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ABSTRACT 

A Finite Element model was developed to model crack development in additively manufactured 

additively manufactured Acrylonitrile Butadiene Styrene (ABS) cantilever beams.  Experiments 

were conducted on the beams with both shock and random vibration base excitations.  The base 

excitations induced damage in the beam that cause crack propagation.  It was observed during the 

cracks developmental stages that an increase in damping occurred.  The proposed Finite Element 

model also showed similar increases in damping from the addition of Coulomb damping forces.        



v 

Table of Contents  

1. Introduction.............................................................................................................................. 1 

2. Theory ...................................................................................................................................... 4 

2.1. Single Degree of Freedom................................................................................................ 5 

2.2. Finite Element Model ..................................................................................................... 10 

2.3. Damping ......................................................................................................................... 15 

3. Experimental Setup................................................................................................................ 17 

4. Results.................................................................................................................................... 30 

4.1. Shock .............................................................................................................................. 31 

4.2. Random Vibration .......................................................................................................... 39 

5. Conclusion and future work................................................................................................... 44 

6. Appendix A............................................................................................................................ 46 

7. Appendix B ............................................................................................................................ 47 

8. Appendix C ............................................................................................................................ 49 

9. Appendix E ............................................................................................................................ 62 

10. References .......................................................................................................................... 66 

 

  



vi 

List of Figures 

Figure 1.  Cross section of additively manufactured beam............................................................. 3 

Figure 2.  Depiction of breathing crack and internal crack ............................................................. 4 

Figure 3.  SDOF system with Coulomb Damping .......................................................................... 5 

Figure 4.  SDOF Simulink® model for viscous and Coulomb damping ......................................... 6 

Figure 5.  Frequency Response for different 𝑓𝑘 values ................................................................... 8 

Figure 6.  Local Element Nodal Degrees of Freedom .................................................................. 11 

Figure 7.  Finite Element model ................................................................................................... 14 

Figure 8.  Early design of test fixture and test article  ................................................................... 18 

Figure 9.  Final test fixture............................................................................................................ 19 

Figure 10.  Stress Strain plot for additively manufactured ABS .................................................. 20 

Figure 11.  Close up picture of ABS beams used in testing ......................................................... 22 

Figure 12.  Dimensions of cantilever beam used in experiments  ................................................. 23 

Figure 13.  Sensor layout for beam testing.  Beam tips also had accelerometers  ......................... 23 

Figure 14.  𝐻1 Frequency Response of beam. .............................................................................. 24 

Figure 15.  Coherence plot for FRF from Figure 14 ..................................................................... 25 

Figure 16.  Shock acceleration collected at beam’s base .............................................................. 27 

Figure 17.  Frequency content of shaker shock ............................................................................ 28 

Figure 18.  Random vibration time history collected at beams base. ........................................... 28 

Figure 19.  PSD of Random vibration for base excitation ............................................................ 29 

Figure 20.  Typical acceleration time history for beam tip from shock........................................ 31 

Figure 21.  Value of Zeta from each Shock Instance.................................................................... 32 

Figure 22.  Linear fit to Damping ratio for beam 1 ...................................................................... 34 



vii 

Figure 23.  Linear fit to Damping ratio for beam 2 ...................................................................... 34 

Figure 24.  Tip Acceleration in y direction for FEA model with no Coulomb    damping........... 35 

Figure 25.  Damping ratio determined from FEA beam model for values of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  using 

logarithmic decrement and base shock ......................................................................................... 36 

Figure 26.  Cross-section for failed tensile test specimen ............................................................ 38 

Figure 27.  Beam failure from shock testing. ................................................................................ 38 

Figure 28.  Damping ratio from random vibration ....................................................................... 40 

Figure 29.  FEA beam model tip acceleration for random vibration ............................................ 41 

Figure 30.  Damping ratio determined from FEA beam model for values of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  using half-

power and base random vibration ................................................................................................. 42 



viii 

List of Tables 

Table 1. Requirements for experimental fixture and test article................................................... 17 

Table 2.  Summary of beam’s properties ...................................................................................... 26 



1 

1. INTRODUCTION 

Beams are a common component in engineering.  Beams are used everywhere in our 

everyday lives from supporting buildings, car’s suspension components, or airplane 

wings.  It is known that during the beam’s service, stress loading occurs.  As the beam is 

stressed fatigue onsets, cracks develop, and if gone unnoticed, failure occurs.  Over the 

past years, much research has gone into modeling and identifying cracks.  The ability to 

detect and locate a crack is of paramount importance.  The crack model can be used in 

Structural Health Monitoring (SHM) systems which can save lives and copious amounts 

of money. 

Past researchers have modeled beams in different ways.  Most models rely on a local 

alteration of stiffness at the crack.  A common, simple model of a crack in a beam is a 

bilinear stiffness model.  The bilinear stiffness is representative of the crack being opened 

or closed, also known in the literature as a breathing crack.  Chu and Shen used a bilinear 

SDOF oscillator to analyze cracks in beams [1].  In more recent studies, models of beams 

with torsional springs at the crack location have been used [2].  Other methods have used 

Finite Element Models (FEM) with elements that have bilinear stiffness at the crack 

location [3].  The research mentioned above is mainly focused on nonlinearities that arise 

due to a breathing crack and the ability to apply the detection of said nonlinearities to 

Structure Health Monitoring (SHM) systems [5].  

The concept of a breathing crack arises from elementary beam theory.  In elementary 

beam theory for a uniform homogenous material the bending stress is greatest on the 

outer edge, furthest away from the neutral axis.  From this theory it would be sensible 

that a crack to develop on the outer edge and work its way in and hence the model of the 
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breathing crack is born.  Little concern is given in the literature to a crack that develops 

internally.  It is known that cracks develop at material defects, where the internal stress is 

highest due to a stress concentration at the defect.  A defect could be a casting flaw where 

a micro void developed, or due to the existence of an impurity in the material.  However 

the defect occurs, the crack will begin development at the defect.  If the defect is internal 

and not at the edge of the material, then the case of the breathing crack will not exist as 

past research has investigated.  

It is hypothesized that if an internal crack does form, then a bilinear model will not 

significantly capture the cracked beam’s dynamics.  A model is presented that updates the 

damping as the beam is damaged.  The model consisted of beam elements with a special 

element to model the crack.  A force was imparted on the crack element in the direction 

opposite the element’s motion to provide Coulomb damping.  The beam model and the 

crack model are further discussed in section 2.2.  To determine the proposed model’s 

validity a set of experiments were conducted with additively manufactured Acrylonitrile 

Btadiene Styrene (ABS) cantilever beams subjected to a damaging shock and random 

vibration environments.  The beams were manufactured at Sandia National Laboratories 

(SNL) Additive Manufacturing group.  The additively manufactured beams were good 

test articles because the internal print raster contained many voids and the contact area 

between layers varied.  Figure 1 show a cross section of an additively manufactured beam 

using Fused Deposition Modeling (FDM).  The FDM process consisted of extruding a 

molten plastic, in this case ABS, from a nozzle.  The part is built layer by layer.   
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Figure 1.  Cross section of additively manufactured beam 

It is seen that the exterior extrusion of the beam in Figure 1 has continual contact between 

the layers, however the internal region has voids and discontinuous contact between 

layers, therefore it is prime grounds for the growth of an internal crack. 

A finite element model was developed and compared to experimental data.  Experiments 

were conducted at SNL and were carried out on a small electromagnetic shaker with the 

test fixture discussed in the Experimental Setup section.     
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2. THEORY 

In current research a common crack model is that of bilinear stiffness.  A bilinear 

stiffness model shows good results for a beam that has an open edge crack.  However, as 

stated in the introduction, the formation of a crack at the edge might not always be the 

case.  Therefore, it is believed that a bilinear characteristic of a damaged beam may not 

arise.  This is because the beam will not fully separate when an internal crack exists.  

Figure 2 shows a sketch comparing the type of crack that is believed to exist, to the 

common open edge crack.  The crack in the left circle is what is believed to exist for an 

internal crack, where the circle on the right shows the common edge crack.  

 

Figure 2.  Depiction of breathing crack and internal crack 

With the formation of an internal crack, a reduction in stiffness still occurs.  However, the 

reduction in stiffness would not follow a bilinear model as strongly, because there is no 

breathing crack.   

It is supposed that local damping exists at the crack interface due to slip interaction 

between the two crack faces.  Because the interaction is slip, the damping is assumed to 

be Coulomb type.  
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2.1. SINGLE DEGREE OF FREEDOM 

 Before developing the model for the beam.  A simple single degree of freedom (SDOF) 

system will be explored.  The equation of motion for a forced SDOF system with a linear 

spring, viscous and Coulomb damping is; 

 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 + 𝑓𝑘𝑠𝑖𝑔𝑛(𝑥̇) = 𝐹(𝑡) (1) 

Where m is the mass, x is the displacement of the mass, k is the stiffness of the linear 

spring, c is the damping value for a viscous damper, 𝑓𝑘is the coulomb damping that is 

dependent on the sign of velocity.  𝑓𝑘 is often seen as a sliding friction 𝜇𝑁.   The over dot 

indicates a derivative with respect to time, therefore 𝑥̇ is the velocity of the mass, and 𝑥̈ is 

the acceleration.  Figure 3 shows the SDOF system model used.  

 

Figure 3.  SDOF system with Coulomb Damping 

Equation (1) is often mass normalized and thus becomes; 

 
𝑥̈ +

𝑐

𝑚
𝑥̇ +

𝑘

𝑚
𝑥 +

𝑓𝑘
𝑚
𝑠𝑖𝑔𝑛(𝑥̇) =  𝐹(𝑡) (2) 
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Introducing the terms 
𝑘

𝑚
=  𝜔𝑛

2  and 
𝑐

𝑚
= 2𝜁𝜔𝑛  Equation (2) is written as; 

 
𝑥̈ + 2𝜁𝜔𝑛𝑥̇ + 𝜔𝑛

2𝑥 +𝜔𝑛
2
𝑓𝑘
𝑘
𝑠𝑖𝑔𝑛(𝑥̇) =  𝑓(𝑡) (3) 

Where 𝜁 is the damping ratio, 𝜔 is the fundamental frequency of the system and 𝑓(𝑡) is 

the mass normalized force.  

Equation (3) is still piecewise solvable; however, the scope of this thesis is to investigate 

the validity of the previously proposed damping model for an internal crack.  Thus, a 

Simulink® system was created to evaluate the dynamic response rather than examining 

the closed form solutions.  The Simulink® model is shown in Figure 4.  More can be 

found on combined viscous Coulomb dampers in [6] and [7].  

 

Figure 4.  SDOF Simulink® model for viscous and Coulomb damping 

Because the value of 𝑓𝑘 is changed based on the sign of 𝑥̇, a discontinuity will be present.  

This is considered acceptable, because a crack is a discontinuous feature.  Care must be 
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taken for the value of 𝑓𝑘.  If the value of 𝑓𝑘 causes the system to have an acceleration 

greater than the acceleration at the time of zero velocity, the system will become driven 

by 𝑓𝑘 and no longer by the forcing function 𝑓(𝑡).  The value of 𝑓𝑘 that will begin to drive 

the system is dependent on the stiffness of the system, as well as the amplitude of the 

forcing function 𝑓(𝑡).   

A common method for analyzing a dynamic system is to look at the frequency response 

function (FRF).  The FRF can be calculated using either the 𝐻1 method or the 𝐻2 method.  

The 𝐻1 method is given as;   

 
𝐻1(𝜔) =

𝑆𝑓𝑥(𝜔)

𝑆𝑓𝑓(𝜔)
 (4) 

Where 𝑆𝑓𝑥(𝜔) is the cross spectral density between the output and input, and 𝑆𝑓𝑓(𝜔) is 

the auto spectral density of the output.  To calculate a true FRF the input is a force input 

and the output is an acceleration.  However, an FRF can be calculated using both 

acceleration for the input and output to determine the damping.  Mass properties cannot 

be determined from an FRF computed from acceleration data alone.  The second method 

to calculate the FRF is the 𝐻2 method.  The 𝐻2 FRF is calculated as;  

 
𝐻2(𝜔) =

𝑆𝑥𝑥(𝜔)

𝑆𝑥𝑓(𝜔)
 (5) 

Where 𝑆𝑥𝑓(𝜔) is the cross spectral density between the input and output and 𝑆𝑥𝑥(𝜔) is 

the auto spectral density of the input.  𝑆𝑥𝑥(𝜔) is commonly referred to as a PSD in 

literature.  If the FRF is computed from experimental data, noise may be present and give 
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an inaccurate FRF.  To determine if the measurements used are good the coherence is 

computed.  The coherence is calculated as;    

 
𝛾2 =

𝐻1(𝜔)

𝐻2(𝜔)
 (6) 

If the measurements obtained are good, the coherence will be near 1.  The 𝐻1 method is 

more susceptible to noise in the input data, because the auto-correlation is computed for 

the input.  Whereas, 𝐻2 is more susceptible to noise in the response data.  More 

information can be found on the frequency response function in numerous vibrations 

books [9].        

 

Figure 5.  Frequency Response for different 𝒇𝒌  values 
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Figure 5 is the frequency response function (FRF) of the system described in equations 1-

3.  For the FRF in Figure 5 only values of 𝑓𝑘 were varied.  The stiffness, mass, and 

viscous damping were unchanged.  From Figure 5 it is seen that as 𝑓𝑘 is increased the 

system response decreases.  This is an expected response, because the resultant force 

exerted on the system is less as the Coulomb force increases.  The MATLAB® code for 

simulating this system is in Appendix A    
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2.2. FINITE ELEMENT MODEL 

To investigate the internal crack phenomenon in a beam a Finite Element Model was 

created.  A three degree of freedom two node beam elements was used.  The equations 

were based on a Euler-Bernoulli beam for bending and a bar in tension.  Since the two 

node beam elements used in this study are well understood, the derivation of the 

equations presented will be omitted.  More information on the two node beam element 

used can be found in common Finite Element Analysis books [11]. 

For the element used there are three degrees of freedoms per node.  There are two 

translational freedoms and one rotational freedom. The degrees of freedom are in the x, y 

and 𝜃 directions.  The local position vector describing the nodal translations and rotations 

is; 

 

𝑥𝑒 = 

{
 
 

 
 
𝑥1
𝑦1
𝜃1
𝑥2
𝑦2
𝜃2}
 
 

 
 

 (7) 

The subscripts in the position vector corresponded to the local node number.  The 

element is oriented such that the x axis is along the axis of the beam.  The y axis is the 

transverse motion of the beam and 𝜃 is a rotation about the z axis.  Figure 6 shows a local 

element with the associated degrees of freedom  
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Figure 6.  Local Element Nodal Degrees of Freedom 

The local stiffness matrix is derived from an Euler-Bernoulli beam for the bending terms.  

These stiffness values arise in the y and 𝜃 terms in the local matrix.  The terms for 

tension are for a simple bar in tension and define the stiffness in the x direction.  The 

local stiffness matrix is given in Equation (8); 

 

𝐾𝑒 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝑙
0 0 −

𝐸𝐴

𝑙
0 0

0
12𝐸𝐼

𝑙3
6𝐸𝐼

𝑙2
0 −

12𝐸𝐼

𝑙3
6𝐸𝐼

𝑙2

0
6𝐸𝐼

𝑙2
4𝐸𝐼

𝑙
0 −

6𝐸𝐼

𝑙2
2𝐸𝐼

𝑙

−
𝐸𝐴

𝑙
0 0

𝐸𝐴

𝑙
0 0

0 −
12𝐸𝐼

𝑙3
−
6𝐸𝐼

𝑙2
0

12𝐸𝐼

𝑙3
−
6𝐸𝐼

𝑙2

0
6𝐸𝐼

𝑙2
2𝐸𝐼

𝑙
0 −

6𝐸𝐼

𝑙2
4𝐸𝐼

𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (8) 

 

Where 𝐸 is Young’s modulus of the material, 𝐼 is the area moment of inertia, 𝑙 is the 

element’s length, and 𝐴 is the cross-sectional area.    

The local mass matrix used is shown in Equation (9); 
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𝑀𝑒 =

[
 
 
 
 
 
 
2𝑚𝑥 0 0 𝑚𝑥 0 0
0 156𝑚𝑦 + 36𝑚𝜃 22𝑙𝑚𝑦 + 3𝑙𝑚𝜃 0 54𝑚𝑦 − 36𝑚𝜃 −13𝑙𝑚𝑦 + 2𝑙𝑚𝜃

0 22𝑙𝑚𝑦 + 3𝑙𝑚𝜃 4𝑙2(𝑚𝑦 + 𝑚𝜃) 0 13𝑙𝑚𝑦 − 3𝑙𝑚𝜃 −3𝑙2𝑚𝑦 − 𝑙
2𝑚𝜃

𝑚𝑥 0 0 2𝑚𝑥 0 0

0 54𝑚𝑦 − 36𝑚𝜃 13𝑙𝑚𝑦 − 3𝑙𝑚𝜃 0 156𝑚𝑦 + 36𝑚𝜃 −22𝑙𝑚𝑦 − 3𝑙𝑚 _𝜃

0 −13𝑙𝑚𝑦 + 2𝑙𝑚𝜃 −13𝑙𝑚𝑦 +2𝑙𝑚𝜃 0 −22𝑙𝑚𝑦 − 3𝑙𝑚_𝜃 4𝑙2(𝑚𝑦 + 𝑚𝜃) ]
 
 
 
 
 
 

 (9) 

 The values 𝑚𝑥, 𝑚𝑦, and 𝑚𝜃 are the two translational and one rotational mass 

contribution, respectively.  

 𝑚𝑥 is given as; 

 
𝑚𝑥 =

𝜌𝐴𝑙

6
 (10) 

𝑚𝑦 is given as; 

 
𝑚𝑦 =

𝜌𝐴𝑙

420
 (11) 

And 𝑚𝜃is given as; 

 
𝑚𝜃 =

𝜌𝐼𝑧𝑧
30𝑙

 (12) 

Where 𝜌 is the element’s mass density, 𝐴 is the cross-sectional area, 𝐼𝑧𝑧 is the rotational 

inertia, and 𝑙 is the element’s length.  

The local elements are transformed into the global coordinates and assembled into the 

global mass, damping and stiffness matrices in the normal fashion resulting in an NDOF 

model where N is equal to the number of unrestrained nodes times three for the nodal 

degrees of freedom.  The nodal restraints arise from the imposed boundary conditions.  
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For this model a cantilever beam is used; therefore, the right end of the beam will be free 

while the left end of the beam will be fixed.  After the global matrices are assembled the 

equation describing the motion of the system is given as; 

 𝑴𝑥̈ + 𝑪𝑥̇ +𝑲𝑥 = 𝑭(𝑡) (13) 

Where 𝑴 is the global mass matrix, 𝑪 is the global damping matrix, 𝑲 is the global 

stiffness matrix, and 𝑭 is the global force vector.  Because normal viscous damping is not 

easily solved for in a linear system of equations, Rayleigh damping, also known as 

proportional damping, was used.  The resulting 𝑪 matrix is a linear combination of the 

Mass and Stiffness matrix and is given as; 

 𝑪 =  𝛼𝑴+  𝛽𝑲 (14) 

Where 𝛼 and 𝛽 are constants.  The values of 𝛼 and 𝛽 are determined from Equation (15); 

 
𝜁𝑖 =

1

2𝜔𝑖
𝛼 +

𝜔𝑖
2
𝛽 (15) 

Where 𝜁𝑖 is the damping ratio and 𝜔𝑖 is the natural frequency for the 𝑖 𝑡ℎ mode.  To 

determine the coefficients 𝛼 and 𝛽 the value of 𝜁𝑖 must be known for the modes of 

interest.  Once 𝛼 and 𝛽 are determined, the values will not be changed.  The initial 

damping value determined is for an undamaged, and not an artifact of the crack.  

Therefore, only the Coulomb damping due to the crack will change.     

To implement a crack, an element is introduced at the crack location and a local 

Columbic damping force is added.  The value of Coulomb damping is changed based on 

the relative y velocity of the element’s two nodes similar to the Coulomb damping in the 

SDOF system.  Figure 7 shows a concept model.  The number of elements in Figure 7 is 
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not exact.  The dashed element shown represents the location of the cracked element with 

local Coulomb damping.  The remaining solid black elements represent a normal 

undamaged/uncracked section of the beam.        

 

Figure 7.  Finite Element model 

As seen in the equation of motion for the SDOF system, Coulomb damping is a force 

imparted that acts in the opposite direction of the velocity.  Therefore, to implement the 

Coulomb damping a local force will be added to the force vector resulting in; 

 

𝐹𝑐𝑟𝑎𝑐𝑘𝑒𝑑 = 

{
 
 

 
 

𝐹𝑥1
𝐹𝑦1
𝐹𝜃1
𝐹𝑥2

𝐹𝑦2 + 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏
𝐹𝜃2 }

 
 

 
 

 (16) 

Where 𝐹𝑐𝑟𝑎𝑐𝑘𝑒𝑑 is the modified local force vector.  The value 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  is the force value 

that is added to the second node of the element, that is, the node that is to the right of the 

crack.  The forcing is added to the node further away from the fixed node.   Since the 

element’s y displacement and rotation are related, the Coulomb forcing could also be 

added to the moment.  𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  is similar to that of 𝑓𝑘 of equation (1), (2), and (3) and is 

given as; 
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 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏 = {
−𝑓𝑘 , 𝑦2̇ − 𝑦1̇ ≥ 0

𝑓𝑘 , 𝑦2̇ − 𝑦1̇ < 0
 (17) 

Again, 𝑦2̇  and 𝑦1̇are the local nodal velocities for the element with a crack.  Thus, 

𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  will be relative to the cracked elements motion only. 

2.3. DAMPING 

To compare the FEA model to the experimental data the effective damping needs to be 

determined.  Depending on the type of excitation there are different methods to determine 

the effective damping.  The two methods used in this study are logarithmic decrement for 

free, or unforced, vibrations and the method of half power damping for forced random 

vibrations. 

The first method described is logarithmic decrement [8].  Logarithmic decrement uses 

two successive peaks to determine the value of damping.  The natural log of the ratio of 

the peaks is taken to determine 𝜁. 

 𝛿 = ln (
𝑥1
𝑥2
) = ln (𝑒𝜁𝜔𝑛𝜏𝑑)  (18) 

Where 𝑥1 is the amplitude of acceleration at the first peak and 𝑥2 is the amplitude at the 

second peak.  𝜏𝑑 is the time between peaks, since the system is operating at one 

frequency, the value of 𝜏𝑑 is known to be 
2𝜋

𝜔𝑑
 where 𝜔𝑑 is the damped natural frequency.  

From this 𝜁 is calculated as; 

 
𝜁 =

𝛿

√(2𝜋)2 + 𝛿2
 (19) 

The second method used to estimate the effective damping is the half-power method. 
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To determine damping from the half-power method the FRF also needs to be calculated.  

Once a FRF is calculated the damping can be calculated from the half-power method.  

The damping is determined from the half power method by; 

 
𝜁 =

1

2
(
𝜔𝑏
2 − 𝜔𝑎

2

𝜔𝑛
2

) (20) 

Where 𝜔𝑏 and 𝜔𝑎 are the frequencies at half power, or -3 dB, of the response at 𝜔𝑛 the 

resonant frequency.  The value of 𝜔𝑏 is greater than 𝜔𝑛 and the value of 𝜔𝑎 is less than 

𝜔𝑛.  More on the half-power method can be found in [10].  
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3. EXPERIMENTAL SETUP 

To investigate the previously developed model, a set of experimental tests were 

conducted.  The goal of the experiments was to start with undamaged FDM additively 

manufactured cantilever beams.  The beams were then subjected to shaker shocks and 

low-level random vibrations until failure occurred.  Failure of the beam was defined as 

complete separation of the beam at the stress concentration zone.  The stress 

concentration zone is discussed more later in this section.   The data collected from the 

experiments are then used to verify and validate the model.   

Before testing began, a test structure and a set of beams needed to be designed.  Multiple 

requirements for the test structure as well as the beams themselves were set.  Some of the 

requirements for the experimentation was to test multiple beams at a time.  This would 

allow for a better statistical grouping and shorten the required test time.  A requirement 

placed on the beams was ease of manufacturing.  Table 1 is a detailed list of the 

requirements for the experiments. 

Table 1. Requirements for experimental fixture and test article  

Test Fixture Design Requirements  Test Article Design Requirements  

• Test multiple test specimen 
simultaneously 

• Do not influence the dynamic 
response of the test specimen  

• Quickly change specimen between 
tests 

• Light weight test structure  

• Interface with LDS 409 shaker 

• Easily and economically 
manufacture specimen  

• Include stress concentration zone 
for controllable repeatable failure 

• Tailorable fundamental natural 
frequency 

• Tailorable stress 
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Before arriving at an acceptable test structure and test specimen, several design iterations 

were developed.  An early test structure is shown in Figure 8.  

 

Figure 8.  Early design of test fixture and test article 

The test setup shown in Figure 8 met some requirements, however, it was deemed 

difficult for one person to disassemble and reassemble easily.  Also, the cantilever beams 

did not meet the requirement of a repeatable failure location nor tunable natural 

frequency, because the mass was printed into the beam.  After several more design 

iterations an acceptable setup was reached.  A fixture system was designed that securely 

clamped the beams into the test fixture and allowed for ease of manufacturing.  The test 

fixture used is shown in Figure 9.  
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Figure 9.  Final test fixture 

The test fixture was machined from billet 6061 aluminum.  Though the fixture was made 

with aluminum it was still too heavy to achieve the desired accelerations with the LDS 

409 shaker.  Therefore, a small gravity off-load suspension system was also designed.  

The gravity off-load system was designed to have a fundamental frequency of 3 Hz so 

that the off-load system did not excite the beams.  The off-load system can be seen in 

Figure 9.  Polished stainless rods were used to keep the structure from tilting off axis of 

the shaker.  Not only did this protect the armature of the shaker, but also ensured uni-

axial inputs.  Nylon inserts were placed in the off-load base plate to reduce the sliding 

friction between the polished rods and the plate. 

Because the beams were additively manufactured there were two logical print 

orientations.  The first orientation was with the beams printed “laying down”.  The 

second orientation was with the beams printed standing upright.  The raster direction of 

the beams printed laying down was parallel to the axis of the beam, while the raster of the 
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beams printed upright was perpendicular to the axis.  Also, there were two extrusion sizes 

for the printer used.  One extrusion nozzle was 0.010 inches in diameter while the other 

extrusion nozzle had a diameter of 0.005 inches.  To determine which print orientation 

and nozzle size to use for testing, static pull tests were conducted for each.  The static 

pull tests were conducted at SNL’s Mechanical Test Laboratory.  Figure 10 shows the 

results of the pull tests. 

 

Figure 10.  Stress Strain plot for additively manufactured ABS  

The legend on the right side of Figure 10 is decoded as such; The first number is the 

diameter of the extrusion nozzle used, so either a 10 or 5. The second character stands for 

mils.  The third character designates the print orientation, V for vertical and H for 

horizontal.  Lot refers to which print set the specimen belonged too.  
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Static tests revealed that the beams printed with the raster parallel to the axis behaved in a 

ductile fashion, while the beams printed with the raster perpendicular to the axis behaved 

in a brittle manner.  Since brittle failure usually occurs in a rapid manner, i.e., together 

one instant and failed the next, the beams printed in the vertical orientation were selected 

for testing.  This would insure that the time of failure was observable.  Beams printed 

with the 0.005 inch nozzle also exhibited tighter grouping, therefore, the 0.005 inch 

nozzle was used for the beam. The average modulus of elasticity, E, for the vertical print 

orientation is 293843 psi. This modulus of elasticity was determined from Figure 10.  

 The cantilever beams were manufactured at SNL Additive Manufacturing Laboratory.  

The author is thankful for the assistance with the production of the plethora of beams.  

The beams were 0.250 inches in diameter.  Initially two different lengths were 

manufactured, one beam was 3 inches in length and the other was 5 inches in length.  

During other studies it was determined that the difference between the 3 inch beams and 

the 5 inch beams was minuscule and thus insignificant to this study.  Therefore, only the 

5 inch beams were tested in later experiments.  A stress concentration zone was designed 

into to the beam.  The stress concentration zone was a simple semi-circle cut out around 

the circumference of the beam.  Two radii were originally manufactured.  The radii were 

0.025 inches and 0.050 inches.  It was quickly discovered that the beams with the 0.050 

inch stress concentration cutouts were too weak.  Thus, only the beams with the 0.025 

inch cut out were used for later testing.  The cantilever beams are shown in Figure 11.  It 

is noted again that only the 5 inch beams with the 0.025 inch stress cut outs were used in 

this study.  The beam used was the longer beam in the center of Figure 11.    
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Figure 11.  Close up picture of ABS beams used in testing 

The dimensions of the beam are shown in Figure 12.  The zero is placed where the beam 

is no longer clamped in the test fixture.  The beam material to the left of the zero in 

Figure 12 is clamped in the aluminum test fixture while the beam material to the right of 

zero is unsupported.  The stress concentration zone of the beam was placed 0.200 inches 

from the test fixture.  The cantilever’s effective length is 5.175 inches.  Also, a steel 

collar was placed at the end of the beam.  The steel collar used had an average mass of 

0.021 lb.  The steel collar served two purposes; the first to increase the stress in the beam, 

and second as a place to mount an accelerometer.  
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Figure 12.  Dimensions of cantilever beam used in experiments  

After the print orientation was determined low level random excitations were put into the 

beams to determine modal characteristics.  To determine the beam’s input/output 

relationship, proper sensor placement was needed.  PCB 352A24 accelerometers were 

placed at the base of the beam as well as on the tip mass that was clamped to the beam.  

The PCB 352A24 accelerometers were ideal, because they weighed only 0.0019 lb, 

which is approximately 10% the mass of the steel collar.  Figure 13 shows the sensor 

placement on the fixture for the tests that were conducted. 

 

Figure 13.  Sensor layout for beam testing.  Beam tips also had accelerometers  
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Since accelerometers were used, the FRF obtained is not a true FRF, in the sense that it is 

not Acceleration/Force, however, the natural frequency determined as well as the 

damping value determined from the FRF is still applicable.  The FRF from the low level 

random vibration input is shown in Figure 14.  The FRF was calculated using the 𝐻1 

method defined in Equation (4).  

 

Figure 14.  𝑯𝟏 Frequency Response of beam.   

To verify if the measurement of the FRF and thus the validity of the natural frequency 

and damping are accurate, the coherence was also plotted.  If the FRF is acceptable the 

coherence will be near 1.  As can be seen in Figure 15, the coherence near the first mode 

is close to unity.  Therefore, the modal information for this fundamental frequency is 

considered accurate.     
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Figure 15.  Coherence plot for FRF from Figure 14 

Using the half power method, Equation (20), the damping for the beam was determined 

to be  𝜁 = 0.21.  This is considered as the damping ratio for the undamaged beam for the 

vibration case.  The natural frequency and damping are shown in Table 2 along with the 

beam’s other mechanical properties.  These properties were used in the FEA model.  

 

 

 

 

 

 



26 

Table 2.  Summary of beam’s properties 

Property Value  (units) 

Modulus of Elasticity  (E) 293843  (psi) 

Area  (A) 0.0491  (𝑖𝑛2) 

Area Moment of Inertia  (𝐼𝑧𝑧) 1.92e-04  (𝑖𝑛4) 

Effective Length  (L) 5.175  (in) 

Density  (𝜌)  9.29e-05  (
𝑙𝑏𝑓 𝑠𝑒𝑐

𝑖4
) 

Tip weight  (m*g) .021  (lbf) 

Fundamental Frequency  (𝜔𝑛) 23.5  (Hz) 

Undamaged Damping  (𝜁1) 0.21  

 

Before collecting data of interest to this study, a series of shock tests were conducted to 

determine the acceleration level at which the beams failed.  From these tests, the 

environment levels were determined.    Due to the added mass of the test structure and the 

use of an open loop shaker controller, the shock profiles had some oscillation to them.  A 

shock acceleration time history collected from the test structure near the base of the beam 

is shown in Figure 16.  The frequency content of both the shock and random vibration 

was intended to primarily excite the first mode of the beams.  
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Figure 16.  Shock acceleration collected at beam’s base 

A FFT of the shock profile was taken to show that the frequency content primarily 

excited the first mode at 23 Hz.  Figure 17 shows the FFT of the shaker shock.  As can be 

seen in Figure 17 the energy content of the shock falls off past 100 Hz.  Therefore, the 

shock pulses used primarily excited the beam’s first mode.  

A narrowband random vibration excitation was used. A random vibration environment is 

shown in Figure 18.  A PSD of the random excitation was created using MATLAB®’s 

pwelch function and is shown in Figure 19.  The bandwidth of the random vibration was 

set from 15 Hz to 30 Hz.  This would ensure that all beams would be excited, since a 

small spread in the natural frequency existed.  
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Figure 17.  Frequency content of shaker shock 

 

Figure 18.  Random vibration time history collected at beams base. 
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Figure 19.  PSD of Random vibration for base excitation 

From Figure 19 it is seen that a narrow band input was indeed placed into the beam.  The 

frequency content of the excitation was around the fundamental frequency of the beam.  

Once the shock profile and random vibration frequency content was determined to excite 

the first mode of the beam tests were ran with 4 beams for each shock profile and random 

vibration.  New, undamaged beams where used and excited until failure.  
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4. RESULTS 

Before examining the experimental data, the FEA model needed to be validated.  The 

beam properties determined during the experimentation that are summarized in Table 2 

were used for the model.  Since proportional damping was used in the model the values 

of 𝛼 and 𝛽 needed to be determined, because only the fundamental frequency is of 

interest either 𝛼 or 𝛽 is free.  To simplify 𝛼 was set equal to 𝛽.  From equation 12 the 

values of 𝛼 and 𝛽 are;  𝛼 = 𝛽 ≅ 0.00028443.  Using MATLAB®’s eig function the 

beam model’s first eigen frequency was determined to be 25.4 Hz.  The fundamental 

frequency of the experimental beam was 23.5 Hz.  Therefore, the modeled system is 

slightly stiffer than the actual beam.  However, the interest is in the effect of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  on 

the beam at the crack location, so this small deviation in the natural frequency is 

acceptable for the intentions of this research.  

To model the dynamics of the FEA model a Newmark-𝛽 integrator was employed.  The 

values of 𝛽 and 𝛾 were ¼ and ½, respectively.  The coefficient 𝛽 used with respect to the 

Newmark integrator has no connection the 𝛽 used in proportional damping.  This 

selection of parameters for the Newmark integrator gives an implicit unconditionally 

stable solver.  Since the FEA solver is set up to solve for enforced displacements, the 

acceleration time history data needed to be integrated twice to obtain the base 

displacement.  

Care was taken while integrating the shock accelerometer data to ensure a zero initial and 

final displacement.  This was done by setting the time history data past the shock event to 

zero and removing the mean from the shock portion.  Doing these two steps before 

integrating twice ensured that the displacement time history had an initial and final 
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displacement of zero.  No alterations were done to the random vibration time history.  A 

trapezoidal integrator was used for both the shock data as well as the random vibration 

data.  The integration was easily carried out with the cumtrapz function in MATLAB®  

4.1. SHOCK 

To determine the beam’s damping during shock, equations (15) and (16) were used.  To 

calculate zeta an average was taken using several peaks.  Also, the damping value was 

determined for both positive acceleration as well as negative acceleration.  Since the 

shock input did not die out by the first yield excursion, the maximum peak was left out of 

the calculation.  The number of peaks included was also stopped once the motion of the 

beam was below 1% of the maximum peak.  The algorithm used would step through the 

points using each point twice.  The MATLAB® code is shown in Appendix B.

 

Figure 20.  Typical acceleration time history for beam tip from shock  



32 

 The first time a peak point was considered as 𝑥1and the second time the peak was used in 

the algorithm it was considered as 𝑥2.  A typical time history for an undamaged beam tip 

acceleration is shown in Figure 20. 

The red “X’s” shown in Figure 20 represent the peaks that were used in the logarithmic 

damping algorithm.  As can be seen the first maximum peak, as well as, the first 

minimum peak were omitted from the calculation of zeta. Again, these values were 

omitted, because the base excitation had not died out by that point in time.  

Once the algorithm stepped through each peak, the values of zeta were averaged to 

determine zeta.  The above algorithm was applied to each shock instance for each 

individual beam.  

 

Figure 21.  Value of Zeta from each Shock Instance 
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The value of zeta for each shock event was then plotted and is seen in Figure 21.  Beams 

1 and 2 show a slight positive upwards trend as was suggested in the theory.  Beam 3 and 

4 show a slight decrease initially.  The damping for beam 3 eventually levels out after 

several hundred shocks and stays relatively constant until failure.  However, beam 4 in 

Figure 21 does not show a total upwards trend.  There is a point in the life of the beam 

after ~ 4000 shots where a slight increase in damping is seen.  However, the decrease in 

damping after ~ 6500 shocks is not understood.  This could likely be from an open edge 

crack forming and thus there is no longer enough contact at the crack interface for 

sufficient Coulomb damping.  To fully explain this decrease in damping additional 

research would need to be done. 

Because beams 1 and 2 showed positive trends further analysis was done for them.  To 

get a better idea of how the damping was changing a first order, linear, line was fit to the 

data.  Plots are shown in Figure 22 and Figure 23.  The line fits are similar.  The slope for 

beam 1 was 5.27e-6 and the slope for the second beam was 7.24e-6.  The units for the 

slope is damping ratio per shock.  The percent change in damping was calculated from 

the line fit.  Beam one had a percent change of 51.4% from the undamaged state to before 

failure.  This change occurred over 1945 shocks.  Again, using the line fitted to beam 2 

the percent change in damping was 69.1%.  This change occurred over 1789 shock 

events.   
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Figure 22.  Linear fit to Damping ratio for beam 1 

 

Figure 23.  Linear fit to Damping ratio for beam 2 
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Now that the experimental data has been analyzed, the FEA model will be examined.  

Using the same properties given in Table 2 the base displacement for the shock was 

simulated in the FEA model.  It is noted at this point, that a slight variation existed in the 

base input acceleration.  However, for the FEA work only a single input was used.  This 

removes variably in the response type and allows for a more focus examination of the 

change in 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏 .  

To study the effect of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  a loop was set up to simulate the beam with the base 

excitation.  The response of the FEA beam model with no Coulomb damping at the 

cracked element is shown in Figure 24.  The MATLAB® code for the FEA beam is in 

Appendix C.     

 

Figure 24.  Tip Acceleration in y direction for FEA model with no Coulomb    

damping 
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Comparing Figure 20 and Figure 24 it is seen that there is some deviation between the 

response of the experimental beam and the FEA beam model.  This deviation could be for 

several reasons.  One main reason, is that the beams are plastic, therefore, there is likely a 

visco-elastic behavior that is not accounted for in the FEA simulation.  Another reason 

for the deviation is that the damping of the beam in Figure 20 is not the same value of 

damping for the FEA model.   This is because, not every single beam had the same value 

of damping or fundamental frequency. 

As the value of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  was increased, as expected, an increase in the damping also 

occurred.  Figure 25 shows the damping values for different values of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏 . 

 

Figure 25.  Damping ratio determined from FEA beam model for values of 

𝒇𝑪𝒐𝒖𝒍𝒐𝒎𝒃  using logarithmic decrement and base shock 
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For the FEA model 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  was varied from 0 lbf to 0.0339 lbf.  The reason for only 

running 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  out to that value is that the second mode of the beam started to become 

excited past that.  Therefore, the forcing was no longer acting as an energy dissipation 

mechanism but rather was putting energy into the system.  

In Figure 25 the percent difference between the model with no damping force for 

𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  and the maximum value for 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  before energy was place into the system, 

was 2.87% for the damping ratio determined from positive acceleration and 8.44% for the 

damping ratio determined from negative acceleration.  

Comparing the percent change in damping for the experimental beams of 51.4% and 

69.1% to the percent change for the FEA model of 2.87% and 8.44% there is 

disagreement in the change due to the crack.  Though there is a disagreement between the 

actual change in damping, this does not dismiss the plausibly of damping due to the 

crack.  This is because the FEA model assumes only a single crack exists.  Though the 

experimental beam was designed to only fail in a single location, this does not mean that 

additional cracks did not form.  Figure 26 shows the cross section of a failed tensile 

specimen.  The multiple print layers can also be seen in Figure 26.  From closer visual 

inspection of the cross section of the beams and tensile specimens, it was determined that 

the failure existed between the layers.  Because multiple layers existed in the beams used 

in the experimental testing it is highly likely that cracks develop at more layers than just 

the layers at the stress concentration zone.  
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Figure 26.  Cross-section for failed tensile test specimen 

 

 

Figure 27.  Beam failure from shock testing.  
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A closer examination of the beams after failure also showed that the failure was not 

always between two layers.  Often, the failure would propagate across several print 

layers.  An example of this failure can be seen in Figure 27.  The beam failure shown in 

Figure 27 consisted of four to five layers.  If the layers contribute equally to damping, the 

50-70% increase in damping becomes reasonable with the 2-9% seen in the model.     

4.2. RANDOM VIBRATION 

Using the random vibration environment described in the experimental section the beams 

were excited until failure.  To observe the change in damping of the beams a short time 

analysis was done.  Therefore, the input and output acceleration were divided into small 

time histories.  The segments were approximately 20 seconds in length.  Each 20 second 

segment was further broken down to compute a small window of the segmented time 

history.  The FRF’s computed from the smaller segments were then averaged together to 

obtain the FRF for the larger segment.  The half power method was then used to 

determine the damping from each FRF. The MATLAB® code for the random vibration 

data is in Appendix E.  Figure 28 shows the values of damping calculated for each 

segment.    
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Figure 28.  Damping ratio from random vibration 

It is noted that the random vibration damping values are discrete.  The lines shown in 

Figure 28 are there to see trends in the data.  The “X” markers shown in Figure 28 

correspond the damping values calculated for each time segment.  If the damping value is 

zero, this implies that the beam broke in or during that segment.  Beam 2 broke after 

segment 13, therefore, the data past 13 segments was not included in the plot.       

Comparing the random vibration damping values in Figure 28 to the shock damping 

values in Figure 21 it is seen that the values determined for random vibration are 

significantly higher at 8-10% damping while the damping for the shock case was around 

1-3%.  An exact explanation for the increase in damping from shock to vibration is not 

known.  However, a likely explanation is that plastic beams will show visco-elastic 

behavior thus the damping will differ from free vibration to forced vibration.   
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All the beams for the random vibration test show an upwards increase in damping.  The 

maximum percent change for beams one through four were; 1.08%, 18.88%, 64.87%, and 

4.26%, respectively.  Beam four shown in Figure 28 shows a slight dip between the first 

and second segment, however the damping increases again after the second segment.   

The FEA beam model was then simulated with random vibration.  The model parameters 

were left unchanged between the shock and random vibration case.  A portion from the 

experimental random vibration acceleration time history was integrated twice to obtain a 

displacement to use in the FEA model.  Due to some of the artifacts of a Newmark 

integrator and the larger time step of 0.002 seconds, the acceleration levels from the FEA 

beam model were greater than those of the experimental data.  The tip acceleration of the 

beam is shown in Figure 29 

 

Figure 29.  FEA beam model tip acceleration for random vibration 



42 

Similar to the numerical study done for shock, the value 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  was adjusted.  The 

damping ratio was then calculated using the half-power method.  Because it was found in 

the shock model that past 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  = 0.0339 lfb higher modes we significantly excited, 

the range of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  was unchanged for the random vibration case.  The results from the 

study are seen in Figure 30. 

 

Figure 30.  Damping ratio determined from FEA beam model for values of 

𝒇𝑪𝒐𝒖𝒍𝒐𝒎𝒃  using half-power and base random vibration 

It is seen in Figure 30 that the change in damping over the range of 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏  is 0.87%.  

The change in damping for the FEA model is close to 3 of the experimental beam’s 

damping.  However, one of the beams did show a percent change of 65%.   

Unfortunately, only 4 beams were tested at this vibration level.  Therefore, there is not 

enough data to determine if a percent change of 65% is considered an outlier.  Comparing 
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the random vibration percent change to that of the shock case, a 65% increase in damping 

is plausible.    
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5. CONCLUSION AND FUTURE WORK 

During the course of research, it was shown that the hypothesized increase in damping 

from Coulomb friction due to a crack was plausible.  Experiments were conducted to 

study the effect of damage on damping for additively manufactured ABS beams.  Tests 

were done with the beams using both shock and random vibration.  Preliminary testing 

was done to determine the beam’s fundamental frequency and undamaged damping ratio.  

The beam’s mechanical properties of interest were summarized in Table 2.  Once the 

beam’s mechanical properties, shock and random vibration inputs were created that 

would primary excite the beam’s fundamental frequency.  The inputs as well as the 

energy content in the frequency domain are seen in Figure 16-Figure 19.  The input 

acceleration was chosen to create minor damage in the beam to observe the change in 

damping as the beam was damaged.  For shock the physical beams showed an increase in 

damping with a 50-70% percent increase over the undamaged initial damping ratio for 

the shock case.  The damping ratio was calculated using logarithmic decrement shown in 

Equation (18) and Equation (19).  

A 2-8% increase that was seen in the Finite Element beam model for the shock case.  It is 

again noted, that the beam model only had one element with Coulomb forcing added, 

while the experimental beam involved more than one print layer as seen in Figure 27.  If 

each print lay is reasonable for a 2-8% increase in damping, then the 50-70% change seen 

in the experimental results is believable.  However, future studies would need to be done 

to determine the involvement of each print layer.  One method that would allow the 

investigation of this is to use real time CT scans of the stress concentration zone during 

shock. 
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 For random vibration the physical beam’s damping ratio ranged from 1-65% increase 

from the initial damping ratio.  The damping ratio was determined using the half-power 

method.  The beam’s damping ratio for forced vibrations, was significantly higher than 

that for the shock/free vibration.  After a certain point, the ratio did decrease, however, 

the cause of the decrease is unknown.  It is suspected that the crack reached a point where 

it started behaving like an open edge crack, however, further investigation would need to 

be done.  The Finite Element beam model showed similar results for the random 

vibration portion as for the shock case.  A maximum increase in damping of 0.89% was 

seen for 𝑓𝐶𝑜𝑢𝑙𝑜𝑚𝑏   = 0.0339 lb. 

Though the ABS additively manufactured beams were readily produced at a low cost and 

were printed in a manner that induced internal cracks, the use of plastic had several 

hinderances; first the nonlinearities that arise with plastics at the high levels needed to 

damage the beam might have caused some difficulties with calculating the damping ratio, 

second, the print layers might have cause a greater change in damping, that was not 

accurately modeled with a single element. It is proposed in future research, to use a metal 

beam with an internal defect in the stress concentration zone.  The use of metal will 

decrease the amount of material nonlinearities.  A metal beam with an internal defect 

would also have more consistent failures, opposed to the multiple layers that were 

involved in the plastic beams.     
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6. APPENDIX A 

% This code is used to run the SDOF Simulink® model with both viscous and Coulomb  

% damping  
clc; close all; clear; 
  

m = 1; 
k = 20; 

wn = sqrt(k/m); 
wnHz = wn/(2*pi); 
zeta = .06; 

c = zeta * 2*m*wn; 
  

  
dt = 0.0001; 
t = 0:dt:10; 

U = zeros(length(t),2); 
U(:,1) = t'; 

% U(:,2) = 1*k; 
  
A = 5*k; 

  
FKV = 1:5:3*k; 

% FKV = 5*k; 
  
  

wf = .01:.01:3;  
% wf = 2; 

  
Respon = zeros(length(wf),length(FKV)); 
  

for kit = 1:length(FKV) 
    fk = FKV(kit); 

for force = 1:length(wf) 
  
U(:,2) = A*sin((wf(force)*wn)*t); 

sim('SDOF_Coulom_Viscous_Forced'); 
  

Respon(force,kit) = max(Accel(round(length(t)/2):end)); 
end 
  

save('FRF_Data_Forced_CV','Respon') 
end 
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7. APPENDIX B 

Experimental Shock Code: 

 
% This script will be used to pull in data from the beams and determine the 
% value of zeta from log damping 

  
clear; clc; close all; 

  
cd('C:\Users\jbooher2\Documents\Masters_research\SHM\Data_For_RA\Vertical_Beam
_Nov2016'); 

  
db = dir('*_Test_*.mat') 

TestNum = 8; 
  
strc = load(db(TestNum).name); 

% 
stg = strsplit(db(TestNum).name,'.'); 

StcName = stg{1}; 
clear stg 
  

BeamData = {'M5Z' 'M52Z' 
            'M6Z' 'M62Z' 

            'M7Z' 'M72Z' 
            'M8Z' 'M82Z'}; 
         

PosAvg = zeros(length(strc.(StcName).M1Z.Curves),4); 
NegAvg = zeros(length(strc.(StcName).M1Z.Curves),4); 

  
for shock = 1:length(strc.(StcName).M1Z.Curves) 
    for beam = 1:4 

         
        BeamNum = beam; 

        ShockNum = shock; 
         
        BaseEx = strc.(StcName).(BeamData{BeamNum,1}).Curves(ShockNum).y; 

        dt = strc.(StcName).Volt.time.INC; 
        t = 0:dt:dt*(length(BaseEx)-1); 

         
        BeamTip = strc.(StcName).(BeamData{BeamNum,2}).Curves(ShockNum).y; 
             

        if isempty(BeamTip) 
            PosAvg(shock,beam) = 0; 

            NegAvg(shock,beam) = 0; 
        else 
            [PosFitStart,PosStartLoc] = max(BeamTip); 

            [NegFitStart,NegStartLoc] = min(BeamTip); 
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            [PosFitData,PosFitLocs] = 

findpeaks(BeamTip(PosStartLoc:end),'MinPeakHeight',.025*PosFitStart,'MinPeakDistan
ce',.01*dt); 

             
            [NegFitData,NegFitLocs] = findpeaks(-
1*BeamTip(NegStartLoc:end),'MinPeakHeight',-

1*.025*NegFitStart,'MinPeakDistance',.01*dt); 
             

            NegFitData = -1*NegFitData; 
                         
            % Calculate Average Damping 

            for jj = 1:length(PosFitData)-1 
                delta = log(PosFitData(jj)/PosFitData(jj+1)); 

                PosZeta(jj) = (delta)/sqrt((2*pi)^2 + (delta)^2); 
            end 
             

            for jj = 1:length(NegFitData)-1 
                delta = log(NegFitData(jj)/NegFitData(jj+1)); 

                NegZeta(jj) = (delta)/sqrt((2*pi)^2 + (delta)^2); 
            end 
             

            PosAvg(shock,beam) = mean(PosZeta); 
            NegAvg(shock,beam) = mean(NegZeta); 

             
        end 
    end 

end 
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8. APPENDIX C  

Input Deck Code: 

function [inputfile] = InputDeck(Tend,dt) 

  
% Input Data for FEA_Compiler 

  
% Input Nodal Coordinates 
% [x,y] 

% 5 inch beam 
  

Nodes =[ 0.0000     0.0 
         0.2000     0.0 
         0.2500     0.0 

         0.7425     0.0   
         1.2350     0.0 

         1.7275     0.0 
         2.2200     0.0 
         2.7125     0.0 

         3.2050     0.0 
         3.6975     0.0 
         4.1900     0.0 

         4.6825     0.0 
         5.1750     0.0]; 

      
% Element information 
% [node1 node2 material] % Handle the change in A and Izz 

Elements = [1 2   1 
            2 3   2 % This Element is where the crack will be 

            3 4   1 
            4 5   1 
            5 6   1 

            6 7   1 
            7 8   1 

            8 9   1 
            9 10  1 
            10 11 1 

            11 12 1 
            12 13 1]; 

         
% Properties 
A1 = pi*(.25/2)^2; % in^2 

A2 = pi*(.2/2)^2; % in^2 
Izz1 = (pi/4) * (.25/2)^4; %in^4 

Izz2 = (pi/4) * (.2/2)^4; % in^4 
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E = 293843; % lb/in^2 
EDamaged = 1*E; 

rho1 = 0.00009290995; %  
failurestrain = 0.014926; 

% [A Izz E rho failure strain] 
Properties = [A1 Izz1 E        rho1  failurestrain 
              A2 Izz2 EDamaged rho1  failurestrain]; 

           
% Lumped Mass at tip 

% [node ex ey erz] 
nweights =1; 
% cv1 = pi * (5/16) * ( (11/32)^2 - (1/8)^2); 

% cwt = cv1*.282; % lbf 
cwt = .02094; 

cmass = nweights*(cwt/386.4); % lbm 
LumpedMass = [length(Nodes)-1 0.0 cmass 0.0] % This is for the collar  
  

% Boundary Conditions 
% [nr nrx nry nrz] 

RestrainedNodes = [1 1 0 1]; % Cantileaver beam with base motion in y 
  
% Proportional damping 

% [alpha beta] 
% Damping = [0.0178 0.0178];  % Beta = Alpah 

% Damping = [6.2015 0]; % Beta = 0 
Damping = [0 2.8445e-04];  % Alpha = 0 
     

% Time 
% FinalTime = 3; 

FinalTime = Tend; 
% DeltaTime = 0.00001; 
DeltaTime = dt; 

  
% Forced node; 

ForceNode = [1,2]; % [NodeNumber DOF] Displacement at base 
  
save('FEA_Input'); 

  
inputfile = 'FEA_Input'; 
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FEA Code: 

function [y0,yd0,ydd0,t,Fkval,nnf,nef] = 

FEA_Displacement_Coulomb_Damping(inputfile,BaseDis,Fdamp) 
  
% Outputs 

% t = time vector 
% y0 = displacement at all nodes for all time 

% ydo = velocity 
% yddo = acceleration 
  

% Read in input deck 
load(inputfile) 

  
nn = size(Nodes,1); 
ne = size(Elements,1); 

nnr = length(find(RestrainedNodes(:,2:4))); 
  

nrdata = zeros(nn,3); 
for i = 1:size(RestrainedNodes,1) 
    idx = RestrainedNodes(1); 

    nrdata(idx,:) = RestrainedNodes(i,2:4); 
end 
  

% Assign nodal freedoms 
nn2rf = 0; 

nn2xf = 0; 
nn2yf = 0; 
  

nsrf = (3*nn) + nn2rf + nn2xf + nn2yf - nnr; 
nsaf = 0; 

irf = 0; 
  
for i = 1:nn 

     
    %Check for restriction on x DOF node 

     
    if nrdata(i,1) <.1 
        nsaf = nsaf+1; 

        nnf(i,1) = nsaf; 
    else 

        nsrf = nsrf +1; 
        irf = irf+1; 
        nnf(i,1) = nsrf; 

    end 
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    % Check for restriction on y DOF node 
    if nrdata(i,2) < .1 

        nsaf = nsaf +1; 
        nnf(i,2) = nsaf; 

    else  
        nsrf = nsrf +1; 
        irf = irf +1; 

        nnf(i,2) = nsrf; 
    end 

     
     % Check for restriction on rotational DOF node 
    if nrdata(i,3) < .1 

        nsaf = nsaf +1; 
        nnf(i,3) = nsaf; 

    else  
        nsrf = nsrf +1; 
        irf = irf +1; 

        nnf(i,3) = nsrf; 
    end 

end 
  
nsf = nsaf+irf; 

  
% Assign the element nodal freedoms 

nef = zeros(ne,6); 
for i =1:ne 
    for j =1:2 

        nef(i,(3*j)-2) = nnf(Elements(i,j),1); 
        nef(i,(3*j)-1) = nnf(Elements(i,j),2); 

        nef(i,(3*j)) = nnf(Elements(i,j),3);  
    end 
end 

  
% Assemble element coordinates 

for i = 1:ne  
    for j = 1:2 
        xn(i,j) = Nodes(Elements(i,j),1); 

        yn(i,j) = Nodes(Elements(i,j),2); 
    end 

end 
  
% Preliminary work is compleated now the Global Mass, stiffness and damping 

% matrix can be assembeled 
% Create initial matrices some of this will get changed over time 

  
[SK, SM] = SYSMK(ne,nsf,nef,xn,yn,Elements,Properties); 
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SC = (Damping(1)* SM) + (Damping(2) * SK); 
  

% Add the lumped mass of the steel collar at the end 
for imass = 1:size(LumpedMass,1) 

    for idof = 1:3 
        inode = LumpedMass(imass,1); 
        SM( nnf(inode,idof), nnf(inode,idof) ) = SM(nnf(inode,idof),nnf(inode,idof)) + 

LumpedMass(imass,(idof+1)); 
    end 

end 
  
SK = SK(1:nsaf,1:nsaf); 

SM = SM(1:nsaf,1:nsaf); 
SC = SC(1:nsaf,1:nsaf); 

  
% Determine Natural Frequencies 
Aeig = inv(SM)*SK; 

lambda = eig(Aeig); 
fn = sort(sqrt(lambda)./(2*pi)); 

  
% begin time integration  
% xdof = nnf(1,2); 

idof = nnf(ForceNode(1),ForceNode(2)); % Determine where forcing is at in rearanged 
matrix 

t = 0:DeltaTime:FinalTime; 
t = t'; 
% Preallocate the vecotrs for displacemnt, velocity, accel, and force 

y0 = zeros(length(t),nsaf); 
yd0 = zeros(length(t),nsaf); 

ydd0 = zeros(length(t),nsaf); 
x0 = zeros(nsaf,1); 
xd0 = zeros(nsaf,1);  

xdd0 = zeros(nsaf,1); 
FS = zeros(nsaf,1); 

Fkval = zeros(length(t),1); 
  
% Change SK to handel nodal displacement 

KFS = SK(:,nnf(ForceNode(1),ForceNode(2))); 
  

SK( nnf(ForceNode(1),ForceNode(2)),:) = 0;  
SK(:,nnf(ForceNode(1),ForceNode(2))) = 0; 
SK( nnf(ForceNode(1),ForceNode(2)),nnf(ForceNode(1),ForceNode(2)) ) = 1; 

  
  

for itime = 1:length(t) 
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    % Read Base Displament for itime 
    FS = FS-BaseDis(itime)*KFS; 

    FS(idof) = BaseDis(itime); 
     

    % Need to determine the rotation of element 2 where the crack is 
    % Base on the direction of motion, a force in the opposite direction 
    % will be applied.  

     
    % ydif = xd0(nnf(Elements(2,2),2)) - xd0(nnf(Elements(2,1),2));  

    % This is the y velocity differance between local node 1 and 2 
     
    ydif = xd0(nnf(Elements(2,1),3)); % Eotational velocity of node 2 

     
    if ydif >= 0 % For positive upward travel the force is directed down 

        FS( nnf(Elements(2,2),2)) =   FS(nnf(Elements(2,2),2)) - Fdamp; 
         
    else 

        FS( nnf(Elements(2,2),2)) = FS(nnf(Elements(2,2),2)) + Fdamp; 
         

    end 
     
    Fkval(itime) = FS( nnf(Elements(2,2),2));    

         
     

    [x0,xd0,xdd0] = NEWMARK(SM,SC,SK,FS,DeltaTime,x0,xd0,xdd0); 
    y0(itime,:) = x0; 
    yd0(itime,:) = xd0; 

    ydd0(itime,:) = xdd0; 
     

    % Reset FS 
    FS = zeros(nsaf,1); 
  

end 
  

end 
  
  

%% Internal Functions 
  

%% Function to assemble global 
     
function [SK,SM] = SYSMK(ne,nsf,nef,xn,yn,Elements,Properties) 

    SK = zeros(nsf,nsf); 
    SM = zeros(nsf,nsf); 

  
    for nk = 1:ne 
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        ye = yn(nk,2) - yn(nk,1); 
        xe = xn(nk,2) - xn(nk,1);    

        theta = atan2(ye,xe); 
        length = sqrt( xe^2 + ye^2); 

        EE = Properties(Elements(nk,3),3); 
        area = Properties(Elements(nk,3),1); 
        Izz = Properties(Elements(nk,3),2); 

        rho = Properties(Elements(nk,3),4); 
  

        [SE] = PFSTIF(EE,area,Izz,length); 
        [ME] = PFMASS(rho,area,Izz,length); 
  

        [TM] = TRANSF(theta); 
  

        [SER] = [TM]' * [SE] * [TM]; 
        [MER] = [TM]' * [ME] * [TM]; 
  

        for i =1:6 
            ns1 = nef(nk,i); 

            for j = 1:6 
                ns2 = nef(nk,j); 
                SK(ns1,ns2) = SK(ns1,ns2) + SER(i,j); 

                SM(ns1,ns2) = SM(ns1,ns2) + MER(i,j); 
            end 

        end 
    end 
end 

  
    

%% Element Stiffnss to create local stiffness matrix 
function [SE] = PFSTIF(E,A,Izz,L) 
    SE = zeros(6,6); 

  
    % Row 1 

    SE(1,1) = E*A/L; 
    SE(1,4) = -E*A/L; 
  

    % Row 2 
    SE(2,2) = 12*E*Izz/(L^3); 

    SE(2,3) = 6*E*Izz/(L^2); 
    SE(2,5) = -12*E*Izz/(L^3); 
    SE(2,6) = 6*E*Izz/(L^2); 

  
    % Row 3 

    SE(3,2) = 6*E*Izz/(L^2); 
    SE(3,3) = 4*E*Izz/(L); 
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    SE(3,5) = -6*E*Izz/(L^2); 
    SE(3,6) = 2*E*Izz/L; 

  
    % Row 4 

    SE(4,1) = -E*A/L; 
    SE(4,4) = E*A/L; 
  

    % Row 5 
    SE(5,2) = -12*E*Izz/(L^3); 

    SE(5,3) = -6*E*Izz/(L^2); 
    SE(5,5) = 12*E*Izz/(L^3); 
    SE(5,6) = -6*E*Izz/(L^2); 

  
    % Row 6 

    SE(6,2) = 6*E*Izz/(L^2); 
    SE(6,3) = 2*E*Izz/L; 
    SE(6,5) = -6*E*Izz/(L^2); 

    SE(6,6) = 4*E*Izz/L; 
  

end 
  
%% Local Element Mass Matrix 

function [ME] = PFMASS(rho,A,Izz,L) 
    ME = zeros(6,6); 

    cm1 = rho*A*L/6; 
    cm2 = rho*A*L/420; 
    cm3 = rho*Izz/(30*L); 

  
     

    ME(1,1) = 2*cm1; 
    ME(1,4) = cm1; 
    ME(4,1) = cm1; 

    ME(4,4) = 2*cm1; 
    ME(2,2) = (156*cm2) + (36*cm3); 

    ME(2,3) = (22*L*cm2) + (3*L*cm3); 
    ME(2,5) = (54*cm2) - (36*cm3); 
    ME(2,6) = (3*L*cm3) - (13*L*cm2); 

    ME(3,2) = (22*L*cm2) + (3*L*cm3); % Had (22*L*cm3) + (3*L*cm3) but first 
should be cm2? 

    ME(3,3) = (cm2+cm3)*4*L*L; 
    ME(3,5) = (13*cm2*L) - (3*L*cm3); 
    ME(3,6) = (-3*cm2*L*L) - (cm3*L*L); 

    ME(5,2) = (54*cm2) - (36*cm3); 
    ME(5,3) = (13*cm2*L) - (3*cm3*L); 

    ME(5,5) = (156*cm2) + (36*cm3); 
    ME(5,6) = (-22*cm2*L) - (3*L*cm3); 
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    ME(6,2) = (3*L*cm3) - (13*L*cm2); 
    ME(6,3) = (-3*cm2*L*L) - (cm3*L*L); 

    ME(6,5) = (-22*cm2*L) - (3*L*cm3); 
    ME(6,6) = 4*L*L*(cm2+cm3); 

end 
  
%% Transform Matirx to rotat local matrix to global coordinates 

function [TM] = TRANSF(theta) 
    TM = zeros(6,6); 

    TM(1,1) = cos(theta); 
    TM(1,2) = sin(theta); 
    TM(2,1) = -sin(theta); 

    TM(2,2) = cos(theta); 
    TM(3,3) = 1; 

    TM(4,4) = cos(theta); 
    TM(4,5) = sin(theta); 
    TM(5,4) = -sin(theta); 

    TM(5,5) = cos(theta); 
    TM(6,6) = 1; 

end 
  
%% Newmark Intergrator 

  
function [x0,xd0,xdd0] = NEWMARK(MS,CS,KS,FS,h,xo,xdo,xddo) 

    a = .25; 
    d = .5; 
     

    a0 = 1/(a*h^2); 
    a1 = d/(a*h); 

    a2 = 1/(a*h); 
    a3 = (1/(2*a)) -1; 
    a4 = (d/a) -1; 

    a5 = ((d/a)-2)  * (h/2); 
    a6 = h*(1-d); 

    a7 = d*h; 
  
    x0 = zeros(size(FS)); 

    xd0 = zeros(size(FS)); 
    xdd0 = zeros(size(FS)); 

  
    KSN = KS + (a0.*MS) + (a1.*CS); 
    R1 = (a0.*xo) + (a2.*xdo) + (a3.*xddo); 

    R2 = (a1.*xo) + (a4.*xdo) + (a5.*xddo); 
    R3 = (MS*R1) + (CS*R2); 

    FSN = FS+R3; 
    x0 = KSN\FSN; 
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    xdd0 = (a0.*(x0-xo)) - (a2.*xdo) - (a3.*xddo); 
    xd0 = xdo + (a6.*xddo) + (a7.*xdd0); 

end 
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FEA 𝒇𝑪𝒐𝒖𝒍𝒐𝒎𝒃  Code: 

% This script is used to run a random vibration from the beam data and run it through the 
FEA beam.  The vibration data needs to be integrated twice to get displacement before 

running it on the beam.  The value of fk will be increased each time and the damping will 
be computed for each run.  Plots will then be made comparing damping and the value of 
fk. 

  
clear; clc; close all 

  
cd('C:\Users\jbooher2\Documents\Masters_research\SHM\MATLAB') 
  

% Set to shock event of random vib event. 
  

BaseType = 2 % 1 for Shock, 2 for Random Vib 
  
% Vector for fk values 

 Fk = [0:.0001:0.0339];  % Values of BaseType = 1 [0-.0339] BaseType=2  
  

% Fk = 0; 
% First read in data 
  

if BaseType == 1 
    load('BaseEx_Shock_10G.mat') 

     
    % BaseEx needs to be in in/sec^2  
    BaseEx = BaseEx*386; 

     
    dt = 6.2500e-04; 

    [BaseDisp] = Accel2Disp(BaseEx,dt,BaseType); 
    Tend = dt*(length(BaseDisp)-1); 
     

    % Since there are two values of damping the matrix will be nx2  
     

    DAMP  = zeros(length(Fk),2); 
     
else 

    load('BaseEx_Random_5G.mat') 
    dt = 0.0020;     

  
    % I don't need this long of a record for the simulaiton 
    % So clip BaseDisp and BaseEx down to 20 sec this will give a 

    % a freq resoultion of .05 
     

    N = 20/dt; 
    N = N+1; 
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    BaseEx = BaseEx(1:N); 
              

    [BaseDisp] = Accel2Disp(BaseEx,dt,BaseType); 
  

% Divide BaseEx to come up with BaseDisp this is done because the 
% intergation doesn't work. Devide until the FEA has values to that of 
% BaseEx 

     
    Tend = dt*(length(BaseDisp)-1); 

     
    % DAMP is nx1 since there is only one value from random vib 
    DAMP  = zeros(length(Fk),1); 

end 
  

%Now call up InputDeck to setup FEA simulation 
  
[inputfile] = InputDeck(Tend,dt); 

 
% Now that I have the Displacement I can Run the FEA code 

  
% Loop over differnt values of fk 
  

for d = 1:length(Fk) 
  

Fdamp = Fk(d); 
  
[y0,yd0,ydd0,t,Fkval,nnf,nef] = 

FEA_Displacement_Coulomb_Damping(inputfile,BaseDisp,Fdamp); 
  

% Determine Damping depending on case type 
  
if BaseType ==1; 

  
[PosZetaAvg,NegZetaAvg] = LogDec(t,ydd0(:,36)); 

  
DAMP(d,1) = PosZetaAvg; 
DAMP(d,2) = NegZetaAvg; 

  
  

else 
    n = 2^10; 
    overlap = []; 

    w = [];  
    method = 1; 

    SR = 1/dt; 
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    % For random vib the FRF needs to be calculated and then passed to 
    % HalfPower    

     
    x = BaseEx; 

    y = ydd0(:,36); % This is the tip accel same data as experiment 
    P = frf(SR,n,overlap,w,method,x,y); 
     

    df = SR/n; 
    f100 = 100/df; 

    fn = [0:df:df*(f100-1)]'; 
    
    % Use HalfPowerDamp to determine damping 

    FRF = abs(P([1:f100],4)); 
     

    [wn,zeta] = HalfPowerDamp(fn,FRF); 
     
    DAMP(d,1) = zeta; 

     
end 

  
end 
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9. APPENDIX E 

Experimental Random Vibration Code: 

%  This script is used to find the damping from radnom vid, 

% then make a plot of each value to see if it increases or decresses. 
  

% clear; clc; close all; 
% Change to dir 
cd('C:\Users\jbooher2\Documents\Masters_research\SHM\Data_For_RA\Beam_Random

_Vib') 
  

db = dir('*.mat'); 
  
% Load test number 

TestNum = 6; 
load(db(TestNum).name); 

stg = strsplit(db(TestNum).name,'.'); 
StcName = stg{1}; 
  

clear stg; 
% 
BeamData = {'M3Z' 'M7Z' 

            'M4Z' 'M8Z' 
            'M5Z' 'M9Z' 

            'M6Z' 'M10Z'}; 
  
% Parameters for FRF 

NumIt = 13; 
N = 2^10; 

overlap = []; 
w = [];  
method = 1; 

  
DampMatrix = zeros(NumIt,4); 

FnMatrix = zeros(NumIt,4); 
         
for beam = 1:4       

BeamNum = beam; 
BaseEx = data.(StcName).(BeamData{BeamNum,1}).y; 

  
dt = data.(StcName).Volt.time.INC; 
t = 0:dt:dt*(length(BaseEx)-1); 

  
BeamTip = data.(StcName).(BeamData{BeamNum,2}).y; 
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% Use FRF to plot 
  

SR = 1/dt; 
WinLen = floor(length(BaseEx)/NumIt); 

inc = WinLen; 
index = 1; 
  

for ii = 1:NumIt 
     

    x = BaseEx(index:(index+WinLen-1)); 
    y = BeamTip(index:(index+WinLen-1)); 
     

    % Check to see if x and y have unbroke data  
     

    if rms(y) <= 100 
         
    else 

     
    P = frf(SR,N,overlap,w,method,x,y); 

     
    df = SR/N; 
    fn = [0:df:df*(length(P(:,4))-1)]'; 

     
     

    % Use HalfPowerDamp to determine damping 
    FRF = abs(P(:,4)); 
     

    [wn,zeta] = HalfPowerDamp(fn,FRF);         
     

    %Save damping data to array 
     
    DampMatrix(ii,beam) = zeta; 

    FnMatrix(ii,beam) = wn; 
     

    end 
     
    index = index + inc; 

    clear FRF P wn zeta 
end 

end 
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Half Power Code: 

function [Fn,zeta] = HalfPowerDamp(fn,FRF) 

  
% Inputs 
% fn is the frequency vector  

% FRF is the magnitured FRF this is need to calculated the proper damping 
  

% Determine the mode frequency and amplitued 
  
[Amp,loc] = max(FRF); 

wn = fn(loc); 
Fn = wn; % This is the natural frequcny of the first mode for the beam 

  
% Determine the half power level 
  

HP = .707*Amp; 
  

% No the frequcny needs to be determined for the half power. In order  
% to do this the vector will be split from the natural frequency. Once  
% this % is done the vectors will be searched for the values that are near     % half power. 

From this a linear interpolation will be used to find the 
% frequency at which the half power is. This will be done for both  
% sides of the FRF. 

     
% Start with the values below wn; 

     
Search1 = FRF(1:(loc-1)); 
% Search1 needs to be flipped to find the first value below half power. 

Search1 = flipud(Search1); 
  

S1Loc = find(Search1 <= HP,1); % This is the distance from the peak for first value 
below half power. 
  

% Place Mag and Freq of above and below into S1 
% S1 = [MagBelow FnBelow 

%       MagAbove FnAbove] 
  
S1(1,1) = FRF(loc-S1Loc); 

S1(2,1) = FRF(loc-(S1Loc-1)); 
S1(1,2) = fn(loc-S1Loc); 

S1(2,2) = fn(loc-(S1Loc-1)); 
  
% Now do the same for the right side of the FRF 

Search2 = FRF(loc+1:loc+50); % 50 should be enough points 
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S2Loc = find(Search2 <= HP,1); 
  

S2(1,1) = FRF(loc+S2Loc); 
S2(2,1) = FRF(loc+(S2Loc-1)); 

S2(1,2) = fn(loc+S2Loc); 
S2(2,2) = fn(loc + (S2Loc-1)); 
  

% Now use linear interpolation yay! 
% For S1 

  
m1 = (S1(2,1) - S1(1,1))/(S1(2,2)-S1(1,2)); 
  

wa = ((HP - S1(1,1)) + m1*S1(1,2))/m1; 
  

% For S2 
     
m2 = (S2(2,1) - S2(1,1))/(S2(2,2)-S2(1,2)); 

  
wb = ((HP - S2(1,1)) + m2*S2(1,2))/m2; 

  
zeta = .5* ((wb-wa)/Fn); 
  

% end 
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