCR
IF(ABS(YAXIS) LT, YAXMIN) YAXIS=2,
PRINT 902,YAXIS,(IGRID(J),,J={,10AS)
CONT INUE

PRINT 923

PRINTY 90S

DO 290 “=1,11
XAXIS(M)=XMAX=XINCR*(FLOAT(11=M))x10,0
IFCABS(XAXISIM)) (LT XAXMIN)XAXIS(M)=2,
CONT INUE

PRINT 904,XAXIS,NPTS

REYURN

PRINT 980@

END
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Subroutine ADDVEC (vector addition) is called in BAND. Also, ADDVEC and
Function DOTPRO (dot product) are used in BANS 1. These are in the LASL Sub-
routine Library. They are listed below:

SUBROUTINE ADDVEC(N, W, X, IX, Y, IY, Z,1Z)
DIMENSION X(1), Y(1), Z(1)

IF (N. LE.O0) RETURN
J=1
K=1
L=1
DO1 I=1,N
Z(L) = W*X(J) + Y(K)
J=J+IX
K=K+ 1Y
1 L=L+1Z
RETURN
END

FUNCTION DOTPRO(N, X, IX, Y, IY)
DIMENSION X(1), Y(1)

DOUBLE PRECISION D

IF (N.GT.0) GO TO 1

DOTPRO = 0.
RETURN

D
J
K

0.
1
1
po2 I=1,N
‘D= D+ X(J)*Y(K)
J=J+IX
2 K=K+IY
DOTPRO = D
RETURN
END
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