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ABSTRACT 

Soils play an essential role in ecosystem health as they are the medium for terrestrial and 

aquatic life. Soils can be drastically altered by wildfire as seen in the Jemez River watershed 

following the 2011 Las Conchas fire which burned over 31,800 acres. The aim of this research is 

twofold: 1) to characterize the effects of fire on the cation and anion composition in soil by burn 

severity following the 2011 Las Conchas wildfire and 2) to assess the leaching capacity of nitrate 

(NO3
-), phosphate (PO4

3-), sulfate (SO4
2-), aluminum (Al3+), calcium (Ca2+), iron (Fe2+), 

potassium (K+), and magnesium (Mg2+) from soils. The pH, % organic matter (OM), and anion 

and cation rom 32 soil samples collected at the Valles Caldera National Preserve from four burn 

categories: high, moderate, low and unburned in December 2016 and April 2017. The pH was 

highest in the moderate burn severity category and statistically different between the 

moderate/low burn severity categories. The % OM was higher in burned soils than unburned 

soils and statistically different between the moderate/unburned soils. Principal component 

analysis showed a clear separation between the chemical composition of soils collected in 

December and those collected in April; the analysis also showed that sites within the 

unburned/low severity categories were more homogenous than those from the high/moderate, 

high/low or moderate/low categories. Sulfate was the only anion that did not differ significantly 

by season. Three of eight ions, NO3
-, Ca2+ and Fe2+, were statistically different between burn 

severity categories. The leaching of these eight ions in 10 mmol Na2CO3 resulted in higher 

concentrations in solution over 0 and 30-minutes for every ion except Mg2+ (concentrations for 

Mg2+ were below detection for ICP-OES). All three anions either adsorbed back onto the soil 

surface or were removed from solution after 1 hour. The results suggest that post-fire recovery of 

soils may differ among burn severity category but the burned soils following the Las Conchas 

fire as indicated by the measurements used are at least as fertile as the unburned areas examined.  
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INTRODUCTION 

Soil Productivity 

Soils are formed from plants, microorganisms, animals, water, and weathering rock 

(Breemen and Buurman, 1998). The main mineral inputs are composed of rock from the 

underlying geological layers that break-up through a process known as weathering. The soil 

organic matter covers all the living and dead organisms contained within the soil that will 

decompose through mineralization (Breemen and Buurman, 1998). Collectively this formed soil 

results in the creation of well-defined soils that provide the physical and chemical characteristics 

that can support plant growth. Additionally, soils have a leading role in the biogeochemical 

cycling of water, nutrients, and other trace metals and elements (SSSA, 1998). The vital role of 

soils, as it pertains to ecosystems, makes its health a key environmental focus. Several soil 

components can be studied as indicators of soil quality/productivity. There is no single 

assessment that provides a comprehensive assessment of soil functions. Thus, soil scientists use a 

variety of chemical, physical, and biological indicators to provide a wide range of information 

about soil function. This research focused on four indicators: the texture, pH, percent organic 

matter (% OM), and the chemical composition by measuring eight anions and cations (NO3
-, 

PO4
3-

, SO4
2-, Al3+, Ca2+, Fe2+, K+ and Mg2+).  

Soil texture describes the mineral fraction of soil through the distribution of the relative 

content of sand, silt, and clay particles (Barbarick et al. 2000). The categories for soil particles 

are divided by size; clay being the smallest and sand the largest of these categories. The 

proportion of the different particles defines its texture, whose classification is based on one of 

four major categories: sand, silt, clay, and loam (Ashman and Puri, 2002). Soil texture is an 

important characteristic that affects a whole range of physical and chemical properties such as 

erosion, water holding capacity, permeability/leaching of nutrients, soil fertility, and the cation 

holding capacity (Breemen and Buurman, 1998).  

The soil pH is an indication of the acidity or alkalinity of soil. In addition to providing the 

best physical conditions for plant growth as mentioned previously, there is also an optimal 

chemical environment for productive soils to maintain. The optimal pH is not the same 

everywhere, but the pH range between 5-9 typically prevents the buildup of toxins, supplies 
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nutrients for the overlying vegetation, and is optimal for microorganisms (Breemen and 

Buurman, 1998: SSSA, 1998).  

Organic matter (OM) is derived primarily from the decomposition of plant tissue and is a 

dynamic aspect of soil in that soil is continually being broken down through the work of soil 

microorganisms (Winegardner, 1996; Brady, 1974). Organic matter acts as the primary reservoir 

for major nutrients and the chemically active cation exchange site (Brady, 1974). Soil OM 

supplies nutrients to plants and alters the physical nature of the soil by binding aggregating 

particles (Ashman and Puri, 2002).  

There are numerous components incorporated into the soil fraction, but components of 

interest are typically those that have a beneficial effect on plant growth. There are several ions 

supporting/aiding plant growth; six of which will be the focus of this research; nitrate (NO3
-), 

phosphate (PO4
3-), sulfate (SO4

2-), calcium (Ca2+), iron (Fe2+), potassium (K+) and magnesium 

(Mg2+). Aluminum (Al3+) is an element of interest due to it being toxic to plants and animals in 

relatively small amounts and the influence on soil fertility due to its ability to reduce soil pH 

(Ashman and Puri, 2002). Availability of these ions is an important measure of soil health. The 

promotion of a sustainable environment and healthy ecosystem is rooted in the productivity and 

health of soils. The capacity of a soil to function within its ecosystem can be hindered by 

wildfire, thus, for best management practices it is of great importance to investigate the recovery 

of soils long after such a disturbance.  

Wildfire impacts on soils  

Although wildfires are often naturally occurring, they can be detrimental to a landscape 

by impacting the biological, physical, and chemical properties of forest soils. Components, such 

as pH, % OM and NO3
-, PO4

3-
, SO4

2-, Al3+, Ca2+, Fe2+, K+, and Mg2+ concentrations, directly 

affect the productivity of soils. Studies show that pH in soils will increase during and after a 

wildfire due to ash deposits (Gray and Dighton, 2006; Schafer and Mack, 2010).  In every 

ecosystem there is an optimum pH that makes certain ions more available to plants, and changes 

in pH can inhibit the cycling of cations and anions (Brady and Weil, 2016). Wildfires can 

partially sterilize the soil surface, decreasing soil biota, and OM (Xue et al. 2014). Reducing soil 

OM inhibits the supply of major anions (NO3
-, PO4

3-
, and SO4

2-), and disrupts the capacity of 

soils to hold and exchange cations and buffer against changes in pH (Ulrey et al. 2017). Heating 
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will affect the chemical components in soil as fire liberates both organic and inorganic 

constituents. Results vary depending on the anion or cation in question, but most studies attest to 

decreased concentrations in the soil as components oxidize or volatize directly following a fire 

(DeBano, 2000; Gonzalez-Perez et al. 2004; Bento-Goncalves et al. 2012). However, with time 

soil ions can accumulate through the process of mineralization, where the chemical or element is 

released from plant matter after burning, and make their way into the soil profile (Smith et al. 

2011; Gray and Dighton, 2006).  Smith et al. (2011) noted increased concentrations of Ca2+, K+ 

and Mg2+ in their literature review of wildfire effects on water catchments, while Pereira and 

Ubdeda (2010) reported increases in Al3+ and Fe2+ in soils after a wildfire in Lithuania. The 

addition of ions into the soil is a complex process and may not always increase soil ions because 

of the different properties of ions, vegetation burned, wildfire properties and burn severities. 

Current research tends to distinguish wildfire impacts on soil solely between burned and 

unburned soils. One of the greatest factors affecting the results of these impacts is burn severity. 

In post fire assessment there is an effort to categorize the effects of wildfire on soils (Keely, 

2009). The soil burn severity differentiates post fire soil properties from fire effects on 

vegetation, focusing specifically on ground surface characteristics (Keely, 2009). The 

temperature, duration and fuel source differentiate burnt soils, separating them into one of four 

categories: high, moderate, low, and unburned. The different categories of burn will result in the 

loss, char, or scorching of trees, roots, and surface litter. The degree to which soils have been 

impacted could provide more insight into post-fire soil recovery.  

Wildfire impacts on surface waters 

The leaching of ions is important for two reasons; one, the mobility of ions is a major 

factor in the maintenance of ecosystems and two, wildfire impacts on the availability of ions 

within soil which can impact water quality following rainfall or snowmelt events (Burton et al. 

2016; Burke et al. 2013; Smith et al. 2011). Suspended sediment in post fire runoff is a transport 

mechanism for anions and cations and has the potential to impair water surfaces. In research by 

Townsend and Douglas (2000) and a review by Smith et al. (2011), elevated levels of anions and 

trace metals were reported in forest catchment streams post wildfire. In 2011, the Las Conchas 

wildfire, one of the largest wildfires in New Mexico’s history, burned through the Valles Caldera 

National Preserve (VCNP) drastically changing the soil conditions and surrounding surface 
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water quality (NPS, 2012). The introduction of large sediment loads had an immediate effect on 

the Jemez River and its tributaries, as well as the Rio Grande (Dahm et al. 2015). Real time data 

captured drastic changes in conductivity, pH, turbidity, and dissolved oxygen. During the Las 

Conchas fire, Sherson et al. (2015) assessed event responses in surface water nutrient 

concentrations in the East Fork of the Jemez River, noting sags in dissolved oxygen, increases in 

nitrate concentrations by an average of 50% and large multi-day increases of dissolved 

phosphate.  Further investigation was made to better understand the impacts of the runoff, 

specifically wood ash, on the water quality by Cerrato et al. (2016). Results from this study 

suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-

adsorption were important processes affecting water chemistry. In the recently published Total 

Maximum Daily Load (TMDL) report, the East Fork of the Jemez River was deemed impaired 

due to an excess of plant nutrients; the Jemez River was considered impaired due to high Al 

concentrations (NMED, 2016). It is important to think about the fate of these ions, not only to 

understand how much is incorporated in the soil for ecosystem health and management but also 

how much is introduced to surrounding surface waters via erosion, seasonal rains, and snowmelt.  

Wildfire and climate change 

Wildfires pose a threat to the forested watersheds in the arid southwestern United States. 

The Jemez Mountains in northern New Mexico is one region that has been strongly affected by 

recurring wildfire activity. About 5,200 fires have been mapped in the Jemez Mountains from 

1909-1996 (USGS, 2017). Westerling et al. (2003) showed increased wildfires in western forests 

since the mid-1980s, noting higher frequencies, longer durations and longer seasons. These 

wildfire trends were witnessed within the Jemez Mountains with the more recent fires, the Cerro 

Grande in 2000, Las Conchas in 2011, and Thompson Ridge in 2013. Wildfire activity is 

projected to worsen as climate change trends increase regional temperatures and change 

precipitation patterns (Graham et al. 2004). The prevalence of drought conditions across the 

southwestern United States will lead to earlier snowmelt, more rain and less snow, greater vapor 

pressure deficits in spring and autumn and, ultimately, more severe wildfires within mid-

elevation ranges such as the Jemez Mountains (Abatzoglou and Williams, 2016; Dahm et al. 

2015; Miller et al. 2012).  
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Current research on the impacts of the Las Conchas fire provides an opportunity to 

investigate the lasting effects of fire on soil chemistry. Little is known about the longer-term 

effects of wildfire on soil constituents, specifically by increased burn severity. Soils are an 

essential resource for all organisms, a unique and irreplaceable resource. The direct connection 

of terrestrial impacts to stream water quality runoff prioritizes this investigation in the arid 

southwest. The objectives of this paper are to (1) characterize the effects of fire on the cation and 

anion composition in soil by burn severity following the 2011 Las Conchas wildfire; and 2) 

assess the leaching capacity of NO3
-, PO4

3-
, SO4

2-, Al3+, Ca2+, Fe2+, K+ and Mg2+ from soils.  

METHODS 

Site Description 

Research was conducted within the Jemez River watershed in north central New Mexico. 

The basin expands Sandoval, Rio Arriba and Los Alamos counties. The study site was located on 

the west flank of the Jemez Mountains within the Valles Caldera National Preserve (Figure 1). 

Soil samples were collected from the Sierra de los Valles dome which was formed after a series 

of volcanoes erupted approximately 1.25 million years ago (Goff, 2009). The dome gains over 

600 meters in elevation northeast of the East Fork of the Jemez River. The sampling site was 

approximately 200 square meters (Figure 2). The lowest sampling point sits roughly at 2,620 

meters in the grassland valley near the banks of the East Fork of the Jemez River. The highest 

sample site was midway up the Sierra de los Valles dome at an elevation of 2,830 meters.  

 The geology of Jemez Mountains is comprised mostly of Tertiary-aged volcanic rocks: 

basalt, andesite, dacite, and rhyolite (Goff, 2009). The Sierra de los Valles dome geology was 

characterized as dacite, with major elemental compositions consisting of SiO2, TiO2, Al2O3, FeO, 

MnO, MgO, CaO, Na2O and K2O (Shackley, 2012; Goff, 2009). The United States Department 

of Interior –Natural Resource Conservation Service categorized the soils at the head of the East 

Fork of the Jemez River into two groups based on the geomorphic features: the moderate to steep 

rim rock slopes and those of domes, and the alluvial/colluvial fans along the valleys (Figure 3) 

(Muldavin and Tonne, 2003). The forest soils are primarily Andisols, Alfisols and Inceptisols 

derived from volcanic rock and gravel while the grassland soils are mostly Mollisols derived 

from the weathered volcanic alluvium (Muldavin and Tonne, 2003). The Jemez Mountains are 

considered part of the Southern Rocky Mountains Ecoregion; classification used by the U.S. 
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Forest Service indicates open woodland coniferous forest and alpine meadows (Muldavin and 

Tonne, 2003).  

 

Las Conchas Fire  

 

The Las Conchas fire began in June 2011 in the Jemez Mountains just west of the VCNP. 

The weather and fuel conditions permitted for an aggressive fire that spread quickly, burning 

approximately 156,593 total acres within five weeks (NPS, 2012). Within the VCNP, 19% of the 

total acres were burned, where the high burn severities were seen on the eastern portion of the 

preserve at higher elevation zones, including the Sierra de los Valles dome (NPS, 2012). The 

array of burn was similar for each dome on the western portion of the park, with the highest 

elevations receiving the highest burn severities that decreased down the flanks (Figure 4). 

Sampling Methods 

 A total of 32 soil samples were collected from the Sierra de los Valles dome within the 

VCNP. Four samples were collected and bagged from the high, moderate, low and unburned 

severity category sites in December 2016 and April 2017 respectively. The soil burn severity 

differentiate post fire soil properties from fire effects on vegetation, focusing specifically on 

ground surface characteristics and the Burn Area Emergency Response (BAER) team constructs 

post fire maps from these impacts (Safford, 2006).  The Las Conchas BAER map was used to 

determine the GPS coordinate boundaries for the stratified sampling done within the four burn 

severity categories. Stratified random sampling involves the arbitrary collection of samples 

within defined, divided areas (e.g., four burn severity categories) (US EPA, 1997). Following the 

methods in the US EPA Science and Ecosystem Support Division operating manual, vegetation 

was removed prior to soil collection using an Ames Ergo hand trowel (USDOE, 2014). The top 

six centimeters of soil were bagged and stored in individual one-quart Ziploc bags. The soil type 

was characterized at each collection site by hand using the guide to soil texture by feel modified 

by the USDA’s Natural Resources Conservation Service (USDA, 1979). The soil samples were 

refrigerated at 4°C at the University of New Mexico until laboratory analysis was conducted. 

Laboratory Analysis 

Soil samples were air dried for 72 hours and ground using a mortar and pestle. Each 

sample was sieved using a 2-mm sieve. The soil pH was measured on a 1:1 soil-water ratio by 



  4 
 

11 
 

mixing 5g of soil and 5 mL of 18 MΩ water in a digitube. The Oakton 300 series hand held pH 

probe was held just above the settled soil layer to measure the pH directly after mixing. Percent 

organic matter was determined by calculating loss on ignition. Approximately 6 g of soil was 

placed in pre-weighed aluminum boats, and dried in a Boekel Scientific desiccator for 72 hours 

to remove water. The weight was recorded. The sample was then ashed at 550˚ C in a muffle 

furnace for four hours, left to cool overnight, and weighed again. This was done for all 32 soil 

samples collected. The percent of OM was calculated using the following equation: 

 

              LOI = pre-ignition weight (g) – post-ignition weight (g)     * 100 

                 Pre-ignition weight (g)  

 

For anion analysis, 4-5 g of each soil sample was weighed, partitioned into digestion 

tubes (Digitube®) in triplicates, and 25 mL of 18 MΩ water was added. The samples were 

placed in a tumbler for one hour and centrifuged for 10 minutes at 6,000 RPM prior to filtration 

through a 0.45 µm filter. The filtered samples were partitioned into 10 mL vials for analysis with 

a Dionex 1100 ion chromatography (IC) instrument determining the concentrations of F-, Cl-, 

NO2
2-, NO3

-, Br-, PO4
3-, and SO4

2-
. The detection limits ranged from 0.050 mg/kg forSO4

2- and 

approximately 0.010 mg/kg for NO3
-, and PO4

3-.  

For cation analysis, 2 g soil samples were digested in triplicates using HNO3, HCl and 

H2O2.  Five mL of HNO3 was added to the samples and heated for 30 minutes at 35º C using a 

block digestion (DigiPrep®). One mL of 30% H2O2 was added and again heated for 30 minutes 

at 35º C. One mL aliquots of 30% H2O2 were added until no reaction would take place. Five mL 

of HCl were added and the sample and was heated for two hours. The samples were left to cool 

and evaporated down to 5 mL. The digested sample solution was brought to 25mL using 2% 

HNO3. Cation concentrations (Al3+, B3+, Ba2+, Ca2+, Co2+, Cr3+, Cu2+, Fe2+, K+, Mg2+, Mn2+, Na+, 

Pb+4, Sr2+, V+5, and Zn2+) were determined using a Perkin Elmer Optima 5300 DV inductively 

coupled plasma optical emission spectrometry (ICP-OES) instrument. The limits of detection 

ranged from 0.008 mg/kg to 0.5 mg/kg depending on the individual elements. 

The leaching of cations and anions from the high, moderate, low, and unburned soil 

samples were determined via batch analysis. Approximately 5 g of soil (n = 2) from each burn 

severity category were placed in digitubes and 50 mL of 10 mmol Na2CO3 solution was added. 
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The mixture was tumbled continuously over a 24-hour period. Six mL aliquots were collected at 

times 0, 0.5, 1, 4, and 24 hours for anion and cation analysis using the IC and ICP-OES 

instruments described above. The pH was measured and recorded at each time step. 

 

Data Analysis 

Principal component analysis (PCA) was used to explore the soil compositional patterns 

for ions among the four burn severity categories with PC-ORD software 6.0. This multivariate 

method investigated all 21 ions simultaneously. Further investigations were made using 

univariate statistics for pH, % OM, and eight ions; NO3
-
, PO4

3-, SO4
2-, Al3+, Ca2+, Fe2+, K+ and 

Mg2+. These ions were chosen due to their naturally high abundance in the underlying geology 

formation of dacite rock, and their importance as soil productivity measures. Two-way analysis 

of variance (ANOVA) compared the mean differences in multiple variables (pH, % OM and ion 

concentrations) between sample collection seasons December and April, and among the burn 

severity categories (high, moderate, low and unburned) using SPSS 2015 software. The two-way 

ANOVA was used to determine if the differences between seasons or among burn severity 

category were statistically significant for pH, % OM and ion concentrations. The null hypothesis 

for each two-way ANOVA were: (1) The means (pH, % OM and ion concentrations) for each 

season are equal, (2) the means (pH, % OM and ion concentrations) among burn severity 

category were equal, and (3) there is no interaction between season and burn severity. The 

significance level was denoted as α < 0.05, concluding any p-value less than α as significant and 

the related hypothesis false. In conjunction with the two-way ANOVA, a multiple comparison 

procedure was used. The Tukey Kramer post-hoc test determined the statistical differences 

among burn severity categories for each variable tested (pH, % OM and ion concentrations). The 

factor season was not analyzed with the Tukey Kramer post hoc test because the test requires 

more than two treatments to test for significant differences.  

RESULTS   

Physical soil properties 

The texture class for the samples collected at the high, moderate, and low burn severity 

sites was loam, with soil texture identified as loam for six of the eight unburned samples and 

sandy loam for the remaining two (Table 1). The soil pH values across the four burn severity 
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categories did not differ significantly by season (2-way ANOVA, p = 0.962), but did vary 

significantly by burn severity category (Table 1 and Table 2). Soil pH was statistically different 

between the moderate and low burn sites (p = 0.016), but not among other burn severities (Table 

3). Percent OM did not differ significantly by season (2-way ANOVA, p = 0.782) but did differ 

significantly by burn severity category. The % OM was statistically different between the 

high/unburned severity categories (Tukey Kramer, p = 0.004) (Table 3). Nearly all the burned 

soil samples had higher % OM than the unburned samples (Figure 5).     

 

Anions and Cations 

The ions NO3
-
, PO4

3-, SO4
2-, Al3+, Ca2+, Fe2+, K+ and Mg2+ were the focus of univariate 

statistical analysis due to their high concentrations in dacite and important role in soil 

productivity. There was a significant difference between sampling seasons (December and April) 

for two of three anions examined, NO3
- and PO4

3-, and all five cations Al3+, Ca2+, Fe2+, K+, and 

Mg2+ (Table 2). On the other hand, SO4
2- was not statistically different between seasons (2-way 

ANOVA, p = 0.237). The trends for the samples collected in December had higher 

concentrations of SO4
2-, Al+3, Fe+2, and K+ compared to the April samples which had higher 

concentrations of NO3
-, PO4

3-, Ca2+ and Mg2+ (Figure 6 and 7). The only ions that showed 

statistical differences among burn severity categories were NO3
-, Ca2+, and Fe2+ (Table 3). The 

significant differences for NO3
- concentrations were between high/unburned (p = 0.003) and 

moderate/unburned (p = 0.045) severity categories. The differences for Ca2+ concentration was 

between the high/unburned (p = 0.019) severity categories. Lastly, the statistical difference for 

Fe2+ concentrations was between the high/moderate (p = 0.018) and moderate/unburned (p = 

0.008). 

 

 Soil Characterization 

Principal component analysis was used to analyze all 21 ions analyzed for December and 

April. The first principal component (PC1) explained 51% of the variance and the second 

principal component (PC2) explained 15% of the variance in overall ion composition among 

sites. There is a clear delineation of sites by season with samples clustered in the left and right 

portion of the graph differentiating those samples collected in December and April, respectively 

(Figure 8). PC1 has higher loadings of Al3+, Co2+, Cr3+, Cu2+, Fe2+, and K+ with values > ±2, 
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indicating higher concentrations of these ions for these sites in the December samples. PC1 had 

higher loadings of Ca2+ and Mg2+ with values > ±2, indicating higher concentrations for the sites 

on the right half of the plot, for the samples collected in April. PC2 has higher loadings of Sr2+, 

Cl-, NO2
2-, NO3

-, PO4
3-, and SO4

2- indicating higher concentrations of these ions for soils in 

different burn severity categories. Again, PC2 explains only 15% of variance and the graph 

shows less differentiation in soils along the y-axis. This PCA graph also demonstrates higher 

sample homogeneity between the low/unburned severity categories, and more sample variation 

between soil chemical composition from the high and moderate burn severity categories.   

 

Batch Experiment 

There was a decrease in pH of at least one unit over the 24-hour duration in the batch 

experiment for all soils within all four burn severity categories. Soil from the moderate burn had 

the greatest decrease in pH from 10.28 at time 0 to 8.58 at 24 hours (Figure 9). The unburned soil 

had the least change in pH, with a decrease from 10.28 at time 0 to 9.25 at 24 hours (Figure 9). 

 The leaching of all anion and cation concentrations was greatest at 0 and 30 minutes in all 

treatments. However, the concentrations of anions and cations released to solution decreased at 

later time points. For example, PO4
3- and SO4

2- had detectable concentrations at the 0 and 30 

minutes only, but had concentrations from the 2, 4, and 24-hour collections that were below the 

IC detection limit. Only NO3
- has concentrations that were high enough to be detected in solution 

throughout the 24-hour duration of the experiment (Figure 10). Potassium had the highest 

leached concentration values between 0-15 mg/kg while Mg2+ did not have detectable 

concentrations throughout the experiment (Figure 11). Iron and Ca2+ were the only two ions 

having higher concentrations for all burn severity categories at 30 minutes, compared to the 

initial sampling (Figure 11). 

 

DISCUSSION 

Physical soil properties 

  The soil texture class was loam at the high, moderate, and low burn severity sites. 

Six of the unburned soil samples had the same classification, loam, but two samples were 

designated as sandy loam. Loam consists of roughly equal proportions of sand, silt, and clay 

while sandy loam consists of less than 7% clay, 50% silt, and 43-50% sand (Barbarick et al. 
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2000). Research suggests that wildfires change soil structure as heat aggregates clay particles 

into sand-sized particles, making the soil structure coarser (DeBano, 1990). However, the results 

of this investigation that the Las Conchas fire is not the only factor affecting these properties. 

The difference in texture may be associated with location, rather than burn severity, as the 

unburned sites were collected in the grasslands at the base of the Sierra de los Valles dome. The 

sample location places unburned soils nearer the East Fork of the Jemez River, where the higher 

water table could introduce soil moisture as a factor of influence. The texture classification was 

identified on site and was thus lacking the more precise results that laboratory analysis could 

provide. Deviations from the percentages of clay, silt and sand mentioned above, may not be 

obvious with the field method used; therefore, it is difficult to say with any certainty how and if 

the Las Conchas fire impacted the soil texture.  

Studies show that pH is affected by seasonal fluctuations with lower soil pH occurring in 

winter (Murdock and Call, 2006; Salim et al. 2015). The soil moisture, temperature, and 

microbial activity can cause soil pH to vary.  The pH for soil samples collected in December and 

April did not differ significantly by season, but trends were seen. When averaging the pH across 

all four burn severity categories, December samples had a lower mean pH (5.74) when compared 

to the soils collected in April (mean pH of 5.81). Research suggests salt concentrations increase 

as soils dry and soluble cations replace negatively charged anions or hydronium ions on the 

surface resulting in a higher pH, a process likely to have occurred in the more alkaline soils 

collected in the month of April (USDA, 2001).  

Differences among burn severity categories indicated that wildfire did affect soil pH. The 

pH measured in soils from the high and moderate burn severity categories was higher than the 

pH in soil from the unburned category. Studies show that pH in soils will increase during and 

after a wildfire due to alkaline ash deposits (Gray and Dighton, 2006; Smith et al. 2011). The 

buffering capacity of soils within the pH range of 4-7 is small; therefore, increases in sorption of 

cations causes increases in soil pH. The pH of these samples was within this range (5.54-5.94); 

seemingly the addition of cations from burned vegetation did increase the soil pH (Sollins et al. 

1988). The conditions found in the low burn severity are such that minimal changes occur 

through the soil profile. The mean pH as recorded in the low burn severity category was lower 

than the pH from the unburned category; the results of which are not clearly explained, but have 

been found in prior research. In a study conducted by Xue et al. (2014), burned soil pH increased 
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one year after the wildfire and decreased progressively four and seven years later to 

concentrations lower than the unburned soils. The soil pH from the high and moderate burn 

severity categories did not return to pre-burn conditions illustrating that wildfire impacts on pH 

is not a straightforward process.   

 Changes in soil organic matter typically occur slowly under natural conditions, as 

changes through soil microbiological processes or by external physical or chemical factors 

(Gonzalez-Perez et al. 2004; De la Rosa et al. 2012). In this investigation the soil % OM was not 

statistically different between seasons; however, fires can quickly alter OM (De la Rosa et al. 

2012). The consumption of OM begins at relatively low temperatures (200-250ºC) that occur 

within the low burn severity category (Certini et al., 2011; Keely, 2009). The immediate 

decreases in OM are transient and OM will often re-accumulate over years due to primary 

succession (Ulery et al. 2016). Within the Sierra de los Valles dome, the burned soils had higher 

% OM when compared to the unburned soils. The highest concentrations occurred in the 

moderate burn severity category which differed significantly from the unburned severity 

category. As indicated by Certini et al. (2011), fire-induced gain or loss in OM results from the 

dominance of one of two processes: removal of the liter layer and organics from the topsoil or 

input of charred materials from the scorched vegetation. All the burned soils seemed to benefit 

from the input of charred materials as these soils had higher % OM. 

  

Anions and Cations 

 Various factors, such as fluctuating temperatures, freezing, precipitation, and snowmelt 

can affect the concentrations of anions and cations in soil (Roberts, 1978; Diaz-Ravina et al. 

1993). These factors may have contributed to the statistical differences in ion concentrations in 

soils collected in December and April. In December inches of snow had accumulated above 

ground and the soil was frozen. In April soil conditions were drastically different: the snow had 

melted, and enough time had passed to leave the top soil dry. Seven of eight ion concentrations 

differed between these months. The anions NO3
- and PO4

3- and cations Ca2+ and Mg2+ had lower 

concentrations in the December samples, while Al3+, Fe2+, and K+ had higher concentrations in 

the December samples. In saturated soils concentrations of NO3
- can leach further down into the 

profile causing a decline in levels at the surface, which was seen in the lower concentrations for 

December. In warmer seasons release from OM can occur, contributing to the higher 
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concentrations seen in the soils collected in April. Salim et al. (2015) found higher PO4
3- 

concentrations in winter followed by spring >autumn> summer under natural forest conditions in 

slightly acidic soils in India. The concentrations of PO4
3- in the April samples were nearly double 

those collected in December. The fluctuations of Al3+ and Fe2+ are not explored as in depth as the 

other cations (Ca2+, Mg2+, and K+), but one study by Cuesta et al. (1993) found higher 

concentrations of these cations later into the year (October) than in spring/summer months. Soil 

K+ is often released from the clay minerals in soil under saturated conditions, validating its 

higher concentrations in December. Research by Diaz-Ravina et al. (1993) investigated seasonal 

changes in Ca2+ and Mg2+ showing higher concentrations of these cations in 

autumn>spring>>winter ≥ summer.  Sulfate was the only ion that was not statistically different 

between seasons. Sulfate pools have been shown to vary over time with changes in soil moisture 

and temperature like the other ions studied; however, as this research indicates the timing and 

environmental seasonal differences did not affect the concentrations of SO4
2- (Ghani et al. 2012).  

Wildfire can be an important factor on the cycling of anions and cations through an 

ecosystem, liberating elements previously withheld by vegetation. The results of this research 

show that after wildfire some ions can accumulate in soils over time. Cerrato et al. (2016) found 

very high concentrations of Al3+, Ca2+, Fe2+ and Mg2+ in the ash from pine, aspen and spruce, the 

dominant trees of the VCNP. Raison (1979) found deposition of overlying burned vegetation 

resulted in increased concentrations of Ca2+, Fe2+ and Mg2+ in the residual soil material. In this 

study, Ca2+was the only cation to have higher concentrations for the all the burned soils 

compared to unburned soils. Of the four burn categories, the Ca2+ concentrations were greatest in 

the high severity burn, potentially due to its high volatilization temperatures (1240-1484ºC) 

(Gray and Dighton, 2006). A similar situation occurred for Mg2+ which also has a high 

volatilization temperature (1107 ºC), but the differences among burn severity category for Mg2+ 

were not statistically different. The production of ash post wildfire does not always manifest to 

an increase of nutrients in soil as seen for Fe2+, Al3+ and K+. In December samples Fe2+ 

concentrations were highest in the unburned severity category. The significant difference 

between the moderate and unburned sites are supportive of the findings by MacLean et al. (1983) 

who found Fe2+ concentrations lower in burned soils years after a wildfire. A similar trend can be 

seen in the distribution of cation concentrations in the moderate burn severity category where 

Al3+, Fe2+, K+, and Mg2+ had the lowest concentration levels out of any burn severity category in 
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the December soils, and Fe2+ had the lowest concentrations in the April soils. The soil samples 

from the moderate burn severity category had the highest %OM, as well as a pH and texture like 

the soil from the other burn severity categories, suggesting equal or greater ability for cation 

adsorption capacity. Yet, the soils collected within the low and unburned severity categories had 

higher Al3+, Fe2+, K+, and Mg2+ concentrations than the moderate burn in December and/or April. 

The low burn severity undergoes the least amount of change in that, the surface organic layers 

are not completely consumed, nor is the structural aggregate stability of the soil changed. The 

concentrations of cations in these soils were most like the unburned soils, as indicated by PCA. 

Aluminum in the December soil samples was the only cation with the highest concentrations in 

the low burn severity category. The concentrations of K+ were highest in the unburned soils in 

both months. Wildfires have been documented to immediately decrease K+ by 43-66%, which is 

higher than the reported losses of all the other components except nitrogen and nitrogen 

containing compounds (Raison, 1979). Neither of these cations however had statistical 

differences among burn severities, thus the factors inducing the change may not be fire induced. 

The temperatures reached among the four burn severities have different effects on NO3
-, 

PO4
3-, and SO4

2- because volatilization happens at relatively low temperatures (Schafer and 

Mack, 2010; Gray and Dighton, 2006; Sherson et al. 2015). Nitrate concentrations were higher in 

burned soils than unburned soils for all the burn severity categories in both months. Research 

indicates that soil NO3
- concentrations increase immediately after a fire (Lehmann and Schroth, 

2002; MacLean et al. 1983; Murphy et al. 2006; Schafer and Mack, 2010). Nitrate is readily 

adsorbed by plants and soil colloids but can also be easily leached (Yang and Hai-qing, 2007; 

Recheigl, 1995) which may be the reason this constituent had the overall lowest concentrations 

of all the anions in this experiment. In this study, the burned soils in December had nearly ten 

times the PO4
3- concentrations as the unburned soils. While testing for Phosphorous-availability 

post-wildfire, Rodriguez et al. (2009) noted increases in PO4
3- in burned plots versus unburned 

plots. Sulfate is the only anion to have higher concentrations in unburned samples (Recheigl, 

1995). Little research has reported the effects of fire on SO4
2-, but due to its chemical similarities 

to PO4
3-, its interaction with soil OM and the cations within the clay fraction its presentation 

could vary depending on the degradation/combustion of soil OM and desorption from soil 

particles over time (Murphy et al. 2006).  
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Batch Experiment 

 The decrease in pH recorded over the 24-hour duration of the batch experiment alludes 

to the slightly acidic nature of these soils. All the burned soils caused a greater decrease in soil 

pH than the unburned soils over 24 hours. The burned soils decreased by nearly 1 pH unit from 

times 0 to 30 minutes and nearly 2 pH units over 24-hours. The changes in pH can be understood 

by the leaching of cations and anions and their exchange with Al3+, Fe2+, and H+ ions on the soil 

surface. An early release of cations and anions is likely due to water soluble phases, or 

desorption due to reactions with Na2CO3. 

The clay minerals and organic matter have a negative net charge that attracts the 

positively charged cations. The cations Ca2+, K+ and Mg2+ are known as basic cations and are 

more easily displaced into solution, with decreasing affinities: Ca2+ > Mg2+ >> K+ (Sollins et al. 

1988; Breemen and Buurman, 1998). Potassium leached between 2-15 mg/L at each time-step 

over the 24 hours, the most leaching of any cation. Potassium has the lowest affinity for the 

exchange site, meaning it is not held as tightly to the negative interface as the other cations and 

has been found to leach at significant quantities in organic soils (Lehmann and Schroth, 2002). 

The consistent leaching of Ca2+ over time (2-5 mg/L at 0, 30, 1, 4 and 24 hours) could be due to 

its high concentration levels within soil. Iron has a higher solubility in less alkaline conditions, at 

a pH nearer 9, accounting for its higher leached concentrations at 30 minutes. Iron and Al3+ can 

act like Lewis acids, creating hydrogen ions through their interactions with water. Both cations 

are held more tightly by the soil particles. Aluminum can also form oxide complexes making it 

more difficult to be displaced by the other basic cations; in this experiment the leaching of Al3+ 

over time was relatively small, between 0.5-5 mg/L. The burn severities displayed different 

leaching concentrations. The low burn and unburned soils had higher leached concentrations for 

Ca2+, K+ and Fe2+ after 30 minutes, which may be correlated to the lower percentages of OM 

found in these samples. Again, OM has negatively charged sites that are able to adsorb cations, 

and a lower % OM may correlate to decreased cation exchange.   

Unlike the cations the anions near the outer surfaces are not easily adsorbed onto soil 

particles (Dale and Cole, 1980). Application of the Na2CO3 solution will quickly transfer the 

anions into solution from the soil, because of their weaker association with the soil surface. 

When adsorption occurs, the affinity for anions at the exchange site is: PO4
3-, > SO4

2- > NO3
- 

(Breemen and Buurman, 1998). Phosphate is immobile in most soils, due to its high adsorptive 
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capacities which is most likely why the leached concentrations were < 1 mg/L overall (Lehmann 

and Schroth, 2002).  On the other hand, SO4
2- and NO3

- are readily leached by surface soils. 

Leached concentrations of SO4
2- were well below that of NO3

-. Nitrate had the highest leached 

concentrations over time, 6-27 mg/L over four hours, because of its weak interaction with the 

negatively charged matrix of soils. The three anions leached in a similar fashion for each burn 

severity, where the highest concentrations were collected at the 0 hour. The concentrations of 

leached anions correlated closely with their concentrations in soil among burn severity category; 

most anions had higher leached concentrations from the moderate burn. The decline in anion 

concentrations in solution over time is a likely indication of their formation of aqueous 

complexes with cations and their adsorption back onto the soil interface (Alam et al. 2017; 

Sollins et al. 1988).  

CONCLUSION 

In this investigation the top six cm of soils had significant changes in pH, %OM and 

anion and cation concentrations among burned soils. Due to soils heterogeneity, time and other 

geospatial/environmental factors the differences noted cannot be attributed burn severities only. 

Working within the restraints of the experiment however, the long-term impacts of wildfire on 

soils suggest a positive outcome for soil productivity. The heating of soils overall increased the 

%OM, NO3
- and PO4

3- in soil from all burn severity categories, as well as the pH in the high and 

moderate burn severity categories. The results for Ca2+ and Fe2+ had significant difference 

between burned and unburned soils, but Al3+, K+ and Mg2+ did not. The pH of burned soil does 

not indicate a presence of free acids (pH <4) or a presence of CaCO3 (pH >7.8-8.2). The pH 

range is slightly acidic, promoting maximum uptake of vital ions sustaining plant growth and 

providing a suitable environment for bacteria, and the formation of OM. The mobility of these 

ions affects the rate at which plant roots can extract them from soil, the higher concentrations of 

K+ and NO3
- indicate that these cations and anions were more soluble (under the laboratory 

conditions laid out). The movement of ions through the soil is important, but so is ion loss due to 

runoff. The East Fork of the Jemez River is impaired because of high plant nutrients and Al3+ 

(NMED, 2016). During the leaching experiment all the ions entered solution, and leaching losses 

where higher for burned soils than unburned. This could be an indication that burned soils have 

greater leaching effects and could contribute to the ongoing impairment of the East Fork of the 

Jemez River. Along with their addition to surface water, certain elements can decrease pH. A 
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large enough change could prove hazardous to aquatic and terrestrial organisms reliant on 

specific pH ranges. 

 The results suggest that burned soils, even within areas of high burn severity, may return 

or surpass pre-fire soil conditions given adequate time. It is important to keep in mind that 

effects of fire on soil properties are complex and can present differently within the same 

watershed depending on the characteristics of the fire and overlying vegetation. Despite the 

statistically different outcomes found for the soil parameters discussed above, burn severity can 

be correlated to other ecosystem responses in a negative manner. Various authors show ties 

between burn severity and alien plant invasion (Turner et al. 1999), decreased regrowth of herbs 

and shrubs (Flinn and Weinn, 1977; Keely, 2006), and species richness and patterns of seedling 

recruitment (Whelan, 1995; Bond and van Wilgen, 1996; Ryan 2002; Johnstone and Chapin, 

2006; Keely, 2009). In a time where climate change threatens increased wildfire activity, the 

changes to soil parameters following wildfire become increasingly important to understand. The 

implications of investigating wildfire impacts by burn severity and season may become 

important in research of this kind as it influences results; and could impact watershed 

management.   
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Figure 1: Site map for the study site on the west flank of the Jemez Mountains within the Valles 

Caldera National Preserve at the Sierra de los Valles dome outlined by the blue box.
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Figure 2: Site mapshowing locations of the 32 soil samples collected on the hill slope of the 

Sierra de los Valles dome. Eight samples were collected from each burn severity category; the 

colors of each burn severity are coded and labeled in the map legend.  
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Figure 3: Site map showing the locations for the 32 soil samples by burn severity category over 

the geology for the Sierra de los Valles dome. The geomorphic features are alluvium and felsic 

volcanic rock, which were further characterized as being comprised of dacite (Shacklely et al. 

2016; Goff, 2009). 
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Figure 4: Site map showing the BAER burn severity map. The Las Conchas fire occurred on the 

east side of the Valles Caldera National Preserve boundary.  
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Table 1: The soil texture class, mean % OM ± standard deviation, and mean pH for soil from all 

four burn severity categories. The highest values for % OM and pH are in bold. 

  

Burn Severity Texture Class % OM pH 

High 8 Loam 12.7 ± 0.42 5.93 

Moderate 8 Loam 15.0 ± 2.35 5.94 

Low 8 Loam 12.3 ± 1.07 5.54 

Unburned 6 Loam/ 2 Sandy 

Loam 

9.73 ± 0.11 

5.70 
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Figure 5: Site map showing the % OM per soil sample on the Sierra de los Valles dome.  
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Table 2: Results of the two-way ANOVA for all the measurable soil characteristics; pH, % OM, 

anions and cations; p< 0.05 level.  

 

                          Two-Way ANOVA 

Variable  Seasonal p-value   Burn severity category p-value  

pH 0.962        0.021 

% OM 0.782        0.008 

Anions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO3
- 0.015 0.022  

PO4
3- 0.001 0.721  

SO4
2- 0.237 0.073  

    

Cations    

Al3+ <0.0001 0.069  

Ca2+ <0.0001 0.022  

Fe2+ <0.0001 0.004  

K+ <0.0001 0.099  

Mg2+ <0.0001 0.337  
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Table 3: The statistic test results for pH, % OM, NO3
-, Ca+, and Fe2+ . These three anions were 

the only ions to differ significantly among burn severity category. The level of significance is p< 

0.05 and denoted in the table with an asterisk (*).    
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Figure 6: Mean ion concentrations (mg/kg) ± standard deviation for the soil samples collected in 

December and April for NO3
-, PO4

3-, and SO4
2- in each burn severity category. The bars outlined 

in black represent the soil samples collected in April.  
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Figure 7: Mean ion concentrations (mg/kg) ± standard deviation for the soil samples collected in 

December and April for cations Al3+, Ca2+, Fe2+, K+, and Mg2+ in each burn severity category. 

The bars outlined in black represent the soil samples collected in April. 
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Figure 8: Principal component analysis illustrating the loadings > ±2 along the x and y-axis for 

PC1 and PC2. All 21 ions were analyzed from the 32 soil samples collected. The legend to the 

right organizes the burn severity categories by color and the collection seasons by number and 

shape (1-circles) December and (2-squares) April.  
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Figure 9: The pH taken over 0, 0.5, 1, 4 and 24 hours during the batch experiment, for each of 

the 5:50 mL soil: 10mM NaCO3 solution from the four different burn severities. 
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Figure 10: The leached concentration meant ± standard deviation of NO3
-
, PO4

3-, and SO4
2- 

(mg/L) over 0, 0.5, 1, 4 and 24 hours, time steps 0,1,2,3 and 4 respectively for the high, 

moderate, low and unburned severity categories in the batch experiment 
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Figure 11: The leached concentration means ± standard deviation of Al3+, Ca2+, Fe2+, and K+ 

(mg/L) over 0, 0.5, 1, 4 and 24 hours respectively for the high, moderate, low and unburned 

severity categories in the batch experiment 
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