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Dedication

To all Mathematicians and Physicists, Humility is key:

The universe, full of intricate phenomena, yet such awe-inspiring beauty and

elegance, is something humans have vested interest to describe and understand as

long as we have been aware of our presence within it. Curious by nature, we have

tried relentlessly to find a way to connect the dots between events, to determine the

striking relationships between the interactions we perceive, as well as those that we

do not. We have made impressive technological advancements from the smallest

particle to the grand scheme of the universe that have given us at least a glimpse at

the truth of the inner workings of the universe and all of the accomplishments

through unique logical languages known as Mathematics and Physics. Of all of our

stupendous progress and transcending breakthroughs that has stemmed from our

ability to think logically and become well-versed about our universe, we still

encounter problems and continue to stumble on conundrums which cannot be

resolved within the spectrum of our rational and intellectual resources. We are

therefore, forced to capitulate to the fact that, there is a super-natural power that

functions independently and operates outside the scope of our perceptual and

intellectual range. Holding such a tenet that, there is super-natural power which

functions in a mystical way beyond the human comprehension is something which is

innately grafted in the conscience of all sentient beings.
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Abstract

The Maxwell equations may be viewed as evolution equations which develop an

initial state of the electromagnetic field forward in time. Such evolution can be

simulated numerically, that is modeled on a computer, in which case the domain

of simulation is typically finite in extent. Nonetheless, one is often interested in

the electromagnetic waves which reach infinity (of course which is outside of the

simulation domain). Thus we are interested in near-to-far field signal propagation,

that is a mathematical process where a signal or solution recorded at a finite radius

r = r1 can be converted to a signal at r = r2 > r1. We achieve such a conversion via

application of convolution kernels in the time-domain, although the derivation of the

appropriate kernels relies on Laplace transform arguments. Decomposing the wave

and Maxwell equations using scalar and vector spherical harmonics respectively, we

have solved the equations on the assumption that the source and initial data are

compactly supported. We further assume that we work at a large distance outside of

the supports. We develop from a theoretical standpoint signal-conversion formulas

for the 3d wave and Maxwell equations and these generalize the simple time delay
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associated with the propagation between two radii of a solution to the 1d wave

equation.
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Chapter 1

Introduction

The primary objective of this work is to explore outgoing solutions to the 3-dimen-

sional wave equation and Maxwell equations. The Maxwell equations remain the

corner-stone as far as the concept of electromagnetism is concerned. The equations

describe how electric and magnetic fields interact and propagate. The static Maxwell

equations describe the structure of an electric field due to an electric charge. The

equations imply the non-existence of magnetic monopoles and that the fundamental

magnetic object is a dipole with north and south pole. The Maxwell equations

further show how a change in magnetic field through a loop gives rise to an induced

current. The Faraday Law, which is one of the four equations, explains how a

circulating electric field gives rise to a magnetic field changing in time. The last

Maxwell equation generally known as Ampere’s Law tells us how a flowing electric

current gives rise to a magnetic field that encircles that current. We will describe the

mathematical representation of these equations in detail in the subsequent chapters

(Chapter 2).

It is impractical to treat or solve a hyperbolic equation in a numerical compu-

tation with an infinite domain. The Maxwell equations may be viewed as evolution

1



Chapter 1. Introduction

equations which develop an initial state of the electromagnetic field forward in time.

Such evolution can be simulated numerically, that is, modeled on a computer, in

which case the domain of simulation is typically finite in extent. Nonetheless, one is

often interested in the electromagnetic waves which reach infinity (of course which is

outside of the simulation domain). Thus we are interested in near-to-far field propa-

gation, that is a mathematical process where a signal or solution recorded at a finite

radius r = r1 can be converted to a signal at r = r2 and r2 > r1. We shall achieve

such a conversion via application of convolution kernels in the time-domain, although

the derivation of the appropriate kernels relies on Laplace transform arguments.

From a theoretical standpoint, another interest of this work (which is, in fact,

related to near-to-far field propagation) is the form of outgoing solutions to wave

and Maxwell equations. These generalize the simple right-advecting solutions to the

wave equation on a 1-dimensional string ∂2ψ
∂x2

= ∂2ψ
∂t2

. We will first decompose the

3-dimensional scalar wave equation using scalar spherical harmonics. This reduces

the wave equation to the ”radial form”. By invoking the Laplace transformation, we

rewrite the ”radial form” as a special ODE known as the Modified Bessel Equation.

Exploiting McDonald’s function which is a solution to the Modified Bessel Equation,

we will write the general form of the outgoing multipole solution to the wave equation.

Unlike the wave equation, we will decompose the Maxwell equations using vector

spherical harmonics. This reduces the equations into radial equations in time-radius.

After we apply Laplace transformation, we end up with differential equations in r

for the transverse components of the electric and magnetic fields. Our aim then is

to solve these differential equation by writing them in terms of the Modified Bessel

Equation. We will then write an explicit general form for the outgoing multipole

solutions to the source free Maxwell equations.

We will develop the teleportation kernel for both the wave and the Maxwell

2



Chapter 1. Introduction

equations. In particular, we will consider an explicit propagation formula for the

wave equation for ` = 2, and also ` = 2 and ` = 3 for the Maxwell equation. The

propagation in both cases will be carried out at a time delay of (r2 − r1)/c.

3



Chapter 2

Wave Equation

The wave equation is a second-order, linear, hyperbolic partial differential equation.

It describes the propagation of a variety of waves, such as sound waves, light waves

and water waves. It arises in such fields as acoustics, electromagnetics, and fluid

dynamics. For one time t and three space variables x,y,z the wave equation is

∂2ψ(t, x, y, z)

∂t2
= c2∇2ψ, (1)

where ∇2 = ∂2x + ∂2y + ∂2z and c are the Laplacian and speed of propagation [1]. In

this work we will set the value of the speed of propagation to unity, i.e c = 1. The

speed can be recovered by sending t→ ct.

4



Chapter 2. Wave Equation

2.1 Multipole Solutions

2.1.1 Separation of Variables

Consider a 3-dimensional wave equation given by

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− ∂2ψ

∂t2
= S(t, x, y, z), (2)

where S is a source term. Throughout this analysis, we assume S is compactly

supported and that we work at a large distance from the source. Therefore, we set

S ≡ 0. In spherical polar coordinates, the Laplacian takes the following form:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
, (3)

where θ is the polar and φ is the azimuthal angle. We also write

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2
∇2
Sψ, (4)

with

∇2
S =

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
, (5)

as the Laplacian on the unit-radius sphere. We assume a ”multipole expansion” for

the wave field of the form

ψ(t, x, y, z) =
∞∑
`=0

∑̀
m=−`

1

r
Ψ`m(t, r)Y`m(θ, φ). (6)

Here x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ and

Y`m(θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimφ (7)

is a standard spherical harmonic with Pm
` (cos θ) as the associated Legendre function.

The Y`m(θ, φ) eigenfunctions obey the identity

∇2
SY`m(θ, φ) = −`(`+ 1)Y`m(θ, φ). (8)

5



Chapter 2. Wave Equation

For our purposes, it is sufficient to analyze a single mode:

ψ =
Ψ(t, r)

r
Y`m(θ, φ). (9)

Here, we have suppressed the `m on the Ψ in (6) and we will maintain this trend

throughout the analysis, although sometimes we keep just the ` subscript as you will

see later. Then eqn(1) becomes

Y`m(θ, φ)

r

∂2Ψ

∂t2
= Y`m(θ, φ)

1

r2
∂

∂r
r2
∂

∂r

(
Ψ

r

)
+

Ψ

r3
∇2
SY`m(θ, φ) (10)

and upon the use of (8), we have

∂2Ψ

∂t2
=

1

r

∂

∂r
r2
∂

∂r

(
Ψ

r

)
− `(`+ 1)

r2
Ψ.

Consequently, we also have that,

1

r

∂

∂r
r2
∂

∂r

(
Ψ

r

)
=

1

r

∂

∂r

(
rΨ′ −Ψ

)
= Ψ′′ +

Ψ′

r
− Ψ′

r
= Ψ′′,

and so

∂2Ψ

∂t2
=
∂2Ψ

∂r2
− `(`+ 1)

r2
Ψ. (11)

This is known as the ”radial wave equation” or Euler-Poisson-Darboux equation

and it features an ”effective potential”, i.e.

V (r) =
`(`+ 1)

r2
. (12)

Our goal is to find solutions to (11) which are anologous to the simple rightward

propagating solutions f(t− r) to the 1 dimensional wave equation

Ψtt = Ψrr. (13)
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Chapter 2. Wave Equation

We proceed via the technique of the Laplace transform in time. The Laplace trans-

form of Ψ is defined as

L[Ψ(·, r)](s) = lim
a→∞

∫ a

0

e−stΨ(t, r)dt. (14)

We assume that this transformation exists and proceed formally. This assumption

rests on the fact that at a fixed radius the solutions to the radial wave equation tend

to decay in time, not grow. We can through integration by parts establish that

L[Ψ̇(·, r)](s) = lim
a→∞

[
e−saΨ(a, r)−Ψ(0, r) + s

∫ a

0

e−stΨ(t, r)dt

]
= sL[Ψ(·, r)](s)−Ψ(0, r).

(15)

Here Ψ̇ = ∂Ψ/∂t. Clearly, it follows that

L[Ψ̈(·, r)](s) = s2L[Ψ(·, r)](s)− sΨ(0, r)− Ψ̇(0, r). (16)

With these results, the Laplace transform of the radial wave equation (11) is given

by

s2Ψ̂(s, r) =
d2Ψ̂(s, r)

dr2
− Ψ̂(s, r)

r2
`(`+ 1) +

∂Ψ(0, r)

∂t
+ sΨ(0, r), (17)

where Ψ̂(s, r) = L[Ψ(·, r)](s). For the initial condition, we assume a radial location

r large enough that the initial data vanishes. That is,

∂Ψ(0, r)

∂t
= sΨ(0, r) = 0.

The equation now becomes

s2Ψ̂(s, r) =
d2Ψ̂(s, r)

dr2
− Ψ̂

r2
`(`+ 1). (18)

To solve this equation, we substitute the equation

Ψ̂ =
√
ry(s, r) (19)

7



Chapter 2. Wave Equation

into (18) and find that y obeys the following

−r2y′′ − ry′ + y

[
1

4
+ `(`+ 1) + s2r2

]
= 0.

With z = sr, the above equation becomes

z2
d2y

dz2
+ z

dy

dz
− y

[
(`+

1

2
)2 + z2

]
= 0. (20)

Equation (20) is known as the Modified Bessel Equation. Here the equation is of

half-integer order[2].

2.1.2 MacDonald Function

The solutions to equation (20) are Iν(z) and Kν(z), with ν = ` + 1/2. We shall

exclusively be concerned with Kν(z) which is known as the MacDonald function of

order ν. This is because, along the positive z-axis, we have that

lim
z→∞

Kν(z) = 0.

They are determined by [2]√
π

2z
K`+ 1

2
(z) =

π

2z
e−z
∑̀
k=0

(
`+

1

2
, k

)
1

(2z)k
, (21)

where(
`+

1

2
, k

)
=

(`+ k)!

k!Γ(`− k + 1)
. (22)

Thus, we can write following equations:

K`+ 1
2
(z) =

√
π

2z
e−zW`(z), W`(z) =

∑̀
k=0

c`k
zk
, c`k =

1

2kk!

(`+ k)!

(`− k)!
. (23)

8



Chapter 2. Wave Equation

2.1.3 Some Examples of MacDonald Functions

The first five MacDonald functions are the following.

K1/2(z) =

√
π

2z
e−z(this has no root)

+ K3/2(z) =

√
π

2z
e−z
(

1 +
1

z

)
� K5/2(z) =

√
π

2z
e−z
(

1 +
3

z
+

3

z2

)
◦ K7/2(z) =

√
π

2z
e−z
(

1 +
6

z
+

15

z2
+

15

z3

)
* K9/2(z) =

√
π

2z
e−z
(

1 +
10

z
+

45

z2
+

105

z3
+

105

z4

)
.

(24)

The symbols used in Figure 1 below which include + � ◦ and ∗ respectively correspond

to ` = 1, 2, 3, 4. Watson [4] shows that each b`j lies in the left-half plane and is simple.

Watson’s analysis is presented in the Appendix of [3]. When one watches closely to

the curve with the naked eye, the scaled roots appear to be lying on the curve even for

small `. The scaled roots actually tend to lie on the curve when `→∞. Nonetheless,

the fact that roots appear to be lying on the curve even for small ` illustrates that

often asymptotics are good even when the parameter is not large.

2.1.4 Time Domain Expressions

Recall that we have the equation√
2z

π
K`+ 1

2
(z) = e−zW`(z). (25)

Therefore, the preceding analysis shows that we can from (19) have

Ψ̂`(s, r) = α(s)e−zW`(sr) (26)

9



Chapter 2. Wave Equation

Figure 2.1: Scaled zeros
b`j

(`+ 1/2)
of K`+1/2(z) and W`(z).

as a solution to (18), despite multiplying the solution with a factor α(s). We now

choose α(s) = a(s)s` for the later convenience. Here a(s) is an analytic function of

s which encodes the nature of the wave in the time-domain. Explicitly,

Ψ̂`(s, r) = a(s)e−sr
∑̀
k=0

c`k
s`−k

rk
. (27)

We claim that the inverse Laplace transform of eqn(27) is

Ψ`(t, r) =
∑̀
k=0

1

rk
c`kf

(`−k)(t− r), c`k =
1

2kk!

(`+ k)!

(`− k)!
. (28)

Where the profile function f is determined by a(s). To establish this result, we need

the following two lemmas.

Lemma 2.1.1. Let f ∈ C∞(R), with f(u) = 0 for u /∈ [−B,−A], where u = t− r

10



Chapter 2. Wave Equation

is retarded time, and r > B. Then∫ ∞
0

e−stf(t− r)dt = e−sra(s). (29)

Proof. Letting u = t− r; via change of variable, we have that∫ ∞
0

e−stf(t− r)dt = e−sr
∫ ∞
−r

e−suf(u)du = e−sra(s),

where

a(s) ≡ e−sr
∫ −A
−B

e−suf(u)du. (30)

Clearly a(s) is independent of r because the function is only supported on the interval

[−B,−A] which excludes −r from the region where the function is nonzero. a(s) is

an entire function, because the integral above is convergent for any s ∈ C.

Lemma 2.1.2. From lemma 1, when we have a ”smooth profile function ” supported

on the interval [−B,−A], for a fixed r > B then,∫ ∞
0

e−stfp(t− r)dt = e−srspa(s). (31)

Proof. We prove this lemma using the method of induction. The base case of p = 0

was shown in the last lemma. We know that

I =

∫ ∞
0

e−stfp(t− r)dt = e−sr
∫ −A
−B

e−su
d

du
f (p−1)(u)du (32)

I = se−sr
∫ −A
−B

e−suf (p−1)(u)du+ e−sr
∫ −A
−B

d

du

(
e−suf (p−1)(u)

)
du. (33)

The above integral

e−sr
∫ −A
−B

d

du

(
e−suf (p−1)(u)

)
du = 0,

11



Chapter 2. Wave Equation

since the function f is only supported on [−B,−A] and is C∞(R) so the boundary

terms vanishes. We can write our integral as

I = s

∫ ∞
0

e−stf (p−1)(t− r)dt. (34)

Clearly, by induction ∫ ∞
0

e−stfp(t− r)dt = e−srspa(s).

As an example of this type of solution, we consider the case ` = 2, with Ψ̂2(s, r)

given by

Ψ̂2(s, r) = a(s)s2e−srW2(sr), W2(z) = 1 +
3

z
+

3

z2

with corresponding quadrupole expansion in the time domain as

Ψ2(t, r) = f ′′(t− r) +
3

r
f ′(t− r) +

3

r2
f(t− r). (35)

With the above two lemmas, it is seen that Laplace transform of (35) yields the

preceding equation.

2.2 Teleportation for Flatspace Multipoles

2.2.1 Formulas for General `

Teleportation refers to the process whereby a signal Ψ(t, r) recorded at r = r1 is

converted to the one recorded at r = r2 and r2 > r1. We shall achieve such a

conversion via application of a convolution kernel in the time-domain, although the

12



Chapter 2. Wave Equation

derivation of the appropriate kernel relies on Laplace transform arguments. From

(26) of section 2.1.4 we have previously seen that

Ψ̂`(s, r1) = a(s)s`e−z1W`(z1), Ψ̂`(s, r2) = a(s)s`e−z2W`(z2) (36)

where z1 = sr1, z2 = sr2, and we assume that r2 > r1 > support of the initial data.

The relationship between the solutions at different radii is given by

Ψ̂`(s, r2) = e−s(r2−r1)
W`(sr2)

W`(sr1)
Ψ̂(s, r1), (37)

or upon rearranging terms, we have

e(z2−z1)Ψ̂`(s, r2) =

[
W`(z2)

W`(z1)
− 1

]
Ψ̂`(s, r1) + Ψ̂`(s, r1). (38)

We will write the last equation as

es(r2−r1)Ψ̂`(s, r2) = Φ̂`(s, r1, r2)Ψ̂`(s, r1) + Ψ̂`(s, r1) (39)

where

Φ̂`(s, r1, r2) = −1 +
W`(sr2)

W`(sr1)
. (40)

Remark: The −1 here ensures that the frequency domain kernel Φ̂(s, r1, r2) decays

for large s and this guarantees that the inverse Laplace transform exists. For the

case r2 =∞, we see that W`(sr2) = 1 so the frequency domain kernel becomes

Φ̂`(s, r1,∞) =
−W`(sr1) + 1

W`(sr1)
. (41)

As shown below, the frequency domain teleportation kernel is given as sum of poles

which is [5, 6]

Φ̂`(s, r1, r2) =
∑̀
j=1

a`j(r1, r2)

s− b`j/r1
, (42)

13



Chapter 2. Wave Equation

whereas the time-domain teleportation kernel is a corresponding sum of exponentials,

Φ`(t, r1, r2) =
∑̀
k=1

a`k(r1, r2) exp
(b`kt
r1

)
. (43)

To establish the teleportation formula, we take the inverse Laplace transform of

eqn(39), and this gives

Ψ`(t+ (r2 − r1), r2) =

∫ t

0

Φ`(t− t′, r1, r2)Ψ`(t
′, r1)dt

′ + Ψ`(t, r1). (44)

2.2.2 Explicit Formulas for ` = 2

In terms of its zeros, W`(z) has the form

W`(z) =
1

z`

∏̀
j=1

(z − b`j) (45)

where b`j are roots. This is demonstrative of the fact that the zeros of W`(z) are the

same as those of the MacDonald function K`+1/2(z). Since

(z1 − b`j) = r1(s− b`j/r1),

we can therefore proceed to calculate the residue as

a`k(r1, r2) = lim
s→ b`k/r1

(s− b`k/r1)Φ̂`(s, r1, r2) (46)

since the poles are simple. This follows because the roots of the K`+1/2(z) are known

to be simple. We will therefore from eqn(45), define the residue as [5]

a`j(r1, r2) =
W`(b`jr2r

−1
1 )

r1W ′
`(b`j)

. (47)

Let us consider ` = 2 as an example. We have already seen in the previous

analysis that

W2(z) = 1 +
3

z
+

3

z2
.
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When we set W2(z) = 0, the roots are

b21 = −3

2
+ i

√
3

2
, b22 = −3

2
− i
√

3

2
.

Expanding eqn(43) for the ` = 2 case gives

Φ2(t, r1, r2) = a21(r1, r2) exp
(b21
r1
t
)

+ a22(r1, r2) exp
(b22
r1
t
)
.

When we substitute the values of b21 and b22 in the previous equation, we have

Φ2(t, r1, r2) = exp(− 3

2r1
t)

[
(a21+a22) cos

(√
3

2r1
t

)
+ i(a21−a22) sin

(√
3

2r1
t

)]
. (48)

Here, our purpose is to calculate a21 and a22. When we set r = r2r
−1
1 and also choose

r1 = 1 for convenience sake, then eqn(47) reduces to

a`k(1, r) =
W`(b`kr)

W ′
`(b`k)

. (49)

We can recover the actual residue equation as

a`k(r1, r2) = a`k(1, r2r
−1
1 )/r1

. We can also in an alternative way rewrite

W2(z) =
1

z2

(
z − b21

)(
z − b22

)
. (50)

With this expression we find, for example, that

a21(1, r) =
W`(b21r)

W ′
`(b21)

=
r − 1

r2
b221r − b21b22
b21 − b22

.

From here

a21(1, r) =
(r − 1)(rb221 − b21b22)

ir2
√

3
. (51)

With this result, we then compute the values of a21(r1, r2) and a22(r1, r2) by feeding

into (51) the values of b21 and b22. The computation finally yields

a21(r1, r2) = −r2 − r1
2r1r22

[3r2 + i
√

3(r2 − 2r1)]

15



Chapter 2. Wave Equation

and

a22(r1, r2) = −r2 − r1
2r1r22

[3r2 − i
√

3(r2 − 2r1)], (52)

since a22 is the complex conjugate of a21. This implies that

Φ2(t, r1, r2) = exp

(
− 3

2r1
t

)[
(aR) cos

(√
3

2r1
t

)
+ i(aI) sin

(√
3

2r1
t

)]
, (53)

where

aR =
−3(r2 − r1)

r1r2
aI = −

√
3

r1r22
[(r2 − r1)(r2 − 2r1)]. (54)
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Maxwell Equations

The central equations that govern electromagnetic theory are the Maxwell equations.

Fundamentally, the equations can be written in the following microscopic Gaussian

unit form [7]:

∇ · E = 4πρ (55a)

∇× E = −1

c

∂B

∂t
(55b)

∇×B =
1

c

∂E

∂t
+

4π

c
J (55c)

∇ ·B = 0. (55d)

These equations are respectively known as Gauss’ Law, Faraday’s Law, Generalized

Ampere’s Law and the Magnetic Law. Here E is the electric field, B is the magnetic

field, ρ is volume charge density, J is the current charge density. These equations

are typically expressed in the time dependent circumstance. In the ”static” case, the

equations are independent of time and therefore the time dependence of the previous

equations vanishes.

In the source free case, we set ρ = 0 and J = 0. We will, as in the case of wave

17
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equation, take c = 1. The speed can be recovered by sending t → ct. Our previous

equations then reduce to the following:

∇ · E = 0 (56a)

∇× E = −∂B

∂t
(56b)

∇×B =
∂E

∂t
(56c)

∇ ·B = 0. (56d)

This shows that E and B are coupled. This implies that variations in E act as a

source for B, which in turn act as a source for E. We can expand both the E and B

in terms of the orthogonal basis of vector spherical harmonics.

3.1 Vector Spherical Harmonics (VSH)

3.1.1 Derivation and Properties of VSH

We will succinctly go through some analysis in constructing the VSH. Several tech-

niques have been used in constructing the VSH. There is no universally agreed upon

methodology for constructing VSH. Mostly, the choice of the technique or method

has to do with convenience of analysis. In our case, we will be using the Barrera et

al approach [8] of constructing the VSH, an attempt to construct the VSH, which

is analogous to the scalar spherical harmonics, would be to treat each of the three

components of a vector as a separate scalar field. Naively, one might attempt to first

express a given vector field

V(r, θ, φ) = erV
r(r, θ, φ) + eθV

θ(r, θ, φ) + eφV
φ(r, θ, φ) (57)

in terms of the standard spherical polar frame, and then subsequently expand each

component in a scalar spherical harmonic expansion. That is, for a given field V, we

18
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might write

V(r, θ, φ) = er

∞∑
`=0

∑̀
m=−`

V r
`m(r)Y`m

+ eθ

∞∑
`=0

∑̀
m=−`

V θ
`m(r)Y`m + eφ

∞∑
`=0

∑̀
m=−`

V φ
`m(r)Y`m.

(58)

The representation of eqn(58) is certainly valid, since the scalar spherical harmonics

form a complete set. Consider an equation of the form

∇ ·V = f. (59)

We might expect that eqn(59) and the scalar spherical harmonic decomposition of

the scalar function function f :

f =
∞∑
`=0

∑̀
m=−`

f`m(r)Y`m(θ, φ) (60)

would eventually relate the coefficients, f`m, V
θ
`m, V

φ
`m and finally V r

`m in a useful way.

Unfortunately, this is not the case. To show why, we first find the divergence of V

in eqn(59) in spherical polar coordinates,

∇ ·V =
∞∑
`=0

∑̀
m=−`

[
1

r2
∂

∂r
(r2V r

`m(r)Y`m) +
1

r sin θ

∂

∂θ
(sin θV θ

`m(r)Y`m)

+
1

r sin θ

∂

∂φ
(V φ

`m(r)Y`m)

]
.

(61)

Considering eqn(61), we see the presence of terms like Y`m/ sin θ, which shows that,

the angular dependence for `m is not simply Y`m. Therefore, our aim to sweep away

all the angular dependence, in order to simply relate the r-dependent coefficients,

cannot be achieved. Since we cannot cancel the Y`m, we will not go through this futile

exercise of constructing the vector spherical harmonics by taking the divergence of

V. Rather, we consider a scalar field

f(r, θ, φ) =
∞∑
`=0

∑̀
m=−`

f`m(r)Y`m(θ, φ), (62)
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and obtain a vector field by taking its gradient

∇f =
∞∑
`=0

∑̀
m=−`

(
d

dr
f`m(r)Y`mer + f`m∇Y`m

)
. (63)

We have succeeded in expressing the radial part in terms Y`m. We now have to expand

the new mathematical object, ∇Y`m, in terms of eθ and eφ. This motivates the

following notation: Φ`m, Ψ`m and Y`m, with Y`m = erY`m. We will for convenience

sake define the new notations as

Ψ`m = r∇Y`m(θ, φ) (64)

and

Φ`m = er ×Ψ`m = r×∇Y`m. (65)

Where r = rer. This guarantees that for any given field V(r, θ, φ), we can write the

field as

V(r, θ, φ) =
∞∑
`=0

∑̀
m=−`

V r
`mY`m + V

(1)
`m Ψ`m + V

(2)
`m Φ`m. (66)

As collected in [8], some identities regarding the scalar and vector spherical har-

monics include the following:

1. Divergence:

∇ · (F (r)Y`m) =

(
1

r2
d

dr
r2F (r)

)
Y`m,

∇ · (F (r)Ψ`m) = −`(`+ 1)

r
F (r)Y`m,

∇ · (F (r)Φ`m) = 0.
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2. Curl:

∇× (F (r)Y`m) = −F (r)

r
Φ`m,

∇× (F (r)Ψ`m) =

(
1

r

d

dr
rF (r)

)
Φ`m,

∇× (F (r)Φ`m) = −

(
`(`+ 1)

r
F (r)

)
Y`m −

(
1

r

d

dr
rF (r)

)
Ψ`m.

3. Gradient:

∇(F (r)Y`m) =

(
d

dr
F (r)

)
Y`m +

F (r)

r
Ψ`m.

Now, it is evident from the previous analysis that, when we consider the equation,

∇ ·V = f

in terms of the vector spherical harmonics, we are able to relate the coefficients in a

useful way.

3.1.2 Maxwell Equations Expressed in Terms of VSH

With the previous analysis, we now expand both the electric E and magnetic B fields

in terms of the vector spherical harmonics as

E(r, θ, φ) =
∞∑
`=1

∑̀
m=−`

Er
`mY`m + E

(1)
`mΨ`m + E

(2)
`mΦ`m, (67)

B(r, θ, φ) =
∞∑
`=1

∑̀
m=−`

Br
`mY`m +B

(1)
`mΨ`m +B

(2)
`mΦ`m. (68)
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It is crystal clear that our expansion for both E and B field ignores terms involving

` = 0. We have ignored that because Ψ00 and Φ00 vanish identically, and also Er
00Y00

is Coulomb term which is easy to handle. The presence of Br
00Y00 is indicative

of a magnetic monopole (magnetic charge) which we do not want to have in the

expansion. Here Er
`m is the radial component of the vector field, while E

(1)
`m and E

(2)
`m

are the transverse components with

Y`m = Y`mer. (69)

In this paragraph, we write an explicit expansion for both Ψ`m and Φ`m, in terms

of eθ and eφ. Then we will describe how to relate the VSH components of B and

E to the Cartesian components. We proceed as follows, we know the gradient of a

function f in the spherical polar coordinates is given by

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ. (70)

In our case f = Y`m(θ, φ), and clearly

∇Y`m(θ, φ) =
1

r

∂Y`m
∂θ

eθ +
1

r sin θ

∂Y`m
∂φ

eφ. (71)

Since we have previously defined Ψ`m = r∇Y`m(θ, φ), then

Ψ`m =
1

sin θ

∂Y`m
∂φ

eφ +
∂Y`m
∂θ

eθ. (72)

Similarly, given that Φ`m = er ×Ψ`m = r×∇Y`m, then we have

Φ`m = − 1

sin θ

∂Y`m
∂φ

eθ +
∂Y`m
∂θ

eφ, (73)

where, of course er, eφ, and eθ are the standard unit basis vectors in the spherical

co-ordinate system.

Substituting Ψ`m and Φ`m into eqn(67) and eqn(68), and rearranging the terms

gives (isolating single `m-terms in each):

E = Er
`mY`mer +

[
E

(1)
`m

∂Y`m
∂θ
− E

(2)
`m

sin θ

∂Y`m
∂φ

]
eθ +

[
E

(1)
`m

sin θ

∂Y`m
∂φ

+E
(2)
`m

∂Y`m
∂θ

]
eφ, (74)
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B = Br
`mY`mer +

[
B

(1)
`m

∂Y`m
∂θ
− B

(2)
`m

sin θ

∂Y`m
∂φ

]
eθ +

[
B

(1)
`m

sin θ

∂Y`m
∂φ

+B
(2)
`m

∂Y`m
∂θ

]
eφ. (75)

From these expressions we read off Er, Eθ and Eφ which we can use as formula in

determining the Cartesian components of E and B. Next, we want to decompose the

Maxwell equations (56a)-(56d) using the properties of the vector spherical harmonics.

We can now write the curl of both the electric and magnetic field in terms of the

VSH as

∇× E =
∞∑
`=1

∑̀
m=−`

[
ζEY`m − ηEΨ`m + χEΦ`m

]
, (76)

where

ζE = −`(`+ 1)

r
E

(2)
`m ,

ηE =

(
∂E

(2)
`m

∂r
+

1

r
E

(2)
`m

)
,

and

χE =

(
− 1

r
Er
`m +

∂E
(1)
`m

∂r
+

1

r
E

(1)
`m

)
.

Similarly,

∇×B =
∞∑
`=1

∑̀
m=−`

[
ζBY`m − ηBΨ`m + χBΦ`m

]
. (77)

ζB = −`(`+ 1)

r
B

(2)
`m,

ηB =

(
∂B

(2)
`m

∂r
+

1

r
B

(2)
`m

)
,

χB =

(
− 1

r
Br
`m +

∂B
(1)
`m

∂r
+

1

r
B

(1)
`m

)
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3.2 Multipole Solutions

3.2.1 Laplace Transform

The goal of this subsection is to show via Laplace transformation, that the Maxwell

equations are equivalent to a denumerable set of ODE for all `, m (see (92) below).

We now want to take the Laplace transform of both eqn(56b) and eqn(56c). We will

begin with the partial time derivative of both equations. We have already in the

previous analysis defined the the Laplace transform as

L[E(·, r)](s) = lim
a→∞

∫ a

0

e−stE(t, r)dt (78)

L[Et(·, r)](s) = lim
a→∞

[
e−saE(a, r)− E(0, r) + s

∫ a

0

e−stE(t, r)dt

]
= sL[E(·, r)](s)− E(0, r).

(79)

Similarly, when one takes the Laplace transform of time dependent B field, we have

L[Bt(·, r)](s) = lim
a→∞

[
e−saB(a, r)−B(0, r) + s

∫ a

0

e−stB(t, r)dt

]
= sL[B(·, r)](s)−B(0, r).

(80)

For the initial condition, we will assume that the data is compactly supported, and

that r > support of the initial data. Therefore,

B(0, r) = E(0, r) = 0,

and the Laplace transforms of eqn(56b) and eqn(56c) are as follows:

∇× Ê = −sB̂, (81)

and

∇× B̂ = sÊ. (82)
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Since the expansions (76) and (77) involve no time derivatives, we may immediately

take their Laplace transforms by simply ”hatting” all the r-dependent expansion

coefficients. When we expand the previous equations, (81) and (82) in terms of Y`m

Ψ`m and Φ`m, and compare both sides of the equations, then clearly we will have

the following equations;

sÊr
`m = −`(`+ 1)

r
B̂

(2)
`m, (83)

sÊ
(1)
`m = −

(
dB̂

(2)
`m

dr
+

1

r
B̂

(2)
`m

)
, (84)

sÊ
(2)
`m =

(
− 1

r
B̂r
`m +

d

dr
B̂

(1)
`m +

1

r
B̂

(1)
`m

)
. (85)

Similarly, we also have for the B field,

sB̂r
`m =

`(`+ 1)

r
Ê

(2)
`m , (86)

sB̂
(1)
`m =

(
dÊ

(2)
`m

dr
+

1

r
Ê

(2)
`m

)
, (87)

sB̂
(2)
`m =

(
1

r
Êr
`m −

d

dr
Ê

(1)
`m −

1

r
Ê

(1)
`m

)
. (88)

Now, we want to eliminate B̂r
`m from (85) so that the equation reduces to terms

involving only Ê
(2)
`m and B̂

(1)
`m. To achieve this, we will substitute (86) into (85). This

gives

sÊ
(2)
`m =

(
− 1

r

`(`+ 1)

sr
Ê

(2)
`m +

d

dr
B̂

(1)
`m +

1

r
B̂

(1)
`m

)
. (89)

Simplifying and rearranging the terms will give

Ê
(2)
`m

(
s+

`(`+ 1)

sr2

)
=

(
d

dr
+

1

r

)
B̂

(1)
`m. (90)
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In the same vein, we want to eliminate Êr
`m from (88), so that our equation will now

contain only B̂
(2)
`m and Ê

(1)
`m terms. We will do this by substituting (83) into (88),

resulting in

B̂
(2)
`m

(
− s− `(`+ 1)

sr2

)
=

(
d

dr
+

1

r

)
Ê

(1)
`m . (91)

Collection of (84), (87), (90) and (91) in matrix form yields

(
d

dr
+

1

r

)


Ê
(1)
`m

Ê
(2)
`m

B̂
(1)
`m

B̂
(2)
`m

 = s


0 0 0 −1− `(`+1)

s2r2

0 0 1 0

0 1 + `(`+1)
s2r2

0 0

−1 0 0 0




Ê

(1)
`m

Ê
(2)
`m

B̂
(1)
`m

B̂
(2)
`m

 (92)

We now turn to solution of this matrix system.

3.2.2 Frequency Domain Solution

In this phase of our analysis, we will further simplify the differential equations and

find their respective solution in the frequency domain. To do this, we will we proceed

as follows. We know from the previous calculation that

Ê
(2)
`m

(
s+

`(`+ 1)

sr2

)
=

(
d

dr
+

1

r

)
B̂

(1)
`m, (93)

but we know from (87) that we can express B̂
(1)
`m in terms of Ê

(2)
`m :

sB̂
(1)
`m =

(
dÊ

(2)
`m

dr
+

1

r
Ê

(2)
`m

)
. (94)

Therefore, substituting (87) into (93) yields,

Ê
(2)
`m

(
s+

`(`+ 1)

sr2

)
=

1

s

(
d

dr
+

1

r

)(
dÊ

(2)
`m

dr
+

1

r
Ê

(2)
`m

)
. (95)
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However, performing the differentiation on the right hand side of the equation (95)

and simplifying the terms, then we will have

sÊ
(2)
`m

(
s+

`(`+ 1)

sr2

)
=
d2Ê

(2)
`m

d2r
− 1

r2
Ê

(2)
`m +

1

r2
Ê

(2)
`m +

2

r

dÊ
(2)
`m

dr
. (96)

This subsequently reduces to

r2
d2Ê

(2)
`m

d2r
+ 2r

dÊ
(2)
`m

dr
−

(
s2r2 + `(`+ 1)

)
Ê

(2)
`m = 0, (97)

that is the Modified Spherical Bessel Equation. In the same vein, we know that B̂
(2)
`m

and Ê
(1)
`m are related by

B̂
(2)
`m

(
− s− `(`+ 1)

sr2

)
=

(
d

dr
+

1

r

)
Ê

(1)
`m , (98)

where

sÊ
(1)
`m = −

(
dB̂

(2)
`m

dr
+

1

r
B̂

(2)
`m

)
.

Following the same procedure without necessarily showing the nitty-gritty, we obtain

r2
d2B̂

(2)
`m

d2r
+ 2r

dB̂
(2)
`m

dr
−

(
s2r2 + `(`+ 1)

)
B̂

(2)
`m = 0. (99)

Here we take the solution to these differential equations as
Ê

(1)
`m

Ê
(2)
`m

B̂
(1)
`m

B̂
(2)
`m

 = a`m(s)s`+2


k′`(sr) + k`(sr)

sr

0

0

−k`(sr)

+b`m(s)s`+2


0

k`(sr)

k′`(sr) + k`(sr)
sr

0

 . (100)

In (100) the factors of s`+2 are included for later convenience. Here, k` is the

Modified Spherical Bessel Function which is expressed as

k`(z) =

√
π

2z
K`+ 1

2
(z) =

π

2z
e−z
∑̀
k=0

c`k
zk
. (101)
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where K`+ 1
2
(z) is the MacDonald function which was discussed in the previous sec-

tion. This Bessel function decays for a large z, Re(z) > 0

k`(z) ∼ π

2z
e−z. (102)

In principle, we should be getting four different independent solutions to (100). We

could write down analogous solutions involving [2]

i`(z) =

√
π

2z
I`+ 1

2
(z) = z`

(1

z

d

dz

)` sinh z

z
. (103)

We neglected the latter form of the solution because i`(z) grows as z → ∞, which

is incompatible with the outgoing wave propagation. Our focus is for the outgoing

case. This is the reason why we only focus on the solution with form k`.

3.2.3 Time Domain Solutions

We have in the previous analysis written the solution to the Laplace-transform, VSH-

decomposed Maxwell equations which corresponds to outgoing boundary conditions.

We now proceed to compute the inverse Laplace transform. We know that

B̂
(2)
`m(s, r) = −a`m(s)s`+2k`(sr). (104)

Substitution of k`(sr) from (101) into the previous equation gives

B̂
(2)
`m(s, r) = −a`m(s)s`+2 π

2z
e−z
∑̀
k=0

c`k
zk

= −a`m(s)s`−k+1π

2
e−sr

∑̀
k=0

c`k
rk+1

.

(105)

By lemmas 2.1.1 and 2.1.2 the inverse Laplace transform of eqn(105) is given by

B
(2)
`m(t, r) = −π

2

∑̀
k=0

c`k
rk+1

f (`−k+1)(t− r). (106)
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Considering the radial component from (83), we have that

Êr
`m(s, r) = −`(`+ 1)

z
B̂

(2)
`m(s, r)

= `(`+ 1)e−sra`m(s)s`−k
π

2
e−z
∑̀
k=0

c`k
rk+2

.
(107)

Upon inverse Laplace transform of (107), we also have

Er
`m(t, r) = `(`+ 1)

π

2

∑̀
k=0

c`k
rk+2

f (`−k)(t− r). (108)

By (101), it naturally follows that

Ê
(1)
`m(s, r) = a`m(s)s`+2

(
k′`(z) +

k`(z)

z

)

= −a`m(s)s`+2π

2
e−z
∑̀
k=0

c`k

(
1

zk+1
+

k

zk+2

)
.

= −a`m(s)s`−k+1π

2
e−sr

∑̀
k=0

c`kr
−k−1 − a`m(s)s`−k

π

2
e−sr

∑̀
k=0

kc`kr
−k−2.

(109)

Thus, one can write

E
(1)
`m(t, r) = −π

2

∑̀
k=0

c`k

[
1

rk+1
f (`−k+1)(t− r) +

k

rk+2
f (`−k)(t− r)

]
. (110)

We have so far recovered the time domain VSH components corresponding to the

coefficient a`m(s) in (100). Similarly, without showing detailed calculations,

B
(1)
`m(t, r) = −π

2

∑̀
k=0

c`k

[
1

rk+1
g(`−k+1)(t− r) +

k

rk+2
g(`−k)(t− r)

]
.

E
(2)
`m(t, r) = −π

2

∑̀
k=0

c`k
rk+1

g(`−k+1)(t− r),

and finally

Br
`m(t, r) = `(`+ 1)

π

2

∑̀
k=0

c`k
rk+2

g(`−k)(t− r).
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Here a different underlying profile function g(t− r) appears since these components

refer to the sector in (100) corresponding to b`m(s).

3.3 Near-to-Far Field Propagation

3.3.1 Teleportation Kernels

To derive the teleportation kernels for the Maxwell equations, we will use similar

arguments to those of the wave equation. We know from previous analysis that

B̂
(2)
`m(s, r2) = − π

2r2
a`m(s)s`+1e−z2W`(z2),

B̂
(2)
`m(s, r1) = − π

2r1
a`m(s)s`+1e−z1W`(z1),

(111)

where z1 = sr1, z2 = sr2, and we assume that r2 > r1 > support of the initial data.

Evidently, the relationship between the two solutions is given by

es(r2−r1)B̂
(2)
`m(s, r2) =

r1
r2

[
W`(sr2)

W`(sr1)
− 1

]
B̂

(2)
`m(s, r1) +

r1
r2
B̂

(2)
`m(s, r1). (112)

We will define it as in the case of the wave equation,

Φ̂`(s, r1, r2) = −1 +
W`(sr2)

W`(sr1)
.

Taking the inverse Laplace transform of eqn(112) we see that

B
(2)
`m(t+ (r2− r1), r2) =

r1
r2

∫ t

0

Φ`(t− t′, r1, r2)B(2)
`m(t′, r1)dt

′+
r1
r2
B

(2)
`m(t, r1). (113)

Obviously, the kernel for B
(2)
`m(t, r) is the same as that in the case of the wave equation.

We will now proceed to calculate the teleportation kernel between the expression

(Ê
(1)
`m − B̂

(2)
`m)(s, r1) = a`m(s)s`+1 π

2r1
e−sr1W ′

`(sr1),
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(Ê
(1)
`m − B̂

(2)
`m)(s, r2) = a`m(s)s`+1 π

2r2
e−sr2W ′

`(sr2).

They are related by the identity

es(r2−r1)(Ê
(1)
`m − B̂

(2)
`m)(s, r2) =

r1
r2

W ′
`(sr2)

W ′
`(sr1)

(Ê
(1)
`m − B̂

(2)
`m)(s, r1)

=
(r1
r2

)3[(r2
r1

)2W ′
`(sr2)

W ′
`(sr1)

]
(Ê

(1)
`m − B̂

(2)
`m)(s, r1)

=
(r1
r2

)3[(r2
r1

)2W ′
`(sr2)

W ′
`(sr1)

− 1
]
(Ê

(1)
`m − B̂

(2)
`m)(s, r1)

+
(r1
r2

)3
(Ê

(1)
`m − B̂

(2)
`m)(s, r1).

(114)

We will before defining our new kernel as Υ` consider the following analysis. We

know that

W ′
`(sr) = −

∑̀
k=1

kc`k
(sr)k+1

= −c`1
r2
s−(`+1)

∑̀
k=1

kc`k
c`1

s`−kr1−k. (115)

The factor∑̀
k=1

kc`k
c`1

s`−k = O(s`−1) (116)

is a monic polynomial of degree (`− 1) in s, and we assume that its roots {d`j : j =

1, . . . `− 1} are simple. Whence∑̀
k=1

kc`k
c`1

s`−k =
`−1∏
j=1

(s− d`j). (117)

The roots d`j are also the roots of W ′
`(z). When we consider∑̀

k=1

kc`k
c`1

s`−kr1−k = r1−`
∑̀
k=1

kc`k
c`1

(sr)`−k

= r1−`
`−1∏
j=1

(sr − d`j)

=
`−1∏
j=1

(s− d`j
r

).

(118)
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Combination of eqn(115) and (118), gives

W ′
`(sr) = −c`1

r2
s−(`+1)

`−1∏
j=1

(s− d`j
r

). (119)

One can clearly see that as s→∞

W ′
`(sr2)

W ′
`(sr1)

→
(r1
r2

)2
.

In order to ensure that our kernel decays, we define it as

Υ̂`(s, r2, r1) =
(r2
r1

)2W ′
`(sr2)

W ′
`(sr1)

− 1. (120)

When we feed into (120) the expression

W ′
`(sr2)

W ′
`(sr1)

as it appeared in (119), we have

Υ̂`(s, r2, r1) =

[∏`−1
j=1(s−

d`j
r2

)∏`−1
j=1(s−

d`j
r1

)

]
− 1. (121)

Returning to (114) to rewrite the equation in terms of Υ`, we find

exp(s(r2 − r1))(Ê(1)
`m − B̂

(2)
`m)(s, r2) =

(r1
r2

)3
(Ê

(1)
`m − B̂

(2)
`m)(s, r1)

+
(r1
r2

)3
Υ̂`(s, r1, r2)(Ê

(1)
`m − B̂

(2)
`m)(s, r1).

(122)

The inverse Laplace transform of (122) is given by:

(E
(1)
`m −B

(2)
`m)(t+ (r2 − r1), r2)

=
(r1
r2

)3 ∫ t

0

Υ`(t− t′, r1, r2)(E(1)
`m −B

(2)
`m)(t′, r1)dt

′

+
(r1
r2

)3
(E

(1)
`m −B

(2)
`m)(t, r1).

(123)
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The residues g`k(r1, r2) in the pole expansion

Υ̂`(s, r2, r1) =
`−1∑
k=1

g`k(r1, r2)

s− d`k/r1
(124)

are given by

g`k(r1, r2) = lim
s→d`k/r1

(s− d`k/r1)

[∏`−1
j=1(s−

d`j
r2

)∏`−1
j=1(s−

d`j
r1

)
− 1

]

=

[ ∏`−1
j=1

(
d`k/r1 − d`j/r2

)
∏`−1

j=1,j 6=k

(
d`k/r1 − d`j/r1

)]. (125)

Notice also that, the derivative W ′
`(z), where z = d`kr2/r1 is given by

W ′
`(d`kr2/r1) = −c`1

r22
(d`k/r1)

−(`+1)

`−1∏
j=1

(d`k/r1 − d`j/r2). (126)

Finally, from the fact that

W ′
`(sr) = −c`1(sr)−(`+1)

`−1∏
j=1

(sr − d`j), (127)

it guarantees that the second derivative W ′′
` (d`k) can computed as follows

W ′′
` (d`k) = −c`1(d`k)−(`+1)

`−1∏
j=1,j 6=k

(d`k − d`j)

= −c`1(d`k)−(`+1)r
(`−2)
1

`−1∏
j=1,j 6=k

(d`k − d`j)/r1

= −(c`1/r
3
1)(d`k/r1)

−(`+1)

`−1∏
j=1,j 6=k

(d`k − d`j)/r1.

(128)

Therefore, the residue is found to be

g`k(r1, r2) =
(r2
r1

)2W ′
`(d`kr2/r1)

r1W ′′
` (d`k)

. (129)
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3.3.2 Explicit Formulas for ` = 2 and ` = 3

The frequency domain teleportation kernel is given as sum poles which is

Υ̂`(s, r1, r2) =
`−1∑
j=1

g`j(r1, r2)

s− d`j/r1
(130)

whereas the time-domain teleportation kernel is sum of exponentials, which is given

as

Υ`(t, r1, r2) =
`−1∑
k=1

g`k(r1, r2) exp(
d`kt

r1
). (131)

For the ` = 2 case, we have

Υ2(t, r1, r2) = g21(r1, r2) exp(
d21
r1
t). (132)

We know from previous analysis that,

W2(z) = 1 +
3

z
+

3

z2
,

therefore

W ′
2(z) = − 3

z2
− 6

z3
, W ′′

2 (z) =
6

z3
+

18

z4
.

Clearly the root of W ′
2(z) is

d21 = −2.

Our goal here is to calculate g21. Setting r = r2r
−1
1 and choosing r1 = 1, eqn(129)

reduces to

g21(1, r) = r2
W ′

2(rd21)

W ′′
2 (d21)

, (133)

we can recover the actual equation later by substituting r = r2r
−1
1 and dividing by

r1. When we substitute the values of d21 and rd21 in the previous equation (133), we

have

r2
W ′

2(−2r)

W ′′
2 (−2)

=
2

r
(1− r),
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therefore

g21(r1, r2) =
2

r1r2

(
r1 − r2

)
. (134)

Here we have

Υ2(t, r1, r2) =
2

r1r2

(
r1 − r2

)
exp(
−2t

r1
). (135)

For ` = 3, we have

Υ3(t, r1, r2) = g31(r1, r2) exp(
d31
r1
t) + g32(r1, r2) exp(

d32
r1
t),

Similarly we know that

W3(z) = 1 +
6

z
+

15

z2
+

15

z3
.

Therefore

W ′
3(z) = − 6

z2
− 30

z3
− 45

z4
= − 6

z4

(
z2 + 5z + 15/2

)
,

and

W ′′
3 (z) =

12

z3
+

90

z4
+

180

z5
=

6

z5

(
2z2 + 15z + 30

)
The roots of W ′

3(z) are given by

d31 = −5

2
+ i

√
5

2
, d32 = −5

2
− i
√

5

2
.

When we substitute the values of d31 and d32 in the previous equation, we have

Υ3(t, r1, r2) = exp(− 5

2r1
t)

[
(g31+g32) cos

(√
5

2r1
t

)
+ i(g31−g32) sin

(√
3

2r1
t

)]
(136)

Our goal here is to calculate g31 and g32. When we set r = r2r
−1
1 and r1 = 1 as we

did in the previous calculation, we have

g31(1, r) = r2
W ′

3(rd31)

W ′′
3 (d31)

= −d31
r2

[(rd31)
2 + 5rd31 + 15/2

2d231 + 15d31 + 30

]
. (137)
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We can after substituting the respective values of d31 and d32 arrive at

g31(1, r) = −(r − 1)

2r2

(
5r + i

√
5(2r − 3)

)
(138)

since g32 is the complex conjugate of g31, it implies that

Υ3(t, r1, r2) = exp

(
− 5

2r1
t

)[
(gR) cos

(√
5

2r1
t

)
+ i(gI) sin

(√
5

2r1
t

)]
(139)

where

gR(1, r) =
5(1− r)

r
=⇒ gR(r1, r2) =

5(r1 − r2)
r1r2

(140)

and

gI(1, r) =

√
5(1− r)(2r − 3)

r2
=⇒ gI(r1, r2) =

√
5(r1 − r2)(2r2 − 3r1)

r1r22
. (141)
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Conclusion

We will conclude by highlighting some of the important aspects of this analysis. In

chapter 1, we solved the 3-dimensional scalar wave equation based on the assumption

that our source S and initial data are compactly supported and that we work at a

large distance from the source. By lemmas 2.1.1 and 2.1.2, we derived the time-

domain outgoing multipole solution Ψ`(t, r) to the wave equation. We found the

kernel for the wave equation and its corresponding residue to be

Φ`(t, r1, r2) =
∑̀
k=1

a`k(r1, r2) exp
(b`kt
r1

)
,

a`j(r1, r2) =
W`(b`jr2r

−1
1 )

r1W ′
`(b`j)

,

respectively. In the final phase of this analysis, we expressed the Maxwell equations

in terms of the Vector Spherical Harmonics (VSH). By invoking the properties of the

VSH, we solved the Maxwell equations. Using the same lemmas 2.1.1 and 2.1.2, we

found the time-domain representation of outgoing solution to the Maxwell equations.

In developing the teleportation kernel for B
(2)
`m(t, r) we found that, it is the same

37



Chapter 4. Conclusion

kernel as in the case of the wave equation. On the contrary, the teleportation for

E
(2)
`m(t, r)−B(2)

`m(t, r)

yields a different kernel and a residue. We found the kernel and the residue in this

case respectively to be

Υ`(t, r1, r2) =
`−1∑
k=1

g`k(r1, r2) exp
(d`kt
r1

)
and

g`k(r1, r1) =
(r2
r1

)2W ′
`(d`kr2/r1)

r1W ′′
` (d`k)

.

The teleportation kernels Φ` and Υ` as well the as the residues a`k(r1, r2) and

g`k(r1, r2) obtained in this work, were used in developing the general formula for

propagating the multipole solutions to the wave and Maxwell equations for different

values of `.

Greengard, Hagstrom, Jiang [9] have examined the asymptotic behavior of the

residue

a`j =
W`(b`jr2r

−1
1 )

r1W
′
`(b`j)

.

They showed in their work that as `→∞ for fixed large r1, r2, the coefficient of a`j

grows exponentially. That is,

max
k
|a`k| ∼

``

`!
∼ e`.

One might also investigate the asymptotic behavior of g`k from (129) as

`→∞

for fixed large value of r. Such an investigation would also involve the larger-order

asymptotics of Hankel functions (as [9]), but also of their derivatives. We have in

our approach for solving Maxwell equations used Vector Spherical Harmonics. As
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an alternative, one could have reduced the Maxwell equations to the scalar wave

equation by first considering the following calculation. We know that

∇× E =
∂B

∂t
(142)

∇×B = −∂E

∂t
. (143)

When we take the curl of (142) equation, we have

∇× (∇× E) =
∂(∇×B)

∂t
. (144)

Substituting (143) into (144), we have

∇(∇ · E)−∇2E = −∂
2E

∂t2
. (145)

For the source free case ∇ · E = 0, therefore our previous equation reduces to

∇2E =
∂2E

∂t2
. (146)

A similar wave equation can be derived for the Cartesian components of B. Once

this resolution is reached, the teleportation kernel for the propagation of both E and

B field can be found using only the kernel for the wave equation. We did not use

this approach in solving Maxwell equations because it would have led us in getting

six (6) convolutions which is tedious to handle. We preferred the use of the Vector

Spherical Harmonics in solving the Maxwell equations to the approach discussed

above because the latter (VSH approach) is cheaper and relatively simpler. We

only had four (4) convolutions as apposed six convolution in former approach. The

VSH approach gave us two sectors (100). One of the sectors comprises of B
(2)
`m(t, r)

and (E
(1)
`m −B

(2)
`m)(t, r) which correspond to the coefficient a`m(s). The second sector

comprises of E
(2)
`m(t, r) and (B

(1)
`m − E

(2)
`m)(t, r) which corresponds to the coefficient

b`m(s).Our analysis indicates that B
(2)
`m(t, r) is similar to E

(2)
`m(t, r) as (E

(1)
`m−B

(2)
`m)(t, r)

is to (B
(1)
`m −E

(2)
`m)(t, r) in terms of their teleportation kernels. The four convolutions

agree with two transverse degrees of freedom for radiating waves in Maxwell’s theory.
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