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ABSTRACT

The problem is to find an efficient algorithm that, given the
productions of a context-free grammar G , will discover whether G
is LR(k) for given k and if it is build an efficient parser for
G . The algorithm is given in Section 8. T1It is essentially a synthesis
of the best parts of Knuth's and DeRemer's algorithms. On simple

LR(k) grammars it yields a result equivalent to DeRemer's algorithm,

and like Knuth's algorithm it will work on all LR(k) grammars.
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1. INTRODUCTION

This dissertation is concerned with LR(k) grammars in general
and in particular with the building of LR(k) parsers. Intuitively,
a parse of a sentence is an indication of the derivation_of the
sentence. Intuitively, a grammar G is LR(k) if and only if every
sentence in the language L(G) defined by G may be parsed by reading
it once from left to right scanning ahead at most k symbols.
Practically, this means that the LR(k) grammars are precisely those
grammars for which there exists an upper bound on the time required to
parse a sentence which is proportional to the length of the sentence.
A more precise definition of LR(k) 1is given later.

Knuth (Knu 65) has shown that any LR(k) grammar may be parsed by
a deterministic push-down automaton (DPDA) with the added capability
of scanning the next k symbols of the input string at any time.1
Furthermore Knuth gives an algorithm which, given the productions of
a context-free grammar G , will find for given k whether G is an
LR(k) grammar and if so find an LR(k) parser for G . Knuth's
algorithm, however, has certain drawbacks. For one, it is impractical
for any large grammar. The algorithm must do a lot of work which in
the final analysis is unnecessary. The number of st;tes and the size
of the states are both much larger than necessary. Knuth mentions
methods for combining states in order to decrease the size and increase
the efficiency of his parser. However, the question of how best to do

this, he leaves as a subject for further research.







Korenjak (Kor 69) and Pager (Pag 70) have both attempted to answer
this question. Korenjak found a metho& of reducing the number of states
through splitting the original grammar G into m small interconnected
grammar's and applying Knuth's method separately to each one. Unfor-
tunately, how best to split up a large grammar is still an open question.
Pager demonstrated that known automata theory methods could be applied
to the result of Knuth's algorithm in order to reduce it. But unfor-
tunately the resulting parser although it will correctly parse any
sentence in the grammar might also parse sentences not in the grammar.
Pager's results must therefore also be considered impractical,

DeRemer (DeR 69 and DeR 71) found a practical modification of
Knuth's algorithm which, for a large subclass of LR(k) grammars
which he calls simple LR(k) (SLR(k)) grammars, will with much less
effort produce a much smaller parser than Knuth's unmodified algorithm.
DeRemer has found that most unambiguous context-free grammars in
practical use are SLR(l) and that his method gives better results
than other known parsing methods (DeR 71).

What I propose to do in this dissertation is describe a practical
parser building algorithm which will work on all LR(k) grammars. For
SLR(k) grammars this algorithm will yield a parser essentially equivalent

to DeRemers SLR(k) parser.







2. TERMINOLOGY

A context-free grammar is a 4-tuple (VT, V., S, P).

N?
The set vV = VTlJVN is called the vocabulary,
* 1is the closure operator.
V¥ is the set of all strings of finite length over V including
the empty string which we will denote by €.
A"

r is a finite set of symbols called the terminal vocabulary.

Vy 1s a finite set of symbols called the non-terminal vocabulary.
VTﬂVN = 9

S 1is a specific element of Vy called the start symbol.

P is a finite set of ordered pairs (A, w) € Vy ¥ v* which we

will write A—W .2

Henceforth unless otherwise stated grammar will be used synonymously
with context-free grammar in this paper.

When speaking of elements of V*, unless otherwise stated or
obvious from context, capital letters will denote elements of VN ,

small letters will denote elements of VT and Greek letters will

denote strings over V.

V., S, P) only by listing the

We will define a grammar G = (VN, T

elements of P, It will be understood that

S =A where A—— W is the first production in the list
VN=|A|A-—-w€P for some w
Ve =2 | for some A— WEP, a is a symbol in the string w} \ vq
i







For example let the grammar
ductions listed below.
1. S=—»SST

2. S=—=T

Gy = (Vy, Vps S, P) where

S= 8
Vy = lS, £, A‘
VT = a, bl

Gy be defined by the set of pro-

aff always denotes the concatenation of a« and B. If

a = agb and

then af3 = abbab .

I

B = bab

n : . . .
a where n is a non-negative integer denotes the concatenation

" 0
of a with itself n times. For example a = €

03 = ababab.

| e | = number of symbols in the string a. Thus [ al=2 for a defined

above. 1If there exists ‘YCV*\\\G i such that Ya= 8 , then a is a

suffix of B. We write this a suf B . We write a — B and say «

directly produces f if and only if

@ =YA8 , B=7vWSs

Thus in grammar G0 we may write

SSTST —SSa ST

and A—> WEP,

We write a=—>*B  and say a produces B if and only if for some







integer n =2 0

Vil|0sis<n 3Gi &= a5, B= @, and where

i#n o, —>a,y
Thus in grammar GO
%
S =—s S5aST

Since § =—»SST

SST —»SSTST
and SSTST —»SSaST .
Trivially Vwey w—"w

A sentential form is a string w €V* such that
%
S =— W

In grammar G0 W = S5aST is a sentential form. The language L(G)

is defined as the set of all terminal sentential forms or sentences

azn+lln20|

L(Go) =

A production A—w 1is useful if and only if

Ja, B,Y| s—>FarAB—> awWB —"Y where 7YEL(C).
A production that is not useful is useless. A —=b is the only
useless production in GO' Unless otherwise stated we will assume
that a grammar G contains no useless productions.

A derivation of a sentential form W is an ordered n+l tuple of

sentential form (ag, ..., ay) for some n =0 where







aO=S, @ =W and VilO:ﬂi(n ai_—*ai—ki .

Thus (S, SST, SSTST, SSaST) is a derivation of the sentential
form SSaST in grammar G0 .

A right derivation of a sentential form is a derivation

(c.'ro, ...,cxn) such that

Vil|osicn - a; = Bagyy, agy = B 07 , Arw, ep

*

In other words we right derive a sentential form by always applying

some production to the right most non-terminal symbol in the preceding

sentential form in the derivation. A sentential form is a right

sentential form if and only if it possesses at least one right derivation.
S§5aST is not a right sentential form. However SSTaa 1is a right

sentential form.
(s, SST, SSa, SSSTa, SSSaa, SSTaa)

is a right derivation of SSTaa.

We will only be interested in righg derivations. Therefore unless
otherwise stated derivation means right derivation,
a—="0 (@ —>f) means « (directly) produces B by right derivations
and sentential form means right sentential form.

A sentential form that possesses more than one right derivation is

called ambiguous. A grammar G is ambiguous if and only if there is at







least one ambiguous sentence in L(G). G0 is ambiguous since
(S, SST, SSa, STa, Saa, SSTaa)

is another right derivation of 8STaa . We must make a distinction
between grammar and language. A language is a set of strings over

some terminal vocabulary Vp o Let Gy be defined by the productions

1 S—2aas$ 2 S=—>s2a

aZn+1

L(Go) = L(Gb) = n=0

G6 is an unambiguous grammar. 1In this paper we are interested in
grammars rather than languages.

Let k be a non-negative integer. Define the following three

5 . *
functions on the domain V

k:a = a if |alsk
k: «a = 8 IHYEV* for which BY=a and ]ﬂ‘= k if \0\>k m
Thus k:a is the first k symbols of a if ]a{ >k . Otherwise

* oL
Hk(a) = le for some ﬂeVT a—>"f3 and k:B8 = wl
* . *
H];(a)=|w| 4B and B a—"B'—>B, eV, k:8 =w

and B' # AB for any A EVN,







Definition 1:

A push down automata (PDA) is a 7-tuple
(K, Vo, T, 8, Sp» Tg» F) where
K is a finite set of states.

VT is a finite set called the input vocabulary.

I' is a finite set called the push down stack vocabulary,

SO is an element of K <called the start state.

To 1is an element of [I' called the start symbol.

F 1is a subset of K called the set of final states.

€

0 is a function from K x(VpU Yy I’ into the collection of

finite subsets of K xI'* .

An interpretation of a PDA is that of a machine, M, which is started
in state 8§; with a stack of T énd is fed a string of symbols
(06V¥ . An input head is placed over the first symbol of W,

If M is in state S, T 1is the element on top of the stack and
the input head is over a symbol a €V, , then if (S',7Y)€4(S, a, T)
where ver*, then M may move to state S' while moving the input
head to the next symbol in- w, popping T off the stack and then
pushing ¥ on top of the stack. If (S',7) €é (S, €, T), then M may
move to state S' without advancing the input head while popping T
off the stack and then pushing Y on the top of the stack.

We say that M accepts W if and only if it is possible for M

to be in some state S €F after reading the whole input string .







A PDA M 1is deterministic if and only if

5(S, €, T) N4(S, a, T) =P VS, aand T and 6(S, a, T)
contains at most one element VS, a, and T .3

We are interested in machines which are slightly modified push

down automata. We will call them parsing machines (PM).

Definition 2:

A parsing machine is an 8-tuple

(K, Vg, Sys Fs Py N, k, &)

0°
K is a finite set of states and is also the push down stack
vocabulary.

V% is a finite set called the input vocabulary. The symbol 4
called the end symbol is in V% :
Sg 1is an element of K called the start state.

F' is a subset of K called the set of final states.

P is a finite set of symbols called the output vocabulary.

N 1is a function from P into the non-negative integers.

k 1is a non-negative integer.

0 is a function from K X W x K into the collection of subsets

of Kx(P U ’f

) where for k =0 Wg = Vi, and for k>0

wkzlaév.]‘?""l|ai=kor (|a|<k and 4 suf a) L

If k=0 then if (U, p) €(S, a, T) then (U, p) € (S, b, T) Vbev.

An interpretation of a PM is that of a machine M which is start

state S with a stack of §

0

T

ed in

o and is fed a string of symbols wevV*.
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An input head is placed over the first k symbols of W,
If M is in state S with T the N(p) symbol from the top
of the stack, (we consider the symbol on top of the stack as zeroth

from the top) and «a is under the input head, then if

('1" 3 p) e 6 (S’ a’ T) 3
then M may move to state T' , replace the top N(p) symbols on

the stack by T' and output p without moving the input head.
If (T',f)fé(s, @, T) ]

thenm M may move to state T' , push T' on top of the stack and
output ¢ while moving the input head forward one symbol.

We say that M accepts w if and only if it is possible for
M to Be in some state S € F after reading the input string w.
M is deterministic if and only if VS, w, T , the set &(S, w, T)
contains at most one element.

Finally for our purposes a graph is a finite set of nodes ¢
and a set of ordered pairs in ® X% called transitions. If (P, 0)
is a transition in a graph GR , we write pP——0 and say GR

has a transition from p to .







3. KNUTH'S ALGORITHM

We now give a formal definition of an LR(k) grammar.

Definition 3:
A context-free grammar G is LR(k) if and only if for all
right derivations of the form

S == % a AV —— a 37

1 1 J
and g -kl A'Y ' B ¥
if (| e8| +x) :apr=(|abB| +1) :a' g ¥
then =0 g=p and A = A' (Knu 71) g
Now for a given grammar G = (Vos Vys S, P) form a new grammar
G' = (v, V&, S' P') where
Vi =v LJ‘ 4 l where 1 4V
' T
§, e 1 e
V= Vau ‘s I where S'"§ v
' k ‘
Py ({S'—5SH+H if k =1
P' =
l P U IS'-——**-S 1 l if k=0 ;
L(G") =[ L(G)] e it k=l and L(G") = IL(G)l 1 if k=

Intuitively G is LR(k) if and only if G' is LR(k) and G' is

LR(k) if and only if

if S'e——a* a AY —>-a BY

and g' W — C'ﬁ[k:'rlb
are derivations in G'

then w = aA[k:T]é.
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In other words if we are reading a sentential form af?Y in G' from
left to right, after reading af we need scan at most k:Y in order
to tell if
S'——> a AY—s>afY

is the derivation of af8Y . Thus if G 1is LR(k) then a derivation
of a sentential form in G 1is unique. That is LR(k) implies unam-
biguity. Knuth (Knu 65) proves that in general whether a grammar G
is LR(k) for some k is an undedicable question., However, if k
is given a-priori, Knuth gives an algorithm for deciding if a grammar
G is LR(k) and building an LR(k) parser if it is.

Briefly, Knuth's algorithﬁ is this: (Knu 65)
Number the productions of G ; 1,2, ..., r . Add production number O ,

§! ——§ 4k (§' ——= S +4 if k

ny =9 .

0) where lS, 4

Let np be the number of symbols on the right hand side of production

p . Let pj be the jth symbol on the right hand side of production

p and Py be the symbol on the left hand.side of production p .
Define a configuration as a 3-tuple (p, j, «) where p 1is the
number of a production in G' , j is an integer such that 0=j<n
and a tV,'r* with |@] =k . Define the closure T* of a set of
configurations T as the smallest set of configurations such that

T#D T and if (p, j,@) € T* with j<n, then (q, 0, 8) € T* Vaq,B|

production gq is Pi+1 — W for some W €V*¥ and

3EHk(pji_2 s Bee)

n
P

Define a state S as a closed set of configurations arrived at

*
in the following way. The start state S is (0, 0, 4k) 5

0

({ (@, 0, +)l *Oif k= 0) . If s, is a state and (ps J5: o) € Sy
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with j<np and pj+1%4 then

*

Sp = | (> i+1, B) | (q, i, B) € S , i<n  and

9+1 7 Pjl
is a state. In this case we will say that there is a Pi+l ~ read

. P
transition from state § to state § and write S _Ji.l_,s .
n m n m

1f  (p, L a) € S, for some a then we say that there is a reduce-p

i 3 i
transition from state Sn and write Sn_rp.. .

If ord(V') =m , ord(P') =h and n = max(nb) , then an upper
P k

bound on the number of configurations is nhm . Thus znhm is

an upper bound on the number of states. Thus for any grammar G ,
the number of states although possibly very large is finite.

It can now be shown that

. I * i 3

if S — ao...anA'Y ao...am‘y with m=n

where a; € V Vit{}éiﬁm

then there exists a sequence of states

S0 T Sm+1 with S0 = gtart state such that
(o &7
1 Y i y
Si-—-p-Si_H_ i|0<i<m

Furthermore if p 1is the production A —> @ 41 ccerap

(if n=m then p is A ——¢€) then (p, Y ksx ) Gsm-i-l

And if 8§ —%al AV Y!—sat Y

where &t B " =y e Vs
¥ suf v and 'YfV:I,*

then dq, i, 8 with i<nq | (g, 1,8) € Bry
. 1

and Ky € Hy (qi+1 qnqﬂ).

(we use H{( instead of H_ since vt guf YD)

This tells us that G is ©LR(k) if and only if for all states 8,

(p, np, ¥Y) €3 and (q, i, B) €S with piq or g # i implies
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2 7= )
£ @ Ing B
Now suppose we find that G 1is LR(k). We can use these states
and transitions to define a PM, Mk(G) with the power to scan the

next k symbols of the input string which will parse the grammar L(G)

(K, V', S, F, P, N, k, 8) where

Let M =
0
K = the set of states as defined above,
P = Ip €1 | l<psr , N(p) = np 3
F=|sex|(0,1,4k)es and

6 is defined by the following procedure.

Let a = the next k symbols of the input string. If M 1is in

state S and (p, n a) € S for some p then do not advance the input

p’
head, pop the top n items off the stack, look at the symbol on top of

Po
the stack T , enter the state T' I T=——T' , push T' on the stack

P

and output p . Call this action taking a reduce -p transition from

gtate S . If (p; 0y, a) S Yp then enter the state S' S-—]-:is-"’b-S' ,
push S8' on the stack and advance the input head. Call this action
taking a read transition from state S . If w= 4K (w=4 1if k = 0)
and (0, 1, 4k) €S, then.accept the input string. Here W= the

unread portion of the input 3tring.5

If it becomes impossible to make

a transition, then reject the input string. Loosely speaking, whenever
the parser is in state Sn , it may be working on production p , it has
already found the first j symbols on the right hand side of production

p and this instance of the production p may be followed by the string a

if and only if (p, j, a) € Sn ;.
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Knuth (Knu 65) proves that if we set the input string w= a 4K

(a4 if k = 0) where a is the string we wish to parse, then
the machine defined above is a parser for G . Furthermore the machine

M (G) conforms with the concept of parsing machine given in the

preceding section.







4. THREE LR(k) GRAMMARS

Let's start with a trivial example. The grammar Gy 1is defined

by the two productions listed below:

1, §—»aS§ e

We may represent L(Gy) as |an n>0

Intuitively G, is not

LR(0) but is LR(l) since we can always answer the question '"is

this the last symbol in a string" by looking to see if it is followed

by another symbol. To build Knuth's LR(l) parser for G

1 add the

zeroth production S'— S4 - . The states and transitions are listed

below in Table 1.

Table 1 States and Transitions for Ml(Gl)

0 (0, 0, +), (L, 105 1), (25 05 9)
1 (05 1; 4)
2 Gl s, SR e . =)

(1, 0, 4), (2, 0, +4)

3 (L 2; 4)

I
o

. ' = 5 I
Since Hl(Sﬁ) Hl(aJ) Hl(aS+)

Gl is LR(1).

Transitions To

a 2 s 1
4+ accept
reduce -2

a 2 s 3
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To convert Table 1 into the parsing machine MI(G1) let

K be the set of states in Table 1
V% =ta, 4 l

S0 = state O

F = | state 1\

P=11, 2

N(1) =2 and N(2) =1

5 (0, a, 0) = §(2, a, 2) = '(2, e)]
$ (2, 4, 2) = |3, 2)

§(2, 4, 0) = {1, 2) )
8(3, 4, 2) = {(3, 1)

5(3, 4, 0) = {(1, 1)

8 maps all other members of K X W, X K into § .

k

Since the parsing machine is uniquely determined by the grammar and the
table of states and transitions and since it's easier to see what is
going on from the table than from the function &, in subsequent
examples we will not convert the table of states and transitions
into a parsing machine.

Now we wish to find an ©LR(l) parser for the grammar G2 of

arithmetic expressions defined below:

l. E—+E+T 3, T—pP b T 5. Pe—s(E)

2, E——T 4, Te———sP 6., P=——i

Here S =E , VN = IE’ T, PI and VT'z \+1 1: (R [
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We start by adding to P the zeroth production
0. Guem—rt=Fi 4

The states and transitions are given in Table 2. We use the
shorthand (5, 0, 4 + f) for (5, 0, 4), (5, 0, ¥, (5, 0, ¢)
The only states which contain configurations (p, Dy s a) and

(q, i, 8) with p # q or ny # i are states 4 and 12 . Since

B (e =8 (fra =8 ¢fn ) =t

62 is LR(l) . We will see later that many of the 21 states in
Table 2 are actually unnecessary.

Suppose we wish to parse the sentence i + (i fi) in 02 .
First let the input string

w=i+ (i$i) 4+ .

Start the parser in state 0 with 0O on the stack. We write
0 & +—(i.*i) 4 meaning the portion of the input string to be read
in on the right of the marker 4 and the stack is to the left. The

parser is in the state immediately to the left of the marker







Number

0

Table 2

(0,

(0,

(1,

(5,

(1,

3,

(3,

(5,

(3,

(5,

(5,

(3,

1)

1)

States and Transitions For Ml(Gz)

State Transition To

3 (]" O, -' +)’ (2’ 0! 1 +)
(3, 0, 4+ +), (4, 0, 41 4)

5, 0, 1 +}, (6, 0, 1 +p

(1, 1, 4+ +)

+)’ (3’ 0, -| +)) (4’ Ol .{ +)’

+1), 6, 0,4 +1)

+)

+) (b, 1, 4 4
+), (3, 0, 44, (4, 0, 41+
+4), 6, 0,4 +4)

+)
+4), (1, 0, )4, (2,0, ) +)
(3, 0, ) V), (4, 0, ) +)

(5, 0, ) +1), 6, 0, ) +1)

+1), 1, 1, ) ¥

+1)

E 1
T 21
P 4
( 7
i 20
+4 accept
+ 2
T 3
)3 4
( 7
i 20
reduce 1
5
reduce 4
T 6
P 4
( 7
f 20
reduce 3
E 8
T 18
P 12
) 15
£ 19
+ 10
) 9
reduce 5

19







Number

10

11

12

13

14

15

16

17

18

19

20

21

(1,

(1,

3,

3,

3,

(5,

G,

(5,
(2,
(6,
(6,

(2,

Table 2 Continued

State

) ) (3, 0, ) ), (4, 0, ) +)

(5, 0, ) +4>, ¢, o,

+)

), G, 1, ) )

+), 3,0, )+, (%, 0,)

(5; 0; ) +by; 60,

+)

+4), a4, 0,) 4, 2,0,
(3, 0, ) +), (4, 0, )

(5, 0, ) +1), (6, 0,

+ 4y (Ly 15 ) ©)

+1)
+)

=19
+1
+1

Transition To

11
12
15
16

e - B

reduce 1

13
reduce 4

14
12
15
16

Pt ieg

reduce 3

16
18
12
15
16

-

17

S

reduce 5

reduce 2

reduce 6

reduce 6

reduce 2

20




S




We scan the
We now have
Next reduce
We now have

Continuing

first

i

and enter state 20.

D, 20 x4 (21D 4

production 6.

0, 4 %+ (1 4i) 1

21
1 %

1,

i+ (ath 4
+ (i 4i) 4

2 % (141) 4

2, 744PL )3

P B B9 o 1
5 3. 12w ti
2, 7, 12, 13,
2. T 13, X3
9. 7, 13, 1%;

2. 7, 12, 13,

accept

) 4
) 4
i)
16 %
12«

14 4

21

output 6
output 4

output 2

output 6

output 6
output 4
output 3

output 2

output 5
output 4

output 1




e e
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If we start with E and apply the productions obtained in the

reverse order and always to the right most non-terminal symbol, we get

E 4 E+ (p}Pp)
1 E+T 6 IE+(Pfi)
4 E+P 6 E+(ifi)
3 E + (E) 2 T+ (if 1)
2 E + (T) 4 P+ (i}1)
3 E+ (P4T) 6 1+(iti)

This is precisely what we mean by a parse of a sentence w, an
ordered list of the productions used in a right derivation of the
sentence w,

Our next example is more complicated, Find an LR(l) parser for

the grammar G, defined by the productions listed below:

3
1. § —Tw 9. T, — bUyp o 17, T, — cU,
2. 8 -——--sz 10. TB-—v- bU3q 18, T4 —_— CU&
3. s T 1. T bU 19, U —— dT
ity & 4 1 3
4, S —T 12, T =——=blU s 20, U =——dT
4 4 4 2 4
W Fe— 13. U 21. U, ——edT
5 Tl a 'I'l —_—C 1p - 3 1
6. T.—a 1. TraeesnlE 22, U ——dT
2 1 1 4
7. T. ——bU 1S, T e—ioicl
1 1 2 eHpt
. b 16. U
8 Tz—- U2 T2 —_—C 25
Here S=5 v =|s|u|'r,,u.‘ 151541
N i i
V.= 1a, b, ¢, d: P> 9, T, S, W, xl







The states and transitions for Ml(G3) are listed in Table 3.

Table 3 we use the shorthand (lg, 10, 17] , 0, pq) to stand for

In

9, 0, p), (9, 0, q), (10, O, p), (10, O, q), (17, O, p), (17, O, q) .

States 1, 4 and 13 are the only states containing configurations

(p, LI @) and (q, i, ) where p#q or n # i . Since
‘W n lx‘ = ‘p, q‘ n Ty s‘ P B 0 4, sl = ) , grammar
is ERCLY .. G3 was included because it is an extremely "messy"

grammar. However in spite of this, it is LR(l) . We will see

G
3

shortly that well over half of the 90 states in Table 3 are unnecessary

and may be eliminated from the parser,




e —————




Number

0

Table 3 States and Transitions For Ml(GB)

State

0, 0, 4), (5, 7, 13, 14, 0, w)

(ls, 8, 15, 16], 0, x), ([9, 10, 17], i,

(l11, 12, 18I, 0, x), (ll, 9, B, 4], 0, 1)
(5, 1, w), (6, 1, x)

1, 1, W), 8 1, %); ([9, 10], 1, W),
(l11, 12], 1, %)

(19, 0, w), (20, 0, x), (21, 0, pq),

(20, 0, rs)

(19, 1, w), (20, 1, x), (21, 1, pq),

(22, 1, rs)

([5, 7, 12, 14], 0, pq), (Ie, 8, 15, 16],
0, rs)

([9, 10, 17], 0, w), (|11, 12, 181, 0, x)
(5, 1, pq), (6, 1, rs)

(7, 1, p2), @, 1, ), (|9, 10], 1, W,
([11, 12], 1, x)

(19, 0, pq), (20, 0, rs), (21, O, pq),
(22, 0, rs)

@9, 1, pq), (20, 1, rs), (21, 1, pq),
(22, 1, rs)

(5, 7, 13, 18], 0, p0), (|6, 8, 15, 16],
0, rs)

([9, 10, 17], 0, pq), ([11, 12, 18', 0, rs)

(7, 1, p), (8, 1, rs), ([9, 10], 1, pq),
¢ 11, ¥2, 1, rs)

(19, 0, pq), (20, O, x¥s), (21, O, pq),
(22, 0, rs)

24

Transition To

81
82
84

- 86

88

reduce
reduce

T
v

45
46

63

79

80

75
76

reduce
reduce

¥

U2

55
56

63

77
78

75
76

55
56

57

wn

w

a 1
b 2
c 20
U4 66
d 3
a 4
b 5
c 16
a 4
d 6
a 4
b 7
c 8
U4 60
d 6







Number

10

11

12

13

14

Table 3 Continued

State

([13, 18], 1, pa), ([15, 16], 1, rs),
(175 Ly p4)s (18, 1; rs)

(19, 0, pr), (20, 0, gs), (21, 0, pa),
(22, 0, rs)

(19, 1, pr), (20, 1, gqs), (21, 1, pq),
(22, 0, rs)

(s, 7, 13, 4], 0, pa), ([s, 8, 15, 1],
0, rs)
([9, 10, 17], 0, pr), ([11, 12, 18], 0, gs)

7, 1, pa), (&, 1, rs), (|9, 10|, 1, bm),
([iz, 12], 1, ¢8)

(19, 0, pq), (20, 0, rs), (21, 0, pa),
(22, 0; xs8)

(13, 18], 1, pa), ([15, 16], 1, rs),
(17, 1, pr), (18, 1, gs)

(19, 0, pr), (20, 0, gs), (21, O, pr), |
22, 0, gs)

(19, 1, pr), (20, 1, qs), (21, 1, pr),
(22, 1, gs)

([5, 7, 13, 1], o, o), ([6, 8, 15, 16],
0,
([9,qi%, 17], 0, px), ([11, 12, 18], 0, gs)

5, 1, pr), (6, 1, a9
(2, 1, pr), B, 1, as), ([5, 10], 1, pr),
([11, 12]’ 1, gs)

(19, 0, pr), (20, 0, gs), (21, O, pq),
(22, 0, rs)

Transition To
Uy 34
U2. 31 U4 43
U3 44 d 9
T, 69 a 4
T2 70
T3 75 b 10
T4 76 R
Ul 55
U2 56 U& 50
U3 47 d 6
Ul 34 Ua 29
U, 31
U3 30 d 12
T 69 a 13
1
T, 70
- b 14
T3 73
Tq 74 e IS
reduce 5
reduce 6
Ul 53 U4 50
U2 54
47 d 9

Usg







Number

15

16

17

18

19

20

Table 3 Continued

State

Gz, 14, 1, Y. GLLSS 16), ks ),
(£7, 2 I gr), (ig, 1,[qs) ] qs

(19, 0, pr), (20, 0, gs), (21, O, pr),
(22, 0, qgs)

(13, 14], 1, p0), ([15, 16], 1, rs),
(175 15 W)y 28, 1, /)

(19, 0, pr), (20, 0, gs), (21, 0, w),
(22, 0, %)

(19, 1’ pr)’ (203 1, qs)’ (21’ 1’ w),
(22, 1, x)

(5, 7, 13, 1], 0, w, ([6, 8, 15, 16],
0, x)

([9, 10, 17], 0, pr), ([11, 12, 18], 0, gs)
s 1 @ (B LX) ([9, 10], 1, pr),
(11, 12], 1, gs)

19, 0, w), (20, 0, x), (21, O, pq),
(22, 0, rs8)

([13, 147, 1, w), ([15, 16], 1, %),
(17, 1, pr), (18, 1, gs)

(19, 0, pr), (20, 0; qgs)s (21; 05 pr);
(22, 0, gs)

([13, 14, 1, 9, ([15; 16]; & =),
(17, 1, w), (18, 1, x)

(19’ 0’ pr)s (203 09 qs)r (2}-’ -0: W),
(22, 0, x)

26

Transition To
U 40 29
1 %
U2_ 37
U3 30 d. 12
U 34
1 u, 21
4
Uy 31
U 22 d 17
3
Tl 69 a 1
12 70
b 18
T3 71
TQ 72 e 19
U 45
L U& 50
Usy 46
U3 47 d 3
U1 26
U4 29
Uy 23
U 30 d 12
3
26
Ul
U4 21
UZ 23
U D2 d a7







Number

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 3 Continued

State

(18, 2, x)

17, 2, w)

([15, 16], 2, %)
(15, 3, x)

(16, 3, x)

([13, 14], 2, w)
(13, 3, w)

(14, 3, w)

(18, 2, gs)

(17, 2, pr)

(F15; 163, 2; xs)
(15, 3, ts)

{16, 3, rs)

([13, 14], 2, pq)
(13, 3, pa)

(14, 3, pq)

([15, 167, 2, qs)
(15, 3, gs)

(16, 3, gs)

([13, 14], 2, pr)
(13, 3, pr)

(14, 3, pr)

(18, 2, x8)

(75 25 T8)

(7, 2, w)

8, 2, x)

([9, 10], 2, pr)
(9, 3, pr)

(10, 3, pr)

([11, 12], 2, gs)
(11, 3, gs)

(12, 3, gs)

(7, 2, pr)

(8, 2, gs)

(7, 2, pq)

(8, 2, rs)

([9, 10], 2, pq)
(9, 3, pq)

(10, 3, pq)

Cl2t, 123, 2, ¥8)
(LE; 24 ts)

(12; 3; rs)

([9, 10], 2, w
(9, 3, w)

(10, 3, w)

Transition

27

To

reduce
reduce
q 24
reduce
reduce
P 27
reduce
reduce
reduce
reduce
q 32
reduce
reduce
P 35
reduce
reduce
q 38
reduce
reduce
p 41
reduce
reduce
reduce
reduce
reduce
reduce
p 48
reduce
reduce
r 51
reduce
reduce
reduce
reduce
reduce
reduce
P 58
reduce
reduce
r 61
reduce
reduce
P 64
reduce
reduce

18
17

15
16

13
14
18
17

15
16

13
14

15
16

13
14
18
17
7
8

O

25

28

33

36

39

42

49

52

59

62

65







Number

66
67
68
69
70
71
72
73
74
75
76
V&)
78
79
80
81
82
83
84
85
86
87
88
89

([11, 12], 2, x)

(11,
(12,
(19,
(20,
(2K,
(22,
(21,
(22,
(21,
(22,
(19,
(20,
(19,
(20,
0,
(1,
(1,
(2,
(2,
(3,
(3,
4,
4,

RO = R = N =N = e

T T

-

-

MRNRN NN NNNRNNNDNDRD N WW

P e

x)
X)
pr)
qs)
W)
X)
pr)
qs)
Pq)
rs)
Pq)
rs)
W)
X)
1)
3)
1)
1)
1)
1)
1)
1)
1)

Table 3 Continued

State

28

Transition To

r 67
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
reduce
+

W
reduce
e
reduce
w
reduce
X
reduce

s 68

11
L2,
19
20
21
22
21
22
21
22
19
20
19
20
accept
83
1
85
2
87
3
88
A







5. DEREMER'S ALGORITHM

DeRemer has an algorithm which will work on a large proper subset
of LR(k) grammars called simple LR(k) (SLR(k)) grammars and will
yield considerable better results than Knuth's algorithm.l

Briefly DeRemer's algorithm is this: (DeR 69 and DeR 71)

Number the productions of G ; 1, 2, ... , r . Add production number

0, S'—=FSH where ‘s,a,t-‘rw=ﬁ
t denotes the beginning of an input string. - denotes the end of an
input string. Now apply Knuth's algorithm for k = 0 . g If: @ s

LR(0) , then convert to an LR(0) parsing machine Mé(G) , as in

Knuth's algorithm, and we are done. If G is not LR(0) then there

exist states I1 eer I where for each i| l1=i=n dp and q
(P , nP s €) € Ii. and (g 5 F,i€) € I]—_
with p # q or np # j . Call a state of this kind an inadequate state.

If Mé(G) has an inadequate state, then M6(G) is nondeterministic.
We could use Mé(G) to parse G , however each time Mé(G) entered
an inadequate state it would have to try all possible actions to find
out which ones® if any were correct. We wish to make Mé(c) deter-
ministic by giving it the power to scan the next k symbols of the
input string. .

For each inadequate state I , define sets ZP Yp|O<ps=sr

as follows

zp=lk:n | sl _ow § Ay with n €vE
where Py = AI if 4a reduce -p

transition from state - I
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Zy = p if p>0 and /{a reduce -p
transition from state I .
ZO =1k : a0 an'q ' J an aq -read

transition from state 1 to state
TO , d an a; -read transition
from state T, 1 to state

lc—

T, Vi| 1i<n, da reduce -p
i
transition from state Tn and

S'——*r AM  with nev; where Py = A

Now suppose (WEeEL(G) and M(‘J(G) acts on the input string
tw4 following some path which parses w correctly and arrives in
state I with ' = unread portion of the input string. 1If at this
point reduce -p is a correct transition in parsing w ., then
kit w' € Zp . If read -1 : W is a correct transition then
k : w' € ZO . Therefore if for each inadequate state I Zpl1 Zq =0
for p # q , then let the transition function § from state I be
as follows:

Let ' be as above and a=k : w' . If GEZP with

p>0 , then take a reduce -p transition from state I . If « GZO

take a read -1 : a transition from I . Otherwise, reject the input
string. M(')(G) with the above modification is now a deterministic
LR(k) parser for G if and only if for each inadequate state I ,
p # q implies Zp n Zq = @ . cCall this parsing machine M{c(G).

It should be noted that Zp may contain strings a such that for

no WEL{G) will MO(G) acting upon the input string +wHd arrive







31

in state I with a=%k : w' where (@' = the unread portion of

Fw4 . We say that G is SLR(k) 1if and only if this technique

yields a deterministic parsing machine.

Definition &

G is SLR(k) if and only if all derivations of the form

Sl * A AY —— a BY

S'— % AT with 7 evs
and Sl £ AT W with 7' €vs
a' ' =afBd with 0J€ V% implies k : §nN' #k : 1

I1f G is SLR(k) then G is LR(k) . However, the converse of
this statement is false.

If k=1, then it is a simple matter to compute Zp . Given an
inadequate state I , a € Zq if and only if d an a-read transition
from state 1 . To compute Zp for p>0 where Py = A 5 First
compute IA] where

[A] = smallest subset of VN such that A € |A l and
if CflAl, B> a C BEP and B—* ¢ 9
then B € IAI.
[Al may be computed directly from the grammar. Then
ngd‘%lul

or alternately

B‘ C ——>aBf € P for some C,a,ﬂ,‘\’tl

Z. = for some state S ,d a

U
P B e [a]

a

B-read transition to state
S and an a-read transition

from state S} .







Unfortunately for k>1 the sets Zp are not in general so easily
computed. The techniques discussed in éubsequent sections of this
dissertation may be employed.

DeRemer uses a slightly different notation for a configuration.
Instead of a 3-tuple (p, i, @), DeRemer writes out production p and
places a marker , after the symbol Py where 1i>0 and after the
— where i = 0 . Since DeRemer is building an LR(0) parser,

the final member of the 3-tuple is always € and is omitted. Thus

if production p is A——b-a1 a, ag then
A——y a; a, a, means (p, 0, €)
A-——n-al * 8, a, means (p, 1, €)
and A — a, a, agx means (ps 3, €)

We will employ DeRemer's notation wherever it is convenient.
Now let's employ DeRemer's algorithm on grammar G1 defined
on page l6. Add the zeroth production S~——F S 4 . The states

and transitions for the LR(0) parser for grammar G1 are listed

in Table 4.
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Table 4 States and Transitions for M(')(Gl)

Number State Transitions To
0 Sl——-—-b-‘.': F S 4 F 1
1 §" ——+ % S 4 S e a 8 s 2
S e & a 3
2 S' =—— + S x 4 4 accept
3 § =——a * § S =% a § S 4 a 3
S —sa * , S —— a reduce 2
4 S ——a § * reduce 1

The only inadequate state is state 3. For state 3, Z_ =

Since production 2 is § ——a * . We must find [S] .

(- I

There are S-read transition to states 2 and 4. There is an 4 -read

transition from state 2. Therefore 22 = Id | . Since Z, n Zg = 1}
Gl is SLR(1) . DeRemer's algorithm actually yields a parser with
one more state than Knuth's. But this is entirely due to the use of
the symbol F

In Table 5 we list the states and transitions for the LR(0)

parser for grammar G2 defined on page 17.







Number

0

10

11

12

Table 5

B

= ———=r o

S' ——a % E 4

% E+ T

E———F 4+ % T

T pir
E——F + T 4
T—P 37T

T =——P t

ale
"~

T s, B lT
'1‘—*P1'l‘ *

P _-""(*.-'c E)

State

T —k

States and Transitions for Mé(GZ)

34

Transitions To

Pl

e
M~
~
o o]

reduce-1

1 6 reduce-4

) 10 + 3
reduce-5
reduce-2

reduce-6







35

Table 5 contains one inadequate state, state 5, For state 5

1]

70~ { 1]
] fn5 .
There are T-read transitions to states 7 and 11l. There are E-read
transitions to states 2 and 9. There are + and 4 read transitions
from state 2. There are + and ) read transitions from state 9.
There are no read transitions from states 7 and 11.
Therefore b= % 2y
And since Zy, n 20 =§ ) G2 is SLR(l) . The only
time the parser will have to scan the next symbol is when it is in
state 5. If it scans an element of Z4 it performs the action
reduce-4, 1f it scans f it performs the action read- 1 : w'
Notice that Knuth's 22 states have been reduced to 13.

We will conclude this section by attempting to find an LR(1)
parser for grammar Gg defined on page 22 by using DeRemer's algorithm.
The states and transitions for the LR(0) parser for grammar Gq

are given in Table 6. 1In Table 6 we use the shorthand

S—;—-:.-le le:'rxi chwI*qu

for S—x T.Ww , § —>x% T,x S —u T

1

3w y S =k T4x







Number

0

Table 6 States and Transitions for M6(03)

State
S'"——— % F S H
§' — 1 . S 4
S——--,-‘.le|.;‘.[‘2x e

Tz———*va\*buzl*cuz
13-—--*bU3p‘*bU3q\
f ppe———e—w = I - S [ = + b U sI
4 4 4

Ig=—>Db %

I
0
)L
{

r i b+« U
| ———r

U, ——d

P | ¢ % U X

q | cx Us

8
o
1
T,
T, e— U
3 < 3
T e—p-c % U

Traunsition

36

To

*_

i

reduce-5

reduce-6

1

26

28
30

32

18

19

20

23

10

13

16

177

34







Number

5

10

11

12

13

14

15

16

Table 6 Continued

State
U.L——--—t-d " ’]:'3 U3——Pd % T
Uz—-—+6 2 TZ; Ua—-—’-d x T
T1 —_— a | % b Ul ' * C U1 p \ . C Ul ¥
T2 —_— % a I % b U2 l % C U2 q % C U2 s

'13 —*-;.-bUSp
T b U, r

T——%c U % r

T, e U e '8

Transition

37

To

reduce-21

reduce-22

reduce-19

reduce-20

reduce-13

reduce-14

q 14

reduce-15

reduce-16

reduce-17

r 12

s 15







Number

17

18

19

20

21

22

23

24

25

26

27

28

Z9

30

31

*

(75
=
%

S——>T_ w

State

Table 6 Continued

T, —b U

T, = b U

% q

L
ri

8

Transition

38

To

reduce-18

reduce-7

reduce-8

p 2%

reduce-9

reduce-10

r 24

reduce-11

reduce-12

w 27

reduce-1

x .29

reduce-2

- A

reduce-3

q 22

s 25
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Table 6 Continued

Number State Transition To
32 G w—T X x 33
4
33 S —-*T4 ¥ reduce-4
34 e = 1 O 4 accept

Table 6 contains one inadequate state, state 2,

N
1
(o]
i

5 6 ‘Ps q, r, S

Therefore 63 is not SLR(1) . 1In fact it is easy to see that G3

will not be SLR(k) for any k . G3 is therefore an LR(l) grammar

for which DeRemer's algorithm will not work.







6. SOME EXAMPLES

In the next sections I will reverse the usual order of things
by applying my algorithm to several grammars before actually stating
the algorithm and proving that it works. Anyone who objegts to this
format should skip this section now and return to it later.

Informally, this algorithm starts, as does DeRemer's, by applying
Knuth's algorithm to a grammar G with k=0 . If G 1is LR(0)
then build the parser Mé(G) and we are done, If G is not LR(0O)
and we wish to find out if G is LR(k) for a given k , look at each
inadequate state. What we wish to do is look backwards and forwards
through the table of states for Mé(G) and find for each possible
stack sequence or string of states on the stack, O, for each possible
inadeqﬁate state, I, and for each possible action from state I, z

3

the set Y (0, I, z) = |k : !

for some wWe€EL(G) , Mb(G) acting
correctly upon the input string ‘rwd will
arrive at state 1 with the string o€
on the stack,
W' = the unread portion of kw4  and
z being a correct parsing action from I
We will use zy to denote the action read and zp go denote the action
reduce-p. We will call Yk(a , I, z) the k-look ahead set associated

with 6, I and z . G is LR(k) if and only if =z # z' implies that

Y(o, 1, 2) VY (0, I, 2') =0 Vo, I, z, z' .
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If z # z' implies that
Y, (0, 1, 2)Ny(d',1,2)=90 VI,o,d', 2 2

then for each state I , let

Z &y N Cgy Ty 2D
P gerrk T p

and build the LR(k) parser from the table of states and transitions
and the sets Zp exactly as in DeRemer's algorithm,

1f dz, ¢, or, &, 2 z # 2' and

Y (o; I, z) Ny (0", I, 2') # 0

then we wish to split certain states in order that the parser may
"remember'" how it reached state I . Exactly how this is to be done
will become clearer after working a few examples.

Noﬁ let's use this algorithm on grammar G1 which is defined
on page 16. The table of states and transitions for the LR(0)
parser for Gl is on page 33. The only inadequate state is state 3.

Since the only read transition from state 3 is under a ,

Yo - 3

a

Y(o; 3, zo_) =

Before we can find out where the machine MO(G) can go from state 3 on
taking a reduce-2 transition we must find out what states could precede
state 3 on the stack. Therefore, associate with this instance of state
3 the set of k-look ahead configurations (k-LAC's) (Definition 9,
page 60) @, ey | p=2|=|a, 9| .
p 0

The meaning of (1, S) is that we must pop the top item off the stack
and enter the state T' such that if T is now the item on top of

the stack then T -§—*-T' 5
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From Table 4 we see that states 1 and 3 both have a-read
transitions to state 3. From state 1 we have 1—Ji—~2 and from
state 2 the only transition is 4 -accept. Therefore associate the set

of k-LAC configurations |4 with state 1. From state 3 we have

3—-5-*-4, and the only transition from state 4 is reduce 1. Since

we must now pop state 4 and one more item off the stack. Therefore
associate with this instance or state 3 the set of k-LAC's

@ -1, e | p=1]={a, 9]

Thus we have the graph in Figure 1, We have numbered each node. The
meaning of the graph is that if MG(G) is in state 3 the stack must

be of the form o, 1, 3", 3 for some O@€[* and n=20 . Since

we have associated '(1, S)' with state 3 in both instances, certainly
Yl([d, 1, 39, 3], 3, 2,) = I4| Va20 and Vo .

This is reflected in Table 7.







Figure 1 Possible Stack Sequences for State 3, Mé(Gl)

1) @

(2)

Table 7 Sets of k-LAC'S for State 3, Mé(Gl)

Terminal Node z z

Yes 1 lal |~1’

A node i is terminal if and only if the set of k-LAC's associated
with node 1 and action
In this case we shall also refer to the set as being terminal.

Thus letting

[

Zn = U Y. (g, 3, z
0 Fapril > 20)

and

Zo = U (@, 3, 2
2 del‘a‘cl

we now build our parser from Table 4 and the Zp's defined above as

described in Section 5. Notice that we end up with exactly the same

parser as DeRemer's .

43

zj for all j 1is a set of strings in V'¥ .
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Now let's try this method on grammar Gz defined on page 17.
The table of states and traunsitions for Mé(Gz) is on page 34. The

only inadequate state is state 5.
. = o1
v(ao, 5, 29 ={t] ¥

Before we can find out where the machine Mé(Gz) can go from state 5
on taking a reduce-4 transition, we must find out which states could
precede state 5 on the stack. Therefore associate with this instance

of state 5 the set of k-LAC's

(ny» Po) | p = 4| = [(1, T)]

states 1, 3, 6 and 8 all have transitions to state 5, From state 1
we have 1-—1—-*11 . From 11 we have only a reduce-2 transition.
Pop state 11 off the stack and go to state 2. From state 2 we have
, S SR and 2——1——haccept . Therefore associate with this instance
of state 1 the set of k-IAC's |+, 1] . From state 3 we have
T

3 ——>4 and from state 4 we have reduce-1, Therefore, associate

with this instance of state 3 the set of k-LAC's
-l | p=1] -] B
P 0

We wish to continue this process of looking backwards and forwards
along all possible paths until we can associate with a node a set of
terminal k-LAC's for each action or else a set of k-LAC's that
has already been associated with some other node on the path which is

occupied by the same state. The result of this process is shown in
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Figure 2 and Table 8. The loop (5, 6) in the graph means that
votle, (5,87, 5], 5 =300 G, 8, 5}, 5 2% 2,
and m .

For now we need only consider the terminal nodes of the graph in

Figure 2, nodes 1, 3, 6 and 8. For example

v o, 1, 2,3, 6, 0% 5], 5 2) = |44  ven.
Since

ng(a, 5, z,) = |+, ), 4,

and

]
PR
—_—
——

U
e Yk(o, 5; 20)

we may let

20 = l “ and 24 = 1+, ), l
We may now build our parser from Table 5 and the sets Z  defined
above as described in Section 5. Again our final parser is precisely
DeRemer's SLR(l) parser.

Now let's take a harder example. Grammar G3 is defined. on
page 22, The states and transitions for Mé(G3) are listed in
Table 6 on page 36.

State 2 is the only inadequate state. Two actions are possible
from state 2; reduce-5 and reduce-6. Figure 3 and Table 9 show the

possible stack sequences and the associated k-LAC's for each node

of the graph.
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Figure 2 Possible Stack Sequences For State 5, M{IJ(GZ)

O

(9)

(8)

Table 8 Sets of k-LAC's For State 5, M(I}(GZ)

Terminal Node 2 z,

Yes 1 { Vs +

2 f (1, E)
Yes 3 t 4y

4 t (1, E)

5 |1 (2, E)
Yes 6 t 1, +

7 ! | 2, ) l
Yes 8 f l ), +

9 ” (1, 1) I
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Figure 3 Possible Stack Sequences For State 2 Mé(C3)

(5) (1) (2) (3) 4)

. g =\ =0 2
(6) @ (8) \_I{sr) (10)

Table 9 Sets of k-LAC's For State 2 Mb(G3)

Terminal Node z z

Yes 1

|
Yes 2 ‘ W
|

i : a0
Yes 4 lw \ \x
5 e
6 |(1, Ti)‘ l(l, T2)|
7 |(1 Ul)5 | I(l. U2)|
8 . wy) el my)
? o] fasup ]

10 ] a1 |
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Unfortunately in this case it is clear from Table 9 that

U
I:o."é[,'le( o, 2, 7-5)] N [der,\.Yl(U, 2; 26):| 0

Therefore the tactics used in the preceding two examples will not

work here. It is also clear from Table 9 that given o

() -
Yl(O', 2, zs)ﬂ Yl(O‘, 2, z )

6)

and therefore G3 is LR(1) . What we need to do is this:

Let B(i 1) = the set associated with terminal node i
and action zj in Table 9
Let A = = U By, 5 where J_ = '1, 2, 4, SI
(1, 5) ~ P> T2 ¥ iEJl( ) 1
A = ; 85 X = v B(i, 6
(1, 6) \q iEJl(,)
A = s l = U 3 i, 5 where J_ = |3‘
@, 5 lp A i€ i, s 3 2
A = lr, s l = v i
2, 6 i € 5 B0, 6)
2
We have j # j' implies A N A o= 90 Vh
(h, 3) (h; 3%)
and that VYh and h' I h#h', dj and ' | 7 # 3’ and
A ol Y & : :
a; B B a9 "0

Now to each terminal node i and each action zj associate the

i € -J as in Table 10,

appropriate set A h

(h, J)
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If S does appear on the graph create a new state which will be

an ll-tuple. For example, create state
(3, 0, 0, 2, 0, O, 1, O, O, O, 0)
and number it state 36, Here again the three means that this state
was created from state 3, the zeros mean that state 3 does not occupy
these nodes in the graph. The 2 means that state 3 occupies terminal
node 3 and that for each j , A(Z, N is associated with node 3 and
action z; in Table 10, The one in the sixth position is because
state 35 has a one in the fifth position and
5l

in the graph in Figure 3. Now let

gt ag :
For the same reason let
£=

35 =37
where state 37 is represented by the ll-tuple
(2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
Continue this process until done. Now change all transitions to state
1 to go to state 35 and delete all states which appear in Figure 3,
namely states 1 through 5. We now have the states and transitions

listed in Table 11 .







Number

0

35

36

37

38

39

40

41

42

43

44

Table 11

8 — s

States

(1, o,

(3, 0,

(2, 0,

4, 1,

(5, 0,

(5, 0,

(2, 0,

(3, 0,

(5, 0,

4, 1,

States And Transitions For Grammar G

+

S

State

+

6 Through 34 As In Table 6

Il

2

o, 1, 1, 0, 0, 0, 0, 0)

0)

1)

0)

0)

0)

2)

0)

0)

0)

51

3 Revised
Transition To
s 35
o 26 T 32 37
1 4 -
T2 28 S 34 b 36
T
3 30 c 38
U 18 U 20 d 39
1 3
U2 19 U4 23
reduce-5 reduce-6
U 10 U 16 d 40
1 3
1
U2 13 Uq 7
T. 6 T3 8 a 41 c 38
T 77 9 b 42
2 4
T 6T 8 a 37 ¢ 38
1 3
reduce-5 reduce-6
U. 18 U 20 d 43
:, 3
1 ] 23
U2 9 LQ
'I‘l 6 T3 8 a 4l c 44
T2 7 T4 9 b 42
U1 10 U3 16 d 39
g I3 1 17
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In Table 11, for states 35 through 44 the configurations are the
same as for the state in Table 6 whose number corresponds to the
zeroth member of the ll-tuple in the state column,

Now if we redraw the graph in Figure 3 to reflect the changes

we have just made we get the graphs in Figure 4.

Figure 4 Revised Graph of Stack Sequences For Grammar G

States 37 and 41

(7)

@—@

(15) (16) (19)
(13) (14)

(12)
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We now have two inadequate states, states 37 and 41. Revising Table 9

we get Table 12,

Table 12 Revised k-LAC's For States 37 and 41 Grammar G3

Terminal Node Zg Zg
Yes 1 | w_ l ‘ x_ \
Yes 2 ‘p, | |q, s\
Yes 3 ‘p, " lq, s\
Yes 4 e x|
5 5 .|

6 e B T e 0,)|
7 |, 'rl)\ |1, )]
8 (1, Ul)‘ |(1, uzﬂ
9 (1, T3)| (1, Taﬁ
10 (1, U3)\ (1, 114)
11 1, Tl)‘ (s 1)
Yes 12 |p, q r, s
13 ey B
14 |, U3)| (1, U,)
15 (1, Tl)\ (1; 3
16 (1, ul)\ (1, U,)
17 (1, T3)l l(l, T,)
18 (1, U3)\ \(1, U,)
19 é, Tl)\ \(1, T2)|







Table 12 tells us that for state 37 we may let

Zg = lp, B w\ and

26 Iq, Sy X

and for state 41 we may let

Zg = lp, qI and

£ 18

we may build our parser from Table 11 and the sets Zp defined above
exactly as in Section 5. Note that for state 37 Zj = A(l N A
> J
and for state 41 Z = A g V. . This is no coincidence, Our
I (2, 1 J
final parser has 40 states. This compares favorably with the 90 state
parser built with Knuth's algorithm,
This section was neither complete nor rigorous. However hopefully
the reader now has an intuitive feel for what is going on here and

will be in a better position to follow the more rigorous exposition

in the subsequent sections.






7. DEFINITIONS AND THEOREMS

We wish now to define a subclass of parsing machines (Definition 2,

page 9), which we will call LR(k) parsing machines for the grammar G

(LR(K)PM(G)), which will parse (possibly non-deterministicly) the
grammar G = (VT, VN’ S, P) . Number the productions in P 1 through
r and let 8'=—> + S 4 (or S'—S§ -Ik) be the zeroth production
where \S, F, 4\ NV =@y, Define a configuration as an ordered pair
(p, j) where OEanp and O0<p<r . Here again, if production p
is A——a, ...a with a, €V Vi | 1<ism , then

no=m, py=A and

P

Py

Il

a Vi [ 1l<i<m,

i

If C 1is a non empty set of configurations, then C* or the closure
of C 1is the smallest set of configurations |C* DO C and if

(p, j) € C*x with jc;np and Pj+1 - Vy then

(g, 0) € C* Vq | q =p

Definition 5a

A parsing machine M = (K, V P, N, F, §, k) 1is a member

v So

of the subclass, Incomplete LR(k) Parsing Machines For G

(ILR(k)PM(G)) if and only if
'-_—
L VTUlI-,-ll

b o)

P

P

N(p)
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(a) Conditions on K
1. Each element S € K is an r + 3-tuple
S = (i, C’;", 28, R Zi:) where

i 1is a non-negative integer which uniquely defines S,

Cf is a closed set of configurations and
i
/ O<psr Z CW where
\p P p k
WO = V% and
Vk>0 wk = wev%‘*‘ | lw| =k or (lw|< k with 4 suf w)

l:a =a

o 2 * - s : Jae i
2. dq, 3) € Ci ‘ qj+l a if and only if Zg
» - I
3. If k=0 and (p, np) € CE then Zp W{J
%* ; . i
4., 4 (p, np) € C; if and only if Zp £

5. s = (0, |0, 0 I*, 720, ... 20
0 ( ( ) 0 r)

6.. If (0, 0) € cj then i =0

s * i - -
7. S= (i, C{, 25, ... Z}) € F 1if and only if (0, 2) € C,

(b) Conditions on &

*

Let 5; = (s Ci»

i i
By «ve BE)

1. 60 is a function from (K X W, x K) into the collection of

k
subsets of K x (PUIGI)

2. If Mg, i) e Ci qu._H = a where a € VTU"-

then Vaezl | l1:a =a d!' s = (n, C¥, z0
0 n n

5 D)

(Sn’ €) €46(S,,a, S,) and furthermore n 1is the same
i i

for all such a and C = |(€1, j+1) | (g, j) € C/ and Tgyq = #

O

3. IE (S,f)éé(Sj,ﬂ,S') then i =3 and a€Z
i







qj-l—l gy

% m m 1M
-4 < = ’ PR -Z a E #
then Vm and « |Sm (m, Cm’ ZO’ r)’ -’p

4. 1f A(q, j) €C
1

and (p, n) €c* d!'s = (n, c*, z0, ...z“)‘
p m n n 0 r
(Sn, p) € & (Sm, a, Si) and furthermore n is the same for
all such m and « and
C, = 1@, i+ 1) | (g, j) € C; and 9541 = Po‘
5. 1f (S: P)( b (Sm’ a, Sl)
) * ; * _
then « zp, (p, np) €C and H(q, j) € c; ’ 9441 = Po

6. M contains no useless states

We say that M is a deterministic member of TLR(k)PM(G) if and only
if vy, J # j' 1implies that Z;ﬂ 43, =0 .
It is important to notice that if M is deterministic then

(s,M) €8 (S ,a, S;) and (s',M') €8 (S ,a, S;,)
where [land II' €(p U ‘E |) implies that

m= 1

In other words [l is uniquely determined by m and a.
The meaning of this is that M 1is started in state S0 with S0
only on the stack and is fed an input string w. The input head is
placed over the first k symbols of w. If M is in state
S= (i, C*, Zé, SR Z;l_) and the input head reads -O:GZO then

M may go to state S' such that (S',€) €4 (S,a, S) while pushing

S' on the stack and advancing the input head one symbol, If aézp

then M may pop the top np items off the stack and enter state §'

such that (8', p) €6 (S,a, T) where T is the state on top of the

stack, while pushing S' on the stack and outputting p . If M is
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in state S € F and the input head reads 4 then accept the string.

Otherwise reject it.

Definition 5b
Let M € TLR(k)PM(G) and S = (i, C¥, Zé, Trec Zi) be a state
i r -
of M

The set Z' is maximal if and only if

zi=‘wew 1 :w = where 1y € C*
0 k ] pj+1 (P, 1) §) 2
A * i
> =
For j>0 and (p, np) € Ci’ Zj Wk and
" =0

For j>0 and (p, n) f’c., 71
P = J

Definition 5c¢

Let M = (K, v; Sg» Bs N5 F, 8, k) € ILR(K)PM(G)
Let M' = (K', v;, sé, P, N, F', §', k) where

s' = (i, c*, zi', ... , zi') € k' if and only if

i i 0 1

Si = (i, ci, zé, - z;) € K where

1 a

each Z; is maximal and F' and &' correspond to F and
o respectively in the obvious manner.

%
M € LR(k)PM(G) if and only if M accepts cuev; while outputting

MepP* if and only if M' accepts w while outputting IT .

Theorem 1:
M €LR(k)PM(G) if and only if WEL(G) and Mep* is a

parse of w then M will accept Fw+4 while outputting [I.

Proof: Suppose M accepts Fw4 while outputting [l. Then since

every transition in M corresponds to reading a symbol or
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performing a reduction and M goes to a state S € F after
reading +w if and only if M has reduced W to S ,
weL(G) . Since M outputs p if and only if M wuses
production p to perform a reduction, Il is a parse of W.
Now suppose We€L(G) and Il is a parse of w, M will
certainly accept w while outputting T if the sets M% are
large enough. But this is precisely the condition imposed in

Definition 5c.

Definition 6
Let M € LR(k)PM(G)

We say that there exists an a-read transition from state S to

state 8' if and only if
da|l1:a=a and (S',€)€8(S,a, S)

we write S—2—>8' , If M is in state S

, reads a and goes
to state S', then we say that M has performed the action read
which we will label 2 - We say that there exists an

A-read transition from state S to state §' if and only if

d T, a and p Py = A and (S', p)ed (T, a, S)
ve write S —,§'
We say that there exists a reduce-p transition from state T if
and only if
Ja, S and S' (s, p) € (T, a, S)
we write T _#B-

If M is in state T and goes to state S' while outputting p,

then we say that M has performed the action reduce-p which we

will label zp .







We should notice that the relation & is uniquely defined by the set

of all transitions and the sets 23 .

Definition 7
Mk(G) is the parsing machine built by Knuth's algorithm. Mé(G)

is the parsing machine built by DeRemer's algorithm.

It is clear that Mk(G) and M;(G) are both elements of LR(k)PM(G)

From here on assume M € LR(k)PM(G).

Definition 8

A stack sequence (SS) in M 1is a sequence of states

3
0 =9 .. T such that T, T, where G.é\f . 1If
n 0 i 1=, i
Tn = SO then O is a complete stack sequence (CSS) . We will

say that O reads the string a ee. @y,

Definition 9

Let k>0 . A k-look ahead configuration (k-LAC) 1is a string

*
aéwk or a(n, A) where afVT, ]C"lik and a;’wk ¥

n is a non-negative integer such that O 5n¢;mgx np and A € VN

Definition 10

Let X Dbe a sequence of states Tg ... T, and Il a sequence

of actions AP
ion TO §=g

through M , if and only if, if M is started in state T0 with

The ordered pair (Z,Il) 1is a path

only state T0 on the stack, then M may for all i such that

0<i<n perform the action T from state T, and go to state
i i

Ti+1 subject to the stack without ever popping state TO off the

stack.
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I1f T  is the start state and T is the final state,

0 n

then £,11) is called a complete path.

Suppose O = T se F is a 88 with TO =T' and
0

B m 0
‘T-;.———i_hrr;_"], for some Bi Vi 0<i<m, Then (Z,Il, ¢) 1is a

conditional path if and only if, if M 1is started in state TO

with O on the stack, then M may for all i such that 0=i<n

take a 7, transition from state T; to state T; g without
ever popping state T; off the stack. If T; is the start state
and iz is the final state then (ZX,I1l, ¢) 1is called a complete

conditional path. Every path is a conditional path with @ =T

We say that the (conditional) path (Z,Il, 0) reads
a = o .., «a where either T. is the action read and
0 n-1 i

: or T. is a reduce action and a. = € . If
i+l i ) §

T €F then (Z,I1,0) also reads a4

Every complete (conditional) path in M yields a parse to some

sentence (sentential form) in G .

Definition 11
Let & =Tg ... T0 be a SS
n be an integer such that 0<n<s and

z be an action

Xp (0, n, 2) 4is a function into the set of all sets of k-LAC's

defined recursively on n 1in the following manner.

let n=20

]

z = z_ where production p 15 not of the form A—=¢€

then X (0, n, 2) = l(np, po)) ;







(a)

(b)

(c)

z = z_ where production p is of the from A —>¢€

p
then let h =k
Po
'=U0U U =T and U———1U
. 01 0 0 0 1
follow each conditional path v,I1, g') until one of the four

conditions below occurs:

1. (Z, N, 0') has read a such that «€ Wh

2; It becomes necessary to pop state U, off the stack after
reading a and while performing a reduce transition

3. (x,II, 0') goes from a state Un where some 0y is the
sequence on the stack to a state Um such that
U, =1, and
o is the sequence on the stack while reading €

1

4, (Z,I1, 0') goes from a state Un to a state UlTI such

that U =U while reading € without popping state Un

off the stack
Now fok( 0, n, z) if and only if

For some ( Z,Il, 0') condition 1 in (a) occurs with a=f

B(m, B) € Xk(O', n, z) 1if and only if

For some (ZX,Il, ¢') condition 2 in (a) occurs with

a=B

=}
I

number of items to be popped off the stack including

U d
0 an

(os]
L]

the transition to be taken after popping m more items
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off the stack.

g
(¢4
rt
jo
1]
(=]

follow each conditional path (X ,Il, ') wuntil one of the four
conditions in (a) above occurs.
B e X, (0, n, z) if and only if (b)-

B (m,B) € Xk( 0, n, z) if and only if (c).

Now let n>0
1. 1f ‘Téxk( J, n-1, z) then TGXR( 0. Dy B)
2, If Wim; A) € Xk( 0, n-1, z) with m>1
then <Y(m-1, A) € Xk( O, 0y Z)
3. LE (1, &) ¢ Xk( g, n-1, z)

then let h

k - ||

B A
U0 = Tn and U(}———nv-U1

follow each conditional path (2, II, ¢') until one of

! =
o UOUI

the four conditions in (a) above occurs.
Y B € xk(a, N 2) I8 i(h)
YB (m, B) € X, (0, n, z) if (c)

4. Otherwise a given k-LAC 1is not in Xk( O, 0, 2)-.

In Theorem 3 we will prove that one of the four conditions in (a)
must occur within a bounded number of transitions depending only on M.

Thus Xk( g, n, z) 1is well defined,
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Notice that we did not have to define Xk( 0, n, z) recursively
on n . This choice was motivated by the fact that in the algorithm
we will need to find Xk( g, n-1, z) as well as Xk( g, n, z), and
there is less work involved in building Xk( g, n, z) from Kk( g, n-1,2)
than in building Xk( d, n, z) from scratch,

The difference between the function X and the function Y

k k

from the previous section is that the argument O of Yk is a CSS

whereas the argument 0 of Xk is a 88 ., Let O@=T «s T, with

e 0
T, = Sg » Then, if G is LR(k), Xk( g, n, z) = Y (0, Tg, 2) . In

the previous section we used Yk because we were being "intuitive."

However, henceforth we will be concerned only with the function X .

Definition 12
Xk( 0, n, z) 1is terminal if and only if every element of

o
Xk( g, n, z) is a string in V;

Definition 13
Xk( d, n, z) 1is complete if and only if & ka( d, n, z)
V a €W, G| a conditional path (Z,Il, d,) which

reads a where @ is the last n + 1 items of the S§S g .

n
Theorem 2
Let. @ =T .ses T and
n 0
ot =T s T be SS's
m 0
T, =i, MY 0=j=h where h=n and h<sm

L]
J J
Then Xk( o, j, z) = Xk( s j» 2) Vz and Vj | 0=jsh .







Proof: Xk( O, j, z) depends only on Tj i ow L, and 2

(See Definition 11)

Theorem 3
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The number of transitions a conditional path (2Z,Il, ) where

O = U s Uv may take before one of the four conditions in

0

(a)

of Definition 11 occurs is bounded by a bound W which depends

only on M .

Proof: Let x = the number of states in M and y = ord(VN)

We may have at most k - 1 read actions to a path else condition

1 occurs. 1Initially let w = n where Un is the state at the

start of the path, If we take an a-read transition to a state

U then let w =m. If we pop state lh off the stack in

taking a transition to state U then let w =h . The stack

h

can never have more than x - 1 items beyond U else condition
w

4 occurs. The maximum length of the stack is therefore k x + v

But we can take at most y - 1 reduce transitions which pop

everything beyond but not including some state Un off the stack

without taking an a-read transition else condition 3 occurs,
we can never pop U, off the stack else condition 2 occurs,

k 1i.% & & .
W= E: 2: yt is certainly an upper bound.
j=0 1i=0

It is intuitively obvious that any machine M for which there is a

path even approaching this bound is "ridiculous."

bBut

Thus
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Theorem 4

Every conditional path in M € LR(k)PM(G) has a complete

extension.

Proof: This follows direct from the fact that M contains no
useless states and that G contains no useless production.
Thus every state is accessible from the start state and M

contains no '"dead ends."

Theorem 5

1f condition 3 of (a) of Definition 11 occurs in following

some condition2l parhk ( Z', II',0) € M, then G is ambiguous.

e - = zt =
Proof: Let Z T{J Aiis Tn TO e Tm
]
N =7 ... 1 B =T .0 with T =T and n<m
0 n-1 0 m-1 n m
g = i . =7 iti 3
Up UO with LO 10 and condition

occurs in following ( X', I1', 0) from Tn to Tm

Let ( 21, nl, 01) be a complete extension of ( Z,II, 0)

L] L]

where 21 = TO Tn TO Tf

= 1 1
and nl Tb vee T q Tiq - Tﬂ-l

<

s
But then (Z;, ﬂi, 0’1) with

”1’ 61) yields a parse for some sentential form a.

St S i F T s T
1 0 m 0 ,@,

L} e 1 ]
i 3 &g ey B Tag oo Tp-1

a different parse for the sentential form a. Therefore

is complete and yields

G 1is ambiguous.







Theorem 6

If condition 4 of (a) of Definition 11 occurs in following
some conditional path ( 21, ”1’ g) then G is not LR(k)

for any k .

Proof: Let £ =T ...T (T . ... T)i
i 0 n ntl m
1
”i = T.U i Taq (Tn Tm—l) with T, =T, and n<m

6 = 8] 3 Y = E:
Up e LO with UO TO and

condition 4 occurs in following (21, ”1, o) from T

to Tm . Since condition 4 occurs

(Z;, ;,0) is a conditional path Ve | 120,

Let (x', ', 0') be a complete extension of
i~ 1

(., N,,0) such that

i i
L i i i
z; TO"' Tn (Tn+1"‘Tm) TO"'Th

: 0 ¢ i

n' = emim T and

i o A Tai? Ty h-1

. . o 1 4

Ty *** Tpop 18 not a prefix of Fiiq o v Th-l'

Forall 420 4 (3!, MY a*) yields a parse of some
1
sentential form Qs
" Let B. be the portion of a, read by i .., i
i i 0 h

Then given k, Jj and j' with j'<j k:ﬂj"—‘k:ﬂ t

i
ik iy J 47
and 4 s 1<s<m-n-1 and Ts%n+s+lbut
=
Taudptel =T% ¥t | sl=e=ss.
Let T be the action reduce A—— W . This
n+s+1

means that §' — %4 Bj'_" YywAp ja Cor otle %
Tg is a different action so S——*Y' A'B ™" Y w'B

for scme 7', A', B, w' where Y'W'B = 'YUJﬁj with B= Bj







: ]
1f TS

is reduce A'——w', and B suf Bj if ‘rg is

read, In either case G is not LR(k) .

Theorem 7
If condition 4 of (a) of Definition 11 is not encountered in
building X (0, i, z) Vi | 0=i=<a

then Xk( 0, n, z) 1is complete.

Proof: et 0=T ... T and Vi 0<is=m bel @, =T .
m 0 i i

We build Ti by following all possible conditional paths

(z,n, O'i) until:
(Z, 1, 0;) has read a string W €W, (condition 1),
(= 1 0;) must terminate (condition 2) or
(2,1, 0;) goes through a loop which neither reads

anything nor changes the stack (condition 3).
Thus if there is a path (Z, 11, cri) which reads w and
condition 3 occurs in following it then there is a path
i L 3 (2 O'i) which reads w and condition 3 does not occur
in following it. Since by hyvpothesis condition 4 does not

occur, it follows that Xk(O', n, z) 1is complete.

Theorem 8
1f do, n, z, z',a with z # z' and o € Wy
aka( 0, n, Z)nxk(d, n, z')

then G is not LR(k).
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Proof: Since a € X, (0, n, z) N X (0, n, z') there exists
25 Mo T,5 M (z ., ,0) and (Z ,_, 0) both read a,
0 0 1 1 0 0 1 1
II = T & [I = 1 i - g . 5
0 g e T and 1 TD cee Ty where ‘TO z and
1'6 = 2' ., Assume without loss of generality that =z is

reduce A—-W.
Let (26, []c'], g') and (2:'1, [1'1, 0') be complete extentions

of (};0, I'IO, 0) and (},‘1,[11,0') respectively.

We have S'— *B A0 — Bwad for some f#,354
and s'! *ﬁl A‘CXI Blwtar

where B'w' a' = pwaj! for some B', A', ', w' and &'
and a' = a@d' if z' is reduce A'm—m— W'

a suf ad' if =z is read.

In. either case G 1is not LR(k)

Theorem 9
If H0o;, n, 2z and z' with 2z # 2!
Bexk(d, n, z) N Xk( o, n, 2% with 4 suf B or
a(m, A) € Xk(d, n, z) N Xk(d, s igh) for some a, m and A

Then G 1is ambiguous.

Proof: Suppose a(m, A) € Xk(O', R Xk( 0, 0y” 25
5. > 5 5
and both conditional paths read a« and upon ending both are
doing precisely the same thing. This mezns we may complete
both paths in exactly the same way. Thus let (2:('), [ 6, ')
and (ﬁi, II]", 0') be complete extension of (.‘ZO, Mg 0)

and (31, “1, G) completed in the same way.







Then (2:6, ll(‘), g') and (E'l, H;, 0') each yield a

different parse for some string BGL(G) . Therefore (G is
ambiguous. If B €X (0, n, z) N X (0, n, z') with 4 suf B

re exis 2 pX I =
then there exists 0’ ﬂo, 12 1 ! ( 0 ”0’ g )

# (El, IT 0 ) and both read B . But then there exists

1,

a?l (ZO, M, o') and (2‘,1, M, o') are complete

0 1
extensions of (1“,0, I > g) and (2‘,1, ﬂl, Jg) respectively

and both read B. Therefore G 1is ambiguous.

Definition 14
Let 0'=T£ oo Ty with f[>m>n20
Ty «»- T, 1is a k-loop in 0 if and only if

Tm = TI‘I and Vz Xk(dv n, Z) P Xk(a » M, Z).

Theorem 10

Let =T iz T
n 0

If O contains no k-loops and Xk(d, n, z) 1is not terminal,

then n is bounded by some bound U which depends only on M .

Proof: Let y = ord VN' X = ord V"I‘
r=m.81-tnP w = ord K
s =ord P+ 1
k-1

There exist at most z = x  (x + yr) different k-IAC's , or

3

at most 22 different sets of k-LAC's . Therefore there exist
Zs 4

no more than 2 different arrangements of s sets of

k-LAC's. So any SS O containing no k-loops is no longer than

w22.5
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Again it is intuitively obvious that any grammar G for which there

exists a SS O even approaching this bound is "ridiculous."

Theorem 11
If G 1is not ©LR(k) then there exists a SS O = 'l'n vimiw:

in M where T = (i,°C%, zi, ... 2Z1)
0 i 0 r

1. Xk( 0, n, z) 1is terminal Vz but Hz‘ Xk(a’ n=1; z) B

not terminal or n =0

t| 343" and ziNzl £ 9
{54

V. 4 j and j

3. 0 contains no k-loops

. xk(o, n, zj)nxk(o, n, zj,) 0

or c| zl
5. Xk( o, n, z) is not complete
6. X (0, n-1, z) 1is not terminal or n =0

7. d j and j" j# 3" and zinzi #9
] J
8. 0 contains at most one k-loop and if it does it is of the

form T cee T where n>m=0.
n m

Proof: Since G 1is nmot LR(k) there exist derivations
S'—r-*aA'T-——-»awW and
gl -k a! A" Y e WY S : Where.
a'w"r'=0wlk:? b, 66\(%* and

Gy ! suflki'Ylé or (' =|k:Tl§ and A — W

o Gre—— L

Now since M € LR()PM(G) d @' =T ... T, \ T =S,
0" reads aWw and s ::s E'! n = TO"' TI" and Ill "—'T'D e
v 3¢ the

1’0 is the action Ep , reduce A—W . T
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action Zq , reduce A gy’ , 1 A= [k : 7]6 or read

if ¥' suf lk:? 5. (T, O, &*) and Z', N', 6%

both read k ! ¥ . Certainly Z; n Zé # 0 is implied by the
above statement.

Now assume X, (0', m, zp) and X (0", m, zq)' are
complete, Then certainly k : ¥ 1is in their intersection.
But then k ¢ 7 € X, P, m', zp)f1 X (P, m', zq) where
p = Uml - UO is ¢' with all k-loops removed. Now since
U+ =8, and Uy = Tps Xk(p’ m', z) is terminal Vz.

But then ¥ a minimum integer n XP( P, n, z) is terminal Vv, -
Let O = Un o o U0 . It follows that

kY€ Xk(o" n, zp)n };k(O', n, zq) and O contains no
k-loops.

Now assume Xk(lU', m, z) 1is not complete . Certainly
G a smallest integer m' such that Xk( g', m', z) is not
complete, Let P = T eee Tg Xk(ﬁj, ﬁ', z) is not

complete and neither-is Xk(O', n, z) where g = Un ais U0

with U0 = TO

Now O contains at most one k-loop and it must be of the form

is P with all k-loops not involving T i removed.

Un aele Un' with n>n'20 . Furthermore Xk( 0, n-1, z) is not

terminal for if it were it would not be complete but that is

impossible.

Definition 15

For each state TO define a graph GR(TO) in the following way:

G = T. i Ty is a ncde of GR(TO, if and only if O contains







no k-loops and (Xk(d, n-1, z) is not terminal for some =z

or n=20). Let O and P be nodes of GR(TO) . There is
a transition from P to 0 (P ——>= 0 ) where O=T ... T
S n

if and only if pP = Tn—i-l TO or (P =Tﬂ_l AT TIO with

nzm20 and T 4y ... T, is a k-loop in gt = Toay s T

where T =T). If O is a node and X,( 0, n, z) 1is
n+l m k

terminal Vz then ¢ is a terminal node., All other nodes

are non-terminal nodes. The node 0 = TID is called the foot
of GR(TO) . We say that state T  occupies the node ¢ of

GR (TO)

Theorem 12

Suppose M € LR(k)PM(G) and G is LR(k)

P ow (g, 6%, ZE, ...y Z3) £ K
o = (L c¥, ozl .., zh)
a =Tn TO.
Let TE] = (i, C*_‘l', LE}I Xk(a, n, ZO)' vimiaa lé xk(a', n, zr))

where the union is taken over all ¢ such that ¢
is a terminal node of GR(TO).
The machine M' where M' is M with state To replaced by

state Té is in LR(k)PM(G) .

Proof: Since G is LR(k) X (0, n, z) 1is complete Vo, n and z

Now let T, IM,p ) be a complete conditional path such that
= i = = =T

P v o--- U with V. =5 and Up = Tg » I 0 o+ T,

(Z, I, P) reads « and k :a€ wk . Certainly

4 2', n* (2, 1, P) is an extension of (Z', N', P)

and (Z', M',P) reads k : a
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Let p' = Uy --e Uy with m'<m be such that X (p', m', z)

is terminal Vz but Jz Xk(p‘, m'-1, z) 1is not terminal,.
; . 7 , 1 ' . =

Certainly k: a € hk( p', m', TO) . Now let O =T ... T0 be

p’ with all k-loops removed. 0 is a terminal node of GR(TO)

and kita € Kk(P', m',TO) ;

Therefore M will act on any input string exactly as M will

and thus M' € Lﬁ(k)PM(G)

Theorem 13

Let M = ‘i €T | 0=4i=m

i €1 losiSrI

B o o
l (i, 1)
if j# 3i' with j and j' € J then

J =

i €M, j € J| be any collection of sets

B/ 3 B v =0 Wi
(t, 3% "L, 1
Then d at least one partition of M into set N~ where lsnss

If A then

R B
(n, ) i €N Cis. )

if j#3' with j and j' € J then A _NA =0
: (i, 3) (L, i)
and Vn, n' ‘ n # n' and l=sn,n"ss Hdj, j' with
"j# i’ and j and j' € J| A N A S ED .
(m, 1) (s 3"
Proof: Certainly there exists some maximal subset Ny of
M| Vg n_ Y p Vi, ;"€ it

- LN ; B.. 5
i €Ny (i, 5) 1 €Ny (4, iV
If M= Nl we are done, Otherwise find a maximal subset N

of M Ny

2

LGJ B N U 3 =0 Vi, j'€ J| j#3'.

Le€N, @, 1e8 ¢, i)







1t Co
=

If M= NliJ N2 we are done else continue until M = |
i

U B

Certainly s<m + 1 and the sets A = !
(“: J) i € Nn (l: J)

satisfy the necessary requirements.

Theorem 14
Let M € LR(k)PM(G) and
I' be a non-empty subset of K
Then  at least one state §
S occupies a terminal node of GR(I) for some I1€T

and S occupies no non-terminal node of GR(I) VIE€T

Proof: The state SO can only occupy terminal nodes since

}7{ SGKIS—Q*S ]
0
Let I1€I. @nsider =T ,,., T where T =8 and T =1,
n 0 n 0 0
T, occupies the foot of GR(I) . Now suppose XIel Tie GR(I).
Then either Ti occupies no non-terminal nodes of GR(I) VIeT
or else Ti41 occupies some node of GR(I) for some T €T

Therefore there exists at least one state’ S satisfying the

hypothesis.







AN ALGORLTHM

In this section we describe an algorithm for answering the

question is grammar G LR(k) and if the answer is yes building a

deterministic ©LR(k) parser for G .

Step

Step

1
Build the table of states and transitions for the parsing
machine Mé(G) - Convert to an element of LR(k)PM(G) by

letting the sets Z§ be maximal. (Definition 5b)

2
For each state I = (i, Ci, Zé, . zi) such that
qj and j' with j # j' z%ﬂzj;,#ﬂ

(This is precisely the set of inadequate states)

find %3 (0, n, 2} VO, n and z | 0= T oeee Ty Tp =1,
0 contains at most one k-loop and it must be of the
form Tn &eta Tm where n>m=0 and
Xk((f, n-1, z) 1is not terminal for some =z,
(Definition 11)

This is a bounded process by Theorems 3 and 10, If condition

3 or 4 of (a) of Definition 11 is encountered or

] z and =z' Xk( 0, iy &) (\Xk( o, n, z') # ¢ for some @

then G 1is not ©LR(k) by Theorems 5, 6, 8 and 9. Otherwise

G 1is LR(k) by Theorems 7 and 11.







Step

Step

Step
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3

If G is not LR(k) ‘then stop,else build GR(I) for each
state I in step 2. With each node ¢ on some graph GR(I)
associate a unique positive integer i and for each terminal
node @0, let B(i, ' Xk( 05 03 zj) where O 1is the

terminal node 1i. (Definition 15) Henceforth call node 0O

node i
4
Find sets A(I, i 1 VI from step 2. Vn 1 SnEs,

where S is a positive integer let

A = M . where N is a partition
(1, n, HT L€N P D (1, n) g
(1, n)

of the set of all integers i
associated with a terminal node
in GR(I)

= . . 'R |
s APLUE T L

Vo, n' and I, dj and j' # 0.

A(I, n, j)ﬁ A(l, nt. 3%)
(There exist at least one such partition and an algorithm for
finding it by Theorem 13)

Associate the p + 1 tuple of sets (A(I, &y 0)""’A(I, By r))

: ; :
with each node i € h(I, Ay

5

VI I N(I, 1) = ji l i is a terminal node of GR(I)

if 1= [p, &=, zP,...,zP[ then
p 0 x

n *
let I = (p, Cp» Aer, 1, O)ron A(I, n, r))‘







Step

Step

78

(This new machine is an element of LR(k)PM(G) by Theorem 12

and will parse G .)

-J-’-'I -
1 ¥ .3 implies A(I, i, j)fq A(I, a, i% f.
6
T : : !
If VI N(I, 1) Il |1 is a terminal node of GR(I)I .

then stop. Else

let T = II l N # li i is a terminal node of GR(I)II
(I,

A = the set of all states S € K which occupy some
terminal node of some GR(I) ' I €I but occupy no
non-terminal node of any GR(I) 1€l

J=1{i|i is a node of GR(I) for some T€T].

(Theorem 14 says that A 1is not empty)
YV S€A create a state (S, H) where H is an m-tuple of

integers where m = ord(J) . If S does not occupy node i

then let the i'M element of H be 0. If S occupies node i
where 1 1is a node of GR(I) then let the ith element of H
be n where i € N(I n) - Let €6 be the set of all states

3

(S, H) created in this step.

7

Let A = ‘S € K l S occupies some node i of GR(I) for
some Ie€Tl l V(S, H) €O if §_"P, then (s, H)_..#_p... :
If T €K A then V(S, H) €O If S—2—+T then (S,H)-a—r-'f.
If TEA then V(S, H)eBO

if 8—2 T then (S5 H)-—a—-(T, H')







Step

Step

Step

where H' is an m-tuple of integers such that if T does not

occupy node i then the ith element of H' is 0. If T

occupies node i and i is a terminal node of GR(I) then the

ith element of H' is n such that i € N T T

(I, n)
occupies node i and i is a non-terminal node of GR(I) then

there exists some node j of GR(I) such that j=——1i in

GR(I) and S occupies node j. The ith  element of ' equals
the jth element of H . If (T, Hl)ﬁ/ﬂ then create state

(T, H') and let 6 = O U l(r, H')I.

8

I1f some state (T, H') was created during the last application

of step 7 then repeat step 7, else go on to step 9.

9

a
For all states (S, H) from step 6 if T € K l’T—"‘“*'S

then let T—2—s(S, H)

10

If i is the node at the foot of GR(I) 1€’ and n 1is the

ith  element of H then if I = &, zP

P
b 0,...,Zr) then let
(1’ H) o (q’ Cn’ A(I’ n’ O))"',A(I’ n, r))l
If (S, H) €8 but S/(/l" then
P
(S H) = 64y €y 2Pseecs2P)
p 0 r

i = e P p
if s Cps Cp’ Z ..,Zr) let

where q 1is an integer not yet assigned to a state.






Step 11

Delete all states S €A and all transitions involving these
states, Let K= (K N\ A)UBG . Let & be the relation
uniquely defined by the set of all transitions and the sets Z%

j
1f soeh let S, = (S5, H) .
Let F=I(S,H)\S£F)|U(F\/\).

M= (K, V;, SO’ P, N, F, §, k) 1is now a deterministic element

of LR(k)PM(G)

Step 12

Stop.

This algorithm given any grammar G which is LR(k) will find
a deterministic element of LR(k)PM(G) . If G is LR(0) the
result will be equivalent to Mé(G) . If G 1is not LR(0) , the
algorithm will find if possible a deterministic parser whose states
are in 1-1 correspondence with the states of Ma(G) . If G s
not LR(k) , the algorithm will discover this fact.

It should be noted that it is not necessary to apply steps 2
through 11 to all inadequate states simultaneously. We could apply
steps 2 through 11 to a subset of the set of all inadéquate states.
The result will be a new member M' of LR(k)PM(G) . Then we may
apply steps 2 through 11 to M' . We should however not take the
inadequate states one by one as we have no assurance that we will not
create inadequate states faster than we resolve them. A possible

algorithm is to deal simultaneously with all states






e A x . ak P . i 2 ) §
D,...,Ar) Ci Cj for a given j . The advantage of

5; = (i, c‘;ﬁf, A
this method is that if [ is large we don't have to deal with it
all at once. The disadvantage is that it is longer and we may be
doing some unnecessary work,

The resulting parser may if desired by optimized by any of the
methods mentioned b& DeRemer (DeR 69). However, in this paper, we
will not be concerned with optimizations.

It is interesting to note that if we apply this algorithm to a
grammar G first with k = 0 and then keep increasing k until we

either find that G is 1LR(k) for a given k or that G 1is not

LR(k) for any k . Then one of four situations must occur:

: 9 Eventually we find that G is ©LR(k) for some k .

P Eventually Theorem 5 or 9 tells us that G is ambiguous and
therefore not LR(k) for any k .

3 Eventually Theorem 6 tells us that G 1is not LR(k) for any k .
In this case G may still be ambiguous.

4, For every k Theorem 8 tells us that G is not LR(k) for

that particular k . 1In this case the procedure will not stop.

However if G contains no productions of the form A—— €, then
the situations described in Theorems 5 and 6 cannot occur and the

procedure will halt if and only if G is ambiguous or else G 1is

LR(k) for some k .







9. SOME MORE EXAMPLES

Let's look at grammar defined by the productions

A

l: §=—»8.87T 34

2., §=——>T

This is just grammar G0 with the useless production removed. Since

we already know that this grammar is ambiguous, we would expect to

find that G, is not LR(k) no matter which value of k we choose.

Let k = 4, Step 1 of the algorithm yields the states and transitions

in Table 13,

Table 13 States and Transitions For Mé(GA)

Number

0 S' =  t

1 §' —— | =
T e— a

2 §' —— S 3
S35

3 S —T x

4 § ——>5 8
§——5

5 T—a x

6 S35 5

§ =—>T «

i

LSy

4

State

S —

S —

Transition To
F 1
s 2 a 5
T 3
S 4 a 5

T 3 4 accept
reduce 2

S &4 a 5
T 6

reduce 3
reduce 1

reduce 2
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MO(Ga) has only one inadequate state, state 6.

I

X, (6, 0, z1) |(3, s)| sad

X, (6, 0, z,) ‘(1, S)’.

The only state with a transition to state 6 is state 4,

]

xh(la, 6], 1, z))

XQ([4, 6], 1, 22) = Ia aaa, aaa(l, 8, a @, S

I(Z, S)I and

Every conditional path s s lé, 4]) starts by reading a a a a
except Z =4, 5, 6 and II= ZO 23 zl which yields a (1, S),

and Z= 4y 5.0, b; 53 654, 5; 6 V= 2 B 2. 2. Z. B 2 2 7
6 3 2 003 1L O 3 %

which yields a a a (1, S).

x&(|4, 4, 6], 2, 2,) l(l, syl  and

xa(la, 4, 6], 2, 2

2) a aaa, aa(l, S

by the same reasoning as above.
And finally Xa([é, 4, 4, 6], 3, zl) - [a aasd, aaa(l, 8), al, S)I
and Xa([&' &, &4, 6], 3, 2,) = ‘a aaa, & wa s)l.

Thus G 1is not LR(4) since
xa(la, G e 5], 3, 2) 0 Xa([ﬁ’ 4, 4, e], 3,2) £ 8.

However Theorem 9 tells us more than this, namely that G, is
ambiguous.

Now let's look at grammar GS defined by the productions







listed below?

Step 1 of the

in Table

14.

S———a A d 4, § ——b e d
S—=b A ¢ 5. A—e A
Se——pa e C 6, A——e

algorithm yields the states and transition listed







Number

0

1

10

1

12

13

14

Table 14

5

S‘_.-"t‘. F

§l——tt

S' —+ S 4
S —sa s+ A d
S§=—sa=x e c
S—a Ax d

S ——a A d *

§——a e

%
o

>
m
>
b

A ——ae &

172 ]
o
¥
g
[g)

v
o
LN
m
j=

S—b e d x

States and

State

A —c

Transitions For

aAd S—ux b A
. aec S——x b e

e A

{ 2]

* A A—r% e A

* A—x e

e A

e

e A

5

rid A A—l‘-;‘; e A

% A e

My (Gs)

Transition To
f: ik
c S 2 a 3
d b 10
4 accept
A 4
e b6
d| 5
reduce 1
A 7 ¢ &
e 9 reduce 6
reduce 5
reduce 3
A 7 e 9
reduce 6
A1l
e 13
¢ 12
reduce 2
A A d 14
e 9 reduce 6
reduce &4







MO(GS) has three inadequate states, states 6, 9 and 13.

Letting k = 1 we get Xl(ﬁ, 0, zo) = {c, e and
X1(6, 0, 26) = I(l, A),.
Only state 3 has a transition to state 6 and
Xl(l3, 6:; 1 20) =i{c, e and
x1(|3, 6], 1, z) = |d|.
For state 13 we get ' Xl([lo, 13], : 20 zo) = ld, e and
x1([10, 13|, 1, z,) = |e
For state 9 X1(9, 0, zo) = \e‘
X, (9, 0, z,) = |(1, 18
States 6, 13 and 9 all have transitions to state 9 .
xl(lg, 9], 1, z,) = \(1, A)\.
Thus we have found a k-loop.
xl(le, 9], L 2) = |(1, A)‘ and
xl({3, 6, 9l, 2, z) = ldl while
x1([13, 9], 1, z) = ‘(1, A}I and
xl(llo, 13, 9], 2, z) = e
Therefore G is LR(k) and changing states 6, 9 and 13 to

(6, S=—>a e xc A—a>e + A A——>x e A

Ae—re A—i e
(9, A——e = A Ak e A
Am—e = A —u e

(13, S——sbexd A—s>e x A A—sxce A
Acm—pe » A=y e

we now have a deterministic parser for grammar

3

le.e], 8.0,0,0.8, {a)>

e|, 6,0,0,8,0, c,d|>

|d,e|, 6,6,0,9,0, lcl)







It is of interest to note that since
Al =|a

using DeRemer's algorithm we would get for
state 6 Z =le, c and

0
state 13 ZO = le, di and
Thus grammar G5 is not SLR(1)
aniy k ... Yet it i8 TR{1)

6
6

In fact it is not

resorting to the state splitting techniques of steps

the algorithm.lo

For our

listed below:

"

10.

Applying the

final example take grammar G

S§—u A a 108 17
§S—u B c 12,
e o A U 135
§—»v B d 14.
S——w C a 15.
§——wDd 16.
§——=x C a 175
S—x Db 18.
S—>v Ea 19,
S——=y F b 20.

defined

S——z

Id, c

ld, c

and for

SLR(k) for

and we have found a parser for it without

6 through 9 of

by the productions

E d

H

H

algorithm with k =1 , step 1 yields the states and

transitions listed in Table 15.







Number

0

1

10

11

12

13

14

Table 15 States and Transitions For ME}(G())

State Transition To
S'——ew &84 t 1
§'——t % S s 3 ;
§——x u A a S——3x w C S§S—sxyLa u 2 x 25
S——x u B c Se—>x w D S—sxyFb v 12 y 30
S—sx VAD S—x x C S —— Ed wl7 z 38
S——sx vBd Se—x x D S ——y F e
§—u % A a A=—>%x 1 G A 4 r 8
S——u s B c B——x r H B 6
§'——F S % 4 1 accept
§=——u A % a a 5
S——u A a x reduce 1
S——u B % c c 7
§=>u B c % reduce 2
A—s1 % C G=—>x e G 9 e 11
Be~—>r % H H—>yx e H 10
A——1 G * reduce 13
B=—r H reduce 14
G—e x% reduce 19
H=——e x% reduce 20 |
S—v x AD Am—>u 1 G A 13 r 8
S——v % B d Be——u r H B 15
S—v Axb b 14

S-——--O-VAb‘,:

reduce 3






Number

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

S=—v B

S=—>tw *

S—>w %

S=—w C

S —w C

D m—g

C—>8 G %

[am—pg %

S—=XxX *

S——x %

H

S=—x C *

S=—ry *
S ey E
S—sy E

Se—av F

3%
-

Table 15 Continued

State

C—>x 806

D—= s H

G—r% e

H=——b>% e

C——>+% 8 G

D% & H

E—>x € G

Fe——x t H

Transition

89

To

d 16
reduce 4
C 18
D 20
a 19
reduce 5
d 21
reduce 6
G 23

H 24

reduce 15

reduce 16

C 26

D 28

a 27

reduce 7

b 29

reduce 8

E 31

F 33

a 32

reduce 9

b 34

S 22

s

t

11

22

35







Number

34

35

36

37

38

39

40

41

42

S"_"-y

E——t

F e—t

E——t

F

*

Table 15 Continued

State

H—x e

Fe——»x t H

Mé(Gé) has one inadequate state, state ll.

States 8, 22 and 35 have transitions to state 11.

Transition To

reduce
G 36
H 37
reduce
reduce
E 39
F 41
d 40
reduce

c 42

reduce

10

L 7

18

£ 29

11

12

Xl(ll, O 219) = l(l, G)l and Xl(ll, 0, 220) = |(1, H)I.

xl([s, 11], 1, 23 = l(1, A)i ; xl([é, 11], 1, z,,) = ‘(1,3)],

xl([zz, 11], I =| (1, c)| ; xl(lzz, 11|, 1, z5) = I(l,D),,

xl(l35, 11], 1, 2,9) =| (1, E)|and xl(l35, 11], 1, z,) = ‘(1,?)'.







Looking further back,

xl(lz, 8, 11], 2; i) ® Ia s Eille, &, 11], 2, 2p9) = |c{ s

Xl([IZ, 8, 11], 2, zg9) = 1B} & X(|12, 8, 11], 2, Zyp) = d\ ,
X, (i, 32, 111, 2, 2,9 = |a| » X, (|17, 23, 11], 2, 2,) =|d l,
%025, 225 ]y 2, 2y) = |2 [ y EyCl25, 22, 11|, 2, 2.5) = b },
x1([30, 35, 11], % Zye) = 1o} 5 Xy(]30; 35, L, 2, 2,5 =B l,
X (|38, 35, 11, 2, 2;9) = {d Iand Xy (38, 35, 1L, 2, 2,5 ={e 1.

Thus grammar Gg is LR(l) . Performing step 3 we get the graph
GR(11) in Figure 5. The number of the node is below the circle -
The state occupying the node is within the circle. The terminal

nodes are nodes 1 through 6. Node 10 is the foot of GR(11l)

Figure 5 The Graph GR(11l)

9) (39

(%) (5 (6)

(9)







Step 4 may be done in several ways. We shall do it in two

different ways and get two completely different parsers. The first

way .
Let N(ll, 1) = |1, 27T o N(ll, 2) B |3, 4] and N(ll, 3) ‘| 5, 6|
Th A = ta, hl = e, dl ,
- EL, A, vy, 07 ) Aar, 1, 200 T 1€
! , , - [os 4}
(11, 2, 19) » (11, 2, 20) -

A1, 3, 19) T |a’ dl and Ay 3, 20) = Ib’ C‘ ‘

Continuing in step 6 we create states 43 through 48 in Table 16.
In steps 7 and 8 we create states 49 through 54 and fill in the transitions
in Table 16. 1In step 9 we change the transitions from state 1. 1In

step 10 we change 219 and 220 for states 52, 53 and 54.
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Now deleting states 2, 8, 11, 12, 17, 22, 25, 30, 35 and 38
from Table 15 and changing the transitions from state 1, we get a
parser for grammar Gg which is represented by Tables 15 and 16
combined.

Going back to step 4, suppose we had let

N(11, 1) = Il, 2,5 3| and N(ll, 2) = ‘4, 5, 6 \ . Then
A = | bl Pl A = ’ d‘ ]

AL n, e 1 0 1

A ) P d & - !b

(a1, 2, 19y 17 o (11, 1, 20) 2

In step 6 we create states 43 through 48 in Table 17. 1In steps 7 and
8 we create states 49 through 54 and fill in the transitions in

Table 17. The final parser is represented by Table 15 with states

1, 2, 8, 11, 12, 17, 22, 25, 30, 35 and 38 deleted combined with Table
17. This is a different parser for grammar G6 than the first

parser for G6 . The difference is shown in the graphs in Figures

6 and 7. It would be very difficult to say that either one of these
parsers is better. They have the same number of states yet they are

certainly not equivalent graphicly.
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Figure 6 GR(52), GR(53) and GR(54) First Parser

For Grammar Gé

N/ /@ ' @\

Figure 7 GR(53) and GR(54) Second Parser

For Grammar G6







10. SUMMARY

In conclusion we have described and proved the validity of a
general LR(k) parser building algorithm. This algorithm lies
somewhere between Knuth's and DeRemer's.l It will yield a result at
least as good as Knuth's in all cases and on those grammars on which
DeRemer's algorithm works it will yield a result equivalent to DeRemer's.
The algorithm might involve somewhat more work than DeRemer's algorithm
on most SLR(l) grammars., However this should not be a serious

disadvantage.
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FOOTNOTES

lA parser should not be confused with a recognizer. A recognizer
merely answers the question "is this sentence in the language."
Knuth (Knu 65) shows that any LR(k) language may be generated by a
grammar which is LR(0) with the possible exception of needing to
scan ahead one symbol in order to recognize the end of a sentence.
Knuth proves that these are precisely the deterministic languages
or those languages which may be recognized by a DPDA.

2Some authors such as Hopcroft and Ullman (H & U 69) define
P as a finite set of ordered pairs in Vy ¥ (V N IGT).

See (H & U 69) for a more complete treatment of the concepts
presented so far in this section.

4Knuth's original definition (Knu 65) is slightly different
but equivalent. I prefer this one due to its conciseness.
5Knuth actually sets the stack vocabulary I'= Kuv' and pushes
the transition symbol as well as the state on the stack.
DeRemer (DeR 71) attributes the observation that it is unnecessary
to include the input vocabulary in the stack vocabulary to
J. J. Horning.

6Even if G 1is not LR(k) , that is there exists a state T
such that (p, Ny, @ ) € I and (q, i, 8) € I with aéH'(qi+1...qn B)
and (p # q or fp # i), we can still build an LR(k) q
parsing machine by Knuth's algorithm. However, we must allow for
more than one transition from I on scanning a. Thus the resulting
machine will not be deterministic. We will use this fact in subsequent
sections.

7 .

The introduction of the symbol F to denote the beginning of
a sentence is a convenience rather tham a necessity. Nothing essential
has been changed. We refer to the resulting machine as Mé(G)

SWe use the plural here since G may be ambiguous.

9DeRemer does not consider productions of the form A—s¢€.
However the extension is almost trivial.
D0 5 ;

This is a concocted example. However a grammar of this type
was written by students in a compiler writing class this semester at
the University of New Mexico. DeRemer's algorithm failed to yield a
parser, but the algorithm in Section 8 found an LR(0) parser without
resorting to state splitting.
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