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Optimal Relaxation Weights for Multigrid
Reduction In Time (MGRIT)

by

Masumi Sugiyama

B.S., Applied Mathematics, University of California, Davis, 2015

M.S., Mathematics, University of New Mexico, 2019

Abstract

Based on current trends in computer architectures, faster compute speeds must come

from increased parallelism rather than increased clock speeds, which are stagnate.

This situation has created the well-known bottleneck for sequential time-integration,

where each individual time-value (i.e., time-step) is computed sequentially. One ap-

proach to alleviate this and achieve parallelism in time is with multigrid. In this

work, we consider the scheme known as multigrid-reduction-in-time (MGRIT), but

note that there exist other parallel-in-time methods such as parareal and the parallel

full approximation scheme in space and time (PFASST). MGRIT is a full multi-level

method applied to the time dimension and computes multiple time-steps in paral-

lel. Like all multigrid methods, MGRIT relies on the complementary relationship

between relaxation on a fine-grid and a correction from the coarse grid to solve the

problem. In this work, we analyze and select relaxation weights for MGRIT using a

convergence analysis and find that this is beneficial since it improves the convergence

rate and consequently improves the efficiency of computation. We note that choos-

ing appropriate weights for relaxation (here weighted-Jacobi) has a long history for

v



improving the convergence of spatial multigrid methods, and thus it is no surprise

that such weight selection can be beneficial for MGRIT, too. Our numerical results

demonstrate an improved convergence rate and lower iteration count for MGRIT

when non-unitary weights are used for weighted-Jacobi.
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Chapter 1

Introduction

1.1 Overview

Based on current trends in computer architectures, faster compute speeds must come

from increased parallelism rather than increased clock speeds, which are stagnate.

This situation has created the well-known bottleneck for sequential time-integration

[7, 5], where each individual time-value (i.e., time-step) is computed sequentially.

One approach to alleviate this and achieve parallelism in time is with multigrid. In

this work, we consider the scheme known as multigrid-reduction-in-time (MGRIT)

[5], but note that there exist other parallel-in-time methods such as parareal [10]

and the parallel full approximation scheme in space and time (PFASST) [12, 4, 11].

Paraeal is a two-level multigrid method that allows computations in parallel based

on a decomposition of the interval in time dimensions [8]. PFASST can be thought

of as a space-time multigrid method that utilizes a deferred correction strategy to

computes multiple time-steps in parallel [1].

Unlike parareal, MGRIT is a full multi-level method applied to the time dimen-

sion and allows parallel computations in time. Like all multigrid methods, MGRIT

1



Chapter 1. Introduction

relies on the complementary relationship between relaxation on a fine-grid (e.g., with

Jacobi or Gauss-Seidel) and a correction from the coarse grid to solve the problem.

For a gentle introduction to parallel-in-time methods, in general, see this review

paper [7].

In this work, we analyze and select optimal relaxation weights for the Jacobi

method inside of MGRIT and find that this is beneficial since it increases the con-

vergence rate and consequently improves the efficiency of computation. Weighted-

Jacobi is considered because it is parallelizable, unlike Gauss-Seidel. We note that

choosing appropriate weights for weighted-Jacobi has a long history for improving the

convergence of spatial multigrid methods, and thus it is no surprise that such weight

selection can be beneficial for MGRIT, too. Our numerical results demonstrate an

improved convergence rate and lower iteration count for MGRIT when non-unitary

weights are used for weighted-Jacobi. To our knowledge, these are the first results

exploring such weighted relaxation with MGRIT.
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Chapter 2

MGRIT algorithm

2.1 Two-level multigrid reduction method

In practice, MGRIT uses FAS nonlinear multigrid cycling [2] to solve general nonlin-

ear problems; however, MGRIT convergence analysis [9, 13, 6] to date has focused on

linear problems. This is due to the fact that convergence analysis of FAS nonlinear

multigrid is largely an open problem, and that MGRIT behavior of linear problems

is typically indicative of MGRIT behavior for related nonlinear problems [13].

Thus, for our analysis we consider a linear system of Ordinary Differential Equa-

tions (ODEs) of the form

du

dt
= Gu(t) + h(t), u(0) = g0, t ∈ [0, T ] (2.1)

where u ∈ RNx where Nx refers to the number of points in space, and G is the

linear operator. Let tj = jδt, j = 0, 1, .., Nt, be a temporal grid with a constant

spacing δt = T
Nt
> 0, and let uj be an approximation to u(tj) for j = 1, 2, .., Nt with

u(0) = u0. Then, a general one-step time discretization method for (2.1) is defined

3



Chapter 2. MGRIT algorithm

as

u0 = g0

uj = Φuj−1 + gj, j = 1, 2, ..., Nt

(2.2)

This method is equivalent to solve the system of equations

Au =


I

−Φ I

. . .
. . .

−Φ I




u0

u1

...

uNt

 =


g0

g1
...

gNt

 = g. (2.3)

While sequential time-stepping solves (2.3) directly with forward-substitution, MGRIT

algorithm solves (2.3) iteratively by combining a block Jacobi relaxation with er-

ror corrections from a coarser approximate representation. Let Ti = iδT for i =

0, 1, ..., NT = Nt
m

be a coarse temporal grid point with a positive integer coarsening

factor m and a constant spacing δT = mδt. The original grid is then partitioned into

C-points given by the set of coarse grid points Ti, and F-points given by {ti} \ {Ti}.

See Figure 2.1. These C-points then induce a new coarser time discretization for a

new coarse time-grid problem

u0 = g0

ukm = Φmu(k−1)m + g̃km, k = 1, 2, ..., NT

(2.4)

where g̃km = gkm + Φgkm−1 + · · ·+ Φm−1g(k−1)m+1. This method satisfies the coarse

system of equations

A4u4 =


I

−Φm I

. . .
. . .

−Φm I




u0

um
...

uNTm

 =


g0

g̃m
...

g̃NTm

 = g4 (2.5)

where A4 has NT = Nt
m

block rows and columns. Unfortunately, solving the equation

(2.5) is as expensive as solving (2.3), thus Φm is usually approximated with something

4



Chapter 2. MGRIT algorithm

t0

T0

t1 t2 t3 · · · tm

T1

tNt

TNT
δT = mδt

δt

Figure 2.1: Uniformly spaced fine-grid points and coarse-grid points with coarsen-
ing factor m. The Ti are the C-points and form the coarse-grid, while the small
hashmarks are F-points. Together, the F- and C-points form the fine-grid.

(a) F-relaxation (b) C-relaxation

Figure 2.2: Schematic view of the action of (a) F-relaxation and (b) C-relaxation
with a coarsening factor of four

much cheaper, Φ4. When Φ4 is used to approximate Φm in A4, we get a new

operator on the coarse-grid, B4 ≈ A4

With the partition of F- and C-points as depicted in Figure 2.1, there are two

fundamental types of relaxation: F- and C-relaxation. The F-relaxation updates the

F-point values based on the C-point values, i.e., one F-sweep is

ui = Φui−1 + gi ∀i ∈ {F-points} (2.6)

On the other hand, the C-relaxation updates each C-point value based on the pre-

ceding F-point value, i.e., the set of F-points is replaced by the set of C-points in

equation (2.6). All F-points in each interval (Ti, Ti+1) for i = 0, ..., NT − 1 can be

updated simultaneously, and each C-point also can be updated simultaneously in

parallel. Figure 2.2 illustrates the action of these relaxations in parallel.

One application of F-relaxation followed by a C-relaxation updates each ukm

based on u(k−1)m, which is equivalent to Φm applied to u(k−1)m for k = 1, ..., NT .

This FC-sweep corresponds to a block Jacobi on the coarse-grid. Using the coarse-

5



Chapter 2. MGRIT algorithm

grid operator A4, this block Jacobi relaxation can be written as

u
(k+1)
4 = (I −D−1A4)u

(k)
4 +D−1g4

=


0

Φm 0
. . . . . .

Φm 0




u

(k)
0

u
(k)
m

...

u
(k)
NTm

+


g0

g̃m
...

g̃NTm

 =


g0

Φmu
(k)
0 + g̃m

...

Φmu
(k)
(NT−1)m + g̃NTm


The MGRIT algorithm performs either an F-relaxation or an FCF-relaxation. An

FCF-relaxation consists of the initial F-relaxation, a C-relaxation, and a second F-

relaxation.

2.2 Weighted-Jacobi on FCF-relaxation

The weighted-Jacobi iterative method with ω > 0 has the form

u(k+1) = ω{(I −D−1A)u(k) +D−1g}+ (1− ω)u(k), k = 0, 1, 2, ...

= ωGJac + (1− ω)u(k)
(2.7)

where GJac is the Jacobi iteration matrix. Since F- and C-relaxations correspond to

the block Jacobi methods, we will examine replacing the existing GJac applications

in MGRIT with weighted relaxation applications of the form (2.7). The form of the

GJac for F- and C-relaxations will appear in the next section. The original python

MGRIT code was modified to apply the weighted-Jacobi method of (2.7) after each

relaxation.

6



Chapter 3

Convergence Analysis of MGRIT

3.1 Convergence estimates for MGRIT

3.1.1 MGRIT error propagator for unweighted FCF-relaxation

Let the fine-grid operator A in (2.3) be reordered so that F-points appear first and

C-points second. Then by using the subscripts c and f to indicate the two sets of

points, we have the Schur complement decomposition

A =

Aff Afc

Acf Acc

 =

 If 0

AcfA
−1
ff Ic

Aff 0

0 Acc −AcfA−1
ffAcf

If A−1
ffAfc

0 Ic


where Aff and Acc are the identity submatrices. This decomposition implies an ideal

interpolation operator which formulates a Schur complement.1 Then, the injection

restriction operator RI , ideal interpolation operator P , and map S are defined by

RI =
[
0 Ic

]
, P =

−A−1
ffAfc

Ic

 , S =

If
0


1This is one reason why P is called ideal. The other related reason is that if an exact

solution is available at C-points, then multiplication by P will yield the exact solution at
all C- and F-points.

7



Chapter 3. Convergence Analysis of MGRIT

Using these operators, the Schur complement is given by RIAP = Acc −AcfA−1
ffAcf

which is then equal to the coarse-grid operator A4. Then, together with STAS =

Aff , we have

A−1 = P (RIAP )−1RI + S(STAS)−1ST

This gives the error propagator of the exact two-level multigrid method for F-

relaxation

0 = I − A−1A = (I − P (RIAP )−1RA)(I − S(STAS)−1STA) (3.1)

where equivalence occurs since RAS = 0. The error propagator is a matrix that when

given the error relative to some initial guess, it determines how the error changes from

iteration to iteration. The first term of (3.1) corresponds to the error propagator of

coarse-grid correction, and the second term corresponds to the error propagator of

F-relaxation. It is the error propagator of F-relaxation because the operator ST is a

map to F-points, hence S(STAS)−1ST carries out a block inverse over the F-points.

It is equivalent to PRI since RI is a map to C-points, and the application of P sets

the residual equal to zero at all F-points (F-relaxation). Since A4 = RIAP and

B4 ≈ A4 in an iterative multigrid reduction method, the error propagator (3.1)

becomes

(I − PB−1
4 RIA)PRI = P (I −B−1

4 A4)RI

The two-level error propagator for FCF-relaxation can be derived by replacing the

error propagator of F-relaxation in (3.1) with the error propagator of FCF-relaxation.

The error propagator for C-relaxation is expressed as (I −RT
I (RIAR

T
I )−1RIA) since

RI is a map to C-points, and RT
I (RIAR

T
I )−1RI carries out a block inverse over the

C-points. Then, the two-level error propagator for FCF-relaxation is

(I − S(STAS)−1STA)(I −RT
I (RIAR

T
I )−1RIA)(I − S(STAS)−1STA)

= PRI(I −RT
I (RIAR

T
I )−1RIA)PRI

= P (Ic − (RIAR
T
I )−1RIAP )RI

= P (I − A4)RI

8



Chapter 3. Convergence Analysis of MGRIT

This yields the two-level error propagator for FCF-relaxation defined as

(I − PB−1
4 RIA)P (I − A4)RI = P (I −B−1

4 A4)(I − A4)RI (3.2)

3.1.2 Error propagators for stand-alone weighted F- and FCF-

relaxation

The weighted-Jacobi for F-relaxation using (2.7) and its error propagator can be

written as

uk+1 = ω{(I − S(STAS)−1STA)uk +D−1g}+ (1− ω)uk

= (I − ωS(STAS)−1STA)uk +D−1g
(3.3)

Similarly, the weighted-Jacobi for C-relaxation using its error propagator can be

written as

uk+1 = (I − ωRT
I (RIAR

T
I )−1RIA)uk +D−1g (3.4)

Hence, the error propagator of FCF-relaxation with the weighted-Jacobi is given by

(I − ω3S(STAS)−1STA)(I − ω2R
T
I (RIAR

T
I )−1RIA)(I − ω1S(STAS)−1STA)

where ω1, ω2, ω3 > 0. We will only consider ω3 = 1.0 because if ω3 6= 1, then MGRIT

would no longer be a reduction method and experiments and intuition both indicate

that performance suffers. With this simplification, the error propagator becomes

(I − S(STAS)−1STA)(I − ω2R
T
I (RIAR

T
I )−1RIA)(I − ω1S(STAS)−1STA)

=

(
I −

If A−1
ffAfc

0 0

)(I − ω2

 0 0

A−1
cc Acf Ic

)(I − ω1

If A−1
ffAfc

0 0

)

=

−ω2(ω1 − 1)A−1
ffAfcA

−1
cc Acf −(1− ω2)A−1

ffAfc − ω2ω1A
−1
ffAfcA

−1
cc AcfA

−1
ffAfc

ω2(ω1 − 1)A−1
cc Acf (1− ω2)Ic + ω2ω1A

−1
cc AcfA

−1
ffAfc


(3.5)

9



Chapter 3. Convergence Analysis of MGRIT

3.1.3 MGRIT error propagator when ω1 = 1.0

If ω1 = 1.0, the matrix of the form (3.5) becomes

=

0 −A−1
ffAfc + ω2A

−1
ffAfc − ω2A

−1
ffAfcA

−1
cc AcfA

−1
ffAfc

0 Ic − ω2Ic + ω2A
−1
cc AcfA

−1
ffAfc


=

0 −A−1
ffAfc{Ic − ω2A

−1
cc (Acc − AcfA−1

ffAfc)}

0 Ic − ω2A
−1
cc (Acc − AcfA−1

ffAfc)


=

−A−1
ffAfc

Ic

[Ic − ω2A
−1
cc (Acc − AcfA−1

ffAfc)
] [

0 Ic

]
= P (I − ω2A4)RI

Based on the two-level MGRIT error propagator with FCF-relaxation defined in

(3.2), the two-level error propagator for FCF-relaxation with the weighted-Jacobi

results in

(I − PB−1
4 RIA)P (I − ω2A4)RI = P (I −B−1

4 A4)(I − ω2A4)RI

When the coarse-grid equations are satisfied, i.e., the coarse-grid solution is exact,
one application of P yields the exact solution at F-points leaving the residual equal
to zero at these points. Thus, the two-level error propagator can be analyzed on the
coarse-grid and it becomes

EFCF4,ω1=1 = (I −B−1
4 A4)(I − ω2A4)

= (Φm − Φ4)


(1− ω2)



0

1 0

Φ4 1 0

...
...

. . . 0

Φ
NT−1
4 Φ

NT−2
4 · · · 1 0


+ ω2Φm



0

0 0

1 0 0

...
...

. . . 0

Φ
NT−2
4 Φ

NT−3
4 · · · 0 0




(3.6)

Let ekm be the error at a C-point for k = 0, 1, ..., NT and define the time-space error
as ē = [eT0 , e

T
m, e

T
2m, ..., e

T
NTm

]. The two-level error propagation formula is then given
by

(EFCF4,ω1=1ē)k =

0 k = 0

(Φm − Φ4){(1− ω2)
∑k−1
q=0 Φk−1−q

4 + ω2
∑k−2
q=0 Φk−2−q

4 Φm}ēq k = 1, 2, ..., NT

(3.7)

10



Chapter 3. Convergence Analysis of MGRIT

where ēk = ēkm.

Let λγ be the eigenvalues of Φ and µγ be the eigenvalues of Φ4, corresponding to

the same set of eigenvectors {vγ}. That is, Φ and Φ4 are diagonalized by the same

vectors, which is the case for our problems. For instance if backward Euler is used,

λγ = (1− htκγ)−1, µγ = (1−mhtκγ)−1 for γ = 1, 2, ..., Nx (3.8)

where κγ ≥ 0 is an eigenvalue of the linear operator G in (2.1). Using these eigen-

values, the norm of the two-level error propagation formula (3.7) can be expressed

as

||EFCF4, ω1=1ē||2

≤ max
γ
|λmγ − µγ |

{
|1− ω2|

(1− |µγ |NT
1− |µγ |

)
+ |ω2||λγ |m

(1− |µγ |NT−1

1− |µγ |

)}
||ē||2

(3.9)

For the derivation of this theoretical convergence estimate, see the appendix A.

3.1.4 MGRIT error propagator when ω1 6= 1.0

If ω1 6= 1.0, the matrix of the form (3.5) becomes

=

0 −ω2ω1A
−1
ff AfcA

−1
cc AcfA

−1
ff Afc

0 ω2ω1A
−1
cc AcfA

−1
ff Afc

+

−ω2(ω1 − 1)A−1
ff AfcA

−1
cc Acf −(1− ω2)A−1

ff Afc

ω2(ω1 − 1)A−1
cc Acf (1− ω2)Ic


= ω2ω1

0 −A−1
ff Afc{Ic −A

−1
cc (Acc −AcfA−1

ff Afc)}

0 Ic −A−1
cc (Acc −AcfA−1

ff Afc)


+ (1− ω2)

0 −A−1
ff Afc

0 Ic

+ ω2(ω1 − 1)

−AffAfcA−1
cc Acf 0

A−1
cc Acf 0


= ω2ω1

−A−1
ff Afc

Ic

[Ic −A−1
cc (Acc −AcfA−1

ff Afc)
] [

0 Ic

]

+ (1− ω2)

−A−1
ff Afc

Ic

[0 Ic

]
+ ω2(1− ω1)

−A−1
ff Afc

Ic

[A−1
cc Acf

] [
If 0

]
= ω2ω1P (I −A4)RI + (1− ω2)PRI + ω2(1− ω1)PAcfS

T

Hence, the error propagator is

(I − PB−1
4 RA){ω2ω1P (I −A4)RI + (1− ω2)PRI + ω2(1− ω1)PAcfS

T }

= ω2ω1P (I −B−1
4 A4)(I −A4)RI + (1− ω2)P (I −B−1

4 A4)RI + ω2(1− ω1)P (I −B−1
4 A4)AcfS

T

= P{ω2ω1(I −B−1
4 A4)(I −A4) + (1− ω2)(I −B−1

4 A4)}RI + ω2(1− ω1)P (I −B−1
4 A4)AcfS

T

11



Chapter 3. Convergence Analysis of MGRIT

The error propagator is then

EFCF4,ω1 6=1 = ω2ω1(I−B−1
4 A4)(I−A4)+(1−ω2)(I−B−1

4 A4)+ω2(1−ω1)(I−B−1
4 A4)Acf

The first term of error propagator in matrix form is expressed as

ω1ω2



0

0 0

Φm(Φm − Φ4) 0 0

...
. . .

. . . 0

ΦmΦ
NT−2
4 (Φm − Φ4) · · · Φm(Φm − Φ4) 0 0


The third term of EFCF

4, ω1 6=1 depends on a coarsening factor m due to a submatrix

Acf , and is expressed as0 k = 0, 1

−ω2(1− ω1)(Φm − Φ4)
∑k−2

q=0 Φk−2−q
4 Φ ē(m−1)q+(m−2) k = 2, ..., NT

The middle term is already known, thus by combining the all terms together, the
error propagation formula is given by

(EFCF4,ω1 6=1ē)k =


0 k = 0

(Φm − Φ4){ω1ω2
∑k−2
q=0 Φk−2−q

4 Φm + (1− ω2)
∑k−1
q=0 Φk−1−q

4 }ēq

−ω2(1− ω1)(Φm − Φ4)
∑k−2
q=0 Φk−2−q

4 Φ ē(m−1)q+(m−2) k = 1, 2, ..., NT

(3.10)

Using the eigenvalues defined in the form of (3.8),

||EFCF
4, ω1 6=1ē||2

≤ max
γ
|λmγ − µγ|{

(
|ω1ω2||λγ|m − |ω2||1− ω1||λγ|

)(1− |µγ|NT−1

1− |µγ|

)
+ |1− ω2|

(1− |µγ|NT
1− |µγ|

)
}||ē||2

(3.11)

For the derivation of this theoretical convergence estimate, see the Appendix A. If

ω1 = 1, the error propagation formula above is equivalent to the error propagation

formula for ω1 = 1 of the form (3.7). Hence, EFCF
4,ω1=1 = EFCF

4,ω1 6=1 for FCF-relaxation.

Moreover, if ω1 = ω2 = 1, then these expressions are equivalent to the original

analysis in [13].
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Chapter 3. Convergence Analysis of MGRIT

3.2 Modified theoretical convergence estimates for

MGRIT

We now propose modifications to the above estimate of (3.9), with the intention of

providing a sharper convergence estimate. The first and second modified theoretical

convergence estimates below are derived from the matrix form of the two-level error

propagator for ω1 = 1 in the form of (3.7).

3.2.1 First modified convergence estimate

We begin defining the matrices M1,M2 and Q as follows

M1 =



0

1 0

Φ4 1 0

...
...

. . . 0

Φ
NT−1
4 Φ

NT−2
4 · · · 1 0


, M2 =



0

0 0

1 0 0

...
...

. . . 0

Φ
NT−2
4 Φ

NT−3
4 · · · 0 0


, Q =



0

1 0

0 1
. . .

...
...

. . .

0 0 · · · 1 0


where Q is a shift matrix, and M2 can be written as the product of M1Q. Then,

the norm of the two-level error propagator can be also derived in the following way

using the eigenvalues of (3.8).

||EFCF
4, ω1=1ē||∞ ≤ max

γ
|λmγ − µγ| ||(1− ω2)M1 + λmγ ω2M2||∞||ē||∞

= max
γ
|λmγ − µγ| ||(1− ω2)M1 + λmγ ω2M1Q||∞||ē||∞

= max
γ
|λmγ − µγ| ||{(1− ω2)I + λmγ ω2Q}M1||∞||ē||∞

≤ max
γ
|λmγ − µγ| ||{(1− ω2)I + λmγ ω2Q}||∞||M1||∞||ē||∞

= max
γ
|λmγ − µγ|{|1− ω2|+ |ω2λ

m
γ |}
(1− |µγ|NT

1− |µγ|

)
||ē||∞

Then, the fist modified theoretical convergence estimate is given by

||EFCF
4, ω1=1ē||2 ≤ max

γ
|λmγ − µγ|{|1− ω2|+ |ω2λ

m
γ |}
(1− |µγ|NT

1− |µγ|

)
||ē||2 (3.12)
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Chapter 3. Convergence Analysis of MGRIT

It turned out that this modified theoretical convergence estimate does not always

produce a sharper estimate than the original theoretical convergence estimate (3.9).

Therefor, this modified theoretical convergence estimate is not used in numerical

experiment.

3.2.2 Second modified convergence estimate

Let the matrices from (3.6) be combined into

EFCF4,ω1=1

= (Φm − Φ4)



0

(1− ω2) 0

(1− ω2)Φ4 + ω2Φm (1− ω2) 0

...
...

. . . 0

(1− ω2)Φ
NT−1
4 + ω2ΦmΦ

NT−2
4 (1− ω2)Φ

NT−2
4 + ω2ΦmΦ

NT−3
4 · · · (1− ω2) 0



= (Φm − Φ4)





0

(1− ω2) 0

0 (1− ω2) 0

...
...

. . . 0

0 0 · · · (1− ω2) 0


+ [(1− ω2)Φ4 + ω2Φm]



0

0 0

1 0 0

...
...

. . . 0

Φ
NT−2
4 Φ

NT−3
4 · · · 0 0




Using the eigenvalues of (3.8), the two-level error propagator becomes

(λmγ − µγ)





0

(1− ω2) 0

0 (1− ω2) 0

...
...

. . . 0

0 0 · · · (1− ω2) 0


+ [(1− ω2)µγ + ω2λ

m
γ ]



0

0 0

1 0 0

...
...

. . . 0

µ
NT−2
γ µ

NT−3
γ · · · 0 0




Then, taking the infinity norm of the above equation for each γ, the second modified

theoretical bound can be written as

||EFCF4, ω1=1ē||2

≤ max
γ
|λmγ − µγ |

{
|1− ω2|+ |(1− ω2)µγ + ω2λ

m
γ |
(1− |µγ |NT−1

1− |µγ |

)}
||ē||2

(3.13)

This modified theoretical convergence estimate resulted in producing a sharper

estimate than the original theoretical convergence estimate (3.9). as will be shown

in the following numerical results section.
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Numerical results

In these numerical experiments, we consider various modified weights ω̃2 6= 1 = ω2

for C-relaxation, while keeping ω̃1 = 1 = ω1 for F-relaxation fixed. For each model

problem, the optimal weight of real-, imaginary-, and complex-valued ω̃2 are explored.

Results of modified weights ω̃ are compared against results of the unitary weights ω

(defined as the combination of ω1 = 1 and ω2 = 1). The experimentally measured

asymptotic convergence rate is taken to be the average convergence rate over the last

five iterations, and it is compared with the original and second modified theoretical

convergence estimates (3.9, 3.13). In this section, “modified convergence estimate”

refers to the second modified convergence estimate from Section 3.2.2
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Chapter 4. Numerical results

4.1 One-dimensional heat equation

We consider the one-dimensional heat equation subject to an initial condition and

homogeneous Dirichlet boundary conditions,

∂u

∂t
− α∂

2u

∂x2
= f(x, t), α > 0, x ∈ Ω = [0, L], t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]

(4.1)

We transform the model problem to a system of ODEs of the form (2.1) by using

second-order central differencing for discretizing the spatial derivative and then a

standard one-time step method of the form (2.2) for discretizing the time derivation,

e.g., backward Euler (Backward Time, Central Space or BTCS scheme). We obtain

uj = (I − δtG)−1uj−1 + (I − δtG)−1δtfj, j = 1, 2, ..., Nt (4.2)

where the linear operator G in (2.1) is the three-point stencil α
h2x

[1,−2, 1]. In the form

of (2.2), Φ = (I − δtG)−1 and gj = (I − δtG)−1δtfj. The eigenvalues of Φ and Φm are

computed using the eigenvalues of G, κγ = − 4
h2x

sin2
(

γπ
2(Nx+1)

)
for γ = 1, 2, ..., Nx,

and the formulas (3.8) in order to compute the theoretical convergence estimates.

4.1.1 Problem statement

The following functions with the given domains are used for numerical experiments

u(x, t) = sin(πx) cos(t)

f(x, t) = sin(πx)[sin(t)− π2 cos(t)]

α = 1, x ∈ [0, 1], t ∈ [0, 0.625]

The residual norm halting tolerance for MGRIT is set to 1.0e−10
√
hxδt

throughout the

experiments. The combination of grid points in space nx = Nx and time nt = Nt + 1
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Chapter 4. Numerical results

are chosen so that a Courant-Friedrichs-Lewys condition (CFL) is δt
h2x

= 12.8 or

δt
h2x

= 1.0.

4.1.2 Real valued weight

We start by considering non-unitary weights of ω̃2 ∈ R for δt
h2x

= 12.8. Figure 4.1a

captures the original and modified theoretical convergence estimates (3.9, 3.13) from

the sections 3.1.3, 3.2.2, and the experimentally measured asymptotic convergence

rate of the problem size nx×nt = 291× 4097 when m = 2. It depicts that the sharp

prediction of a convergence rate from the theoretical estimates when ω̃2 ≤ 1.0. When

ω̃2 > 1.0, however, the original theoretical estimate is not sharp while the modified

theoretical estimate produces a sharper estimate. Unfortunately, the theoretical esti-

mates do not predict the optimal weight of ω̃2. Together with iterations from Figure

4.1b, the experimentally optimal weight is ω̃op = 1.3 under the given conditions.

(a) Asymptotic convergence rates and
theoretical convergence estimates

(b) Iterations

Figure 4.1: One-dimensional heat equation for δt
h2x

= 12.8. Two-level MGRIT with
ω̃2 ∈ R, considering m = 2

Table 4.1 compares the observed convergence rates and iterations with various

coarsening factors m and problem sizes for the two-level and multi-level methods.

The top table shows the results of unitary ω as a reference. The smaller convergence

17



Chapter 4. Numerical results

rates and non-increased iterations of non-unitary ω̃ than ω for all m and problem

sizes suggest that ω̃2 = 1.3 is a good candidate for a universal optimal value. In fact,

Table 4.2 depicts that this ω̃op = 1.3 is fairly stable for various m and problem sizes.

With the fixed problem size, as m increases, the two-level results for ω̃ deteriorate.

The convergence rates do not depend on the problem sizes with the fixed m. The

iterations are reduced by about 10 − 14% for the both methods when the modified

weight is used.

It is interesting to note that the observed asymptotic convergence rate can be a

misleading indicator for the performance of MGRIT. For instance, Table 4.3 shows

the iterations, residual norms, and asymptotic convergence rates for V-cycles with

the problem size nx × nt = 411 × 8193. The asymptotic convergence rate indicates

a better performance with m = 4, however, m = 32 converges in one less iteration.

Thus, we always report convergence rates and iterations to give the full picture.

For the other CFL number under consideration, δt
h2x

= 1.0, similar tables and plots

exist, and yield a nearly identical experimentally optimal weight. These results are

omitted for brevity.
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Unitary weights ω

m / Size 291× 4097 411× 8193 581× 16385 821× 32769 ||EFCF4, ω1=1||2 ≤

2 0.049 (7) 0.048 (7) 0.039 (7) 0.039 (7) 0.053

Two-level 4 0.077 (8) 0.077 (8) 0.058 (8) 0.058 (8) 0.081

32 0.097 (8) 0.104 (8) 0.078 (8) 0.078 (8) 0.108

2 0.118 (9) 0.121 (9) 0.093 (9) 0.094 (9) -

V-cycle 4 0.101 (9) 0.102 (9) 0.080 (9) 0.080 (9) -

32 0.097 (8) 0.104 (8) 0.078 (8) 0.076 (8) -

Non-unitary weights ω̃2 = 1.3

m / Size 291× 4097 411× 8193 581× 16385 821× 32769 ||EFCF4, ω1=1||2 ≤

2 0.036 (7) 0.036 (7) 0.034 (6) 0.034 (6) 0.064

Two-level 4 0.056 (7) 0.055 (7) 0.055 (7) 0.054 (7) 0.098

32 0.081 (8) 0.077 (8) 0.077 (8) 0.078 (8) 0.128

2 0.092 (8) 0.095 (8) 0.096 (8) 0.096 (8) -

V-cycle 4 0.072 (8) 0.073 (8) 0.074 (8) 0.074 (8) -

32 0.082 (8) 0.077 (8) 0.077 (8) 0.074 (7) -

Table 4.1: One-dimensional heat equation for δt
h2x

= 12.8. Asymptotic convergence
rates and iterations for MGRIT. The modified theoretical estimate appears in the
final column.

m / Size 291× 4097 411× 8193 581× 16385 821× 32769

2 1.3 1.2 1.3 1.2

Two-level 4 1.3 1.3 1.3 1.2

32 1.3 1.3 1.3 1.2

2 1.5 1.5 1.5 1.5

V-cycle 4 1.4 1.4 1.4 1.4

32 1.3 1.3 1.3 1.3

Table 4.2: One-dimensional heat equation for δt
h2x

= 12.8. Experimentally optimal
weights ω̃2 ∈ R for MGRIT.
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m = 4 m = 32

iteration ||r|| convergence rate ||r|| convergence rate

0 5.51e2 - 5.51e2 -

1 4.32 0.78e−2 2.12 0.385e−2

2 3.58e−1 0.829e−1 1.90e−1 0.897e−1

3 3.44e−2 0.960e−1 1.85e−2 0.973e−1

4 3.42e−3 0.993e−1 1.87e−3 0.100

5 3.45e−4 0.101 1.93e−4 0.103

6 3.52e−5 0.102 2.01e−5 0.104

7 3.61e−6 0.102 2.12e−6 0.105

8 3.71e−7 0.103 2.24e−7 0.106

9 3.82e−8 0.103 - -

Average rate 0.102 0.104

Table 4.3: Residual, asymptotic convergence rates, and iterations for one-dimensional
heat equation when using V-cycles and the problem size nx × nt = 411× 8193
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4.1.3 Imaginary valued weight

We consider non-unitary weights of ω̃2 ∈ I for δt
h2x

= 12.8. Figure 4.2 concludes

that the experimentally optimal weight for the two-level method with m = 2 is

ω̃op = 0, which is the F-relaxation. The modified theoretical estimate is sharp

and correctly predicts the optimal weight of ω̃2. Interestingly, the first modified

theoretical convergence estimate (3.12), derived the same way as the original and

second modified theoretical estimates, yields larger estimate for some ω̃2.

(a) Asymptotic convergence rates and
theoretical convergence estimates

(b) Iterations

Figure 4.2: One-dimensional heat equation for δt
h2x

= 12.8. Two-level MGRIT with
ω̃2 ∈ I, considering m = 2

Each table entry of Table 4.4 is formatted as experimentally optimal weight :

convergence rate (iteration count). For example, the first entry of 0.6i: 0.434 (22)

indicates that an ω̃2 = 0.6i was found to be close to optimal experimentally, and

lead to a convergence rate of 0.434 with 22 iterations. The table considers coarsening

factors of m = 2, 4, 32.

The experimentally optimal weight for the two-level method turned out to be

ω̃op = 0 for various problem sizes and coarsening factors. On the other hand, the

Table 4.4 depicts that the experimentally optimal weight for the multi-level varies.

The iterations for the both methods are larger than these for the unitary weights,
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concluding that a imaginary valued weight does not contribute to a better perfor-

mance.

non-unitary weights ω̃2 ∈ I
m / Size 291× 4097 411× 8193

2 0.6i : 0.434 (22) 0.4i : 0.443 (22)

V-cycle 4 0.5i : 0.368 (19) 0.5i : 0.367 (19)

32 0 : 0.273 (15) 0 : 0.279 (15)

Table 4.4: One-dimensional heat equation for δt
h2x

= 12.8. Experimentally optimal
weights, asymptotic convergence rates and iterations for MGRIT with ω̃2 ∈ I.

When δt
h2x

= 1.0, the results are again similar to the case of δt
h2x

= 12.8 and are

thus omitted for brevity.

4.1.4 Complex valued weight

Lastly, we study non-unitary weights of ω̃2 ∈ C for δt
h2x

= 12.8. From Figure 4.3c

and 4.3d, the smallest convergence rate and iterations for the two-level method with

m = 2 are attained when ω̃op = 1.3, which is the combination of the real valued- and

imaginary valued-experimentally optimal weights found in the previous two sections.

The original theoretical estimate captured in Figure 4.3a appear to be the same

shape as the observed convergence rate, but not sharp. The experimentally optimal

weight for the multi-level method with m = 2 is ω̃op = 1.3 + 0.6i, which is also

the combination of the experimentally optimal weights found in Table 4.2 and Table

4.4. This produces the smallest convergence rate among the three weight types.

When m = 4, however, the experimentally optimal weight is not the combination

but consists of just the real-valued experimentally optimal weight. For the case

of δt
h2x

= 1.0, the experimentally optimal weights are the real-valued experimentally

optimal weights when m = 2 and 4.
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(a) Theoretical convergence es-
timate

(b) Modified theoretical conver-
gence estimate

(c) Asymptotic convergence
rate

(d) Iterations

Figure 4.3: One-dimensional heat equation for δt
h2x

= 12.8. Two-level MGRIT with
ω̃2 ∈ C, considering m = 2

4.1.5 Scalability

We now study scalability of MGRIT with the weighted-Jacobi and consider strong-

and the weak-scaling.

Strong scaling: Strong scaling aims to minimize the time-to-solution when the

problem size is fixed and the number of processors is increased. Amdahl’s law states

that if p is the parallel fraction of a system, and (1 − p) is the serial fraction, then

the maximum speedup that can be achieved using N processors is given by

SN =
1

(1− p) + p
N

and lim
N→∞

SN =
1

(1− p)
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Hence, the speedup is limited by the serial fraction of the system. Our observed

speedups are much less than this due to machine limitations.

Weak scaling: Weak scaling aims to achieve a constant time-to-solution when the

problem size and the number of processors are increased commensurately, e.g., a

doubling in problem size is accompanied by a doubling in processors.

Scaling studies: For the strong scaling study, the numbers of processors, N =

1, 8, 16, 32, 64, 128, with the fixed problem size of nx×nt = 291×4097 andm = 2. The

number of processors in space is 1, as the code does not support spatial parallelism.

Figure 4.4a depicts the comparison in speedup between unitary and non-unitary

weights when using V-cycles and the experimentally optimal weight ω̃2 for the non-

unitary case. A speedup gain of approximately 20% is achieved near the minimum

at 32 processors, roughly reflecting the gain in iteration counts.

For the weak scaling study, the number of temporal grid points are increased by

a factor of 2 while the spatial grid points are chosen so that CFL number is held

fixed at ht
h2x

= 1.0. The number of processors in space is again 1, and for this reason

we expect to see a growth in time to solution as the spatial problem increases, i.e.,

as we double the number of processors and the number of time points, these factors

balance each other out, but the increase in the spatial problem size is not balanced by

more processors and will thus lead to a longer time-to-solution. Figure 4.4b depicts a

comparison in time-to-solution between unitary and non-unitary weights when using

V-cycles and the experimentally optimal weight ω̃2 for the non-unitary case. We see

a growth in time to solution, and we see a similar speedup when using non-unitary

weights that corresponds to the gain in iteration counts.
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(a) Strong scaling

(b) Weak scaling

Figure 4.4: Strong and weak scaling studies for the one-dimensional heat equation
using δt

h2x
= 12.8 and MGRIT V-cycles with m = 2.
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4.2 One-dimensional linear advection equation

We now consider the one-dimensional linear advection equation subject to an initial

condition and periodic boundary conditions,

∂u

∂t
− α∂u

∂x
= 0, α > 0, x ∈ Ω = [0, L], t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ Ω

u(0, t) = u(L, t), t ∈ [0, T ]

(4.4)

If we apply the BTCS scheme, we obtain

uj = (I − δtG)−1uj−1, j = 1, 2, ..., Nt

where the linear operator G in (2.1) is the two-point stencil α
2hx

[−1, 0, 1]. Here,

Φ = (I − δtG)−1 and gj = 0. Similar to the heat equation, the eigenvalues of Φ and

Φm are computed from the eigenvalues of G, κγ = i
hx

sin(2πγ
Nx

) for γ = 1, 2, ..., Nx,

and the formulas (3.8).

4.2.1 Problem statement

The following function with the given domain is used for numerical experiments. The

function is chosen to satisfy the periodic boundary conditions, and is a standard test

problem.

u(x, t) = e−25((x−t)−0.5)2

α = 1, x ∈ [0, 1], t ∈ [0, 1]

The MGRIT residual norm halting tolerance is set to 1.0e−8
√
hxδt

and the maximum it-

eration is set to 70 throughout the experiments. The combination of grid points in

space nx and time nt are chosen so that a CFL is δt
2hx

= 0.5 or 1.0.
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Chapter 4. Numerical results

4.2.2 Real valued weight

We start by varying ω̃2 ∈ R for δt
2hx

= 0.5. Figure 4.5a and 4.5b show that the

experimentally optimal weight is achieved at ω̃op = 1.8 for the problem size nx×nt =

1025×1025 with m = 2. Although the modified theoretical estimate is much sharper

than the original, it still does not predict the optimal weight.

(a) Asymptotic convergence rates and
theoretical convergence estimates

(b) Iterations

Figure 4.5: One-dimensional linear advection equation for δt
2hx

= 0.5. Two-level
MGRIT with ω̃2 ∈ R, considering m = 2

Each entry of Table 4.5 is formatted as experimentally optimal weight : con-

vergence rate (iteration count). The different values of ω̃op illustrate the difficulty

of having a universal optimal weight which produces the best performance for all

problem sizes and coarsening factors. Unlike the one-dimensional heat equation, ω̃op

for a specific m does not work well for all coarsening factor m. In addition, ω̃op

found in the two-level method does not necessary work well for the multi-level. The

value of ω̃op for the multi-level are smaller than the values for the two-level with the

same m and problem size. As the problem size increases, ω̃op does not change. By

comparing iterations for ω and ω̃, MGRIT with ω̃ reduces iterations for the two- and

multi-level methods. The percentage reduction is about 6−9% for the two-level and

about 15− 24% for the multi-level.
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Chapter 4. Numerical results

Unitary weights ω

m / Size 1025× 1025 2049× 2049 3073× 3073 ||EFCF4, ω1=1||2 ≤
Two-level 2 0.420 (15) 0.425 (15) 0.425 (15) 0.499

4 0.694 (34) 0.714 (35) 0.716 (35) 0.750

V-cycle 2 0.602 (44) 0.692 (66) (> 70) -

4 0.647 (42) 0.692 (60) (> 70) -

Non-unitary weights ω̃2

m / Size 1025× 1025 2049× 2049 3073× 3073 ||EFCF4, ω1=1||2 ≤
Two-level 2 1.8: 0.323 (14) 1.8: 0.326 (14) 1.8: 0.328 (14) 0.544

4 1.5: 0.634 (31) 1.5: 0.664 (32) 1.5: 0.676 (33) 0.929

V-cycle 2 1.5: 0.556 (34) 1.6: 0.625 (50) 1.6: 0.685 (65) -

4 1.4: 0.597 (35) 1.4: 0.663 (49) 1.4: 0.692 (64) -

Table 4.5: One-dimensional linear advection equation for δt
2hx

= 0.5. Experimen-
tally optimal weights, asymptotic convergence rates and iterations for MGRIT. The
modified theoretical estimate appears in the final column.

When δt
2hx

= 1.0, the results are similar to the current case of δt
2hx

= 0.5. The

iterations are reduced by about 6 - 9 % for the two-level method and about 17 - 25

% for the multi-level method. For this table of values, see Appendix C.
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Chapter 4. Numerical results

4.2.3 Imaginary valued weight

For ω̃2 ∈ I, the experimentally optimal weights for the two- and multi-level methods

are ω̃op = 0 for various problem sizes, coarsening factors, and δt
2hx

= 0.5, 1.0. Figure

4.6b shows that the smallest iterations for the two-level method are 18 iterations

which is larger than the iterations for ω. The iterations for the multi-level method

are also larger than the iterations for ω. Thus, these results conclude that imaginary

valued weights do not contribute to an increased performance.

(a) Asymptotic convergence rates and
theoretical convergence estimates

(b) Iterations

Figure 4.6: One-dimensional linear advection equation for δt
2hx

= 0.5. Two-level
MGRIT with ω̃2 ∈ I, considering m = 2

4.2.4 Complex valued weight

Lastly, we study non-unitary weights of ω̃2 ∈ C. From Figure 4.7c and 4.7d, the

smallest convergence rate and iterations are attained when ω̃op = 1.8 for δt
2hx

= 0.5,

which is the combination of the real valued- and imaginary valued- experimentally

optimal weights found in the previous two sections. The original theoretical estimate

captured in Figure 4.7a does not have the same pattern as the observed convergence

rate and is not sharp. For the multi-level method with the same problem size, the
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Chapter 4. Numerical results

optimal weights are ω̃op = 1.5 when m = 2 and ω̃op = 1.4 when m = 4. It appears

that a complex valued-weight does not contribute to better performance.

(a) Theoretical convergence es-
timate

(b) Modified theoretical conver-
gence estimate

(c) Asymptotic convergence
rate

(d) Iterations

Figure 4.7: One-dimensional linear advection equation for δt
2hx

= 0.5. Two-level
MGRIT with ω̃2 ∈ C, considering m = 2
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Chapter 4. Numerical results

4.3 One-dimensional advection equation with grid-

dependent dissipation

Lastly, we consider the one-dimensional advection equation with grid-dependent dis-

sipation subject to an initial condition and periodic boundary conditions,

∂u

∂t
− α∂u

∂x
− εhx

∂2u

∂x2
= 0

α > 0, ε > 0, x ∈ Ω = [0, L], t ∈ [0, T ]

u(x, 0) = u0(x), x ∈ Ω

u(0, t) = u(L, t), t ∈ [0, T ]

(4.5)

By applying the central difference for discretizing the spatial derivatives, we obtain

the upwind difference scheme with ε = 0.5. The backward difference for discretizing

the temporal derivative results in

uj = (I − δtG)−1uj−1, j = 1, 2, ..., Nt (4.6)

where the linear operator G in (2.1) is the two-point stencil α
hx

[−1, 1, 0]. The eigen-

values of G can be computed from the combination of the eigenvalues of a heat

equation and a linear advection equation, κγ = i
hx

sin(2πγ
Nx

) − 4ε
hx

sin2
(

γπ
2(Nx+1)

)
for

γ = 1, 2, ..., Nx.

4.3.1 Problem statement

The same function, domains, MGRIT residual norm tolerance, and maximum iter-

ations as the linear advection equation are used. The combination of grid points in

space nx and time nt are chosen so that a CFL is δt
hx

= 1.0.
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Chapter 4. Numerical results

4.3.2 Real valued weight

We start by varying non-unitary weights of ω̃2 ∈ R. Figure 4.8b shows that the

experimentally optimal weight is ω̃op = 1.9. Similar to the linear advection equation,

the modified theoretical estimate is much sharper but does not predict the optimal

weight of ω̃2.

(a) Asymptotic convergence rates and
theoretical convergence estimates for

(b) Iterations

Figure 4.8: One-dimensional advection equation with dissipation δt
hx

= 1.0. Two-level
MGRIT with ω̃2 ∈ R, considering m = 2

Each entry of Table 4.6 is formatted as experimentally optimal weight : conver-

gence rate (iteration count). We note that ω̃op for the multi-level are again smaller

than those for the two-level with the same m and problem size. As the problem

size increases, ω̃op are fairly stable. The iterations are reduced by about 6% for the

two-level and about 10− 20% for the multi-level.

4.3.3 Imaginary valued weight

For non-unitary weights of ω̃2 ∈ I, the experimentally optimal weights for the two-

and multi-level methods are ω̃op = 0 for various problem sizes and coarsening factors.

Since the iterations for the both methods are larger than those for ω, imaginary
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Chapter 4. Numerical results

Unitary weights ω

m / Size 1025× 1025 2049× 2049 3073× 3073 ||EFCF4, ω1=1||2 ≤
Two-level 2 0.239 (9) 0.240 (9) 0.242 (9) 0.332

4 0.516 (18) 0.528 (18) 0.534 (18) 0.599

V-cycle 2 0.521 (30) 0.671 (44) 0.671 (57) -

4 0.523 (28) 0.646 (41) 0.707 (51) -

Non-unitary weights ω̃

m / Size 1025× 1025 2049× 2049 3073× 3073 ||EFCF4, ω1=1||2 ≤
Two-level 2 1.9: 0.164 (9) 1.9: 0.162 (9) 1.9: 0.160 (9) 0.340

4 1.7: 0.469 (17) 1.7: 0.479 (17) 1.7: 0.464 (17) 0.688

V-cycle 2 1.6: 0.445 (25) 1.7: 0.563 (35) 1.5: 0.618 (45) -

4 1.4: 0.451 (25) 1.4: 0.604 (35) 1.5: 0.659 (40) -

Table 4.6: One-dimensional advection equation with dissipation for δt
hx

= 1.0. Exper-
imentally optimal weights, asymptotic convergence rates and iterations for MGRIT.
The modified theoretical estimates appears in the final column.

weights do not improve performance.

(a) Asymptotic convergence rates and
theoretical convergence estimates

(b) Iterations

Figure 4.9: One-dimensional advection equation with dissipation for δt
hx

= 1.0. Two-
level MGRIT with ω̃2 ∈ I, considering m = 2
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Chapter 4. Numerical results

4.3.4 Complex valued weight

For modified weights of ω̃2 ∈ C, Figure 4.7c and 4.7d depict that the smallest conver-

gence rate and iterations are attained when ω̃2 = 1.9, which is the combination of the

real valued- and imaginary valued- experimentally optimal weights found in the pre-

vious two sections. Similar to the linear advection equation, the original theoretical

convergence estimate captured in Figure 4.10a does not have the same pattern as the

observed convergence rate and is not sharp. For the multi-level method, the exper-

imentally optimal weights are also the real valued experimentally optimal weights.

Therefore, complex valued weights do not seem to contribute to better performance.

(a) Theoretical bounds (b) Theoretical bounds

(c) Asymptotic convergence
rate

(d) Iterations

Figure 4.10: One-dimensional advection equation with dissipation for δt
hx

= 1.0.
Two-level MGRIT with ω̃2 ∈ C, considering m = 2
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Chapter 4. Numerical results

4.3.5 Scalability

A scaling study similar to Section 4.1.5 is now carried out. For the strong scaling

study, the numbers of processors, N = 1, 8, 16, 31, 64, 128, with the fixed problem

size nx×nt = 2049× 2049 and m = 2 are tested. The number of processors in space

is again 1, as the code does not support spatial parallelism. Figure 4.11a depicts

the comparison in speedup between unitary and non-unitary weights when using V-

cycles and the experimentally optimal weight ω̃2 for the non-unitary case. A speedup

gain of approximately 25% is achieved near the minimum at 64 processors, roughly

reflecting the gain in iteration counts.

For the weak scaling study, the problem size is increased by a factor of 2 in

both dimensions so that the CFL number is held fixed at ht
hx

= 1.0. The number of

processors in space is again 1, and for this reason we expect to see a growth in time to

solution as the spatial problem increases, i.e., as we double the number of processors,

the problem size increases by a factor of 4, and only the increase in cost in the time

dimension is balanced out by more processors. The larger spatial problem size is

expected to increase the run-time because there is no spatial parallelism available.

Figure 4.11b depicts a comparison in time-to-solution between unitary and non-

unitary weights when using V-cycles and the experimentally optimal weight ω̃2 for

the non-unitary case. We see an expected growth in time to solution, and we see

a similar speedup when using non-unitary weights that corresponds to the gain in

iteration counts.
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Chapter 4. Numerical results

(a) Strong scaling

(b) Weak scaling

Figure 4.11: Strong and weak scaling studies for the one-dimensional advection equa-
tion with upwinding using ht

hx
= 1.0 and MGRIT V-cycles with m = 2.
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Chapter 5

Conclusion

Enhancing MGRIT with weighted-Jacobi and the experimentally optimal weight

can improve the convergence rate and save iterations. To our knowledge, these

are the first results exploring such weighted relaxation with MGRIT. For the one-

dimensional heat equation, the optimal weight found for one specific problem size

and a coarsening factor of two worked well for various problem sizes and coarsening

factors, saving 10 − 15% of the iterations. On the other hand, finding a universal

(near) optimal weight for the one-dimensional advection equation is not possible

with the tools derived here. While we had hoped that the theoretical convergence

estimates would help predict good experimental weight values, this did not turn out

to be the case. Even when relying on experiments, finding a good weight can be

difficult for advection. For example, if the experimentally optimal weight for the

two-level method is used for multi-level, this can yield worse results than the unitary

weight. The experimentally optimal weight needs to be varied depending on the

problem size and the coarsening factor m. Although there is not a simple way to

find the experimentally optimal weight for advection, if a good weight choice is found,

it can save 6− 24% of the iterations. Among the three types of weight values, a real

valued weight worked best for advection. For the heat equation, a complex valued
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Chapter 5. Conclusion

weight can produce the smallest convergence rate, although a real valued weight was

almost as effective, and for practical purposes performed as well.
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Chapter 6

Future Work

1. Improve the theoretical convergence estimate for powers of the error propaga-

tion matrix. See Appendix B.

2. Look at other discretizations such as SDIRK-2 and SDIRK-3 and higher-order

in space.

3. Consider F-cycles and modified weights in XBraid.
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Appendix A

Theoretical convergence estimate

derivations

From the section 3.1.3, the two-level error propagator for ω1 = 1 is given by

EFCF4,ω1=1 = (I −B−1
4 A4)(I − ω2A4)

= (Φm − Φ4)


(1− ω2)



0

1 0

Φ4 1 0

...
...

. . . 0

Φ
NT−1
4 Φ

NT−2
4 · · · 1 0


+ ω2Φm



0

0 0

1 0 0

...
...

. . . 0

Φ
NT−2
4 Φ

NT−3
4 · · · 0 0




Let λγ be the eigenvalues of Φ and µγ be the eigenvalues of Φ4, corresponding to
the same set of eigenvectors {vγ}. That is, Φ and Φ4 are diagonalized by the same
vectors, which is the case for our problems. We can then diagonalize EFCF

4,ω1=1 with
{vλ} and consider each γ separately. Then, the error propagator for each γ becomes

EFCF4,ω1=1, γ = (λmγ − µγ)


(1− ω2)



0

1 0

µγ 1 0

...
...

. . . 0

µ
NT−1
γ µ

NT−2
γ · · · 1 0


+ ω2λγ



0

0 0

1 0 0

...
...

. . . 0

µ
NT−2
γ µ

NT−3
γ · · · 0 0




The infinity norm of the two-level error propagator for each γ can be written as

||EFCF
4, ω1=1,γ||∞ = |λmγ − µγ|

{
|1− ω2|

NT−1∑
j

|µγ|j + |ω2||λγ|m
NT−2∑
j

|µγ|j
}

(A.1)

42



Appendix A. Theoretical convergence estimate derivations

Then, each summation term can be expressed using the geometric series

NT−1∑
j

|µγ|j =
1− |µγ|NT

1− |µγ|
, and

NT−2∑
j

|µγ|j =
1− |µγ|NT−1

1− |µγ|
(A.2)

From (A.1) and (A.2), we have

||EFCF
4, ω1=1,γ||∞

= |λmγ − µγ|
{
|1− ω2|

(
1− |µγ|NT

1− |µγ|

)
+ |ω2||λγ|m

(
1− |µγ|NT−1

1− |µγ|

)} (A.3)

From the construction of the two-level error propagator matrices,

||EFCF
4,ω1=1,γ||1 = ||EFCF

4,ω1=1,γ||∞

Using this equality and the inequality of matrix norms, it is also true that

||EFCF
4,ω1=1,γ||2 ≤

√
||EFCF
4,ω1=1,γ||1||EFCF

4,ω1=1,γ||∞ = ||EFCF
4,ω1=1,γ||1 = ||EFCF

4,ω1=1,γ||∞
(A.4)

Hence,

||EFCF
4,ω1=1,γ||2 ≤ ||EFCF

4,ω1=1,γ||∞ (A.5)

Then, the formula (A.4), the inequality (A.5), and taking the max over all γ implies

that

||EFCF
4, ω1=1ē||2

≤ max
γ
|λmγ − µγ|

{
|1− ω2|

(1− |µγ|NT
1− |µγ|

)
+ |ω2||λγ|m

(1− |µγ|NT−1

1− |µγ|

)}
||ē||2

(A.6)

The two-level error propagator from Section 3.1.4 for ω1 6= 1 can be derived in

the similar way, which results in

||EFCF
4, ω1 6=1ē||2

≤ max
γ
|λmγ − µγ|{

(
|ω1ω2||λγ|m − |ω2||1− ω1||λγ|

)(1− |µγ|NT−1

1− |µγ|

)
+ |1− ω2|

(1− |µγ|NT
1− |µγ|

)
}||ē||2

(A.7)
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Appendix B

Theoretical convergence estimate

for matrix powers

Based on the results in the paper Convergence analysis for parallel-in-time solution

of hyperbolic systems [3], we consider the theoretical convergence estimate from the

view of powers of the error propagation matrix. The intention is to provide a sharper

convergence estimate that predicts the behavior of MGRIT with weighted-Jacobi.

From the paper, the powers of the matrices EF
4,γ and EFCF

4,γ with k ≥ 2 are given by

(
EF4,γ

)k
= (λmγ − µγ)k



0

..

.

1 0 0 0(k
1

)
µγ 1 0 0 0(k+1

2

)
µ2γ

(k
1

)
µγ 1 0 0 0(k+2

3

)
µ3γ

(k+1
2

)
µ2γ

(k
1

)
µγ 1 0 0 0

...
. . .

. . .
. . .

. . .
. . .(NT−1

NT−k
)
µ
NT−k
γ · · ·

(k+1
2

)
µ2γ

(k
1

)
µγ 1 0 · · · 0
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Appendix B. Theoretical convergence estimate for matrix powers

(
EFCF4,γ

)k
= (λmγ − µγ)k(λmγ )k



0

...

1 0 0 0(k
1

)
µγ 1 0 0 0(k+1

2

)
µ2γ

(k
1

)
µγ 1 0 0 0(k+2

3

)
µ3γ

(k+1
2

)
µ2γ

(k
1

)
µγ 1 0 0 0

...
. . .

. . .
. . .

. . .
. . .(NT−1−k

NT−2k

)
µ
NT−2k
γ · · ·

(k+1
2

)
µ2γ

(k
1

)
µγ 1 0 · · · 0


The theoretical convergence estimates for F- and FCF-relaxations are derived as

||EF
4ē||2 ≤ max

γ
|λmγ − µγ|k

1

(k − 1)!

[
NT−k∑
j=0

(
k−1∏
i=1

(j + i)

)
|µγ|j

]
||ē||2

||EFCF
4 ē||2 ≤ max

γ
|λmγ − µγ|k|µmγ |k

1

(k − 1)!

[
NT−2k∑
j=0

(
k−1∏
i=1

(j + i)

)
|µγ|j

]
||ē||2

Using the above convergence estimates, the theoretical convergence estimate for

non-unitary weights with ω1 = 1 and ω2 6= 1 can be written as

||EFCF
4, ω1 6=1ē||2 ≤ max

γ
|λmγ − µγ|k

1

(k − 1)!{
|1− ω2|k

[
NT−k∑
j=0

(
k−1∏
i=1

(j + i)

)
|µγ|j

]
+ |ω2|k|µmγ |k

[
NT−2k∑
j=0

(
k−1∏
i=1

(j + i)

)
|µγ|j

]}
||ē||2

(B.1)

Figure B.1 shows the theoretical convergence estimates (B.1) and experimental

convergence rates of unitary and non-unitary weights with respect to iterations. The

theoretical estimate is not sharp, especially for advection equation. It also does not

predict the behavior of MGRIT with non-unitary weights. It could possibly produce

a sharper estimate and a better prediction by combining the terms (1 − ω2) and

ω2 in (B.1) as it was done in the modified theoretical estimate in the section 3.2.2.

However, a path forward to acommplish this was not clear.
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Appendix B. Theoretical convergence estimate for matrix powers

(a) Heat equation, ω2 = 1.3 (b) Linear advection equation, ω2 = 1.8

(c) Advection equation with dissipation,
ω2 = 1.9

Figure B.1: Theoretical convergence estimates using powers of the error propagation
matrix compared with experimental convergence rates for the three model problems.
“Unitary The” refers to the theoretical estimate based on matrix powers when using
unitary relaxation weights and “Unitary Exp” refers to the experimental data when
using unitary relaxation weights. Terms “Non-unitary The” and “Non-unitary Exp”
are defined analogously.
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Appendix C

Extra Tables

Unitary weights ω

m / Size 1025× 513 2049× 1025 4097× 2049 ||EFCF4, ω1=1||2 ≤
Two-level 2 0.410 (14) 0.416 (14) 0.420 (14) 0.498

4 0.602 (29) 0.692 (33) 0.712 (34) 0.750

V-cycle 2 0.520 (30) 0.635 (43) 0.713 (67) -

4 0.571 (30) 0.652 (41) 0.689 (61) -

Non-unitary weights ω̃2

m / Size 1025× 513 2049× 1025 4097× 2049

Two-level 2 1.8: 0.299 (13) 1.8: 0.308 (13) 1.7: 0.352 (13)

4 1.4: 0.573 (27) 1.4: 0.663 (30) 1.5: 0.663 (31)

V-cycle 2 1.5: 0.456 (24) 1.6: 0.590 (34) 1.6: 0.615 (50)

4 1.4: 0.536 (27) 1.4: 0.582 (34) 1.4: 0.638 (50)

Table C.1: One-dimensional advection equation with the central difference scheme
for δt

2hx
= 1.0. Asymptotic convergence rates and iterations for MGRIT with ω and

ω̃. The theoretical convergence estimate appears in the final column.
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