Online Assessment Methods for Student-Centered Learning: Active Learning, Collaboration, and Application with Authentic Assessment

Charlotte Nirmalani Gunawardena
University of New Mexico, lani@unm.edu

Stephanie L. Moore PhD
University of New Mexico - Main Campus, stephaniemoore@unm.edu

Linda Barril
UNM, lbarril@unm.edu

Kathiravelu Thabotharan
University of Jaffna (Sri Lanka), thabo@univ.jfn.ac.lk

Follow this and additional works at: https://digitalrepository.unm.edu/ulls_fsp

Part of the Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, and the Online and Distance Education Commons

Recommended Citation

This Presentation is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in University Libraries & Learning Sciences Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, sarahrk@unm.edu.
Online Assessment Methods for Student-Centered Learning

Active Learning, Collaboration, & Application with Authentic Assessment

Distinguished Professor C. N. Lani Gunawardena, Professor Stephanie L. Moore, and Dr. Linda Barril, University of New Mexico, USA

Dr. K. Thabotharan, University of Jaffna, Sri Lanka
Agenda

Introduction
Lani Gunawardena

A Learning and Pedagogical Foundation & Taxonomy for Selecting Assessment Methods
Stephanie Moore

Assessing Collaborative Learning
Lani Gunawardena

Student-Centered Assessment Methodologies at the University of Jaffna
K. Thabotharan

Technologies for Assessment
Linda Barril

Labs & Art Online - Assessing Practicals
Stephanie Moore

Questions & Discussion
Introduction

Let’s move:

- Away from remote emergency online assessments during COVID to well-designed authentic assessments that simulate professional skills
- Beyond multiple choice to a variety of assessment methods
- Beyond worrying about proctoring to continuous assessments
- Forward to changing the culture of assessment from pass/fail, normal/bell curve to learning improvement and student development
A Learning and Pedagogical Foundation & Taxonomy for Assessment Methods

STEPHANIE L. MOORE, UNIVERSITY OF NEW MEXICO, USA
Domains of Learning

Cognitive
- Make a decision based on output from equipment
- Evaluate an approach or technique
- Analyze data or performance

Psychomotor
- Manipulate equipment (the feel, the sound)
- Demonstrate a physical skill

Affective

Conative

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Learning Taxonomy

<table>
<thead>
<tr>
<th>Bloom’s* Taxonomy</th>
<th>Recall</th>
<th>Retention</th>
<th>Transfer</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Anderson, Krathwohl, & Bloom (2001)
Assessment

<table>
<thead>
<tr>
<th>Remember</th>
<th>Understand</th>
<th>Apply</th>
<th>Analyze</th>
<th>Evaluate</th>
<th>Create</th>
<th>Affective Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Reasoning</td>
<td>Skills</td>
<td>Products</td>
<td>Dispositions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facts and concepts we want students to know</td>
<td>Students use what they know to reason and solve problems</td>
<td>Students use their knowledge and reasoning to perform a task skillfully</td>
<td>Students use their knowledge, reasoning, and skills to create a concrete product</td>
<td>Students’ attitudes and beliefs about a given domain or expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Response</td>
<td>Constructed Response or Extended Response</td>
<td>Performance Assessment or Demonstration</td>
<td>Product</td>
<td>Personal communications (interviews, journals, reflections)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proctoring is really focused on these types of assessments

Auto-graded assessments and adaptive learning systems focus on learning at this level

“Authentic Assessment” – more focus on application; more authentic to what’s expected on-the-job / in real life

Stiggins & Conklin, 1992; Chappuis & Stiggins, 2016
<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Reasoning</th>
<th>Skills</th>
<th>Products</th>
<th>Dispositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facts and concepts we want students to know</td>
<td>Students use what they know to reason and solve problems</td>
<td>Students use their knowledge and reasoning to perform a task skillfully</td>
<td>Students use their knowledge, reasoning, and skills to create a concrete product</td>
<td>Students' attitudes and beliefs about a given domain or expectations</td>
</tr>
<tr>
<td>Selected Response</td>
<td>Constructed Response or Extended Response</td>
<td>Performance Assessment or Demonstration</td>
<td>Product</td>
<td>Personal communications (interviews, journals, reflections)</td>
</tr>
</tbody>
</table>

Assesses mastery of discrete elements of knowledge, such as important history facts, spelling words, foreign language vocabulary, and parts of plans.

Assesses blocks of knowledge rather than pieces of detached information – such as causes of environmental disasters, the carbon cycle in the atmosphere, how one mathematical equation can be derived from another, or the concept of checks and balances in the government; helps identify whether a student has strong reasoning or problem-solving.

Determines whether a student can skillfully complete a task or perform in a desired manner, such as mixing chemicals correctly, engaging in skilled debate, holding a conversation in a foreign language, or making a decision in a legal case based on constitutional law.

Determines whether a student can create a quality product based on what they have learned. These might include a business presentation, a lab report, a health and fitness plan, a balanced checkbook register, a creative work of art, or even a news article or broadcast.

Gathers information about a student’s dispositions and their ability to reason and allow you to probe more deeply; can take the form of interviews, student journals that you read and respond to, open questions during instruction, and oral exams.

Affective Domain

- Remember
- Understand
- Apply
- Analyze
- Evaluate
- Create
Assessment – Ideas for Online

Knowledge

- Facts and concepts we want students to know
 - Selected Response

Examples for online:
- Quiz or test tools (objective items)
- Audio voice threads (e.g. language instruction)
- Recitations (record something that has to be memorized)
- Case studies requiring students to apply course content and derive a solution

Reasoning

- Students use what they know to reason and solve problems
 - Constructed Response or Extended Response

Examples for online:
- Quiz or test tools (open-ended items)
- Sorting activities
- Record solving a problem and submit that recording
- Paper on a topic
- Presentation on a topic (record and submit as assignment or share in a discussion forum)

Skills

- Students use their knowledge and reasoning to perform a task skilfully

Examples for online:
- Students record themselves performing a skill (e.g. a lab, an exercise routine, a talk-aloud on their design process for a product) (assess using a rubric)
- Students perform a skill during a live video session (e.g. labs) (assess using a rubric)
- Students study requiring students to apply course content and derive a solution
- Simulation or role playing

Products

- Students use their knowledge, reasoning, and skills to create a concrete product
 - Product

Examples for online:
- Students complete a project – individually or as a group – and submit (assess using a rubric)
- Students construct a writing sample – individually or together – on a wiki or GoogleDoc (e.g. mimic a writer’s style or revise an essay with issues that you load for them)

Dispositions

- Students’ attitudes and beliefs about a given domain or expectations
 - Personal communications (interviews, journals, reflections)

Examples for online:
- Students maintain a reflection journal throughout class with prompts that focus on beliefs and attitudes
- Personal communications – open questions during instruction, oral exams, one-on-one feedback loops

Ibrig a, 11
Three Approaches to Reducing Cheating

Countermeasures
- Timed testing
- Proctoring
- Random selection from a test bank
- Random presentation of items

Course (re)Design
- Multiple, more frequent assessments
- Use formative assessment
- Use feedback and opportunities to apply feedback for improvement

Cultural Interventions
- Change student attitudes
- Marketing campaign about student attitudes
- Honor codes (UVA's is student-led)

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Syllabus – OILS 532 eLearning Course Design

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Personal Design Framework</td>
<td>10</td>
</tr>
<tr>
<td>2. Revised Personal Design Framework</td>
<td>10</td>
</tr>
<tr>
<td>3. Group eLearning Design Project:</td>
<td></td>
</tr>
<tr>
<td>• Learner Analysis (15 points)</td>
<td></td>
</tr>
<tr>
<td>• Initial Design Document (10 points)</td>
<td></td>
</tr>
<tr>
<td>• Usability Testing (15 points)</td>
<td></td>
</tr>
<tr>
<td>• Final eLearning Design Project (25 points)</td>
<td></td>
</tr>
<tr>
<td>4. Participation in Class and Group Activities</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

C. N. Gunawardena, Fulbright Panel - Sri Lanka, 11-18-2020
Syllabus – Expectations for Demonstration of Skills

Grades will be based on the successful completion of the above-mentioned requirements with evidence of the following characteristics:

Higher order thinking skills - the ability to apply, analyze, synthesize and evaluate
Effective communication skills - the ability to get information across effectively, orally and in writing
Collaborative learning skills - the ability to work effectively in a group
Self-direction and motivation
Professional commitment - a sense of responsibility, meeting deadlines, etc.
Syllabus – Grade Expectations for A+

- I do not grade on the curve, so if all students do exceptional work, all students earn an A.

- A+ students are excellent collaborators and put their effort into building a learning community in this class.

The grade of A+ is reserved for outstanding performance and exceptional contribution to the learning community with evidence of leadership and mentoring. This grade is awarded to those who have not only demonstrated their own progress and expertise in course activities, but also shown their selfless service to others in this class and beyond.
Academic Integrity

You must follow copyright laws and cite work and images and obtain permission to use them

We treat academic dishonesty very seriously. Plagiarism of any kind will result in a grade of F as well as further actions by the Dean of Students as described in The UNM Pathfinder under Policy on Academic Dishonesty. Unless I indicate otherwise, all work done for class (written assignments, oral presentations, quizzes, exams, etc.) must be prepared in its entirety by the person whose name appears on it. This means that, among others, the use of translation software or the excessive help of mentors or tutors (third party help) is unacceptable (see example at computer translation). Translating the original text of another author, even if the translation is your own, and attempting to present the work as your own original work also constitutes plagiarism. Any information gathered from the Internet and used in an assignment must be correctly acknowledged and cited. Not doing so constitutes a case of plagiarism and will be subjected to the sanctions just outlined.
Directions for Asynchronous Discussions
(OILS 535_2020 Culture & eLearning - Gunawardena)

August 19-25

In this discussion you will explore how to define *culture* and *eLearning*. Then, you will determine how culture and eLearning are related.

- **Engagement/Interaction**: Build on each others’ posts to discuss where you may have similar or different views from each other. Explain why you agree, and if you disagree, how you would change the definitions. The goal of this discussion is to come to a consensus on a definition of culture and eLearning, and how culture and eLearning are related, based on the perspectives put forward by the class.

First poster, click **REPLY** to the Instructions post, and reply to your classmates’ posts by clicking on **REPLY** on their messages.

First postings due Friday, August 21; Replies by Tuesday August 25.
Self Assessment Survey

(scale strongly disagree, disagree, agree, strongly agree)

Community Building:

1. I addressed others by name and/or mentioned the name/s of previous posters in referring to their statements.

2. I supported or encouraged others to express their views and experiences.

3. My messages were positive and cordial in tone.

4. When disagreeing, I treated other’s views respectfully, and stated specific reasons for disagreeing.

Knowledge Building:

5. I introduced personal life or professional experience directly relevant to the discussion topic.

6. I referred to the required reading/s (quoted or paraphrased accurately) in my posts.

7. I asked questions about, or restated the content of, a previous post to clarify.

8. I agreed or disagreed with a previous poster and gave reasons or examples.

9. I asked a question that lead the discussion into a new but related area.

10. I pointed out relationships between ideas advanced by different authors.

C. N. Gunawardena, Fulbright Panel - Sri Lanka, 11-18-2020
Peer Synthesis of Group Discussion - Preserving Social Construction of Knowledge (From OLIT 535 - Gunawardena)

C. N. Gunawardena, Fulbright Panel - Sri Lanka, 11-18-2020
Group Process Evaluation Form

This form helps you to reflect on your group process, and the contribution of your peers to the group process. Using the following scale, indicate the number which, in your opinion reflects each group member’s contribution to the group project in each of the categories. You should first evaluate yourself and then write down the names of each group member and evaluate their contributions.

<table>
<thead>
<tr>
<th>Category</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the analysis and synthesis of ideas during group discussions.</td>
<td>1-5</td>
</tr>
<tr>
<td>Contribution to the writing of the group paper and completion of assigned activities.</td>
<td>1-5</td>
</tr>
<tr>
<td>Collaboration: the ability to work effectively in a group and contribute as a group member.</td>
<td>1-5</td>
</tr>
<tr>
<td>Self-direction and motivation.</td>
<td>1-5</td>
</tr>
<tr>
<td>Commitment to group goals.</td>
<td>1-5</td>
</tr>
<tr>
<td>Sense of responsibility to group – meeting deadlines, informing others of progress, etc.</td>
<td>1-5</td>
</tr>
<tr>
<td>Percentage of Effort in the Group Project: (Here list your perception of the percentage of effort contributed by each member towards the group project. The percentages you assign to yourself and other members of the group must total to 100)</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Using the following scale, indicate the number which reflects your opinion of the climate in your group in the blank provided for each statement.

- 1 = strongly disagree
- 2 = disagree
- 3 = neutral
- 4 = agree
- 5 = strongly agree

- There was a high degree of cooperation and coordination among group members.
- I freely contributed my thoughts and ideas during group meetings.
- Conflict was managed constructively by group members.
- Group members communicated clearly with each other.
- The tasks for this group were distributed equally.

Please describe the tasks you completed and contributed toward the group project:

Assessing Collaborative Inquiry-Based Learning (CIBL) while Developing an EMT Certification Program

Cmap - https://cmap.ihmc.us/
Collaborative Concept Mapping to Develop a Diabetes Prevention Specialist Program – Example of Ongoing Instructor Feedback

The Interaction Analysis Model to Assess Social Construction of Knowledge Online (Gunawardena, Lowe, & Anderson, 1997)
Student-Centered Assessment Methodologies at the University of Jaffna

K. THABOTHARAN, UNIVERSITY OF JAFFNA, SRI LANKA
University of Jaffna

➢ Is very much a traditional University

➢ Has already adopted SCL principles to its core educational activities

➢ Has been slowly incorporating online modes of teaching and assessment

➢ Lots of policy level changes are needed to adopt online based assessments
Assessment components are well defined

<table>
<thead>
<tr>
<th>Intended Learning Outcomes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apply software engineering principles and practices for the planning and development of a software product</td>
</tr>
<tr>
<td>• Practice as an effective player of a software project team</td>
</tr>
<tr>
<td>• Use appropriate tools, principles and best practices for developing an application</td>
</tr>
<tr>
<td>• Create professional-quality deliverables</td>
</tr>
<tr>
<td>• Develop an application based on a given set of requirements in order to deploy the application at the client site</td>
</tr>
<tr>
<td>• Demonstrate abilities to manage pressures and procedures of a team work in an industrial setup</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• This course unit introduces and applies a range of topics in software engineering and rapid application development in the context of a team project</td>
</tr>
<tr>
<td>• Students will be assigned to a group of three to four members and each group works to specify, design, implement, and document a software project</td>
</tr>
<tr>
<td>• The course unit is oriented around directed and self-paced learning, supported by weekly mentoring and discussions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching/Learning Methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentoring, Small group discussions, Case studies, Presentations, Demonstrations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment Strategy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Team Software Project Report ———— 30%</td>
</tr>
<tr>
<td>• Software product and deployment of the software ———— 40%</td>
</tr>
<tr>
<td>• Project Presentation and individual viva-voce ———— 30%</td>
</tr>
</tbody>
</table>
Online Assessment Mechanisms

➢ As of now online based assessments are confined to In-course assessments.

➢ Some group project activities are done as online based

➢ Part of the evaluation process is also done using online mode
Group Projects

Group Projects have multiple aims:

- Gives students opportunity to apply theoretical knowledge to solve a real world problem
- Enable students to develop a completed product
- Work together as a group and collaborate
- Involve students in a more focused small-group activity
- Teachers can give more attention to a small group of students
- Additionally it also develops skills such as gathering resources, presenting, working under deadlines
Online Based Assessment Methodologies

➢ LMS and Github based submission of progress of group projects in subjects such as Computer Science, using online modes

➢ Students have scheduled timings during the week and will have to present their achievement

➢ Diagrams describing the requirements identification, development cycle phase, the entity relationship diagrams have to be presented
Group projects – student submissions

K. Thabotharan, Fulbright Panel - Sri Lanka, 11-18-2020
Technologies for Assessment

LINDA BARRIL, UNIVERSITY OF NEW MEXICO, USA
Online Courses ~ LMS*

Technologies for Assessment

Automatically preserves all **documentation** of individual and group work

Provides resources

- Learning
- Assessment

Moodle Cloud Forum
Technologies for Assessment

Students can submit multimedia work in multiple formats using the text editor:

- Online Text
- File Upload
- Video
- Audio
- Graphics

Student submission in Moodle Cloud

L. Barril, Fulbright Panel - Sri Lanka, 11-18-2020
Technologies for Assessment

Instructors can provide multimedia feedback in multiple formats using the text editor:

- Online Text
- File Upload
- Video
- Audio
- Graphics

MC Grade Book Text Editor

L. Barril, Fulbright Panel - Sri Lanka, 11-18-2020
Technologies for Assessment

- Discussion forum ~ Chat
- Web-conference (BigBlueButton, Zoom)
- Journal ~ Wiki ~ Blog
- Video recording (PC, mobile)
- Audio recording (PC, mobile)
- Document creation (MS Office, Google Docs/Sheets/Slides/Forms)
- Graphics (PC, mobile; Wikimedia)
- Embed social media (Twitter)
- Embed social collaboration apps (Padlet, Popplet)
Technologies for Assessment

Supports social interaction and engagement

L. Barril, Fulbright Panel - Sri Lanka, 11-18-2020
Technologies for Assessment
Assessing Collaborative Work/Individual Participation

General feedback ~ Public Space
- Positive – Supportive
- Social presence
- A/Synchronous
 - Within tool (discussion, chat, web-conference)

Formal feedback ~ Private Space
- Detailed - focus on guidance/improvement
- Self and Group Evaluation (e.g., WisCom)
- A/Synchronous
 - One:one or small group (Skype, Zoom, BBB, Chat)
 - Grade Book
 - Text, audio, video, graphic
Technologies for Assessment

Course: Production & Utilization of Instructional Materials (OILS 421)
Platform: Poplet (Poplet.com)

Goal: Class introductions to build learning community and increase interest/engagement (non-linear)

Task: Students post their introductions with encouragement to share images, videos, links, etc.

Benefit:
Students: Creative engagement in non-linear, freeform work space supports greater participation/more authentic interaction
Students: Work may be saved as learning/instructional resource (download)
Instructor: Demonstrate social presence (providing positive, supportive general feedback)
Instructor: Source for providing personalized, private assessment feedback to students

Collaborative Applications

L. Barril, Fulbright Panel - Sri Lanka, 11-18-2020
Technologies for Assessment

Collaborative Applications

Course: Technological Change & Society (OILS 481)
Platform: Miro (Miro.com)

Goal: Research, explore & share every technology without repetition
Task: Collaborative brainstorming concept map creation
Benefit:
Students: Creative engagement in non-linear, freeform work space supports greater participation/more authentic interaction
Students: Work may be saved as learning/instructional resource (download)
Instructor: Demonstrate social presence (providing positive, supportive general feedback)
Instructor: Source for providing personalized, private assessment feedback to students

L. Barril, Fulbright Panel - Sri Lanka, 11-18-2020
Course: Management of eLearning Systems (OILS 405/505)
Platform: Padlet (Padlet.com)

Goal: Learn LMS Site Administrator skills: Set-up backend categories and course structure before building them in MC LMS

Task: Create individual storyboard concept map of categories and course structure for a fictitious, or real, organization/client

Benefits:
- **Students**: View peers’ work to support their learning & enhance understanding
- **Students**: May be saved as instructional resource (download)
- **Instructor**: Social presence (providing positive, supportive general feedback)
- **Instructor**: Provides personalized private assessment feedback to students
Labs & Art Online – Assessing Practicals

EXPERIMENTS AND SIMULATIONS

STEPHANIE L. MOORE, UNIVERSITY OF NEW MEXICO, USA
Remote Labs

- Lab Kits / Lab in a Box – Experiments at Home
- Geospatial data collection
- Simulations
- Virtual Glove Box
- Mobile apps
- Remote monitoring
- Mobile Labs

Remote Lab + Live or Recorded Video

Remote Lab + E-portfolio

International Journal of Online and Biomedical Engineering
(continues International Journal of Online Engineering)

Special issues forthcoming in:
European Journal of Engineering Education
Journal of Computing in Higher Education

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Guide on online and blended labs, studios, and fieldwork: https://lta.hw.ac.uk/wp-content/uploads/03_RBL_Practice-based-activities.pdf

Includes a planning guide, ideas, and links to resources, media articles, and academic articles.

Labs in STEM subjects
- Home labs
- Lab recordings
- Lab simulations
- Remote Labs
- Citizen Science

Studios & Workshops in Design Subjects
- Social media (Pinterest)
- Virtual studios

Fieldwork
- Local field trips
- Broadcasts from the field
- Virtual field trip (capture real world data / pictures / cartography / other info)
- Virtual museum tours

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
California State Polytechnic University, Pomona, CA

Website with a lot of examples and resources:
https://www.cpp.edu/facultycenter/teaching-continuity/labs-studios-and-activity-courses/

Labs * Studios * Activity Courses

Multimedia Learning Objects Repository – various visualizations, animations, simulations and other learning objects
Virtual Labs for Science Education (overview of how they developed virtual labs):
https://bccampus.ca/2020/06/18/spoiled-for-choice-virtual-labs-for-science-education/

Extensive Open Text – Virtual Lab and Science Resource Directory -
https://opentextbc.ca/virtualscienceresources/
Irish Universities Association
Enhancing Digital Teaching & Learning (EDTL) – Considerations for Lab-based Subjects

Infographic on process for developing remote labs
https://edtl.blog/the-edtl-approach/edtl-approach-considerations-for-lab-based-subjects/

Site features:
Case Studies
Resources
Exemplars (videos)
Lecturemotely – webinar series

Webinars specifically on lab courses:

https://www.lecturemotely.com/copy-of-lab-courses
Kwantlen Polytechnic University, Canada

Physics – students received a kit and completed experiments at home, recording and sharing those experiments back with the instructor

Astronomy – experiments at home, simulations

Brief video showing examples: https://www.youtube.com/watch?v=uG4Ho5gRpBQ&feature=youtu.be
University of Technology Sydney in Australia

Optics Lab – hybrid social distancing with 10 students in the lab and 10 students online in MS Teams and mirroring software
- students swap positions each lab
- some students are in permanent distance positions, so they complete the labs fully online

The Open University, UK

http://www.open.ac.uk/blogs/design/using-remote-and-onscreen-laboratories-in-online-learning/
Resources

MERLOT Virtual Labs - https://virtuallabs.merlot.org/

PhET Simulations - https://phet.colorado.edu/; Remote Learning Tips (GoogleDoc)

LabXchange - https://www.labxchange.org/ - created by Harvard

Labster - https://www.labster.com/ - virtual labs and ability to create your own simulations

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Art & Studio-based Classes
Live presentations

Recorded presentations

Online Art Critique

Image Curation / Virtual Exhibits

Social media (e.g. share / curate on Pinterest)

Virtual studios

VoiceThread

Social media tool

Discussion board in LMS

Live video chat (Zoom, Collaborate, WebEx, others)

Video recording tool in the LMS – either for assignment submission or for discussion submission

Virtual Exhibit tools -
https://exhibbit.com/home/
https://www.artsteps.com/
https://www.3dvas.com/

Digital portfolios

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Teaching Art Online –
Gomes and Pacansky-Brock

https://sites.google.com/view/teachingartonline/teaching-demos?authuser=0

Direct Links to Featured Resources

- Video: Online Art Critique Demonstration (Hilary)
- Video Demo: Image Curation Activity + Canvas Discussion (Michelle)
- Instructions: Image Curation Activity (Michelle)
- Assignment details [from Canvas] for the Image Curation, Review and Reflect, and Canvas Discussion

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Thank you!
References

Assessment & Taxonomies:

Online Learning Research:

Examples and Resources

A COMPILATION OF NUMEROUS EXAMPLES AND RESOURCES ACROSS DIFFERENT SUBJECT AREAS AND TYPES OF COURSES

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Framework for 21st Century Learning

Learning & Innovation Skills – The 4C’s
- Critical Thinking and Problem Solving
- Communication
- Collaboration
- Creativity and Innovation

Information, Media & Technology Skills
- Information, Media & ICT Literacy

Life & Career Skills
- Flexibility & Adaptability
- Initiative & Self-Direction
- Social & Cross-Cultural Skills
- Productivity & Accountability
- Leadership & Responsibility

Strategies to Address Cheating

A COMPILATION OF NUMEROUS EXAMPLES AND RESOURCES ACROSS DIFFERENT SUBJECT AREAS AND TYPES OF COURSES
What can you do – Course (re)Design

STRATEGY – MULTIPLE SMALL ASSESSMENTS

Lowers the stakes while maintaining accountability

Shifts the emphasis from performance to mastery (not a single point in time but what you accomplish over time)

Cumulative module tests – then don’t need a final

Use different types of assessment (mixed approach)

BETTER FOR LEARNING

Testing is a learning strategy (outperforms studying)

Spaced repetition and retrieval

Knowledge less likely to be inert (students less likely to “binge-and-dump”)
Culture Matters

Students who cheat are rarely dishonest in other contexts
◦ Cheating is strongly driven by the class environment

Students will cheat “just enough” so they don’t feel bad about themselves

Priming and Timing
◦ Ten commandments experiment
◦ Sign statement or recite the honor code at the start of an exam or before submitting an assignment (UVA has an honor code and we have students sign or cite that with every assignment)
Creating the Culture You Desire

<table>
<thead>
<tr>
<th>Talk With Your Class</th>
<th>Institutional Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Let them know systemic cheating is rare (establishes cultural norms)</td>
<td>➢ Engage students in creating or leading efforts around an honor code</td>
</tr>
<tr>
<td>➢ Help them understand why you care about that and why they might want to as well</td>
<td>➢ Integrate your honor code into the fabric of your institution</td>
</tr>
<tr>
<td>➢ Be clear about what constitutes cheating and what the penalties are, and about your commitment to consistent treatment</td>
<td>➢ Have students write it or sign it for assignments</td>
</tr>
<tr>
<td>➢ Tell them in your experience, students can avoid the temptation to cheat by keeping up with the work and asking for help when readings, lectures, and class activities aren’t making sense</td>
<td>➢ Ask a famous alum to record a video (we have Katie Couric)</td>
</tr>
<tr>
<td></td>
<td>➢ Incorporate it into student orientations</td>
</tr>
<tr>
<td></td>
<td>➢ Create an education campaign to communicate the same class conversation but across campus</td>
</tr>
</tbody>
</table>
Plagiarism Tutorial and Certificate

Free, online from Indiana University:

https://plagiarism.iu.edu/certificationTests/

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Assessment – Ideas for Online

<table>
<thead>
<tr>
<th>Remember</th>
<th>Understand</th>
<th>Apply</th>
<th>Analyze</th>
<th>Evaluate</th>
<th>Create</th>
<th>Affective Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Reasoning</td>
<td>Skills</td>
<td>Products</td>
<td>Dispositions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facts and concepts we want students to know</td>
<td>Students use what they know to reason and solve problems</td>
<td>Students use their knowledge and reasoning to perform a task skillfully</td>
<td>Students use their knowledge, reasoning, and skills to create a concrete product</td>
<td>Students’ attitudes and beliefs about a given domain or expectations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Response</td>
<td>Constructed Response or Extended Response</td>
<td>Performance Assessment or Demonstration</td>
<td>Product</td>
<td>Personal communications (interviews, journals, reflections)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples for online:
- Quiz or test tools (objective items)
- Audio voice threads (e.g., language instruction)
- Recitations (record something that has to be memorized)
- Sorting activities
- Record solving a problem and submit that recording
- Paper on a topic
- Presentation on a topic (record and submit as assignment or share in a discussion forum)
- Case studies requiring students to apply course content and derive a solution

Examples for online:
- Students record themselves performing a skill (e.g., a lab, an exercise routine, a talk-aloud on their design process for a product) (assess using a rubric)
- Students perform a skill during a live video session (e.g., labs) (assess using a rubric)
- Students complete a project – individually or as a group – and submit (assess using a rubric)
- Students construct a writing sample – individually or together – on a wiki or GoogleDoc (e.g., mimic a writer’s style or revise an essay with issues that you load for them)

Examples for online:
- Students maintain a reflection journal throughout class with prompts that focus on beliefs and attitudes
- Personal communications – open questions during instruction, oral exams, one-on-one feedback loops

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Course Examples

GRADUATE EDUCATION CLASS
Design classes – want students to learn how to design effective instruction, how to apply particular methods and principles

Project-based design – on major product that is broken into a series of deliverables (students have to propose, provide a detailed plan, then storyboard, then develop)

Feedback provided at these stages on deliverables (formative) so students have an opportunity to act on the feedback

First class in sequence – have self-assessments periodically on both the content and best practices for being an online learner

UNDERGRADUATE ENGINEERING CLASS (MATERIALS ENGINEERING)
Professor recorded talks that presented material (direct instruction) and worked examples

After they viewed the video, students were then provided problems to solve and submit by recording themselves working out the problem and submitting as an assignment (measuring reasoning and skills)

Professor and students used tablet PCs with electronic inking that allowed them to draw diagrams and equations and record their work to share or submit

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Course Examples

UNDERGRADUATE CLASS ON ETHICS OF TECHNOLOGY

Synchronous sessions with ~20 minutes of direct instruction to present content then ~30 minutes in small groups answering quiz questions that required reasoning and application of readings (instructor drops in on all the groups), then ~20 minute whole-class discussion to share and discuss

Cross-country collaboration (UVA and TU Dortmund in Germany)

Simulation on decision making – required research, presentation of research, recommendations, deliberation, final proposal, then an after-action review featuring a discussion with the head of Germany’s Nuclear Ethics Commission

GRADUATE CLASS ON SPECIAL EDUCATION – ASSESSING LEARNERS WITH DISABILITIES

Scaffolded case study design

1. Case 1 – “textbook” – provided all the relevant materials
2. Case 2 – a bit more authentic – some missing information
3. Case 3 – authentic – missing documents, conflicting doctor’s reports, “answers” aren’t clear or simple

Designed cases like a scavenger hunt – students had to go to certain “offices” or email certain people to receive information (like they would in real life)

Some resources buried in emails – could tell who carefully read and who did not
Formative & Summative Assessment

EVALUATING STUDENTS AND CREATING FEEDBACK LOOPS
Formative & Summative

Do students receive some sort of feedback that allows them to adjust?

No Yes

Summative Formative

Summative
Measuring learning at the conclusion
Evaluative – final course grade, final exam, midterm exams (usually) or end-of-unit exam
Informs decisions on achievement, effectiveness of course / programs, course placement decisions, graduation, etc. (not used to inform students on their learning and how to improve)

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Summative Only – High Stakes

If you are only using Summative assessments, especially if it’s only once or twice a course, this contributes to “high stakes” conditions that become favorable to cheating.

Want to lower the stakes and increase the support for meaningful learning – Formative Assessment helps with that.
Formative Assessment

Assessment for learning – informs the student’s learning process
Provides strategy-focused feedback on what to improve
Can be used as a diagnostic as well or for progress monitoring

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020
Feedback

<table>
<thead>
<tr>
<th>Type of Feedback</th>
<th>Changing Role for Instructor</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy-focused feedback (what is strong, what needs attention – and how to tend to it)</td>
<td>Instructional time shifts from content delivery to discussions and feedback with students</td>
<td>Ability to comment on submissions and provide written or audio feedback on work</td>
</tr>
<tr>
<td>Not error-focused feedback</td>
<td></td>
<td>Feedback via discussions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synchronous tools for live class meetings and office hours</td>
</tr>
</tbody>
</table>
Activity: Selecting Assessment Methods

Go through your course objectives and classify them using Bloom’s taxonomy (if you haven’t written course objectives yet, this is a good time to do so – you can use Bloom’s to help you structure those).

THEN for each objective, map it to the appropriate type of assessment so you are aligning these (start brainstorming if you feel so inclined – we’ll talk about specific ideas in Days 2 and 3).

You can use the table on the next page to list objectives under each classification on Bloom’s and then indicate type of assessment / enter notes.
Activity: Selecting Assessment Methods

You can use the following table to list objectives under each classification on Bloom’s and then indicate type of assessment / enter notes. Feel free to copy this into a separate document – whatever is helpful.

<table>
<thead>
<tr>
<th>Bloom’s Taxonomy</th>
<th>Knowledge</th>
<th>Reasoning</th>
<th>Skills</th>
<th>Products</th>
<th>Dispositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remember</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Create</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. Moore, Fulbright Panel - Sri Lanka, 11-18-2020