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Abstract

As the clock speeds of individual processors level off and the amount of parallel

resources continue to increase rapidly, further exploitation of parallelism is necessary

to improve compute times. For time-dependent differential equations, the serial

computation of time-stepping presents a bottleneck, but parallel-in-time integration

methods offer a way to compute the solution in parallel along the time domain.

Parallel-in-time methods have been successful in achieving speedup when computing

solutions for parabolic problems; however, for problems with large hyperbolic terms

and no strong diffusivity, parallel-in-time methods have traditionally struggled to

offer speedup. While work has been done to understand why parallel-in-time methods

struggle to converge quickly for hyperbolic problems, a few parallel-in-time techniques

have been demonstrated to achieve speedup for certain hyperbolic problems. We

consider a previously proposed technique based on parareal, which is a general

parallel-in-time method that uses a relatively cheap coarse-grid approximation to

compute error corrections to accelerate the solution of a fine-grid time-marching
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problem. In particular, we look at a method which constructs an asymptotically

time-averaged approximation on the parareal coarse grid, which has been shown to

work well when solving hyperbolic problems whose solutions exhibit fast oscillations

in the time dimension. Using the generalizability of the parareal method into the

multigrid-reduction-in-time (MGRIT) algorithm, we investigate the expansion of the

two-grid asymptotic parareal method to a multilevel MGRIT setting. In particular,

we research runtime improvements when rapid oscillations are present by using the

multilevel capabilities and FCF-relaxation smoothing aspects of MGRIT. Methods to

improve compute speed in flow regimes without fast temporal oscillations are also

examined.
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Chapter 1

Introduction

1.1 Overview

In recent years, the increase in the clock speeds of individual processors has begun

to slow to a halt. As this is due to physical constraints, this is a trend that we can

expect will continue in the future [22]. Moreover, the available parallelism continues

to rapidly increase. This means that in order to continue making improvements on

computation speeds, exploiting parallelism is necessary.

In the instance of computing solutions to time-dependent PDEs, parallelism in the

spatial component of the problem is already widespread and for many applications,

the amount of parallel computing resources available has led to a saturation of

parallel speedup available from spatial parallelism [15]. Parallel-in-time methods

are a class of numerical techniques that enable parallelism in the time dimension,

addressing the issue of new sources of parallelism being needed. A historical overview

of parallel-in-time methods is discussed in [15], and a list of many recent application

areas is discussed in [37], e.g., parabolic problems, Navier-Stokes, power-grid, machine

learning, and so on.
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Chapter 1. Introduction

Here, the parallel-in-time algorithms we consider are the multigrid-reduction-in-

time (MGRIT) method [13, 10, 5] and the related parareal method [24, 16]. Parareal

and MGRIT are multilevel solvers that decompose the time domain of a problem

into subdomains over which the solution is iteratively improved using error correction

terms which come from inexpensive coarse grid approximations to the problem. Each

subdomain can be updated using a local coarse grid correction term simultaneously,

hence they are parallel-in-time methods. In contrast to serial timestepping methods

which solve the space-time equations from an initial time to a desired final time

in serial, parareal and MGRIT improve an initial solution guess across the entire

space-time domain at each iteration.

Parallel-in-time techniques have been very successful in speeding up the compu-

tation of parabolic problems; however, for hyperbolic problems that are advection-

dominated, the performance of parallel-in-time methods deteriorates greatly when

using traditional choices for the coarse-grid approximation. This phenomenon is

documented in the parareal setting for the linear advection equation and second-order

wave equation [14, 34], as well as the Navier-Stokes equation, where convergence

improves as the Reynolds number becomes small, making the problem more diffusive

[38]. Similarly, MGRIT has been shown to struggle with the linear advection and

inviscid Burgers equations, likewise improving with the introduction of diffusivity

terms [20, 5, 4, 39].

Recently, mathematical analysis of why hyperbolic problems are difficult for

parallel time integration using standard coarse-grid techniques has been explored.

Ruprecht shows in [34] that under the standard parareal method, instabilities for

the linear advection equation are due to parareal overestimating wave amplitudes

associated with middle to high wave number modes, which is due to phase errors

in the coarse grid representation. While this behavior is also present when solving

strongly parabolic problems in parareal, the introduction of a diffusive term into

2



Chapter 1. Introduction

the linear advection equation prevents these instabilities by strongly damping the

amplitudes of higher wave numbers. This allows parareal room to overshoot the

correct amplitudes without causing instabilities. Furthermore, it is suggested that

the construction of coarse grid operators designed such that they do not contribute

to overamplification of high wave modes may be a viable technique for achieving

speedup for hyperbolic problems by parallel-in-time integration.

Much work has been done investigating alternative coarse grid rediscretizations

for hyperbolic problems for use with parareal and MGRIT. In [39, 21], a technique

that constructs a coarse grid propagator by approximating the spectrum of the ideal

MGRIT coarse grid operator using a weighted least squares approximation is proposed

and investigated for the linear advection equation. The use of a semi-Lagrangian

scheme as a parareal coarse operator is shown in [36] to converge for the viscous

Burgers equation and offer theoretical speedup as viscosity goes to 0. Nielsen et al.

[28] use Roe’s method, an approximate Riemann solver, on the coarse grid combined

with a third order WENO scheme on the fine grid for the spatial discretization and

third-order Strong-Stability-Preserving Explicit Runge-Kutta time integration to

achieve convergence for the two dimensional shallow water equations. However, in

all these cases, the convergence of parareal and MGRIT is either slow for strongly

hyperbolic problems, or the method is yet to be generalized to variable coefficient of

nonlinear problems [39, 21].

In contrast, asymptotic parareal [18, 32, 31] is a parallel-in-time method designed

for strongly hyperbolic problems with fast temporal oscillations due to a linear term

and slow characteristic advection due to a nonlinear term, a kind of problem common

in geophysical fluid dynamics. Asymptotic parareal achieves superior convergence

to standard parareal in highly oscillatory flow regimes and is roughly equivalent

in performance to standard parareal in non-oscillatory flow regimes. In this work,

we research improvements to the asymptotic parareal method when used with the

3



Chapter 1. Introduction

MGRIT algorithm.

1.2 Summary of Contributions

Here, I give a summary of my contributions pertaining to the work in this paper.

Our main research focus is to investigate asymptotic MGRIT, which is the

asymptotic parareal method generalized to the MGRIT setting. Use of FCF-relaxation

and multilevel schemes are examined. In particular, FCF-relaxation is found to

improve performance for solves where the coarse grid timestep ∆T is relatively large.

We study the optimal number of FCF-relaxations in this setting, noting that FCF-

relaxation has not been used before with asymptotic parareal-based methods, and

that in some cases, the savings are substantial.

Regarding multilevel schemes, we seek an answer to the question, whether addi-

tional levels in the asymptotic parareal method can be beneficial. In other words, can

we target different scales of the problem on specific coarse grids, with the result that

a problem with multiple scales will correspond to a solver with multiple levels. The

results here are mixed, with only some evidence that multilevel can be beneficial.

Our last research objective is to explore data reuse in the asymptotic MGRIT

method, where the dominant cost of computing a time-average allows for data reuse

in some MGRIT iterations. That is, can we use time-averaged information from

iteration k in iteration k + 1, and can we use time-averaged information from level `

on the next coarser level `+ 1?

There are also some other worthwhile, but more minor discoveries discussed. In

particular, we study how FCF-relaxation and the use of longer time-average windows

(which is a part of the asymptotic parareal time-stepping process) impact the ability

to coarsen in time.

4



Chapter 1. Introduction

Regarding software contributions, a Cython interface between XBraid, our chosen

MGRIT software, and Cyclops, a Python numerical code implementing asymptotic

parareal with a Fourier spectral discretization in space, was developed under the

working name CycloBraid. This Cython interface also now serves as a template

for coupling XBraid and other Python codes. For instance, the interface is already

impacting progress in machine learning research at Sandia National Laboratories

where it has been repurposed to create an interface between PyTorch [29] and XBraid

to study layer-parallel training of neural networks. More information on layer-parallel

neural network training can be found in [17].

For more details on the research objectives, see Chapter 5.

5



Chapter 2

MGRIT algorithm

MGRIT is an algorithm for parallel time integration that applies the technique

of multigrid reduction (MGR) [33] to iteratively compute the solution of a time-

dependent differential equation.

It is intuitive to introduce MGRIT in the context of a linear system of ODEs,

which we do here in a two-level setting. For compatibility with general nonlinear

problems, MGRIT uses nonlinear full approximation scheme (FAS) [2] multigrid to

restructure the coarse grid. To generalize MGRIT to multilevel, apply the following

two-level MGRIT process recursively.

Consider an ODE system

u′(t) = f(t,u(t)),u(0) = u0, t ∈ [0, T ], (2.1)

with a time discretization represented by the points

ti = i∆t, i = 0, 1, · · · , N, (2.2)

where ∆t = T
N

, and ui :≈ u(ti). Using a one-step method, the discretization takes

6



Chapter 2. MGRIT algorithm

the form

u0 = g0,

ui = Φi(ui−1) + gi, i = 1, 2, · · · , N,
(2.3)

where gi is a forcing term evaluated at timestep i and Φi is the timestepping operator

which evolves the state variable u from timestep i− 1 to timestep i.

For simplicity, we assume Φi is a linear operator. So, we can write the space-time

discretization as a linear system

Au =


I

−Φ1 I
. . . . . .

−ΦN I




u0

u1

...

uN

 =


g0

g1

...

gN

 = g. (2.4)

Sequential time integration of (2.3) is equivalent to solving the block lower bidiagonal

system (2.4), whereas using the MGRIT algorithm is equivalent to solving Equation

(2.4) iteratively, using block-Jacobi relaxation with error corrections obtained from

coarse approximations to the system.

For simplicity , we assume here that the timestepping operator Φ is constant,

so that Φi = Φj, i, j ∈ [1, 2, · · · , N ]. To create a coarse approximation to A for

the purposes of computing error correction terms, we construct a coarse time grid

consisting of N∆ + 1 = N
m

+ 1 time points with a correspondingly larger timestep

∆T = m∆t, where m is an integer called the coarsening factor. Without loss

of generality, we assume that N is divisible by m. The coarse time grid is then

represented by the points

Ti = i∆T = i(m∆t) = tim, i = 0, 1, · · · , N∆. (2.5)

An illustration of the decomposition of the time grid into coarse and fine grids is

given in Figure 2.1.

Then, we define our coarse grid timestepping operator Φ∆. Ideally, one would

apply the timestepping operator Φ m-times over a coarse time step, i.e., apply Φm

7



Chapter 2. MGRIT algorithm

over [Ti−1, Ti]. The corresponding discretized initial value problem on the coarse time

grid, equivalent to Equation (2.3), is given by

u0 = g0,

ukm = Φm(u(k−1)m) + g̃km, k = 1, 2, · · · , N∆,
(2.6)

where

g̃km =
m−1∑
j=0

Φjgkm−j.

The system (2.6) can be written as a linear system as well, which takes the form

A∆u∆ =


I

−Φm I
. . . . . .

−Φm I





u0

um

u2m

...

uN∆m


=



g0

g̃m

g̃2m

...

g̃N∆m


= g̃∆, (2.7)

where A∆ is a block lower bidiagonal matrix with N∆ + 1 = N
m

+ 1 total block rows

and columns. Since the ideal coarse grid timestepping operator Φm is as expensive to

compute on the coarse grid as m applications of the fine grid operator Φ, inverting

A∆ is as expensive as inverting A. Thus, a cheap approximation Φ∆ ≈ Φm is chosen.

A typical choice of Φ∆ for a parabolic problem is the fine grid operator Φ with a

timestep size of ∆T = m∆t, instead of the fine grid step size ∆t. For instance, if Φ

is backward Euler with a step size of ∆t, Φ∆ would then be backward Euler with

a step size ∆T = m∆t. However for advection-dominated problems without strong

diffusive terms, this has been shown not to be a good choice of Φ∆ as discussed in

Section 1.1. Most research for solving these problems with MGRIT and parareal is

focused on choosing Φ∆ that work well, and this is what we address in Chapter 3.

Then the coarse grid approximation takes the form B∆u∆ = g̃∆ where B∆ ≈ A∆,

8



Chapter 2. MGRIT algorithm

and

B∆ =


I

−Φ∆ I
. . . . . .

−Φ∆ I

 . (2.8)

Equations (2.2) and (2.5) give rise to a partitioning of the time grid into F-points

denoted Fp and C-points denoted by Cp, which are defined as

Fp = {ti} \ {Ti},

Cp = {Ti}.
(2.9)

The partition is depicted in Figure 2.1.

Figure 2.1: Illustration of a temporal grid decomposed into a fine and coarse grid,
uniformly spaced. F-points are only present on the fine grid, and C-points are present
on both the fine and coarse grid.

The partitioning in Equation (2.9) gives rise to the two fundamental types of

relaxation in the MGRIT algorithm, F-relaxation and C-relaxation. F-relaxation

consists of applying Φ within each interval of F-points located between two C-points.

C-relaxation applies Φ once per C-point, evolving from the F-point immediately

preceding the C-point. This is depicted in Figure 2.2. As shown in Algorithms 1

and 2, the F- and C-relaxation algorithms can performed in each of the N∆ coarse

intervals in parallel.

9



Chapter 2. MGRIT algorithm

Figure 2.2: Illustration of F- and C-relaxation. C-points are denoted with Tj, Tj+1

and F-points are denoted with ti+1, ti+2, · · · .

Algorithm 1 F-relaxation

1: for k = 0, 1, · · · , N∆ do {Parallel for-loop over k}

2: for i = 1, 2, · · · ,m− 1 do {Sequential for-loop over i}

3: ukm+i ← Φ(ukm+i−1) + gkm+i−1

4: end for

5: end for

Algorithm 2 C-relaxation

1: for k = 0, 1, · · · , N∆ do {Parallel for-loop over k}

2: ukm ← Φ(ukm−1) + gkm−1

3: end for

An application of F-relaxation, followed by C-relaxation, is equivalent to applying

Φm to ukm for k = 0, 1, · · · , N∆. This FC-relaxation sweep is equivalent to an

application of block-Jacobi relaxation on the coarse grid system in Equation (2.7).

MGRIT allows for the use of F-relaxation or FCF-relaxation smoothing schemes,

where FCF-relaxation is an application of an FC-sweep followed by another application

of F-relaxation.

10
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For restriction to a coarse grid, MGRIT uses injection at the C-points, uck ← ukm,

where uc is the coarse grid vector. Interpolation is injection from the coarse to fine

grid, uck → ukm, followed by an F-relaxation. The F-relaxation guarantees that if the

solution is exact (i.e., equal to the solution one would obtain from a forward solve of

Equation 2.4) at the C-points ukm, then the solution will also be exact at F-points,

thus it is called ideal interpolation.

Putting these pieces together, MGRIT first carries out an F- or FCF-relaxation,

followed by restriction of the problem and residual to the coarse-grid. There, the

error correction is computed according to the FAS coarse-grid formulation using B∆.

Lastly, this error correction is interpolated back to the fine grid and added to the

current solution guess u and the algorithm repeats iteratively until the 2-norm of the

coarse grid residual r∆ is smaller than a given halting tolerance tol. Pseudocode for

the two-grid FAS MGRIT algorithm is given in Algorithm 3.

Algorithm 3 Two-Grid FAS MGRIT(Φ,Φ∆, u, g, tol)

1: Apply F- or FCF-relaxation to Au = g

2: Compute and restrict fine grid approximation and its residual to the coarse grid

via injection: u∆,i ← umi, r∆,i ← gmi − (Au)mi

3: Solve B∆v∆ = B∆u∆ + r∆

4: Compute coarse grid error correction: e∆ ← v∆ − u∆

5: Correct u at C-points: umi ← umi + e∆,i

6: If ||r∆||2 < tol, apply F-relaxation to Au = g and terminate

7: Else, go to step 1

11



Chapter 3

Asymptotic Parallel-in-Time

Methods

The parareal algorithm [24] is a parallel-in-time method which is equivalent to a

two-level MGRIT solve using F-relaxation [10].

Here, we consider the so-called asymptotic parareal method, which is designed for

hyperbolic problems which take the form

∂u

∂t
+

1

ε
Lu = N (u) +Du, u(0) = u0, (3.1)

where L is a linear operator with purely imaginary eigenvalues, N (u) is a nonlinear

quadratic polynomial, D is a dissipation operator, and ε is a nondimensional parameter

which determines the time scale separation between L and N . In particular, when ε is

small enough, the eigenvalues of the linear operator L inhabit an area of the complex

plane distinctly separate from where the eigenvalues of N and D are located. As ε

becomes larger, the eigenvalues of L, N and D become collocated on the complex

plane, which corresponds to a lack of scale separation. Here, the oscillations from L

mix with the diffusion and nonlinear advection of D and N .

12
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Rapid oscillations due to the linear term
1

ε
Lu occur on a timescale of O(ε). In

order to resolve these oscillations, it is necessary to take timesteps of size O(ε) when

using traditional time-stepping methods. Thus, the coarse grid approximation in

parareal or MGRIT would also require a timestep size of O(ε), which would require

too fine a coarse grid representation for parareal or MGRIT to be efficient [18]. In

summary, using a coarse timestep size in parareal or MGRIT that is >> O(ε) with

standard choices of coarse grid operators will violate the Nyquist sampling rate of the

temporal oscillations. This will alias the oscillations on the coarse grid and lead to

inaccurate time derivatives. For this reason, problems of the form given by Equation

(3.1) are difficult for parareal and MGRIT to solve efficiently when using traditional

coarse grid approximations.

We investigate a coarse grid propagator that is based on the observation [26] that

the solution u(t) to Equation (3.1) has the asymptotic approximation

u(t) = e(−t/ε)Lū(t) +O(ε), (3.2)

where the asymptotic solution ū(t) varies slowly in time and satisfies the equation

∂ū

∂t
= N (ū) +Dū, ū(0) = u0, (3.3)

and the nonlinear term N is given by the time-averaged quantity

N (ū(t)) = lim
T→∞

1

T

∫ T

0

esLN (e−sLū(t))ds. (3.4)

The operator D is time-averaged in the same fashion, but note that if D is a linear

operator, then D = D. Also note that as opposed to being evolved over the entire

time domain [0, T ], the coarse grid operator only timesteps ū(t) over a coarse time

interval [(j − 1)∆T, j∆T ]. An approximation to u(t) is then obtained by applying

e(−t/ε)L to ū(t).

As a result, time integration for the time-averaged solution ū(t) can be done

without evolving the oscillatory e(1/ε)L term. This allows coarse grid timesteps
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∆T >> ε to be taken without violating the Nyquist sampling rate of the rapid

temporal oscillations.

A finite approximation to Equation (3.4) is necessary for numerical evaluation.

The finite time average is formally introduced as

N (ū(t)) ≈ 1

η

∫ η

0

ρ(s/η)esLN (e−sLū(t))ds, (3.5)

where η is referred to as the averaging window, and ρ(s) is referred to as the

integrating kernel. The choice of ρ(s) is investigated thoroughly in [18, 32, 31]. In

particular, ρ(s) is chosen to be a Gaussian bump function with compact support in

(0, 1) and an integral of unity; i.e: ∫ 1

0

ρ(s)ds = 1.

We compute ρ(s) using the approximation (from [30])

ρ(s) ≈ exp(−50 ∗ (s− 0.5)2).

The purpose of introducing the integrating kernel is to increase the accuracy of the

approximation to N (ū(t)), as well as to prevent discontinuities in the solution profile

ū(t). The use of integrating kernels for these purposes is a standard technique in

averaging computations for multiscale methods [9, 8]. This time-averaging process

over M quadrature points for computing (3.3) is described in Algorithm 4.

The convergence rate of asymptotic parareal depends on the choice of η. The

optimal choice of η, in the asymptotic parareal setting, is shown in [31] to depend

most heavily on the coarse grid step size ∆T and scale separation parameter ε. In

particular for the case where ∆T = 0.1, the optimal choice of η grows as ε→ 0, but

then stabilizes around a choice of η = ∆T for values of ε = 0.1 and larger.

More generally as η → 0, no time averaging is being performed and the error

due to averaging goes to 0 as well. At the same time, the error due to timestepping

14



Chapter 3. Asymptotic Parallel-in-Time Methods

increases as η → 0. As η becomes larger, the timestepping error goes to 0 and the

averaging error increases. The optimal η for a given ∆T and ε is the solution of an

optimization problem where the sum of the averaging error and timestepping error

are minimized.

Algorithm 4 Evaluate time average (in parallel):

1: for j = 1, . . . ,M − 1 do {Parallel for-loop over j}

2: sm = ηm/M

3: ūm ← ρ(sm/η)esmLN (e−smLū0)

4: end for

5: return (1/M)∗Sum(ū1, . . . , ūM)

The fine grid timestepping operator Φ for asymptotic parareal evolves u over the

fine timestep ∆t using a three-step Strang splitting method [3] which first advances

the linear terms ε−1L+D by a half timestep ∆t/2 using an exponential integrator,

then advances the nonlinear term N by a full timestep ∆t using midpoint quadrature,

and finally takes another ∆t/2 half step for ε−1L+D with the exponential integrator.

The pseudocode for the fine propagator is given in Algorithm 5.

The coarse grid operator Φ∆ used in asymptotic parareal also uses the Strang

splitting scheme, integrating over the coarse interval ∆T instead. The exponential

integrator only acts on the dissipative operator D, and the averaged nonlinear term N

is evaluated using the midpoint rule. Moreover, the slowly-varying ū is transformed

back to an approximation to u by applying the e(−t/ε)L operator, as shown in Equation

(3.2). Pseudocode for the coarse solver is shown in Algorithm 6.
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Algorithm 5 fine solver Φ: Fine Solver(u0,∆t,∆T )

M = ∆T/∆t

1: for m = 1, · · · ,M do

2: Take a ∆t/2 time-step for the linear term:

v̂← e(∆t/2)(ε−1L+D)um {∆t/2 step on u′ = (ε−1L+D)u}

3: Take a ∆t time-step for the nonlinear term:

v← N (v̂),

v← v̂ + ∆tN
(
v̂ + ∆t

2
v
)
{∆t step on u′ = N (u) with mid-point}

4: Take a ∆t/2 time-step for the linear term:

um+1 ← e(∆t/2)(ε−1L+D)v {∆t/2 step on u′ = (ε−1L+D)u}

5: end for

6: return uM

Algorithm 6 asymptotic slow solver Φ∆: Coarse Solver(u0,∆T )

1: Take a ∆T/2 time-step for the linear dissipative term:

v̂← e(∆T/2)Du0 {∆T/2 step on u′ = Du}

2: Take a ∆T time-step for the averaged nonlinear term:

v← N (v̂),

v← v̂ + ∆T N
(
v̂ + ∆T

2
v
)
{∆T step on u′ = N (u) with midpoint formula}

3: Take a ∆T/2 time-step for the linear dissipative term:

v← e(∆T/2)Dv {∆T/2 step on u′ = Du}

4: Transform back to the fast time coordinate: u1 = e(∆T/ε)Lv

5: return u1
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Chapter 4

Test Problem - Rotating Shallow

Water Equations

The test problem that we consider is the one-dimensional rotating shallow water

equations (RSWE). The RSWE is an important set of equations in geophysical fluid

dynamics that is of particular interest in the weather and climate modeling community

[18, 7, 26, 25]. The RSWE in the one-dimensional form is given as

∂v1

∂t
+

1

ε

(
−v2 + F−1/2∂h

∂x

)
+ v1

∂v1

∂x
= µ∂4

xv1, (4.1)

∂v2

∂t
+

1

ε
v1 + v1

∂v2

∂x
= µ∂4

xv2,

∂h

∂t
+
F−1/2

ε

∂v1

∂x
+

∂

∂x
(hv1) = µ∂4

xh,

where h(x, t) denotes the surface height of the fluid, and v1(x, t) and v2(x, t) denote

the horizontal fluid velocities. The quantity v1 denotes horizontal velocity in the

x-direction (along the direction of the spatial domain,) and v2 denotes horizontal

velocity in the y-direction.

The non-dimensional parameter ε is the Rossby number, which represents

the ratio of the rotation timescale to the timescale of horizontal advection. Recall
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that temporal oscillations occur on a O(ε) timescale, so as ε→ 0, the frequency of

oscillations increases accordingly. In realistic geophysical flows, ε is typically small,

and a reasonable choice for testing the handling of fast gravity waves is ε = O(10−2).

The value µ is the coefficient to a fourth-order hyperviscosity term which is introduced

for stability, and is taken here to be 10−4 unless otherwise noted. As µ becomes

larger, the magnitudes of temporal oscillations decrease as the problem evolves in

time and the problem becomes more diffusion-dominated. Figures 4.1 and 4.2 depict

the effect that different choices of ε and µ have on the exact space-time solution.

The quantity Fr := F 1/2ε is the Froude number, representing the ratio of fluid

velocity to gravity wave speed. F is the Rossby deformation radius, which is the

distance a wave travels before being significantly effected by rotation. Except where

otherwise specified, we examine the case where F = 1 and hence Fr = ε.

These equations are given in a two-dimensional form by Embid and Majda in

[7]. The simplified one-dimensional form in Equation (4.1) is given by Haut and

Wingate in [18], and is obtained from the two-dimensional form by assuming that

all derivatives in the y-direction are zero. This is done in order to preserve terms

which take rotation into account, while still having an essentially 1-dimensional model

problem.

We can write Equation (4.1) in the general form of Equation (3.1) by letting the

state variable

u(t,x) =


v1(t, x)

v2(t, x)

h(t, x)

 . (4.2)
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Then, our operators from Equation ((3.1)) are

L =


0 −1 F−1/2∂x

1 0 0

F−1/2∂x 0 0

 , D = µ∂4
x


1 0 0

0 1 0

0 0 1

 , N (u) =


v1(v1)x

v1(v2)x

(hv1)x

 .

(4.3)

Indeed, L is skew-hermitian, i.e., −L = (LT )∗ and has purely imaginary eigen-

values with an orthonormal basis of eigenvectors. Thus, L gives rise to oscillations.

Furthermore, we see that D is a standard hyperviscosity operator and N () is a

nonlinear quadratic term.
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Figure 4.1: Wave-height solution profile of h in a space-time domain X = [0, 2π], T =
[0, 5] with Nx = 64 Fourier modes in space, N∆ = 50 time points, various ε values,
and a fixed µ = .0001. Here, time evolves in the x-axis and the y-axis is the spatial
dimension. For small values of ε, the magnitude of L is large and oscillations in the
direction of the time domain are rapid. As ε becomes large, the magnitude of the
1/εL term shrinks and oscillations occur over much larger timescale. In particular,
when ε = 10 and ε = 100, a complete temporal oscillation is no longer present because
oscillations occur on an O(ε) timescale. See subfigure titles for specific ε, µ values.
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Figure 4.2: Wave-height solution profile of h in a space-time domain X = [0, 2π], T =
[0, 5] with Nx = 64 Fourier modes in space, N∆ = 50 time points, various µ values,
and a fixed ε = .1. Here, time evolves in the x-axis and the y-axis is the spatial
dimension. As µ increases, so does the magnitude of the dissipation term. The result
is that we see the effects of dissipation become prominent at ever earlier times. See
subfigure titles for specific ε, µ values.
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4.1 Implementation

A Python implementation of an asymptotic parareal solver for the 1-dimensional

RSWE, titled Cyclops-Lite, is publicly available from Wingate’s research group [30].

Following the software structure for implementing parareal in a decentralized fashion

described in [35], Cyclops was written by Adam Peddle for his PhD studies on

asymptotic parareal. In Cyclops, the RSWE are semi-discretized yielding a system

of ODEs like in Equation (2.3), and a Fourier spectral method is used as a spatial

discretization.

Cyclops is written in Python and our chosen MGRIT implementation, XBraid

[1], is written in C/C++. We have developed an interface written in the Cython

language between Cyclops and XBraid to extend the asymptotic parareal method to

asymptotic MGRIT, titled CycloBraid. CycloBraid allows XBraid to call Cyclops’

routines for handling Fourier spectral discretizations as well as functions for time-

averaging and time-integration (refer to Algorithms 4, 5, 6). XBraid then uses these

wrapped Cyclops functions to define Φ on each level and carry out the MGRIT cycling.

Some other wrapper functions were required, e.g., taking a norm, performing vector

addition, and MPI buffer packing and unpacking.

CycloBraid also serves as a template for interfacing XBraid with other numerical

codebases written in Python. This aspect of the CycloBraid contribution is already

having impact at Sandia National Laboratories, where it is being used to pair PyTorch

[29] with XBraid for research on layer-parallel training of residual neural networks

[17].
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Research Objectives

Our primary objective is to determine if we can create an asymptotic MGRIT

algorithm that outperforms asymptotic parareal by using the generalizability of the

parareal algorithm to the MGRIT algorithm. That is, we seek to create an asymptotic

MGRIT algorithm that is more robust with respect to problem parameters such as ε

or F , and that converges faster and more efficiently.

We first consider the recursive multilevel capability of MGRIT when using the

asymptotic coarse grid technique described in Chapter 3. We consider the effect of

adding a novel coarser third level of various sizes to a two-level asymptotic MGRIT

solve, thereby allowing the application of the asymptotic coarse grid operator Φ∆ on

the first coarse level to be performed in parallel with relaxation. For the second coarse

level, we consider both the use of the asymptotic coarse grid timestepping operator

Φ∆, as well as the use of the Strang splitting operator Φ applied to a coarsened

representation of the slowly-varying solution ū from the first coarse level. We also

propose an investigation of alternative time integration techniques for use exclusively

on the third level.

We investigate the effect of F(CF)n-relaxation, where there are n applications of
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FC-relaxation sweeps. We note that only F-relaxation has been considered previously

for asymptotic parareal. In Section 6.4, we examine the case of ε = .01, and compare

the use of F-relaxation and FCF-relaxation in two-level MGRIT solves on various

coarse grid sizes and time domains. FCF-relaxation turns out to offer significant

performance gains in some cases. Furthermore, we look at the case where ε = 1.0 in

Section 6.7 and examine how additional CF-sweeps in the relaxation stage, combined

with an increased averaging window size η, can be used to allow for more efficient

coarse grids. That is, these strategies allow for more aggressive coarsening in time.

The computational cost of the coarse grid operator Φ∆ is discussed in Section 6.4.1,

where we find that the cost of computing the time-averaged quantity N dominates

an entire MGRIT cycle. Thus, we examine in Section 6.5 techniques for reusing the

slowly-varying coarse grid solution ū from previous MGRIT iterations, as well as

recomputing ū based on stale N values from previous MGRIT iterations. The goal is

to save computational work.

As a final objective, we consider the fact that asymptotic parareal for the RSWE

has primarily focused on the case where the Rossby radius of deformation F = 1,

and the timescales of rotational and gravitational effects are equal. In [31], Peddle

discusses how the timescales of rotation and gravitation become separated when

F becomes small. In the RSWE as given in Equation (4.1), the effects of rotation

and gravitation are both represented in the oscillatory linear term L, but L can

be decomposed into a rotational operator R and gravitational operator G [40]. We

consider some MGRIT techniques for solving the RSWE at F = 10−4 where rotational

effects are two orders of magnitude larger than the gravitational effects. In particular,

we consider techniques to use two different time averaging windows η to target

accuracy separately for R and G.
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Numerical Results

6.1 Problem Setup

Here we describe how we choose the problem parameters for the RSWE coefficients

and space-time discretization, as well as the specifications for the machine on which

the experiments are run. Our choices of problem parameters follow general conventions

for asymptotic parareal studies.

Our experiments are run on a machine with two Intel Xeon Silver 4110 2.10GHz

processors, based on the Skylake x86 architecture. Each processor has 8 cores and 16

threads per processor, giving a total of 16 cores and 32 threads.

In all experiments, the RSWE are semi-discretized to a system of ODEs, like in

Equation (2.3). The size of the time domain T = [0, tf ] and the number of points in

the time grids vary between experiments, but are always given. Note that the initial

time of the time domain is always 0.

In space, we use a spectral discretization as discussed in Section 4.1 of 64 Fourier

modes on a spatial domain with size [0, 2π]. The initial conditions are set up in
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real space such that velocity profiles v1, v2 are identically zero and the wave height

profile h is a Gaussian bump with a maximum height of 1 at the center of the spatial

domain.

The hyperviscosity coefficient µ is set to 10−4 in all experiments, which provides

stability for more oscillatory Fourier modes while still allowing the problem to be

advection-dominated.

We choose the Froude number Fr = F 1/2ε with F = 1 and hence Fr = ε. We

will focus on two choices of the scale separation parameter ε: ε = 1.0 (where no

separation between timescales occurs and temporal oscillations are not rapid,) and

ε = 10−2 (where the timescale of gravity waves is 100 times smaller than the timescale

of Rossby waves and fast temporal oscillations occur.)

The time averaging window η is computed using the formula (from [30])

η = α
dT

ε0.2
, (6.1)

where α is a coefficient that is equal to 1 unless otherwise noted and dT is the timestep

size on the level where time averaging is being done. The number of quadrature

points M over which the time average is done is computed by the formula (from [30])

M = max{25,
80

β
η}, (6.2)

where β is a nonzero coefficient that is equal to 1 unless otherwise noted. Equation

(6.1) is derived experimentally in [31].

The algorithms for MGRIT are given in Chapter 2, and the time-stepping algo-

rithms are given in Chapter 3.
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6.2 Code Verification

When XBraid is coupled to a new numerical code (here Cyclops), code verification is

of critical importance and must be documented. The literature on the asymptotic

parareal method uses an L∞-error estimate, based on the L∞-error at the current

and prior parareal iteration, as the stopping criteria, as opposed to Braid’s use of the

residual norm at C-points. The L∞ error for an iteration is the greatest L∞ error

entry-wise over the whole space-time solution at that iteration, and is estimated with

L∞ = max
i

∣∣∣∣Unew,i − Uold,iUold,i

∣∣∣∣ ,
where the max is taken entry-wise over all vector entries i, Unew is the coarse grid

space-time state vector at the current MGRIT iteration, and Uold is the coarse grid

space-time state vector at the previous iteration. In Cyclops [30], the errors are

computed in Fourier space and returned in real space.

The motivation for obtaining a history of L∞ errors from the Braid computation is

to compare it with the L∞ error history from Cyclops, so that we can verify that the

Braid implementation of the asymptotic parareal method is correct. By inspection of

the Cyclops code, it should be the case that one iteration of Cyclops is equivalent

to one iteration of the Braid implementation in a two-level setting with the use

of F-relaxation and the “skip option” that omits the initial smoothing during the

first iteration prior to the first down-cycle. (Remember that two-level MGRIT with

F-relaxation is equivalent to parareal [16].) Due to this, we expect that the L∞ error

histories should match. These results will also be used to compare and contrast the

Braid residual history with the L∞ error history, and verify that they “mirror” each

other.

To investigate L∞ error agreement between the codes and compare L∞ errors to

the Braid residual, we consider two final times, tf = 1.0 and tf = 3.0. We use a time

discretization of N∆ = 50 coarse grid time points and N = 500 fine grid time points,
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hence we have a coarsening factor of m = 10. The scale separation parameter ε = .01

is used. In both the Cyclops and XBraid codes, the L∞ errors are computed at each

iteration after the coarse grid error correction has been applied (i.e., after Step 5 in

Algorithm 3 in Chapter 2.)

Tables 6.1 and 6.2 demonstrate the per-iteration histories of the L∞ errors obtained

from Cyclops and two-level Braid using the skip option, F-relaxation, and the

asymptotic coarse solver. Also included is the XBraid residual history. The first

iterations at which the L∞ errors do not match to at least seven digits of accuracy are

bold and highlighted in red. We see that Braid and Cyclops do appear to be carrying

out the same algorithm, because the L∞ histories match up well. And we see that

the Braid residual history is as good of a convergence indicator as the L∞ estimates.

Iteration Cyclops L∞ Braid L∞ Braid Residual
1 1.319788e-01 1.319788e-01 5.833705e-03
2 4.275742e-03 4.275742e-03 1.354342e-04
3 1.786624e-04 1.786624e-04 7.120944e-06
4 1.251012e-05 1.251012e-05 2.566034e-07
5 8.747519e-07 8.747519e-07 1.131633e-08
6 6.769316e-08 6.769315e-08 6.109124e-10
7 5.649629e-09 5.649619e-09 4.439781e-11
8 4.349574e-10 4.349486e-10 3.147370e-12

Table 6.1: Comparison of per-iteration histories of the XBraid residual norm and
the L∞-norms when performing asymptotic parareal solves with XBraid and Cyclops
respectively, for the 1-dimensional RSWE on a time domain of [0, 1].
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Iteration Cyclops L∞ Braid L∞ Braid Residual
1 8.694573e-02 8.694573e-02 2.812960e-02
2 4.297909e-02 4.297909e-02 3.356759e-03
3 7.777487e-03 7.777487e-03 6.762658e-04
4 1.371985e-03 1.371985e-03 9.505859e-05
5 2.932189e-04 2.932189e-04 1.740498e-05
6 4.694276e-05 4.694276e-05 3.247782e-06
7 9.274929e-06 9.274929e-06 7.799707e-07
8 1.703251e-06 1.703251e-06 1.503292e-07
9 3.303419e-07 3.303419e-07 3.176993e-08
10 5.869087e-08 5.869087e-08 5.248516e-09
11 8.914748e-09 8.914733e-09 9.500381e-10
12 1.310012e-09 1.415601e-09 1.395190e-10
13 2.239311e-10 2.239173e-10 2.362944e-11

Table 6.2: Comparison of per-iteration histories of the XBraid residual norm and
the L∞-norms when performing asymptotic parareal solves with XBraid and Cyclops
respectively, for the 1-dimensional RSWE on a time domain of [0, 3].

29



Chapter 6. Numerical Results

6.3 Multilevel Asymptotic MGRIT

In this section, we research the construction of a third MGRIT level and examine

performance effects. Given a two-level asymptotic MGRIT solve, we introduce a

coarser grid as a third level, which has not been studied before for asymptotic parareal.

In doing so, we introduce parallelism to the solver on the second level (i.e., first coarse

level) as the second level will no longer be solved exactly but instead with parallel

block-Jacobi relaxation. Thus, if the third grid does not incur a significant penalty in

convergence and the solution on the third grid itself can be computed cheaply, then

the introduction of a third grid can lead to performance gains in parallel.

Once the oscillations are removed on level two through the asymptotic time-

averaging, it is possible that using the non-asymptotic time-stepper Φ described in

Algorithm 5 would make for a good time propagator on the third grid. To do this, the

transform back to the fast time coordinate operation e−(t/ε)L (see Equation (3.2)) must

not be used to add the fast temporal oscillations back into the space-time solution

guess on the second level before restriction is performed to transfer information to

the third level. In this case where there are now no rapid oscillations to alias on the

third grid, the relatively cheap Φ operator could be a good option on the third level,

if using it does not incur a penalty in convergence.

Following this, we consider two techniques for timestepping on the coarsest grid.

One we will refer to as “Strang-asymptotic-asymptotic MGRIT”, or SAA-MGRIT,

which uses the time-averaged coarse grid operator Φ∆ on the second and third

levels. This approach applies the e−(t/ε)L transform to reintroduce the rapid temporal

oscillations before performing restriction and interpolation between the second and

third levels, as well as when interpolating from the second level to the fine level. The

other we refer to as “Strang-asymptotic-Strang MGRIT”, or SAS-MGRIT, which

uses the time-averaged operator Φ∆ on the second level and the standard Strang
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splitting operator Φ described in Algorithm 5 on the coarsest level. In SAS-MGRIT,

the transformation e−(t/ε)L is only applied when interpolating from the second level

to the fine level.

For convenience, we introduce the following notation to denote a general multilevel

MGRIT time grid hierarchy. Let Nt,0 ≥ Nt,1 ≥ · · · ≥ Nt,k−1 be the numbers of time

points on a k-level MGRIT time grid hierarchy, where level 0 corresponds to the

finest grid and level k − 1 corresponds to the coarsest grid. Then, the notation

{Nt,0, Nt,1, · · · , Nt,k−1} denotes the number of time points on each level in an MGRIT

hierarchy. We will use subscript A to denote the use of the asymptotic coarse grid

operator Φ∆ and subscript S to denote the use of the Strang splitting operator Φ on

the given level. For instance, {4096S, 64A} denotes a two-level asymptotic MGRIT

solve with 4096 time points and Strang splitting Φ on the fine grid and 64 time points

with the asymptotic time integrator Φ∆ on the coarse grid. We also say {4096S, 64S}

to denote a non-asymptotic MGRIT solve with the same two-level time grid hierarchy,

and {4096S, 64A, 8S} denotes a three-level SAS-MGRIT solve with 4096 time points

on the fine level, 64 time points on the second level, and 8 time points on the third

level. Likewise, {4096S, 64A, 8A} denotes a three-level SAA-MGRIT solve with 4096

time points on the fine level, 64 time points on the second level, and 8 time points on

the third level.

In Tables 6.3 and 6.4, we compare the iteration counts and wall times of a two-grid

asymptotic MGRIT solve {4096S, 64A} with three-level SAA- and SAS-MGRIT solves

{4096S, 64A, xA} and {4096S, 64A, xS} where x = {2, 4, 8, 16, 32}. In other words,

given a two-grid asymptotic MGRIT solver, we consider the performance effects

of adding a third coarser grid under the SAA- and SAS-MGRIT techniques. The

two-level solver is given 64 time points on the coarse level because this is comparable

to the coarse grid sizes used in studies of asymptotic parareal for the time domain

sizes considered [18, 32, 31] and because this coarse grid size is required for MGRIT
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convergence in the case of ε = 1.0. In particular, time domains considered are

T = [0, tf ] where tf = {1, 5, 10}. F-relaxation is used, and both ε = .01 and ε = 1.0

are considered. The halting tolerance is set to tol = 1.0e-5. Averaging windows η

and quadrature points M are computed at each level using Equations (6.1) and (6.2)

and the ∆T of that level.

For tf = 1.0, SAA- and SAS-MGRIT can perform as well or better than two-level

asymptotic MGRIT for both ε = .01 and ε = 1.0. In particular, we see in Table

6.3 for tf = 1.0, the described multilevel MGRIT techniques are able to offer a 36%

improvement in compute time over the two-grid method for {4096S, 64A, 32S} and a

43% improvement in compute time for {4096S, 64A, 16A} when ε = 1. We see similar

improvements in compute time when ε = .01 in Table 6.4, where {4096S, 64A, 32S}

reduces compute time by 47% and {4096S, 64A, 16A} reduces compute time by 20%

when tf = 1.0. Furthermore, when tf = 5.0 and ε = .01, we also observe speedup;

{4096S, 64A, 16A} yields a 16% reduction in wall time and {4096S, 64A, 16A} gives a

21% reduction in wall time.

For larger time domains where ε = 1.0, SAA- and SAS-MGRIT both fail to

converge. This is not attributable to the SAA- or SAS-MGRIT methods, but it is

instead attributable to the “coarse-grid time domain limit” phenomenon for ε = 1.0

which also causes two-grid MGRIT time grid hierarchies (i.e., {4096S, xA} where

x = {2, 4, 8, 16} for tf = 5.0 and x = {2, 4, 8, 16, 32} for tf = 10.0) to diverge. This

phenomenon is addressed in detail in Section 6.7.

When ε = .01, SAS-MGRIT is stable for smaller time domains but becomes

unstable for larger time domains, whereas SAA-MGRIT is convergent for every

examined time grid hierarchy. It is conceivable that using a time integration technique

other than the asymptotic solver Φ∆ or the Strang splitting solver Φ on the third

grid would yield convergent behavior for larger time domains and ε = .01 under

the given time grids. An interesting future direction would be the investigation
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of a third-grid-specific coarse grid operator that enables stability for longer time

steps. We denote this yet-undetermined three-level asymptotic MGRIT method

“Strang-asymptotic-X MGRIT”, or SAX-MGRIT, where X is some to-be-discovered

suitable time integration method for the coarsest time grid.

{4096, 64, 2} {4096, 64, 4} {4096, 64, 16} {4096, 64, 32} (ref) {4096S, 64A}

tf = 1.0
SAA: 4 (5.2s)
SAS: 4 (5.0s)

SAA: 6 (5.4s)
SAS: 6 (5.1s)

SAA: 3 (2.3s)
SAS: 5 (2.7s)

SAA: 3 (3.0s)
SAS: 5 (2.6s)

3 (4.1s)

tf = 5.0 ** **
SAA: 14 (10.3s)
SAS: 15 (8.2s)

SAA: 12 (12.3s)
SAS: 16 (8.7s)

5 (7.1s)

tf = 10.0 ** ** ** ** 12 (16.9s)

Table 6.3: ε = 1 comparison of three-level MGRIT solvers using either a “Strang-
asymptotic-asymptotic” (SAA) or “Strang-asymptotic-Strang” (SAS) method of
adding a third grid to a two-level asymptotic MGRIT solve with the structure
{4096S, 64A}. F-relaxation is used. Runs that fail to converge are marked with “**”.
Columns are ordered by the number of coarse points N3 on the third grid, except for
the rightmost column which provides the reference iteration count and wall time for
the two-level {4096S, 64A} solve.

{4096, 64, 2} {4096, 64, 4} {4096, 64, 16} {4096, 64, 32} (ref) {4096S, 64A}

tf = 1.0
SAA: 4 (5.5s)
SAS: 5 (6.6s)

SAA: 5 (4.7s)
SAS: 6 (5.2s)

SAA: 6 (4.6s)
SAS: 7 (3.7s)

SAA: 5 (5.0s)
SAS: 6 (3.0s)

4 (5.7s)

tf = 5.0
SAA: 11 (24.5s)
SAS: 16 (22.6s)

SAA: 11 (17.5s)
SAS: **

SAA: 11 (13.5s)
SAS: **

SAA: 16 (18.5s)
SAS: 23 (12.6s)

11 (16.1s)

tf = 10.0
SAA: 21 (90.5s)
SAS: **

SAA: 21 (60.8s)
SAS: **

SAA: 11 (22.1s)
SAS: **

SAA: 10 (19.1s)
SAS: **

21 (38.2s)

Table 6.4: ε = .01 comparison of three-level MGRIT solvers using either a “Strang-
asymptotic-asymptotic” (SAA) or “Strang-asymptotic-Strang” (SAS) method of
adding a third grid to a two-level asymptotic MGRIT solve with the structure
{4096S, 64A}. F-relaxation is used. Runs that fail to converge are marked with “**”.
Columns are ordered by the number of coarse points N3 on the third grid, except for
the rightmost column which provides the reference iteration count and wall time for
the two-level {4096S, 64A} solve.
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6.4 Asymptotic MGRIT: Two-Level With FCF-

Relaxation

Here, we investigate whether FCF-relaxation can outperform F-relaxation in a two-

grid asymptotic MGRIT solve. FCF-relaxation has previously shown a benefit

(sometimes significant) over F-relaxation, e.g., in [10, 19, 20], with the paper [5] giving

a theoretical justification for this benefit. Essentially, FCF-relaxation effectively

damps all error modes that correspond to an eigenvalue of the error propagator that

is significantly less than 1.

The setup for the experiments in this section is as follows. We consider ε = .01

and time domains of the size [0, tf ] ∈ {[0.0, 10.0], [0.0, 15.0], [0.0, 20.0], [0.0, 25.0]}.

We consider the two-level case with N∆ = 16 time points on the coarsest grid, and

coarsening factors of m = {16, 128, 256}, which yields N = {256, 2048, 4096} time

points on the fine grid. We choose these coarse grid sizes and coarsening factors to

follow the choices of coarse grid sizes used in previous studies of asymptotic parareal

[18, 32, 31].

The residual halting tolerance is chosen to be (1.0e-8)/
√

∆t, and we note that

standard MGRIT (i.e., with the use of Φ instead of Φ∆ on the coarse grid) fails in every

run to achieve convergence for this battery of tests and thus these results are omitted.

The iteration counts for the various runs are shown in Table 6.5. Corresponding wall

times are given in Table 6.6. The wall times are much faster for FCF-relaxation,

which is a surprise given the iteration counts. Generally, FCF-relaxation is twice

as expensive as F-relaxation. Thus, one would expect that an over 50% savings in

iterations by FCF-relaxation would be required to see a runtime benefit. Thus, these

results are unusual for MGRIT, and the reason for this wall time discrepancy is

explained in Section 6.4.1.
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tf F, m = 16 FCF, m = 16 F, m = 128 FCF, m = 128 F, m = 256 FCF, m = 256
10 14 10 10 7 10 7
15 15 9 16 8 15 8
20 18 10 17 8 17 8
25 ** ** 14 9 13 9

Table 6.5: Iteration counts for 2-level asymptotic MGRIT runs, ε = .01, using the
coarsening factors m and relaxation schemes provided in the top row of each column.
These results are “strange” when compared with the wall times in Table 6.6, in that
we do not generally expect improvements in wall time from FCF-relaxation unless
we are cutting down on iteration counts far more than in half when compared to
F-relaxation iteration counts. Runs that fail to converge are marked with “**”.

tf F, m = 16 FCF, m = 16 F, m = 128 FCF, m = 128 F, m = 256 FCF, m = 256
10 22 16 18 13 19 15
15 36 22 42 21 43 23
20 61 34 60 29 62 31
25 ** ** 63 42 64 44

Table 6.6: Wall times (using 16 cores) for asymptotic MGRIT runs, ε = .01, using the
coarsening factors m and relaxation schemes provided in the top row of each column.
These results are “strange” when compared with the iteration counts in Table 6.5,
in that we do not generally expect improvements in wall time from FCF-relaxation,
unless we are cutting down on iteration counts far more than 50% when compared to
F-relaxation iteration counts. Runs that fail to converge are marked with “**”.

6.4.1 Investigating the Wall-Time Discrepancy for FCF-relaxation

When the coarse grid operator Φ∆ is computationally cheap, the dominant cost of

one Braid iteration is the application of F-relaxation. In such a case, it is reasonable

to assume that one Braid iteration using FCF-relaxation will be roughly twice as

expensive as one Braid iteration using F-relaxation, as FCF-relaxation performs two

sweeps of F-relaxation. However, the wall times in Table 6.6 indicate that asymptotic

MGRIT wall times are primarily a function of the iteration counts seen in Table 6.5,

regardless of the relaxation strategy. In particular, we see that in the problems where

FCF-relaxation halves the iteration count, the wall times are roughly halved. Here,
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we show the results of a performance study that explain the observations in Table 6.6.

First, we use the Python function time.perf counter() to measure the wall

time taken to execute the my Step() function (i.e the Φ operator) in Cyclobraid.

Since F- and FCF-relaxation runs for the same problem require different numbers of

my Step() calls, we first look at an average of the wall clock times for the my Step

calls between the F- and FCF-relaxation runs.

Let sf and sfcf be the total number of my Step() calls for an F- and FCF-

relaxation Braid run, respectively. Then, let the wall clock times for the kth my Step()

call during F- and FCF-relaxation runs, respectively, be wkf , for k = 1, 2, · · · , sf and

wkfcf , k = 1, 2, · · · , sfcf . Then, let the sums of the wall clock times for the my Step()

calls be:

ωf =

sf∑
k=1

wkf and ωfcf =

sfcf∑
k=1

wkfcf . (6.3)

Finally, the averages of the wall clock times for my Step() are given by:

af =
ωf
sf

and afcf =
ωfcf
sfcf

. (6.4)

These quantities are all measured by time.perf counter().

We first consider a problem with ∆t =
1

2048
on the fine grid, a coarsening factor

m = 2, and a total of 8 time points on the fine grid. Our goal is to understand if

the cost of Φ∆ is negligible, i.e., whether F-/FCF-relaxation is truly the dominant

computational cost here. For our first experiment, we therefore avoid using the

asymptotic coarse grid Φ∆, and instead use the fine-grid Φ (Algorithm 5) for Φ∆. In

this setting, the timings yield almost identical averages,

sf = 52, ωf = .034, af = .00060, and

sfcf = 68, ωfcf = .041, afcf = .00061.

Next for comparison, we use asymptotic MGRIT, i.e., Algorithm 6 on the coarse grid.
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In this setting, the timings yield rather different average timings,

sf = 72, ωf = .38, af = .0053, and

sfcf = 96, ωfcf = .39, afcf = .0044.

The average wall clock times af and afcf indicate that the cost of Algorithm 6 on

the coarse grid is not negligible. Thus, we investigate further.

Next, we let ω0,f , ω1,f be the sum of the wall clock times for my Step() only on

Braid levels 0 and 1 (fine and coarse), s0,f , s1,f be the total number of calls made to

my Step() on Braid levels 0 and 1, and a0,f , a1,f be the average wall clock time for a

my Step() call on Braid levels 0 and 1, respectively, when using F-relaxation. The

same notation applies to Braid runs with FCF-relaxation. We indeed see that the

my Step() calls on level 1 (i.e, when using the coarse propagator Φ∆) are roughly

two orders of magnitude more expensive than my Step() calls on level 0:

ω0,f = .022, s0,f = 44, a0,f = .0005

ω1,f = .363, s1,f = 28, a1,f = .013

ω0,fcf = .032, s0,fcf = 68, a0,fcf = .0005

ω1,fcf = .355, s1,fcf = 28, a1,fcf = .013

The dominant computational cost within a call to my Step() on level 1 when using

Algorithm 6 is the call to RSWE Direct.compute average force(), which evaluates

the integral for N (see Equation (3.4)). Letting aN be the average wall time to

call RSWE Direct.compute average force(), our timings reported that aN = .006.

Since a call my Step() (i.e., Φ∆) requires two calls to compute average force(),

we have that 2aN = .012, and 2
aN

a1,f/fcf

= .012
.013
≈ .92. That is, roughly 92% of the

run-time for my Step() on the coarse level is attributable to this computation, making
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this time-averaging computation the dominant cost overall for an asymptotic MGRIT

iteration.

One can see why this computation is so expensive. The dominant cost of a call

to RSWE Direct.compute average force() is a call to the nonlinear multiplication

routine. In order to compute the nonlinear terms for the time-averaged quantity in Line

3 of Algorithm 4, it is necessary to perform the multiplications to find the terms of N(u)

in real space. So, one inverse Fourier transform and one forward Fourier transform is

necessary per quadrature point when computing N . With M total quadrature points,

2M Fourier transforms are necessary per call to compute average force().

This cost can be mitigated, however. The for loop in Algorithm 4 can be

parallelized, so if at least M idle processors are available, then a speedup of roughly

M would be available when executing Algorithm 6 (i.e., Φ∆). In this case, the cost

of Φ∆, F-, and FCF-relaxation would be more balanced, and further performance

analysis would be required. However in our case, compute time is primarily a function

of the iteration count, and the use of FCF-relaxation is advised given the large savings

in wall time. We note that this preference for FCF is novel and should be reflected

often in practice, as idle processors are not always available.

6.5 Accelerating ū Computations by Reusing Val-

ues

In instances where Φ or Φ∆ is computationally expensive, one technique is to reuse

information computed from previous MGRIT iterations or from previous MGRIT

levels, see [11, 20]. As shown in Section 6.4.1, the dominant cost of an asymptotic

MGRIT iteration is the application of the coarse grid operator Φ∆, particularly

the forward and inverse Fourier transforms used to compute nonlinear quantities
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in Algorithm 4. Here, we examine strategies for reusing the time-averaged coarse

grid solution ū, as well as recomputing ū using stale values of the computationally

expensive nonlinear quantities N at certain iterations in asymptotic MGRIT.

We fix a coarse time grid of N∆ = 50 time points, a fine grid of N = 50, 000 time

points, time domain T = [0, 5], and consider ε = 0.01 as well as ε = 1. F-relaxation is

used.

6.5.1 Reuse of Stale Coarse Grid Solutions ū

We examine the residual histories over 10 Braid iterations and compare reuse of ū to

a baseline computation where no re-use is performed. We look at four schemes for

reusing ū from the previous iteration:

1. At iteration j = 9, reuse ū computed at iteration j = 8. All other iterations

are computed without reuse.

2. At iterations j = {8, 9} reuse ū computed at iteration j = 7. All other iterations

are computed without reuse.

3. At all odd iterations j = {1, 3, 5, 7, 9}, reuse ū computed at the respective prior

iterations j = {0, 2, 4, 6, 8}. All other iterations are computed without reuse.

4. At odd iterations j = {5, 7, 9} reuse ū computed at respective prior iterations

j = {4, 6, 8}. All other iterations are computed without reuse.

The residual histories shown in Figures 6.1 and 6.2 indicate that, while reuse of ū

computed at previous iteratons never causes divergent behavior or causes the residual

to become larger, the convergence rate at the iterations associated with the reuse of

ū is very close to 1 (i.e., almost nonconvergent). As a result, even though we skip the

computation of ū, the number of ū computations required to reach a given residual
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Figure 6.1: Comparison of residual histories for two-level asymptotic MGRIT solves
using various schemes to reuse the slowly-varying coarse grid solution ū where
ε = 0.01. A coarse grid of N∆ = 50, a fine grid of N = 50, 000, final time tf = 5.0
and F-relaxation are used.

norm is equal to the number of ū computations required to reach that norm without

skipping ū computations. Hence, the reuse of ū from previous iterations does not

offer any speedup to asymptotic MGRIT. In fact, the work from extra iterations

when reusing ū on all odd iterations (18.1s wall time) or odd iterations 5, 7, and 9

(16.2s wall time) negatively impacted the wall time to reach a halting tolerance of

2.0e−5 when compared to the reference solver that did not reuse information (8.6s

wall time) on a 16-core MPI run.
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Figure 6.2: Comparison of residual histories for two-level asymptotic MGRIT solves
using various schemes to reuse the slowly-varying coarse grid solution ū where ε = 1.
A coarse grid of N∆ = 50, a fine grid of N = 50, 000, final time tf = 5.0 and
F-relaxation are used.

6.5.2 Computation of ū Based on Stale Nonlinear Quantities

N ()

The routine used to integrate the coarse grid approximation ū is described in

Algorithm 6 in Chapter 3. As discussed in Section 6.4.1, the majority of the cost

of computing ū comes from the two N () evaluations in Step 2 of Algorithm 6; in

contrast, the exponential integration calls in Step 1 and Step 3 of Algorithm 6 are

relatively cheap. Here, we consider a reuse scheme which uses stale values of the
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Figure 6.3: Comparison of residual norm histories for two-level asymptotic MGRIT
solves using various techniques to recompute the coarse grid solution ū based on
stale nonlinear quantities N (), where ε = 1. A coarse grid of N∆ = 50, a fine grid of
N = 50, 000, final time tf = 5.0 and F-relaxation are used.

expensive N (v̂) and N (v̂ + ∆T
2

v) computations in Step 2 at certain iterations, but

otherwise performing the time integration on the coarse grid as laid out in Algorithm

6.

To accomplish this, we store computed values of both N (v̂) and N (v̂ + ∆T
2

v)

in a Python dictionary, indexed by the Braid iteration number and coarse time

point index. This way, when performing coarse grid time integration with re-use,

the previously computed N () values from a previous iteration can be accessed and

substituted in place of the calls to the N () time-averaging in Step 2. We consider
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Figure 6.4: Comparison of residual norm histories for two-level asymptotic MGRIT
solves using various techniques to recompute the coarse grid solution ū based on stale
nonlinear quantities N (), where ε = 0.01. A coarse grid of N∆ = 50, a fine grid of
N = 50, 000, final time tf = 5.0 and F-relaxation are used.

four reuse patterns and compare them to a baseline solve without reuse, over Braid

iterations j = {0, 1, 2, · · · , 9, 10}.

1. At iterations j = {7, 8, 9, 10}, recompute ū by reusing nonlinear terms computed

at iteration j = 6. All other iterations are computed without reuse.

2. At iterations j = {5, 6, 7, 8, 9, 10} recompute ū by reusing nonlinear terms

computed at iteration j = 4. All other iterations are computed without reuse.

3. At all odd iterations j = {1, 3, 5, 7, 9}, recompute ū by reusing nonlinear terms
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computed at the respective prior iterations j = {0, 2, 4, 6, 8}. All other iterations

are computed without reuse.

4. At odd iterations j = {5, 7, 9} recompute ū by reusing nonlinear terms computed

at respective prior iterations j = {4, 6, 8}. All other iterations are computed

without reuse.

In Figure 6.4, we find that for ε = .01, all of the N () reuse patterns we consider do

not incur a convergence penalty of more than one order of magnitude when compared

to reference solution. More strikingly, we see that for the schemes that perform N ()

reuse at all odd iterations, the residual norm at iteration 10 is marginally smaller

than the reference solution.

However, for ε = 1, the convergence penalty for reusing priorN () terms is generally

steeper. In this case, the slowing of convergence results in all cases of reuse leading

to an order of magnitude or greater penalty in residual norm convergence at iteration

10, when compared with the reference solution.

In Table 6.7, we see that the average wall time of a call to the timestepping

routine is roughly halved when N () terms are reused in accordance with the even-odd

alternating N () reuse pattern, where N () terms are reused from the prior iteration

at iterations j = {1, 3, 5, 7, 9} over a Braid run with iterations j = 0, 1, 2, · · · , 10 (i.e.,

5 of 11 iterations reuse N () terms for the coarse grid computation.) This holds true

for both ε = .01 and ε = 1.

6.6 Three-Scale RSWE

Up to this point, our research has considered the case where the Rossby radius

of deformation F = 1. Remember ε = Ro = F−1/2Fr, so with ε = 1, we get

Ro = Fr (Ro is the Rossby number and Fr is the Froude number). In this instance,
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ε = .01 ε = 1

Reuse
af,0 = .00045
af,1 = .00682

af,0 = .00045
af,1 = .00676

No Reuse
af,0 = .00047
af,1 = .01335

af,0 = .00047
af,1 = .01273

Table 6.7: Average wall times on levels 0, 1 for N () reuse. The reuse pattern follows
using N () terms from the prior iteration at iterations j = {1, 3, 5, 7, 9} over a Braid
run with iterations j = 0, 1, 2, · · · , 10. As with the other experiments in this section,
F-relaxation is used as indicated by the f subscripts. Here, N∆ = 50 and tf = 5.0.

the timescales of the rotational and gravitational effects are the same. This is not

typically true for geophysical applications, and deformation radii F vary dramatically

in oceanic flows depending on parameters, including but not limited to, latitude,

density stratification and seabed depth. Thus, we are also interested in cases where

F 6= 1.

To explore these cases, Peddle demonstrates in [31] that the linear term in Equation

(3.1) can be written as
1

ε
Lu =

1

Ro
Ru +

1

Fr
Gu, (6.5)

and the governing Equation (3.1) can be rewritten in the form

∂u

∂t
+

1

Ro
Ru +

1

Fr
Gu = N (u) +Du. (6.6)

As a result, there are three timescales, two fast linear scales (R and G) and one

slow nonlinear scale (N (u)). Peddle conjectures that in the instance where F =

10−4, corresponding to rotational effects being two orders of magnitude larger than

gravitational effects, there are two optimal choices for η in Algorithm 4. The two

choices correspond to optimal averaging for the gravitational operator G and the

rotational operator R. In contrast, when F = 1 or F = 104, Figures 6.5 and 6.6

demonstrate that the ideal averaging window for MGRIT convergence is clearly

unique at η = ∆T . Interestingly, the case where F = 104 does not have two minima

despite the timescales of G and R being separated, which is unexplained at this time.
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The asymptotic parareal method is designed for problems where there is only one

fast timescale, meaning that the algorithm uses only one averaging window η. Here,

we give the result of experiments that determine optimal η with respect to MGRIT

convergence for a problem where F = 10−4 and look at possible techniques to handle

three scales in asymptotic MGRIT. In particular, we investigate whether multiple

coarse grids in MGRIT are beneficial for capturing these two separate fast scales.

Figure 6.5: F = 104, ε = 1, T = [0, 5], fine grid N = 50000, coarse grid N∆ = 50

First, we determine more precisely the two optimal choices of η for a given model

problem where ε = 1 and F = 10−4. We use a time domain of [0, 5] with a time

discretization of N = 50000 fine grid time points and N∆ = 50 coarse grid time points.

We also test whether the optimal choices of η are sensitive to the current XBraid
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Figure 6.6: F = 1, ε = 1, T = [0, 5], fine grid N = 50000, coarse grid N∆ = 50

iteration and choice of F-relaxation or FCF-relaxation. To examine this, Figures 6.7

and 6.8 depict the Braid residual magnitude after a fixed number of iterations as η

varies for F- and FCF-relaxation, respectively. More effective η values are expected

to result in larger drops in the Braid residual size. The dips in measured residual

at η = .15, η = .32 are more pronounced at later iterations and do not shift as a

consequence of which relaxation scheme is chosen. This is indicative of possible η

values for use in practice.

Assuming that the two optimal η = .15 and η = .32 correspond to optimal

averaging values for the gravitational operator G and rotational operator R, we

consider the following three-scale asymptotic MGRIT schemes.
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Figure 6.7: Braid residual after 2, 3, 4, and 5 iterations for ε = 1, F = 10−4, and
F-relaxation. Choice of η is given on the x-axis and residual norm measured after
the indicated number of iterations is given on the y-axis. Note that the coarse grid
∆T = 0.1.

1. Two-level solver that alternates between averaging using η = .15 on odd

iterations and η = .32 on even iterations.

2. Three-level solver where the two coarse grids have equal size (e.g., level 0 has

50000 time-points and levels 1 and 2 both have 50 time-points). We use η = .15

on level 1 and η = .32 on level 2.

In Table 6.8 we see that alternating η to be .15 on even iterations and .32 on

odd iterations yields a marginally smaller residual after both 4 and 8 iterations than
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Figure 6.8: Braid residual after 2, 3, 4, and 5 iterations for ε = 1, F = 10−4, and
FCF-relaxation. Choice of η is given on the x-axis and residual norm measured after
the indicated number of iterations is given on the y-axis. Note that the coarse grid
∆T = 0.1.

using either η = .15 or η = .32 exclusively. On the other hand, using η = .32 on even

iterations and η = .15 on odd iterations is slightly superior to using η = .32 exclusively

but not to using η = .15 exclusively. Furthermore, the three-grid experiments have

residual histories that comport exactly to our two-grid experiments, depending on

which value of η was chosen on level 2. The three-grid solve that uses η = .32 on

level 2 yields an identical result to the two-grid solve that uses η = .32 on level 1.

Likewise, the three-grid solve that uses η = .15 on level 2 yields an identical result to

the two-grid solve that uses η = .15 on level 1. This could be due to the work done
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Solving Technique Residual After Residual After
4 Iterations 8 Iterations

Two-Grid, η = .15 on all iterations 7.156544e-03 1.570172e-04
Two-Grid, η = .32 on all iterations 9.273075e-03 2.720488e-04
Two-Grid, η = .15 on even iterations,
η = .32 on odd iterations

7.018559e-03 1.508769e-04

Two-Grid, η = .15 on odd iterations,
η = .32 on even iterations

8.928996e-03 2.389517e-04

Three-Grid,
level 1: N2 = 50, η = .15
level 2: N3 = 50, η = .15

7.156544e-03 1.570172e-04

Three-Grid,
level 1: N2 = 50, η = .32
level 2: N3 = 50, η = .32

9.273075e-03 2.720488e-04

Three-Grid,
level 1: N2 = 50, η = .15
level 2: N3 = 50, η = .32

9.273075e-03 2.720488e-04

Three-Grid,
level 1: N2 = 50, η = .32
level 2: N3 = 50, η = .15

7.156544e-03 1.570172e-04

Table 6.8: Braid residuals after 4 and 8 iterations for various two- and three-grid
techniques when F = 10−4 and ε = 1.

on level 1 in the three-grid case essentially being overwritten by the information from

level 2 as relaxation is applied after interpolating from level 1 to level 2 during the

up-cycle of MGRIT.

While the two-grid method that uses η = .15 on even iterations and η = .32 on

odd iterations performs slightly better than any other method investigated here, the

magnitude of the dips about the minima seen in Tables 6.7 and 6.8 are very small.

Thus, it is not surprising that the MGRIT performance gains are also very small. In

[31], Peddle proposes that an alternative wave-averaging method would be a necessary

component to constructing a solver specifically tailored to the three-scale RSWE. If

such an averaging method is found, its use in a multilevel MGRIT setting would bear
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investigation.

6.7 The ε = 1 Case: On the Use of CF-relaxation

Sweeps and Larger Averaging Values η to Al-

low For More Efficient Coarse Grids

For the rotating shallow water equations, the case where ε = O(1) corresponds to

regimes in geophysical flows where gravity waves are not prominent and the behavior

of the flow is influenced instead by slow Rossby waves. Thus, we want to improve the

solver for this physically relevant case. In [18, 31, 32], attention is paid to the case

where ε = 1. In particular, it is shown in numerical experiments that the performance

of asymptotic parareal is roughly equivalent, but not superior, to standard parareal

for the rotating shallow water equations in terms of convergence. Thus, this is a

difficult problem for asymptotic parareal. We demonstrate in this section that two-

level asymptotic MGRIT can achieve convergence where standard and asymptotic

parareal cannot when using an averaging window η > ∆T and an increased number

of CF-sweeps in the relaxation scheme.

We choose the following parameters similar to [18, 32, 31], in particular the coarse

and fine grid sizes are the same as found in much of [31]. The smallest time domain

sizes of tf = {1, 4} are among the time domain sizes used in the previous literature to

show convergence, and we introduce larger time domains thereafter to demonstrate

where divergence occurs. Using ε = 1 and a fixed coarse grid of N∆ = 50 time points

and fine grid of N = 50000 time points, we vary the time domain T = [0, tf ] where

tf = {1, 4, 8, 12, 16, 20}. We also vary the size of the averaging window, using Equation

(6.1) and choosing the coefficient α = {1, 4, 12, 16, 20}. Thus as α increases, the size

of the averaging window also increases commensurately. Equation (6.2) is used with
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β = 1 to determine the number of quadrature points M used in the computation of the

slowly-varying term N in Algorithm 4. The result is that the number of quadrature

points scales proportionally with the size of the averaging window. In Tables 6.9 and

6.10, iteration counts to reach a halting tolerance of 1.0e-6 and associated wall times

are shown for time domains of T = [0, tf ], for tf = {1, 4, 8, 12, 16, 20} and various

F(CF)n-relaxation strategies of n = 0, 1, 2, 3, 4.

The iteration counts shown in Table 6.9 do not change when using fine grid sizes

N = {10000, 25000, 50000, 75000, 100000}, thus we show only results for N = 50000.

We also see in Table 6.9 that in the ε = 1 case, an increased number of CF-relaxation

sweeps and an increased averaging window length are both individually capable of

allowing two-level asymptotic MGRIT to converge over significantly longer time

domains when using a 50 point coarse time grid, yielding convergence for tf = 12.0.

When increasing both the number of CF-sweeps and averaging window size, it is

possible to achieve convergence for tf = 16.0 with a 50 point coarse time grid. The

number of CF-relaxation sweeps to achieve convergence for a time domain of tf = 16.0

reaches a minimum of 2 at α = 12.0, but for other values of α, more CF-sweeps are

necessary to achieve convergence. This suggests that there is an optimal averaging

window length η > ∆T for large time domains that would ordinarily diverge in

asymptotic parareal where additional CF-relaxations are not an option.

Our experiments suggest the existence of a “coarse grid time domain size limit”

in asymptotic MGRIT that prevents taking large coarse timesteps when ε = 1, even

when a problem with the same coarse timestep size converges for ε = 10−2. In Section

6.3 and Table 6.3, we saw that when ε = 1, the introduction of a coarse grid with 4

or 2 points when tf = 5.0 results in divergence with SAA-MGRIT and SAS-MGRIT.

The same divergence occurs when a coarse grid with 32 points or fewer is used with

tf = 10.0. In contrast, we see in Table 6.4 the introduction of the same-sized coarse

grids when ε = .01 converges with SAA-MGRIT. We also see this in Table 6.9 where
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increasing the time domain over a fixed coarse grid size N∆ = 50 eventually results

in divergence when ε = 1, although we see in Table 6.5 how a coarse grid of N∆ = 16

points and ε = 0.1 works well with asymptotic MGRIT and much larger time domain

sizes. In summary, each of these cases has a limit to how small N∆ can be before

MGRIT convergence stops.

The wall timings given in Table 6.10 further illustrate the findings in Section

6.4.1 that suggest the relationship between CF-sweeps and overall wall time depend

primarily on the computational cost of the coarse grid operator Φ∆ relative to the

cost of relaxation. When α = 1 and α = 4, increasing the number of CF-sweeps

increases the overall wall time, even when the iteration count is decreased by the extra

relaxation. Since the number of points M in the midpoint quadrature computation is

small, the coarse grid operator Φ∆ is cheap and the dominant cost of a Braid iteration

in this case is the application of relaxation. However, for α = 12 and above, M is

increased to the point where the dominant cost of a Braid iteration is the application

of the coarse grid operator Φ∆. Here, reductions in iteration count as a result of the

increased CF-sweeps on larger time domains translate to a reduction in wall time.

For instance, when α = 1, although increasing the number of CF-sweeps from

n = 2 to n = 4 reduces the iteration count required for convergence when tf = 12.0

from 12 to 9, it also increases the wall time from 74.3 seconds to 90.0 seconds. The

average wall time per iteration increases from 6.2 seconds when n = 2 to 10.0 seconds

when n = 4; hence when n = 4, a Braid iteration is on average 38% more expensive

than when n = 2. However, when α = 12 and tf = 16, 16 iterations are required

to reach convergence with n = 2 and 11 iterations are required with n = 4. The

corresponding wall times are 295.5 seconds (18.5 seconds per iteration) when n = 2

and 229.8 seconds (20.9 seconds per iteration) when n = 4, so a Braid iteration is

merely 11% more expensive when n = 4.

We speculate that this MGRIT convergence benefit from larger α and n is due to
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the eigenstructure of Φ. In [5], FCF-relaxation is shown to be effective in smoothing

out error modes associated with eigenvalues of Φ that are << 1. Thus, we speculate

that the troublesome error modes for MGRIT and longer time domains have an

eigenvalue << 1. Enlarging α to 12 and 16 may also be having a positive effect by

making the coarse grid Φ∆ more accurate.
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α = 1 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 3 6 14 ** ** **

1 3 5 9 ** ** **
2 3 5 7 12 ** **
3 3 5 7 10 ** **
4 3 5 6 9 ** **

α = 4 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 6 14 18 20 ** **

1 6 13 15 15 ** **
2 6 10 12 13 ** **
3 6 9 11 11 ** **
4 6 8 10 10 10 **

α = 12 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 10 13 17 28 ** **

1 10 11 13 19 ** **
2 9 10 12 15 16 **
3 9 10 11 13 13 **
4 8 9 10 11 11 **

α = 16 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 11 13 19 31 ** **

1 10 11 16 21 ** **
2 10 10 13 16 ** **
3 9 9 11 13 13 **
4 9 9 10 11 11 **

α = 20 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 11 13 21 ** ** **

1 10 11 17 21 ** **
2 10 10 14 15 ** **
3 9 10 11 13 ** **
4 9 9 10 11 11 **

Table 6.9: Iteration counts for two-level asymptotic MGRIT solves of the RSWE.
Here, the averaging window η and quadrature points are chosen using Equations (6.1)
and (6.2), where α is given in the upper-left cell of each table and β = 1. The value
ε = 1 is used corresponding to no scale separation and the time grid size is fixed at
N∆ = 50, N = 50000. Columns are ordered as the final time tf varies from 1.0 to
20.0 as given by the top row. Rows are ordered by number of CF-relaxations applied
in smoothing i.e., F (CF )n-relaxation where the left-most column gives n for each
row. Runs that fail to converge are marked with “**”.
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α = 1 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 8.4 16.2 37.7 ** ** **

1 11.8 22.6 40.6 ** ** **
2 15.3 31.2 43.2 74.3 ** **
3 20.1 36.2 54.2 83.0 ** **
4 24.2 46.3 56.8 90.0 ** **

α = 4 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 16.0 38.5 69.6 91.9 ** **

1 27.9 63.5 85.9 100.9 ** **
2 36.2 64.5 85.4 102.7 ** **
3 45.9 72.8 99.0 105.0 ** **
4 57.0 76.7 104.4 111.2 126.2 **

α = 12 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 27.5 60.0 134.7 308.6 ** **

1 48.4 68.4 120.5 242.5 ** **
2 57.4 88.1 139.0 214.1 295.5 **
3 75.9 101.1 137.7 207.5 252.4 **
4 77.5 106.5 142.2 203.3 229.8 **

α = 16 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 30.1 75.4 191.0 449.6 ** **

1 44.8 84.9 193.8 341.1 ** **
2 44.9 87.4 170.1 286.2 ** **
3 71.7 93.0 160.6 255.5 320.4 **
4 91.8 108.0 164.5 231.6 288.1 **

α = 20 tf = 1.0 4.0 8.0 12.0 16.0 20.0
n = 0 34.3 89.5 258.6 ** ** **

1 46.7 89.7 232.7 421.5 ** **
2 64.4 104.4 217.3 323.5 ** **
3 72.6 118.0 186.2 303.2 ** **
4 92.0 117.9 186.2 274.4 351.9 **

Table 6.10: MPI 16-core wall clock times for two-level asymptotic MGRIT solves of
the RSWE. Here, the averaging window η and quadrature points are chosen using
Equations (6.1) and (6.2), where α is given in the upper-left cell of each table and
β = 1. The value ε = 1 is used corresponding to no scale separation and the time
grid size is fixed at N∆ = 50, N = 50000. Columns are ordered as the final time
tf varies from 1.0 to 20.0 as given by the top row. Rows are ordered by number
of CF-relaxations applied in smoothing i.e., F (CF )n-relaxation where the left-most
column gives n for each row. Runs that fail to converge are marked with “**”.
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Conclusions

In this thesis, we have developed and investigated variations of an asymptotic MGRIT

approach for solving the RSWE parallel-in-time. These approaches are based on the

the asymptotic parareal method, which uses the key component of an asymptotically

time-averaged coarse grid timestepping scheme. The overall goal is to research

improvements to asymptotic parareal by improving its overall convergence and its

robustness to problem parameters, in particular ε and time-domain length.

In Section 6.3, we proposed the so-called SAS-MGRIT and SAA-MGRIT three-

level techniques with the goal of introducing a nonintrusive and cheap third grid

to the two-grid asymptotic MGRIT/parareal method. We note that for asymptotic

parareal, a three-level scheme is novel. This strategy allows the expensive applications

of the asymptotic coarse grid operator Φ∆ on the second level (i.e., first coarse grid) to

be parallelized. Thus, instead of solving a larger second level sequentially, asymptotic

MGRIT instead solves a smaller third level (i.e., coarsest grid) sequentially. While

SAS-MGRIT and SAA-MGRIT were successful in improving wall times for small

time domains, we saw that SAS-MGRIT became divergent and SAA-MGRIT became

inefficient (compared to two-level asymptotic MGRIT) for longer time domains. In
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response to this, we suggest that future research target an alternative time integration

technique for the third level, which increases robustness for long time domains.

In Section 6.4, we research the use of F (CF )n relaxation inside of asymptotic

MGRIT. We find that the use of additional CF -sweeps (n > 0), which is novel

for asymptotic parareal-type algorithms, both increases robustness with respect

to problem parameters and decreases runtime in some settings. For instance, we

demonstrate that when ε = .01, FCF-relaxation (n = 1) can halve the number of

Braid iterations required to reach convergence. In addition, FCF-relaxation is able

to reduce the wall time when compared to F-relaxation, with the runtime roughly

proportional to the total iteration count. We demonstrate in Section 6.4.1 that this is

the result of the coarse grid operator Φ∆ dominating the cost of an individual Braid

iteration. Thus, FCF-relaxation is able to reduce wall time by reducing the total

number of solves on the coarse grid. However, the cost of the coarse grid operator

Φ∆ could be reduced by parallelizing the midpoint quadrature computation over M

in Algorithm 4, if spare compute nodes were available. In such a setting, the wall

time benefits of FCF-relaxation are likely to be less pronounced.

In Section 6.7, further benefits of additional CF-sweeps (n > 1) in conjunction

with larger time averaging window sizes η are demonstrated by showing greater

robustness of the solver when ε = 1.0. When η and the number of CF-sweeps are

increased, we see that asymptotic MGRIT is able to quickly converge over relatively

long time domains, compared to F-relaxation, i.e., asymptotic parareal. The benefit

from increasing η for our test cases appears to peak when η is computed using the

formulas (6.1) and (6.2) with α = 12.0, β = 1.0 and N∆ = 50. The optimal n for

a problem depends on the time domain size and the cost of an individual Braid

iteration. For example, when tf = {1.0, 4.0} and N∆ = 50, it is clear that n = 0

is the best choice. For larger time domains, however, n = 2 can drastically reduce

iteration counts over n = 0. In these cases n = 3 or larger does not offer as dramatic
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a reduction in iteration count.

Another avenue to reduce the cost of the expensive asymptotic coarse grid operator

Φ∆, is to explore the reuse of stale data when computing Φ∆. In Section 6.5.1, we

investigated techniques to reuse the slowly-varying coarse grid solution ū from previous

iterations in an asymptotic MGRIT two-level solve. We observed that on iterations

where ū was reused from a prior iteration, the convergence factor was near 1.0 in

those iterations and ultimately, in order to reach a given residual halting tolerance,

the same number of Φ∆ evaluations was necessary whether or not ū was reused.

On the contrary, experiments performed in Section 6.5.2 show that it is possible

in the ε = .01 case to use a modified coarse-grid operator which reuses stale values

of the expensive N () computations from prior iterations without degrading MGRIT

convergence. In particular, we saw that when N () is computed on odd-numbered

iterations and recycled in the following even-numbered iterations, the residual norm

is marginally smaller than the residual norm for the non-reuse reference solution after

10 iterations. Reuse of N () was not as efficient in the ε = 1 case, where all considered

reuse patterns led to an order of magnitude (or worse) penalty in convergence speed

after 10 iterations. However, a speedup is still a possibility in both cases because of

the amount of reduced computational work and is the subject of current investigation.

In Section 6.6, we investigated a new problem parameter setting based on Peddle’s

work [31] when the Rossby deformation radius F is small. Here, three scales (instead

of two) are present in the problem, because the linear operator L can be split into

separate timescales for a gravitational operator G and rotational operator R. In

particular, when F = 10−4, gravity waves are rapidly affected by rotation and the

timescale of G is smaller than the timescale of R by two orders of magnitude. We

show experimentally that when ε = 1.0 and F = 10−4, there are two optimal choices

for η. Peddle conjectured that these two optimal η correspond to one ideal averaging

window η for R and a different one for G. We consider two-level and three-level SAA-
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MGRIT techniques to handle these multiple averaging windows. Small improvements

in MGRIT convergence were found for a two-level technique where the experimentally

determined optimal averaging windows η = {.15, .32} were alternated on even/odd

iterations.
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Future Work

We believe that the results in Section 6.3, where three-level asymptotic MGRIT is

explored (SAA- and SAS-MGRIT), indicate some promise for three-level (or more)

solves with asymptotic MGRIT. In particular for small time-domains, the three-

level solves showed an improvement over two-level, converging faster and in less

wall clock time. However as discussed in Section in 6.3, more research is required

to further develop the coarse level timestepping operator for longer time domains.

There is some previous work that has been done with regards to taking large time

steps in the shallow water setting which may be appropriate for consideration. In

[41], Wingate shows that a semi-implicit method due to Dukowicz and Smith [6] is

capable of recovering the Rossby wave amplitudes for large time steps when solving

the linearized quasigeostrophic equations. LeVeque describes a generalization of

Godunov’s method allowing arbitrarily large time steps in [23]. Further large time

step schemes have been studied in a shallow water setting [12, 27, 42].

Another fruitful direction would be to parallelize the computation of N by

parallelizing over the quadrature points M (see for-loop in Algorithm 4). This

would be particularly useful in cases where asymptotic MGRIT benefits from longer
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averaging windows η, which require more points M to resolve. For instance in [31], it

is shown that when ε = .01, convergence improves as the size of the averaging window

η increases. Additionally in Section 6.7, we demonstrate improved convergence and

more efficient coarse grids (i.e., fewer coarse time points N∆) when ε = 1.0 and larger

averaging windows η > ∆T are chosen. Thus if given enough parallel resources, an

increase in the averaging window size would not incur a sizeable penalty in compute

time, because the for-loop in Algorithm 4 would be parallelized..

Regarding the three-scale problem from Section 6.6, further research is required

to develop a wave-averaging technique suited to three-scales. Remember that here

the Rossby radius of deformation F is small and the timescales of rotation and

gravitation separate. Essentially, the fast linear operator L can be written as a sum

of a gravitational operator G and a rotational operator R, yielding two problem

scales, whereas previously for F = 1, L represented only one scale. Unfortunately, our

attempts to use the optimal averaging window for both R and G inside of asymptotic

MGRIT resulted only in rather limited improvements in convergence. If it is physically

relevant, a reasonable future direction would be to consider the case where F is even

smaller and the separate scales of R and G would become more pronounced. Here,

the use of the optimal averaging window for both R and G could yield a larger

improvement in convergence.

Lastly, we recommend further research on determining optimal η values and

number of CF-sweeps for the case of long time domains. We demonstrated in Section

6.7 how the use of increased CF-relaxation sweeps and an increased time averaging

window η > ∆T can be used to allow for small and efficient coarse grid sizes N∆ with

long time domains. Further research should target developing rules or a computational

model to help in choosing η and the number of CF-sweeps.
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