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Abstract

Adjoint based a posteriori error analysis is a technique to produce exact error rep-

resentations for quantities of interests that are functions of the solution of systems

of partial differential equations (PDE). The tools used in the analysis consist of du-

ality arguments and compatible residuals. In this thesis we apply a posteriori error

analysis to the magnetohydrodynamics (MHD) equations. MHD provides a contin-

uum level description of conducting fluids in the presence of electromagnetic fields.

The MHD system is therefore a multi-physics system, capturing both fluid and elec-

tromagnetic effects. Mathematically, The equations of MHD are highly nonlinear

and fully coupled, adding to the complexity of the a posteriori analysis. Addition-

ally, there is a stabilization necessary to ensure the so called solenoidal constraint

(div B = 0) is satisfied in a weak sense. We present the new linearized adjoint

system, demonstrate its effectiveness on several numerical examples, and prove its

well-posedness.
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Chapter 1

Introduction

The resistive magnetohydrodynamics (MHD) equations provide a continuum model

for conducting fluids subject to magnetic fields and are often used to model im-

portant applications e.g. higher-density, highly collisional plasmas. In this context,

MHD calculations aid physicists in understanding both thermonuclear fusion and

astrophysical plasmas as well as understanding the behavior of liquid metals [38,

59]. From a phenomenological perspective, the governing equations of MHD couple

Navier-Stokes equations for fluid dynamics with a reduced set of Maxwell’s equa-

tions for low frequency electromagnetic phenomenon. Structurally, the equations of

MHD form a highly coupled, nonlinear, non self-adjoint system of partial differen-

tial equations (PDEs). Analytical solutions to the MHD system cannot be obtained

for practical configurations; instead numerical solutions are sought. Finite element

formulations of incompressible resistive MHD include stabilization methods based

on variational multiscale (VMS) approaches [45, 46, 58], exact and weighted penalty

methods [39, 35, 54, 51], first order system least squares (FOSLS) [1, 3, 2, 41] and

structure preserving methods [53, 34, 42, 11, 52]. In this thesis we restrict ourselves

to the stationary MHD equations based on the exact penalty finite element formu-

lation, originally developed in [39] from a finite element method discretization. We

1



Chapter 1. Introduction

do not employ specialized solver strategies e.g. block preconditioning as the problem

size we consider does not merit it.

The numerical solution of complex equations like the MHD equations often have

a significant discretization error for solution with significant fine scale spatial struc-

tures. This error must be quantified for the reliable use of MHD equations in numer-

ous science and engineering fields. Accurate error estimation is a key component of

predictive computational science and uncertainty quantification [31, 29, 18]. More-

over, the error depends on a complex interaction between many contributions. Thus,

the availability of an accurate error estimate and the different sources of error also

offers the potential of optimizing the choice of discretization parameters in order to

achieve desired accuracy in an efficient fashion. In this work we leverage adjoint

based a posteriori error estimates for a quantity of interest (QoI) related to to the

solution of the MHD equations. These estimates provide a concrete error analysis of

different contributions of error, as well as inform solver and discretization strategies.

In many scientific and engineering applications, the goal of running a simulation

is to compute a set of specific QoIs of the solution, for example the drag over a plane

wing in a compressible CFD context. Adjoint based analysis [36, 10, 32, 24, 5, 8]

for estimating the error in a numerically computed QoI has found success for a wide

variety of numerical methods and discretizations ranging from finite element [15,

31, 33], finite difference [20], finite volume [17, 9], time integration [32, 19, 20, 16],

operator splitting techniques [31, 33] and uncertainty quantification [28, 30, 18].

Adjoint based a posteriori error analysis uses variational analysis and duality to

relate errors to computable residuals. In particular, one solves an adjoint problem

whose solution provides the residual weighting to produce the error in the QoI. The

technique also naturally allows to identify and isolate different components of error

arising from different aspects of discretization and solution methods, by analyzing

different components of the weighted residual separately.

2



Chapter 1. Introduction

This thesis is organized as follows. We will first introduce the basic ideas of ABA-

PEA for linear problems in Chapter 2. Next, Chapter 3 is devoted to ABAPEA for

nonlinear problems. We first summarize necessary theory from nonlinear functional

analysis in §3.1. This naturally leads into ABAPEA for for representative nonlin-

ear problems starting with §3.2. Finally, the original contributions of this work are

concentrated in Chapter 4. Here, we apply ABAPEA to the equations of resistive,

incompressible MHD, along with supporting numerical results, and a well-posedness

proof for the resulting weak adjoint problem. Finally, in Chapter 5, we present some

conlcusions about this work, as well as possible directions for further research in this

area.

3



Chapter 2

Adjoint based analysis for linear

problems

In this chapter we introduce the ideas of adjoint based a posteriori error analysis

(ABAPEA) in an abstract setting for linear problems [25, 32]. We give a concrete

example for a system of convection diffusion equations, as well as the corresponding

error representation.

Let V be a Hibert space ⟪⋅, ⋅⟫ denote the inner product on V . Next let L ∶ V → V

be a linear operator. Suppose we have the following abstract boundary value problem

(BVP): find u ∈ V such that

Lu = f, in Ω,

u = 0, on ∂Ω.
(2.1)

This problem can represent a wide range of linear boundary value problems e.g.

L(v) = −∆v for the Poisson equation, L(v) = −∇ ⋅ (K∇v) + b ⋅ ∇v for convection

diffusion with diffusivity K and transport velocity b etc.

Exact solutions to (2.1) are often difficult or infeasible to obtain. Instead, one

often seeks an approximate solution uh ∈ Vh ⊂ V , where Vh is a finite dimension sub-

4



Chapter 2. Adjoint based analysis for linear problems

space of V whose dimension depends on the parameter h. With such an approximate

solution it is natural to ask questions about the so called error, u− uh and functions

thereof. Indeed, frequently the goal of obtaining the solution u of (2.1) is not to know

u(x) for all x ∈ Ω, but rather to compute a quantity of interest Q(u) = ⟪u,ψ⟫. We

now proceed to study the error in such a quantity of interest Q(u−uh) = ⟪u−uh, ψ⟫
where ψ ∈ V .

2.1 Abstract linear problems

The following definition is crucial for the analysis.

Definition 2.1.1. The adjoint to L, denoted L∗, is the unique linear operator L∗ ∶
V → V defined by

⟪Lu, v⟫ = ⟪u,L∗v⟫, ∀u, v ∈ V. (2.2)

We now consider the associated adjoint problem: find φ ∈ V ∗ such that

L∗φ = ψ, in Ω,

φ = 0, on ∂Ω.
(2.3)

Now we present the following error representation,

Theorem 2.1.1. The error in the QoI Q(u − uh) = ⟪u − uh, ψ⟫ is compatible as

⟪u − uh, ψ⟫ = ⟪f, φ⟫ − ⟪Luh, φ⟫. (2.4)

Proof. We have that

⟪u − uh, ψ⟫ = ⟪u − uh, L∗φ⟫ = ⟪Lu −Luh, φ⟫ = ⟪f, φ⟫ − ⟪Luh, φ⟫. (2.5)

We now present an example of the abstract analysis to a coupled system of PDE.

5



Chapter 2. Adjoint based analysis for linear problems

2.2 Coupled PDE system example

We first consider the following problem: find u ∶= [u1, u2]
T

such that

∇2u1 + b1 ⋅ ∇u2 = 0, in Ω,

∇2u2 + b2 ⋅ ∇u1 = 0, in Ω,

u = 0, on ∂Ω.

(2.6)

where bi = bi(x) depends only on x ∈ Ω. We will see another example of a coupled

system in Chapter 4, namely the MHD equations.

2.3 Computing the system adjoint

First let W ∶= H1
0(Ω) ×H1

0(Ω) be a product Hilbert space. Integrating, combining

equations, and performing integration by parts, the weak problem associated with

(2.6) is: find u ∈ W such that

− (∇u1,∇v1) + (b1 ⋅ ∇u2, v1) − (∇u2,∇v2) + (b2 ⋅ ∇u1, v2) = 0, ∀v ∈ W . (2.7)

We now employ (B.4) and the divergence theorem to compute the formal adjoint of

the weak primal problem (2.7),

a(u, v) = −(∇u1,∇v1) + (b1 ⋅ ∇u2, v1) − (∇u2,∇v2) + (b2 ⋅ ∇u1, v2)

= −(∇u1,∇v1) − (u2,∇ ⋅ (v1b1)) − (∇u2,∇v2) − (u1,∇ ⋅ (v2b2))

= (u1,∇2v1) − (u2,∇ ⋅ (v1b1)) + (u2,∇2v2) − (u1,∇ ⋅ (v2b2)).

We see that (2.2) is now satisfied since all operators have been moved off of u. Thus

following (2.3), the strong adjoint problem should be: find φ such that

∇2φ1 −∇ ⋅ (φ2b2) = ψ1, in Ω,

−∇ ⋅ (b1φ1) + ∇2φ2 = ψ2, in Ω,

φ = 0, on ∂Ω.

(2.8)

6



Chapter 2. Adjoint based analysis for linear problems

The corresponding weak adjoint problem to (2.8) is: find φ ∈ W such that

−(∇φ1,∇v1) − (φ2,b1 ⋅ ∇v1) + (∇φ2,∇v2) − (φ1,b2 ⋅ ∇v2) = (ψ,v), ∀v ∈ W . (2.9)

2.4 Weak adjoint definition

One can also carry out ABAPEA at the level of bilinear forms. Given a bilinear form

a ∶ V × V → R (e.g. a(u, v) = (∇u,∇v)), the adjoint bilinear form a∗ ∶ V × V → R is

defined by the relation [36, 10]

a∗(w, v) = a(v,w), ∀w, v ∈ V. (2.10)

If φ solves the dual problem: find φ ∈ V such that

a∗(φ, v) = ⟪ψ, v⟫, ∀v ∈ V,

then we have the following error representation,

Theorem 2.4.1. The error in a (linear) QoI represented by QoI = ⟪ψ, e⟫ is compat-

ible as ⟪ψ, e⟫ = ⟪f, φ⟫ − a(uh, φ).

Proof. The proof follows in the same way as for the strong adjoint,

⟪ψ, e⟫ = a∗(φ, e) = a(e, φ) = a(u,φ) − a(uh, φ) = ⟪f, φ⟫ − a(uh, φ). (2.11)

For the convection diffusion example of the previous section, the primal bilinear

form is given by the LHS of (2.7) and the weak adjoint form is given by the LHS

of (2.9). The error representation ⟪ψ, e⟫ is given, for an arbitrary finite dimensional

7



Chapter 2. Adjoint based analysis for linear problems

approximation uh = [u1h, u2h]
T

, by

(ψ,e) = −(∇φ1,∇e1) − (φ2,b1 ⋅ ∇e1) + (∇φ2,∇e2) − (φ1,b2 ⋅ ∇e2)

= −(∇e1,∇φ1) + (b1 ⋅ ∇e2, φ1) − (∇e2,∇φ2) + (b2 ⋅ ∇e1, φ2)

= −(∇u1,∇φ1) + (b1 ⋅ ∇u2, φ1) − (∇u2,∇φ2) + (b2 ⋅ ∇u1, φ2)

− (−(∇u1h,∇φ1) + (b1 ⋅ ∇u2h, φ1) − (∇u2h,∇φ2) + (b2 ⋅ ∇u1h, φ2))

= (f ,φ) − (−(∇u1h,∇φ1) + (b1 ⋅ ∇u2h, φ1) − (∇u2h,∇φ2) + (b2 ⋅ ∇u1h, φ2)).

Note the abstract inner product ⟪⋅, ⋅⟫ is represented here by the L2 inner product.

This viewpoint will be important in Chapter 4 where we define an adjoint for the

exact penalty weak form.

8



Chapter 3

Adjoint based analysis for

nonlinear problems

To motivate the nonlinear adjoint analysis, consider the following scalar problem,

find u ∈H2(Ω) such that

∇2u + b ⋅ ∇u + u2 = 0, in Ω,

u = 0, on ∂Ω.

We consider the associated operator,

F (u) = ∇2u − b ⋅ ∇u + u2.

The path for defining the adjoint to a nonlinear operator is not as straightforward as

in the case of a linear operator. Suppose we are solving the linear equation, Lu = b,
and we obtain a computed solution uh. Since L is linear, Le = L(u−uh) = Lu−Luh =
b −Luh. Thus, we seek a linearized operator (about the error), F̄ such that

F̄ e = F (u) − F (uh). (3.1)

First however, we will need to develop some ideas about differentiation in Banach

spaces. [7].

9



Chapter 3. Adjoint based analysis for nonlinear problems

3.1 Theoretical foundations

For the rest of the section, assume that X and Y are Banach spaces with norms

∥ ⋅ ∥X , ∥ ⋅ ∥Y where we will sometimes drop the subscript if it is clear from context.

We begin by defining a generalization of the gradient on Rd to Banach spaces.

Definition 3.1.1. Let F ∶ X → Y be any map. Given x ∈ X we say that F is

Fréchet differentiable (or simply differentiable) at x if there is a bounded linear map

L ∶X → Y such that

lim
h→0

∥F (x + h) − F (x) −Lh∥Y
∥h∥X

= 0.

We call the operator L the Fréchet derivative of F at x and denote it by L = F ′(x).
Our first task will be to prove the Fréchet derivative is unique.

Proposition 3.1.1. Given x ∈X, the derivative F ′(x) ∶X → Y is unique.

Proof. Suppose the contrary, that there is another linear map L̂ satisfying Definition

3.1.1 with F ′(x) ≠ L̂ as operators. From the definition, for any h ∈ X, we should

have
∥F ′(x)h − L̂h∥

∥h∥ → 0 as ∥h∥ → 0. (3.2)

Since we assume F ′(x) ≠ L̂ there exists h∗ ∈ X such that a ∶= ∥F ′(x)h∗ − L̂h∗∥ ≠ 0.

Taking h = th∗ for t ∈ R ∖ {0}, we obtain

∥F ′(x)(th∗) − L̂(th∗)∥
∥th∗∥ = ∥F ′(x)h∗ − L̂h∗∥

∥h∗∥ = a

∥h∗∥ ,

which will not tend to 0 as t→ 0, contradicting (3.2).

One can reformulate Definition 3.1.1 in terms of Landau notation: F is differen-

tiable at x ∈X if there exists a bounded linear operator L such that

F (x + h) = F (x) +Lh +Ψ(h),

10



Chapter 3. Adjoint based analysis for nonlinear problems

with Ψ(h) = o(h). In this setting an operator Ψ is little-o of h (written Ψ(h) = o(h))
if

lim
h→0

∥Ψ(h)∥Y
∥h∥X

= 0.

It will convenient to prove some properties of the little-o notation summarized in the

following lemma:

Lemma 3.1.1. Suppose Ψ,Φ ∶ X → Y , h ∈ X, and α ∈ R. we have the following

properties if Ψ(h) = o(h) and Φ(h) = o(h) ∶

1. Ψ(αh) = o(h)

2. Ψ(h) +Φ(h) = o(h)

3. Ψ(Φ(h)) = o(h)

Proof. By the definition of a limit, Ψ(h) = o(h) if, given any ε > 0, we can find δ > 0

such that
∥Ψ(h)∥
∥h∥ ≤ ε Ô⇒ ∥Ψ(h)∥ ≤ ε∥h∥

provided ∥h∥ ≤ δ.

1. Take g ∶= αh. We assume Ψ(h) = o(h) so given any ε̃ > 0 can find a δ̃ > 0 such

that

∥Ψ(αh)∥ = ∥Ψ(g)∥ ≤ ε̃∥g∥ = ε̃∣α∣∥h∥ = ε∥h∥,

whenever ∥g∥ = ∣α∣∥h∥ < δ1 Ô⇒ ∥h∥ ≤ δ.

2. Given ε̃ > 0, we can find δΨ, δΦ > 0

∥h∥ < δΨ Ô⇒ ∥Ψ(h)∥ < ε̃ and ∥h∥ < δΦ Ô⇒ ∥Φ(h)∥ < ε̃.

Therefore taking δ = min{δΨ, δΦ}, ∥h∥ ≤ δ implies

∥Ψ(h) +Φ(h)∥ ≤ ∥Ψ(h)∥ + ∥Φ(h)∥ ≤ ε̃∥h∥ + ε̃∥h∥ = ε∥h∥,

for ε = 2ε̃.

11
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3. Similarly as for 2, we can find δΨ, δΦ > 0

∥h∥ < δΨ Ô⇒ ∥Ψ(h)∥ < ε̃ and ∥h∥ < δΦ Ô⇒ ∥Φ(h)∥ < ε̃.

Again take δ = min{δΨ, δΦ}, and let g ∶= Φ(h). Then ∥h∥ ≤ δ implies

∥Ψ(Φ(h))∥ = ∥Ψ(g)∥ ≤ ε̃∥g∥ = ε̃∥Φ(h)∥ ≤ ε̃2∥h∥ = ε∥h∥,

for ε = ε̃2.

The Fréchet derivative enjoys many of the same properties as the derivative in

Rd, e.g. product rule, derivatives of trigonometric functions, etc. The proofs are the

same as for Rd since the limit definition is the same. We also have a version of the

chain rule for the Fréchet derivative, which we prove here explicitly.

Theorem 3.1.1 (The chain rule). Suppose X,Y,Z are Banach spaces with maps

F ∶ U → Y and G ∶ V → Z where U ⊂ X and V = F (U) are open. Also suppose that

F is differentiable on U and g is differentiable on V . Then for the composite map

F ○G ∶ U → Z, we have, for fixed x0 ∈ U ,

(F ○G)′(x0)h = F ′(y0)G′(x0)h, (3.3)

where y0 = G(x0).

Proof. We can find a ball B1 ⊂ U such that

G(x + h) = G(x) +G′(x)h + o(h) = y +G′(x)h + o(h),

for all x ∈ B1. Let k ∶= G′(x)h + o(h). Then similarly, we can find another ball C1

such that

F (y + k) = F (y) + F ′(y) + o(k).

12
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Now expanding the composite function about x,

F (G(x + h)) = F (y + k) = F (y) + F ′(y)k + o(k)

= F (y) + F ′(y)G′(x)h +G′(x)o(h) + o(k)

= F (y) + F ′(y)G′(x)h +Ψ(h),

where Ψ(h) = G′(x)o(h) + o(k). Using the properties of Lemma 3.1.1 we conclude

Ψ(h) = o(h) and the result follows.

We now consider a version of the mean value theorem for integrals in this setting.

First, consider F as before. We further specify the domain of F to be convex. Now

define γ(s) implicitly by F ○ γ ∶ [0,1] → Y , F ○ γ(s) = F (su + (1 − s)v). This is well

defined since, by convexity, the “line segment” {su+ (1− s)v ∶ s ∈ [0,1]} is contained

in the domain of f . By the just established chain rule,

d

ds
(F ○ γ(s)) = F ′(su + (1 − s)v)(u − v),

since the Fréchet derivative on R is just the regular derivative. Integrating both sides

with respect to s and applying the fundamental theorem of calculus on the LHS,

(F ○ γ(s))∣1
0
= ∫

1

0
F ′(su + (1 − s)v)(u − v)ds

Ô⇒ F (u) − F (v) = (∫
1

0
F ′(su + (1 − s)v)ds) (u − v). (3.4)

We have just proven the following

Theorem 3.1.2. For any u,uh ∈X, If we choose

F̄ = ∫
1

0
F ′(su + (1 − s)uh)ds,

then we have the following property

F̄ (u − uh) = F (u) − F (uh).

13
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Remark 3.1.1. We remark that in practice we do not have access to the true solution

u, and so we must linearize by replacing the tru solution with the computed solution,

F̄ = ∫
1

0
F ′(uh + s(uh − uh))ds = F ′(uh).

Again in analogy with Rd there is a weaker notion of derivative, namely the

Gâteaux derivative.

Definition 3.1.2. Let F ∶X → Y . We define the Gâteaux derivative in the direction

h ∈X, Gh[f] ∶X → Y by

Gh[F ](u) = lim
t→0

F (u + th) − F (u)
t

.

We can compute Gâteaux derivative by introducing, for a fixed u,h ∈ X, the

function of a real variable F̃ (ε) = F (u + εh), then

dF̃

dε
∣
ε=0

= lim
t→0

F (u + (ε + t)h) − F (u + εh)
t

∣
ε=0

= Gh[f](u). (3.5)

We call the function F̃ the Gâteux function corresponding to Gh[F ]. Note that the

Gâteaux derivative, and hence the corresponding Gâteux function, is not in general

linear or continuous in h. However, if the Fréchet derivative exists, we do have both

of these properties.

Theorem 3.1.3. Suppose F is (Fréchet) differentiable at a ∈ U . Then Gh[F ] is

continuous and linear in h, and in particular,

Gh[F ](u) = F ′(u)h

for any h ∈X.

Proof. This follows immediately from (3.5) and the chain rule,

Gh[F ](u) = dF̃
dε

∣
ε=0

= d

dε
F (u + εh)∣

ε=0
= F ′(u + εh)h∣

ε=0
= F ′(u)h.

14
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We now return to the question of the what choice of linearization to take to

satisfy the heuristic in (3.1). In this case the linear operator F̄ is actually a function

of the error F̄ = A(e) so we define the adjoint to F by the adjoint in the linear sense

to A(e), denoted A∗(e). Returning to the problem at hand, recall our nonlinear

operator is given by F (u) = ∇2u + b ⋅ ∇u + u2. Consider real function

F̃ (ε) = F (u + εh) = ∇2(u + εh) + b ⋅ ∇(u + εh) + (u + εh)2

= ∇2u + ε∇2h + b ⋅ (∇u + ε∇h) + u2 + 2εuh + (εh)2

We compute the Gâteaux derivative by way of the Gâteux function:

dF̃

dε
∣
ε=0

= ∇2h + b ⋅ ∇h + 2uh + 2εh∣
ε=0

= ∇2h + b ⋅ ∇h + 2uh = F ′(u)h,

by Theorem 3.1.3. Thus,

F̄ v = A(e)v = ∫
1

0
F ′(su + (1 − s)uh)v ds

= ∫
1

0
∇2v + b ⋅ ∇v + 2(su + (1 − s)uh)v ds

= ∇2v + b ⋅ ∇v + (u + uh)v.

Note if we substitute v = e,

A(e)e = ∇2e + b ⋅ ∇e + (u + uh)e

= ∇2(u − uh) − b ⋅ ∇(u − uh) + u2 − u2
h

= F (u) − F (uh),

which agrees with our heuristic (3.1). The adjoint operator is then

A∗(e)w = ∇2w − b ⋅ ∇w + (u + uh)w.

We conclude this section by proving some additional properties of the Fréchet

derivative that will aide us in future computation. We note that in the example pre-

sented, the linear terms in our operator were fixed under the action of the derivative.

This is not a coincidence, as demonstrated in the following proposition

15
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Proposition 3.1.2. If F ∶X → Y is linear then for any u,h ∈X,

Fh = F ′(u)h.

Proof. The argument is the same as for the derivative in Rd. From the definition of

the Fréchet derivative

lim
h→0

∥F (u + h) − Fu −Lh∥Y
∥h∥X

= lim
h→0

∥Fh −Lh∥Y
∥h∥X

.

Thus, the numerator is identically 0 if F = L = F ′. By uniqueness of the Fréchet

derivative, we are done.

There is also an easy formula for Fréchet derivatives involving functions of real

derivatives.

Proposition 3.1.3. Let x(t) ∈ X and consider the derivative F (x) = dx
dt . Then we

have that

F ′(x)h = dh
dt
. (3.6)

Proof. From Definition 3.1.1

∥ ddt(x + h) − dx
dt −Lh∥Y

∥h∥X
=

∥dhdt −Lh∥Y
∥h∥X

. (3.7)

Clearly if we choose L = d
dt the numerator is 0 for all h, so by uniqueness of the

Fréchet derivative, we are done.

We now present a version of the product rule for the Fréchet derivative. This is

achieved through by combining the following Lemmas

Lemma 3.1.2. Let X,Y,Z be Banach spaces and define the continuous bilinear form,

B ∶ X × Y → Z Then B is Fréchet differentiable at (x0, y0) ∈ X × Y and it’s Fréchet

derivative is the linear map B′(x0, y0) ∶X × Y → Z given by

B′(x0, y0)(x, y) = B(x0, y) +B(x, y0). (3.8)
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Proof. We take advantage of (3.5) and Theorem 3.1.3,

B′(x0, y0)(x, y) =
dB̃

dε
∣
ε=0

where B̃(ε) = B(x0 + εx, y0 + εy). Computing,

dB̃

dε
∣
ε=0

= d

dε
[B(x0 + εx, y0 + εy)] ∣ε=0

= d

dε
[B(x0 + εx, y0) +B(x0 + εx,+εy)] ∣ε=0

= d

dε
[B(x0, y0) +B(εx, y0) +B(x0, εy) +B(εx, εy)] ∣ε=0

= d

dε
[B(x0, y0) + εB(x, y0) + εB(x0, y) + ε2B(x, y)] ∣ε=0

= B(x, y0) +B(x0, y) + 2εB(x, y)∣ε=0

= B(x, y0) +B(x0, y).

Finally, we have the differentiation rule for parameterized functions,

Lemma 3.1.3. Let X,Y be a Banach spaces with F,G ∶ X → Y . Then if H ∶ X →
Y × Y,H(x) = (F (x),G(x)) is Fréchet differentiable, the derivative is given by

H ′(x) = (F ′(x),G′(x)). (3.9)

Proof. Proceeding in the same way as the proof of the previous lemma, now with

H̃(ε) =H(x0 + εx),

dH̃

dε
∣
ε=0

= d

dε
(F (x0 + εx),G(x0 + εx))∣ε=0 = (dF̃

dε
,
dG̃

dε
) ∣

ε=0

= (F ′(x),G′(x)).

Next we combine the previous lemmas along with the chain rule,
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Theorem 3.1.4 (Product rule in Banach spaces). Let X,Y,Z,W be Banach spaces

and F ∶ X → Y,G ∶ X → Z, are Fréchet differentiable maps. Also define the product

form, B ∶ Y × Z → W . Then the product function Ψ ∶ X → W given by Ψ(x) =
B(F (x),G(x)) is Fréchet differentiable at x ∈X and it’s derivative for a fixed x0 ∈X
is the linear map Ψ(x0) ∶X →W given by

Ψ′(x0)x = B(F (x0),G′(x0))x +B(G(x0), F ′(x0))x. (3.10)

Proof. We realize Ψ is a composite function, Ψ(x) = F (x)G(x) = (B ○H)(x). Thus,

using the previous lemmas, and the chain rule,

Ψ′(x) (3.3)= B′(F (x),G(x))H ′(x) (3.9)= B′(F (x),G(x))(F ′(x),G′(x))
(3.8)= B(F (x),G′(x)) +B(F ′(x),G(x)).

We will make use of the following corrollaries throughout the rest of this thesis

Corollary 1. Set X = H1(Ω), Y = Xd, Z = W = X and B(x,A) = Ax is matrix-

vector multiplication on X × Y . Then if we take F (u) = ∇u, G(u) = u,

∂

∂u
[(∇u)u]v = (∇u)v + (∇v)u, (3.11)

Corollary 2. If we take X = Y = Z = W = H1(Ω) and B(u,v) = u × v and

F (u) = ∇ ×u, G(u) = u,

∂

∂u
[(∇ ×u) ×u]v = (∇ ×u) × v + (∇ × v) ×u. (3.12)

Note that these corrollaries are also implicitly appealing to Proposition 3.1.3.
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3.2 Adjoint based analysis for the nonlinear vis-

cous Burgers equation

In this section, we consider the case of a quasilinear PDE, namely the steady state

viscous Burgers equation. In one dimension with Ω = (0,1), the problem is

−νu′′ + uu′ = f, in Ω (3.13a)

u = 0, on ∂Ω, (3.13b)

where f(x) = π2 sin(πx)+π sin(πx) cos(πx) is chosen to manufacture u(x) = sin(πx).
We use the QoI Q(u) = (u,ψ) where ψ ≡ 1, i.e. the average value of the solution in

our unit domain. In order to perform an adjoint analysis, we must again linearize

about the error as outlined in the previous sections. Define the nonlinear operator

F by

F (w) = −νw′′ +ww′ (3.14)

so that F (u(x)) = f(x). We compute the Fréchet derivative using the standard

product and chain rule as well as Proposition 3.1.3 to compute

F ′(w)h = −νh′′ +wh′ +w′h. (3.15)

In accord with Theorem 3.1.2 we define our linearized operator F̄ with error e = u−uh
for a computed solution uh by

F̄ h = ∫
1

0
F ′(su + (1 − s)uh)hds

= ∫
1

0
−νh′′ + (su + (1 − s)uh)h′ + (su + (1 − s)uh)′hds

= −νh′′ + uhh′ + u′hh + ∫
1

0
s(u − uh)h′ + s(u − uh)′hds

= −νh′′ + uhh′ + u′hh +
1

2
(u − uh)h′ +

1

2
(u − uh)′h

= −νh′′ + 1

2
uhh

′ + 1

2
u′hh +

1

2
uh′ + 1

2
u′h.
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To check this is the correct definition, we simply plug in e = (u − uh) for h,

F̄ (u − uh) = −ν(u′′ − u′′h) + uh(u′ − u′h) + u′h(u − uh) + (u − uh)(u′ − u′h)

= [−νu + uu′] + νu′′h + uhu′ − uhu′h + u′hu − u′huh − uu′h − uhu′ + uhu′h
= F (u) − [−νu′′h + uhu′h] = F (u) − F (uh).

(3.16)

We should emphasize here that we are considering u,uh fixed so that F̄ is indeed

linear in its argument.

We now seek an adjoint to F̄ in the standard way. The primal weak problem is

find: u ∈H1
0(Ω) such that

(F̄w, v) = (−νw′′, v) + (1

2
uhw

′ + 1

2
uw′, v) + (1

2
u′hw + 1

2
u′w, v)

= (νw′, v′) + (w′,
1

2
uhv +

1

2
uv) + (w, 1

2
(u′hv + u′v))

= (νw′, v′) − (w, 1

2
(u′hv + v′uh + u′v + v′u)) + (w, 1

2
(u′hv + u′v))

= (νw, v′′) − (w, 1

2
(v′uh + v′u))

= (w, F̄ ∗v).

We conclude the strong form adjoint problem to the linearized operator F̄ is

− νφ′′ − 1
2(φ′uh + φ′u) = ψ, x ∈ Ω, (3.17a)

φ = 0, x ∈ ∂Ω. (3.17b)

The corresponding weak adjoint problem is find φ ∈H1
0(Ω) such that

a∗(φ, v) ∶= (νφ′, v′) − (1

2
(φ′uh + φ′u), v) = (ψ, v), ∀v ∈H1

0(Ω). (3.18)

This leads us to the following theorem

Theorem 3.2.1. Given a quantity of interest Q(u) = (ψ,u), we have the following

error representation

(ψ, e) = (φ, f) − (φ,F (uh)),

where φ solves the dual problem (3.18).
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Proof. The proof follows the properties of the adjoint and our choice of linerazation,

(ψ, e) = a∗(φ, e) = (F̄ ∗φ, e) (3.16)= (φ,F (u) − F (uh)) = (φ, f) − (φ,F (uh)). (3.19)

In practice, we must numerically approximate the solution φh to (3.18) and we

also incur lineraization error as described in Remark 3.1.1. This leads to defining

the error estimate, ηburg for a given approximate generalized Green’s function φh,

ηburg = (φh, f) − (φh, F (uh)) ≈ (ψ, e). (3.20)

Note that in general we use a higher order/finer discretization to approximate φh

than we do for uh. In a finite element context, this is to avoid the estimate ηburg

being zero due to Galerkin orthogonality.

3.2.1 Numerical experiment for Burgers equation

In this experiment we discretize the domain Ω using the finite element method. In

particular, we use a uniform triagulation Th (partition in 1D) of Ω and the standard

continuous Galerkin Lagrange space discussed in Appendix A, and in particular we

use the space P1 for u. We then define the effectivity ratio, denoted Eff., characterizes

how well the error estimate approximates the true error, given an estimator η,

Eff. = Error estimate

True error
= η

(ψ, e) . (3.21)

The closer the effectivity is to 1, the better the error estimate provided by our

method. For an increasing refinement of the mesh, we show effectivies in Table 3.1.

The effectivities are very close to 1, indicating that the solution of the adjoint problem

is quite accurate, despite the linearization error and numerical approximation φh of

φ.
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Number of Elements True Error in QoI Eff.
128 3.16e-05 1.00
256 7.90e-6 1.00
512 1.97e-6 1.00
1024 4.93e-7 1.00

Table 3.1: Effectivity ratios (3.21) for the problem outlined in §3.2 using the error
estimate (3.20). The true QoI is exactly 2

π in this case.

3.3 Adjoint analysis for nonlinearity and Neu-

mann boundary conditions

Let Ω = (0,1)2 ⊂ R2. In this section we seek a error estimate for the QoI Q(u) =
1
4(u,ψ) where

ψ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x ∈ Ωc = [1
4 ,

3
4] × [0, 1

2],

0, otherwise.

In other words, the QoI is the average value of the solution in Ωc. The true solution

u solves

−∇2u + b ⋅ ∇u + sin(u) = s(x, y), in Ω,

u = 0, on ΓD ∶= {x = 0 or x = 1},
∂u

∂n
= 0, on ΓN ∶= {y = 0 or y = 1},

(3.22)

where

s(x, y) = 2byπ cos(2πx) cos(2πy) − 2bxπ sin(2πx) sin(2πy)

+ 8π2(cos(2πx) sin(2πy)) + sin(cos(πx) sin(2πy))
(3.23)

is chosen to manufacture u(x, y) = cos(2πx) sin(2πy). We take a constant convection

field b = [bx, by]
T

= [4,4]
T

. We first apply the linearization process of the last section

since there is nonlinearity present, namely sin(u).The nonlinear operator associated

with the problem (3.22) is

F (v) = −∇2v + b ⋅ ∇v + sin(v)
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We compute the Fréchet derivative by way of (3.5). Let g(ε) = F (u + εh). Then we

compute

F ′(u)h = dg
dε

∣
ε=0

= −∇2h + b ⋅ ∇h + d

dε
sin(u + εh)∣

ε=0

= −∇2h + b ⋅ ∇h + cos(u)h,

(3.24)

Again, appealing to Theorem 3.1.2 the linearized operator is

F̄ v = ∫
1

0
F ′(su + (1 − s)uh)v ds

= −∇2v + b ⋅ ∇v + ∫
1

0
cos(su + (1 − s)uh)ds v

= −∇2v + b ⋅ ∇v + Iv,

where Iv = ∫
1

0 cos(su+(1−s)uh)ds v. We now compute the adjoint to this linearized

operator F̄ based on the strong definition of the adjoint described in §2.1. Let

H1
0(Ω) ∶= {v ∈ H1 ∶ v = 0 on ΓD} be our space of test functions. Multiplying F̄ u by

v ∈H1
0(Ω) and integrating over Ω,

(−∇2u, v) + (b ⋅ ∇u, v) + (Iu, v) (B.7)= (∇u,∇v) + (v,∇u ⋅n)Γ + (b ⋅ ∇u, v) + (Iu, v)

= (∇u,∇v) + (b ⋅ ∇u, v) + (Iu, v),

since v = 0 on ΓD and ∇u ⋅n = 0 on ΓN . This leads us to the definition of the primal

bilinear form associated to F̄ :

a(u, v) ∶= (∇u,∇v) + (b ⋅ ∇u, v) + (Iu, v). (3.25)

To obtain an adjoint problem, we also perform integration by parts on the convection

term,

(b ⋅ ∇u, v) = (u,−∇ ⋅ (vb)) + (u,n ⋅ (vb))Γ = −(u,b ⋅ ∇v) + (u, v(n ⋅ b))ΓN
, (3.26)

as well as another integration by parts again on the diffusion term,

(∇u,∇v) = −(u,∇2v) + (u,n ⋅ ∇v)Γ. (3.27)
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Chapter 3. Adjoint based analysis for nonlinear problems

The linearized term is trivial since it is just a constant,

(Īu, v) = (u, Īv). (3.28)

We conclude the strong linearized adjoint problem corresponding (3.22) is

−∇2φ − b ⋅ ∇φ + Īφ = ψ(x, y), in Ω,

φ = 0, on ΓD

∂φ

∂n
+ (n ⋅ b)φ = 0, on ΓN .

(3.29)

and the corresponding weak adjoint problem is: find φ ∈H1
0(Ω) such that

a∗(φ, v) ∶= (∇φ,∇v) − (v,b ⋅ ∇φ) + (v, φ(n ⋅ b))ΓN
+ (v, Iφ) = (ψ, v), (3.30)

for all v ∈ H1
0(Ω). We have the following error representation, for φ exactly solving

3.30,

(e,ψ) = a∗(φ, e) = a(e, φ) = (∇e,∇φ) + (b ⋅ ∇e, φ) + (Īe, φ)

= (∇u,∇φ) + (b ⋅ ∇u,φ) + (cos(u), φ) − ((∇uh,∇φ) + (b ⋅ ∇uh, φ) + (cos(uh), φ))

= (s, φ) − (∇uh,∇φ) − (b ⋅ ∇uh, φ) − (cos(uh), φ).

Due to the linearization error mentioned in Remark 3.1.1 as well as the fact that we

must solve the adjoint problem (3.30) numerically, we introduce the error estimator

ηrob given by

ηrob = (s, φh) − (∇uh,∇φh) − (b ⋅ ∇uh, φh) − (cos(uh), φh), (3.31)

for a computed Green’s function φh.

3.3.1 Numerical experiment for Neumann BCs

We use a uniform simplicial discretization Th for Ω, see Figure 3.1 for an example

mesh. We use Galerkin Langrange space described in Appendix A for the scalar
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Figure 3.1: A sample 10×10 triangulation for the unit square, Th.

Number of Elements True Error in QoI Eff.
162 4.87e-3 0.97
322 1.23-3 0.99
642 3.04-4 1.00
1282 7.58e-5 1.00

Table 3.2: Effectivity ratios (3.21) for the problem outlined in §3.3 using the error
estimate (3.31).

unknown, in this case P1 for u. Results are given in Table 3.2. Again note that

the effectivity (3.21) (although now using ηrob for the estimator) is very close to 1,

so estimator is accurate despite the approximation of the computed solution for the

true solution in the definition of the adjoint.

3.3.2 Vanishing boundary conditions

In the previous section, we defined our space of test functions, H1
0(Ω), to only vanish

on the Dirichlet boundary, ΓD. However, we can equally well define H1
0(Ω) ∶= {v ∈

H1(Ω) ∶ v = 0 on ∂Ω = ΓD ∪ ΓN}. If we do this, note that the (u, v(n ⋅ b))ΓN
term

vanishes in (3.26).
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3.4 Adjoint based analysis for the incompressible

Navier-Stokes equations

We now consider a problem with a “natural” nonlinearity: the incompressible sta-

tionary Navier-Stokes equations. The equations are given by

−ν∆u + C(u) + ∇p = f , in Ω, (3.32a)

∇ ⋅u = 0, in Ω, (3.32b)

u = 0, on ΓD, (3.32c)

−pn + ν(n ⋅ ∇)u = 0, on ΓN . (3.32d)

where

C(u) ∶= (u ⋅ ∇)u =
d

∑
i=1

ui∂xiu = (∇u)u (3.33)

and the last equality follows because in general

(∇v)u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT∇v1

⋮
uT∇vd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
d

∑
i=1

ui∂xiv. (3.34)

The unknowns are the velocity u and pressure p. The viscosity ν and forcing function

f are considered as data to the problem. We must proceed as in the previous section

by first linearizing about the error. However, by Proposition 3.1.2 and linearlity of

the Fréchet derivative, it suffices to compute the derivative of only the nonlinear

terms. The only nonlinear term is C(u) which we already know the derivative for

from Corollary 1,

∂C

∂u
v = ∂

∂u
[(∇u)u]v (3.11)= (∇u)v + (∇v)u = (u ⋅ ∇)v + (v ⋅ ∇)u.
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we define the linearized operator by

Cw = ∫
1

0

∂C

∂u
(su + (1 − s)uh)w ds

= ∫
1

0
((su + (1 − s)uh) ⋅ ∇)w + (w ⋅ ∇)(su + (1 − s)uh)ds

= (uh ⋅ ∇)w + (w ⋅ ∇)uh + ∫
1

0
s[((u −uh) ⋅ ∇)w + (w ⋅ ∇)(u −uh)]ds

= (uh ⋅ ∇)w + (w ⋅ ∇)uh +
1

2
[((u −uh) ⋅ ∇)w + (w ⋅ ∇)(u −uh)]

= 1

2
[(u ⋅ ∇)w + (w ⋅ ∇)u + (uh ⋅ ∇)w + (w ⋅ ∇)uh]

= 1

2
[((u +uh) ⋅ ∇)w + (w ⋅ ∇)(u +uh)]

(3.35)

To find the adjoint operator, C
∗
, we must isolate w. To this end, we multiply by

a vector test function v ∈ H1
0(Ω) and integrate over Ω. To simplify, we first set

s ∶= u +uh. Next we multiply (3.35) by v ∈H1
0(Ω),

(v,Cw) = 1

2
[(v, (s ⋅ ∇)w) + (v, (w ⋅ ∇)s)]

= 1

2
[∫

Ω
vT (∇w)sdx + ∫

Ω
vT (∇s)w dx]

= 1

2
[∫

Ω
sT (∇w)Tv dx + ∫

Ω
wT (∇s)Tv dx]

= 1

2
[(s, (∇w)T v) + (w, (∇s)Tv)] .

For the first term inside the brackets,

(s, (∇w)Tv) = (s,
d

∑
i=1

vi∇wi)

= ∫
Ω

d

∑
i=1

vis ⋅ ∇wi dx

(B.7)= −∫
Ω

d

∑
i=1

wi∇ ⋅ (vis)dx + ∫
ΓN

d

∑
i=1

(wivi)s ⋅nds

(B.4)= −∫
Ω

d

∑
i=1

wi(vi∇ ⋅ s +∇vi ⋅ s)dx + ∫
ΓN

d

∑
i=1

(wivi)s ⋅nds

= ∫
Ω
w ⋅ [−(∇ ⋅ s)v − (∇v)s] dx + ∫

ΓN

w ⋅ (s ⋅n)v ds

= (w,−(s ⋅ ∇)v − (∇ ⋅ s)v) + (w, (n ⋅ s)v)ΓN
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We conclude the linearized adjoint operator to C should be

C
∗
φ = 1

2
[(∇(u +uh))

T
φ − ((u +uh) ⋅ ∇)φ − (∇ ⋅ (u +uh))φ] (3.36)

= 1

2
[
d

∑
i=1

φi∇(ui + uih) − (ui + uih)∂xiφ − (∇ ⋅ (u +uh))φ] (3.37)

with boundary contribution

1

2
(n ⋅ (u +uh))φ, on ΓN . (3.38)

To find the adjoint operator corresponding to the linear terms, we first establish the

primal weak form as an intermediate step. We multiply (3.32a) by v ∈ V ∶=H1
0(Ω)

and (3.32b) by q ∈ Q ∶= [L2(Ω)]d and integrate over Ω yielding

−(ν∇2u,v) + (C(u),v) + (∇p,v) + (∇ ⋅u, q) = (f ,v). (3.39)

For the first term in (3.39),

−∫
Ω
ν∆u ⋅ v dx = −ν ∫

Ω

d

∑
i=1

∆ui vi dx

= ν ∫
Ω

d

∑
i=1

∇ui ⋅ ∇vi dx − ∫
ΓN

d

∑
i=1

ν(vi∇ui) ⋅nds

= ∫
Ω
ν∇u ∶ ∇v dx − ∫

ΓN

v ⋅ (νn ⋅ ∇u)ds.

for the third term in (3.39),

∫
Ω
∇p ⋅ v dx = −∫

Ω
p∇ ⋅ v dx + ∫

ΓN

pv ⋅nds

= −∫
Ω
p∇ ⋅ v dx + ∫

ΓN

v ⋅ (pn)ds.

From the boundary condition on ΓN , the total contribution is 0. We can now pose

our weak problem as

N((u, p), (v, q)) = (f ,v), ∀(v, q) ∈ V ×Q, (3.40)

where the Navier Stokes form is defined as

NNS((u, p), (v, q)) ∶= a(u,v) + c(u,v) − b(p,v) + b(u, q) (3.41)
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and in turn,

a(w,v) ∶= ∫
Ω
ν∇w ∶ ∇v dx, (3.42)

b(v, q) ∶= ∫
Ω
q∇ ⋅ v dx, (3.43)

c(u,v) ∶= ∫
Ω
C(u)v dx. (3.44)

To find the adjoint operator, we must isolate the trial velocity u,

a(u,v) = ∫
Ω
ν∇u ∶ ∇v dx = −∫

Ω
u ⋅ ν∆v dx + ∫

ΓN

u ⋅ (νn ⋅ ∇v)ds,

b(u, q) = −∫
Ω
q∇ ⋅udx = ∫

Ω
u ⋅ ∇q dx − ∫

ΓN

u ⋅ (qn)ds.

Relabeling the test velocity v with φ, and the test pressure q with π, we find the

strong adjoint problem is

−ν∇φ + C∗φ +∇π = ψu, in Ω (3.45a)

−∇ ⋅φ = ψp, in Ω (3.45b)

φ = 0, on ΓD (3.45c)

νn ⋅ ∇φ − πn + 1
2((u +uh) ⋅n)φ = 0, on ΓN . (3.45d)

Upon multiplying by respective test functions v ∈ V and s ∈ Q and integrating by

parts, the corresponding weak adjoint problem is to find (φ, π) ∈ V ×Q such that

N ∗
NS((φ, π), (v, q)) = (ψu,v) + (ψp, q), ∀(v, q) ∈ V ×Q. (3.46)

where the adjoint Navier-Stokes form is defined by

N ∗
NS((φ, π), (v, q)) ∶= (ν∇φ,∇v) + (C∗φ,v) − (∇ ⋅ v, π) − (∇ ⋅φ, q). (3.47)

If we denote eu ∶= u − uh, ep ∶= p − ph and e = (eu, ep)T , we obtain the following

representation for the error in a quantity of interest

Theorem 3.4.1. Given a system QoI in the form of a linear functional represented

by ψ, we have the following error representation

(ψ,e) = (ψu,eu) + (ψp, ep) = N ∗((φ, q), (e, s)). (3.48)
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Adjoint based analysis for MHD

As described at the outset, we want to apply the theory of adjoint based a posteriori

error analysis (ABAPEA) developed so far to the equations of reistive incompressible

magnetohydrodynamics (MHD). In this chapter, we develop specific theory to derive

an adjoint problem and resulting error representation for the MHD equations. The

MHD equations pose a host of challenges both analytically and numerically. In

particular, the MHD equations are a rectangular system, and until now we have

worked only with square systems. We must therefore define an adjoint directly

to the weak form, in particular the exact penalty weak form. Furthermore, the

complex nonlinear coupling between equations motivates a special ABAPEA theory

for product spaces to clarify the discussion.
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4.1 Exact penalty formulation and discretization

for incompressible MHD

In this section we describe the nondimensionalized equations of incompressible sta-

tionary MHD, a stabilized weak form of the MHD system and a finite element method

for its solution.

4.1.1 The MHD equations

The equations for stationary incompressible MHD in Ω are given by

− 1

Re
∆u + (u ⋅ ∇)u +∇p − κ(∇ × b) × b = f , (4.1a)

∇ ⋅u = 0, (4.1b)

κ

Rem
∇× (∇ × b) − κ∇× (u × b) = 0, (4.1c)

∇ ⋅ b = 0, (4.1d)

where the unknowns are the velocity u, the magnetic field b, and the pressure p.

The nondimensionalized parameters are the fluid Reynolds number Re, Magnetic

Reynolds number Rem, and interaction parameter κ = Ha2ReRem, where Ha is the

Hartmann number. The source term f is viewed as data to the problem. For x ∈ Ω

we have u(x) ∈ Rd, b(x) ∈ Rd, p(x) ∈ R and f(x) ∈ Rd. We supplement the system

(4.1) with boundary conditions,

u = g, on ∂Ω, (4.2a)

b ×n = q ×n, on ∂Ω. (4.2b)

Referring to (4.1), we observe there are 2d + 2 and only 2d + 1 unknowns [54].

Effectively enforcing the solenoidal constraint (4.1d) (an involution of the transient
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MHD system) is an open area of research. Techniques include compatible discretiza-

tions [55, 53], vector potential [4, 56] and divergence cleaning [22, 43] as well as

the exact penalty method [39, 35, 54]. In this thesis, we consider the exact penalty

method which we further describe in §4.1.3.

4.1.2 Function spaces for the MHD system

The relevant subspaces of H1(Ω) needed to satisfy the boundary conditions (in the

sense of the trace operator) are,

H1
0(Ω) ∶= {w ∈H1 ∶w∣∂Ω ≡ 0}, (4.3)

H1
τ(Ω) ∶= {w ∈H1 ∶ (w ×n)∣∂Ω ≡ 0}. (4.4)

We also define the product space,

P(Ω) ∶=H1
0(Ω) ×H1

τ(Ω) ×L2(Ω). (4.5)

We also remark that for d = 2, we use the natural inclusion of R2 ↪ R3, [v1, v2]
T

↦

[v1, v2,0]
T

to define the operators ∇× and ×. Thus for v,w ∈H1, we have that

∇× v = (∂vy
∂x

− ∂vx
∂y

) k̂, v ×w = (vxwy − vywx) k̂.

4.1.3 Exact penalty formulation

In this section we present the weak form of the stationary incompressible MHD

system based on the exact penalty formulation. The exact penalty method re-

quires that the domain Ω is bounded, convex and polyhedral. This ensures that

H(curl,Ω) ∩ H(div,Ω) is continuously embedded in H1(Ω) [53]. We also as-

sume homogeneous Dirichlet conditions, g = q = 0. Non-homogeneous boundary

conditions can be dealt with through standard lifting arguments as discussed in
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§4.3.3. The exact penalty weak problem corresponding to (4.1) and (4.2) is: find

U = (u,b, p) ∈ P(Ω) such that

NEP (U,V ) = (f ,v), ∀V ∈ P(Ω), (4.6)

where the nonlinear form NEP is defined for all V = (v,c, q) ∈ P(Ω) by

NEP (U,V ) ∶ = 1

R
(∇u,∇v) + (C(u),v) − (p,∇ ⋅ v) + (q,∇ ⋅u)

+ κ(Y(b),v) − κ(Z(u,b),c)

+ κ

Rem
(∇ × b,∇× c) + κ

Rem
(∇ ⋅ b,∇ ⋅ c),

(4.7)

and the nonlinear operators are defined by

C(u) ∶= (u ⋅ ∇)u, (4.8a)

Y(b) ∶= (∇ × b) × b, (4.8b)

Z(u,b) ∶= ∇ × (u × b). (4.8c)

All except the last term in the weak form arise from multiplying (4.1a)-(4.1c) by test

functions and performing integration by parts. The last term, κ
Rem

(∇ ⋅b,∇ ⋅c), effec-

tively enforces the solenoidal involution (4.1d) since, assuming the aforementioned

restrictions on the domain, there exists a function (see [39, 37]) b0 ∈H2(Ω) such that

∇ ⋅ ∇b0 = ∇ ⋅ b, and ∇b0 ∈H1
τ(Ω). (4.9)

Thus, we choose V = (0,∇b0,0) in (4.7) and use (B.5) so that (4.6) reduces to

(∇ ⋅ b,∇ ⋅ ∇b0) = (∇ ⋅ b,∇ ⋅ b) = 0, (4.10)

and hence (4.1d) is satisfied almost everywhere in Ω.

4.1.4 Finite element method

Additionally, our finite element space satisfies the Ladyzhenskaya-Babuška-Brezzi

stability [12] condition for the velocity pressure pair, e.g. Ph(Ω) = P2
h(Ω)×P1

h(Ω)×
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P1
h(Ω). Then the discrete problem to find an approximate solution Uh = (uh,bh, ph) ∈

Ph(Ω) to (4.7) is,

NEP (Uh, Vh) = (f ,vh) ∀Vh ∈ Ph(Ω). (4.11)

Note there is no restriction on the finite element space for bh, which is an advantage

of this method. The well-posedness of the continuous and discrete problems are are

proven in [39].

4.1.5 Quantity of interest (QoI)

The goal of a numerical simulation is often to compute some functional of the solu-

tion, that is, the QoI. In particular, QoIs considered in this thesis have the generic

form,

QoI = ∫
Ω

Ψ ⋅U dx = (Ψ, U) (4.12)

where Ψ ∈ L2(Ω) × L2(Ω) × L2(Ω) ≡ [L2(Ω)]2d+1. For example in 2D, to com-

pute the average of the y component of velocity uy over a region Ωc ⊂ Ω, set

Ψ = 1
∣Ωc∣

(0,1Ωc ,0,0,0)T , where 1S denotes the characteristic function over a set S. In

the examples presented later, the QoIs physically represent quantities representative

of the average flow rate, or the average induced magnetic field. We seek to compute

error estimates in the QoI using duality arguments as presented in the following

subsection.

4.2 Abstract a posteriori error analysis

In this section we consider an abstract variational setting for a posteriori analysis

based on the ideas from [32, 25, 36, 5, 8] and already partially addressed in Chapters

2 and 3. Let W be a Hilbert space with inner product ⟨⋅, ⋅⟩ and let V be a dense
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subspace. We consider generic QoI as bounded linear functionals of the form,

Q(w) = ⟨ψ,w⟩,

where ψ,w ∈ W . For example, in (4.12), ⟨ψ,u⟩ = (Ψ, U), the abstract inner product

is represented by the L2 inner product. We want to evaluate Q(u) where u is the

solution to the variational problem: find u in V such that

N(u, v) = ⟨f, v⟩, ∀v ∈ V , (4.13)

and N ∶ V × V → R is linear in the second argument but may be nonlinear in the

first argument. Throughout this section u refers to the true solution to (4.13). An

example of such a variational problem is the exact penalty problem as described in

§4.1.3. Given a numerical approximation uh ∈ Vh, in some finite dimensional subspace

Vh ⊂ V , we define the error as e = u − uh. The aim of the a posteriori analysis is to

compute the error in the QoI, Q(u) −Q(uh) = ⟨ψ,u⟩ − ⟨ψ,uh⟩ = ⟨ψ, e⟩. For nonlinear

forms, the choice of an adjoint form is not straightforward. However, a common

choice useful for various kinds of analysis is based on linearization [50, 49, 16, 15,

33]. Indeed, this is related the definition in Theorem 3.1.2 in a way that will be made

clear in the following discussion.

To closely mimic the exact penalty problem (4.6), let V = ∏n
i=1 Vi be a product

space of Hilbert spaces and W = ∏n
i=1 Wi such that Vi is a dense subspace of Wi for

all i. These spaces are defined on a domain so that Vi = Vi(Ω), and Wi = Wi(Ω), with

Ω ⊂ Rd. We now define N ∶ V × V → R by

N(u, v) =
m

∑
i=1

⟨Ni(u), v`i⟩ + a(u, v), (4.14)

where a(u, v) is a bilinear form and `i ∈ {1, . . . , n} and Ni ∶ V → W`i . Note that (4.7)

is a particular case of (4.14). For a solution/approximation pair (u/uh), define the

matrix J , by

J ij = ∫
1

0

∂Ni

∂uj
(su + (1 − s)uh)ds, (4.15)
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where ∂Ni

∂uj
(⋅) denotes the partial derivative of Ni with respect to the argument uj.

Define the linearized operator N̄i for w ∈ V by

N̄iw = ∫
1

0

∂Ni

∂u
(su + (1 − s)uh)ds ⋅ w

=
n

∑
j=1
∫

1

0

∂Ni

∂uj
(su + (1 − s)uh)dswj =

n

∑
j=1

J ijwj.

Now since each N̄i is linear, we may define the bilinear forms,

νi(u, v) = ⟨N̄iu, v`i⟩ = ⟨
n

∑
j=1

J ijuj, v`i⟩ =
n

∑
j=1

⟨J ijuj, v`i⟩ .

Define ν∗i (v,w) = νi(w, v), adjoint operators J ∗

ij to J ij satisfying

⟨J ijw, v⟩ = ⟨w,J ∗

ijv⟩ (4.16)

for w ∈ Vj and v ∈ V`i and a∗(w, v) ∶= a(v,w), as per definition (2.10). With these

definitions, the adjoint bilinear weak form is,

N ∗(φ,w) =
m

∑
i=1

ν∗i (φ, v) + a∗(φ, v) =
m

∑
i=1

n

∑
j=1

⟨vj,J
∗

ijφ`i⟩ + a∗(φ, v). (4.17)

Then if φ solves the dual problem,

N ∗(φ, v) = ⟨ψ, v⟩, ∀v ∈ V , (4.18)

we then have the following abstract error representation.

Theorem 4.2.1. The error in a QoI represented by Q(u) = ⟨ψ,u⟩ is compatible as

⟨ψ, e⟩ = ⟨f, φ⟩ − N(uh, φ).
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Proof. Unpacking the definitions,

⟨ψ, e⟩ = N ∗(φ, e) =
m

∑
i=1

n

∑
j=1

⟨ej,J
∗

ijφ`i⟩ + a∗(φ, e)

=
m

∑
i=1

n

∑
j=1

⟨J ijej, φ`i⟩ + a(e, φ) =
m

∑
i=1

⟨N ie, φ`i⟩ + a(e, φ)

=
m

∑
i=1

⟨Ni(u) −Ni(uh), φ`i⟩ + a(u,φ) − a(uh, φ)

=
m

∑
i=1

⟨Ni(u), φ`i⟩ + a(u,φ) −
m

∑
i=1

⟨Ni(uh), φ`i⟩ − a(uh, φ)

= N(u,φ) −N(uh, φ) = (f, φ) −N(uh, φ).

The main takeaway of this theorem is that computing the adjoint to a nonlinear

form is reduced to computing the adjoint for the averaged entries, J ij.

4.3 A posteriori error estimate applied to MHD

The analysis in §4.2 applies directly to the MHD equations. The duality pairing

of the last section is represented by the [L2(Ω)]2d+1 inner product (⋅, ⋅). The linear

and nonlinear terms in the exact penalty weak form (4.6) are mapped to match

(4.14). The mapping between the abstract formulation and MHD equation is shown

in Table 4.1.

For the exact penalty weak form, we have that

NEP (U,V ) =
3

∑
i=1

(NEP,i(U), V`i) + aEP (U,V ), (4.19)

where

(NEP,1(U), V2) = (Z(u,b),c),

(NEP,2(U), V1) = (Y(b),v),

(NEP,3(U), V1) = (C(u),v),

(4.20)
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Abstract MHD

⟨, ⟩ (, )
m 3
N NEP

u U
v V
Ni NEP,i

(a)

Abstract MHD

⟨f, v⟩ (f ,v)
u1 U1 ≡ u
u2 U2 ≡ b
u3 U3 ≡ p
v1 V1 ≡ v
v2 V2 ≡ c

(b)

Abstract MHD

v3 V3 ≡ q

J
∗

11 Z∗

u

J
∗

12 Z∗

b

J
∗

21 Y∗

J
∗

31 C∗

a aEP

(c)

Table 4.1: Mapping between the abstract framework in §4.2 and the MHD equation
in §4.3. NEP is given in (4.19), NEP,i in (4.20), aEP in (4.21) and Z

∗

u,Z
∗

b,Y
∗
,C

∗
are

given in (4.22).

Z,Y ,C are in turned defined in (4.8), and

aEP (U,V ) = 1

R
(∇u,∇v) − (p,∇ ⋅ v) + (q,∇ ⋅u)

+ κ

Rem
(∇ × b,∇× c) + κ

Rem
(∇ ⋅ b,∇ ⋅ c).

(4.21)

The entries J ∗

11V2 = Z
∗

u, J ∗

12V2 = Z
∗

b, J ∗

21V1 = Y
∗
v and J ∗

31V1 = C
∗
v are,

Z
∗

u c = 1
2(u +uh) × (∇ × c),

Z
∗

b c = −1
2(b + bh) × (∇ × c),

Y
∗
v = 1

2
( − (∇ × (b + bh) × v) + ∇ × ((b + bh) × v)),

C
∗
v = 1

2
((∇u +∇uh)Tv − (((u +uh) ⋅ ∇)v) − (∇ ⋅ (u +uh))v),

(4.22)

while the remaining J ∗

ij entries are zero. The details of the derivation are given in

§4.5.1.

4.3.1 Weak form of adjoint for incompressible MHD

We are now prepared to pose a weak adjoint problem corresponding to exact penalty

primal problem (4.6). Based on (4.19), (4.22) and (4.18), The weak dual problem is
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therefore be stated as: find Φ = (φ,β, π) ∈ P(Ω) such that

N ∗

EP (Φ, V ) = (Ψ, V ), ∀V ∈ P(Ω) (4.23)

with

N ∗

EP (Φ, V ) = 1

Re
(∇φ,∇v) + (C∗φ,v) + (∇ ⋅ v, π) − (∇ ⋅φ, q)

+ κ

Rem
(∇ ×β,∇× c) + κ

Rem
(∇ ⋅β,∇ ⋅ c)

− κ (Y∗
φ,c) − κ (Z∗

uβ,v) − κ (Z∗

bβ,c) .

(4.24)

The forms of the linear operators C
∗
,Y

∗
, Z

∗

u and Z
∗

b are given in (4.22). We discuss

the well-posedness of the adjoint weak form in §4.5.2.

4.3.2 Error representation

In order to discuss error representation we need to the following definitions

Definition 4.3.1. Define the monolithic error by E = [eu,eb, ep]
T

with component

errors

eu = u −uh, eb = b − bh, ep = p − ph. (4.25)

We have the following error representation.

Theorem 4.3.1 (Error representation for exact penalty). For a given QoI repre-

sented by Ψ = [ψu,ψb, ψp]
T

, the error in the numerical approximation of the QoI

satisfies

(Ψ,E) = (f ,φ)−[ 1

Re
(∇uh,∇φ) + ((uh ⋅ ∇)uh,φ)

− (ph,∇ ⋅φ) + κ((∇ × bh) × bh,φ) + (∇ ⋅uh, π)

+ κ

Rem
(∇ × bh,∇×β) + κ(∇ × (uh × bh),β)

+ κ

Rem
(∇ ⋅ bh,∇ ⋅β)].
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Proof. By Theorem 4.2.1,

(Ψ,E) = N ∗

EP (Φ,E) = NEP (U,Φ) −NEP (Uh,Φ) = (f ,φ) −NEP (Uh,Φ).

4.3.3 Non-homogeneous boundary conditions for the MHD

system

The analysis above easily extends to the case of non-homogeneous boundary con-

ditions, i.e. when g or q × n are not identically zero. First assume that the nu-

merical solution Uh that satisfies the non-homogeneous conditions exactly. That is,

u = uh = g and b ×n = bh ×n = q ×n on ∂Ω. Then, although neither the true solu-

tion U nor the numerical solution Uh belong to P(Ω), yet the error, E = U − Uh,

satisfies homogeneous boundary conditions and hence belongs to P(Ω). Thus, the

error analysis in the previous section applies directly in this case.

Now, if Uh belongs to Ph(Ω), then in general Uh does not satisfy the non-

homogeneous boundary conditions exactly. Hence we consider the splitting of the

numerical solutions as,

Uh = U0
h +Ud, (4.26)

where U0
h ∈ Ph(Ω) solves,

NEP (Uh, Vh) = NEP (U0
h +Ud, Vh) = (F,Vh), ∀Vh ∈ Ph(Ω), (4.27)

and Ud is a known function that satisfies the non-homogeneous boundary conditions

accurately. That is, the unknown is now U0
h and the numerical solution Uh is formed

through the sum in (4.26). In this thesis the function Ud is approximated through a

finite element space of much higher dimension than Ph(Ω) to capture the boundary

conditions accurately.
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4.3.4 Error estimate and contributions

The error representation in Theorem 4.3.1 requires the exact solution Φ = (φ,β, π) ∈
P(Ω). Moreover, the adjoint weak form (4.24) is linearized around the true solution

U and the approximate solution Uh. In practice, the adjoint solution itself must be

approximated in a finite element spaceWh ⊂ P(Ω) and is linearized only around the

numerical solution. These approximations lead to an error estimate from the error

representation 4.3.1. Let this estimate be denoted by ηEP . That is, ηEP ≈ (Ψ,E)
where,

ηEP = Emom +Econ +EM , (4.28)

where,

Emom = (f ,φh) − ( 1

Re
(∇uh,∇φh) + (uh ⋅ ∇uh,φh) − (ph,∇ ⋅φh)

+ κ((∇ × bh) × bh,φh)),

Econ = −(∇ ⋅uh, πh),

EM = − κ

Rem
(∇ × bh,∇×βh) + κ(∇ × (uh × bh),βh) −

κ

Rem
(∇ ⋅ bh,∇ ⋅βh).

(4.29)

Here Emom, Econ and EM represent the momentum error contribution, the continuity

error contribution and the magnetic error contribution respectively.

To obtain an accurate error estimate we choose Wh to be of much higher dimen-

sion than Ph(Ω) as is standard in adjoint based a posteriori error estimation [27,

32, 25, 19, 20, 27, 21, 14, 9]. Moreover, the inaccuracy caused by substituting the

numerical solution in place of true solution in the adjoint weak form is shown to

decrease in the limit of refined discretization [27].
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4.4 Numerical Experiments

In this section we present numerical results to verify the accuracy of the error estimate

(4.28) and the and utility of the error contributions in (4.29). We present two

numerical examples here, the Hartmann problem §4.4.1 and the magnetic lid driven

cavity §4.4.2. Since there is no closed form solution for the magnetic lid driven cavity,

we use a reference high order/fine mesh to get a good estimate for the true error. All

the following computations are carried out using the finite element package Dolfin

in the FEniCS suite [6, 47, 48]. We use the built-in LU solver for the linear problems

in the Newton iteration, as well as the linearized adjoint problem.

For all experiments, we choose different polynomial orders of Lagrange spaces

for the product space Ph(Ω) and ensure that the adjoint space Wh has a higher

polynomial degree. The computational domain for all problems is chosen to be a

unit length square, Ω ∶= [−1
2 ,

1
2]2 ⊂ R2. The mesh is a simplicial uniform mesh with

the total number of 2D elements, Elem. = ne × ne. We again make use of the

effectivity ratio, Eff., as defined in (3.21) now for the estimator ηEP given by (4.28).

4.4.1 Hartmann flow in 2D

Our first results concern the so-called Hartmann problem [59]. This problem models

the flow of a conducting fluid in a channel. In this case we consider a square channel,

as described in the beginning of the section. This problem admits an analytic solution

[54], u = (ux,0), b = (Bx,1), p where

ux(y) =
GRe(cosh(Ha/2) − cosh(Ha y))

2Ha sinh(Ha/2) , (4.30a)

Bx(y) =
G(sinh(Ha y) − 2 sinh(Ha/2)y)

2κ sinh(Ha/2) , (4.30b)

p(x) = −Gx − κB2
x/2, (4.30c)
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and G = − dpdx is an arbitrary pressure drop that we choose to normalize maximum

velocity ux(y) to 1.

Problem parameters and QoI

The values of the nondimensionalized constants are chosen as follows: Re = 16,Rem =
16, κ = 1 which produce a Hartmann number of Ha = 16. The QoI is chosen as the

average velocity across the flow over a slice. To this end, define

Ωc ∶= [−1
4 ,

1
2
] × [−1

4 ,
1
4
] (4.31)

and consequently 1Ωc the characteristic function on Ωc. The monolithic quantity of

interest Ψ as in Theorem 4.3.1 is chosen to be Ψ = [1Ωc ,0,0,0,0]
T

. The QoI thus

reduces to

(Ψ, U) = (1Ωc , ux). (4.32)

This has a physical interpretation of the capturing the flow rate across this slice of

the channel, Ωc.

Numerical results and discussion

Error contributions and effectivites using different order polynomial spaces are pre-

sented in Table 4.2, Table 4.3, Table 4.4, and Table 4.5. Effectively ratio in tables 4.2

and 4.3 is quite close to 1 indicating the accuracy of the error estimate. The error

estimate in Table 4.4 is not as accurate due to linearization error incurred by re-

placing the true solution by the approximate solution in the definition of the adjoint

as discussed in the introduction of this section and in Remark 3.1.1. This may be

verified by linearizing the adjoint weak form around both the true (which we know

for this example) and the approximate solutions. These results are shown in Table

4.5 and now the error estimate is again accurate. We believe the linearization error is
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especially apparent in this example since the error in the QoI is quite small compared

to the other numerical experiments. In particular, approximations in solutions of the

adjoint problem will be more apparent.

We remark that for the lowest order tuple (P2,P1,P1) for the variables (u,b, p)
in Table 4.2, the error is largely dominated by the contributions Econ and EM . We

greatly reduce the error in EM by using a higher order space for b as demonstrated

in Table 4.3. However, this does not reduce the magnitude of the total error much

(about 5%) which is still dominated by the contribution Econ. The contribution Econ

is not significantly affected by the finite dimensional space for b. Now finally, if we

refine all three variables, Table 4.4 shows that the total error drops by two orders of

magnitude.

2D Elem. True Error Eff. Emom Econ EM
1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04
6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04
14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05
25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

Table 4.2: Error in (ux,1Ωc) for the Hartmann problem §4.4.1, with 1Ωc = [−1
4 ,

1
2] ×

[−1
4 ,

1
4]. The finite dimensional space here is (P2,P1,P1) for (u,b, p).

2D Elem. True Error Eff. Emom Econ EM
1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 -4.79e-06
6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 -2.18e-06
14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 -1.13e-06
25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 -6.81e-07

Table 4.3: Error in (ux,1Ωc) for the Hartmann problem §4.4.1. The finite dimensional
space here is (P2,P2,P1) for u,b, p).
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2d Elem. True Error Eff. Emom Econ EM
1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08

Table 4.4: Error in (ux,1Ωc) for the Hartmann problem §4.4.1. The finite dimensional
space here is (P3,P2,P2) for (u,b, p). Here, we approximate the true solution with
the computed solution which results in linearization error as described in Remark
3.1.1. For this accurate a solution, this deteriorates the quality of the estimate which
in turn results in a effectivity further from 1. This is confirmed in Table 4.5 where
we use the true solution and the effectivity is again close to 1.

2d Elem. True Error Eff. Emom Econ EM
1600 1.23e-06 1.00 2.75e-07 -4.39e-06 5.34e-06
6400 1.46e-07 1.00 5.97e-08 -5.60e-07 6.46e-07
14400 4.97e-08 1.00 2.35e-08 -1.63e-07 1.89e-07
25600 2.47e-08 1.00 1.22e-08 -6.65e-08 7.90e-08

Table 4.5: Error in (ux,1Ωc) for the Hartmann problem, §4.4.1. The finite dimen-
sional space here is (P3,P2,P2) for (u,b, p). No linearization error is present here
because we use the true solution in the definition of the adjoint.

4.4.2 Magnetic Lid Driven Cavity

Regularization and solution method

The magnetic lid driven cavity is another common benchmark problem for verifying

MHD codes [54, 57]. However, the standard lid velocity is discontinuous and therefore

has at most H1/2−ε regularity in 2D with ε > 0. By the converse of the trace theorem

and the Sobelev inequality [26, 13], the solution ux cannot obtain H1 regularity on

the interior. Indeed, in this situation, we do not even have well posedness of the

primal problem, so there is not real hope for error analysis. This issue has been

addressed in a purely fluid context [40, 44]. In both cases, a regularization of the

lid velocity is proposed to mitigate theoretical issues (in the former) and the ability
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to achieve higher Reynolds numbers (in the latter). In this work, we use a similar

regularization to the one proposed in [44], a polynomial regularization of the lid

velocity,

utop(x) = C (x − 1
2
)2 (x + 1

2
)2
,

with C chosen such that

∫
1/2

−1/2
utop(x)dx = 1.

The boundary conditions are imposed as g(x,0.5) = [utop,0]
T

on the top face and zero

on the rest of the boundary. We specify the boundary conditions on the magnetic

field b × n by setting q = [−1,0]
T

so that b × n = [−1,0] × n on ∂Ω. To get a

qualitative measure of the validity of the regularized problem, we show plots of

the velocity profile for a fixed Reynolds number Re = 5000 and varying magnetic

Reynolds numbers Rem in Figure 4.1. These plots are qualitatively similar to Figure

1 in [54] (for which an un-regularized lid velocity is used), which gives us a good

indication that the regularized version produces qualitatively similar features.

Rem = 0.1 Rem = 0.5 Rem = 5.0

Figure 4.1: Plots of the ∥u∥Rd for the lid driven cavity §4.4.2 using a normalization
on the lid velocity over a variety of magnetic Reynolds numbers, Rem. The other
nondimensionalized parameters are Re = 5000, κ = 1 for all of these plots.

Furthermore, since high Re flows provide difficulties for the continuous Galerkin

method [23], we use a homotopic sequence of initial guesses to achieve high Re.
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Indeed, we run the problem for a moderate value of Re = 200 for example, and

then use the solution produced by the solver as the initial guess for a larger value

e.g. Re = 1000 until we have achieved the desired value. Figure 4.2 shows the

intermediate values in this sequence to solve a problem with Re = 1000.

Re = 200 Re = 500 Re = 1000

Figure 4.2: Demonstrating the homotopy parameter strategy to achieve high fluid
Reynolds numbers as described in §4.4.2. The other nondimensionalized parameters
Rem = 5.0, κ = 1 for all of these plots. The top row is colored according the by and
with the arrows representing the vector b. The bottom row is colored according to
the magnitude of u, with added streamlines.

Results for QoI(ux)

We take the same QoI as for the Hartmann problem although now with

Ωc ∶= [−1
4 ,

1
4
] × [−1

2 ,0] , (4.33)
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so that the QoI (Ψ, U) = (1Ωc , ux) has the physical interpretation of capturing the

re-circulation in the lower half of the box. Since there is no analytic solution for this

problem, we compute a solution on a 400 × 400 mesh in the space (P3,P2,P2) for

(u,b, p). We consider the QoI obtained from this “overkill” solution as a the true

solution to compute the error in the denominator of the effectivity ratio (3.21).

The effectivity ratio and error contributions for various values of Re are shown

in Tables 4.6, 4.7, , 4.8 and 4.9. We note that the error estimate is accurate in all

cases with effectivity ratios close to 1.

In terms of error contributions, for the lowest order cases of (P2,P1,P1), both

Re = 2000 and Re = 1000 in have a fairly balanced distribution of error between the

components as seen in Tables 4.6 and 4.8. Similarly to the Hartmann problem, when

use a higher order space space for b, namely P2, the contribution EM decreases by

several orders of magnitude, but the overall error remains dominated by Econ and

Emom. This is seen in 4.7 for Re = 1000 and 4.9 for Re = 2000. In particular, since

the error was initially dominated by Emom and Econ, we do not see any significant

improvement in the true error. ABAPEA therefore, by exposing error contributions,

can help inform the choice of finite dimensional spaces for the different DOFs.

2d Elem. True Error Eff. Emom Econ EM
1600 5.02e-04 0.97 8.95e-05 2.21e-04 1.75e-04
3600 1.61e-04 0.96 2.19e-05 5.27e-05 8.06e-05
6400 7.20e-05 0.98 8.65e-06 1.58e-05 4.60e-05
10000 4.02e-05 0.99 4.02e-06 6.06e-06 2.96e-05

Table 4.6: error in (ux,1Ωc) for the lid driven cavity §4.4.2. The finite dimen-
sional space here is (P2,P1,P1) for (u,b, p). We use an overkill solution on a
400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 1000,Rem = 0.4, κ = 1.
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2d Elem. True Error Eff. Emom Econ EM
1600 3.17e-04 0.99 9.36e-05 2.20e-04 -6.79e-07
3600 7.92e-05 0.95 2.27e-05 5.28e-05 -1.24e-07
6400 2.58e-05 0.96 8.95e-06 1.58e-05 -3.79e-08
10000 1.05e-05 0.97 4.14e-06 6.08e-06 -1.52e-08

Table 4.7: Error in (ux,1Ωc) for the lid driven cavity §4.4.2. The finite di-
mensional space here is (P2,P2,P1) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 1000,Rem = 0.4, κ = 1.

2d Elem. True Error Eff. Emom Econ EM
1600 6.64e-04 1.08 2.83e-04 4.27e-04 6.81e-06
3600 2.00e-04 0.95 4.34e-05 1.37e-04 9.07e-06
6400 7.00e-05 0.95 1.49e-05 4.37e-05 7.71e-06
10000 3.06e-05 0.96 6.94e-06 1.68e-05 5.68e-06

Table 4.8: Error in (ux,1Ωc) for the lid driven cavity §4.4.2. The finite di-
mensional space here is (P2,P1,P1) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 2000,Rem = 0.4, κ = 1.

2d Elem. True Error Eff. Emom Econ EM
1600 6.18e-04 1.12 2.78e-04 4.17e-04 -8.54e-07
3600 1.85e-04 0.98 4.24e-05 1.39e-04 -2.72e-07
6400 6.09e-05 0.97 1.47e-05 4.41e-05 -9.47e-08
10000 2.44e-05 0.98 6.90e-06 1.70e-05 -3.90e-08

Table 4.9: Error in (ux,1Ωc) for the lid driven cavity §4.4.2. The finite di-
mensional space here is (P2,P2,P1) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 2000,Rem = 0.4, κ = 1.

Results for QoI(by)

We take the QoI Ψ = [0,0,0,1Ωc ,0]
T

where now

Ωc ∶= [−1
4 ,

1
4
] × [0, 1

2
] , (4.34)
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so that the QoI (Ψ, U) = (1Ωc , by) gives a measure of the induced magnetic field in

the upper middle half of the box. See Figure 4.2 for plots of the induced field by as

a function of Reynolds number Re.

The effectivity ratio and error contributions for Re = 1000 and Re = 2000 are

shown in Tables 4.10, 4.11, 4.12 and 4.13. The error estimate ηEP is deemed accurate

since all effectivity ratios are close to 1.

We first study the lowest order case, namely using the space (P2,P1,P1) for

(u,b, p) in Table 4.10 where Re = 1000 and Table 4.12 where Re = 2000. For both

Re = 2000 and Re = 1000, the error contributions are not drastically different in

magnitude, and become even more similar as the mesh is refined. We also note that

all contributions, and in particular the true error, are larger in magnitude for the

case Re = 2000.

We now consider a higher order space for the velocity pair (u, p). In particular,

we take (P3,P1,P2) for (u,b, p) in Table 4.11 for Re = 1000 and Table 4.13 for

Re = 2000. In both cases, the error is now dominated by the contribution EM . The

case of Re = 2000 is particularly interesting, as the error increases as the mesh is

refined from 1600 elements to 3600 elements. This seemingly anomalous behavior

is explained by examining the error contributions. For #Elements = 1600 we have

Emom +Econ has magnitude comparable to that of EM but opposite sign, and hence

there is cancellation of error. For #Elements = 3600, the magnitude of Emom +Econ
is much less than that of EM and hence the total error increases as there is less

cancellation of error. Hence, adjoint based analysis not only quantifies the error, it

also helps in diagnosing such anomalous behavior.
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# Elements True Error Eff. Emom Econ EM
1600 -3.93e-05 0.99 -1.05e-05 -2.47e-05 -3.78e-06
3600 -9.50e-06 0.97 -2.23e-06 -5.23e-06 -1.74e-06
6400 -3.41e-06 0.98 -8.12e-07 -1.52e-06 -9.87e-07
10000 -1.61e-06 0.98 -3.64e-07 -5.81e-07 -6.33e-07

Table 4.10: Error estimates for (by,1Ωc) for the lid driven cavity §4.4.2. The finite
dimensional space here is (P2,P1,P1) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 1000,Rem = 0.4, κ = 1.

# Elements True Error Eff. Emom Econ EM
1600 -5.37e-06 0.98 -4.65e-07 -9.75e-07 -3.81e-06
3600 -1.95e-06 0.99 -5.49e-08 -1.27e-07 -1.75e-06
6400 -1.03e-06 1.00 -1.06e-08 -2.76e-08 -9.87e-07
10000 -6.45e-07 1.00 -2.89e-09 -8.04e-09 -6.33e-07

Table 4.11: Error estimates for in (by,1Ωc) for the lid driven cavity §4.4.2. The
finite dimensional space here is (P3,P1,P2) for (u,b, p). We use an overkill solution
on a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 1000,Rem = 0.4, κ = 1.

# Elements True Error Eff. Emom Econ EM
1600 -8.01e-05 1.10 -3.65e-05 -5.70e-05 5.63e-06
3600 -2.04e-05 0.98 -5.69e-06 -1.66e-05 2.25e-06
6400 -5.92e-06 0.96 -1.84e-06 -5.06e-06 1.19e-06
10000 -2.07e-06 0.96 -8.17e-07 -1.91e-06 7.41e-07

Table 4.12: Error estimates for (by,1Ωc) for the lid driven cavity §4.4.2. The finite
dimensional space here is (P2,P1,P1) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 2000,Rem = 0.4, κ = 1.
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# Elements True Error Eff. Emom Econ EM
1600 1.31e-06 0.78 -1.58e-06 -3.47e-06 6.08e-06
3600 1.51e-06 0.96 -1.91e-07 -5.29e-07 2.17e-06
6400 1.02e-06 0.98 -3.87e-08 -1.28e-07 1.17e-06
10000 6.94e-07 0.99 -1.07e-08 -4.04e-08 7.38e-07

Table 4.13: Error estimates for (by,1Ωc) for the lid driven cavity §4.4.2. The finite
dimensional space here is (P3,P1,P2) for (u,b, p). We use an overkill solution on
a 400x400=160000 element mesh and (P3,P2,P2) elements. The parameters are
Re = 2000,Rem = 0.4, κ = 1.

4.5 Well posedness and derivation of the weak ad-

joint problem

In this chapter we provide the details of computing the adjoint to exact penalty weak

form following the theory in §4.2. Then we use a standard saddle point argument

to demonstrate the well-posedness of this new adjoint problem (4.23). We take

inspiration for these proofs from [39]. To simplify notation in this section, we define

s ∶= u +uh, t ∶= b + bh. (4.35)

4.5.1 Derivation of the weak form of the adjoint

In this section we provide derivation for the primal linearized operators J ∗

21 = Y∗
,

J ∗

11 = Z
∗

u, J ∗

12 = Z
∗

b and J ∗

31 = C∗ in (4.22). We first compute the primal linearized

operators, Y = J 21, Zu = J 11, Zb = J 12 and C = J 31, using (4.15) and then apply

(4.16) to compute the J ∗

ijs. We have from (4.15),

Y d ∶= ∫
1

0

∂Y

∂b
(sb + (1 − s)bh)dds, (4.36a)

Zb d ∶= ∫
1

0

∂Z

∂b
(su + (1 − s)uh)dds, (4.36b)

Zuw ∶= ∫
1

0

∂Z

∂u
(sb + (1 − s)bh)w ds. (4.36c)
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In order to take advantage of the product rule for Banach spaces, Theorem 3.1.4. In

particular, one has that

∇× (v × c) = v(∇ ⋅ c) − c(∇ ⋅ v) + (c ⋅ ∇)v − (v ⋅ ∇)c. (4.37)

Using Corollary 1 we can take the Fréchet derivatives in (4.36b) and (4.36c),

∂Z

∂b
c = ∂

∂b
(u(∇ ⋅ b) − b(∇ ⋅u) + (b ⋅ ∇)u − (u ⋅ ∇)b)c

= ∂

∂b
(u(∇ ⋅ b) − b(∇ ⋅u) + (∇u)b − (∇b)u)c

= (u(∇ ⋅ c) − c(∇ ⋅u) + (∇u)c − (∇c)u)

= ∇ × (u × c)

and by symmetry of (4.37),
∂Z

∂u
v = ∇ × (v × b). (4.38)

Finally, the Fréchet derivative in (4.36a) can immediately by appealing to Corrollary

2.

Now we are prepared to compute for d ∈H1
τ(Ω),

Y d = ∫
1

0

∂Y

∂b
(sb + (1 − s)bh)dds

= ∫
1

0
[∇ × (sb + (1 − s)bh)] × d + (∇ × d) × (sb + (1 − s)bh)ds

= 1

2
[(∇ × (bh + b)) × d + (∇ × d) × (bh + b)] .

(4.39)

Similarly, for the two Z terms for d ∈H1
τ(Ω),

Zb d = ∫
1

0

∂Z

∂b
(su + (1 − s)uh)dds

= ∫
1

0
∇× ((su + (1 − s)uh) × d)ds = 1

2
[∇ × ((uh +u) × d)] .

(4.40)

An identical procedure produces,

Zuw = 1

2
[∇ × (w × (b + bh))] . (4.41)
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Now, to find the adjoints of these operators, we use (4.16), which in our case involves

multiplying by a test function and then isolating the trial function using integration

by parts. We also make use of the vector identities in Appendix B.

We now compute the adjoint for Y . Integrating (4.39) against v ∈H1
0(Ω),

(Y d,v) = 1

2 ∫Ω
[(∇ × t) × d + (∇ × d) × t] ⋅ v dx

(B.1)= 1

2 ∫Ω
d ⋅ [v × (∇ × t)] + (∇ × d) ⋅ [t × v] dx

(B.5)= 1

2 ∫Ω
−d ⋅ [(∇ × t) × v] + d ⋅ [∇ × (t × v)] dx − 1

2 ∫∂Ω
d ⋅ [(t × v) ×n] ds

(B.1)= 1

2 ∫Ω
−d ⋅ [(∇ × t) × v] + d ⋅ [∇ × (t × v)] dx + 1

2 ∫∂Ω
(t × v) ⋅ [d ×n] ds

(4.4)= 1

2 ∫Ω
−d ⋅ [(∇ × t) × v] + d ⋅ [∇ × (t × v)] dx

(4.22)= (d,Y∗
v).

We proceed with computing the adjoint for Zu, by integrating against c ∈H1
τ(Ω),

(Zuw,c) =
1

2 ∫Ω
∇× (w × t) ⋅ cdx

(B.5)= 1

2 ∫Ω
(w × t) ⋅ (∇ × c)dx − 1

2 ∫∂Ω
(w × t) ⋅ (c ×n)ds

(B.1)= 1

2 ∫Ω
w ⋅ [t × (∇ × c)] dx − 1

2 ∫∂Ω
(w × t) ⋅ (c ×n)ds

(4.3)= 1

2 ∫Ω
w ⋅ [t × (∇ × c)] dx

(4.22)= (w,Z∗

u c).

Finally we compute the adjoint to the linearized operator Zb by integrating against

c ∈H1
τ(Ω),

(Zb d,c) =
1

2
(∇ × (s × d),c)

(B.5)= 1

2 ∫Ω
(s × d) ⋅ (∇ × c)dx − 1

2 ∫∂Ω
(s × d) ⋅ (c ×n)ds

(B.1)= 1

2 ∫Ω
d ⋅ [(∇ × c) × s] dx − 1

2 ∫∂Ω
d ⋅ [s × (c ×n)] − (s × d) ⋅ (c ×n)ds

(4.4)= 1

2 ∫Ω
d ⋅ [(∇ × c) × s] dx

(4.22)= (d,Z∗

b c).

The operator C∗ is identical to the one presented in [33], and the derivation can

be seen in §3.4.
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4.5.2 Well posedness of the adjoint problem

In this section we prove the well-posedness of the adjoint problem §4.3.1 equation

(4.23) using a saddle point type argument. To keep consistent with the standard

setting of saddle point problems [26, 13], we use the notation X ∶=H1
0(Ω) ×H1

τ(Ω)
and M ∶= L2(Ω) so that P(Ω) =X ×M . We equip the space X with the graph norm

∥(v,c)∥X ∶= (∥v∥2
1 + ∥c∥2

1)1/2. (4.42)

We next define the bilinear form a ∶X → R by

a((φ,β), (v,c)) = 1

Re
(∇φ,∇v) + (C∗φ,v)

+ κ

Rem
(∇ ×β,∇× c) + κ

Rem
(∇ ⋅β,∇ ⋅ c)

−κ (Y∗
φ,c) − κ (Z∗

uβ,v) − κ (Z∗

bβ,c) ,

(4.43)

and the mixed form b ∶X ×M → R by

b((v,c), π) = −(π,∇ ⋅ v). (4.44)

The weak dual problem (4.23) is then equivalent to the following mixed problem:

find ((φ,β), π) ∈X ×M such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a((φ,β), (v,c)) + b((v,c), p) = (ψ,v), ∀(v,c) ∈X,

b((φ,β), q) = (ψp, q), ∀q ∈M.
(4.45)

According the theory of saddle point systems, in order to show the existence and

uniqueness of solutions to (4.45), it suffices to show three things:

(i) The bilinear forms a(⋅, ⋅) and b(⋅, ⋅) are bounded on their respective domains.

(ii) The form a(⋅, ⋅) is coercive on X0 ∶= {v ∈X ∶ b(v, q) = 0, ∀q ∈M}.
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(iii) The form b(⋅, ⋅) satisfies the inf-sup condition: ∃β > 0 such that

inf
q∈M

sup
(v,c)∈X

b((v,c), q)
∥(v,c)∥X∥q∥M

≥ β. (4.46)

We organize these parts in the following lemmas. We make frequent use of the

inequalities in C in the proofs.

Lemma 4.5.1. The form a(⋅, ⋅) is bounded on X.

Proof. Consider the splitting

a((φ,β), (v,c)) = a0((φ,β), (v,c)) + a1((φ,β), (v,c)) (4.47)

where

a0((φ,β), (v,c)) =
1

Re
(∇φ,∇v) + κ

Rem
(∇ ×β,∇× c) + κ

Rem
(∇ ⋅β,∇ ⋅ c) ,

a1((φ,β), (v,c)) = (C∗φ,v) − κ (Y∗
φ,c) − κ (Z∗

uβ,v) − κ (Z∗

bβ,c) .

Then it suffices to show that both a0 and a1 are bounded separately. The proof for

the boundedness of a0 is given in [39]. For a1 observe that

∣a1((φ,β), (v,c))∣ ≤ ∫
Ω
∣C∗φ ⋅ v∣ dx + κ∫

Ω
∣Y∗
φ ⋅ c∣ dx

+κ∫
Ω
∣Z∗

uβ ⋅ v∣ dx + κ∫
Ω
∣Z∗

bβ ⋅ c∣ dx.
(4.48)

Now, for the first term on the right hand side of (4.48),

∫
Ω
∣C∗φ ⋅ v∣ dx = 1

2 ∫Ω
∣ [(∇s)Tφ − ((s ⋅ ∇)φ) − (∇ ⋅ s)φ] ⋅ v∣dx

= 1

2 ∫Ω
∣φT (∇s)v − vT (∇φ)s − (∇ ⋅ s)(φ ⋅ v)∣dx

(C.7)
≤ 1

2
[∥φ∥L4∥s∥1∥v∥L4 + ∥φ∥1∥s∥L4∥v∥L4 + ∥∇ ⋅ s∥∥φ ⋅ v∥]

(B.8d)
≤ 1

2
[∥φ∥L4∥s∥1∥v∥L4 + ∥φ∥1∥s∥L4∥v∥L4 +

√
3∥s∥1∥φ∥L4∥v∥L4]

(C.1)
≤ γ

2
(∥φ∥1∥s∥1∥v∥1 + ∥s∥1∥φ∥1∥v∥1 +

√
3∥s∥1∥φ∥1∥v∥1)

≤ 3
√

3γ

2
∥s∥1∥φ∥1∥v∥1,
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where γ is the square of the embedding constant of H1(Ω) into L4(Ω), see (C.1).

For the second term on the right hand side of (4.48),

κ (Y∗
φ ⋅ c) ≤ κ

2 ∫Ω
∣c ⋅ [(∇ × t) ×φ] ∣ + ∣c ⋅ [∇ × (t ×φ)] ∣dx

(B.5)= κ

2 ∫Ω
∣c ⋅ ((∇ × t) ×φ) ∣ + ∣(∇ × c) ⋅ (t ×φ) ∣dx

(B.1)= κ

2 ∫Ω
∣(∇ × t) ⋅ (c ×φ) ∣ + ∣(∇ × c) ⋅ (t ×φ) ∣dx

(B.8b)
≤ κ

2
(∥∇ × t∥L2∥c∥L4∥φ∥L4 + ∥∇ × c∥L2∥t∥L4∥φ∥L4)

(B.8c)
≤ κ

√
2

2
(∥c∥L4∥t∥1∥φ∥L4 + ∥c∥1∥t∥L4∥φ∥L4)

(C.1)
≤ κγ

√
2∥c∥1∥t∥1∥φ∥1.

For the third term on the right hand side of (4.48),

κ (Z∗

uβ,v) ≤
κ

2 ∫Ω
∣v ⋅ [t × (∇ ×β)] ∣dx (B.5)= κ

2 ∫Ω
∣(v × t) ⋅ (∇ ×β)∣dx

(B.8c)
≤ κ

√
2

2
∥v∥L4∥t∥L4∥β∥1

(C.1)
≤ κγ

√
2

2
∥v∥1∥t∥1∥β∥1.

The fourth term follows the same argument as the third term to yield the bound,

κ (Z∗

bβ,c) ≤
κγ

√
2

2
∥c∥1∥s∥1∥β∥1. (4.49)
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Putting these bounds together, we conclude

a1((φ,β), (v,c)) ≤ γ(
3
√

3

2
∥s∥1∥φ∥1∥v∥1 + κ

√
2∥c∥1∥t∥1∥φ∥1

+κ
√

2

2
∥v∥1∥t∥1∥β∥1 +

κ
√

2

2
∥c∥1∥s∥1∥β∥1)

(C.4)
≤ γ

⎛
⎝

3
√

3

2
∥s∥1∥φ∥1∥v∥1 +

κ
√

2

2
∥c∥1∥s∥1∥β∥1

+∥t∥1κ
√

2∥(v,c)∥X∥(φ,β)∥X
⎞
⎠

(C.4)
≤ γ

⎛
⎝
∥s∥1 max{3

√
3

2
,
κ
√

2

2
}∥(v,c)∥X∥(φ,β)∥X

+∥t∥1∥(v,c)∥X∥(φ,β)∥X
⎞
⎠

≤ αb∥(v,c)∥X∥(φ,β)∥X ,

(4.50)

where in turn

αb = max{∥s∥1 max{3
√

3

2
,
κ
√

2

2
} , ∥t∥1} .

Now we consider the coercivity of the bilinear form a(⋅, ⋅) on X.

Lemma 4.5.2. There exists a constant αc > 0 such that whenever

k1

Re
− γ [3

√
3

2
∥s∥1 +

3κ
√

2

4
∥t∥1] > 0, (4.51)

and

k2κ

Re2
m

− γ [κ
√

2

2
∥s∥1 +

3κ
√

2

4
∥t∥1] > 0 (4.52)

then

a((φ,β), (φ,β)) ≥ αc∥(φ,β)∥2
X , ∀(φ,β) ∈X. (4.53)
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Proof. Using the splitting established in the previous lemma,

a((φ,β), (φ,β)) ≥ a0((φ,β), (φ,β)) − ∣a1((φ,β), (φ,β))∣

= 1

Re
(∇φ,∇φ) + κ

Rem
(∇ ×β,∇×β) + κ

Rem
(∇ ⋅β,∇ ⋅β)

− ∣a1((φ,β), (φ,β))∣

≥ k1

Re
∥φ∥2

1 +
k2κ

Re2
m

∥β∥2
1 − ∣a1((φ,β), (φ,β))∣

(4.54)

where k1 comes from the Poincaré inequality(C.5), and k2 is defined though

∥∇ × v∥2
0 + ∥∇ ⋅ v∥2

0 ≥ k2∥v∥2
1, ∀v ∈H1

τ(Ω), (4.55)

which is valid under the restrictions we have imposed on the domain Ω and the

continuous embedding of H1
τ(Ω) ↪ H1(Ω) [37]. Picking up from (4.54) and using

(C.6) we conclude that,

a((φ,β), (φ,β)) ≥ k1

Re
∥φ∥2

1 +
k2κ

Re2
m

∥β∥2
1 − ∣a1((φ,β), (φ,β))∣

(4.50)
≥ ( k1

Re
− γ3

√
3

2
∥s∥1)∥φ∥2

1 + ( k2κ

Re2
m

− γκ
√

2

2
∥s∥1)∥β∥2

1

− γ3κ
√

2

2
∥φ∥1∥t∥1∥β∥1

(C.6)
≥ ( k1

Re
− γ3

√
3

2
∥s∥1)∥φ∥2

1 + ( k2κ

Re2
m

− γκ
√

2

2
∥s∥1)∥β∥2

1

− γ3κ
√

2

4
∥t∥1 (∥β∥2

1 + ∥φ∥2
1)

= ( k1

Re
− γ [3

√
3

2
∥s∥1 +

3κ
√

2

4
∥t∥1]) ∥φ∥2

1

+ ( k2κ

Re2
m

− γ [κ
√

2

2
∥s∥1 +

3κ
√

2

4
∥t∥1]) ∥β∥2

1.

Thus, taking

αc = min

⎧⎪⎪⎨⎪⎪⎩

k1

Re
− γ [3

√
3

2
∥s∥1 +

3κ
√

2

4
∥t∥1] ,

k2κ

Re2
m

− γ [κ
√

2

2
∥s∥1 +

3κ
√

2

4
∥t∥1]

⎫⎪⎪⎬⎪⎪⎭
,

(4.56)
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concludes the lemma.

Remark 4.5.1. We note here the quantities we had to assume were positive (4.51)

and (4.52), depend on the computed and true solutions through ∥s∥, ∥t∥, which should

should both be bounded for a stable solution. The two quantities (4.51) and (4.52)

also depend on the fluid and magnetic Reynolds numbers (respectively Re and Rem).

In particular, for small to moderate Re and Rem these inequalities might very well

be satisfied. However, the larger are Re and Rem (and in particular for the limit as

Re,Rem → ∞, that is in the case of ideal MHD), the smaller the positive terms of

(4.51) and (4.52), and thus coercivity cannot be proven by this method. We conclude

this method might therefore need to be adapted for high Re or Rem flows to guarantee

coercivity.

Now we are prepared to prove the main result.

Theorem 4.5.1. Under the conditions of Lemma 4.5.2 there exists a unique solution

to the dual problem (4.23).

Proof. The boundedness and inf-sup condition for b(⋅, ⋅) are standard see e.g. [13].

The boundedness of a(⋅, ⋅) follows from Lemma 4.5.1, and Lemma 4.5.2 proves a(⋅, ⋅)
is coercive on X so in particular on X0.
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Chapter 5

Conclusions and future directions

In this thesis, we have presented the abstract tenants of adjoint based a posteriori

error analysis (ABAPEA) for both linear and nonlinear problems. Additionally, in

chapters 2 and 3 we present concrete examples of ABAPEA for both linear and non-

linear problems. In Chapter 4, we present ABAPEA for the equations of stationary

magnetohydrodynamics (MHD). This work contains several novel aspects. Firstly,

since the MHD equations are over-determined, we must define an adjoint to a rect-

angular system. This is achieved by defining the adjoint directly to a consistent

weak form, namely the exact penalty weak form. Secondly, we establish the well-

posedness of the adjoint problem using techniques of saddle point theory. Thirdly,

we use our MHD adjoint problem to not only provide error estimates for realistic

MHD problems, we are able to distinguish components of error. We use this error

decomposition to explain seemingly counterintuitive results when refining in both

mesh size h and polynomial order p.

This work could be extended in several ways. One way would be to (reusing much

of the analysis here) perform ABAPEA for other stabilizations of MHD. These would

include compatible discretizations as well as divergence cleaning. In this context, one
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could also study divergence errors, and evaluate the different techniques. Another

possible extension could be to use the error contributions (potentially computed on a

coarse mesh) provided by ABAPEA to inform discretization choices for an iterative

splitting algorithm that would take place on a finer mesh.
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Appendix A

Standard function spaces

We denote by L2(Ω) the set of all square Lebesgue integrable functions on Ω ⊂ Rd

with associated inner product (⋅, ⋅) and norm ∥ ⋅ ∥. This extends naturally to vector

valued functions, denoted by L2(Ω), where the inner product is given by,

(u,v) =
d

∑
i=1

(ui, vi). (A.1)

The Sobolev norm for p = 2 is,

∥v∥m ∶=
⎛
⎝

m

∑
∣α∣=0

∥Dαv∥2⎞
⎠

1/2

.

where α = (α1, . . . , αm) is a multi-index of length m, ∣α∣ = ∑mi=1αi, and

Dαv ∶= ∂ ∣α∣v

∂xα1
1 . . . ∂xαm

m
,

where the partial derivatives are taken in the weak sense. The semi-norm is given by

∣v∣m ∶=
⎛
⎝ ∑∣α∣=m

∥Dαv∥2⎞
⎠

1/2

.

Thus, the Hilbert spaces Hm(Ω) for m = 0,1,2, . . . is simply be defined as functions

with bounded m-norm,

Hm(Ω) ∶= {v ∶ ∥v∥m < ∞}.
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Appendix A. Standard function spaces

The space H0(Ω) is identified with L2(Ω). For vector valued functions, the Hilbert

space Hm(Ω) is defined as,

Hm(Ω) ∶= {v ∶ vi ∈Hm(Ω), i = 1, . . . , d}.

The norm on Hm(Ω) that we will use is

∥v∥m = (
d

∑
i=1

∥vi∥2
m)

1/2

(A.2)

The semi-norm is thus defined by

∣v∣m = (
d

∑
i=1

∣vi∣2m)
1/2

= (
d

∑
i=1
∫

Ω
∥∇vi∥2

Rd dx)
1/2

= (∫
Ω
∥∇v∥Rd×d dx)

1/2

. (A.3)

We introduce the standard continuous Lagrange finite element spaces. Let Th be

a simplicial decomposition of Ω, where h denotes the maximum diameter of the

elements of Th. The standard Lagrange space finite element space of order q is then

Pqh ∶= {v ∈ C(Ω) ∶ ∀K ∈ Th, v∣K ∈ Pq(K)}, (A.4)

where Pq(K) is the space of polynomials of degree at most q defined on the element

K.
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Vector identities

In this section we have collected all relevant identities to perform the necessary inte-

gration by parts arguments for the readers convenience. All functions are assumed

to be in H2(Ω).

A ⋅ (B ×C) =B ⋅ (C ×A) =C ⋅ (A ×B), (B.1)

∇ ⋅ (A ×B) =B ⋅ (∇ ×A) −A ⋅ (∇ ×B), (B.2)

∇ ⋅ [(∇ ⋅A)B] = (∇ ⋅A)(∇ ⋅B) +B ⋅ [∇(∇ ⋅A)], (B.3)

∇ ⋅ (vw) = v∇ ⋅w +∇v ⋅w (B.4)

∫
Ω
A ⋅ (∇ ×B)dx = ∫

Ω
B ⋅ (∇ ×A)dx − ∫

∂Ω
B ⋅ (A ×n)ds, (B.5)

∫
Ω
B ⋅ [∇(∇ ⋅A)]dx = −∫

Ω
(∇ ⋅A)(∇ ⋅B)dx + ∫

∂Ω
(∇ ⋅A)B ds (B.6)

∫
Ω
v∇ ⋅w dx = −∫

Ω
∇v ⋅w dx + ∫

∂Ω
vw ⋅nds. (B.7)

One should note that the integral identities (B.5), (B.6) and (B.7) follow from the

component-wise identities (B.1)-(B.4) and the divergence theorem. We also make

72



Appendix B. Vector identities

use of the following inequalities for u,v ∈H1(Ω),

∣u ⋅ v∣ ≤ ∥u∥Rd∥v∥Rd , (B.8a)

∥u × v∥Rd ≤ ∥u∥Rd∥v∥Rd , (B.8b)

∥∇ ×u∥Rd ≤
√

2∥∇u∥Rd×d , (B.8c)

∣∇ ⋅u∣ ≤
√

3∥∇u∥Rd×d (B.8d)

∥Av∥Rd ≤ ∥A∥Rd×d∥v∥Rd , (B.8e)

and finally the equality

∥∇vT ∥Rd×d = ∥∇v∥Rd×d , (B.9)

where throughout for A ∈ Rd×d,

∥A∥Rd×d = (
d

∑
i=1

d

∑
j=1

∣aij ∣2)
1/2

(B.10)

is the Frobenius norm and thus,

∥∇v∥Rd×d = (
d

∑
i=1

∥∇vi∥2
Rd)

1/2

.
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Useful inequalities

1. The space H1(Ω) embeds continuously in L4(Ω) with constant
√
γ. That is,

H1(Ω) ↪ L4(Ω) such that,

∥v∥L4 ≤ √
γ∥v∥H1 . (C.1)

2. We have

∥u ⋅ v∥L2 ≤ ∥u∥L4∥v∥L4 . (C.2)

This is seen as follow,

∥u ⋅ v∥L2 = (∫
Ω
(u ⋅ v)2 dx)

1/2

≤ (∫
Ω
∥u∥2

Rd∥v∥2
Rd dx)

1/2

≤ ((∫
Ω
∥u∥4

Rd×d)
1/2

(∫
Ω
∥v∥4

Rd)
1/2

)
1/2

= ∥u∥L4∥v∥L4 .

3. We have,

∥u × v∥L2 ≤ ∥u∥L4∥v∥L4 (C.3)
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as shown below,

∥u × v∥L2 = (∫
Ω
∥u × v∥2

Rd dx)
1/2 (B.8b)

≤ (∫
Ω
∥u∥2

Rd∥v∥2
Rd dx)

1/2

≤ ((∫
Ω
∥u∥4

Rd×d)
1/2

(∫
Ω
∥v∥4

Rd)
1/2

)
1/2

= ∥u∥L4∥v∥L4 .

4. The Cauchy-Schwarz inequality for [a, b] , [c, d] ∈ R2,

ac + bd = [a, b] [c, d]
T

≤
√
a2 + c2

√
b2 + d2, (C.4)

5. The following inequality follows from the Poincaré inequality is,

∥∇v∥2
0 ≥ k1∥v∥2

1, ∀v ∈H1
0(Ω). (C.5)

6. For x, y ∈ R,

− xy ≥ −1
2(x2 + y2), (C.6)

We also need the following propositions,

Proposition C.0.1. Let u,v,w ∈H1(Ω). Then there holds

∫
Ω
uT (∇v)w dx ≤ ∥u∥L4∥w∥L4∥v∥1. (C.7)

Proof. We will work with the integrand first. To this end, we have that

uT (∇v)w =
d

∑
i=1

uiw
T∇vi ≤

d

∑
i=1

∣ui∣∥w∥Rd∥∇vi∥Rd = ∥w∥Rd

d

∑
i=1

∣ui∣∥∇vi∥Rd

≤ ∥w∥Rd (
d

∑
i=1

∣ui∣2)
1/2

(
d

∑
i=1

∥∇vi∥2
Rd)

1/2
(B.10)= ∥w∥Rd∥u∥Rd∥∇v∥Rd×d .

Now we integrate,

∫
Ω
∣w∥Rd∥u∥Rd∥∇v∥Rd×d dx

≤ (∫
Ω
∥u∥2

Rd∥w∥2
Rd dx)

1/2

(∫
Ω
∥∇v∥2

Rd×d)
1/2

≤ (∫
Ω
∥u∥4

Rd dx)
1/4

(∫
Ω
∥w∥4

Rd dx)
1/4

(∫
Ω
∥∇v∥2

Rd×d dx)
1/2

= ∥u∥L4∥w∥L4 ∣v∣1 ≤ ∥u∥L4∥w∥L4∥v∥1.
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