University of New Mexico UNM Digital Repository

Regulatorily Completed

Sandia National Labs/NM Technical Reports

9-1-2005

Justification for Class III Permit Modification September 2005 DSS Site 1034 Operable Unit 1295 Building 6710 Septic System at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl complete

Recommended Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification September 2005 DSS Site 1034 Operable Unit 1295 Building 6710 Septic System at Technical Area III." (2005). https://digitalrepository.unm.edu/snl_complete/144

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

This work supported by the
United States Department of Energy
under contract DE-AC04:94185000.

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 1/2)

Environmental Restoration Project

Site History

Drain and septic system site histories for the 19 AOCs are as follows:

AOC Number	Site Name	Location	Year Building and System Built	Year Drain or Septic System Abandoned	Year(s) Septic Fank Effluent Sampled	Year Septic Tank Pumped For the last Time
276	Former Bidg 879X Salver Recovery Sump	1 4.1	1948 1978	1994	No septic tank at this site	NA.
1004	Bldg 6969 Septic System	Vehicle Range	1988	System is active	Periodically since 1992	Periodically
1031	Former Bidgs 6589 and 6600 Septic System	TAIII	196-	1991 (septic tank and seepage pus backfilled in 2002)	1992, 1995	1996
1044	Bldg 6710 Septic System	TA-M	195x	Farly 1990s	1990.1991,	1996
1035	Bldg 6715 Septic System	TA-Ifi	1962	Farly 1990s	1990:1991. 1992:1995	1996
1076	Bidg 6922 Septic System	1 A · III	1955	1991	1990 1991. 1992, 1995. 2005	2005
1052	Bldg 803 Seepage Pit	IA-I	1957	Сикломп	No septic tank at this site	NA NA
1078	Bldg 6640 Septic System	IAIII	1959	190)	1990-1991	Unknown (backfilled in 1991)
1079	Bldg 6643 Septic System	TA-III	1989	1991	1990-1991, 1992, 1995 2005	2005
1080	Bldg 6644 Septic System	LA-III	1989	1991	1990 1991	1996
1081	Bldg 6650 Septic System	T A. JIL	(southern systems Early 1980s (northern system)	1901	1992-1995 (south septic tank) 2004-tnorth septic tank)	1996 (south septic tank) Unknown (north septic tank)
1084	Bldg 6505 Septic System	TA-III	1954	[99]	1990 1991	Unknown (backfilled before 2002)
1087	Bldg 6743 Seepage Pit	IA III	1967	2004-2005	No septic tank at this site	NA
092	MO 228-230 Septic System	TA III	1988	1991	1990 1901	Unknown (backfilled before 2005)
098	TA-V Plenum Rooms Drywell	TAN	1958	Early 1990s	Ne septic tank at this site	NA
102	Former Bldg 889 Septic System	TAI	Early 1950s	Early 1990s	1992 1995	Unknown (removed prior to 1999)
1104	Bldg 6595 Scepage Pit	IAV	1966	Larly 1990s	No septic tank at this site	NA
113	Bldg 6597 Drywell	IAV	1971	Prior to 2002	No septic tank at this site	NA
120	Bldg 6643 Drywell	TA III	1080	1991	No septic tank at this site	NA

Depth to Groundwater

Depth to groundwater at these 19 AOCs is as follows:

AOC Number	Site Name	Location	Groundwater Depth (ft bgs)
276	Former Bldg 829X Silver Recovery Sump	TA-l	555
1004	Bldg 6969 Septic System	Robotic Vehicle Range	548
1031	Former Bldgs. 6589 and 6600 Septic System	TA-III	486
1034	Bldg 6710 Septic System	TA-III	470
1035	Bldg 6715 Septic System	TA-III	470
1036	BIdg 6922 Septic System	TA-III	490
1052	Bldg 803 Seepage Pit	TA-l	552
1078	Bldg 6640 Septic System	TA-III	476
1079	Bldg 6643 Septic System	TA-III	487
1080	Bldg 6644 Septic System	TA-III	480
1081	Bldg 6650 Septic System	TA-III	480
1084	Bldg 6505 Septic System	TA-III	508
1087	Bldg 6743 Seepage Pit	TA-III	461
1092	MO 228-230 Septic System	TA-III	488
1098	TA-V Plenum Rooms Drywell	TA-V	509
1102	Former Bldg 889 Septic System	TA-I	535
1104	Bldg 6595 Seepage Pit	TA-V	507
1113	Bldg 6597 Drywell	TA-V	515
1120	Bldg 6643 Drywell	TA-III	483

Constituents of Concern

- · VOC
- SVOCs
- PCBs
- HE Compounds
- MetalsCyanide
- Radionuclides

Investigations

- A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil vapor samplers, and soil borings.
- Ten of the 19 AOCs were selected by NMED for passive soil-vapor sampling to screen for VOCs; no significant VOC contamination was identified at any of the ten sites.
- Soil samples were collected from directly beneath drainfield drain lines, seepage pits, and drywells to determine if COCs were released to the environment from drain systems.
- Four of the sites were selected by NMED for active soil vapor sampling to screen for VOCs. Each of the
 active soil-vapor monitoring wells was 150 ft deep with vapor sampling ports at 5, 20, 70, 100, and 150-ft
 bgs. The VOC concentrations were significantly lower than the 10 ppmv action level established by
 NMED.

The years that site-specific characterization activities were conducted and soil sampling depths at each of these 19 AOC sites are as follows:

AOC Number	Site Name	Buried Components (Drain Lines, Drywells) Located With a Backhoe	Soil Sampling Beneath Drainlines. Seepage Pits, Drywells	Type(s) of Drain System, and Soil Sampling Depths (ft bgs)	Passive Soil Vapor Sampling	Active Soil Vapor Monitor Well Installation and Sampling
276	Former Bldg 829X Silver Recovery Sump	Nene	1994, 2002	Silver Recovery Sump 8, 13	2002	None
1004	Bldg 6969 Septic System	2002	2002	Drainfield 8, 13	2002	2003
1031	Former Bldgs 6589 and 6600 Septic System	2002	2002	Scepage Pits, 15, 20	2002	None
1034	Bldg 6710 Sepuc System	None	2002	Seepage Pit 14, 19	2002	None
1035	Bldg 6715 Septic System	None	2002	Scepage Pit 11, 16	2002	None
1036	Bldg 6922 Septic System	1997	1998, 1999	Dramfield 5, 10	None	None
1052	Bldg 803 Seepage Pit	None	2002	Seepage Pit. 22, 27	2002	2003
1078	Bldg 6640 Septic System	2002	2002	Drainfield 5, 10	None	None
1079	Bldg 6643 Septic System	2002	2002	Dramfield 11, 16	None	None
1080	Bldg 6644 Septic System	2002	2002	Dramfield Burehole 1 & 2 5 10 Burehole 3 - 6, 11	None	None
1(181	Bldg 6650 Septic System	2003 (north septic tank)	2002	South seepage pit 10, 12, 15, 17 North seepage pit 10, 12, 15, 17, 20, 24, 25	2002	2003
1084	Bldg 6505 Septic System	2002	2007	Dramfield, 3, 8	2002	None
1087	Bldg 6743 Septic System	None	2002	Seepage Pit 8, 13	2002	None
1092	MO 228-230 Septic System	2002/2003	2002	Drainfield 6, 11	None	2003
1098	TA-V Plenum Rooms Drywell	None	2002	Drywell 10, 15	None	None
1102	Former Bldg 889 Septic System	1999/2002	2002	Seepage Pit 25, 30	None	None
1104	Bldg 6595 Seepage Pit	None	2002	Seepage Pit 11 16	None	None
1113	Bldg 6597 Drywell	2002	2002	Drywell 5, 10	None	None
1120	Bldg 6643 Drywell	2002	2002	Drywell 8, 13	2002	None

For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

under contract DE-AC04-94185000

Drain and Septic Systems - Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035, 1036, 1052, 1078, 1079, 1080, 1081, 1084, 1087, 1092, 1098, 1102, 1104, 1113, and 1120 (Poster 2/2)

Environmental Restoration Project

Summary of Data Used for NFA Justification

- Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, gross alpha/beta activity, and radionuclides by gamma spectroscopy.
- There were VOCs detected at the 19 sites, SVOCs were detected at 15 of the sites, PCBs were detected at 9 sites, and cyanide was identified at 14 of the sites. HE compounds were detected at one of the sites (AOC 1113)
- Barium was detected at concentrations above the background value at six sites. Chromium and arsenic
 were detected at concentrations above background values at five sites. Silver was detected at concentrations above the background value at three sites, lead was detected above the background value at two
 sites, and mercury was detected above the background value at one site. No other metals were detected
 above background concentrations.
- Uranium-235 was detected at an activity slightly above the background activity at 5 of the 19 sites and, although not detected, the MDA for U-235 exceeded the background activity at 14 sites and the MDA for U-238 exceeded the background activity at one site. Gross alpha activity was slightly above background activity at five of the 19 sites, and gross beta activity was above the background activity at one site.
- All confirmatory soil sample analytical results for each site were used for characterizing that site, for performing the risk screening assessment, and as justification for the NFA proposal for the site.

Recommended Future Land Use

Industrial land use was established for these 19 AOC sites.

Results of Risk Analysis

- Risk assessment results for industrial and residential land-use scenarios are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process"
- Because COCs were present in concentrations greater than background-screening levels or because
 constituents were present that did not have background-screening numbers, it was necessary to perform
 risk assessments for these all of these AOCs. The risk assessment analysis evaluated the potential for
 adverse health effects for industrial and residential land-use scenarios.
- The maximum concentration value for lead was 22.2 J mg/kg at AOC 1081 and 11.9 mg/kg at AOC 1087: these exceed the background value of 11.8 mg/kg. The EPA intentionally does not provide any human health toxicological data on lead; therefore, no risk parameter values could be calculated. The NMED guidance for lead screening concentrations for construction and industrial land-use scenarios are 750 and 1,500 mg/kg, respectively. The EPA screening guidance value for a residential land-use scenario is 400 mg/kg. The maximum concentration for lead at these two sites are less than all the screening values; therefore, lead was eliminated from further consideration in the human health risk assessment for each site.
- The non-radiological total human health HIs for 18 of the 19 AOCs are below NMED guidelines for a residential land-use scenario.
- For four sites, the total estimated excess cancer risks are at or slightly above the residential land-use scenario guideline. However, the incremental excess cancer risk values for these four sites are below the NMED residential land-use scenario guideline.
- For one of the 19 sites (AOC 1081), the total HI and the estimated excess cancer risk are above the NMED guidelines for the residential land-use scenario due to elevated levels of arsenic and silver. However, the total HI and estimated excess cancer risk values are below the NMED guidelines for the industrial land-use scenario.
- The total human health TEDEs for industrial land-use scenarios ranged from 0.001 to 0.46 mrem/yr, all of which are substantially below the EPA numerical guideline of 15 mrem/yr. The total human health TEDEs for residential land-use scenarios ranged from 0.0052 to 0.12 mrem/yr, all of which are substantially below the EPA numerical guideline of 75 mrem/yr. Therefore, these AOCs are eligible for unrestricted radiological release.
- Using the SNL predictive ecological risk and scoping assessment methodologies, it was concluded that a
 complete ecological pathway for each of 18 of the sites was not associated with the respective COPELs
 for that site. Thus, a more detailed ecological risk assessment to predict the level of risk was not deemed
 necessary for these sites.
- Ecological risks associated with AOC 1084 were predicted incorporating potential receptors and site-specific COPECs. The HQ values predicted were less than one, with the exception of barium. For barium, the contribution from background concentrations accounts for the majority (52%) of the HQ values. Therefore, ecological risks associated with this site are expected to be low.
- In conclusion, human health and ecological risks are acceptable for 18 sites for a residential land-use scenario and for all 19 for an industrial land-use scenario per NMED guidance. Thus, 18 of these sites are proposed for CAC without institutional controls, and one site (AOC 1081) is proposed for CAC with institutional controls.

The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

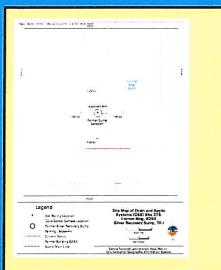
The total HIs and excess cancer risk values for the nonradiological COCs at the 19 AOCs are as follows:

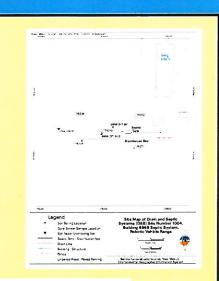
		Residential Land-Use Scenario			
AOC Number	Site Name	Total Hazard Index	Excess Cancer Risk		
276	Former Bldg 829X Silver Recovery Sump	0.27	2E-5 Total ^a /3.95E-6 Incremental		
1004	Bldg 6969 Septic System	0.08	2E-6 Total		
1031	Former Bldgs. 6589 and 6600 Septic System	0.25	1E-5 Total ^a /2.55E-6 Incremental		
1034	Bldg 6710 Septic System	0.00	2E-9 Total		
1035	Bldg 6715 Septic System	0.04	3E-9 Total		
1036	Bldg 6922 Septic System	0.26	1E-5 Total ^a /8.35E-7 Incremental		
1052	Bldg 803 Seepage Pit	0.00	2E-6 Total		
1078	Bldg 6640 Septic System	0.27	1E-5 Total ² /3.72E-7 Incremental		
1079	Bldg 6643 Septic System	0.00	3E-8 Total		
1080	Bldg 6644 Septic System	0.00	4E-8 Total		
1084	Bldg 6505 Septic System	0.08	None		
1087	Bldg 6743 Seepage Pit	0.00	4E-9 Total		
1092	MO 228-230 Septic System	0.06	None		
1098	TA-V Plenum Rooms Drywell	0.03	3E-7 Total		
1102	Former Bldg 889 Septic System	0.00	1E-10 Total		
1104	Bldg 6595 Seepage Pit	0.00	2F-6 Total		
1113	Bldg 6597 Drywell	0.14	1E-7 Total		
1120	Bldg 6643 Drywell	0.12	1E-6 Total		
NMED Gu	idance for Residential Land Use	< 1	<1E-5		
AOC		Indus	trial Land-Use Scenario		
Number	Site Name		Excess Cancer Risk		
1081	Bldg 6650 Septic System	0.39	5E-6 Total		
NMED Gt	iidance for Industrial Land Use	< 1	<1E-5		

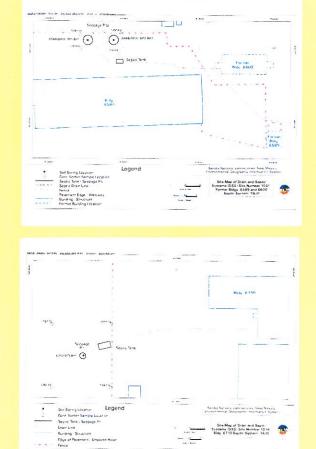
Maximum value exceeds NMED guidance for specified land-use scenario, therefore, incremental values are shown

For More Information Contact

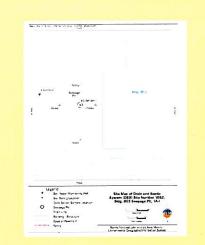
U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478

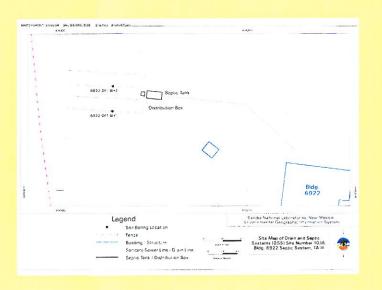



Drain and Septic Systems (DSS) Areas of Concern (AOCs) 276, 1004, 1031, 1034, 1035 1036, 1052



Environmental Restoration Project

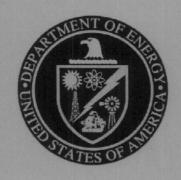




Septic system demolition and backfilling.

For More Information Contact

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089 Sandia National Laboratories Environmental Restoration Project Task Leader: Mike Sanders Telephone (505) 284-2478


Sandia National Laboratories

Justification for Class III Permit Modification September 2005

DSS Site 1034
Operable Unit 1295
Building 6710 Septic System at Technical
Area III

CAC (SWMU Assessment Report) Submitted September 2004 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories

Justification for Class III Permit Modification September 2005

DSS Site 1034
Operable Unit 1295
Building 6710 Septic System at Technical
Area III

CAC (SWMU Assessment Report) Submitted September 2004 RSI Submitted April 2005

Environmental Restoration Project

United States Department of Energy Sandia Site Office

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

SEP 1 7 2004

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe. NM 87505

Dear Mr. Bearzi:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Solid Waste Management Unit (SWMU) Assessment Reports and Proposals for Corrective Action Complete for Drain and Septic Systems (DSS) Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120 at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518. These documents are compiled as DSS Round 6 and No Further Action (NFA) Batch 24.

This submittal includes descriptions of the site characterization work and risk assessments for the above referenced DSS Sites. The risk assessments conclude that for these sites: (1) there is no significant risk to human health under either the industrial or residential land-use scenarios; and (2) that there are no ecological risks associated with these sites.

Based on the information provided, DOE and Sandia are requesting a determination of Corrective Action Complete without controls for these DSS sites.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner

Manager

Enclosure

cc w/enclosure:

L. King, EPA, Region 6 (Via Certified Mail)

W. Moats, NMED-HWB (via Certified Mail)

M. Gardipe, NNSA/SC/ERD

C. Voorhees, NMED-OB

cc w/o enclosure:

K. Thomas, EPA, Region 6

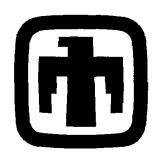
F. Nimick, SNL, MS 1089

D. Stockham, SNL, MS 1087

B. Langkopf, SNL, MS 1087

M. Sanders, SNL, MS 1087

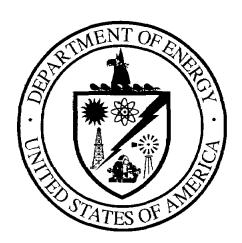
R. Methvin, SNL MS 1087


J. Pavletich, SNL MS 1087

A. Villareal, SNL, MS 1035

A. Blumberg, SNL, MS 0141

M. J. Davis, SNL, MS 1089


ESHSEC Records Center, MS 1087

Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR CORRECTIVE ACTION COMPLETE DRAIN AND SEPTIC SYSTEMS SITE 1034, BUILDING 6710 SEPTIC SYSTEM

September 2004

United States Department of Energy Sandia Site Office

TABLE OF CONTENTS

LIST (OF TAB	LES NEXES	BREVIATIONS	v vii
1.0	PROJ	ECT BAG	CKGROUND	1-1
2.0	DSS S	SITE 103	4: BUILDING 6710 SEPTIC SYSTEM	2-1
	2.1 2.2		scription and Operational History	
		2.2.1 2.2.2	Site Description Operational History	
	2.3	Land U	se	2-7
		2.3.1 2.3.2	Current Land UseFuture/Proposed Land Use	
3.0	INVE	STIGATO	PRY ACTIVITIES	3-1
	3.1 3.2 3.3	Investig	arygation 1—Septic Tank Samplinggation 2—Passive Soil-Vapor Sampling	3-1
		3.3.1 3.3.2	Passive Soil-Vapor Sampling MethodologySoil-Vapor Survey Results and Conclusions	
	3.4	Investiç	gation 2—Soil Sampling	3-2
		3.4.1 3.4.2 3.4.3	Soil Sampling Methodology Soil Sampling Results and Conclusions Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results	3-8
	3.5	Site Sa	mpling Data Gaps	3-23
4.0	CON	CEPTUAL	SITE MODEL	4-1
	4.1 4.2 4.3	Enviror	and Extent of Contamination	4-1
		4.3.1 4.3.2	SummaryRisk Assessments	

TABLE OF CONTENTS (Concluded)

4.4	Baselin	e Risk Assessments	4-8	
		4.4.1 4.4.2	Human Health Ecological	
5.0			ATION FOR CORRECTIVE ACTION COMPLETE WITHOUT ETERMINATION	5-1
	5.1 5.2		nn	
60	REFE	RENCES		6-1

LIST OF FIGURES

	÷	_		_	_
•	ı	ч	u	1	C

2.2.1-1	Location Map of Drain and Septic Systems (DSS) Site Number 1034, Bldg. 6710 Septic System, TA-III	2-3
2.2.1-2	Site Map of Drain and Septic Systems (DSS) Site Number 1034, Bldg. 6710 Septic System, TA-III	2-5
3.4-1	View of DSS Site 1034, the Building 6710 Septic System. The septic tank access is inside the covered metal culvert by the fence. The seepage pit access is covered by wood planking in the right foreground. View to the east. September 19, 2002	3-3
3.4-2	Collecting soil samples with the Geoprobe™ from the borehole drilled through the seepage pit at DSS Site 1034, the Building 6710 Septic System. View to the northeast. September 19, 2002	3-5
4.2-1	Conceptual Site Model Flow Diagram for DSS Site 1034, Building 6710 Septic System	4-3

This page intentionally left blank.

LIST OF TABLES

T	a	b	I	е

3.4-1	Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1034, Building 6710 Septic System Soil Samples	3-7
3.4.2-1	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, VOC Analytical Results, September 2002 (Off-Site Laboratory)	3-9
3.4.2-2	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, VOC Analytical MDLs, September 2002 (Off-Site Laboratory)	3-10
3.4.2-3	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, SVOC Analytical Results, September 2002 (Off-Site Laboratory)	3-11
3.4.2-4	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, SVOC Analytical MDLs, September 2002 (Off-Site Laboratory)	3-12
3.4.2-5	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, PCB Analytical Results, September 2002 (Off-Site Laboratory)	3-15
3.4.2-6	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, PCB Analytical MDLs, September 2002 (Off-Site Laboratory)	3-15
3.4.2-7	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, HE Compound Analytical Results, September 2002 (Off-Site Laboratory)	3-16
3.4.2-8	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, HE Compound Analytical MDLs, September 2002 (Off-Site Laboratory)	3-17
3.4.2-9	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Metals Analytical Results, September 2002 (Off-Site Laboratory)	3-18
3.4.2-10	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Metals Analytical MDLs, September 2002 (Off-Site Laboratory)	3-19

LIST OF TABLES (Concluded)

Table

3.4.2-11	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical Results, September 2002 (Off-Site Laboratory)	3 -2 0
3.4.2-12	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, September 2002 (Off-Site Laboratory)	3-20
3.4.2-13	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, September 2002 (On-Site Laboratory)	3-21
3.4.2-14	Summary of DSS Site 1034, Building 6710 Septic System, Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results, September 2002 (Off-Site Laboratory)	3-22
4.2-1	Summary of Potential COCs for DSS Site 1034, Building 6710 Septic System	4-5
4.3.2-1	Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1034, Building 6710 Septic System Carcinogens	4-7

LIST OF ANNEXES

Annex

A	DSS Site 1034 Septic Tank Sampling Results
В	DSS Site 1034 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results
С	DSS Site 1034 Soil Sample Data Validation Results
D	DSS Site 1034 Risk Assessment

This page intentionally left blank.

ACRONYMS AND ABBREVIATIONS

AOP Administrative Operating Procedure

BA butyl acetate

bgs below ground surface
CAC Corrective Action Complete
COC constituent of concern
DSS Drain and Septic Systems

EB equipment blank

EPA U.S. Environmental Protection Agency

ER Environmental Restoration FIP Field Implementation Plan

GS Gore-Sorber™ HE high explosive(s) HI hazard index

HWB Hazardous Waste Bureau
KAFB Kirtland Air Force Base
MDA minimum detectable activity
MDL method detection limit

mrem millirem

NFA no further action

NMED New Mexico Environment Department

OU Operable Unit

PCB polychlorinated biphenyl

RCRA Resource Conservation and Recovery Act RPSD Radiation Protection Sample Diagnostics

SAP Sampling and Analysis Plan

SNL/NM Sandia National Laboratories/New Mexico

SVOC semivolatile organic compound SWMU Solid Waste Management Unit

TA Technical Area TB trip blank

TEDE total effective dose equivalent
TOP Technical Operating Procedure
VOC volatile organic compound

yr year

This page intentionally left blank.

1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of

other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).

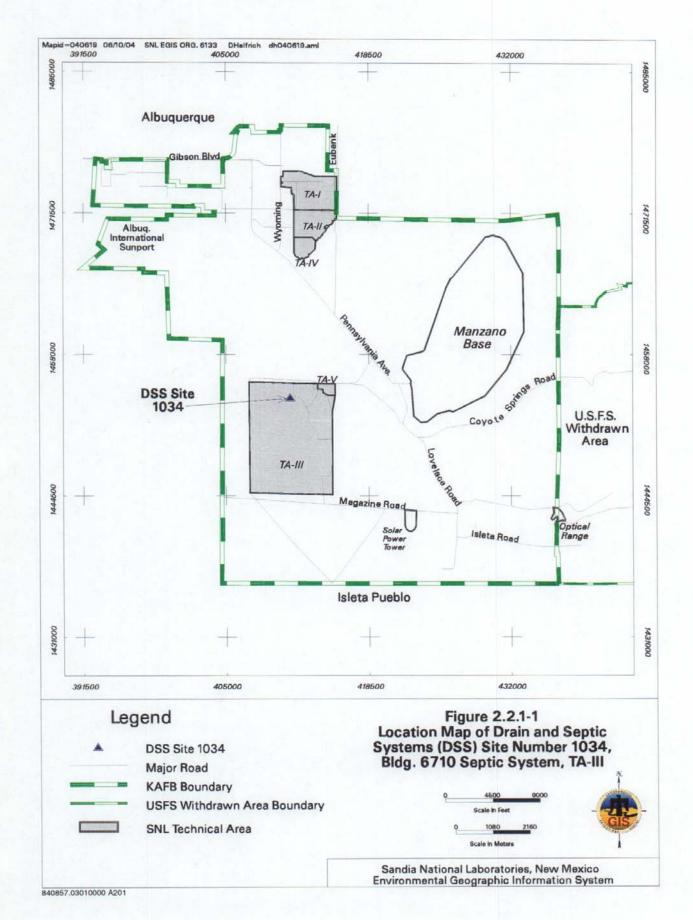
AL/9-04/WP/SNL04:r5550.doc 1-2 840857.03.01 09/10/04 2:39 PM

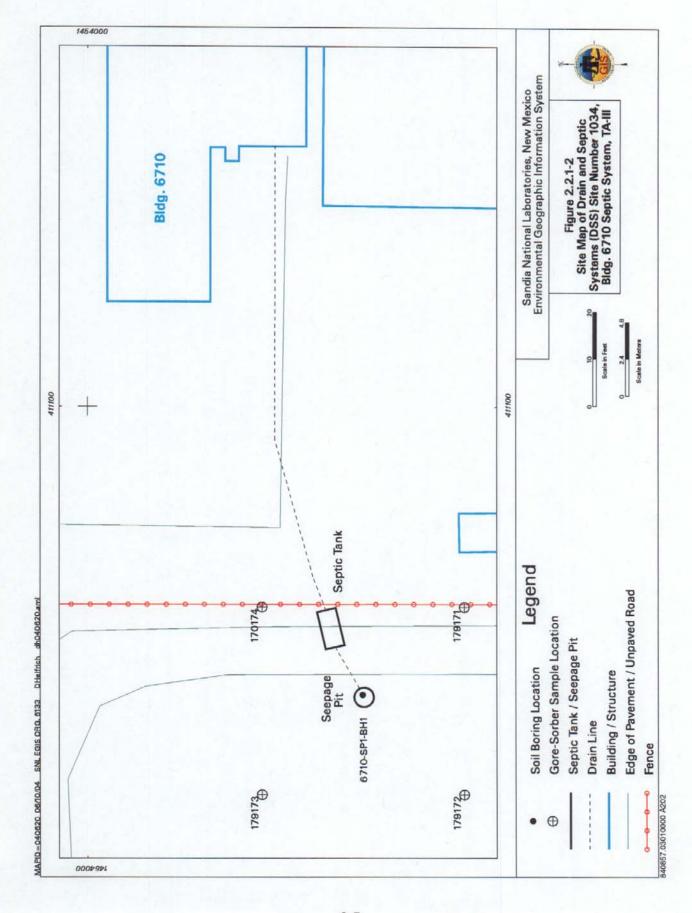
2.0 DSS SITE 1034: BUILDING 6710 SEPTIC SYSTEM

2.1 Summary

The SNL/NM ER Project conducted an assessment of DSS Site 1034, the Building 6710 Septic System. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report provides documentation that the site was sufficiently characterized, that no significant releases of contaminants to the environment occurred via the Building 6710 Septic System, and that it does not pose a threat to human health or the environment under either industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment and septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for DSS Site 1034 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, a determination of Corrective Action Complete (CAC) without controls (NMED April 2004) is recommended for DSS Site 1034 based upon sampling demonstrating that COCs released from the site into the environment pose an acceptable level of risk.


2.2 Site Description and Operational History


2.2.1 Site Description

DSS Site 1034 is located in SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (Figure 2.2.1-1). The site is located approximately 2,800 feet southwest of the entrance to TA-III and approximately 100 feet west of the southwest corner of Building 6710 (Figure 2.2.1-2). The abandoned septic system consisted of a septic tank that emptied to single seepage pit (Figure 2.2.1-2). Construction details are based upon engineering drawings (SNL/NM March 1990) and site inspections. The system received discharges from Building 6710, approximately 100 feet to the east.

The surface geology at DSS Site 1034 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1034, and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic conductivities (SNL/NM March 1996). Site vegetation primarily consists of desert grasses, shrubs, and cacti.

This page intentionally left blank.

The ground surface in the vicinity of the site is flat to very slightly sloping to the west. The closest major drainage lies south of the site and terminates in a playa just west of KAFB. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,374 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 470 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production wells to DSS Site 1034 are KAFB-4 and KAFB-11, approximately 2.75 and 3.4 miles to the northwest and northeast, respectively. The nearest groundwater monitoring wells are at the Mixed Waste Landfill, approximately 1,300 feet south of the site.

2.2.2 Operational History

Available information indicates that Building 6710 was constructed in 1958 (SNL/NM March 2003), and it is assumed the septic system was constructed at the same time. Building 6710 is currently known as the Air Gun Test Facility. Because operational records are not available, the site investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations. In the early 1990s, Building 6710 was connected to an extension of the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1034 is industrial.

2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1034 is industrial (DOE et al. September 1995).

This page intentionally left blank.

3.0 INVESTIGATORY ACTIVITIES

3.1 Summary

Three assessment investigations have been conducted at this site. In late 1990 or early 1991, 1992, and 1995, waste characterization samples were collected from the septic tank (Investigation 1). In April and May 2002, a passive soil-vapor survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soil around the seepage pit (Investigation 2). In 2002, near-surface soil samples were collected from one boring drilled through the center of, and beneath, the seepage pit (Investigation 3). Investigations 2 and 3 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

As part of the SNL/NM Septic System Monitoring Program, aqueous and/or sludge samples for waste characterization were collected from the Building 6710 septic tank in late 1990 or early 1991, 1992, and 1995 (SNL/NM April 1991, SNL/NM June 1993, SNL/NM December 1995). The 1990 or 1991 aqueous sample was analyzed at an off-site laboratory for VOCs, semivolatile organic compounds (SVOCs), oil and grease, nitrate, phenolics, metals, and gross alpha/beta activity. The 1992 sludge sample was analyzed at an off-site laboratory for gross alpha/beta activity, tritium, and radionuclides by gamma spectroscopy. The 1995 sludge sample was analyzed for VOCs, SVOCs, pesticides and polychlorinated biphenyls (PCBs), metals, radionuclides by gamma spectroscopy, isotopic plutonium, isotopic strontium, isotopic thorium, isotopic uranium, and tritium. The analytical results for the three sampling events are presented in Annex A. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release.

On March 20, 1996, the residual contents, approximately 230 gallons of waste and added water, were pumped out and managed according to SNL/NM policy (Shain August 1996).

3.3 Investigation 2—Passive Soil-Vapor Sampling

In April and May 2002, a passive soil-vapor survey was conducted in the Building 6710 septic system area. This survey was required at this site by NMED/HWB regulators and was conducted to determine whether significant VOC contamination was present in the soil at the site.

3.3.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber™ (GS) passive soil-vapor survey is a qualitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. The technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil vapor chemistry over a two- to three-week period rather than at one point in time.

Each GS soil-vapor sampler consists of a 1-foot-long, 0.25-inch-diameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 3-foot-deep by 1.5-inch-diameter borehole was drilled with the Geoprobe[™]. A sample identification tag and location string were attached to the GS sampler and lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1-foot of the borehole, from the cork to the ground surface, was backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for the VOCs of interest are reported as mass (expressed in micrograms) of the individual VOCs absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

3.3.2 Soil-Vapor Survey Results and Conclusions

A total of four GS passive soil-vapor samplers were placed in the seepage pit area of the site (Figure 2.2.1-2). Samplers were installed at the site on April 29, 2002, and were retrieved on May 14, 2002. Sample locations are designated by the same six-digit sample number both on Figure 2.2.1-2 and in the analytical results tables presented in Annex B.

As shown in the analytical results tables in Annex B, the GS samplers were analyzed for a total of 30 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and trans-dichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 17 individual or groups of VOCs were detected in the GS samplers installed at this site. The analytical results indicated there were no areas of significant VOC contamination at the site that would require additional characterization.

3.4 Investigation 2—Soil Sampling

Soil sampling beneath the seepage pit was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED. On September 19, 2002, soil samples were collected from one borehole drilled through, and beneath, the seepage pit. The soil boring location is shown on Figure 2.2.1-2. Figures 3.4-1 and 3.4-2 show the site and soil samples being collected at DSS Site 1034, respectively. A summary of the borehole sample depths, sample analyses, analytical methods, laboratories, and sampling date is presented in Table 3.4-1.

Figure 3.4-1

View of DSS Site 1034, the Building 6710 Septic System. The septic tank access is inside the covered metal culvert by the fence. The seepage pit access is covered by wood planking in the right foreground. View to the east. September 19, 2002

Figure 3.4-2

Collecting soil samples with the Geoprobe™ from the borehole drilled through the seepage pit at DSS Site 1034, the Building 6710 Septic System. View to the northeast. September 19, 2002

Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1034, Building 6710 Septic System Soil Samples Table 3.4-1

Date Samples Collected	09-19-02	09-19-02	09-19-02	09-19-02	09-19-02	09-19-02	09-19-02	09-19-02	09-19-02
Analytical Laboratory	GEL	GEL	GEL	GEL	GEL	GEL	GEL	RPSD	GEL
Analytical Parameters and EPA Methods ^a	VOCs EPA Method 8260	SVOCs EPA Method 8270	PCBs EPA Method 8082	HE Compounds EPA Method 8330)	RCRA Metals EPA Methods 6000/7000	Hexavalent Chromium EPA Method 7196A	Total Cyanide EPA Method 9012A	Gamma Spectroscopy EPA Method 901.1	Gross Alpha/Beta Activity EPA Method 900.0
Total Number of Soil Samples	2	2	2	2	2	2	2	2	2
Top of Sampling Intervals in each Borehole (# hos)	14, 19	14, 19	14, 19	14, 19	14, 19	14, 19	14, 19	14, 19	14, 19
Number of		-	_	-	1	-	-	-	
Sampling	Seepage Pit								

^aEPA November 1986.

Below ground surface.
Drain and Septic Systems.
U.S. Environmental Protection Agency.
Foot (feet).

General Engineering Laboratories, Inc.

High explosive(s).Polychlorinated biphenyl.

= Resource Conservation and Recovery Act.

Radiation Protection Sample Diagnostics Laboratory.
Semivolatile organic compound.
Volatile organic compound. bgs DSS DSS EPA ff GEL HE PCB RCRA RCRA RPSD SVOC VOC

3.4.1 Soil Sampling Methodology

In the borehole drilled through the center of the seepage pit, the shallow sample interval started at the estimated base of the gravel aggregate in the bottom of the seepage pit, and the lower (deep) interval started 5 feet below the top of the upper interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter Geoprobe™ sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3 or 4 feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon® film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1034 are presented and discussed in this section.

VOCs

VOC analytical results for the two soil samples collected from the one seepage pit borehole are summarized in Table 3.4.2-1. Method detection limits (MDLs) for the VOC soil analyses are presented in Table 3.4.2-2. 2-Butanone was detected in the 19-foot-bgs sample. No other VOCs were detected in these samples. This compound was not detected in the associated trip blanks. It is a common laboratory contaminant and may not indicate soil contamination at this site.

SVOCs

SVOC analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-3. MDLs for the SVOC soil analyses are presented in Table 3.4.2-4. Two SVOCs were detected in these samples. Pyrene was detected in the 14-foot-bgs sample, and bis(2-ethylhexyl) phthalate was detected in the 19-foot-bgs sample.

Table 3.4.2-1 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, VOC Analytical Results September 2002 (Off-Site Laboratory)

			VOCs
			(EPA Method 8260a)
	Sample Attributes	(μg/kg)	
Record		Sample	
Numberb	ER Sample ID	Depth (ft)	2-Butanone
605728	6710-SP1-BH1-14-S	14	ND (3.6)
605728	6710-SP1-BH1-19-S	19	5.52
Quality Ass	urance/Quality Control S	amples (μg/L)	
605728	829X-SP1-BH1-TBc	NA	ND (2.31)
605728	829X-SP1-TB°	NA	ND (2.31)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cER sample ID reflects the final site for VOC samples included in this shipment.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet). ID = Identification.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram. μg/L = Microgram(s) per liter.

 μ g/L = Microgram(s) p NA = Not applicable.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample. SP = Seepage pit. TB = Trip blank.

VOC = Volatile organic compound.

Table 3.4.2-2 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, VOC Analytical MDLs September 2002 (Off-Site Laboratory)

EPA Method 8260a Detection Limit (μg/kg) Acetone 3.38–3.45 Benzene 0.433–0.441 Bromodichloromethane 0.471–0.48 Bromoform 0.471–0.48 Bromomethane 0.481–0.49 2-Butanone 3.6–3.67 Carbon disulfide 2.27–2.31 Carbon tetrachloride 0.471–0.48	
Analyte (μg/kg) Acetone 3.38–3.45 Benzene 0.433–0.441 Bromodichloromethane 0.471–0.48 Bromoform 0.471–0.48 Bromomethane 0.481–0.49 2-Butanone 3.6–3.67 Carbon disulfide 2.27–2.31	
Acetone 3.38-3.45 Benzene 0.433-0.441 Bromodichloromethane 0.471-0.48 Bromoform 0.471-0.48 Bromomethane 0.481-0.49 2-Butanone 3.6-3.67 Carbon disulfide 2.27-2.31	
Benzene 0.433-0.441 Bromodichloromethane 0.471-0.48 Bromoform 0.471-0.48 Bromomethane 0.481-0.49 2-Butanone 3.6-3.67 Carbon disulfide 2.27-2.31	
Bromodichloromethane 0.471–0.48 Bromoform 0.471–0.48 Bromomethane 0.481–0.49 2-Butanone 3.6–3.67 Carbon disulfide 2.27–2.31	
Bromoform 0.471-0.48 Bromomethane 0.481-0.49 2-Butanone 3.6-3.67 Carbon disulfide 2.27-2.31	
Bromomethane 0.481–0.49 2-Butanone 3.6–3.67 Carbon disulfide 2.27–2.31	
2-Butanone 3.6–3.67 Carbon disulfide 2.27–2.31	
Carbon disulfide 2.27–2.31	
1 0010011101100	
Chlorobenzene 0.394-0.402	
Chloroethane 0.779–0.794	
Chloroform 0.5–0.51	
Chloromethane 0.356–0.363	
Dibromochloromethane 0.481–0.49	
1,1-Dichloroethane 0.452–0.461	
1,2-Dichloroethane 0.413-0.422	
1,1-Dichloroethene 0.481–0.49	
cis-1,2-Dichloroethene 0.452-0.461	
trans-1,2-Dichloroethene 0.51-0.52	
1,2-Dichloropropane 0.462–0.471	
cis-1,3-Dichloropropene 0.413-0.422	
trans-1,3-Dichloropropene 0.24-0.245	
Ethylbenzene 0.365–0.373	
2-Hexanone 3.63–3.7	
Methylene chloride 1.3–1.32	
4-Methyl-2-pentanone 3.88–3.95	
Styrene 0.375–0.382	
1,1,2,2-Tetrachloroethane 0.875–0.892	
Tetrachloroethene 0.365–0.373	
Toluene 0.327–0.333	
1,1,1-Trichloroethane 0.51–0.52	
1,1,2-Trichloroethane 0.519-0.529	
Trichloroethene 0.433–0.441	
Vinyl acetate 1.71–1.75	
Vinyl chloride 0.538–0.549	
Xylene 0.375–0.382	

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram. VOC = Volatile organic compound.

Table 3.4.2-3 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, SVOC Analytical Results September 2002 (Off-Site Laboratory)

	Sample Attributes		SVOCs (EP	'A Method 8270a) (μg/kg)
Record		Sample		, , , ,
Number ^b	ER Sample ID	Depth (ft)	Pyrene	bis(2-Ethylhexyl) phthalate
605728	6710-SP1-BH1-14-S	14	132 J	
605728	6710-SP1-BH1-19-S	19	ND (16.7)	94.9 J (333)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.

J = Analytical result was qualified as an estimated value.

J () = The reported value is greater than or equal to the MDL but is less than the practical

quantitation limit, shown in parentheses.

MDL = Method detection limit. μg/kg = Microgram(s) per kilogram.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample. SP = Seepage pit.

SVOC = Semivolatile organic compound.

Table 3.4.2-4 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs September 2002 (Off-Site Laboratory)

	EPA Method 8270a
]	Detection Limit
Analyte	(µg/kg)
Acenaphthene	8
Acenaphthylene	16.7
Anthracene	16.7
Benzo(a)anthracene	16.7
Benzo(a)pyrene	16.7
Benzo(b)fluoranthene	16.7
Benzo(g,h,i)perylene	16.7
Benzo(k)fluoranthene	16.7
4-Bromophenyl phenyl ether	34
Butylbenzyl phthalate	28.7
Carbazole	16.7
4-Chlorobenzenamine	167
bis(2-Chloroethoxy)methane	12.3
bis(2-Chloroethyl)ether	37.3
bis-Chloroisopropyl ether	11
4-Chloro-3-methylphenol	167
2-Chloronaphthalene	13.7
2-Chlorophenol	15.3
4-Chlorophenyl phenyl ether	19.7
Chrysene	16.7
o-Cresol	26
Dibenz[a,h]anthracene	16.7
Dibenzofuran	17
1,2-Dichlorobenzene	10
1.3-Dichlorobenzene	11.3
1,4-Dichlorobenzene	15.7
3,3'-Dichlorobenzidine	167
2,4-Dichlorophenol	20.7
Diethylphthalate	17.7
2,4-Dimethylphenol	167
Dimethylphthalate	18.3
Di-n-butyl phthalate	24
Dinitro-o-cresol	167
2,4-Dinitrophenol	167
2.4-Dinitrotoluene	25.3
2,6-Dinitrotoluene	33.3
Di-n-octyl phthalate	30.3
	22.3
Diphenylamine bis(2-Ethylhexyl) phthalate	30
Fluoranthene	16.7
Fluorene	4

Refer to footnotes at end of table.

Table 3.4.2-4 (Concluded) Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs September 2002 (Off-Site Laboratory)

	EPA Method 8270 ^a Detection Limit
Analyte	(μg/kg)
Hexachlorobenzene	20
Hexachlorobutadiene	12.7
Hexachlorocyclopentadiene	167
Hexachloroethane	22
Indeno(1,2,3-cd)pyrene	16.7
Isophorone	16
2-Methylnaphthalene	16.7
4-Methylphenol	33.3
Naphthalene	16.7
2-Nitroaniline	167
3-Nitroaniline	167
4-Nitroaniline	37
Nitrobenzene	20.3
2-Nitrophenol	17
4-Nitrophenol	167
n-Nitrosodipropylamine	22.7
Pentachlorophenol	167
Phenanthrene	16.7
Phenol	12.7
Pyrene	16.7
1,2,4-Trichlorobenzene	12.7
2,4,5-Trichlorophenol	17.3
2,4,6-Trichlorophenol	27.3

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.
μg/kg = Microgram(s) per kilogram.
SVOC = Semivolatile organic compound.

PCBs

PCB analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-5. MDLs for the PCB soil analyses are presented in Table 3.4.2-6. No PCBs were detected in any of the samples collected.

HE Compounds

High explosive (HE) compound analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-7. MDLs for the HE soil analyses are presented in Table 3.4.2-8. No HE compounds were detected in any of the samples collected

RCRA Metals and Hexavalent Chromium

Resource Conservation and Recovery Act (RCRA) metals and hexavalent chromium analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-9. MDLs for the metals in soil analyses are presented in Table 3.4.2-10. None of the metal concentrations detected in the samples exceeded their corresponding NMED-approved background concentrations.

Total Cyanide

Total cyanide analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-11. MDLs for the cyanide soil analyses are presented in Table 3.4.2-12. Cyanide was detected in the 19-foot-bgs sample from the borehole.

Radionuclides

Analytical results for the gamma spectroscopy analysis of the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-13. No activities above NMED-approved background levels were detected in any sample analyzed. However, although not detected, the minimum detectable activities (MDAs) for the uranium-235 analyses exceeded the respective background activity because the standard gamma spectroscopy count time for soil samples (6,000 seconds) was not sufficient to reach the NMED-approved background activity established for SNL/NM soil. Even though the MDAs may be slightly elevated, they are still very low, and the risk assessment outcome for the site is not significantly impacted by their use.

Gross Alpha/Beta Activity

Gross alpha/beta analytical results for the two soil samples collected from the seepage pit borehole are summarized in Table 3.4.2-14. No gross alpha or beta activity was detected above the New Mexico-established background levels (Miller September 2003) in any of the samples. These results indicate no significant levels of radioactive material are present in the soil at the site.

Table 3.4.2-5

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, PCB Analytical Results September 2002

(Off-Site Laboratory)

	Sample Attributes		PCBs
Record		Sample	(EPA Method 8082a)
Numberb	ER Sample ID	Depth (ft)	(μ g/kg)
605728	6710-SP1-BH1-14-S	14	ND
605728	6710-SP1-BH1-19-S	19	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.

μg/kg = Microgram(s) per kilogram.

ND = Not detected.

PCB = Polychlorinated biphenyl.

S = Soil sample. SP = Seepage pit.

Table 3.4.2-6

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, PCB Analytical MDLs September 2002

(Off-Site Laboratory)

Analyte	EPA Method 8082 ^a Detection Limit (μg/kg)
Aroclor-1016	1
Aroclor-1221	2.82
Aroclor-1232	1.67
Aroclor-1242	1.67
Aroclor-1248	1
Aroclor-1254	0.5
Aroclor-1260	1

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.
μg/kg = Microgram(s) per kilogram.
PCB = Polychlorinated biphenyl.

Table 3.4.2-7

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, HE Compound Analytical Results September 2002

(Off-Site Laboratory)

	Sample Attributes		HE
Record		Sample	(EPA Method 8330a)
Number ^b	ER Sample ID	Depth (ft)	(μg/kg)
605728	6710-SP1-BH1-14-S	14	ND
605728	6710-SP1-BH1-19-S	19	ND

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

HE = High explosive(s).
ID = Identification.

μg/kg = Microgram(s) per kilogram.

ND = Not detected.
S = Soil sample.
SP = Seepage pit.

Table 3.4.2-8 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, HE Compound Analytical MDLs September 2002 (Off-Site Laboratory)

	EPA Method 8330 ^a
A 1.	Detection Limit
Analyte	(μg/kg)
2-Amino-4,6-dinitrotoluene	18.1
4-Amino-2,6-dinitrotoluene	34.1
1,3-Dinitrobenzene	34.1
2,4-Dinitrotoluene	55
2,6-Dinitrotoluene	48
HMX	48
Vitrobenzene	48
2-Nitrotoluene	24
3-Nitrotoluene	24
4-Nitrotoluene	24
RDX	48
Tetryl	22.1
1,3,5-Trinitrobenzene	
2,4,6-Trinitrotoluene	29 48

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HE = High Explosive(s).

HMX = Octahydro-1,3,5,7-tetrazocine.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram.

RDX = Hexahydro-1,3,5-triazine.

Tetryl = Methyl-2,4,6-trinitrophenylnitramine.

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, Metals Analytical Results (Off-Site Laboratory) September 2002 Table 3.4.2-9

	Sample Attributes					Metals (EPA Me	Metals (EPA Methods 6000/7000/7196A ^a) (mg/kg)	17196Aa)	(mg/kg)		
Record		Sample Death (ft)	Arecord	Boring	Arcanio Barium Cadmium	Chromina	Deal (IVI) minority	ָ מַ	Mercury	Selenium	Silver
605728	505728 6710-SP1-BH1-14-S	14	1.87 J	44.2	0.196 J		ND (0.0543 J) 4.44 J	4.44 J	0.00179 J	0.00179 J ND (0.159)	0.323 J
					(0.49)				(0.00954)		(0.49)
605728	605728 6710-SP1-BH1-19-S	19	3.75	34.1	0.188 J	9.23 J	ND (0.054 J) 4.97 J	4.97 J	0.00222 J	3.00222 J ND (0.159) ND (0.0884	ND (0.0884)
					(0.49)				(0.00962)		
Backgrour	Sackground Concentration—Southwest Area	west Area	4.4	214	6.0	15.9	1	11.8	<0.1	⊽	∀
Supergroup ^c	pc										

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cDinwiddle September 1997. BH = Borehole.

Drain and Septic Systems.
U.S. Environmental Protection Agency.
Environmental Restoration.
Foot (feet).

= Identification. BH DSS EPA ER 1D

= Analytical result was qualified as an estimated value.

= The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.

= Method detection limit. JQ MDL

= Milligram(s) per kilogram.

= Not detected above the MDL, shown in parentheses. = Soil sample. = Seepage pit.

mg/kg ND() S SP

Table 3.4.2-10 Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, Metals Analytical MDLs September 2002 (Off-Site Laboratory)

	EPA Method 6000/7000/7196a
	Detection Limit
Analyte	(mg/kg)
Arsenic	0.202
Barium	0.0654
Cadmium	0.0469
Chromium	0.158
Chromium (VI)	0.054-0.0543
Lead	0.278
Mercury	0.000938-0.000945
Selenium	0.159
Silver	0.0884

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit. mg/kg = Milligram(s) per kilogram.

Table 3.4.2-11

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical Results September 2002

(Off-Site Laboratory)

	Sample Attributes		Total Cyanide
Record		Sample	(EPA Method 9012Aa)
Numberb	ER Sample ID	Depth (ft)	(mg/kg)
605728	6710-SP1-BH1-14-S	14	ND (0.0381)
605728	6710-SP1-BH1-19-S	19	0.0602 J (0.278)

Note: Values in **bold** represent detected analytes.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.

J() = The reported value is greater than or equal to the MDL but is

less than the practical quantitation limit, shown in parentheses.

MDL = Method detection limit.mg/kg = Milligram(s) per kilogram.

ND () = Not detected above the MDL, shown in parentheses.

S = Soil sample. SP = Seepage pit.

Table 3.4.2-12

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, Total Cyanide Analytical MDLs September 2002 (Off-Site Laboratory)

	EPA Method 9012A ^a
	Detection Limit
Analyte	(mg/kg)
Total Cyanide	0.0381-0.0466

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.mg/kg = Milligram(s) per kilogram.

Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results September 2002 Summary of DSS Site 1034, Building 6710 Septic System (On-Site Laboratory) Table 3.4.2-13

	Sample Attributes				Activity	(EPA Meth	Activity (EPA Method 901.1a) (pCi/g)	(6/i		
Record		Sample	Cesium-137	37	Thorium-232	1-232	Uranium-235	235	Uranium-238	-238
Numberb	ER Sample ID	Depth (ft)	Result	Error	Result	Error	Result	Error	Result	Error
31	605731 6710-SP1-BH1-14-S	14		0.0116	0.322	0.185	ND (0.174)	;	ND (0.426)	;
31	605731 6710-SP1-BH1-19-S	19	ND (0.0285)	ı	0.443	0.233	ND (0.174)		ND (0.428)	1
ackground upergroup	ackground Activity—Southwest Area upergroup ^d		0.079	AN	1.01	NA	0.16	NA A	4.1	A A

Note: Values in bold exceed background soil activities.

^aEPA November 1986.

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

^dDinwiddie September 1997.

= Borehole. = Drain and Septic Systems. DSS EPA

= U.S. Environmental Protection Agency. = Environmental Restoration.

≂ Foot (feet). ft MDA MDA 띴

= Identification.

= Minimum detectable activity.

= Not detected above the MDA, shown in parentheses. Not applicable. Ϋ́

= Not detected, but the MDA (shown in parentheses) exceeds background activity.

= Picocurie(s) per gram. pCi/g S SP

= Soil sample.

⇒ Seepage pit.⇒ Error not calculated for nondetect results.

Table 3.4.2-14

Summary of DSS Site 1034, Building 6710 Septic System Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results September 2002

(Off-Site Laboratory)

	Sample Attributes		Activ	rity (EPA Meth	nod 900.0a) (p	Ci/g)
Record		Sample	Gross	Alpha	Gross	Beta
Number ^b	ER Sample ID	Depth (ft)	Result	Error€	Result	Error€
605728	6710-SP1-BH1-14-S	14	5.92	2.14	17.3	1.42
605728	6710-SP1-BH1-19-S	19	9.43	2.82	15.3	1.36
Backgrou	ind Activity ^d		17.4	NA	35.4	NA

^aEPA November 1986.

dMiller September 2003.

BH = Borehole.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).
ID = Identification.
NA = Not applicable.

pCi/g = Picocurie(s) per gram.

S = Soil sample. SP = Seepage pit.

3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS Project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicate, equipment blank (EB), and trip blank (TB) samples. Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 site samples. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all the samples in that batch. No VOCs were detected in the TBs for DSS Site 1034 (Table 3.4.2-1).

No duplicate soil samples or EBs were collected at this site.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December

^bAnalysis request/chain-of-custody record.

^cTwo standard deviations about the mean detected activity.

1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). Annex C contains the data validation reports for the samples collected at this site. The data are acceptable for use in this request for a determination of CAC without controls.

3.5 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1034.

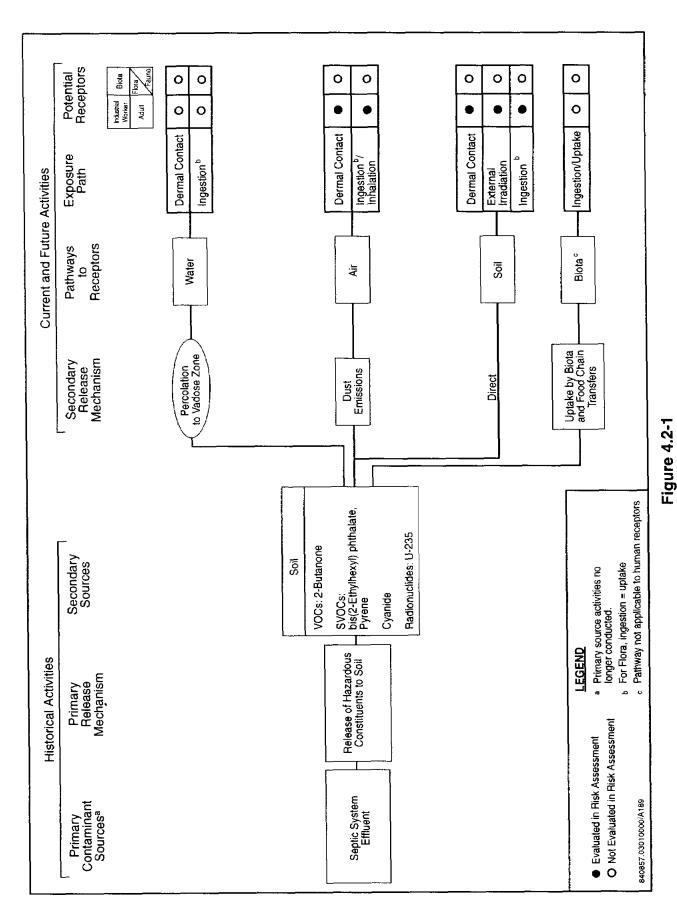
This page intentionally left blank.

4.0 CONCEPTUAL SITE MODEL

The conceptual site model for DSS Site 1034, the Building 6710 Septic System, is based upon the COCs identified in the soil samples collected from beneath the seepage pit at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1034 are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, and radionuclides. The VOC 2-butanone and the SVOCs bis(2-ethylhexyl) phthalate and pyrene were detected in these samples. Cyanide was detected in one sample but since it does not have a quantified background screening concentration, it is unknown if this COC exceeds background. No PCBs, HE compounds, or hexavalent chromium were detected in any of the soil samples collected at this site. None of the eight RCRA metals were detected at concentrations above the approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils (Dinwiddie September 1997). When a metal concentration exceeded its maximum background screening value, it was considered further in the risk assessment process. None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. However, the MDAs for the uranium-235 analyses exceeded the corresponding background activity. Finally, no gross alpha/beta activity was detected above the New Mexico-established background levels.


4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the seepage pit. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the seepage pit (Figure 4.2-1). The depth to groundwater at the site (approximately 470 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion on the fate and transport of COCs at DSS Site 1034.

Table 4.2-1 summarizes the potential COCs for DSS Site 1034. All potential COCs were retained in the conceptual model and were evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1034 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The

This page intentionally left blank.

Conceptual Site Model Flow Diagram for DSS Site 1034, Building 6710 Septic System

Summary of Potential COCs for DSS Site 1034, Building 6710 Septic System Table 4.2-1

							Number of Samples
		-		-			Where COCs
			COCs Detected or	Maximum			Detected with
			of the Control of the	Bockground			Concentrations
			with Concentrations	המכולקים			Greater than
			Greater than	Limit/Southwest	Maximum		
			Background or	Area	Concentration ^c	Average	Background or
		Number of	Nonchantified	Supergroup	(All Samples)	Concentration	Nondnantified
Č	- F	Samples	Background	(mg/kg)	(mg/kg)	(mg/kg)	Backgrounde
5	Jo 1ype	Calling	2-Butanone	NAN	0.0055	0.0037	
		7			10000	0.0550	
		7	bis(2-Ethylhexyl)	₹Z	0.09480.0	0.000	-
			phthalate				
		2	Pvrene	NA	0.132 J	0.0702	
	The state of the s	1 0	doo'N	₹Z	AN	ΑZ	None
		7			< 4	VIV	anoN
HE Compounds		2	None	¥Z.	X.	C .	21014
RCRA Metals		2	None	NA	NA	NA	None
Town Chart Charles	Con i con	2	None	Ϋ́	Ϋ́	AN	None
5		c	Cyapida	CZ	0.0602 J	0.0396	-
Cyanide		7	Cyallide		177 07 014	Join	0
Radionuclides	Gamma Spectroscopy	7	Uranium-235	0.16	ND (0.174)	5	2
	Gross Alpha	2	None	ΨZ	NA	NA	None
	Groce Bota	2	None	NA	NA	NA	None
	Gloss Dela	j					

Number of samples includes duplicates and splits.

Dinwiddie September 1997

Maximum concentration is either the maximum amount detected, or for radionuclides, the greater of either the maximum detection or the maximum MDA above packground.

Average concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect esults, divided by the number of samples.

See appropriate data table for sample locations.

An average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy. = Not detected above the MDA, shown in parentheses. = Not calculated NC NC NC NC = Constituent of concern.

High explosive(s).Analytical result was qualified as an estimated value. = Drain and Septic Systems. COC DSS HE

= Minimum detectable activity.

MDA

= Milligram(s) per kilogram. = Method detection limit. mg/kg NA

= Not applicable.

Volatile organic compound.

= Resource Conservation and Recovery Act.

= Polychlorinated biphenyl. = Picocurie(s) per gram.

 Semivolatile organic compound. pCi/g RCRA SVOC VOC

4-5

dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.

No pathways to groundwater and no intake routes through flora or fauna are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion of the exposure routes and receptors at DSS Site 1034.

4.3 Site Assessment

Site assessment at DSS Site 1034 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex D discusses the risk assessment performed for DSS Site 1034 in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1034 poses no significant threat to human health under either the industrial or residential land-use scenarios. Ecological risks were found to be insignificant because no pathways exist.

4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risk at DSS Site 1034. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1034 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because 2-butanone, bis(2-ethylhexyl) phthalate, pyrene, cyanide, and uranium-235 are present above background, have MDAs above background, or have nonquantified background levels, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex D provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1034 is 0.00 for the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.00. The estimated excess cancer risk is 5E-10 for DSS Site 1034 COCs for an industrial land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 4.95E-10. Both the incremental HI and excess cancer risk are below NMED guidelines.

The HI calculated for the COCs at DSS Site 1034 is 0.00 for the residential land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). Incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.00. The estimated excess cancer risk for DSS Site 1034 COCs is 2E-9 for a residential land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. The incremental excess cancer risk is 2.15E-9. Both the incremental HI and incremental excess cancer risk are below NMED guidelines.

For the radiological COCs, one of the constituents (uranium-235) had MDA values greater than the corresponding background values. The incremental total effective dose equivalent (TEDE) and corresponding estimated cancer risk from radiological COCs are much lower than the EPA guidance values; the estimated TEDE is 2.0E-3 millirem (mrem)/year (yr) for the industrial landuse scenario. This value is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding incremental estimated cancer risk value is 2.3E-8 for the industrial landuse scenario. Furthermore, the incremental TEDE for the residential landuse scenario that results from a complete loss of institutional controls is 5.2E-3 mrem/yr with an associated risk of 6.8E-8. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1034 is eligible for unrestricted radiological release.

The incremental nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

Table 4.3.2-1
Summation of Incremental Radiological and Nonradiological Risks from DSS Site 1034, Building 6710 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	4.95E-10	2.3E-8	2.3E-8
Residential	2.15E-9	6.8E-8	7.0E-8

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997b) also was performed as set forth by the NMED Risk-Based Decision Tree in the "RPMP [RCRA Permits Management Program] Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex D, Sections IV, VII.2, and VII.2.1). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program,

Sandia National Laboratories, New Mexico" (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.

All COCs at DSS Site 1034 are located at depths greater than 5 feet bgs. Therefore, no complete ecological pathways exist at this site, and a more detailed ecological risk assessment is not necessary.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1034 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that no complete pathways exist at DSS Site 1034, a baseline ecological risk assessment is not required for the site.

5.0 RECOMMENDATION FOR CORRECTIVE ACTION COMPLETE WITHOUT CONTROLS DETERMINATION

5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, a determination of CAC without controls is recommended for DSS Site 1034 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.
- None of the COCs warrant ecological concern because no complete pathways exist at the site.

5.2 Criterion

Based upon the evidence provided in Section 5.1, a determination of CAC without controls (NMED April 2004) is recommended for DSS Site 1034. This is consistent with the NMED's NFA Criterion 5, which states, "the SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

This page intentionally left blank.

6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shephard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment for Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, "List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program." July 8, 1996.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB, September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Gore, see Gore, W.L. and Associates.

Gore, W.L. and Associates (Gore), June 2002. "Gore-Sorber Screening Survey Final Report, Non-ER Drain and Septic, Kirtland AFB, NM," W.L. Gore Production Order Number 10960025, Sandia National Laboratories/New Mexico, June 6, 2002

IT, see IT Corporation.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding "State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples." September 12, 2003.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2002.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

New Mexico Environment Department (NMED) March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED) April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act, § 74-4-10," New Mexico Environment Department, Santa Fe, New Mexico. April 29, 2004.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), March 1990. SNL/NM Facilities Engineering Drawing 102112-A7 showing the Building 6710 septic system, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 1991. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Results for Detected Parameters, Technical Area III and Coyote Canyon Test Field, April 1991," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 1993. "Sandia National Laboratories/New Mexico Septic Tank Monitoring Report, 1992 Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1995. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Reports, December 1995," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

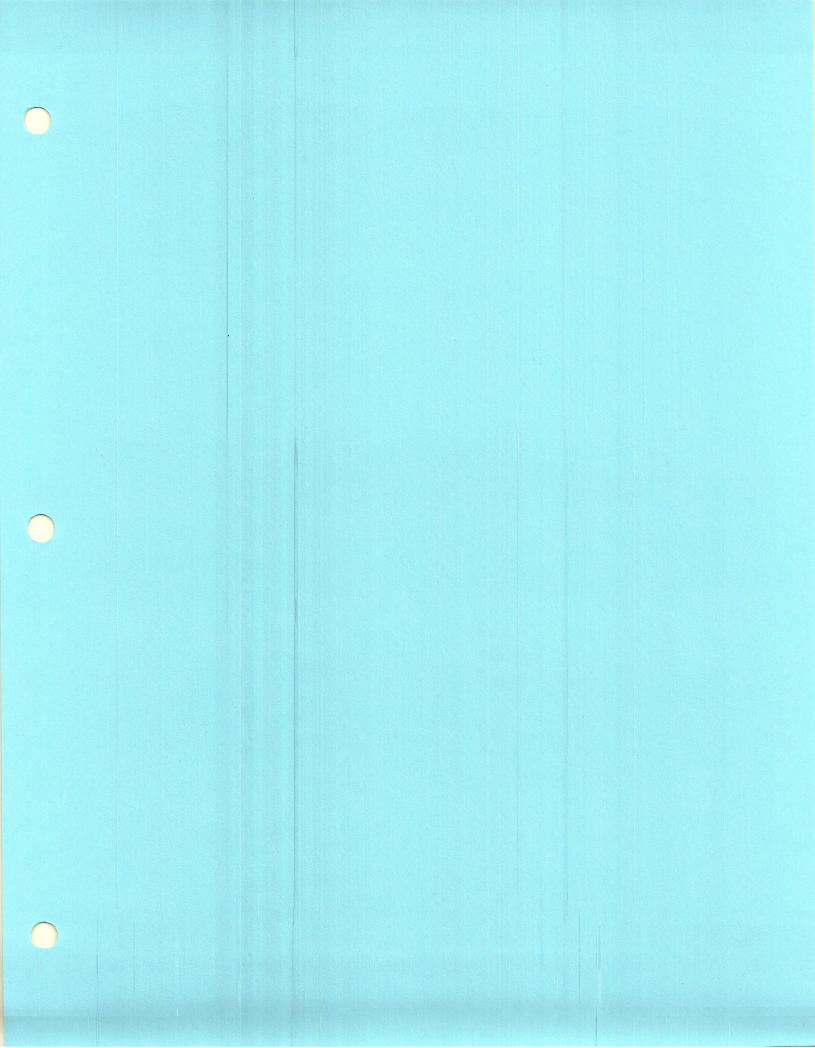
Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.


Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous Sandia National Laboratories/New Mexico septic tanks at Sandia National Laboratories/New Mexico. Albuquerque, New Mexico. August 23, 1996.

SNL/NM, see Sandia National Laboratories/New Mexico.

- U.S. Department of Energy (DOE) and U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service. September 1995.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington D.C.
- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997a. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997b. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

ANNEX A
DSS Site 1034
Septic Tank Sampling Results

Results of Septic tank sampling conducted between 12/18/90 and 1/8/91 for buildings noted.

PBDionne

4-17-91

Nick Durand

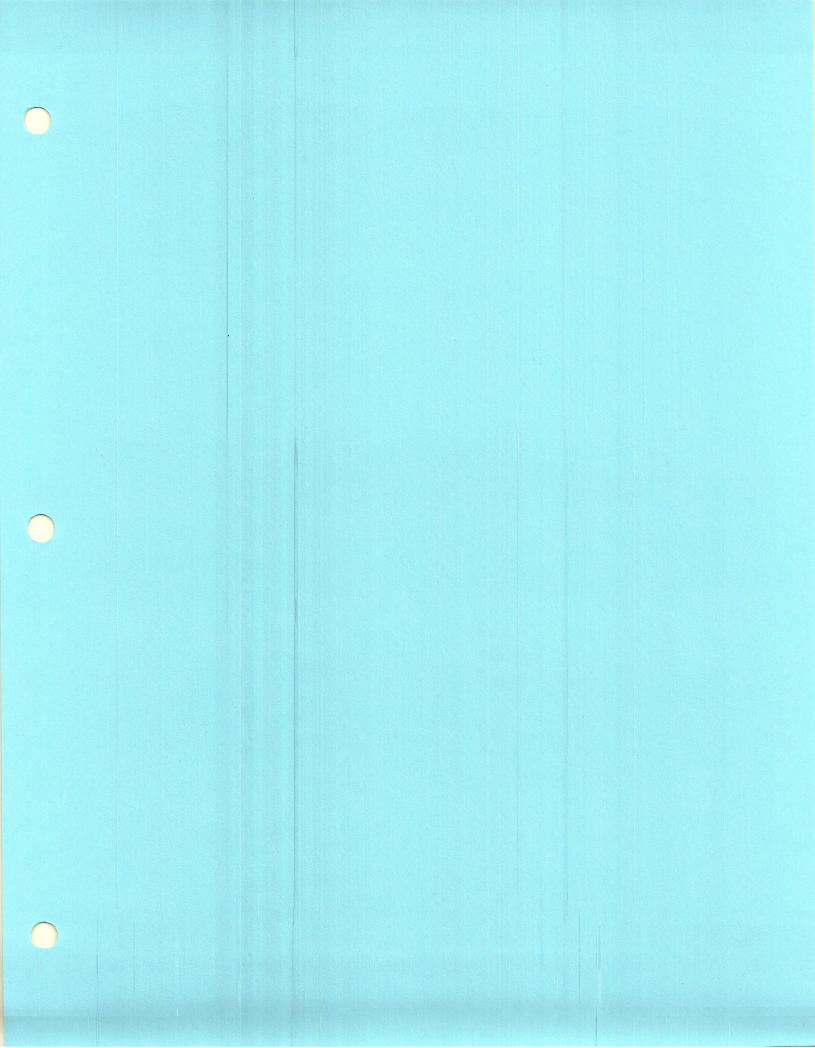
For your information.

David Dionne

TABLE 18

SUMMARY OF ANALYTICAL RESULTS FOR DETECTED PARAMETERS TECHNICAL AREA III AND COYOTE CANYON TEST FIELD SEPTIC TANK SAMPLING

BUILDING 6710


SAMPLE NUMBERS SNLA004835, SNLA004858, SNLA004836

Parameter	Results	Units
VOLATILE ORGANICS		
Acetone*	0.007	mg/l
Toluene	0.085	mg/l
SEMIVOLITILE ORGANICS		
Bis (2-ethylhexyl) Phthalate	0.003	mg/l
1,2-Dichlorobenzene	0.004	mg/l
4-Methylphenol	0.13	mg/I
Phenol*	0.082	mg/l
INORGANICS		
Oil and Grease	90	mg/l
Nitrate as N	0.14	mg/l
Phenolics	0.21	mg/l
METALS		
Barium	0.61	mg/l
Cadmium	0.019	mg/l
Copper	0.24	mg/l
Lead	0.09	mg/l
Manganese	0.076	mg/l
Mercury	0.0094	mg/l
Selenium	0.007	mg/l
Silver	0.65	mg/l
Zinc	1.4	mg/l
RADIOLOGICAL		
Gross Alpha	20	pCi/l
Gross Beta	120	pCi/l

^{*}Not on total toxic organic list

Project No. 301181.25.01

FEG-BB.027

Building 6710 Area 3 Sample ID No. SNLA008593 Tank ID No. AD89019R

On August 18, 1992, sludge samples were collected from the septic tank serving Building 6710. During review of the radiological data, no parameters were detected that exceed U.S. Department of Energy (DOE) derived concentration guideline (DCG) limits or the investigation levels (IL) established during this investigation.

Results of Septic Tank Analyses (Sludge Sample)

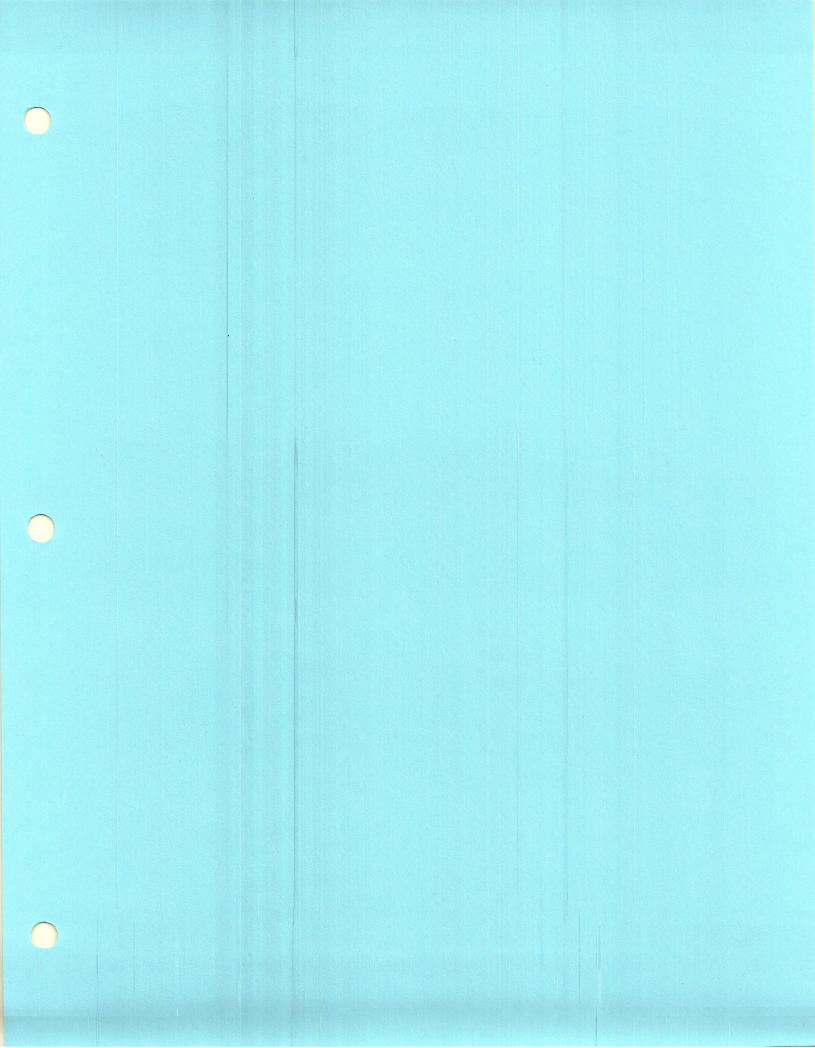
Building No./Area:

6710 A-3

Tank ID No.:

AD89019R

Date Sampled:


8/18/92

Sample ID No.:

SNLA008593

A1-4'1-B	Measured	+ 2 Sigma	
Analytical Parameter	Concentration	Uncertainty	Units
Gross Alpha	1E+1	2E+1	pCi/g
Gross Beta	4E+1	2E+1	pCi/g
Gross Alpha	2E+1	2E+1	pCi/g
Gross Beta	4E+1	3E+1	pCi/g
Gross Alpha	2E+1	2E+1	pCi/g
Gross Beta	3E+1	3E+1	pCi/g
Gross Alpha	1E+1	1E+1	pCi/g
Gross Beta	4E+1	3E+1	pCi/g
Tritium	1E+02	3E+02	pCi/L
Bismuth-214	0.234	0.0160	pCi/mL
Cesium-137	0.0309	0.00618	pCi/mL
Potassium-40	4.77	0.192	pCi/mL
Lead-212	0.180	0.0133	pCi/mL
Lead-214	0.189	0.0137	pCi/mL
Radium-226	0.368	0.0997	pCi/mL
Thorium-234	0.300	NA	pCi/mL
Thallium-208	0.0601	0.00635	pCi/mL

ND = Not Detected NA = Not Applicable

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Bldg 6710	
Sample ID Number:	024402	
Date Sampled:	7-10-95	
Percent Moisture:	68.30	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^s	COA Discharge Limit ^b	Comments
Volatile Organics (8260)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
Methylene Chloride (reanalyses)	36DJ	160	0.1	TTO = 5.0	
Acetone	450B	31	NR	NR	
Acetone (reanalyses)	1100BD	160	NA	NR	
Toluene	1700E	31	0.75	TTO = 5.0	
Toluene (reanalyses)	2600D	160	0.75	1TO = 5.0	
Ethylbenzene	43	31	0.75	TT0 = 5.0	
					<u> </u>
Semivolatile Organics (8270)	(μ g/kg)	(µg/kg)	(mg/L)	(mg/L)	
1,2-Dichlorobenzene	9901	1000	NR	TTO = 5.0	
bis(2-Ethylhexyl)Phthalate	1000DJ	8200	NR	TTO = 5.0	
Pesticides/PCBs (8080)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
beta-BHC	7.5	5.2	NR	TTO = 5.0	
delta-BHC	24	5.2	NR	TTO = 5.0	
Aldrin	24	5.2	NR	TTO = 5.0	
4,4'-DDE	34	10	NR.	TTO = 5.0	
4,4'-DDT	21	10	NR	TTO = 5.0	
Metals (6010/7470)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	
Arsenic	8.2	3.2	0.1	2.0	
Barium	127	63.1	1.0	20.0	
Cadmium	34.3	1.6	0.01	2.8	
Chromium	19.5	6.3	0.05	20.0	
Copper	350	7.9	1.0	16.5	
Lead	136	0.95	0.05	3.2	
Manganese	120	4.7	0.2	20.0	
Nickel	20.0	12.6	0.2	12.0	

Refer to footnotes at end of table.

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Bldg 6710	
Sample ID Number:	024402	
Date Sampled:	7-10-95	
Percent Moisture:	68.30	

		Detection Limit	NM Discharge	COA Discharge	
Parameter (Method)	Result	(DL)	Limit ^a	Limit ^b	Comments
Metals (6010/7470)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	
Selenium	5.1	1.6	0.05	2.0	
Silver	340	3.2	0.05	5.0	
Thallium	ND	3.2	NR	NR	
Zinc	1870	6,3	10,0	28.0	
Mercury	5.0	63.0	0.002	0.1	

Notes:

- ⁸ New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
- ^b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M ~ maximum allowable concentration for grab sample.
- B = Analyte detected in method blank.
- D = Sample was diluted.
- E = Exceeds calibration.
- DL = Detection limit indicated on laboratory report.
- IDL = Instrument detection limit.
- J = Estimated concentration of analyte, between DL and IDL.
- ND = Not detected above DL indicated.
- NR = Not regulated.
- TTO = Total toxic organics.

RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

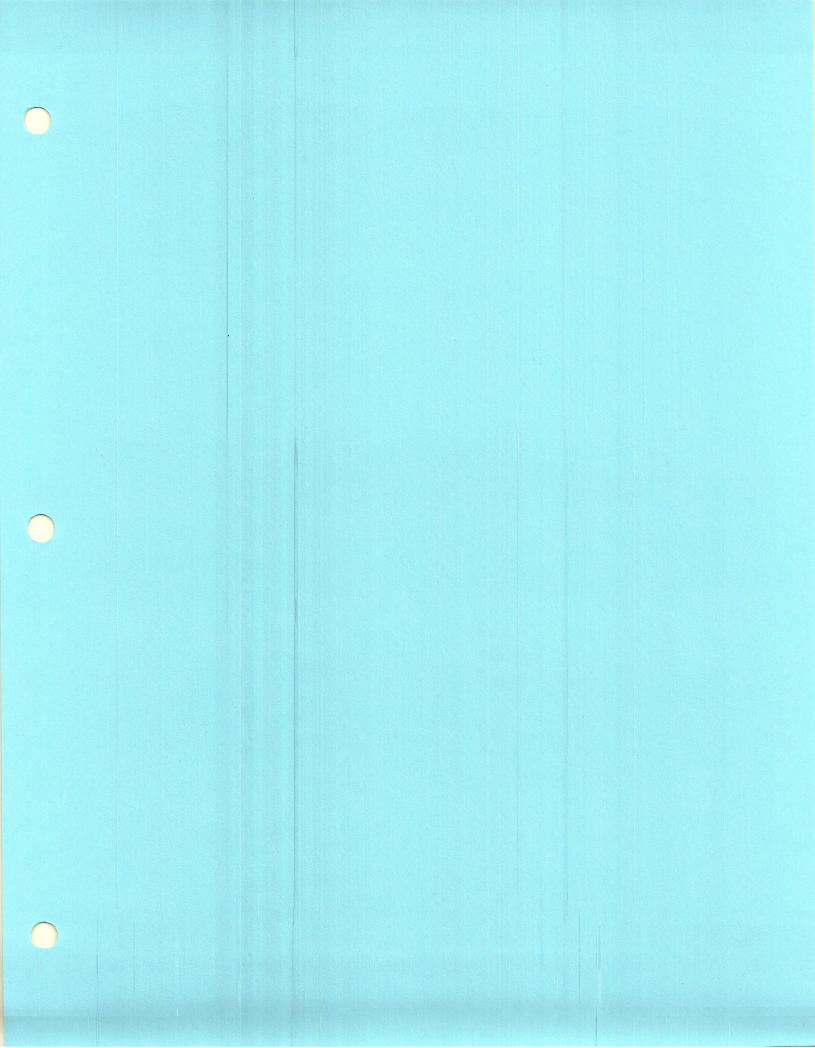
Building ID:	Blog 6710	
Sample ID Number:	024402	
Date Sampled:	7-10-95	
Percent Moisture:	68.30	

Parameter (Method)	Result	MDA	Critical Level	NM Discharge Limit	Comments
Isolopic Analyses	(pCVg ± 2-0)	(pCVg)	(pCVg)	(pCVg)	
Tritium (906.0)	436 ± 76 pCi/L	100 pCi/L	49.3 pCi/L	NR	
Plutonium-239/240	-0.0007 ± 0.0064	0.020	0.012	NR	
Plutonium-238	-0.003 ± 0.00€	0.023	0.014	NR	
Strontium-90	0.06 ± 0.01	0.17	0.08	NR.	
Thorium-232	0.21 ± 0.09	0.025	0.022	NR	
Thorium-230	0.20 ± 0.09	0.032	0.026	NR	
Thorium-228	0.20 ± 0.09	0.048	0.034	NB	
Uranium-238	2.17 ± 0.45	0.028	0.020	NR	
Uranium-235/236	0.22 ± 0.08	0.030	0.023	NB	
Uranium-234	3.46 ± 0.69	0.034	0.023	NR	
Dry Gemma Spectroscopy	(pCVg ± 2-a)	(pCi/g)	(pCi/g)	(pCVg)	
Cesium-137	0.059 ± 0.010	0.008	0.004	NA	
Cesium-134	ND	0.007	0.004	NR	
Potassium-40	12.3 ± 1.5	C.09	0.044	NB	
Chromium-51	ND	0.077	0.036	NR	
Iron-59	ND	0.023	0.011	NFA	
Cobatt-60	ND	0.009	0.004	NA	
Zirconium-95	ND	0.017	800.0	NR	
Ruthenium-103	NĐ	0.009	0.004	NF	
Ruthenium-106	ND	0.072	0.035	NR	
Cerium-144	ND	0.051	0.025	NR	
Thallium-206	0.15 ± 0.02	0.008	NL	NR	
Lead-210	1.11 ± 0.38	0.38	NL	NA	}
Lead-212	0.42 ± 0.05	0.01	0.00€	NR.	
Lead-214	0.33 ± 0.04	0.02	0.007	NR	
Bismuth-212	0.26 ± 0.07	0.07	NL	NR	

Refer to footnotes at end of table.

RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Bidg 6710	
Sample ID Number:	024402	
Date Sampled:	7-10-95	
Percent Moisture:	68.30	


Parameter (Method)	Fiesult	MDA	Critical Level	NM Discharge Limit*	Comments
Dry Gamma Spectroscopy	(pCi/g = 2-6)	(pCi/g)	(pCVg)	(pCi/g)	
Bismuth-214	0.35 ± 0.03	0.02	NL	NR	
Radium-224	1.11 ± 0.21	0.14	NL	NA	
Radium-226	0.34 ± 0.02	0.02	0.008	30.0°	,
Radium-228	0.41 ± 0.04	0.03	0.016	30.0°	
Actinium-228	0.41 ± 0.04	0.03	0.016	NR	
Thorium-231	ND	0.22	0.11	NA	
Thorium-232	0.41 ± 0.04	0.03	0.01€	NA	
Thonium-234	0.98 ± 0.23	0.13	0.064	NR	
Uranium-235	0.076 ± 0.012	0.047	0.023	NR	
Uranium-238	0.98 ± 0.23	0.13	0.064	NR	
Americium-241	ND	0.030	0.015	NR	

- * New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.

 * Isotopic uranium analyzed by NAS-NS-3050; plutonium by SL13028/SL13033; strontium by 7500-SR; thorium by NAS-NS-3004.
- * Analyzed by method HASL 300 at Quanterra, St. Louis.
- * NMWQCCR standard for Re-226 + Ra-228 combined in pCVL.

MDA = Minimum detectable activity.

- ND = Not detected above MDA indicated.
- NL = Not listed.
- NR = Not regulated.

ANNEX B
DSS Site 1034
Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

GORE-SORBER® EXPLORATION SURVEY
GORE-SORBER® SCREENING SURVEY

June 6, 2002

Mike Sanders Sandia National Laboratories Mail Stop 0719 1515 Eubank, SE Building 9925, Room 108 Albuquerque, NM 87123

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM Gore Production Order Number: 10960025

Dear Mr. Sanders:

Thank you for choosing a GORE-SORBER® Screening Survey.

The attached package consists of the following information (in duplicate):

- · Final report
- Chain of custody and analytical data table (included in Appendix A)
- Stacked total ion chromatograms (included in Appendix A)

Please contact our office if you have any questions or comments concerning this report. We appreciate this opportunity to be of service to Sandia National Laboratories, and look forward to working with you again in the future.

Sincerely,

W.L. Gore & Associates, Inc.

Jay W. Hodny, Ph.D.

Associate

Attachments

cc: Andre Brown (W.L. Gore & Associates, Inc.)

I:\MAPPING\PROJECTS\10960025\020606R.DOC

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., F.O. BOX 10 · ELKTON, MARYLAND 21922-0010 · PHONE: 410/392-7600

FAX: 410/506-4780

GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

1 of 6

GORE-SORBER® Screening Survey **Final Report**

Non-ER Drain & Septic Kirtland AFB, NM

June 6, 2002

Prepared For: Sandia National Laboratories Mail Stop 0719, 1515 Eubank, SE Albuquerque, NM 87123

W.L. Gore & Associates, Inc.

Written/Submitted by:

Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by:

Jim E. Whetzel, Project Manager

Analytical Data Reviewed by:

Jim E. Whetzel, Chemist

1:\MAPPING\PROJECTS\10960025\020606R.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

2 of 6

GORE-SORBER® Screening Survey Final Report

REPORT DATE: June 6, 2002 AUTHOR: JWH

SITE INFORMATION

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM

Customer Purchase Order Number: 28518

Gore Production Order Number: 10960025 Gore Site Code: CCT, CCX

FIELD PROCEDURES

Modules shipped: 142

Installation Date(s): 4/23,24,25,26,29,30/2002; 5/1,6/2002

Modules Installed: 135

Field work performed by: Sandia National Laboratories

Retrieval date(s): 5/8,9,10,14,15,16,21/2002

Exposure Time: ~15 [days]
Trip Blanks Returned: 3

Modules Retrieved: 131 # Modules Lost in Field: 4

Unused Modules Returned: 3

Modules Not Returned: 1

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002@1:30PM

By: MM

Chain of Custody Form attached: $\sqrt{}$

Chain of Custody discrepancies: None

Comments:

Modules #179227, -228, and -229 were identified as trip blanks.

Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field.

Module #179231 was not returned.

Modules #179230, 232, and -233 were returned unused.

GORE-SORBER® Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing 5µg BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Instrument ID: # 2 Chemist: JW

Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1) Deviations from Standard Method: None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly.

Module #179101, no identification tag was returned with this module.

4 of 6

GORE-SORBER® Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

General Comments:

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.

GORE-SORBER® Screening Survey Final Report

Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram.
 Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface.
 UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:

- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: 123456S.D represents module #123456).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour
 mapping was performed. Larger and more comprehensive soil gas surveys may be
 warranted at the individual sites where elevated soil gas levels were observed.

6 of 6

GORE-SORBER® Screening Survey Final Report

KEY TO DATA TABLE Non-ER Drain & Septic, Kirtland AFB, NM

UNITS

μg micrograms (per sorber), reported for compounds

MDL method detection limit bdl below detection limit

nd non-detect

ANALYTES

BTEX combined masses of benzene, toluene, ethylbenzene and total xylenes

(Gasoline Range Aromatics)

BENZ benzene
TOL toluene
EtBENZ ethylbenzene
mpXYL m-, p-xylene
oXYL o-xylene

C11,C13&C15 combined masses of undecane, tridecane, and pentadecane (C11+C13+C15)

(Diesel Range Alkanes)

UNDEC undecane
TRIDEC tridecane
PENTADEC pentadecane

TMBs combined masses of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene

135TMB1,3,5-trimethylbenzene124TMB1,2,4-trimethylbenzenect12DCEcis- & trans-1,2-dichloroethenet12DCEtrans-1,2-dichloroethenec12DCEcis-1,2-dichloroethene

NAPH&2-MN combined masses of naphthalene and 2-methyl naphthalene

NAPH naphthalene

2MeNAPH 2-methyl naphthalene
MTBE methyl t-butyl ether
11DCA 1,1-dichloroethane
CHCl₃ chloroform

111TCA1;1,1-trichloroethane12DCA1,2-dichloroethaneCC14carbon tetrachlorideTCEtrichloroethene

OCT octane

PCE tetrachloroethene
ClBENZ chlorobenzene
14DCB 1,4-dichlorobenzene

BLANKS

TBn unexposed trip blanks, travels with the exposed modules

method blank QA/QC module, documents analytical conditions during analysis

APPENDIX A:

1. CHAIN OF CUSTODY 2. DATA TABLE

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER® Screening Survey Chain of Custody

For W.L. Gore & Assoc	iates use only
Production Order#	10960025

W. L. Gore & Associates, Inc., Survey Products Group 100 Chesapeake Boulevard • Elkson, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Instructions: Customer must complete ALL sha	ded cellsR			
Customer Name: SANDIA NATIONAL LABS	Site Name: NON-ER DUAIN+ SEPTIC			
Address: ACCOUNTS PAYABLE MS0154	Sine Address: KIVL 2ND AFB, NM			
P.O.BOX 5130	KIRTLAND			
ALBUQUERQUE NM 87185 U.S.A.	Project Manager: MIKE SANDERS			
Phone: 505-284-3303	Customer Project No.:			
FAX: 505-284-2616	Customer P.O. #: 28518 Quote #: 211946			
Serial # of Modules Shipped	# of Modules for Installation 135 # of Trip Blanks 7			
# 179087 - # 179144 # /79087 - # 179/34	Total Modules Shipped: 142 Pieces			
# 179150 - # 179233 #1779135 - # 179136	Total Modules Received: 142 Pieces			
# + + + + + + + + + + + + + + + + + + +	Total Modules Installed: 135 Pieces			
# # # # # # # # # # 179144	Serial # of Trip Blanks (Client Decides) #			
# # 179150 - # 179151	# 17:12:27 # #			
- # # - #	# #			
4 - # # - #	# # #			
# - # - #	# #			
# - # - #	# #			
# # - #	# #			
Prepared By: Clynone 1717	# #			
Verified By: Mary anse Marghi	# .# -			
Installation Performed By:	Installation Method(s) (circle those that apply):			
Name (please print): GIUSEAT QUINTANA	Slide Hammer Hammer Drill Auger			
Company/Affiliation: 5NC/NM	Other: GESPRIBE			
	157 : AM PM			
Installation Complete Date and Time: 5/6/02 109	401 : AM PM			
Retrieval Performed By:	Total Modules Retrieved Pieces			
Name (please print): GLJSSAT QUINTANA Company/Affiliation: 1 SNL/NM	Total Modules Lost in Field: Pieces			
Company/Affiliation:1_SNL/NM	Total Unused Modules Returned: Pieces			
Retrieval Start Date and Time: 5/8/02	: AM PM			
Retrieval Complete Date and Time:	/ : AM PM			
Relinquished By Date Time				
Affiliation: W.L. Gore & Associates, Inc. 3-4-02-12: 4	Affiliation: Sandia/ER 3-6-02			
Relinquished By Date Tim	Received By: Date Time			
Affiliation: 6135 5-14-02 12:5	Affiliation:			
Relinquished By Date Tim				
Affiliation————	Affiliation: W.L. Gore & Associates, Inc. 5/17-12 14:00			

GORE-SORBER® Screening Survey Chain of Custody

For W.L. Gore & Assoc	ciates use only	
Production Order#	10960025	_

15	ORE .
יטו	
(100)	ve Technologie:

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard . Elkton, Maryland 21921 . Tel: (410) 392-7600 . Fax (410) 506-4780

Instructions: Customer must complete ALL shad	ded cells
Customer Name: SANDIA NATIONAL LABS	Site Name: NON-ER DUAIN+ SEPTIC
Address: ACCOUNTS PAYABLE MS0154	Site Address: KIVL 2ND AFB, NM
P.O.BOX 5130	KIRTLAND
ALBUQUERQUE NM 87185 U.S.A.	Project Manager: MIKE SANDERS
Phone: 505-284-3303	Customer Project No.:
FAX: 505-284-2616	Customer P.O. #: 28518 Quote #: 211946
Serial # of Modules Shipped	
	# of Modules for Installation 135 # of Trip Blanks 7
# 179087 - # 179144 #174152 # 174187	Total Modules Shipped: 142 Pieces
# 179150 - # 179233 #179138 - #179226	Total Modules Received: 142 Pieces
# - # - #	Total Modules Installed: 135 Pieces
# - # - #	Serial # of Trip Blanks (Client Decides) #
- # # - #	# 178728 # #
# # #	#1719229 # #
a - # # - #	# #
# + # + + + + + + + + + + + + + + + + +	# # #
# - # - #	# #
# - # - #	# # #
Prepared By: Character 17	# # #
Verified By: Mary and Marshi	# # #
Installation Performed By:	Installation Method(s) (circle those that apply):
Name (please print): GIUSTET QUINTANA	Slide Hammer Hammer Drill Auger
Company/Affiliation: SUC/NM	Other: GEOPRIBE
Installation Start Date and Time: 4/23/02 108/	ST : AM PM
Installation Complete Date and Time: 5/6/02 1094	o/ : AM PM
Potrional Bout-	Total Modules Retrieved: 79 Pieces
Name (please print): Grussar Quintana Company/Affiliation:1 SNU/NM	Total Modules Lost in Field: 4 Pieces
Company/Affiliation:1 SNL/NM	Total Unused Modules Returned: Pieces
Retrieval Start Date and Time: 5/8/07 /	/ : AM PM
Retrieval Complete Date and Time:	/ : AM PM
Relinquished By Date Time	Received By: Mike Sandevs Date Time
Affiliation: W.L. Gore & Associates, Inc. 3-4-07-17. CV	Affiliation: Sandia: 6133 3-7-07
Relinquished By William Hill Date Time	Received By: Date Time
affiliation: Sandia NL. 1 61351 5-21-02 0935	Affiliation:
Relinquished By Date Time	Received By Mary Inc. Merch Date Time
Affiliation—	Affiliation: W.L. Gore & Associates, Inc. 5-140: 12:37

	E-SORBEI llation and						& LOCA	/				
rre vill.	neovnanu	лен	DEVALUE									
	of 1											
كمسك	of <u>4</u>	,						_				
					EV]D	ENCE OF	LIQUID					
LINE	MODULE#	INTE	TALLATION	RETRIEVAL	HYDR	OCARBO)	NS (LPH)	MODI				
# #	MODULE#		ATE/TIME	DATE/TIME	HADE	oi OCARBO	እ፤ ሶነኮለክ	WA'				
		1 ~	A1011115	DATE		ck as appro		(Checi	k one)	COV	AMENT.	S
					LPH	ODOR	NONE	YES	NO	-		
43.	179129	4/zs	102 1428	5-10-02,1047				3.230	1.0	1026/6	Ch/ //	
44	179130	77	1437	<-10-02, 10 51						1020/60	<u> </u>	- 3
45.	179131			5-10-02 1053					_	1025/6	(7)	!,
46.	179132		1446	J			· · ·		!	1000/6	== 1	
47.·	179133	T	1504	5-10-02, 11:06						 		<u>Z</u>
48.	179134	4/26		5-10-02 1247		-				1093/65	rad	
49.	179135	7	0914	¥1254						7013/63	्या-	1
50.	179136			5-10-02 1305			-			╅		4
51.	179137		0938						-	 -		 -
52.	179138		0948							 		4 2 3 5 2 3 4
53.	179139			5-10-02, 1322						1031/6	<u></u>	┝═
54.	179140		1026							1031/6	- و تعوي	
55.	179141		/030							 		<u> </u>
56.	179142			5-10-02,1343						 		
57.	179143			5-10-02 , 11:36	· · ·					276/82	-9v	
	179144		1142							210/02	-111	2 3
	179150		1150	*					<u>'</u>	╂╾╌╂╾		4
í0.	179151		1 /155	5-10-02 11:54						 -		7
61	179152	4/2		5-14-0209:42			- 			1009/6	Sec.	
62.	179153	7	0822							1007/6.	205-	
63.	179154		0829							 		7
64.	179155		0903							 		5 3 2
65.	179156		0845	5-14-02 10721						1		
66.	179157		0930	05.14-00 09.19			***************************************			1083/6	cn.	4
67.	179158		_0939							7-7-7-0	2/0-	1
68.	179159	\bot	0940						·	1		2
69.	179160		8948			Ľ			<u>-</u> -			3
70.	179161		1050	05-14-02,1025						1032/6	110 -	1 7
71.	17.9162		1100							1/1	<i>æ/ u</i>	+-
72.	179163		///0			-	 		 -	 		24356234
73.	179164		1114				T				······································	1 3
74.	179165		1120							 		
75.	179166			05-14-12 11:03			 			1		+ラ
76.	179167	1	1222	05-14-02,11:06	1	†— -	<u> </u>			1120/11	12	1 2
77.	179168		1230		 	<u> </u>	 	 		1120/66	75-	15
78.	179169	7	/237		 	-		<u> </u>		 		<u>ڪ</u>
79.	179170	- 		105-14-02 11:32	1	 	 	 		 		
٩0.	179171	1-	1208	5-14-67 - 0844	 	 	 	 -		 		1
آر	179172	1	13 25		 	 				1034/6	110-	1 4
82.	179173	1	/332		1	 	+	 		 		3 2
83.	179174	_		0855	+	 		 		 		1 2
84.	179175	+ ;		5-14-02,0814	 	- 	 	-		1035/		1 1

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS
SANDIA NATIONAL LABS, ALBUQUERQUE, NM
GORE STANDARD TARGET VOCS/SVOCs (A1)
NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM
SITES CCT AND CCX - PRODUCTION ORDER #10960025

BTEX, ug BENZ, ug TOL, ug EtBl	ug TOL, ug	TOL. ug	ETB	EtBENZ, ug	mpXYL, ug	oXYL, ug	C11, C13, &C15, ug	UNDEC, ug	TRIDEC, ug	PENTADEC, ug	TMBs, ug
MOL=	3,3		2 0				300	20:0 VO 0		Pol	00.0
179125	200	ב		2 2		P. P.			0.02	ipq	0.00
179127	0.09		0.05	pu	0	0	70.0		pq		00.00
179128	0.07			Рu				0.04	0.01	0.03	0.00
179129	0.02	PL	pu	pu					0.03		0.00
179130	0.21		0.15	pu	0	9			0.03	0.05	0.00
179131	Pu	ρu		pu			0.07		0.01		P
179132	pu	2		pu					0.02	0.02	0.00
179133	0.08	Pu	0.08	pu				0.04	0.09		D L
179134	pu				pu I				0.05	ipq	00.00
179135	0.11	Pu							0.04		0.00
179136	60.0	ug	60'0						0.01		00'0
179139	рu								0.10		0.00
179142	0.11		0	пd					70,0		0.00
179143	pu	뒫		pu	pu			0.03	0.02	0.03	pu
179144	0.17	ם	0.09						0.01		0.00
179150	0.40	pu							0.05		0.00
79151	ρυ	ρu							pq		0.00
79152	60.0							Ì	0.02		0.08
179153	0.13	pu	0.08	pu					0.02		0.13
179154	ρu	pu			pu	pu	0,11		0.01	0.07	0.00
179155	рu	pu		ρů					0.02		00.00
179156	Pu	ρu	ρυ	PП				0.15	0.01		0.00
79157	nd	pu		pu					0.02		0.0
179158	0.01			pu					0.01		0.00
179159	00.0	ρι		pu					0.01		0.00
179160	pu	ρu	pu	חס	pu				0.02		0.00
179161	0.00	pu		pu		Pu		0.03	0.02	0.03	0.00
179162	0.01	ри		pu	0				0.03	0.04	0.00
179163	0.01	pu		рu				0.02	0.02	0.03	0.00
179164	0.02	ри			0		0.14	0.06	0.02	90:00	0.00
179165	pu	ри				2	0.08	0.03	pq	0.05	0.00
179166	0.00	pu	pq		pu		0.05	0.03	0.01	lpq	0.00
179167	рu	PL.						0.02	þq		0.00
179168	0.04	ρĹ	O	pu	0.01			0.04	0.02	0	0.00
179169	Pu			рu		pu		0.03	0.01		pu
179170	0.03			2	0		90.0	0.04	0.02	lpq	0.00
179171	рu		PL	pu				0.03	0.02		0.00

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

5/30/2002 Page: 2 of 12

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

•	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	nd 0.09 0.03 nd 0.03 nd nd 0.03 nd nd 0.02 nd nd 0.07 0.03 nd 0.01 nd nd nd	0.18	nd 0.09 0.03 nd 0.03 nd nd 0.03 nd nd 0.02 nd nd 0.07 0.03 nd 0.07 0.03 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd n
	1 - 1 1 - 1 1 1 1 1 1 1		nd 0.02 0.07 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002	0.10 0.11 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.08 0.10
			nd 0.02 0.07 0.00	0.10	0.08 0.10 nd 0.02 nd 0.02 nd 0.04 nd 0.05 nd 0.07 nd 0.07 nd
ı	., , , , , , , , ,		0.001 0.002 nd	0.05 0.01 0.02 0.03 0.08 0 0.03 0.05 0.03 0.05 0.03 0.05 0.05 0.	nd 0.05 0.01 0.02 nd 0.03
	pu pu pu		nd n	0.03	nd 0.03 nd nd nd nd nd nd nd 0.08 nd bdl nd nd nd nd nd nd nd 0.05 nd nd 0.03 nd 0.05 nd 0.03 nd 0.05 nd 0.04 nd 0.05 nd nd 0.05
	P P P P P	0	nd nd bdl nd	nd n	nd nd nd nd nd 0.08 nd bdl nd 0.08 nd 0.01 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd 0.05 nd nd nd 0.05 nd 0.03 nd 0.03 nd 0.03 nd 0.03 nd 0.04 nd 0.05 nd nd 0.05
Į	5 5 5 5		nd bdl nd	0.08	nd nd nd nd bdl bdl nd nd nd 0.01 nd
	2 2 2		0.001	0.08	nd 0.08 nd 0.01 nd n
	pu ud	0	nd n	nd n	nd n
	P.	0	nd n	nd n	nd n
}	-	0	nd n	nd n	nd n
	<u>2</u>	0	0.03 0.03 0.05 0.02 0.02 0.03 0.03	0.30 0.03 0.06 0 0 0.00 0.00 0.00 0.00 0	nd nd nd nd nd nd nd nd nd 0.18 0.30 0.03 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	5		0.03 0.06 0 nd 0.02 nd 0.03 nd 0.05 nd 0.05	0.30 0.03 0.06 0 nd nd 0.02 0.03 nd 0.03 0.04 nd 0.05 nd nd 0.05	0.18 0.30 0.03 0.06 0 nd nd nd 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03
	0.03		nd 0.02 nd 0.03 nd 0.03 nd 0.05	nd nd 0.02 nd nd 0.02 0.03 nd 0.03 0.04 nd 0.05	nd nd nd 0.02 nd 0.03 nd 0.03 nd 0.03 nd 0.03 nd 0.05 nd 0.05 nd 0.05 nd nd 0.05 nd nd 0.05
	pu		nd 0.03 nd 0.03 nd 0.05	0.03 nd 0.03 0.03 nd 0.03 0.04 nd 0.05 nd nd 0.01	nd nd nd 0.02 nd 0.03 nd 0.03 nd 0.04 nd 0.05 nd nd nd 0.01
	υď		nd 0.03 nd 0.05	0.03 nd 0.03 0.04 nd 0.05 nd) nd 0.01	nd 0.03 nd 0.03 nd 0.04 nd 0.05 nd nd 0.01
	рu		nd 0.05	0.04 nd 0.05 nd nd 0.01	nd 0.04 nd 0.05
	2		0.01	nd) nd 0.01	nd nd 0.01
İ	g		7.		
	g		DU.	pu pu pu	pu pu pu
	ы		0.04	nd nd 0.04	nd nd 0.04
	ρu		0.04	nd nd 0.04	nd 0.04
	pu		0.02	nd nd 0.02	nd nd 0.02
	pu		0.03	[bu bu bu bu	nd hd 0.03
	pu			0,04 nd 0.03	.04 hd 0.03
	2	pu pu	pu	pu pu pu	pu pu
	pu			lbd bn bn	lbd bn bn
	pu	0.02 nd	0.02	120.0 nd 0.02	10.02 Pu
	pu		20.0	nd nd 0.02	nd nd 0.02
	'n	pu		0.04 nd nd	nd 0.04 nd nd
	0.02	03	0.03 0	0.22 nd 0.03 0	nd 0.22 nd 0.03 0
	g	0.03 bd!	0.03	0.09 hn 0.03	nd 0.03
	밑		pu	pu pu pu	pu pu pu pu
	pu			nd nd 0.03	nd 0.03
	пd	0.02 nd	0.02	0.04 nd 0.02	nd 0.04 nd 0.02
	힏		0.03	0.04 nd 0.03	nd 0.04 nd 0.03

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

5/30/2002 Page: 3 of 12

DS4 SITE 1034

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS
SANDIA NATIONAL LABS, ALBUQUERQUE, NM
GORE STANDARD TARGET VOCS/SVOCs (A1)
NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM
SITES CCT AND CCX - PRODUCTION ORDER #10960025

12DCA, ug	0.02	pu	рu	(pu	ף	ם	pu	ρμ	pu	pu	Pu ug	Du.	pu	Pr	g	2	pu	ug	סכ	ם	nd	nd.	ng	рц	pu	pu	рц	Pu	Pu	pu	g	5	P	pu	pu	pu	pu	pu	Du
111TCA, ug	0.02	ρu	pu	pu	lpu	pu	pu	ρu	ଦ୍ରପ୍ର	ρu	pu	Pu	ρu	ρu	pu	ng	pu	pqi	pq	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	힏	ρυ	pu	pu	pu	힏
11DCA, ug	**	рu										рu		Ì																			pu						
	0.	nd	pu	Pu	pu	p	pu	рц	рu	nd	nd	Pu	ρu	מ	p	рu	פים	pu	uq	pu	ρu	pu	uq	pu	Ъп	рu	ρυ	ב	pu	pu	pu	pu	pu	nd	pu	pu	pu	ρu	בּ
	0.02	pu	ipq	ipq	lbd	pq	pq	pq	lbd	pu	pq	lþq	pq	ipq	lþq	pq	pdi	IPq	ρu	0.06	20.0	0.02	pq	pq	0.03	0.03	lpq	pq	90.0	0.03	IPq	0.02	lpq	0.02	0.04	0.04	lþq	Ipq	0.05
NAPH, ug		Pu									i	0.05													ļ							0.02	ρu	0	pu			0.02	
NAPH&2-MN, ug	_	þu	00.0	00.0	00.0	00.0						0.02			,																								
c12DCF ua					2							P																											
112DCE 110			2 2	2	2	2	0					PL		İ																									
71270E	CL 14DCE, ug	700	2	01 2	2 2	5	2	בּ	C	pu	Pu	pu	pu	100	pu	100		bu	pu	ud	pu	pu	Pu	Pu	nd	ρu	рu	pu	Pu	Pu	БП								
D. GATACA	٠.	0.00	2 3	ם ב	100	2	2 7	3 2	Pa	200	2	ğ	pu	2	lpq	pu	Pu	ָבְּילָ בּילוי	2	0 0	0.03									50) pq	pq	P	pu	מי	pq	P	þ	pq
	124 I MB, 09	0.03	iba .	ipa	2	Too	DA S	DO S	2 5	2	2 5	PC	Pq	Pq	Pa	200	2 2	ğ (Ş	3 2	900	00.0	333	בּ בּ		To a	TO I	0 2	D T	700	2 2	5 2	7	Per	P	pq	Pu	5	i i i	Ipq
SAMPLE	NAME	WDL=	179125	179126	179127	179128	179129	179130	1/8131	1/9132	1/8/55	170134	170100	179130	170117	470443	1/8/45	178144	1/8100	1000	170162	10102	179154	179125	0016/1	1/915/	1/9158	1/9159	1/8100	1/9107	170162	179103	170164	4704ER	170187	170168	470460	179103	179171

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

5/30/2002 Page; 6 of 12

755 SITE 1034

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS. ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCS (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

12DCA, ug	o	ρu					pu		pu			pu						pu				рu		Pc						pu L					pu		Б		
111TCA, ug	0.02									pu																											٥		nd
11DCA, ug	0.04									рu																													
MTBE, ug	0.04	pu	рu	pu						рu																											bu		
2MeNAPH, ug	0.02			bdl						0.05																							þq				þq		0.03
NAPH, ug	0.01							ļ		0.02																													
NAPH&2-MN, ug			:							70.0																													
c12DCE, uq	0.03	pu	рu							PL																													
H2DCE, ug			pu							pu																													
ct12DCE, ua		pc	P	pu	2	Pa	2	מק	pu	PL	DU.	Pu	pu	рu	Pu	pu	ρu	рu	pu	ρu	рυ	pu	pu	ри	nd	pu	pu	pu	pu	pu	рu	pu	pu	pu	Pu	рu	pu	pu	pu
	0.02	pu	0 03	Pd	1	2	400	Pd	Pq	Pg	lpq	Pu	2	P	pu	рu	0.02	βĽ	lpq	lpq	lþq	pu	pu	lpq	pq	P	pq	pu	pu	pu	P	P	lpq	nd	Ipq	ри	Iρq	pq	IPq
124TMR III	0.03	92	900	35		200	0.00	5	0 0	56	F4	Ipq	PG	pq	Pu	0.04	0.09	Ipq	Ipq	lpq	pq	Ipq	pq	lpq	lpq	lpq	0.04	Pu	pq	Pa	ipq	Pq	0.03	Ipq	0.03	БП	lpq	pq	Ipq
SAMPLE	TAINE TAINE	450455	440440	179173	101/4	178170	179175	170170	170170	170180	170181	179187	170183	179184	179185	179186	179187	179188	179189	179190	179191	179192	179193	179194	179195	179196	179197	179198	179199	179200	179201	179202	179203	179204	179205	179206	179207	179208	179209

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdf.

5/30/2002 Page: 7 of 12

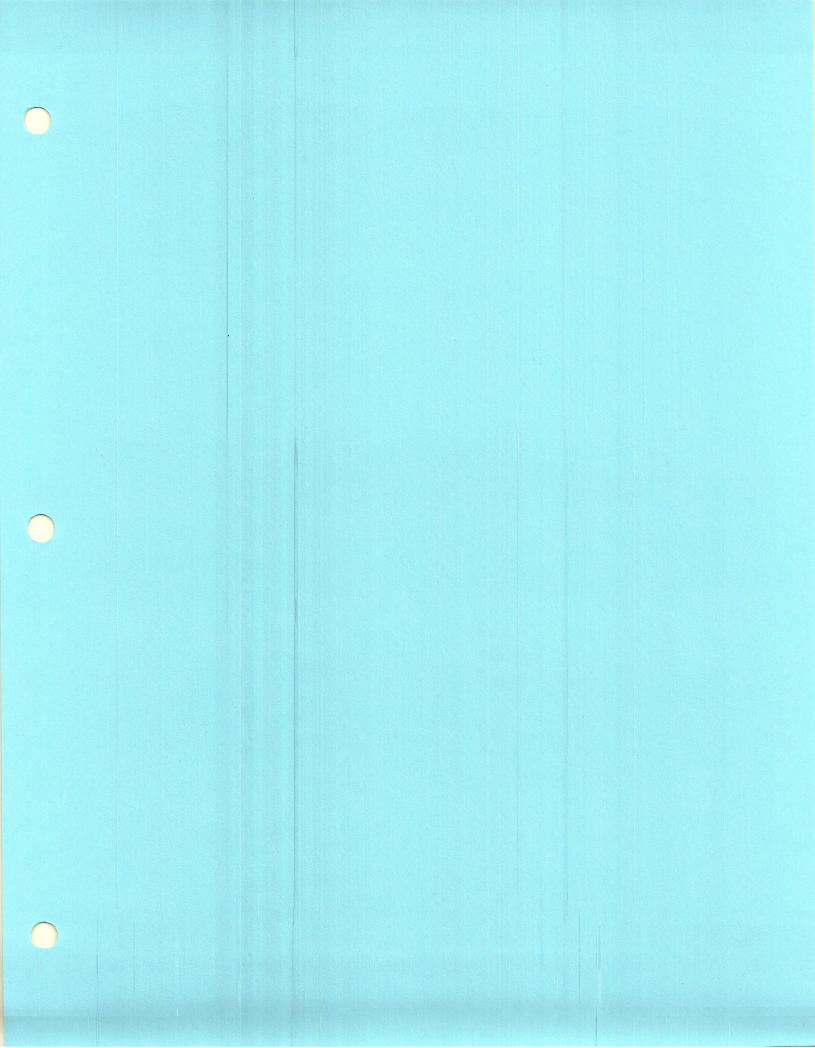
755 SITE 1034

GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS
SANDIA NATIONAL LABS, ALBUQUERQUE, NM
GORE STANDARD TARGET VOCS/SVOCs (A1)
NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM
SITES CCT AND CCX - PRODUCTION ORDER #10960025

		,	,				,	,_																															
CIBENZ 110	O		pu	pu	pu	pu	2	P	PL	pu	pu	Pu	2	pu	Pu	pu	pu	PL	pu	Þ	п	P	þu	pu	pu	pu	ри	Pu	рц	Pu	pu	pu	pu						
CC14, ua	0.03	рu	5	PL	P	ы	pu .	P	Б	pu	pu	þ	pu	P	5	Pu	2	Б	p	2	2	P	pq	ק	2	2	P	ď	pu	Pu	рц	pu	ы	ē	2	pg	Pu	돧	2
CHCI3. ud	0.03	рц	pu	рu	pu	рu	Б	pu	pu	pu	ρυ	ρu	0.05	P	ρu	лd	Pu	Ъп	Рu	pu	0.08	pu	p	P.	P	пd	פ	pu	pu	pu	pu	рu	pu	ם	pu	שַּ	Ę	PL.	pu
14DCB, uq	0.01	Pu	ρυ	ם	pu	pu	рu	Pu	pu	рu	рu	lbd	рu	pu	pu	рu	рu	IPq	pu	0.02	рu	pu	ρu	pu	pu	ри	pu	pu	nd	pu	pu	pu	pu	pu	рu	pu	pu	рu	Рu
PCE, ug		1.24	0.52	0.55	ρu	0.01	0.05	pu	0.75	0.18	0.33	0.38	0.65	0.14	0.42	0.25	0.21	0.18	0.32	90.0	0.03	pu	pu	υđ	0.38	0.56	0.60	0.37	ы	lpq	рu	0.01	nd	nd	nd	pu	pu	pu	5
OCT, ug		pu		pu	pu	pu	0.12	pu	pu	pu	pu	пd	pu	pu	0.12	pu	0.13	0.14	pu	рu	pu	pu	рu	nd	pu	pu	Б	2	2	Ъ	p	맏	5	ы	2	pu	pu	pu	מ
TCE, ug	0.02	0.03	pu	pu	nd	pu	nd	pu	pu	рu	nd	pu	pu	P.	ы	0.41	0.84	2.50	0.71	ρ⊔	ρu	ŋ	рι	pu	pu	nd	p	pu	2	pu	פ	ם	B	<u>D</u>	2	рu	nd	pu	nd
SAMPLE NAME	MDL=	179125	179126	179127	179128	179129	179130	179131	179132	179133	179134	179135	179136	179139	179142	179143	179144	179150	179151	179152	179153	179154	179155	179156	179157	179158	179159	179160	179161	179162	179163	179164	179165	179166	179167	179168	179169	179170	179171

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl,

5/30/2002 Page: 10 of 12


GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

NAME	TCE, ug	0C.	PCF. UB	14DCB, ug	CHCI3, ug	C. 4. UG	Clark
MDL=	0.02	0.07	٥.0		0.03	0.03	-
79172	pu	pu	pu	pu	pu	uq	pu
179173	ρu	0.14	0.05	pu	pu	nd	pu
79174	pu	рu	pu	pu	pu	pu	pu
179175	Pu .	ρu	0.04	рu	pu	nd	pu
179176	pu	מק	0.03	pu	nd	nd	pu
179177	Pu	60'0	0.02	pu	nd	pu	pu
179178	pu	pu	0.01	pu	nd	pu	pu
179179	0.13	pu	0.07	pu	0.05	pu	pu
9180	0.08	P	0.02	pu	pu	pu	pu
179181	0.11	pu	0.03	pu	pu		pu
179182	0,15	pu	0.04	pu	pu	pu	
179183	0.59	ρu	0.08	pu	рu		pu
179184	pu	pu	pu	pu	pu _.	Pu	pu
179185	90.0	pu		Pu	ри		pu
9186	5	pu	pu	pu	pu	ρu	
179187	0.13	pu	0.08	pu			pu
79188	nđ	pu ·					pu
179189	0.06	pu	0.02	nd	pu	nd	pu
179190	2			nd	pu .		pu
179191	'n			рu	pu	0	pu
9192	pu			pu	pu		
179193	pu	pu	0.08		pu		pu .
179194	pu	pu	Ö				pu
179195	nd nd	pu	pu	pu	pu	nd	рu
179196	pu	pu	pu	Pu	pu		pu
79197	pu			nd	p		pu
179198	pu '	0.09		рu	pu		pu
79199	pu	pu .	pu .	nd	pu		ը
179200	pu	nd	0.09	pu	uq	2	
179201	ρu	pu	0.12	pu	pu	שק	pu
179202	Pu	рu	0.12	pu	pu	рu	
9203	Pu	pu	60'0	pu	pu	ρυ	pu
179204	1.49	рu	3.01	pu	рu	pu	pu
9205	4.14	pu	6.74	nd	pu	ם	Du.
179206	4.72	ри	5.69	pu	pu	pu	pu
179207	2.89	pu	2.57	pu	pu	<u>Р</u>	pu
179208	2	Pμ	pu	pu	0.05		Pu
0000	ŀ						

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

5/30/2002 Page: 11 of 12

DSS SITE

ANNEX C DSS Site 1034 Soil Sample Data Validation Results

RECORDS CENTER CODE: ER/1295/DSS/DAT

PROJEC SNL TASK I SMO PROJE	EADER:	SMO ANALY DSS Soil Samp Collins Herrera		A ROUT	ING FORM PROJECT/TASK: ORG/MS/CF0#: SAMPLE SHIP DATE:	6133/10	89/CF0	
ARCOC 605728 605729	LAB GEL GEL	67794A 67794B	PRELIM I	DATE	FINAL DATE 10/24/2002 10/24/2002	EDD X	EDD ON Q X	BY JAC JAC
					NAME \		DAT	Ē
R F SI	EVIEW C INAL TRA	QUESTED/RI PRO OMPLETED I ANSMITTED T ALIDATION I REQUIRED I	OBLEM #: BY/DATE: BY/DATE: BY/DATE:	530	Palencia Palencia Laders Com		118	02
• • • • • • • • • • • • • • • • • • • •		COMPLETED CORDS CENTER	- · · · - · · - · - · - · - ·	Ga	ha Conn		12:01 1Has	102 12/19/

Data: Organic, inorganic and Radiochemistry	Ydeimerisothefi								٤	acceptance	met. No data will	De duaimed.				Date: 12/04/02
rganic and F	(mulmonfo inelevenent), 9-65-01-281		UJ, HT		W, A2						E					
anic, ino	General Chemistry															
Date: Org	(beel) f-S8-86A7				٦	7	7	-	ſ	ſ	f	ſ	٦	7	-	Advantage of the second of the
١	(muimonto) E-T-A-0A-PT			9,5	٠	ſ	ſ	7	٦	f	٦	٦	ſ	ſ	7	
İ	(aineans) S-86-0++7				7		~			7		7	7	-,	-	
	(muineles) S-64-S877							J, B3		J, B3		J, B3				
ſ	eis:eM															
l	(KdM) 8-SH-614	R.P2														
	sbruogmoo (0668) HIA	22														
605729	- PCB≉ (8082)								20	acceptance criteria were	met. No data will	oe dremen.		-		
805728, 605728	(enelyneq(1,rl,g)asned) S-4S-1e1							ſ								
ARCOC	(cholenthriq(hymerlikntho-S)aid) 7-18-711					333UJ,B	33301,8	333UJ,B	333UJ,B	333UJ.B	333UJ,B		333UJ,B	333UJ,B	333UJ,B	
	129-00-0 (pyrene)				->		٦	٦					7			
İ	8AOC (8570)															
	AOC(esse)								S T	acceptance criteria ware	met. No data will					
Site: DSS soil sampling	Semple ID	059928-004 829XZ78-SP1-EB	059926-006 829X/276-SP1-EB	059926-007 829X/276-SP1-EB	059903-002 8710/1034-SP1-BH1-14-S	059904-002_6710/1034-SP1-8H1-19-S	059905-002 803/1052-SP1-BH1-22-S	059906-002_803/1052-SP1-BH1-27-S	059907-002 828X276-SP1-BH1-8-S	059908-002 829X276-SP1-BH1-13-S	059910-002 829XZ76-SP1-BH1-8-DU	059912-002 915-922/f003-SP1-BH1-27-S	059913-002 915-922/1003-SP1-BH1-33-S	059914-002 915-922/1003-SP2-BH1-26-S	059915-002 915-922/1003-SP2-BH1-31-S	Validated By: R Mal

Analytical Quality Associates, Inc.

616 Maxine NE
Albuquerque, NM 87123
Phone: 505-299-5201
Fax: 505-299-6744
Email: minteer@aol.com

MEMORANDUM

DATE:

12/04/02

TO:

File

FROM:

Linda Thal

SUBJECT:

Inorganic Data Review and Validation - SNL

Site: DSS soil sampling ARCOC # 605728, 605729 GEL SDG # 67794 and 67798 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 6010 (ICP-AES metals), SW-846 7471/7470 (Hg), SW-846 9012A (total CN) and SW-846 7196A (hexavalent chromium).

Problems were identified with the data package that resulted in the qualification of data.

ICP-AES - Metals Batch # 204452 (Samples 67794-012 through --022)
Selenium was detected in the CCB at a value > DL but < RL. The sample results for 67794-015, -017 and --019 were detect, < 5X the blank value and will be qualified "J, B3".

Sample 67794-012 had an arsenic value < 5X RL. The difference between the sample result and the duplicate result was > RL. All associated sample results were < 5X RL (excluding 67794-013, -015, -016 and -018) and will be qualified "J".

The duplicate RPD for chromium (40%) and lead (45%) was > QC acceptance criteria (35%). All associated sample results were > 5X RL and will be qualified "J".

ICP-AES - Metals Batch # 204455 (Sample 67798 -010)

Chromium was detected in the MB at a value > DL but < RL.

Sample 67798 -010 had a value > DL, < RL and < 5X the blank value and will be qualified "J, B".

Hexavalent Chromium - Batch #205618 (Sample 67794-012)

The MS %R (63/71%) were < QC acceptance criteria (75-125%). Sample 67794-012 was non-detect and will be qualified "UJ, A2".

Hexavalent Chromium - Batch # 204193 (Sample 67798-009)

Sample 67798-009 was received by the laboratory and analyzed after the holding time had expired but within 2X the holding time. The sample result was non-detect and will be qualified "UJ, HT".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: The samples were analyzed within the prescribed holding time and properly preserved except as mentioned above in the summary section and as follows:

Sample 67794-015 was received in a broken container in a Ziploc bag. It is not known what affect this will have on the data and therefore, no data will be qualified.

Calibration

All Analyses: The initial and continuing calibration data met QC acceptance criteria.

Blanks

All Analyses: All blank criteria were met except as mentioned above in the summary section and as follows:

ICP-AES - Metals Batch # 204452 (Samples 67794-012 through -022)

Selenium was detected in the CCB at a value > DL but < RL. All associated sample results (excluding 67794-015, -017 and -019) were non-detect and will not be qualified.

Chromium was detected in the EB at a value > DL but < RL. All associated sample results were > 5X the blank values and will not be qualified.

ICP-AES - Metals Batch # 204455 (Sample 67798 -010)

Barium, cadmium and arsenic were detected in the CCB at values > DL but < RL. The sample results were non-detect and will not be qualified.

Hexavalent Chromium - Batch # 204193 (Sample 67798-009)

Hexavalent chromium was detected in the CCB at a value > DL but < RL. The sample result was non-detect and will not be qualified.

Total Cyanide - Batch # 206136 (Sample 67794-022)

Total cyanide was detected in the MB at a value > DL but < RL. The sample result was non-detect and will not be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analyses

All Analyses: The LCS/LCSD met QC acceptance criteria.

Matrix Spike (MS) Analysis

All Analyses: The MS met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES - Metals Batch # 204455 (Sample 67798 -010)

The sample used for the MS was of similar matrix from another SNL SDG. No data will be qualified as a result.

CVAA-Hg Batch # 204420 (Sample 67798-010)

The sample used for the MS was of similar matrix from another SNL SDG. No data will be qualified as a result.

Total Cyanide (Batch #205123) and Hexavalent Chromium (Batch # 205618/204193) The sample used for the MS was of similar matrix from another SNL SDG. No data will be qualified as a result.

Replicate Analysis

<u>All Analyses</u>: The replicate analysis met QC acceptance criteria except as mentioned above in the summary section and as follows:

ICP-AES - Metals Batch # 204452 (Samples 67794-012 through -022)

Sample 67794-012 had an arsenic value < 5X RL. The difference between the sample result and the duplicate result was > RL. Sample 67794-013, -015, -016 and -018 had values > 5X RL and will not be qualified.

ICP-AES - Metals Batch # 204455 (Sample 67798 -010)

The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified as a result.

CVAA-Hg Batch # 204420 (Sample 67798–010)

The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified as a result.

Total Cyanide (Batch #205123) and Hexavalent Chromium (Batch # 205618/204193) The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified as a result.

ICP Interference Check Sample (ICS)

ICP-AES (All batches): The ICS-AB met QC acceptance criteria.

All Other Analyses: No ICS required.

ICP Serial Dilution

ICP-AES (All batches): The serial dilution met QC acceptance criteria.

iCP-AES - Metals Batch # 204455 (Sample 67798 -010)

The sample used for the serial dilution was of similar matrix from another SNL SDG. No data will be qualified as a result.

All Other Analyses: No serial dilutions required.

Detection Limits/Dilutions

All Analyses: All detection limits were properly reported.

iCP-AES: All soil samples were diluted 2X.

All Other Analyses: No dilutions were performed.

Other QC

<u>All Analyses</u>: An equipment blank and a field duplicate were submitted on the ARCOC. There is however no "required" procedures for validating a field duplicate. No field blank was submitted on the ARCOC.

It should be noted that the COC requested that metals be analyzed by method SW-846 6020.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

616 Maxine NE Albuquerque, NM 87123

Phone: 505-299-5201 Fax: 505-299-6744 Email: minteer@aol.com

MEMORANDUM

DATE:

12/03/02

TO:

File

FROM:

Linda Thal

SUBJECT:

Organic Data Review and Validation - SNL

Site: DSS soil sampling

ARCOC # 605728, -729 GEL SDG # 67794, -98

Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM ER Project AOP 00-03.

Summary

The samples were prepared and analyzed with approved procedures using methods SW-846 8260A/B (VOC), 8270C (SVOC), 8082 (PCBs) and 8330 (HEs). Problems were identified with the data package that resulted in the qualification of data.

SVOC - Batch # 204423 (Sample 67794-012 through -022)

The initial calibration had a correlation coefficient < 0.99 but > 0.90 for pyrene (0.982). Sample 67794-012, -014, -015 and -020 had pyrene values > DL and will be qualified "J".

The CCV had a %D > 40% with a positive bias for bis(2-ethylhexyl)phthalate. All associated sample results (excluding sample 67794-012 and -19) had values > DL and will be qualified "J".

The CCV had a %D > 20% with a positive bias for benzo(g,h,i)perylene (22%). Sample 67794-015 had a value > DL and will be qualified "J".

The MB had a bis(2-ethylhexyl)phthalate value > DL but < RL. All associated sample results (excluding sample 67794-012 and -19) had values > DL , < RL and < 10X the blank value and will be qualified "U, B" at the RL.

HE - Batch # 205512 (Sample 67798-007)

No MSD, LCSD or replicate was extracted with this batch. As there is no measure of precision all the sample results will be qualified "P2".

The sample had a value for tetryl > DL but < RL. The confirmation RPD was > 75% and therefore the sample result will be qualified "R".

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analysis</u>: The samples were properly preserved and analyzed within the method prescribed holding time except as follows:

VOC

It should be noted that the sample Review and Receipt form indicated that the VOC containers/vials had headspace. It is not known what affect this will have on the samples and therefore, no data will be qualified.

SVOC, PCBs and HE

Sample 67794-015 was received in a broken container in a Ziploc bag. It is not known what affect this will have on the data and therefore, no data will be qualified.

Calibration

<u>All Analysis</u>: All initial and continuing calibration acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC Batch # 204483

Vinyl acetate had %D > 20% but < 40% in all the CCVs preceding the samples. All associated sample results were non-detect and no data will be qualified. Carbon disulfide had %D > 20% but < 40% in the CCV preceding sample 67794-006. The sample result was non-detect and no data will be qualified.

VOC Batch # 204910

Carbon disulfide had %D > 20% but < 40% in the CCV preceding the samples. All associated sample results were non-detect and no data will be qualified.

SVOC - Batch # 204423 (Sample 67794-012 through -022)

The initial calibration had a correlation coefficient < 0.99 but > 0.90 for pyrene (0.982). All associated sample results (excluding sample 67794-012, -014, -015 and -020) were non-detect and will not be qualified.

The CCV had a %D > 40% but < 60% with a positive bias for bis(2-ethylhexyi)phthalate (40.4%). Sample 67794-012 and -19 were non-detect and unaffected by a positive bias. No data will be qualified.

The CCV had a %D > 20% with a positive bias for benzo(g,h,i)perylene (22%). All associated sample results (excluding 67794-015) were non-detect and unaffected by a positive bias. No data will be qualified.

Several other compounds in the CCV preceding the samples had a %D > 20% but < 40% (see DV worksheet). All associated sample results were non-detect and no data will be qualified.

SVOC - Batch # 204661 (Sample 67798-005)

The initial calibration had a correlation coefficient < 0.99 but > 0.90 for pyrene (0.982). The sample result was non-detect and will not be qualified.

The CCV had a %D > 40% but < 60% with a positive bias for bis(2-ethylhexyl)phthalate (51%). Several other compounds in the CCV preceding the samples had a %D > 20% but < 40% (see DV worksheet). The sample results were non-detect and no data will be qualified.

Blanks

All Analysis: All method blank (MB), equipment blank (EB) and trip blank (TB) acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC Batch # 204483

Sample 67798-004 (TB) had a 1,2-dichloropropane value > DL but < RL. All associated sample results were non-detect and no data will be qualified.

SVOC - Batch # 204423 (Sample 67794-012 through -022)

The MB had a bis(2-ethylhexyl)phthalate value > DL but < RL. Sample 67794-012 and -019 were non-detect and will not be qualified.

The EB had a diethylphthalate value > DL but < RL. All associated sample results were non-detect and no data will be qualified.

Surrogates

All Analysis: All surrogate acceptance criteria were met.

Internal Standards (ISs)

All Analysis: All internal standard acceptance criteria were met.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

<u>All Analysis</u>: All MS/MSD acceptance criteria were met except as mentioned above in the summary section and as follows:

VOC Batch # 204910

No MS/MSD was reported for this batch. The LCS/LCSD met all QC acceptance criteria for accuracy and precision. No data will be qualified.

SVOC - Batch # 204423 and 204661

Several compounds (see DV worksheet) had %R < QC acceptance criteria (75 – 125%). Using professional judgment, no data will be qualified.

SVOC - Batch # 204661

It should be noted that only 500ml (DF=2x) of sample was used for the MS/MSD. It is not known what affect this would have on the extraction procedure and no data will be qualified.

PCB Batch # 204654

It should be noted that the sample used for the MS/MSD was of similar matrix from another SNL SDG. Only 500ml (DF=2x) of sample was used for the MS/MSD. It is not known what affect this would have on the extraction procedure. No data will be qualified.

Laboratory Control Samples (LCS/LCSD) Analysis

All Analysis: The LCS/LCSD acceptance criteria were met with the following exceptions:

VOC Batch # 204483 and 204910

The QC acceptance criteria for the LCS were met by the successful analysis of a second source CCV.

It should be noted that no compound was associated with internal standard 1,4-dichlorobenzene-d4. No data will be qualified as a result.

SVOC - Batch # 204423 and 204661

It should be noted that no compound was associated with internal standard perylene-d12 data will be qualified as a result.

HE - Batch # 205512 (Sample 67798-007 (EB))

The LCS %R was slightly below QC acceptance criteria for 3-nitrotoluene and 4-nitrotoluene (see DV sheet). However, a MS was performed on sample 67798-007_and all the %Rs were in criteria. There was no more sample remaining to perform a re-extraction. Using professional judgment, no data will be qualified.

Detection Limits/Dilutions

All Analysis: All detection limits were properly reported. Samples were not diluted.

Confirmation Analyses

VOC and SVOC: No confirmation analyses required.

PCB: All confirmation acceptance criteria were met.

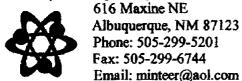
HE - Batch # 204696(Sample 67794-012 through -022)

The sample results were non-detect and therefore no confirmation analysis was required.

Other QC

<u>VOC</u>: A trip blank, equipment blank and a field duplicate were submitted on the ARCOC. There no "required" validation procedure for assessing field duplicates.

It should be noted that vinyl acetate is on the TAL for soils but not for waters.


<u>SVOC, PCB and HE</u>: An equipment blank and a field duplicate were submitted on the ARCOC. There is no "required" validation procedure for assessing field duplicates.

No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Analytical Quality Associates, Inc.

MEMORANDUM

DATE:

December 04, 2002

TO.

File

FROM:

Linda Thal

SUBJECT:

Radiochemical Data Review and Validation - SNL

Site: DSS soil sampling ARCOC 605728 and 605729

GEL SDG # 67794 and 67798 Project/Task No. 7223.02.03.02

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03.

Summary

All samples were prepared and analyzed with approved procedures using method EPA 900.0 (Gross Alpha/Beta). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

<u>All Analyses</u>: All samples were analyzed within the prescribed holding times and properly preserved with the following exception:

Sample 67794-015 was received in a broken container in a Ziploc bag. It is not known what affect this will have on the data and therefore, no data will be qualified.

Calibration

All Analyses: The case narrative stated the instruments used were properly calibrated.

Blanks

No target analytes were detected in the method blank or equipment blank at concentrations > the associated MDAs.

Matrix Spike (MS) Analysis

The MS/MSD analyses met all QC acceptance criteria.

Batch # 204950 (Sample 67798-011)

The sample used for the MS/MSD was of similar matrix from another SNL SDG. No data will be qualified.

Laboratory Control Sample (LCS) Analysis

The LCS analyses met all QC acceptance criteria.

Replicates

The replicate analyses met all QC acceptance criteria.

Batch # 204950 (Sample 67798-011)

The sample used for the replicate was of similar matrix from another SNL SDG. No data will be qualified.

Tracer/Carrier Recoveries

No tracer/carrier required.

Negative Bias

All sample results met negative bias QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

Other QC

An equipment blank and a field duplicate were submitted on the ARCOC. There are no "required validation procedures for a field duplicate. No field blank was submitted on the ARCOC.

No raw data was submitted with the package.

No other specific issues were identified which affect data quality.

Data Validation Summary

Site/Project: DSJ Jo1/ Sampling	Project/Ta	Project/Task #: 7223.	3.03.03.03		# of Samples: 23	11 5	Matrix: 501/	ø	420	
ARCOC#: 605 728, 605 729	79			Labora	Laboratory Sample IDs:	46773 :	100 - 46	1 #10	- 0da	
Laboratory: GEA				ļ		86269	100 - 86	An	- 011	
Laboratory Report #: 67794										
			-		Analysis	sis				
QC Element		Org	rganics			Inorg	Inorganics			Hexamelers
	voc	svoc	Pesticide/ PCB	HPLC (HE)	ICP/AES	GFAA/ AA	CVAA (Hg)	8	KAD	Other
1. Holding Times/Preservation	>	<i>></i>	^	1		ИA	7	7	1	TY VIJ.
2. Calibrations	7	7	^	>	1		7	7		>
3. Method Blanks	7	10.8	7	>	3,63 3,8		7	>		>
4. MS/MSD	7	>	<i>\</i>	V P2	7		7	7		72827
5. Laboratory Control Samples	7	/	7	/	1		7	7		>
6. Replicates					1/5		7	7		7
7. Surrogates	7		7	>						74
8. Internal Standards	7	7								
9. TCL Compound Identification	7	_^								
10. ICP Interference Check Sample					7					
11. ICP Serial Dilution					7					

キる - Acceptable Check (v)

Estimated

_ p B &

Not Detected, Estimated Not Detected Unusable

Shaded Cells = Not Applicable (also "NA")

NP = Not Provided S. Ocher:

Reviewed By:

X 8 DUP

180

INSIDE SIPIOC DEG

received broken DVP

DUD

AS ADD

Carrier/Chemical Tracer
 Recoveries

13. Other QC

Reviewed By:

700	17 Hrv - 011			Comments	U5, 4T							
	Laboratory Sample IDs: $67794 - 475 + 1670$ $67798 - 601 + 1670$			Preservation Deficiency	NA							
Preservation	aboratory Sample IDs:			Preservation Criteria	NA							
Holding Time and Preservation	7 - 29			Days Holding Time was Exceeded	ol mush d	9.25 8:10	}					
Hold	1	04	X	Holding Time Criteria	2x hous							
	APLING ARICOC#:	Laboratory Report #:	Maurix.	Analytical Method	SW- 846							
	3	3 3	# of Samples: - < of the first	Sample ID		61146-001						

Holding Time and Preservation

501/3 8 10/ 7 Page 1 of 2

Date: 12.03.03 0.2675 54 8+ 11 \$66. *00 -78 864.47 964.47 964.47 110-Blanks thru 67796-Equip. Blanks Matrix: Sol 3.00 PE 40 P 100 2/hal MS RPO 6779H -ASD \$ Volatile Organics (SW 846 Method 8260) Laboratory Sample IDs: 2 g Reviewed By: rcs|rcsp| # of Samples: NA Method Notes: Shaded rows are RCRA compounds - 29 % % 7794 इरु 805 728 ×.05 Laboratory Report #: Intercept Site/Project: 035 501/ Sampling ARCOC#: 0.000 0.00 흩胀 0.10 100 9 0.10 000 0.10 F 0 xylence(total) 1,2 DICKJOPOSTANE 82600 ethylbenzene methylene chloride (10xblk) 12-dehorvethme 12-dehorvethme(total) 12-dehorverspasse 2-betanne (MEK) trans-1,3-dichloropropene Viny/ acene (fine 1,2,2-tetrachloroethane cis-1,3-dichloropropene dibromochloromethane carban tornechorde chievohemen chievochane chievofera 2-chloroethyl vinyl ether 2-bennone (MBK)
4-methyl-2-pentanone
(MBK) bronodichloromethane 1,1-ticklovechere 1,1-ticklovechere 2-trichloroethane 1,1,1-trichioroethane Name acctane(10xbE) tojucne (10xblk) certon disulfide vinyl chiaride commentation 5W- BA6 chloromethane promotorm (10xbak) 108-88-3 10061-02-6 79-01-6 - 6004 245 10061-01-5 124-48-1 75-09-2 100-42-5 127-18-4 71.43.2 75.25.2 74.83.9 75.13.0 86.23.4 1100.9 7 15.00.3 14.87.3 1001 Comments: CAS # 75.34-3 75-35-4 107-06-2 540-59-0 78-87-5 108-10-1 110-75-8 591-78-6 75-01-4 Laboratory: 71-55-6 79-34-5 79-00-5 78-93-3 67-64-1 Methods: 8

10.10 COV/ACS. James

olatile Organics								Page	Page 2 of 2
te/Project:	AR/COC#:	#: 605 728	128 -29	Batch #s:					
aboratory:	Laborator	Laboratory Report #:	•	# of Samples:	ples:	Matrix:	rix:		
	Surro	Surrogate Recovery and Internal Standard Outliers (SW 846 Method 8260)	y and Intern	al Standard	Oudlers (SW	846 Method 82	(097		
Sample	SMC 1	SMC 2	SMC 3	IS 1 Area	IS 1 RT	IS 2 area	IS 2 RT	IS 3 area	IS 3
IN CRITCHA									
		/.							
									:
				·					
SMC 1: 4-Bromofluorobenzene SMC 2: Dibromofluoromethane SMC 3: Toluene-d8		IS 1: Fluorobenzene IS 2: Chorobenzene-d5 IS 3: 1,4-Dichlorobenzene-d4	-d4	Comments:		CO & ACS	89 · 11		SA 1-11 (exc. 6)
				9.27		ECN & ACS DISTANCE &	20.15 sw. 40e &	ms/mso Vinyi neerase 220%	30 50°%
				6.	9.30 CO	CS & SS	8.08	<i>s</i>	

WS dot (785 4 68)

Page 1 of 2

					Š	Stile	Organ	Volatile Organics (SW 846 Method 8260)	N 846	Methc	yd 820	2 0						Page 1	of 2
1	D	Simple of the Coll Camping ARICOC#:	AR/C		8 65 728	1	90	*	# of Samples:	Jes:		*		Matrix:	27/	027			
<u>3</u> -	rrojea: 17		and I	1		779.	2	<u></u>	Laboratory Sample IDs:	y Samp	e Ds:	9	7798	0	/ /0	the	Ö	400	
	ະ່	0 110	je o	and very					Batch #s:		×0×	016 %							
ğ L_	Methods: (4)	7900 900.			4	Callb.	ટ્ટ	100			 			<u> </u>	<u> </u>	Eaulp.	윤		<u> </u>
ā	CAS #	Name	- C - T	Intercept	× × ×	76 ×	30%	Biks	ಬ್	8	P O	<u> </u>	GSM GSM	RPO RPO RPO			Blanks		
			-		Ī	3	T		1	t	ť	H/X	T	A.A.	4	-			
	71-55-6	1,1,1-trichloroethane			7	7	X	1	1	+	F		+			H			4
<u> </u>	79-34-5	1,1,2,2 tetrachlorocmane		1	1	 					 					1			4
<u> </u>	73-06-5	1, 1, c-tronications	0 10		F					H			-	+	 	+			+
<u>-1-</u>	Ţ	1 - Melloranthene	0,20						7	1	7	1	†	1	+	+			+
1-	L	1.2 dichlorochane	0.10						1	\dagger	+	+	+	+	+	\dagger			1
1-	1	1.2-dichleroethene(total)	0.01				1	1	1	\dagger	+	+	\dagger	\dagger	1	\mid			Ļ
<u> </u>	Į.	1,2-dichloropropenc	10.0			1	1	1	1	+	†	ŧ	+	+	+	+			L
	78-93-3	2-businose (MEK)	0.01									7	1	-	4	1			+
Ŀ	110 74 0	2. chlomethy vimy ether	-								1	1	+	+	+	+			\downarrow
<u>-lc</u>	A 201-104	2-beranore (MBK)	100							1	1	1	†	+	+	†			+
ع (د	7 01 901	4-methyl-2-pentanone	<u> </u>						-										_
7	100-10-1	(MBK)		1	Ī	Ţ	+	1	1	+	†	T		$ar{}$					
_	67-64-1	acetome(10xbBc)	0.0	k	Y	1	+	+	T:	T:	1	T				H			-
	71-43-2	bezache	2 6		$\frac{1}{1}$	T	1	+		+	T			H	H				+
<u>l-</u>	75-27-4	bromodichioromemane	9 0		ŀ	-	-				H					+			\downarrow
<u>- -</u>	74.83.0	bromomentane	010		-		-				1	1	7	+	+	#			\downarrow
-1-	75-15-0	carbon disulfide	0.10				902-				1	1	†	+	+	+			+
1=	\$6-23-5	carbon tetrachloride	0.10				Y		1	1	1	1	#	+	+	7			+
- [7]	Г	chlorobemene	0.50 S.				-	$\frac{1}{4}$	1	1	Ĭ	T	7	+	+	+			-
<u> -</u>	Г	chloroothene	ë e			1	1	+	1	Ţ	T	T	F	-					
<u>!</u>	67-66-3	chloroform	200		1		-	1	I	T			1	H	H	Ħ			
<u> </u>	74-87-3		2 2		-							П							+
-10	1	divorcehoromethane	0.10	\									1	1	+	+	1		+
10	1	othylbenzene	0.10					1			1		†	+		-	1		-
<u> </u>	Π	methylene chloride (10xblk)	10.01	7	1	1	1	+	1				T	+	-		-		Н
a		styrene	0.30		$\frac{1}{1}$		+	+	1		T			-	_				H
7	127-18-4	tetrackloroethene	R) ($\frac{1}{4}$	+	1	+	[Ţ	1			-			-		
ପ		tolucine(10xblk)	2 5	1	1	1	1	+	1						Н				-
<u>al</u>	T	6 trans-1,3-dichloropropene		1	1,180	1	1	+		1	Z					1	+		+
<u>-1</u>	2016	trickloroethene	3 5			1		-									1		+
<u>15</u>	13-01-4	- 1	9 3		-									+	+	1	1		+
71	1330-00	1	E	_									1	+	+	1	1		+
_		1									1		1	1					-
೨೮	ä	0 0 √	poto ₂	Notra:		Shaded rows are RCRA compounds.	RCRA co	mpounds.	Review	Reviewed By:				X/hal	al	}	Date:	প্	03.0
			•						:										
		CCN & YC.S		11.10															

/olatile Organics								Page	Page 2 of 2
ite/Project:	AR/COC#	AR/COC#: 605 708	8 - 29	Batch #s:	•	,			
aboratory:	Laboratory	Laboratory Report #:	,	# of Samples:	ples:	Ma	Matrix:		
	Suro	gate Recove	ry and intern	al Standard	Dutliers (SW	Surrogate Recovery and Internal Standard Outliers (SW 846 Method 8260)	260)		
Sample	SMC 1	SMC 2	SMC 3	IS 1 Area	IS 1 RT	IS 2 area	IS 2 RT	IS 3 area	IS 3 RT
IN CETECIA									\
			\						
SMC 1: 4-Bromofluorobenzene SMC 2: Dibromofluoromethane SMC 3: Toluene-d8	IS 1: Fluorobenzene IS 2: Chorobenzene- IS 3: 1,4-Dichlorobe	IS 1: Fluorobenzene IS 2: Chorobenzene-d5 IS 3: 1,4-Dichlorobenzene-d4	-d4	Comments:	ents:				

2 Date: 10.03.02 3 6 5 2 ব Š Blanks 7.0 Blanks -86449 67794-012 HIV QUE 20 4661 (CB Pup. 8/89/ Pied 67798 - 005 (88) APD CAR glear MSD 4 Shaded rows are RCRA compounds. S E 73 S 204423 Laboratory Sample IDs: P G XA LCS LCS Reviewed By: Batch #s: Method Blanks ~ 20% ŞŞ ş 2 ĕ 46119 - 29 <20%/ 0692 Callb. RSD/ Ş ġ. Cell 전 전 605728 × 50.7 Laboratory Report #:___ Intercept 201 Site Project: D 50 501/ Sampling ARCOC#: 50//5 0.20 0.20 0.60 0.50 070 0.20 0.80 0.80 0.70 0.10 0.01 1000 0.20 020 0,0 0.10 0.40 0.01 0.01 0.60 F 0 -1 Matrix: 8270C 534-52-1 4,6-Dinitro-2-methylphenol 101-55-3 4-Bromophenyl-phonylether 7005-72-3 4-Chlorophenyl-phenylether 106-44-5 4-Methylphenol (p-cresol) 2-Methylphenoi (o-cresol) 59-50-7 4-Chloro-3-mothylphonol 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzone 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalono 2-Methylnaphthalene NAME M, P-UCOOR 2,4-Dimethylphenol 2,4-Dichlorophenol 2,6-Dinitrotoluene 2,4-Dinitrotohtene 2,4-dinitrophenol 2-Chlorophenol 106-47-8 4-Chloroaniline 2-Nitroaniline 2-Nitrophenol 3-Nitroandine SW- 846 106-46-7 6-49-501 606-20-2 BNA CAS # 120-82-1 120-83-2 51-28-5 121-14-2 541-73-1 91-58-7 88-06-2 \$-25-SE 91-57-6 88-74-4 88-75-5 99-09-2 95-50-1 95-954 95.48-7 174.15 # of Samples: Laboratory: Methods: Z. Z BN BN EN. Z. BN 孟 BN Z Z Z B. 孟 ~ **⋖** < ∢ ≺ ⋖ ⋖ ⋖ ⋖ < < Comments: হ

7

00

-

Semivolatile Organics (SW 846 Method 8270)

Page 1 of 3

Organics	
Semivolatile	

Site/Project:	Site/Project:		AR/COC#:	#	09	605728	1	29	₁ 21	Batch #s:	.	ļ						'			1
Laboratory:		Lab	orato	ry Rep	Laboratory Report #:			-	₹	# of Samples:	nples:				Ψ̈́ L	Matrix:					1
BNA	CAS *	NAME		A 75	Intercept	Callb.	Callb. RSD/	CCV %D	Method	S	GSDT	LCS	₹	MSD	MS	Pieto Dup.	Equip. Blanks	Field Blanks	S.M.	aus	
			_		.1	>.0.	√20%/ 0.99	20%	ره							RPD			ס	70	
NS.	9-10-001	4-Nitroaniliae	Ž	0.01				33 1	7			MA				>	7	NA			
4	100-02-7	4-Nitrophanol	Ë	10.0				D' 42		5	7		7	>	7			-	7	7	1
BN	83-32-9	Accomplishere	2	8.			_	7			7		\	>					۷	7	1
Z A	208-96-8	Accrephthylene	Ë	8.0				Ē													
ä	120-12-7	Anthracene	Ë	6,79				E				E									ı
Z	\$6.55.3	Benzo(a)authraceae	Ë	08.0 08.0																	
温	\$0-32-€	Benzo(a)pyrene	Ĕ	0.70																	1
K	205-99-2	Benzo(b)fluoranthene	Ë	9,70												L		_			ı
器	191-24-2	Benzo(g,h,)perylene	Ë	0.50				P. 48		Γ							L			_	1
몵	207-08-9	Bezzo(k)fluoranthene	Ë	8,0	7			7													
Z	1-16-111	bis(2-Chloroethoxy)methane		0.30																	, ,
る	111444	bia(2-Chloroethyl)ether]	0.70				, stu'i													
BN	108-60-1	bis(2-chloroisopropyl)ether	7	10'0				<u>-</u> أح													
M	117-81-7	bis(2-Ethylbexy1)phthalate	Ë	0.01	\			15x 0nx	64.13												1
폷	85-68-7	Butylbenzylphthalate	Ĕ	0.01				יני או פני													1
R	86-74-8	Carbazzio	Ĭ	0.01				132 12													
BN	218-01-9	Chrysene		0.70				ノン													
BN	53-70-3	Dibenz(a,h)anthracene	Ĭ	0.40	/		,														ı
BN		Dibergoffuna	Ĭ	98.																	
BN	84-66-2	Diethylphthalate		0.01													0.87LT				1
B	131-11-3	Dimethylphthelete		10.0													X				
NA NA	84-74-2	Di-n-butylphthalate		0.01			"														
盈	17-84-0	Di-e-octylphthalate	Ĕ	0.01	\ /	/	0														1
Z	206-44-0	Fluoranthene	Ĕ	09.0			/														1
æ	86-73-7	Fluorene		06'(F
BN	118-74-1	Hexachlorobenzene		0.10						Z	7		7	7	7				<u> </u>	1	ı
BN	87-68-3	Hexachlorobutadiene	_	0.01						>	7		11	יור				_	10	}	1
Z	77-47-4	Hexachlorocyclopentadiene	\coprod	0.01																	ı
ă		T. Tarana de La constante de l	Ľ																		

Semivolatile Organics

-,	Site/Project:	ject:		Ì	AR/COC#:_	-	605 708	,	10.9	1	2 2)	Batch #s:										
	Laboratory:	ory:			Laborator	Laboratory Report #:]	*	# of Samples:	ples:				Matrix:					
က္ဆ	BNA	S BNA CAS#	NAME	덛	Min.	Intercept	Calib.	Callb. RSD/	λος %	Method Bianks	S	SOT =	LCS RPD	MS.	MSD	MS WED	Field Dup.	Equip. Blanks	Field	3.5	MJD	660
						182	£9:4°	100%	,20%	ر هی	~	3		_	_	~				જ	જ	જ
	NR	193-39-5	193-39-5 Indeno(1,2,3-od)pyrene	>	0.50		>	_		7			WA				7	\	**			
	BN	78-59-1	Jacphorone		0.40																	
	BN	91-20-3	Naphthalene		0.70																	
	BN	£-\$6-86	Nitrobenzene	E	0.20						7	2		F	73					0,9	>	>
	NB.	86-30-6	N-Nitrosodiphenylamine (1)		10.0																	•
I) NG	521-64-7	BN 621-64-7 N-Nitroso-di-propylamine	7	0.50						7	7		>	>	/				>	7	7
	₹	\$-98-28	Pentachlorophenol		0.05	 - -		, ,			7	7		\	7	/				>	7	7
	BN	85-01-8	85-01-8 Phenanthrene		0.70																	ı
	Y I	108-95-2 Phenol	Phenol		0.80						[2		>	7	\				>	>	\
П	BN	129-00-0 Pyrene	Pyrene		09'0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		18			>	>		7	7	7				>	/>	/
			Diphenyanie					``														
			,																			
		`		J.	rogate R	Surrogate Recovery Outliers	Jutliers	i						,	6							

のさそそ	Comments: ALB 615 AM SA CRUPT 12 419 333U, B	Purch derest as J 12, 14,15, 20	WO!	7	con bis ython, All thes I plose with
200					
	SMC 1 SMC 2 SMC 3 SMC 4 SMC 5 SMC 6 SMC 7 SMC 8				
iers	SIMCE				
urrogate Recovery Outliers	SMC				
e Recov	SMC 4		\int		
urrogat	SMC 3				
-1	SMC 2				
	SMC 1	1614			

SMC 3: p-Terphenyl-d14 (BN) SMC 6: 2,4,6-Tribromophenol (A) Internal Standard Outliers SMC 2: 2-Fluorobiphenyl (BN) SMC 5: 2-Fluorophenol (A) SMC 8: 1,2-Dichlorobenzene-d4 (BN) SMC 1: Nitrobenzene-d5 (BN) SMC 4: Phenol-d6 (A) SMC 7: 2-2-Chlorophonol-d4 (A)

IN CEITERA

Sample

۲ #

benzo ghi paylere tre %0 = tax the Pitth recend botton fyrance I cade no g 40461 15 1-ara 15 1-RT 15 2-ara 15 2-RT 18 3-ara 15 3-RT 15 4-ara 15 4-RT 15 5-ara 15 3-RT 16 6-Ara 15 6-RT

64 00

Bis % 0 CGV > 40

Mus/mso soome

	IS 3: A IS 6: P
	IS 2: Naphthaleno-d8 (BN) IS 5: Chryseno-d12 (BN)
	IS 2: Naphth IS 5: Chryse
	(BIN)
	10 (BN)
	IS 1: 1,4-Dichlorobenzeno-d4 (BN) IS 4: Phenathreno-d10 (BN)

3 Sample

>

	naphthene-d10 (BN)	dene-d12 (BN)
ł		5:1
i	IS 3: Acens	IS 6: Pery

Laboratory Sample IDs: 67794 - 013 4/10 - 003 67798-000 (88) SterProject: DSS 501/ Samply ARICOC#: 605728, -29 X6173

Methods:	54.846		8082			į	\{	1							7		
# of Semi	1 3		Matrix:	Matrix: 501/5 & Naver	Naver			až i	Batch #s:	00	20438	7		40465Y	1654		
		F	9	35			F	8	-	F	24	Piets		7			
CAS #	Name	C Intercept	12.	3	Method	<u>3</u>	LCSD R	2 2	2 2		8	P. Blanks		Sterrito			
			650/%025	2 / 20% 2	163		7	20%	7 6	20%m	100 Kg	1		+			1
2674-11-2	12674-11-2 Aroclor-1016	NA.	^	/ /	>			7/4	-	-	7	\ \ \	7	1/4			-
1104-28-2	104-28-2 Aroclor-1221				^	_	-	_	-	1	+	1	4	-			
1141-16-5	1141-16-5 Aroclor-1232	-			`^		_		-	+	1	1	1	1			
3469-21-9	53469-21-9 Aroclor-1242	\ \ \ \	>	>	>		-	_	+	-	1	1	-	1			
2672-29-6	12672-29-6 Aroclor-1248	-	7		\ \ 		1	_	-	+	1	1	-	+			
1097-69-1	1097-69-1 Aroclor-1254 h		ر ح	ý	7		-	_	-	+	+	1	+	+			
1096-82-5	1096-82-5 Aroclor-1260	\ \ \	1	\ \ \	>	7	J	K	X	才	7	1	1	1			1
							-	_		-	-	-	+				
				 			-	_	 			_	-				-
	1		 	-			\vdash	\vdash	_		 !						
						1	1	1		1	1						ŀ

					ŀ					,
Sample	SMC % REC	SMCRT	Sample	SMC % REC	SMC RT	Comments: No rew class to	, . %	3	deta	6
W 60.786.10							7	ઝ જ	10 proces	
						<u>.</u>				
		Confirmation	•						,	•

ms/ms 6782	5NA 509	(100/11 500.15)
204654		
_	7	

8		 	 	
RPD > 26%				
CAS #				
Semple				
RPD > 25%				
CAS#				
Sample	17 CE17081A			

Reviewed By:

Site/Proje	Site-Project: DSJ 501/ Jamp/119 AR/COC#: 605 728	۶ .	AR/COC#	t: 60,	5728	-49		Laborat	ory Sam	Laboratory Sample IDs:		76229	1	67794 - 012 thru	4ry - 022	70	
Laboratory:	y: CFL	5	Laboratory	Laboratory Report #:	, 9	67794	İ					6779	8-0	67798-007 (68)	(8)		
Methods:		8	8330							•				જ			
# of Sam	, 1) d	Xg	Matrix: J01/1 6	B	420			Batch #	ة: <u>م</u>	Batch #s: 204696	96		9	4055/2	(83)		
1000														49/6			
*840	MAME	片	Properties	\$ 72 0	§ Ş	Method	83	108	2 2	MS	Q\$#		Flekt. Dup.	Equip. Blanks	Field Blanks		
ţ				1.99 a /		1 U 2		_	%02	8	8	م 120%ع	┵	n	Ω	1	
2691-41-0	HMX	\vdash	NA	1	, ,	\ \ \	7	>	WA	Z	₹ \	17	사 十	Y	NA	+	
121-82-4	RDX	Ħ							1	7	-	+	+		+	+	
99-35-4	1,3,5-Trinitrobenzene	Ħ							7	1			+			\dagger	
0-59-66	1,3-dinitrobenzene	Ħ							7	1		+	+	1	+	+	
98-95-3	Nitrobenzene		_			-		1	7	1		+	 	- ;	+	_	-
479-45-8	Tetryl	Ξ						1	7	1	=		9	0 OMS JP.	+	-	
118-96-7	2,4,6-trinitrotoluene	H						1	7	1	-	#	+	7	+	+	
35572-78-2	2-smino-4,6-dinitrotoluene							1	7				+				
1946-51-0	4-emino-2,6-dinitrotoluene							\exists	7	1			+	1	+	+	
121-14-2	2,4-dinitrotoluene	H						-	7				#	1		+	
606-20-2	2,6-dinitrotoluene							1	1				+			+	
88-72-2	2-nitrotoluene	\dashv						1	1				+			+	
0-66-66	4-nitrotoluene	=						Cal.	13-110			1	†	1		\dagger	{
99-08-1	3-nitrotoluene	Ħ						F	017EL				+	-		+	
78-11-5	PETN	H											+			+	
													+			+	
		+				`							1				
		\vdash											1			1	
		\vdash	 -	-		L											

Comments:

SMC RT			
SMC %REC			
Sample			
SMC RT			
SMC MREC	24		
Semple	IN CELTORIA		

NO LCSD, MSD or replicue "Pa" ००८८७

Solida-to-aqueous couversion: mg/g (mg/g) x (sumple mass $\{g\}$ / sample vol. $\{ml\}$) x (1000 ml / 1 lim;)] / Difution Factor = μ_l

Reviewed By:

Date:

7. O. X.

Ws , of a soils

Inorganic Metals

										2									•	7,7	
Stratuming A. M. Soll Sampling ARICOC#: 605728	7	266	, (es	10hoe	AR/CO	2#:	0572	92-6	6	1	Laboratory Sample IDs:	/ Sample	Ä	2000	-	67794	:	013	Ma	\$	
1 ahoratory:	0.57	7.5		>	Laborato	Laboratory Report #:	#														
1 feethoods:	× (1) ×	441-846	147	11	0/01	0							1	1			224406	_	Metals)		
Wichians		=	ì	Matrix:	K. 501/	///	i.			-	Batch #s:		20440	2			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
# Of Samples.					9					00	Element						4916				
17 000					3/8				-	 	-	-	į.	┰	<u> </u>		- daring	Field	,	Į,	
Analyte		ıcv	CCV	ICB	5	Method Binaks	S)	LCSD	LCSD	MS.	MSSD 1	MSP 0 73	Rep. 1	2 2	tion a	e a a		Blanks	ec6x3	2 S	
7429-90-5 AI	H			+	1		Ţ			5			X	1	1	1	1				
7440-39-3 Be	1	X	1	+	1	1					-	+	1	t	WP		1				
7440-41-7 Be	卞	1	>		1		k	1		才	+	+	100	,						2.81.5	1,10/6
7440-70-2 Ca							1	7		2	-		07	۲	1	1	, 773	+		4 14	ر ر
7464730	>	1	>	1	Y	k		1		-			1	+	+	\dagger	1	-			
7410-48-4 Co			1	1							1	+	+	+	+	+					
7440-50-8 Cu	1		1	1	T						1	†	+	+	+	$ar{}$					
7439-89-6 Fe	1										7	†	\dagger	+	\dagger	\dagger					
7439-95-4 Mg	1									1	†	+	+	+	-						
7439-96-5 Mn	1									1	7	1	+	+							
7440-02-0 Ni										1	1	+	4/4	1	AX						
744(105-7 K	T.	\[\]	1	-	1	K	1			I	1	T			H			$\frac{1}{1}$		1	
7440-23-5 Na		X					1								+	+		$\frac{1}{1}$	1	1	
7440-62-2 V					1		1							1	+	+		+			
7440-66-6 Zn							-					†		†	†	1	-				15,17,
	Ţ	1	1	1	/		1			Y	1	7		1	1 2 2	\ 	\		18.3	\downarrow	6/
7439-92-1 [7	1	1		1	306	1	1		+	Y		1	1795	1	NR	1	X	1		1	X 2 X
7105 411	1	1	1	\	1	7	1		1	1		F	-	1, 52.7		1			1	1	500
74.0.35 Sh	1	L					1	1	1			F			+	1		+	1	-) }
##40.28.0 TI							+	1				7		1	†	1		+	-	-	_
					<u> </u>		1	-		>			7.0	1	+	1				_	
7439-97-6 Hg	7	1	1	1	1	k	+	1						1	+						· ·
	1	_		\downarrow	1	1	-						1	†	†						
Cyunide CN	1		1	1	1									1							
	1	1	1	1	1	-				-			<u> </u>	T	<u> </u>					\ - \	<u> </u>
	1	1	1	-			-		$\frac{1}{1}$	\downarrow										1	_,
	1			\coprod					fine (a) v (semple mass {g} / semple vol. {m}) x (1000 ml / 1 liter)] / Dilution Factor = µg / 1	Te mass	(z) / samp	se vol. (B	30(1)×((1	五/1/年	c)]/Dibb	on Pactor	1/8/=				
•																					

Notes: Shaded rows are RCRA metals. Solids-to-aqueous conversion: mg / kg " µg / E: [(µg / g)

Comments: Dug As Sa L SXRL ". RL applies

Dyb Dubb Dunen Sa & dup 7Rh.

OP. AES-Joils All devels < SX RL "J"

Reviewed By:

Inorganic Metals

							\prod					148						1			1	1	1	+	1	<u> </u>	-	1	\downarrow	1	+	-	-			
											7																1							L		
		,	Metals			States																				1	$\frac{1}{4}$	1	1	1						
			25%			Equip. Blanks		T												1	1	1														= µg/1
- 010			75440P		Field	40	44	1	F			7																								= 11.0 (c) x (sample mass {g} / sample vol. {ml})x (1000 ml / 1 liter)] / Dilution Factor = µg / l
7798			(41)		177.0	Dife		***	44		nn								NA					XA	1								\downarrow	\downarrow		iga) / Dil
67			1901			S S		Ĭ	T	1	7								7					7	7	1	,									1 / TE Q
le Ds:			904490			Rep. RPD		44	1		44								NA					MA						NB						(3) × (30)
Laboratory Sample IDs:						MSD		1	1														-		-									1	1	ple vol. (n
Laborato			Batch #s:	O Flament		MSD	114]	7	7	1	F	F	F	F	1																				(a)
				5	3	MS		X	Ī	I	[1							!						1	1	L			>			_	\downarrow	1	mie mass
8	7,7					ESD EP																+			-	-										(a) x (a)
	67794	S				0S)1	WA		1	1	+	1	+	7	7	7	7																			/a. [(na
5738		60100	MON		f		f	,		\downarrow	†	1	†	†	T	1	1	†	1	1	T			 	1	1	1		T	-						
#: 605	Laboratory Report #:_		19440	,	3/65	Method	T	1		1	†	1	†	1	1	1	1	1	1	X		1		1	1	1										1
AR/COC	aborator	7470			2/60	- 1 - CC	\dagger	429		, 343	+	$\frac{1}{1}$	+	1	1	7	+	1	†	1	1	1	1	1	\\	ţ	1	1	†	1	1					
inion	P	44	Matrix:		3	5	\dagger	/		Y	1	7	†	1	1	1	1		1	x		1	1	1	1	<u>,</u>	1			1						
, Sa.		8 46				CC	+	<u> </u>		X	1	7			1	1	1		1	Ĭ	1	1		Ī	1	1	I			Ţ	1					
30,	CKY	56.				ICV	\dagger	†	+	7	1	X	1		1					Ĭ	1	1	1		7	K	1			ľ	1					
0.50		7	1		;	TAL	†	†	+	1		1								I					1	Z	Z				1		\prod	\prod		
Site Project: 1) 33 301/ Samoling ARICOC#:	Laboratory:	Methods.	# of Samples:		1# 3V J	Analyte	14 2 00 000	7440 20 2 Ro	7440-41-7 Be	7440-43-9 Cd	7440-70-2 Ca	7440-47-3 Cr	7440-48-4 Co	7440-50-8 Cu	7439-89-6 Fe	7439-95-4 Mg	7439-96-5 Ma	7440-02-0 Ni	7440-09-7 K	7440-22-4 Ag	7440-23-5 Na	7440-62-2 V	7440-66-6 Zn		7439-92-1 Pb	7782-49-2 8-	7440-38-2 As	7440-36-0 Sb	7440-28-0 TI		7439.97.6 Hg	7	Cympon			

Notes: Shaded rows are RCRA metals. Solido-to-aqueous co-

Comments: DUP MS SD 204455 27821 SWA

leviewed By:

Date: 1 1.03

Date: 10.04.03

General Chemistry

			•	•	; ;		
Site/Project: 4	000 100 CCC	Site/Project: OU 301/ Samo/Ing ARICOC#: 60	25 728 -29	Laboratory Sample IDs: 6 / 74 - 0/3 オル - 0 0 3	61744-014	1 AN -002	
Laboratory:	GEK	Laboratory Report #:	67794		67798-008 (IWES)	(100 EB) 67498-009	00
Methods:	SW - 846	5W-846 9012A (TW)	71964 66+)	2059B1 (EB)	(83)	204193 (88)	
# of Samples:	11	Matrix: 501/5		Barch #s: 205/23 (70V)	(70x)	205618 Cotor	
				2061.26	(50-10)	いいかんかんしているというで	

				11). ^	_		
i				0.4415 SA NO	on as		
	Fkbd Bleaks		* ×	***		NA	ş
	Equip. Blanks		>	>		7	7
	A 40		>	>		7	>
•	Series Office of the		7.4	1			
	25		87				
	Rep	NA	74	ж	МΆ	# 47.	NA
#	MSD						
QC Element	MSD	NA					
OC E	MS	7	> >	>	>	* /]r/&3	. >
	E E	7					
	CCSD	>	WA				
	1.03	>	>	>	/	7	>
	Method Blanks	>	>	·0883 J mg/lg	/	>	>
	2 00	>	7	7	7/6w 700 · /	>	>
	5	>	>	>	>	>	>
	CC	>	>	>	>	>	>
	Č	>	>	>	>	>	>
	Hen	*			3 5		
	Amalyte	Total			/Kranner		
	CAS*						
	····	98/	5123 194-02	78/9	26/4	8/95	5620

Comments: 67798 - 009 > 47 US 445078

DUP /MS (SML.)
DUP /MS (SML) 90929 405/123 & 405/168 :

* Falls within GAZIS CHEMA

Reviewed By:

Radiochemistry

Laboratory Sample IDs: - A9 Sita/Project: 26 DUS SOI/ sampling ARICOC#: 605708 Laboratory Report #:_ GKY Laboratory:

900.0

FOR

Methods:

of Samples: //

0/000 Batch #s:

67794 - 012 MIU - 023 (83) 110 -8662

204950 (B)

	1
	ı
	l
n	ı
′	i
2	ı
ر	ı
2	ı
c	ı
४	1
	ı
ž	
_	

ı		1
ı		
ŀ		ı
ı		1
ı		ł
l		
ı		
i		
ı		
ı		
ı		ŀ
ı		
ı		
ı		
ı		
ı		
ı		
		1
•		Į
		1
		Į
		ı
		ı

				·				QC Element					
Analyte	Method Blanks	rcs	MS, mso	Rep RER	Equip. Blanks	Field Dup. RER	Field Blanks	Sample ID	Isotope	IS/Trace	Sample ID	Isotope	IS/Trace
Criteria	Ω	20%	25%	<1.0	Ω	<1.0	Ω	N/A		50-105			50-105
H3													1
U-238													
U-234													
U-235/-236													
Th-232													
Th-228													
Th-230													
Pu-239/-240													
Gross Alpha	/	/	/ /	/	/	7	Wa						
Nonvolatile Beta	\	7	ノノノ		>	7	NA						
Ra-226													
Ra-28													
Ni-63													
Gamma Spoc. Am-241													
Gamma Spec. Cs-137					446 LT								
Gamma Spec. Co-60													
90051 d	>	>	/	/	NA		<u></u>						
Nonryestik B	/	/	、トノ	7	NA		î						

5/950

Comments:

34 950

OUP MS/MSB 67/69 (SMX) 904950

Typical Carrier	NA	NA	NA	NA	NA	Ni by ICP	NA	NA	NA	
Typical Tracer	U-232	Pu-242	Th-229	Am-242	Y ingrowth	NA	NA	Ba-133 or Ra-225	Ba-133	
	Alpha spec.	Alpha spec.	Alpha spec.	Alpha spec.	Beta	Beta	Deamination	Alpha spec.	Gamma spec.	
Parameter	Iso-U	Iso-Pu	Iso-Th	Am-241	Sr-90	Ni-63	Ra-226	Ra-226	Ra-22º	

Gamm. c. LCS contains: Am-241, Cs-137, and Co-60

Reviewed By:

SDG No.: 6

EPA SAMPLE NO.

SAS No.: N/A

Date(s) Analyzed: 10/04/02 10/07/02

Instr

Instrument ID (2): HPLCA

	r		RT W	NDOW		
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	% D
建建设在设定公司公司公司在建筑的建筑是是共产业的基本	===	****	#=#===	======	河西美国教育市安全共和	
Tetryl	1	12.47	12.08	12.65	0.042	
						071
	2	20.88	20.93	21.23	0.45	971.4
		ļ				
	1	\ <u></u>				
	2					
	{ _					
	1	!	Ì			
	1					
	2	\				
		1				
	1		<u> </u>	<u> </u>		į.
	2			l	Į	
	1	ļ				
	١.					ļ
	1		\ 		ļ	
	2	<u> </u>		·		
	1	•	!			
	1					
	2					
		1	1			
	1	ļ				
	2		1	·		1
	1					1
	1		1			
	1					
	2]		.[
	.	.1	.11	· I ————	.	I

Somi-Veintile Case Nurrative Somile National Labe (SNLS) SDG 67794

Method/Analysis Information

Procedures

Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8270C

Prep Method:

SW846 3550B

Analytical Batch Number:

204423

Prep Batch Number:

204422

Soumle Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200307670	SBLK01 (Blank)
1200307671	SBLK01LCS (Laboratory Control Sample)

(identified by a HP-5MS designation)

HP-5MS 5% Phenylmethylsiloxane (identified by a

HP-5MS designation)

ZB-5 5% Phenyl Polysilozane (identified by a

designation)

Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2

designation)

Instrument Configuration

HP

Phenomenex

J&W DB-5MS2

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Coulingration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5M\$2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	: HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Certification Statement

Review Validation:

GKL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will require a third level validation upon completion of the data package.

Reviewer:

Date:

Page 4 of 4

^{*} Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case negative.

The matrix spike recoveries for this SDO were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required accommon limits

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that satigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Proporation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Neuconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are cantilary direct.

Chromatographic Columns

Chromatographic separation of semivolatile coraponents is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

_			

Column Description

JAW

DB-5.625(5% Phanyl)-methylpolyziloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)

JAW DB-SMS

Similar to the J&W DB-5.525 with low bleed characteristics (identified by a DB-5MS designation)

Alltech

EC-5 (SE-54) 5% Phonyl, 95% Methylpolysiloxane

Page 3 of 4

1200307672

059903-002MS (Matrix Spike)

1200307673

059903-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

REVISEL Procedures for properation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited especity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine at a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous varsions of EPA Method \$270 (prior to \$270C) listed N-Nitroso-diphosylemine as a CCC. However, as stated in EPA Method \$270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only cocluse, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method \$270C. If the WRSD is greater than 15% or the correlation coefficient is loss that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is respelyage for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or OCV) regulrements have been met for this SDG.

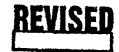
Onality Control (OC) Information

Surregute Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank contained a bit of bis-2-ethylhexylphthelate at a concentration below the reporting limit. Several of the associated samples also contained hits of this analyte, but at concentrations below the practical quantitation. limit. Please note the "BJ" flags on the certificates of analysis. 1200307670


LCS Receivery State

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 67794012 019903-002

MS Recovery Statement

GC/MS Volatile Organics Sendia National Labs (SNLS) SDG# 67794

Method/Augiveir Information

Procedure:

Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8260A

Prep Method:

SW846 5030A

Analytical Batch Number:

204483

Prep Batch Number:

204482

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Semple ID	Client ID
67794001	059903-001
67794002	059904-001
67794003	059905-001
67794004	059906-001
67794005	059907-001
67794006	059908-001
67794007	059909-001
67794008	059912-001
67794009	059913-001
67794010	059914-001
67794011	059915-001
1200307822	VBLK01 (Blank)

SDG# 67794 -VOA

Page 1 of 4

1200307828 VBLK01LCS (Laboratory Control Sample)

VBLK02 (Blank) 1200307823

VBLK02LCS (Laboratory Control Sample) 1200307829

1200308582 VBLK03 (Blank)

VBLK03LCS (Laboratory Control Sample) 1200308583

1200307825 059903-001MS (Matrix Spike)

1200307827 059903-001MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this marrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Quality Control (OC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blanks.

LCS Recovery Statement

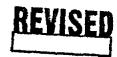
All the required analyte recoveries in the laboratory control samples were within the acceptance limits.

QC Sample Designation

The following sample was designated for matrix spike analysis:

67794001 059903-001

MS Recovery Statement


All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

SDG# 67794 -VOA

Page 2 of 4

MS/MSD RPD Stutement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Semple Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Properation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-enalysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

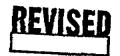
Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration


The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

SDG# 67794 -VOA

Page 3 of 4

 Column ID
 Column Description

 J&W1
 DB-624, 60m x 0.25mm, 1.4mm

 J&W2
 DB-624, 75m x 0.53mm, 3.0mm

Instrument Configuration

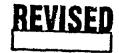
Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOAI	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Тгар К
VOA8	HP6890/HP5973	J&WI	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case marative.

Review Validation


GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Chales Willem Deter 10-21-02

SDG# 67794 -VOA

Page 4 of 4

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 67794

Method/Analysis Information

Batch Number:

20501

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample TD	Client TD
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200308987	MB for batch 205013
1200308988	059915-002(67794022DUT)
1200308989	059915-002(67794022MS)
1200308990	059915-002(67794022MSD)
1200308991	LCS for batch 205013

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample was used for QC: 67794023.

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prop/Re-acalysis

None of the samples in this sample set required reprap or runnelysis.

Gross Alpha/Beta Preparation Information

High hygroscopic suit content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the sales are converted to oxides by heating the sample under a flusse until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technotium, polonium and resimm may be lost during sample besting, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flussed. After fluming, the planchet was counted for alpha activity. This sequence senses the alpha count run data to record over the beta count run data in AlphaLines, therefore only the alpha count data will appear on the instrument runtog.

Miscellaneous Information;

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Onelifier information

Manual qualifiers were not required.

Certification Statument

Where the analytical method has been performed under NHLAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator varified the information presented in this case marrative:

Reviewer: Valarie Deum Bate: 10/18/02

Radiochemistry Case Narrative Sandia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Batch Number:

204950

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample ID	Client ID
67798011	059926-008
1200308804	MB for batch 204950
1200308805	059826-008(67169011DUP)
1200308806	059826-008(67169011MS)
1200308807	059826-008(67169011MSD)
1200308808	LCS for batch 204950

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Centrol (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample was used for QC: 67169011. The QC sample is from SNLS work order 67169.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

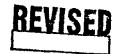
All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to exides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper atpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technotium, polonium and conjum may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.


Miscellaneous Information:

NCR Documentation

No NCR's were generated for the preparation or analysis of this sample set.

<u>Cartification Statement</u>
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation: GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

GC/MB Volatile Organics Sendin National Lubs (SNLS) SDG# 67794-1

Method/Analysis Information

Procedure:

Valatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8260B

Prep Method:

SW846 5030B

Analytical Batch Number:

204910

Semple Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis information section:

Sample ID	Client ID
67798001	059911-001
67798002	059926-001
67798003	059927-001
67798004	059916-001
1200308688	VBLK01 (Blank)
1200308691	VBLK01LCS (Laboratory Control Sample)
1200308692	VBLK01LCSD (Laboratory Control Sample Dupilicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this marrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Culibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

SDG#67794-1 -VOA

Page I of 4

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Ouglity Control (OC) Information

Surrogate Recoveries

Sucrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank

QC Sample Designation

Since the samples in this sample delivery group/work order were field QC samples (i.e.: trip blank, equipment blank, etc.), the analysis of a matrix spike (MS) and a matrix spike duplicate (MSD) was not required. Instead, a laboratory control sample (LCS) and laboratory control sample (LCSD) were analyzed for OC purposes.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

LCSD Recovery Statement

All the required analyte recoveries in the laboratory control sample duplicate were within the acceptance limits.

LCS/LCSD RPD Statement

The relative percent differences (RPD) between the laboratory control sample and laboratory control sample duplicate recoveries were within the acceptance limits.

Internal Stundard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prop/Re-malysis

Re-analyses were not required for samples in this sample group/work order.

Miscellan cons Information

SDG#67794-1 -VOA

Page 2 of 4

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Memai Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Commette

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&W1	DB-624, 60m x 0.25mm, 1.4mm
J&W2	DB-624, 75m x 0.53mm, 3.0mm

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOAI	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Тгар С
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Trap K
RAOV	HP6890/HP5973	J&Wt	Trap K
VOA9	HP6890/HP5973	J&WI	Trap C

SDG#67794-1 -VOA

Page 3 of 4

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Charles VIDon Date: 10.21.02

SDG#67794-1 -VOA

Page 4 of 4

Attachment 6 Page 1 of 1

### 613571089 #### Senders OES soll sampling ERVI295/DSS/DAT Tech Alea Room ER Sample Loc GF032-07 Tech Alea Room ER Sample Loc 6710/1034-SP1-8H 6710/1034-SP1-	CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY	SMO Use	Dato Samples Shipped: 9 - 2 5 - 0 Project/19sk No. 7223,02.03	ers Contentiveybil No.	tab Destination GE	SAAO Contact/Prome: Pam Puisseant/505-844-3185	Sand Report to SMD. Wendy Palancia 505-844-3132	Reference LOV(available at SMO) (D. T. T. T. T. Abusings, Maries of the	ER Sample ID or Pump ER Site DeterTime(in) Sample Container Preserv- Collection Sample Parameter & Mathod Lab Sample Sample Annual Location Detail Depth (10 No. Collected Mathix Type Volumo asive Method Type Requested ID	14' 1034 4/02/115 S AS 402 40 G SA VOC(82608)	-S 19' 7 1150 S AS 402 4c G SA VOC(82868)	8. 41	6710/1034-SP1-BH1- /9 S /9' V /155 S AG 500ml 4c G SA see below for parameter (3	S-	27' 1 1535 S AS 402 4c 6 SA VOC(8280B)	22' 1500 S AG 500m 4c G SA	,		-s /3' \$ 14/0 s As 402 4c 6 SA VOC(8280B)	Ref. No. Sample Tracking Smo Use Special Instructions/QC Requirements	2 Disposal by isb Debe Embrad(mm/dd/yy) EDD (2 Yes No	(2) Normal Rush Entered by: Receipt Re	Streeting Int Company/Organization/Promite Mike Sanders	M. Depth 135/05 284-3309 Depth 135/05/1088	Phone/505-284/2478	MALY A Manneton A ST Strew/6135/505-284-3308	Treese sist as reparate Detailed.	Complete Complete Street True Deliver True D	1/3 Date 2 TO Time / O To EReingland by Ong. One	Lo La Con L. Date of Marie China Con E. Excellent by Ord. Date	
	CONTRA ANALYSIS RE	ONS	1 .		-, -	•	٠ ا		Pump ER Silve Depth (10 No.	8 14' 1034	1 61 5	h s h	8 16' 1	-s 22' 1052	47'	72,	,	120 K-1 125 1 8	13. 12 2	Ref. No.		Rush	metore Init	N Was	BANAN	Minten Koll	10.00		Out to Date 250	ON ONE IN DONNING	

Analysis Request And Chain Of Custody (Continuation) OFF-SITE LABORATORY

Lab Sample Parameter & Method RCRA metals(8010,7470) see below for parameter see below for paramete see below for parameter Gross Alpha/Beta(900) Hex.Chromkim(7198) Total Cyanide (9010) SVOC(8270C) VOC(8250B) VOC(8280B) VOC(8260B) VOC(8250B) PCB(8081) HE(8330) Preserv- Collection Sample & 88 8 8 8 Ş క ð 尸 P Reference LOV (available at SMO) 67794; 7220.02.03.02 Method Ø Ø Ø O Ø ø Ö Ø O O O O Ö Ö ENO3 ₹ Ş NaOH 로 克 호 \$ Project/Tesk No.: 3x40ml 3x40ml 3x40ml Type | Volume 500m \$00m 500m 500ml 500m 2×1 ≓ ŏ ₹ = ş ¥G Ş Q Ş Ş Ş Ø Q ۵ ۵ Date/Time (hr.) Sample ₹ Š 2570 0800 0820 080 0825 0915 2.45-02.10745 1400 400 Beginning ER Depth (ft) Site No. Project/Task Merge 24 13 060909-001 829X276-SP1-BH1- \$ -DU D58910-001 828X/276-SP1-BH1- & -DU 059908-002 829X/276-SP1-BH1-/3 -S 059907-002 |828X276-SP1-BH1- 8 058911-001 828X/276-SP1-8H1-TB Sample Location detail 829X/Z76-SP1-EB 829X/276-SP1-EB 059826-003 829X/276-SP1-EB 059926-004 828X/276-SP1-EB 059926-006 829X/278-SP1-EB 829X/276-SP1-EB 829X/276-SP1-EB 829X/276-SP1-TB 059928-006 829X/Z76-SP1-EB Location Tech Area 059826-008 059927-001 069928-007 058828-001 059928-002 Sample No. Fraction

Attachment 6 Page 1 of 1

Lab Sample 20 0 90 Lab Use 605729 Conditions on 6 8 Page 1 of Đ 8数 To:Sandle Nethers! Labs (Accounts Payable) Abnormal Receipt Ē Ë <u>2</u> -Send preliminary/copy report to: Abuqueque, NM 87185-0154 Parameter & Method 7000,7471)Gross alpha-P.O. Box 5800 MS 0154 see below for parameter see below for parameter Waste Characterization see below for parameter see below for parameter Released by COC No. Requosted PCB(8082)HE(8330) Total Cyanide (9010) RCRA metals (8020, 78 SVOC(8270C VOC(8260B) VOC(8260B) VOC(8250B) VOC(8260B) VOC(8260B) Cr6+(7197) ARVCOC **Deta(900)** Special Instructions/QC Requirement かんさえの bother Astructuon... Piosse fist as separato report Š ş SA á Š 2 ś ð ð €5 ë इंडिइइ ANALYSIS REQUEST AND CHAIN OF CUSTODY Phone/505-284/2478 Depte135/NS/1089 Ø Ø Ø Ø O O Ü Ö O Levol C Paologe Send report fo: Mike Sanders SON AGACHO Presery Project Task No.: SMO Authorization: 호 4 \$ 4 \$ 4 4 å 4 8 Reference LOV(available at SMO) Contract #: PO 2187 4. Received by 5.Reilinguished by 6. Received by debed by GRIVER 500m 500ml 500ml 3×40m Type Volume 100S 5. Received by ĝ 혉 å ₽ Z Confisioner CONTRACT LABORATORY Company/Organization/Phone/Cellular Smo Use AG AG Ş Ş Ą Ş Ş Ş Ö MBMISTOS CHO-SEET Weston/6135/505-284-3309 OC File SMO Contact/Phone: Parth Pulssant/3505-844-3165 Sond Report to SMO: Wendy Palencia/505-644-3132 On 61 2 Toba Trace Time of 1.5

On 617 2. Date Trace of Time 0115

On 617 2. Date 7.75 of Time 0.30

On 62 Date 7.75 of Time
On. Date Time **X** 훒 Shaw/8135/505-284-3309 Date Samples Shipped 7-7.5-02. Ų) Ø Ø Ø Ø S w V) Date Entered(mm/dd/yy) Edle Kent 803-556-817 0925 0000 2580/20-12-10835 0130 00/1 1.30 1105 1135 Date/Time(hr) Collected Sample Tracking Rush Entered by 뗭 ER Site Ī Lab Destination: Lab Confact: Mother Lhandre Depth (ff) 27. 33, Gen 7 33 77 2% 2 R Ref. No. ✓ Disposal by lab 915-922/1003-SP2-BH1- 3 / -S 2- 53-148-1-3-3-1-8H1- €3-5 ŋ 815-922/1009-SP1-BH1- 27-S 915-922/1003-SP2-BH1- 26-S 915-922/1003-SP2-BH1- 3/ -S Y Level of Rush: 915-922/1003-SP1-BH1-27 915-922/1003-SP2-BH1- 2/ Sample Location Detail Normal ER Sample 10 or 915-822/1003-SP1-BH1-915-822/1003-SP2-TB Yes JNo Return to Client DSS oof sampling ER/1295/DSS/DAT CF032-02 3 G.Quintana Ž A Ciboon Mike Senders 2. Raceived by A. C. B. 3. Reinquished by B. Baceived by Section of Children ER 080 urnaround Time Return Samples By: Sample No.-Fraction 2.Relinquished by hoject/Task Manager. Dept. No.Mell Stop: 059915-002 059916-001 059912-002 059913-002 059914-002 **Record Center Code** 058912-001 058914-001 059815-001 Sample Dispose agbook Ref. No.: 059913-001 Service Order No. **Suiding 915-922** Project Name: Members ocation nternal Lab Sample RMMA Batch No. Team

Contract Verification Review (CVR)

Case No. 7223_02.03.02	SDG No. 67794A & B
Case No	SDG No
Project Name DSS SOIL SAMPLING	Analytical Lab GEL
COLLINS	AR/COC No. 605728 & 605729
Project Leader COLLINS	AR/COC No.

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Ę.		Complete?	ete ?		Res	Resolved?
S.	tem	Yes	Š	If no, explain	Yes	No
۲.	All items on COC complete - data entry clerk initialed and dated	×				
ci	Container type(s) correct for analyses requested	×				
ယ	Sample volume adequate for # and types of analyses requested	×				
4	Preservative correct for analyses requested	×				
κi	Custody records continuous and complete	×				
ဖ	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	×				
1	Date samples received	×	+-			
æ	Condition upon receipt information provided	×				

2.0 Analytical Laboratory Report

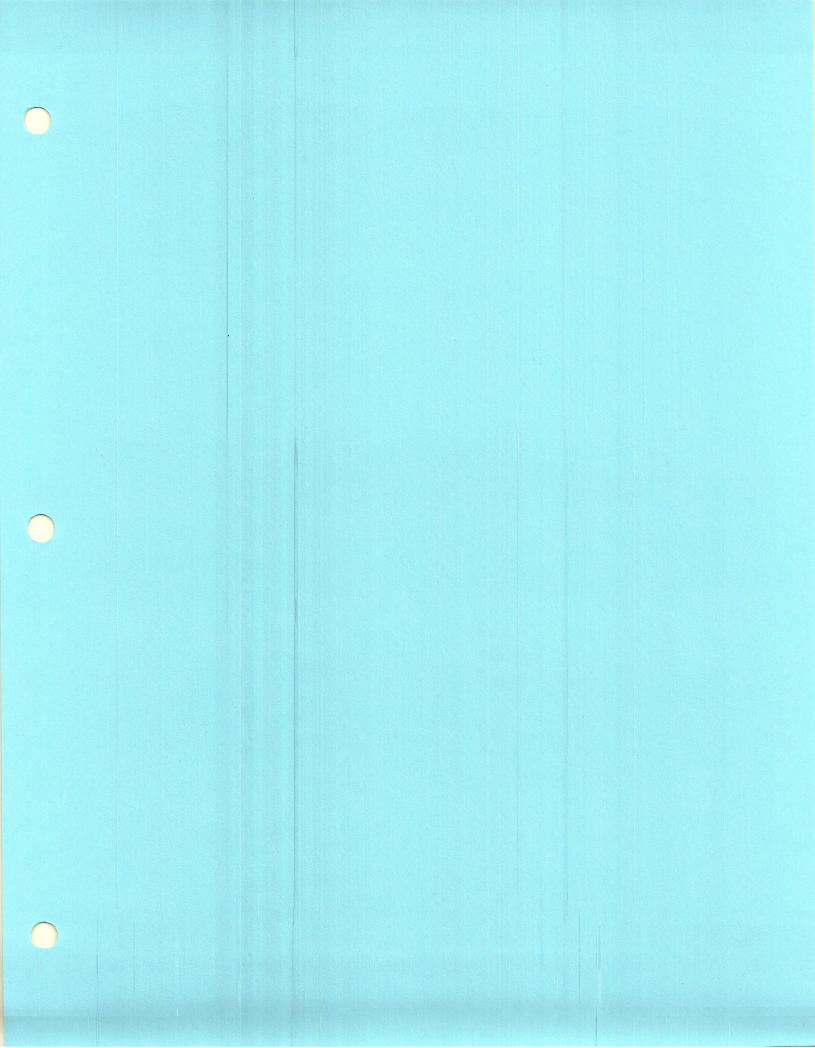
Line		Complete?	lete?		Resc	Resolved?
\$	Item	Yes	Ş	If no, explain	8 8 ≻	£
-	Data reviewed, signature	×				
2	Method reference number(s) complete and correct	×				
6	QC analysis and acceptance limits provided (MB, LCS, Replicate)	×				
*	Matrix spike/matrix spike duplicate data provided (if requested)	×				
5	Detection limits provided; PQL and MDL (or IDL), MDA and L.	×				
9	QC batch numbers provided	×				
	Dilution factors provided and all dilution levels reported	×				
80	Data reported in appropriate units and using correct significant figures	×				
o	Rediochemistry analysis uncertainty (2 sigma error) and tracer recovery	×				
9	Narrative provided	×				
+	TAT met	×				
12	Hold times met	×		HEXAVALENT CHROMIUM SAMPLE #069826-006 RECEIVED PAST HOLDING TIME	×	
13	Contractual qualifiers provided	×				
14	All requested result and TIC (if requested) data provided	×				

Contract Verification Review (Continued)

3.0 Data Quality Evaluation		Ī	
ttem.	Yes	₽	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between OC samples and sample data.	×		
2.5 Culentitation limit met for all samples	×		
		×	M-NITROTOLUENE & P-NITROTOLUENE FAILED RECOVERY LIMITS FOR EXPLOSIVES LCS (84)
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	×		
c) Matrix spike recovery data reported and met	×		
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry		×	RPDS FOR ARSENIC, CHROMIUM & LEAD FAILED ACCEPTANCE LIMITS
b) Marrix spike duplicate RPD data reported and met for all organic samples	×		
3.5 Blank data a) Method or reagent blank data reported and met for all samples		×	BIS(2-ETHYLHEXYL)PHTHALATE DETECTED IN BLANK CHROMIUM DETECTED IN AQUEOUS BLANK CYANIDE DETECTED IN BLANK
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		×	1,2-DICHLOROPROPANE DETECTED IN TRIP BLANK DIETHYLPHTHALATE DETECTED IN EQUIPMENT BLANK TETRYL DETECTED IN EQUIPMENT BLANK CHROMIUM DETECTED IN EQUIPMENT BLANK
).6 Contractual qualifiers provided: "J"- estimated quantity: "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analysis	×		
done beyond the itotaling units 3.7 Narrative addresses planchet flaming for gross alpha/beta	×		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and 8082 (pesticides/PCBs)	×		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation			
Item	Yes	2	Comments
4.1 GC/MS (8260, 8270, etc.) a) 12-hour tune check provided	×		
b) Initial calibration provided	×		
c) Continuing calibration provided	×		
d) Internal standard performance data provided	×		
e) Instrument run logs provided	×		
I.2 GC/HPLC (8330 and 8010 and 8082) a) Initial calibration provided	×		
b) Continuing calibration provided	×		
c) Instrument run logs provided	×		
I.3 Inorganics (metals) a) Initial calibration provided	×		
b) Continuing calibration provided	×		
c) ICP interference check sample data provided	×		
d) (CP serial dilution provided	×		
e) Instrument run logs provided	×		
i.4 Radiochemistry a) Instrument run logs provided	×		


Contract Verification Review (Concluded)

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

	A Section 1	Problems/Comments/Resolutions
Sample/Fraction No.	Analysis	
ALL AQUEOUS	VOC	TECHNICAL NARRATIVE ILLEGIBLE (pg. 306-309)
All	GROSS ALPHA / BETA	TECHNICAL NARRATIVE (LLEGIBLE (pg. 789-790)
All	GROSS ALPHA / BETA	TECHNICAL NARRATIVE ILLEGIBLE (pg. 806-807)
And the second s		
lere deficiencies unresolved?▼ (Yes)	% ▲	
ased on the review, this data package is complete.	is complete.	(QN) ▲ seb. ▲
no, provide: nonconformance report or correction request n	request n	number 5306 and date correction request was submitted: 11-14-2002

Date: 11-14-2002 Closed by: [1] Pallan et a Date: 11/19/02 eviewed by. W. Paleracio

ANNEX D DSS Site 1034 Risk Assessment

TABLE OF CONTENTS

II. Data Quality Objectives. D-1 III. Determination of Nature, Rate, and Extent of Contamination D-5 III.1 Introduction D-5 III.2 Nature of Contamination D-5 III.3 Rate of Contaminant Migration D-5 III.4 Extent of Contamination D-5 III.4 Extent of Contamination D-5 IV. Comparison of COCs to Background Levels D-6 V. Fate and Transport D-6 VI. Human Health Risk Assessment D-11 VI.1 Introduction D-11 VI.2 Step 1 Site Data D-11 VI.3 Step 2 Pathway Identification D-11 VI.4 Step 3 Background Screening Procedure D-12 VI.4.1 Methodology D-12 VI.4.2 Results D-15 VI.6 Step 4 Identification of Toxicological Parameters D-15 VI.6 Step 5 Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6 Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7 Uncertainty Discussion D-20 VII.1 Introduction D-22 VII.2 Scoping Assessment D-25 VII.2 Scoping Assessment D-22 VII.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VIII. References D-23 Appendix 1 D-23 Appendix 1 D-23 Appendix 1 D-24 Appendix 1 D-23 Appendix 1 D-23 Appendix 1 D-24 Appendix 1 D-25 Appen	1.	Site De	escription and History	D-1
III.1	II.	Data C	Quality Objectives	D-1
III.1	III.	Detern	nination of Nature, Rate, and Extent of Contamination	D-5
III.3				
III.4		III.2	Nature of Contamination	D-5
III.4		III.3	Rate of Contaminant Migration	D-5
V. Fate and Transport		111.4		
V. Fate and Transport D-6 VI. Human Health Risk Assessment D-11 VI.1 Introduction D-11 VI.2 Step 1. Site Data D-11 VI.3 Step 2. Pathway Identification D-11 VI.4 Step 3. Background Screening Procedure D-12 VI.4.1 Methodology D-12 VI.4.2 Results D-12 VI.5 Step 4. Identification of Toxicological Parameters D-15 VI.6 Step 5. Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-23 VIII.2 References D-23 VIII. References D-23	IV.	Compa	arison of COCs to Background Levels	D-6
VI.1 Introduction D-11 VI.2 Step 1 Site Data D-11 VI.3 Step 2 Pathway Identification D-11 VI.4 Step 3 Background Screening Procedure D-12 VI.4.1 Methodology D-12 VI.4.2 Results D-12 VI.5 Step 4 Identification of Toxicological Parameters D-15 VI.6 Step 5 Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6 Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7 Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-23 VII.2.4 Scoping Risk-Management Decision D-23	V.			
VI.2 Step 1. Site Data	VI.	Humai	n Health Risk Assessment	
VI.2 Step 1. Site Data		VI.1	Introduction	D-11
VI.3 Step 2. Pathway Identification. D-11 VI.4 Step 3. Background Screening Procedure. D-12 VI.4.1 Methodology. D-12 VI.4.2 Results. D-12 VI.5 Step 4. Identification of Toxicological Parameters. D-15 VI.6 Step 5. Exposure Assessment and Risk Characterization. D-15 VI.6.1 Exposure Assessment. D-15 VI.6.2 Risk Characterization. D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines. D-19 VI.8 Step 7. Uncertainty Discussion. D-20 VI.9 Summary. D-21 VII. Ecological Risk Assessment. D-22 VII.1 Introduction. D-22 VII.2 Scoping Assessment. D-22 VII.2.1 Data Assessment. D-22 VII.2.2 Bioaccumulation. D-23 VII.2.4 Scoping Risk-Management Decision. D-23 VIII. References. D-23		VI.2		
VI.4 Step 3. Background Screening Procedure. D-12 VI.4.1 Methodology. D-12 VI.4.2 Results. D-12 VI.5 Step 4. Identification of Toxicological Parameters. D-15 VI.6 Step 5. Exposure Assessment and Risk Characterization. D-15 VI.6.1 Exposure Assessment. D-15 VI.6.2 Risk Characterization. D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines. D-19 VI.8 Step 7. Uncertainty Discussion. D-20 VI.9 Summary. D-21 VII. Ecological Risk Assessment. D-22 VII.1 Introduction. D-22 VII.2 Scoping Assessment. D-22 VII.2.1 Data Assessment. D-22 VII.2.2 Bioaccumulation. D-23 VII.2.3 Fate and Transport Potential. D-23 VIII. References. D-23		VI.3	·	
VI.4.1 Methodology D-12 VI.4.2 Results D-12 VI.5 Step 4 Identification of Toxicological Parameters D-15 VI.6 Step 5 Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6 Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7 Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VIII. References D-23 VIII. References D-23		VI.4		
VI.4.2 Results. D-12 VI.5 Step 4. Identification of Toxicological Parameters D-15 VI.6 Step 5. Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-17 VI.6.2 Risk Characterization D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23				
VI.6 Step 5 Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6 Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7 Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VII. References D-23				
VI.6 Step 5 Exposure Assessment and Risk Characterization D-15 VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6 Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7 Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VII. References D-23		VI.5	Step 4. Identification of Toxicological Parameters	D-15
VI.6.1 Exposure Assessment D-15 VI.6.2 Risk Characterization D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23		VI.6		
VI.6.2 Risk Characterization D-17 VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines D-19 VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23				
VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23				
VI.8 Step 7. Uncertainty Discussion D-20 VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23		VI.7	Step 6. Comparison of Risk Values to Numerical Guidelines	D-19
VI.9 Summary D-21 VII. Ecological Risk Assessment D-22 VII.1 Introduction		VI.8		
VII. Ecological Risk Assessment D-22 VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23		VI.9		
VII.1 Introduction D-22 VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23	VII.	Ecolog		
VII.2 Scoping Assessment D-22 VII.2.1 Data Assessment D-22 VII.2.2 Bioaccumulation D-22 VII.2.3 Fate and Transport Potential D-23 VII.2.4 Scoping Risk-Management Decision D-23 VIII. References D-23				
VII.2.1 Data Assessment		VII.2		
VII.2.3 Fate and Transport Potential			·	
VII.2.3 Fate and Transport Potential				
VII.2.4 Scoping Risk-Management Decision				
VIII. References				
Appendix 1	VIII.	Refere	· ·	
	Anne	ndix 1		D-20

This page intentionally left blank.

LIST OF TABLES

Table		Page
1	Summary of Sampling Performed to Meet DQOs	D-2
2	Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1034	D-3
3	Summary of Data Quality Requirements for DSS Site 1034	D-4
4	Nonradiological COCs for Human Health Risk Assessment at DSS Site 1034 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K _{ow}	D-7
5	Radiological COCs for Human Health Risk Assessment at DSS Site 1034 with Comparison to the Associated SNL/NM Background Screening Value and BCF	D-9
6	Summary of Fate and Transport at DSS Site 1034	D -10
7	Toxicological Parameter Values for DSS Site 1034 Nonradiological COCs	D- 16
8	Radiological Toxicological Parameter Values for DSS Site 1034 COCs Obtained from RESRAD Risk Coefficients	D-17
9	Risk Assessment Values for DSS Site 1034 Nonradiological COCs	D -18
10	Risk Assessment Values for DSS Site 1034 Nonradiological Background Constituents	D -18
11	Summation of Radiological and Nonradiological Risks from DSS Site 1034, Building 6710 Septic System Carcinogens	D-22
	LIST OF FIGURES	
Figure		Page
1	Conceptual Site Model Flow Diagram for DSS Site 1034, Building 6710 Septic System	D-13

This page intentionally left blank.

DSS SITE 1034: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1034, the Building 6710 Septic System, at Sandia National Laboratories/New Mexico (SNL/NM), is located in Technical Area-III on federally owned land controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE). The septic system consisted of a septic tank connected to a single seepage pit. Available information indicates that Building 6710 was constructed in 1958 (SNL/NM March 2003), and it is assumed that the septic system was also constructed at that time. In the early 1990s, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1034 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic system at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for possible COCs that may have been released during facility operations.

The ground surface in the vicinity of the site is flat or slopes slightly to the west. The closest drainage lies approximately 1.2 miles south of the site and terminates in the playa just west of KAFB. No springs or perennial surface-water bodies are located within 2 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface is flat or slopes slightly to the west. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1034 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1034 lies at an average elevation of approximately 5,374 feet above mean sea level (SNL/NM April 2003). The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 470 feet below ground surface (bgs). Groundwater flow is thought to be to the west in this area (SNL/NM March 2002). The nearest groundwater monitoring wells are approximately 1,300 feet southeast of the site at the Mixed Waste Landfill. The nearest production wells are northwest of the site and include KAFB-4 and KAFB-11, which are approximately 2.75 and 3.4 miles away, respectively.

II. Data Quality Objectives

The Data Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001) identified the site-specific sample

locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- · Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1034 was effluent discharged to the environment from the septic system at this site.

Table 1
Summary of Sampling Performed to Meet DQOs

DSS Site 1034 Sampling Area	Potential COC Source	Number of Sampling Locations	Sample Density (samples/acre)	Sampling Location Rationale
Soil beneath the septic system seepage pit	Effluent discharged to the environment from the septic system seepage pit	7	NA	Evaluate potential COC releases to the environment from effluent discharged from the septic system seepage pit

COC = Constituent of concern.
DQO = Data Quality Objective.
DSS = Drain and Septic Systems.

NA = Not applicable.

The soil samples were collected at one location at DSS Site 1034 with a Geoprobe[™] from two 3- or 4-foot-long sampling intervals at the boring location. Sampling intervals started at 14 and 19 feet bgs in the single seepage pit boring. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

The soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1034 Table 2

								Gamma	
					RCRA	Hexavalent		Spectroscopy	Gross
P	2007	\$VOCe	PCBs	뮞	Metals	Chromium	Cyanide	Radionuclides	Alpha/Beta
Sample Lype	500	200			,	0	٠	2	2
o consider of	0	2	Z	7	7				
Confinitions	1					_	_	=	<u> </u>
1	_	_	c	<u> </u>	>		>		
Unblicates						c		c	<u></u>
	,	c	C	<u> </u>	-	>	>	>	
EBs and 1 Bs	7	,		ľ		,	0	2	2
Takal Complete	4	_	7	7	7	7	7	1 1	L
oral Samples	-		Ī	ī	ū	Į.	II.	באבר האבר	פנור
Applying Laboratory	E.	GEL	בו פי	GEL	GLL	710			

aTBs for VOCs only.

■ Drain and Septic Systems.

Equipment blank.
 General Engineering Laboratories, Inc.
 High explosive(s).
 Polychlorinated biphenyl.

Quality assurance/quality control.
 Resource Conservation and Recovery Act.
 Radiation Protection Sample Diagnostics Laboratory.
 Semivolatile organic compound.

DSS EB GEL HE PCB QA/QC RCRA RPSD SVOC TB

= Trip blank. = Volatile organic compound.

Table 3 Summary of Data Quality Requirements for DSS Site 1034

Analytical Method ^a	Data Quality Level	GEL	RPSD
VOCs EPA Method 8260	Defensible	2	None
SVOCs EPA Method 8270	Defensible	2	None
PCBs EPA Method 8082	Defensible	2	None
HE Compounds EPA Method 8330	Defensible	2	None
RCRA Metals EPA Method 6000/7000	Defensible	2	None
Hexavalent Chromium EPA Method 7196A	Defensible	2	None
Total Cyanide EPA Method 9012A	Defensible	2	None
Gamma Spectroscopy Radionuclides EPA Method 901.1	Defensible	None	2
Gross Alpha/Beta Activity EPA Method 900.0	Defensible	2	None

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency. GEL = General Engineering Laboratories, Inc.

HE = High explosive(s). PCB = Polychlorinated biphenyl.

QA/QC = Quality assurance/quality control.

RCRA = Resource Conversation and Recovery Act.

RPSD = Radiation Protection Sample Diagnostics Laboratory.

SVOC = Semivolatile organic compound. = Volatile organic compound. VOC

QA/QC samples were collected during the sampling effort according to the Environmental Restoration (ER) Project Quality Assurance Project Plan. The QA/QC samples consisted of two trip blanks (for VOCs only). No significant QA/QC problems were identified in the QA/QC samples.

All of the soil sample results were verified/validated by SNL/NM according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1034 request for a determination of Corrective Action Complete (CAC) without controls. The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data

Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The gamma spectroscopy results are presented in the CAC proposal.

The reviews confirmed that the analytical data are defensible and therefore acceptable for use in the request for determination of CAC without controls. Therefore, the DQOs have been fulfilled.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1034 is based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive soil-vapor sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1034, which is presented in Section 4.0 of the associated request for a determination of CAC without controls. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1034 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and any potential degradation products at DSS Site 1034.

III.3 Rate of Contaminant Migration

The septic system at DSS Site 1034 was deactivated in the early 1990s when Building 6710 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the septic system seepage pit at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system was discontinued has been predominantly dependent upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted at the site are adequate to characterize the rate of COC migration at DSS Site 1034.

III.4 Extent of Contamination

Subsurface soil samples were collected from a single borehole drilled at one location beneath the effluent release point (seepage pit) at the site to assess whether releases of effluent from the septic system caused any environmental contamination.

The soil samples were collected at sampling depths starting at 14 and 19 feet bgs beneath the seepage pit. Sampling intervals started at the depths at which effluent discharged from the seepage pit would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS-type sites at SNL/NM. The soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1034 request for a determination of CAC without controls describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs evaluated in this risk assessment include all detected organic and all inorganic and radiological COCs for which samples were analyzed. When the detection limit of an organic compound is too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound is retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation uses only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 and 5.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, are not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs are evaluated. The nonradiological COCs included in this risk assessment consist of both inorganic and organic compounds.

Table 4 lists the nonradiological COCs and Table 5 lists the radiological COCs for the human health risk assessment at DSS Site 1034. All samples were collected from depths greater than 5 feet bgs; therefore, evaluation of ecological risk was not performed. Both tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4 discusses the results presented in Tables 4 and 5.

V. Fate and Transport

The primary releases of COCs at DSS Site 1034 were to the subsurface soil resulting from the discharge of effluents from the Building 6710 septic system. Wind, water, and biota are natural mechanisms of COC transport from the primary release point; however, because the discharge was to subsurface soil, none of these mechanisms are considered to be of potential significance as transport mechanisms at this site. Because the septic system is no longer

Nonradiological COCs for Human Health Risk Assessment at DSS Site 1034 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K_{ow} Table 4

303	Maximum Concentration (All Samples) (mg/kg)	SNL/NM Background Concentration (mg/kg) ³	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	Log K _{ow} (for organic COCs)	Bioaccumulator? ⁰ (BCF>40, Log K _{ow} >4)
Inorganic						
	3.75	4.4	Yes	44c	!	Yes
Doring	44.2	214	Yes	170 ^d	-	Yes
Cadmin	0 196.1	6.0	Yes	64c		Yes
Chromium total	9.23 J	15.9	Yes	16°	1	No.
Obromina VI	0.02728	•	Yes	16°	I	No
opioe O	0.0602	SC	Unknown	NC	1	Unknown
Cyarilos	4 97 1	11.8	Yes	49°	1	Yes
Mercin	0.0000	<0.1	Yes	5,500°		Yes
Selection	0.0795e	\ \ \	Yes	800	!	Yes
Silver	0.323 J	\ \ \	Yes	0.5°	1	ON No
Organic						
2-Butanone	0.00552	ΨN	AN	19	0.298	ON
his/2-Ethylhexyl) phthalate	0 0949 J	AN	AN	851h	7.6	Yes
Dyrana Dyrana	0.132.J	AN	ΑN	36,300°	5.32	Yes
בובוב						

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

^aDinwiddie September 1997, Southwest Area Supergroup.

bNMED March 1998. cYanicak March 1997.

dNeumann 1976.

Parameter was not detected. Concentration is one-half the maximum detection limit.

Callahan et al. 1979.

⁹Howard 1990.

^hHoward 1989.

Micromedex, Inc. 1998.

Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log Kow Nonradiological COCs for Human Health Risk Assessment at DSS Site 1034 with Table 4 (Concluded)

= Sandia National Laboratories/New Mexico. = New Mexico Environment Department. Octanol-water partition coefficient. = Drain and Septic Systems. = Milligram(s) per kilogram. = Estimated concentration. = Logarithm (base 10). = Not applicable. = Not calculated. SNL/NM NMED Kow Log mg/kg BCF COC DSS A S

= Bioconcentration factor. = Constituent of concern. = Information not available.

Comparison to the Associated SNL/NM Background Screening Value and BCF Radiological COCs for Human Health Risk Assessment at DSS Site 1034 with Table 5

ls COC a Bioaccumulator?º (BCF >40)	Yes	Yes	Yes	Yes
BCF	3,000	3,000e	e006	-006
Is Maximum COC Activity Less Than or Equal to the Applicable SNL/NM Background	Yes	Yes	No	Yes
SNL/NM Background Activity	0.079	1.01	0.16	1.4
Maximum Activity (All Samples)	ND (0.0285)	0.443	ND (0.174)	ND (0.428)
SOS	Cs-137	Th-232	U-235	U-238

Note: **Bold** indicates COCs that exceed the background screening values and/or are bioaccumulators.

aValue listed is the greater of either the maximum detection or the highest MDA.

^bDinwiddie September 1997, Southwest Area Supergroup.

NMED March 1998.

³Whicker and Schultz 1982. Baker and Soldat 1992.

= Bioconcentration factor. BCF

= Drain and Septic Systems. = Constituent of concern. COC DSS MDA

= Minimum detectable activity.

Not detected, but the MDA (shown in parentheses) exceeds background activity. Not detected above the MDA, shown in parentheses.

NMED

= New Mexico Environment Department.

Picocurie(s) per gram. Sandia National Laboratories/New Mexico. SNL/NM

active, additional infiltration of water is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1034, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 470 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1034 include both inorganic and organic constituents. The inorganic COCs include both radiological and nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-life of the radiological COC (U-235), the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms are expected to result in significant losses or transformations of the inorganic COCs.

The organic COCs at DSS Site 1034 are limited to 2-butanone, bis(2-ethylhexyl) phthalate, and pyrene. Organic COCs may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of 2-butanone through volatilization is expected to be minimal.

Table 6 summarizes the fate and transport processes that can occur at DSS Site 1034. The COCs at this site include both radiological and nonradiological inorganic analytes as well as organic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low, and loss through decay of the radiological COC is insignificant because of its long half-life.

Table 6
Summary of Fate and Transport at DSS Site 1034

Transport and Fate Mechanism	Existence at Site	Significance
Wind	Yes	Low
Surface runoff	Yes	Low
Migration to groundwater	No	None
Food chain uptake	Yes	Low
Transformation/degradation	Yes	Low to moderate

DSS = Drain and Septic Systems.

VI. Human Health Risk Assessment

VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

Step 1.	Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.
Step 2.	Potential pathways are identified by which a representative population might be exposed to the COCs.
Step 3.	The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.
Step 4.	Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.
Step 5.	Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide.
Step 6.	These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED, and the DOE to determine whether further evaluation and potential site cleanup are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.
Step 7.	Uncertainties of the above steps are addressed.

VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1034. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1034 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust and volatiles. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated soil. No water pathways to the groundwater are considered. Depth to groundwater at DSS

Site 1034 is approximately 470 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual site model flow diagram for DSS Site 1034.

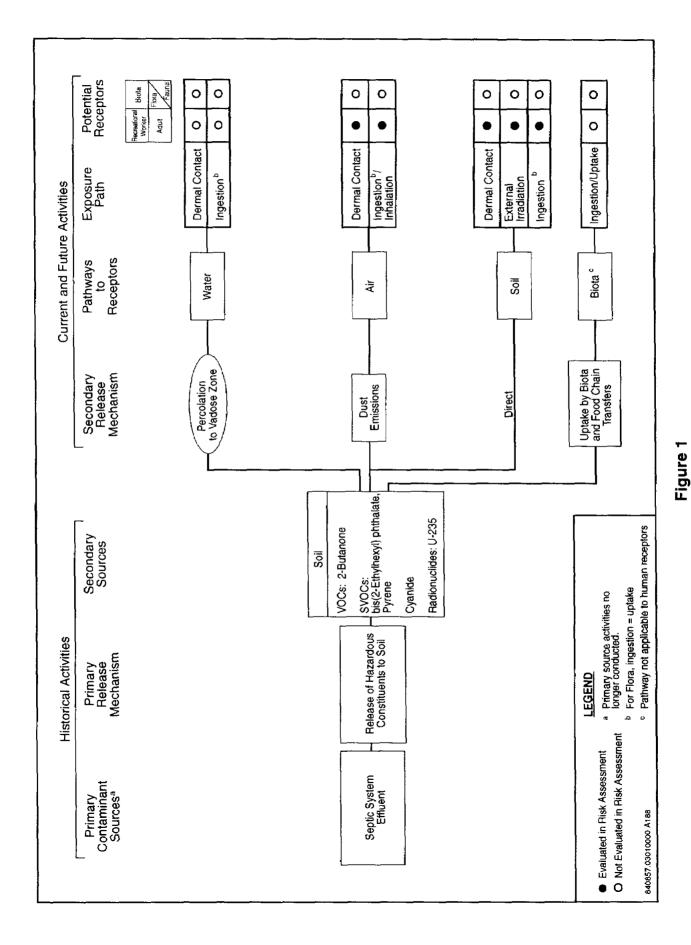
Pathway Identification

Nonradiological Constituents	Radiological Constituents
Soil ingestion	Soil ingestion
Inhalation (dust and volatiles)	Inhalation (dust)
Dermal contact	Direct gamma

VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

VI.4.1 Methodology


Maximum concentrations of nonradiological COCs are compared to the approved SNL/NM maximum screening levels for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Section VI.6.2. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or that do not have either a quantifiable or calculated background screening level are considered in further risk assessment analyses.

For radiological COCs that exceed the SNL/NM background screening levels, background values are subtracted from the individual maximum radionuclide concentrations. Those that do not exceed these background levels are not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have a background value and are detected above the analytical minimum detectable activity (MDA) are carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

VI.4.2 Results

Tables 4 and 5 show the DSS Site 1034 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, one constituent (cyanide) does not have a quantified background screening concentration; therefore it is unknown whether this COC exceeds background. Three constituents are organic compounds that do not have corresponding background screening values.

For the radiological COCs, one constituent (U-235) has an MDA greater than its background screening level.

Conceptual Site Model Flow Diagram for DSS Site 1034, Building 6710 Septic System

VI.5 Step 4. Identification of Toxicological Parameters

Tables 7 (nonradiological) and 8 (radiological) list the COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 7 were obtained from the Integrated Risk Information System (IRIS) (EPA 2003), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), the EPA Region 6 electronic database (EPA 2002a), and the Risk Assessment Information System (ORNL 2003) electronic databases. Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways were the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA 1988).
- DCFs for surface contamination (contamination on the surface of the site) were taken from DOE/EH-0070, "External Dose-Rate Conversion Factors for Calculation of Dose to the Public" (DOE 1988).
- DCFs for volume contamination (exposure to contamination deeper than the
 immediate surface of the site) were calculated using the methods discussed in
 "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil"
 (Kocher 1983) and in ANL/EAIS-8, "Data Collection Handbook to Support
 Modeling the Impacts of Radioactive Material in Soil" (Yu et al. 1993b).

VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for the industrial and residential land-use scenarios. The incremental TEDE and incremental estimated cancer risk are provided for the background-adjusted radiological COC for both the industrial and residential land-use scenarios.

VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways. The appendix shows parameters for both industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), as well as other EPA and NMED guidance documents, and reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For the radiological COC, the coded equation provided in RESRAD computer code is used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of

Toxicological Parameter Values for DSS Site 1034 Nonradiological COCs

Confidence ^a (mg/kg-d) (mg/kg-d) ⁻¹ (mg/kg-d) ⁻¹ M - - L 2.9E-1 ^c L L 2E-2 ^e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		O#G		RfDinh		$_{o}^{SF}$	rinh Tu	Cancer	0
2E-2° M - - - 6E-1° L 29E-1° L - 2E-2° - 2E-2° - 1.4E-2° 3E-2° - 3E-2° - -	502	(ma/ka-d)	Confidence	(mg/kg-d)	Confidence	(mg/kg-d) ⁻¹	(mg/kg-d)-1	Class	ABS
2E-2c M - - - 6E-1c L 2.9E-1c L - 2E-2e - 2E-2e - 1.4E-2e 3E-2e - 3E-2e - -		3						c	0.10
6E-1° L 2.9E-1° L — 1.4E-2° 2E-2° — 1.4E-2° — — — — — — — — — — — — — — — — — — —	2	2E_20	Σ	i	Ļ	-	•		
6E-1° L 2.9E-1° L - 2E-2° - 2E-2° - 1.4E-2° 3E-2° - 3E-2° - -	0								-
6E-1° L 2.9E-1° L 1.4E-2°	v							٥	0.1
2E-2e _ 2E-2e _ 1.4E-2°	910	6E-1 ^c		2.9E-1 [℃]	4		4 AE 78	1	0.01 ^f
2E-2° -	2	o C		2E_2e		1.4E-2	1.46-2		7
20 20	hylhexyl) phthalate	7E-72					1	_	0.12
	, ,	3E-70		3E-2e	ı	•			

bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003): a Confidence associated with IRIS (EPA 2003) database values. Confidence: L=low, M=medium.

D = Not classifiable as to human carcinogenicity.

cToxicological parameter values from IRIS electronic database (EPA 2003).

eToxicological parameter values from EPA Region 6 (EPA 2002a). ^dToxicological parameter values from NMED (December 2000).

ffoxicological parameter values from Risk Assessment Information System (ORNL 2003).

= Gastrointestinal absorption coefficient. SSO COC ABS

= Constituent of concern.

= U.S. Environmental Protection Agency. = Drain and Septic Systems.

= Integrated Risk Information System. = Per milligram per kilogram-day. = Milligram(s) per kilogram-day. mg/kg-d

RIS EPA

= New Mexico Environment Department. = Inhalation chronic reference dose. (mg/kg-d)⁻¹

NMED

= Oral chronic reference dose. RfD_{inh} RfD %

= Information not available. = Inhalation slope factor. = Oral slope factor. Sr. Inh

Table 8
Radiological Toxicological Parameter Values for DSS Site 1034 COCs
Obtained from RESRAD Risk Coefficients^a

coc	SF _o (1/pCi)	SF _{inh}	SF _{ev} (g/pCi-yr)	Cancer Class ^b
U-235	4.70E-11	1.30E-08	2.70E-07	А

^aYu et al. 1993a.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

1/pCi = One per picocurie.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

g/pCi-yr = Gram(s) per picocurie-year.

SF_{ev} = External volume exposure slope factor.

SF_{inh} = Inhalation slope factor. SF_o = Oral (ingestion) slope factor.

this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a).

Although the designated land-use scenario for this site is industrial, risk and TEDE values for a residential land-use scenario are also presented.

VI.6.2 Risk Characterization

Table 9 shows an HI of 0.00 for the DSS Site 1034 nonradiological COCs and an estimated excess cancer risk of 5E-10 for the designated industrial land-use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 10 shows no quantified HI or estimated excess cancer risk for the DSS Site 1034 associated background constituents under the designated industrial land-use scenario.

For the radiological COC, contribution from the direct gamma exposure pathway is included. For the industrial land-use scenario, a TEDE was calculated that results in an incremental TEDE of 2.0E-3 millirem (mrem)/year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997a), an incremental TEDE of 15 mrem/yr is used for the probable land-use scenario (industrial in this case); the calculated dose value for DSS Site 1034 for the industrial land-use scenario is well below this guideline. The estimated excess cancer risk is 2.3E-8.

For the nonradiological COCs under the residential land-use scenario, the HI is 0.00 with an estimated excess cancer risk of 2E-9 (Table 9). The numbers in the table include exposure from soil ingestion, dermal contact, and dust and volatile inhalation. Although the EPA (1991) generally recommends that inhalation not be included in a residential land-use scenario, this

Table 9
Risk Assessment Values for DSS Site 1034 Nonradiological COCs

	Maximum	Industrial Land-Use Scenario ^a		Residential Land-Use Scenario ^a	
coc	Concentration (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Inorganic			·		7
Cyanide	0.0602 J	0.00		0.00	_
Organic			L		L
2-Butanone	0.00552	0.00		0.00	
bis(2-Ethylhexyl) phthalate	0.0949 J	0.00	5E-10	0.00	2E-9
Pyrene	0.132 J	0.00		0.00	
Total		0.00	5E-10	0.00	2E-9

^aEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

J = Estimated concentration.
mg/kg = Milligram(s) per kilogram.
- Information not available.

Table 10
Risk Assessment Values for DSS Site 1034 Nonradiological Background Constituents

	Background			Residential Land-Use Scenario ^b	
сос	Concentration ^a (mg/kg)	Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Cyanide	NC				
	Total	-			

^aDinwiddie September 1997, Southwest Area Supergroup.

^bEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

NC = Not calculated.

= Information not available.

pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 10 shows no quantified HI or estimated excess cancer risk for the DSS Site 1034 associated background constituents under the residential land-use scenario.

For the radiological COC, the incremental TEDE for the residential land-use scenario is 5.2E-3 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1034 for the residential land-use scenario is well below this guideline. Consequently, DSS Site 1034 is eligible for unrestricted radiological release as the residential land-use scenario resulted in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 6.8E-8. The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 "Establishment of Cleanup Levels for CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] Sites with Radioactive Contamination," (EPA 1997a). This summation is tabulated in Section VI.9, Summary.

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluates the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.00 (less than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). The estimated excess cancer risk is 5E-10. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determined risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. Assuming the industrial land-use scenario, there is neither a quantifiable HI nor an excess cancer risk for the nonradiological COCs. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background screening concentrations are assumed to have a hazard quotient of 0.00. The incremental HI is 0.00 and the incremental estimated excess cancer risk is 4.95E-10 for the industrial land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under an industrial land-use scenario.

For the radiological COC under the industrial land-use scenario, the incremental TEDE is 2.0E-3 mrem/yr, which is significantly lower than EPA's numerical guideline of 15 mrem/yr. The incremental estimated excess cancer risk is 2.3E-8.

The calculated HI for the nonradiological COCs under the residential land-use scenario is 0.00, which is below numerical guidance. The estimated excess cancer risk is 2E-9. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is below the suggested acceptable risk

value. The incremental HI is 0.00 and the estimated incremental cancer risk is 2.15E-9 for the residential land-use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs under the residential land-use scenario.

The incremental TEDE for a residential land-use scenario from the radiological components is 5.2E-3 mrem/yr, which is significantly lower than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 6.8E-8.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1034 is based upon an initial conceptual model that was validated with sampling conducted at the site. The sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). The DQOs contained in these two documents are appropriate for use in risk assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk assessment at DSS Site 1034.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Based upon the COCs found in the near-surface soil and the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach is used to calculate the risk assessment values. Specifically, the parameter values in the calculations are conservative and calculated intakes are probably overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 7 shows the uncertainties (confidence levels) in nonradiological toxicological parameter values. There is a combination of estimated values and values from the IRIS (EPA 2003), EPA Region 6 (EPA 2002a), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), and Risk Assessment Information System (ORNL 2003). Where values are not provided, information is not available from the Health Effects Assessment Summary Tables (EPA 1997b), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), Risk Assessment Information System (ORNL 2003), or the EPA regions (EPA 2002a, EPA 2002b, EPA 2002c). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Risk assessment values for the nonradiological COCs are within the acceptable range for human health under the industrial and residential land-use scenarios compared to established numerical guidance.

For the radiological COC, the conclusion of the risk assessment is that potential effects on human health for both the industrial and residential land-use scenarios are below background

and represent only a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

VI.9 Summary

DSS Site 1034 contains identified COCs consisting of some inorganic, organic, and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site include soil ingestion, dermal contact, and dust and volatile inhalation for chemical COCs, and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways are applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the industrial land-use scenario the HI (0.00) is significantly lower than the accepted numerical guidance from the EPA. The estimated excess cancer risk is 5E-10; thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.00 and the incremental estimated excess cancer risk is 4.95E-10 for the industrial land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for the nonradiological COCs show that for the residential land-use scenario the HI (0.00) is below the accepted numerical guidance from the EPA. The estimated excess cancer risk is 2E-9. Thus, excess cancer risk is below the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 0.00 and the incremental estimated excess cancer risk is 2.15E-9 for the residential land-use scenario. The incremental risk calculations indicate insignificant risk to human health for the residential land-use scenario.

The incremental TEDE and corresponding estimated cancer risk from the radiological COC are much less than EPA guidance values; the estimated TEDE is 2.0E-3 mrem/yr for the industrial land-use scenario, which is much lower than the EPA's numerical guidance of 15 mrem/yr (EPA 1997a). The corresponding incremental estimated cancer risk value is 2.3E-8 for the industrial land-use scenario. Furthermore, the incremental TEDE for the residential land-use scenario that results from a complete loss of institutional control is 5.2E-3 mrem/yr with an associated risk of 6.8E-8. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1034 is eligible for unrestricted radiological release.

The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18 (EPA 1997a). The summation of the nonradiological and radiological carcinogenic risks is tabulated in Table 11.

Table 11
Summation of Radiological and Nonradiological Risks from DSS Site 1034, Building 6710 Septic System Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	4.95E-10	2.3E-8	2.3E-8
Residential	2.15E-9	6.8E-8	7.0E-8

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1034. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological risk assessment that corresponds with that presented in EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment which is followed by a more detailed risk assessment if warranted by the results of the scoping assessment. Initial components of NMED's decision tree (a discussion of DQOs, data assessment, and evaluations of bioaccumulation as well as fate and transport potential) are addressed in previous sections of this report. At the end of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data with respect to the existence of complete ecological exposure pathways, an evaluation of bioaccumulation potential, and a summary of fate and transport potential. The scoping risk-management decision (Section VII.2.4) summarizes the scoping results and assesses the need for further examination of potential ecological impacts.

VII.2.1 Data Assessment

As indicated in Section IV, all COCs at DSS Site 1034 are at depths of 5 feet bgs or greater. Therefore, no complete ecological exposure pathways exist at this site, and no COCs are considered to be COPECs.

VII.2.2 Bioaccumulation

Because no COPECs are associated with this site, bioaccumulation potential was not evaluated.

VII.2.3 Fate and Transport Potential

The potential for the COCs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 6 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COCs at this site. Degradation, transformation, and decay of the radiological COC also are expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it is concluded that complete ecological pathways are not associated with COCs at this site. Therefore, no COPECs exist at the site, and a more detailed risk assessment was not deemed necessary to predict the potential level of ecological risk associated with the site.

VIII. References

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Dínwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Howard, P.H., 1989. Volume I: "Large Production and Priority Pollutants," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc., Chelsea, Michigan.

Howard, P.H., 1990. Volume II: "Solvents," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc. Chelsea, Michigan.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Kocher, D.C. 1983. "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil," *Health Physics*, Vol. 28, pp. 193–205.

Micromedex, Inc., 1998, Hazardous Substances Databank.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," NCRP Report No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," in New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

Oak Ridge National Laboratory, 2003. "Risk Assessment Information System," electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL, Oak Ridge National Laboratory.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. "DSS Sites Mean Elevation Report," GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, See Sandia National Laboratories, New Mexico.

U.S. Department of Energy (DOE), 1988. "External Dose-Rate Conversion Factors for Calculation of Dose to the Public," DOE/EH-0070, Assistant Secretary for Environment, Safety and Health, U.S. Department of Energy, Washington, D.C.

- U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.
- U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1988. "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997a. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997b. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 2002a. "Region 6 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.
- U.S. Environmental Protection Agency (EPA), 2002b. "Region 9 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.
- U.S. Environmental Protection Agency (EPA), 2002c. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.

U.S. Environmental Protection Agency (EPA), 2003. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington, D.C.

Whicker, F.W., and V. Schultz, 1982. *Radioecology: Nuclear Energy and the Environment*, Volume II, CRC Press, Boca Raton, Florida.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

Yu, C., A.J. Zielen, J.-J. Cheng, Y.C. Yuan, L.G. Jones, D.J. LePoire, Y.Y. Wang, C.O. Loureiro, E. Gnanapragasam, E. Faillace, A. Wallo III, W.A. Williams, and H. Peterson, 1993a. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD," Version 5.0. Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois.

Yu, C., C. Loureiro, J.-J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace, 1993b. "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil," ANL/EAIS-8, Argonne National Laboratory, Argonne, Illinois.

This page intentionally left blank.

APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous. radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- · Ingestion of contaminated drinking water
- Ingestion of contaminated soil

- · Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- · Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different landuse scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following five potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- · Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

Table 1
Exposure Pathways Considered for Various Land-Use Scenarios

Industrial	Recreational	Residential
Ingestion of contaminated	Ingestion of contaminated	Ingestion of contaminated
drinking water	drinking water	drinking water
Ingestion of contaminated soil	Ingestion of contaminated soil	Ingestion of contaminated soil
Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)	Inhalation of airborne compounds (vapor phase or particulate)
Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only	Dermal contact (nonradiological constituents only) soil only
External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS Il projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

=
$$C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
 (1)

where:

C = contaminant concentration (site specific)

CR = contact rate for the exposure pathway

EFD= exposure frequency and duration

BW = body weight of average exposure individual

AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimated dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_s = \frac{C_s * IR * CF * EF * ED}{BW * AT}$$

where:

= Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)

= Chemical concentration in soil (mg/kg)

IR = Ingestion rate (mg soil/day)

CF = Conversion factor (1E-6 kg/mg)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_s = \frac{C_s * IR * EF * ED * \left(\frac{1}{VF} \text{ or } \frac{1}{PEF}\right)}{BW * AT}$$

where:

 I_s = Intake of contaminant from soil inhalation (mg/kg-day) C_s = Chemical concentration in soil (mg/kg)

IR = Inhalation rate (cubic meters [m³]/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

VF = soil-to-air volatilization factor (m³/kg)

PEF = particulate emission factor (m³/kg)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Soil Dermal Contact

$$D_a = \frac{C_s * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

D_a = Absorbed dose (mg/kg-day)

C_s = Chemical concentration in soil (mg/kg) CF = Conversion factor (1E-6 kg/mg)

SA = Skin surface area available for contact (cm²/event)

AF = Soil to skin adherence factor (mg/cm²)

ABS = Absorption factor (unitless)

EF = Exposure frequency (events/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{BW * AT}$$

where:

 I_{w} = Intake of contaminant from water ingestion (mg/kg/day) = Chemical concentration in water (mg/liter [L])

IR = Ingestion rate (L/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{RW * AT}$$

where:

| I | Intake of volatile in water inc... | Cw | = Chemical concentration in water (mg/L) = Intake of volatile in water from inhalation (mg/kg/day)

IR; = Inhalation rate (m³/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1x10-5 and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land-use scenarios for nonradiological and radiological COCs,

respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

Table 2
Default Nonradiological Exposure Parameter Values for Various Land-Use Scenarios

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			
		8.7 (4 hr/wk for	
Exposure Frequency (day/yr)	250 ^{a,b}	52 wk/yr) ^{a.b}	350a,b
Exposure Duration (yr)	25 ^{a,b,c}	30a,b,c	30a,b,c
	70 ^{a,b,c}	70 Adulta,b,c	70 Adulta,b,c
Body Weight (kg)		15 Child ^{a,b,c}	15 Child ^{a,b,c}
Averaging Time (days)			
for Carcinogenic Compounds	25,550 ^{a,b}	25,550 ^{a,b}	25,550 a,b
(= 70 yr x 365 day/yr)			20,000
for Noncarcinogenic Compounds	9,125 a,b	10,950 ^{a,b}	10,950 ^{a,b}
(= ED x 365 day/yr)	•	,	10,000
Soil Ingestion Pathway		<u> </u>	
Ingestion Rate (mg/day)	100a,b	200 Childa,b	200 Child a,b
		100 Adulta,b	100 Adult a,b
nhalation Pathway			
		15 Child ^a	10 Child ^a
Inhalation Rate (m³/day)	20 ^{a,b}	30 Adulta	20 Adult ^a
Volatilization Factor (m ³ /kg)	Chemical Specific	Chemical Specific	Chemical Specific
Particulate Emission Factor (m ³ /kg)	1.36E9 ^a	1.36E9 ^a	1.36E9 ^a
Water Ingestion Pathway			
	2.4 ^a	2.4ª	2.4a
Ingestion Rate (liter/day)			
Dermal Pathway			
		0.2 Childa	0.2 Childa
Skin Adherence Factor (mg/cm²)	0.2a	0.07 Adult ^a	0.07 Adulta
Exposed Surface Area for Soil/Dust		2,800 Child ^a	2,800 Childa
(cm²/day)	3,300a	5,700 Adult ^a	5,700 Adulta
Skin Adsorption Factor	Chemical Specific	Chemical Specific	Chemical Specific

^aTechnical Background Document for Development of Soil Screening Levels (NMED December 2000). ^bRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

EPA = U.S. Environmental Protection Agency.

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not available.

wk = Week(s).

yr = Year(s).

Exposure Factors Handbook (EPA August 1997).

ED = Exposure duration.

Table 3
Default Radiological Exposure Parameter Values for Various Land-Use Scenarios

Parameter Parameter	Industrial	Recreational	Residential
General Exposure Parameters			residential
	8 hr/day for		
Exposure Frequency	250 day/yr	4 hr/wk for 52 wk/yr	365 day/yr
Exposure Duration (yr)	25 ^{a,b}	30a,b	30a,b
Body Weight (kg)	70 Adult ^{a,b}	70 Adult ^{a,b}	70 Adult ^{a.b}
Soil Ingestion Pathway			70710011
Ingestion Rate	100 mg/day ^c	100 mg/dayc	100 mg/dayc
Averaging Time (days) (= 30 yr x 365 day/yr)	10,950 ^d	10,950 ^d	10,950 ^d
Inhalation Pathway			
Inhalation Rate (m³/yr)	7,300 ^{d,e}	10.950e	7,300 ^{d,e}
Mass Loading for Inhalation g/m ³	1.36 E-5 ^d	1.36 E-5 d	1.36 E-5 d
Food Ingestion Pathway			1.00 E-0
Ingestion Rate, Leafy Vegetables			
(kg/yr)	NA	NA	16.5°
Ingestion Rate, Fruits, Non-Leafy	<u></u>		
Vegetables & Grain (kg/yr)	NA	NA I	101.8 ^b
Fraction Ingested	NA	NA	0.25 ^{b,d}

^aRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

EPA = U.S. Environmental Protection Agency.

g = Gram(s)

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not applicable.

wk = Week(s).

yr = Year(s).

^bExposure Factors Handbook (EPA August 1997).

cEPA Region VI guidance (EPA 1996).

dFor radionuclides, RESRAD (ANL 1993).

eSNL/NM (February 1998).

References

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

DOE and USAF, see U.S. Department of Energy and U.S. Air Force.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment," Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

- U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.
- U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.
- U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.
- U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.
- U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force.
- U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force.

- U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.

.

National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

APR 7 2000.

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East, Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi,

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed Quality Control (QC) Report, and copies of gamma spectroscopy analytical results for the entire Drain and Septic Systems (DSS) project, in response to the New Mexico Environment Department Request for Supplemental Information: Environmental Restoration Project SWMU Assessment Reports and Proposals for Corrective Action Complete: Drain and Septic Systems Sites 1034, 1035, 1036, 1078, 1079, 1084, 1098, 1104, and 1120, (DSS Round 6); September 2004, Environmental Restoration Project at Sandia National Laboratories, New Mexico, EPA ID No. NM589011518, dated January 14, 2005.

One hardcopy (consisting of seven volumes) will be delivered to Will Moats (NMED), and an electronic CD will be sent by certified mail to you and Laurie King (EPA).

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner

Manager

Enclosure

cc w/ enclosure:

W. Moats, NMED-HWB (via Certified Mail)

L. King, EPA, Region 6 (Via Certified Mail)

M. Gardipe, NNSA/SC/ERD

J. Volkerding, DOE-NMED-OB

cc w/o enclosure:

D. Pepe, NMED-OB

J. Estrada, NNSA/SSO, MS 0184

F. Nimick, SNL, MS 1089

R. E. Fate, SNL, MS 1089

M. J. Davis, SNL, MS 1089

D. Stockham, SNL, MS 1087

B. Lanokopf, SNL, MS 1087

P. Puissant, SNL, MS 1087

M. Sanders, SNL, MS 1087

A. Blumberg, SNL, MS 0141

Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

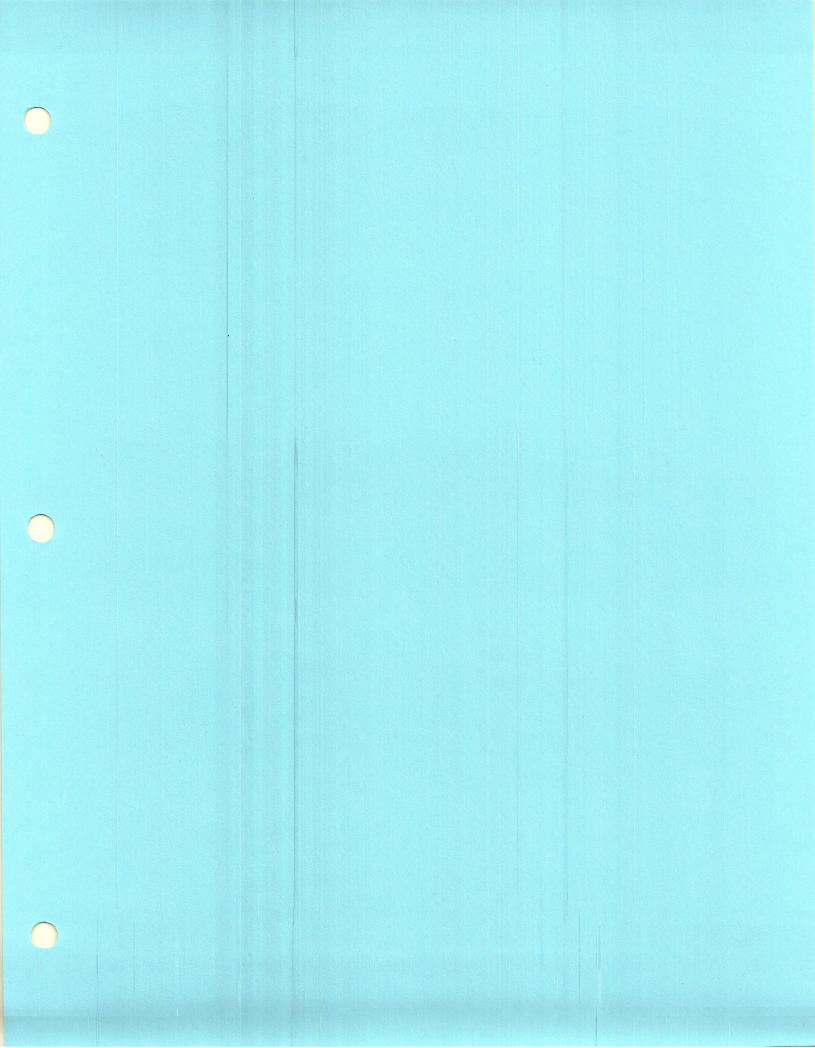
Volume 1 of 7 Master Index and

Field Duplicate Relative Percent Difference Tables

Environmental Restoration Project

United States Department of Energy Sandia Site Office

Sandia National Laboratories/New Mexico Drain and Septic Systems Project Quality Control Report April 2005


In response to the New Mexico Environmental Department (NMED) request for supplemental information dated January 14, 2005, the Sandia National Laboratories/New Mexico (SNL/NM) Environmental Restoration (ER) project is providing a complete set of laboratory analytical quality control (QC) documentation for approximately 1,200 soil and associated field blank and duplicate samples collected at the SNL/NM Drain and Septic System (DSS) sites from 1998 to 2002.

The documentation set is comprised of seven report binders. The first binder contains a master index sorted by DSS Site number, and then by analytical parameter. The master index also includes the site names, binder number in which the pertinent QC information can be found for any individual sample, Analytical Request/Chain of Custody (AR/COC) numbers, ER sample IDs, ER sample numbers, sample collection dates, sample matrix, analytical laboratory, and the laboratory analytical batch number for these DSS samples. The first binder also contains tables of calculated relative percent differences (RPDs) for primary and field duplicate sample pairs collected at the DSS sites from 1998 to 2002.

Binders 2 through 5 include the detailed QC information for General Engineering Laboratories (GEL). Binder 6 includes the same type of information for the ER Chemistry Laboratory (ERCL). Binders 2 through 6 include general narratives which address condition on receipt at the laboratory, and sample integrity issues (proper preservation, shipping, AR/COC, etc.). Technical narratives are also provided for each analytical method used. These narratives address holding time and any other specific QC method conformance issues. QC summaries are included for each QC batch. These include the result data and applicable calculations (percent recovery, RPD) for analytical blanks, spikes, and replicates. Finally, Binder 7 includes both complete gamma spectroscopy data documentation, and the associated batch QC from the SNL Radiation Protection Sample Diagnostic (RPSD) Laboratory. For each data set indicated by the AR/COC number, an individual cross reference summary sheet is provided.

DRAIN AND SEPTIC SYSTEMS PROJECT QC MASTER INDEX

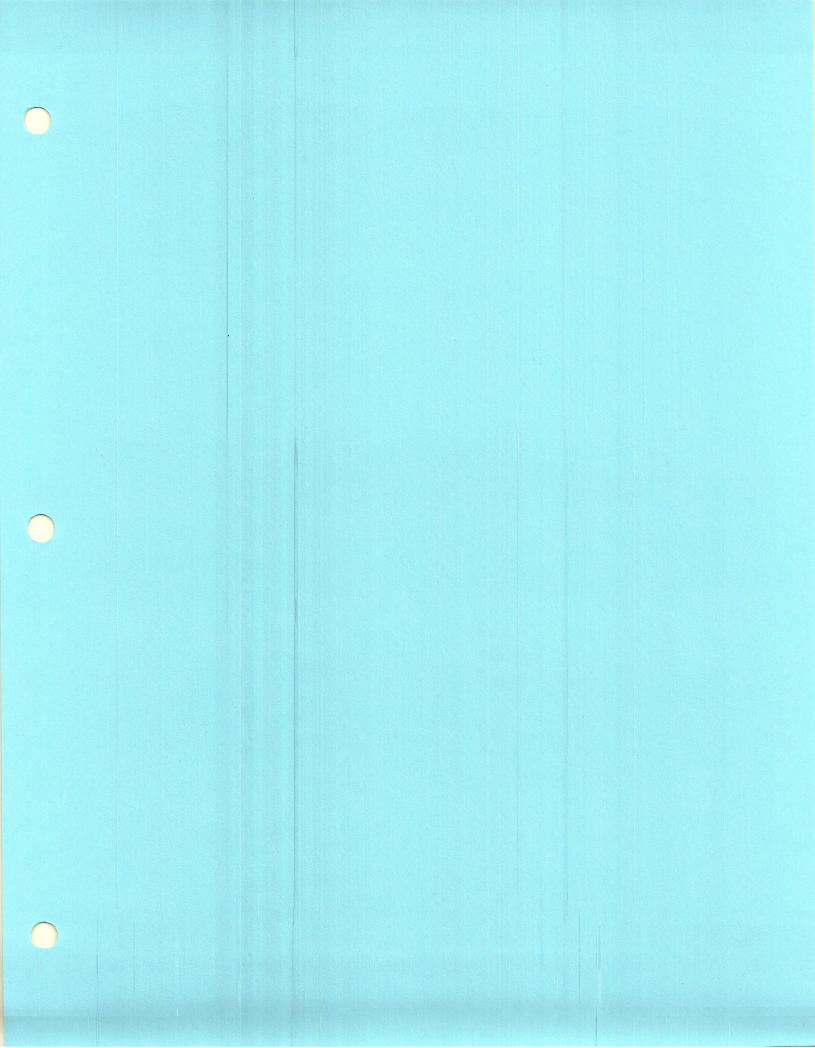
Company of a company of company o	Site Name Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS Bldg. 885 SS SS Bldg. 885 SS SS Bldg. 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5		885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-30-S 885/1101-SP1-BH1-30-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-25-S	060063-002 060064-002	22-0CT-02 22-0CT-02 22-0CT-02	The state of the	BNA-8270 BNA-8270 BNA-8270	GEL GEL	211309	
The state of the s	349, 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5		885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-30-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-25-S	060064-002	22-0CT-02 22-0CT-02	SOIL	BNA-8270	GEL	211309	
The state of the s	add, 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5		885/1101-SP1-BH1-30-S 885/1101-SP1-BH1-30-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-30-S	060064-002	22-OC1-02 22-OCT-02	JOE :	BNA-8270	1		-
2 Company of the Comp	3149, 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5		885/1101-SP1-8H1-30-S 885/1101-SP1-8H1-25-S 885/1101-SP1-8H1-25-S 885/1101-SP1-8H1-30-S		22-OCT-02	:::	BNA-82/0		:544300	
A THE CONTRACT OF STREET, STRE	3144 885 SS 884 SS 885	Volume 5 Volume 5		885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-30-S	060064-002	1 2 2	SOIL	00000	פור	211202	
Company of the Compan	340, 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786 605786 605786 605786 605786	885/1101-SP1-BH1-25-S 885/1101-SP1-BH1-30-S	060063-002	22-OCT-02	SOIL	מעייניטאַט	GEL	121131	·
S. Commission Superior Commission of Marie Commission of State Com	340, 885 SS SS SS SS SS SS SS SS SS SS SS SS SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786 605786 605786 605786	885/1101-SP1-BH1-30-S	060063-002	22-OCT-02	SOIL	GROSS-A/B	댎	211317	N. 40°C-1
Control of the Contro	3140, 885, SS Bldg, 885, SS Bldg, 885, SS Bldg, 885, SS Bldg, 885, SS Bldg, 885, SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786 605786 605786		060064-002	22-OCT-02	SOIL	GROSS-A/B	퍨	211317	
2 Same and the state of the sta	3149, 885, SS Bidg, 885, SS Bidg, 885, SS Bidg, 885, SS Bidg, 885, SS Bidg, 885, SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786 605786 605786	See5/1101-001-BH1-30-S	060064-002	22-OCT-02	SOIL	GROSS-A/B	GEL	211317	34.
Andrew a Marie and Commerce.	3149, 885, SS Bidg, 885, SS Bidg, 885, SS Bidg, 885, SS Bidg, 885, SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786 605786 605786	000/1101-01 1-011-05 0	060063-002	22-OCT-02	SOIL	TOTAL-CN	퍨	212382	
min a Mar anale vimen,	3140, 885 SS Bidg, 885 SS Bidg, 885 SS Bidg, 885 SS SS SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786	(000/1101-SF 1-0111-25-C	060063-002	22-OCT-02	SOIL	TOTAL-CN	GEL	212382	
Alar and Prince And	865 SS 869 885 SS 869 885 SS 869 SS 8	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786 605786	0000 1010 1010 1000	060064-002	22-OCT-02	SOIL	TOTAL-CN	GEL	212382	
AND COMMENTS	Bidg, 885 SS Bidg, 885 SS Bidg, 885 SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605786 605786 605786	885/1101-5F1-5D1-50-5	060064-002	22-OCT-02	SOIL	TOTAL-CN	GEL	212382	
	Bidg, 885 SS Bidg, 885 SS Bidn, 885 SS	Volume 5 Volume 5 Volume 5 Volume 5 Volume 5	605/86	0000 100 100 100 100 000 000 000 000 00	1060063-002	22-OCT-02	SOIL	C ₇ +6	GEL	213487	
_	Bidg. 885 SS 2017 885 SS	Volume 5 Volume 5 Volume 5 Volume 5	98/509	889/1101-0F 1-D-1-2-0-0	Decoes On	22-OCT-02	EOS:	Cr+6	GEL GEL	213487	~
5	DIAN 885 SS	Volume 5 Volume 5	200044	885/1101-5F1-6H1-Z5-5	000000000000000000000000000000000000000	20 100 27 20 100 00	il Oai	, C	GE	213487	•
1011		Volume 5	605786	885/1101-SP1-BH1-30-S	060064-002	20-1-02	100	9 9	l ag	213487	
	Bldg. 885 SS	Volume 5	605786	BB5/1101-SP1-BH1-30-S	060064-002	22-OC1-02	SOL	0.000	ָּ֖֖֖֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	240020 241021	
	BIO 885 SS		605786	885/1101-SP1-BH1-25-S	060063-002	22-OCT-02	SOIL	ACKA METALS	֓֞֞֝֞֜֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֡֝֓֡֡֝֓֡	240020 244024	, [] <u>E</u>
}	Order 885 SS	Volume 5	605786	885/1101-SP1-BH1-25-S	060063-002	22-OCT-02	SOIL	RCRA METALS	<u></u>	1210929, 2111	
ì	DOC 200	Volumo	805786	885/1101-SP1-BH1-30-S	060064-002	22-OCT-02	SOIL	RCRA METALS	GEL	210929, 211021	2
5	Bidg. 883 53	Note the second	605786	885/1101-SP1-BH1-30-S	060064-002	22-OCT-02	SOIL	RCRA METALS	GEL GEL	210929, 211021	2
	Bidg. 863 33	o control	000000	800/4402 CD1.BH1.25.0	059795-002	06-SEP-02	SOIL	BNA-8270	JGEL	200259	
1102	F. Blog 889 SS	Volume	000000	280/11/0-SP1.BH1.30-S	059796-002	06-SEP-02	SOIL	BNA-8270	떈	(200259	à
i	F. Bldg 889 SS	*Admile *	000000		050795.001	06-SEP-02	SOIL	VOA-8260	GEL	200753	
ł	F. Bidg 889 SS	Volume 4	802608	2-27-110-110-701-70-70-70-70-70-70-70-70-70-70-70-70-70-	059795 001	OR-SEP-02	i OS	VOA-8260	<u>G</u>	200753	
1102	F. Bldg 889 SS	Volume 4	899509	889/1102-SF1-661-30-0	000305000	OG GED ON		Crts	E E	200895	je and
1102	F. Bidg 889 SS	Volume 4	805668	889/1102-SP1-BH1-25-S	Z00-087-601	20-21-02		94.5	 - -	200895	1
1102	F. Bldg 889 SS	Volume 4	605668	889/1102-SP1-BH1-30-S	059796-002	108-2EF-02	30F	CHO WIND	200	201248	į
1102	F. Bilda 889 SS	Volume 7	605747	889/1102-SP1-BH1-25-S	059795-003	06-SEP-02	5.	CHAMMA OF C	5 5	204240	
1102	F. Bida 889 SS	Volume 7	605747	889/1102-SP1-BH1-30-S	059796-003	06-SEP-02	SOIL	GAMMA SPEC	֓֞֝֞֝֓֞֝֞֝֓֓֓֞֝֓֓֓֓֓֞֝֓֓֓֓֞֝֓֓֓֓֞֝֓֓֓֓֞֝֓֓֞֝֓֡֓֞֝֓֡֓֓֡֓֡֝֡֡֡֓֓֡֓֡֝	201249	
1103	F Bida 889 SS	Volume 4	605668	889/1102-SP1-BH1-25-S	059785-002	06-SEP-02	SOIL	TOTAL-CN	ਜੂ ਹ	501021	*
1102	E Blda 889 SS	Volume 4	605668	889/1102-SP1-BH1-30-S	059796-002	08-SEP-02	SOIL	TOTAL-CN	<u>.</u>	(201253	•
107	F Ridn 889 SS	Volume 4	605668	889/1102-SP1-BH1-25-S	059795-002	06-SEP-02	SOIL	GROSS-A/B	<u>ਜ</u> ਼	201305	л шл.>-
1100	E Bldg 880 SS	Volume 4	605668	889/1102-SP1-BH1-30-S	059796-002	06-SEP-02	SOIL	GROSS-AB	탨	C05102	
19.5	F Rida 889 SS	Volume 4	605668	889/1102-SP1-BH1-25-S	059795-002	06-SEP-02	SOIL	PCB-8082	坦	203080	1
1100	S OSB OPIG U	Volume 4	605668	889/1102-SP1-BH1-30-S	059796-002	06-SEP-02	SOIL	PCB-8082	딍	203080	
1403	F BION 889 SS	Volume 4	605668	889/1102-SP1-BH1-25-S	059795-002	06-SEP-02	SOIL	HE-8330	평	200966, 203692	892
7	OC COO OPIG L	Volume 4	605668	889/1102-SP1-BH1-30-S	059796-002	06-SEP-02	SOIL	HE-8330		200966, 203692	285
2011	r Dido 840 SS	Volume 4	80568	889/1102-SP1-BH1-25-S	059795-002	06-SEP-02	SOIL	RCRA METALS	-	201371, 200317	317
7011	CO COO TOIL I	y outligo,	ROFARR	849/1102-SP1-RH1-30-S	059796-002	08-SEP-02	SOIL	RCRA METALS	GEL	201371, 200317	317
1102	F. Bidg 669 33	Z omino/	805790	8595/1104-SP1-BH1-11-S	060059-003	01-OCT-02	SOIL	GAMMA SPEC	RPSD	201445	
104	Blag. 6595 5F	Volume 7	805790	6505/1104.SP1.BH1-16.S	060060-003	101-OCT-02	SOIL	GAMMA SPEC	RPSD	201445	
1104	Bidg. 6595 SP	Volume	2000	2000 100 100 100 100 100 100 100 100 100	060059-002	01-OCT-02	SOL	PCB-8082	GEL	206282	-
104	Bidg. 6595 SP	C BUNION	#8/c09	0-11-1104-01-1-0-401-1-0-000	200 00000	04 OCT 00		PCB-8082	E E	206282	
1104	Bldg. 6595 SP	Volume 5	605784	6595/104-SF1-BH1-16-S	000000	04 OCT 03		BNA-8270	E E	206457	1
2	Bldg. 6595 SP	Volume 5	605/84	6585717-1-104-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5-1-1-5	700-50000	3	1			· · · · · · · · · · · · · · · · · · ·	2 11 114

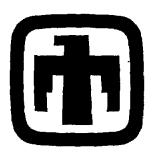
Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 5 of 7
General Engineering Laboratories, Inc. (GEL) QC Data


Environmental Restoration Project



United States Department of Energy Sandia Site Office

GEL QC CROSS REFERENCE

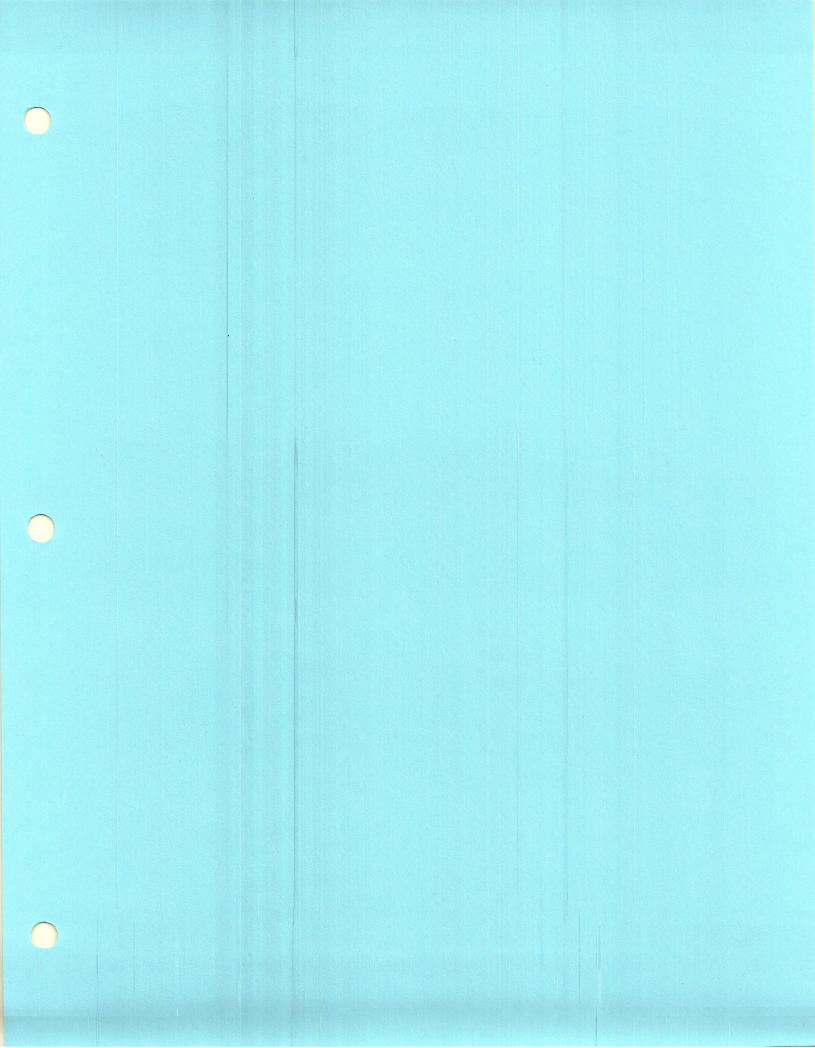
Site #								
:	Site Name	SAMPLE#	##	DISP_ER_SAMP_LOC	DATE	MATRIX	LAB TEST	BATCH#
1034	1034 Bldg, 6710 SS	059903	901	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	VOA-8260	204483
1032	1034 Bldg. 6710 SS	1	1	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	BNA-8270	204423
1032	1034 Bida, 6710 SS	059903	200	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL		205618, 205620
193	1034 Bidg. 6710 SS		200	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	A/B	205013
1032	1034 Bldg. 6710 SS		П	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	HE-8330	204696
Š	1034 Bldg. 6710 SS	059903	200	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	PCB-8082	204381
103	1034 Bldg, 6710 SS	Γ	82	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	RCRA METALS	204452, 204440
193	1034 Bldg, 6710 SS		1	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	TOTAL-CN	205123, 206136
103	1034 Bida 6710 SS	059904	9	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	VOA-8260	204483
3	1034 Bldg. 6710 SS	059904	T	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	BNA-8270	204423
193	1034 Bldg, 6710 SS	059904	005	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	Cr+6	205618, 205620
199	1034 Bldg. 6710 SS	059904	200	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	A/B	205013
103	1034 Bido, 6710 SS	059904	200	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	HE-8330	204696
19	1034 Bldg. 6710 SS		1	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	PCB-8082	204381
3	1034 Bldg. 6710 SS	059904	005	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	RCRA METALS	204452, 204440
18	1034 Bldg. 6710 SS	059904	200	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	TOTAL-CN	205123, 206136
105	1052 Bldg. 803 SP	059905	001	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	VOA-8260	204483
105	1052 Bldg. 803 SP	059905	002	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	BNA-8270	204423
105	1052 Bldg. 803 SP	059905	200	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	Cr+6	205618, 205620
105	1052 Bldg. 803 SP	059905		803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	GROSS-A/B	205013
195	1052 Bldg. 803 SP	059905		803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	HE-8330	204696
105	1052 Bldg. 803 SP	059905	002	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	PCB-8082	204381
105	1052 Bida, 803 SP	059905	002	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	RCRA METALS	204452, 204440
105	1052 Bldg. 803 SP	059905	200	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	TOTAL-CN	205123, 206136
105	1052 Bida, 803 SP	906650		803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	VOA-8260	204483
5	1052 Bldg. 803 SP	059906	200	803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	8270	204423
105	1052 Bldg. 803 SP	906650	005	803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	Cr+6	205618, 205620
5	1052 Bldg. 803 SP	906650	002	803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	GROSS-A/B	205013
105	1052 Bldg. 803 SP	906650	200	803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	HE-8330	204696

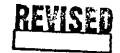
Sandia National Laboratories

Drain and Septic Systems Project Quality Control (QC) Report

April 2005

Volume 7 of 7
Radiation Protection & Sample Diagnostics (RPSD)
Laboratory Data


Environmental Restoration Project



United States Department of Energy Sandia Site Office

RPSD QC CROSS REFERENCE

Site #	Site Name	SAMPLE#	F#	ER SAMPLE ID	SAMPLE DATE	MATRIX	LAB TEST
1034	Bldg. 6710 SS	059903	003	6710/1034-SP1-BH1-14-S	19-SEP-02	SOIL	GAMMA SPEC
1034	Bldg. 6710 SS	059904	003	6710/1034-SP1-BH1-19-S	19-SEP-02	SOIL	GAMMA SPEC
1052	Bldg. 803 SP	059905	003	803/1052-SP1-BH1-22-S	19-SEP-02	SOIL	GAMMA SPEC
1052	Bldg. 803 SP	059906	003	803/1052-SP1-BH1-27-S	19-SEP-02	SOIL	GAMMA SPEC
276	F. Bldg. 829X Sump	059907	003	829/276-SP1-BH1-8-S	24-SEP-02	SOIL	GAMMA SPEC
276	F. Bldg. 829X Sump	059908	003	829/276-SP1-BH1-13-S	24-SEP-02	SOIL	GAMMA SPEC
1003	F. Bldg. 915/922 SS	059912	003	915-922/1003-SP1-BH1-27-S	24-SEP-02	SOIL	GAMMA SPEC
1003	F. Bldg. 915/922 SS	059913	003	915-922/1003-SP1-BH1-33-S	24-SEP-02	SOIL	GAMMA SPEC
1003	F. Bidg. 915/922 \$\$	059914	003	915-922/1003-SP2-BH1-26-S	24-SEP-02	SOIL	GAMMA SPEC
1003	F. Bldg. 915/922 SS	059915	003	915-922/1003-SP2-BH1-31-S	24-SEP-02	SOIL	GAMMA SPEC
1004	Bldg. 6969 SS	059917	003	6969/1004-DF1-BH1-8-S	20-SEP-02	SOIL	GAMMA SPEC
1004	Bldg. 6969 SS	059918	003	6969/1004-DF1-BH1-13-S	20-SEP-02	SOIL	GAMMA SPEC
1004	Bldg. 6969 SS	059919	003	6969/1004-DF1-BH1-8-S	20-SEP-02	SOIL	GAMMA SPEC
1004	Bldg. 6969 SS			6969/1004-DF1-BH2-13-S	20-SEP-02	SOIL	GAMMA SPEC
1004	Bidg. 6969 SS			6969/1004-DF1-BH3-8-S	20-SEP-02	SOIL	GAMMA SPEC
1004	Bldg. 6969 SS	059922	003	6969/1004-DF1-BH3-13-S	20-SEP-02	SOIL	GAMMA SPEC
1114	Bkg. 9978 DW		003	9978/1114-DW1-BH1-6-S	23-SEP-02	SOIL	GAMMA SPEC
1114	Bidg. 9978 DW			9978/1114-DW1-BH1-11-S	23-SEP-02	SOIL	GAMMA SPEC
276	F. Bldg. 829X Sump			829/276-SP1-BH1-8-DU	24-SEP-02	SOIL	GAMMA SPEC

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

Column ID	Column Description
J&WI	DB-624, 60m x 0.25mm, 1.4um
J&W2	DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&W1	Trap C
VOA2	HP6890/HP5973	J&W1	Trap C
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J&W1	Trap C
VOA7	HP5890/HP5972	J&W2	Trap K
VOA8	HP6890/HP5973	J&W1	Trap K
VOA9	HP6890/HP5973	J&W1	Trap C

SDG#67794-1 -VOA

Page 3 of 4

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: Chala Wilson Date: 10-21-02

SDG#67794-1 -VOA

Page 4 of 4

Organics Package Creation

This package has been originally reviewed by Richard Bomar (10/1/2002 13:30)
This package has been peer reviewed by Debbie Smith (10/15/2002 14:40)
This package has been packaged by LySandra Gathers (10/18/2002 15:42)
This roadmap has been edited by
Package Requirements

Raw Data	TICS	Standards Traceability
N	N	

Samples

exclude	datafile	sampleno	client-id	injdate	injtime	sublist	comments
	/chem/VOA1.i/093002v1.b/1d136.d	67798001	059911-001	01-OCT-2002	00:28	67794-1.sub	
	/chem/VOA1.i/093002v1.b/ld137.d	67798002	059926-001	01-OCT-2002	00:54	67794-Lsub	
	/chem/VOA1.i/093002v1.b/1d138.d	67798003	059927-001	01-OCT-2002	01:20	67794-1.sub	
	/chem/YOA1.i/093002v1.b/1d139.d	67798004	059916-001	01-OCT-2002	01:46	67794-1.sub	

QC Samples

exclude	dataflle	sampleno	cltent-id	injdate	tnjtime	sublist	comments
	/chem/VOA1.i/093002v1.b/1d124lcs-3.d	1200308691	VBLK01LCS	30-SEP-2002	19:13	67794-1.sub	
	/chem/VOA1.i/093002v1.b/1d125-3.d	1200308692	VBLKOILCSD	30-SEP-2002	19:39	67794-1.sub	
	/chem/VOA Li/093002v1.b/ld129-3.d	1200308688	VBLK01	30-SEP-2002	21:23	67794-1.sub	all samples field QC - used LCS/LCSD

GC/MS VOLATILES QUALITY CONTROL SUMMARY

OC Summary

Report Date: October 17, 2002 Page 1 of 5

Client:

Sandia National Laboratories MS-9756 P.O. Box 5800

Albuquerque, New Mexico Pameia M. Puissant

Contact:

Workerder: 67794

Рагопаше	NOM	Sample Qual	oc	Units	RPD%	REC%	Range Anlet	Date Time
Velstile-GC/MS Federal								
Bench 204483								
OC1200307828 LCS								
1,1-Dichloroethylenc	50.0		43.4	ug/kg		87	(75%-134%) RMB	09/27/02 08:11
Benzone	50.0		47.5	ug/kg		95	(80%-120%)	
Chlorobenzene	50.0		46.8	ug/kg		94	(82%-118%)	
Toluene ·	50.0		46.3	ng/kg		93	(74%-115%)	
Trichloroethylene	50.0		47.7	ug/kg		95	(80%-119%)	
*Bromofluorobenzene	50.0		38.2	ug/kg		76	(69%-138%)	
*Dibromofluoromethane	50.0	•	45,8	ug/kg		92	(67%-137%)	
*Toluene-d8	50,0		40.4	ug/kg		81	(67%-139%)	
QC1200307829 LCS							· .	
1,1-Dichloroethylene	50.0		41.9	ug/kg		84	(75%-134%)	09/27/02 20:15
Benzene	50.0		46.2	ug/kg		92	(80%-120%)	
Chlorobenzene	50.0		44.7	ug/kg		89	(82%-118%)	
Toluene	50.0		44.4	ug/kg		89	(74%-115%)	
Trichloroethylene	50.0		44.5	ug/kg		89	(80%-119%)	
**Bromofluorobenzene	50.0	•	47.5	ug/kg		95	(69%-138%)	
*Dibromofluoromethane	50.0		50.2	ug/kg		100	(67%-137%)	
*Toluene-d8	50.0		45.5	ug/kg		91	(67%-139%)	
OC1200308583 LCS		•					•	
1,1-Dichloroethylene	50.0	'	40,2	ug/kg		.81	(75%-134%)	09/30/02 08:08
Benzene	. 50.0		44.6	ug/kg		89	(80%-120%)	
Chlorobenzene	50.0		47.1	ug/kg		94	(82%-118%)	
Toluene	50.0		47.1	ug/kg		94	(74%-115%)	
Trichloroethylene	50.0		44.6	ug/kg		89	(80%-119%)	
*Bromoffporobenzene	50.0		45.0	ug/kg		90	(69%-138%)	•
*Dibromofluoromethane	50.0		46.1	ug/kg		92	(67%-137%)	
*Toluene-d8	50.0		43.3	ug/kg		87	(67%-139%)	
QC1200307822 MB				-00		•	(=: 10 00= 10)	
1,1,1-Trichloroethane		Ŭ	ND	ug/kg				09/27/02 09:45
1,1,2,2-Terrachlorosthanc	•	U	ND	ug/kg				
1,1,2-Trichloroethane	•	บ	ND	ug/kg				
1,1-Dichloroethane		Ū	ND	ug/kg				•
I, I-Dichloroethylene		บั	ND	ue/ke				
1.2-Dichloroethane		Ū	ND	ue/kg				
1,2-Dichloropropane		Ū	ND	ng/kg				
2-Butanone		. ប	ND:	ug/kg				
2-Hexanone		บ	ND	ne/kg				
4-Methyl-2-pentanone		บั	ND	ug/kg				
Acetone		ย	ND	AB/KE				
Benzene		บ	ND	na/ka				
Brandichloromethane		Ü	ND	ug/kg ug/kg				
Bromoform		บ	ND	ug/kg				
Bromomethane		ŭ	. ND	щукв ug/kg				
est of the filter		U	ND	ma ka				

			<u> </u>	THURS Y						
Workorder: 67794								Page 2	of 5	
Parmasane	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anișt	Date Time
Volatile-GC/MS Pederal										
Baich 204483										
Carbon disulfide		•	Ü	ND	ug/kg					
Carbon tetrachloride			U	ND	ug/kg					
Chlorobenzene			U	ND	ug/kg					
Chloroethane			U	ND	ug/kg					
Chloroform			U	ND	ug/kg					
Chloromethane			U	ND	ug/kg	•				
Dibromachioromethane			Ū	ND	ug/kg					
Ethylbenzene .			U	ND	ug/kg					
Methylene chloride			U	ND	ug/kg					*
Styrens			Ų	ND	ug/kg					
Terrachloroethylene			U	ND	ng/kg					
Tolueno			U	ND	ug/kg					
Trichloroethylene			U	ND	ug/kg					
Vinyl sostate			Ų	ND	ug/kg					
Vizyi chloride			U	ND	ug/kg					
Xylenes (sotal)			U	ND	ug/kg					
cis-1,2-Dichloroethylene			U	ND	ug/kg					
cis-1,3-Dichloropropylene			U	ND	ng/kg					
trans-1,2-Dichloroethylene			U	ND	ug/kg					
trans-1,3-Dichloropropylene			U	ND	ug/kg					
**Bromofluorobenzene	50.8			62.3	ug/kg		125	(69%-138%)		
**Dibromoftuoromethane	50.0			48.0	n\$/kg		96	(67%-137%)		
**Toluene-d8	50.0			47.1	ug/kg		94	(67%-139%))	
QC1200307823 MB			••							00 mm/se 44 co
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane			ŭ	ND	ug/kg			e .		09/27/02 22:00
1,1,2-Trichloroethane			υ	ND	ug/kg					
1,1-Dichloroethme			U U	ND	ug/kg					
1,1-Dichloroethylene			_	ND	ug/kg					
1.2-Dichloroethane	•		U U	ND ND	ug/kg ug/kg					
1,2-Dichloropropane			Ü	-		-				
2-Butanone			Ü	ND ND	nts/jet nts/jet					
2-Hexanone		•	Ü	ND	ug/kg					•
4-Methyl-2-pernanone			บ	ND	ug/kg					
Acctone			ซ	ND	us/kg					
Benzéne			ນ	ND	ug/kg					
Bromodichloromethane			ŭ	ND	ne/es					
Bromoform	•		ŭ	ND	ug/kg					
Bromomethane			Ŭ	ND	ug/kg					
Carbon disulfide			ŭ	ND	ug/kg					
Carbon tetrachloride			บั	ND	ug/kg					
Chlorobenzene			ŭ	ND	na/pa					
Chioroethane			ŭ	ND	ug/kg					
Chloroform			ŭ	ND	ug/kg					
Chloromethane			ŭ	ND	ug/kg				•	
Dibromochioromethane			ŭ	ND	ug/kg					
Ethylbenzene			Ü	ND.	ug/kg					
Methylene chloride		-	ŭ	ND	ug/kg					
			v	ערו	- A					

Werkorder: 67794								Page 3 of E						
							Page 3 of 5 REC% Range Aulst Date Time							
Parmhame	NOM	Sample	Qual	QC_	Units	RPD%	REC%	Range	Anlst	Date Time				
Volatile-GC/MS Federal Batch 204483	•													
March 204403	_													
Styrene	•		U	ND	ug/kg									
Tetrachlorocthylene			บ	ND	ug/kg									
Toluene	•		U	ND	na/ka									
Trichloroethylene			U	ND	ug/kg		•							
Vinyi acetate			U	ND	ug/kg									
Vinyl chloride			U	ND	ug/kg									
Xylenes (total)			U	ИD	ug/kg									
cis-1,2-Dichloroethylens			U ·	ND	na/ka									
cis-1,3-Dichloropropylene			บ	ИD	ug/kg									
trans-1,2-Dichloroethylene			U	ND	ug/kg									
trans-1,3-Dichloropropylene			U	ND	ug/kg									
Bromofluorobenzone	50.0			60.0	ug/kg		120	(69%-138%)						
Dibromofluoromethane	50.0			49.3	ug/kg		99	(67%-137%)						
Toluene-d8	50.0			46.8	ug/kg		94	(67%-139%)						
QC1200308582 MB					_									
I, I, I-Trichloroethane		•	U	· ND	· ug/kg					09/30/02 09:4				
1,1,2,2-Tetrachloroethane			U	ND	ug/kg									
1,1,2-Trichloroethane			U	ND	ug/kg									
1,1-Dichloroethane			U	ND	ug/kg		•							
I,1-Dichloroethylene		-	U	ND	ug/kg									
1,2-Dichloroethane			U	ND	ug/kg									
1,2-Dichloropropane			υ	ND	ug/kg									
2-Butanone	•		υ	ND	ug/kg									
2-Hexanone			U	ND	ng/kg									
4-Methyl-2-pentanone			U	ND	vg/kg									
Acetone			U	ND	ug/kg									
Benzene	-		្ឋ	ND	ug/kg									
Bromodichloromethane			U	ND	ug/kg			•						
Bromoform			·U	ND	ng/jcs	t								
Bromomethane			ប	ND	ug/kg	;								
Carbon disulfide		٠	U	. ND	ug/kg	1				•				
Carbon tetrachloride			U	ND	ug/kg									
Chlorobenzene			U	ND	ug/kg	;								
Chloroethane	-		U.	ND	ug/kg									
Chloroform			บ	ND	ug/kg									
Chloromethane			U	ND	ug/kg									
Dibromochloromethane			U	"ND	ս ջ/ էլ	}								
Ethylbenzene			U	ND	ug/kg	;			-					
Methylene chloride			U	ND	na/Jd	}								
Styrene			U	ND.	ug/kg									
Tetrachloroethylene			ប	ND	ug/kg									
Toluene			U	ND	pg/kg									
Trichloroethylene			Ū	ND	ug/kg									
Vinyl acetate			Ŭ	ND	ug/kr									
Vinyl chloride			ŭ	ND	ug/kg	,								
Xylenes (total)			Ū	ND	ug/ku									
cis-1,2-Dichloroethylene			บั	ND	ug/ks									
cis-1.3-Dichloropropylene			TI.	ND	ue/ko									

Workorder: 67794	· —— —							Page 4 of 5					
Рагтипание	NOM		Sample Qual		QC	Units	RPD%	REC%	Range Anh	st Date Time			
Volatile-CC/MS Federal													
Batch 204483													
trans-1,2-Dichlomethylene				U	ND	ug/kg							
trans-1,3-Dichloropropylene				U	ND	ug/kg							
**Bromofluorobenzene	50.0				62.7	ug/kg		125	(69%-138%)				
**Dibtomofluoromethane	50.0				47.7	ug/kg		96	(67%-137%)				
**Toluene-d8	50.0				47.0	ug/kg		94	(67%-139%)				
QC1200307825 67794001 PS						_							
1,1-Dichloroethylens	50.0	U	ND		38.9	ug/L		<i>7</i> 8	(55%-128%)	09/28/02 03:39			
Benzene	50.0	U	ND		41.9	ug/L		84	(53%-118%)				
Chlorobenzene	50.0	Ŭ	ND		37.1	ug/L		74	(53%-116%)				
Toluene	50.0	Ü	ND		38.5	ug/L		77	(56%-113%)				
Trichloroethylene	50.0	Ŭ	ND		39.7	ug/L		79	(54%-119%)				
**Bromofluorobenzene	50.0		60.7		50.5	ug/L		101	(69%-138%)				
**Dibromofluoromethane	50.0		49.0		50.0	ug/L		1 0 0	(67%-137%)	÷			
**Toluene-d8	50.0		46.6		46.0	ug/L	•	92	(67%-139%)				
QC1200307827 67794001 PSD													
1,1-Dichloroethylene	50.0	U	ND		38.7	ug/L	0	78	(0%-21%)	09/28/02 04:05			
Benzene	50.0	U	ND		41.5	ug/L	1	83	(0%-17%)				
Chlorobenzene	50.0	U	ND		35.8	ug/L	4	72	(0%-21%)				
Toluene	50.0	U	ND		37.2	ug/L	3	75	(0%-25%)				
Trichlomethylene	50.0	U	ND		38.9	цу/ I.,	2	78	(0%-25%)				
**Bromofluorobanzene	50.0		60.7		49.3	ug/L		99	(69%-138%)				
**Dibromofluoromethane	50.0		49.0		49.9	ug/L		100	(67%-137%)				
**Toluena-d8	50.0	•	46.6		45.6	υ ε/L		91	(67%-139%)				

Notes:

RER is calculated at the 95% confidence level (2-sigms).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where 6
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded.
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder: 67794

Page 5 of 5

Parmname NOM Sample Qual QC Units RPD% REC% Range Aulst Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 18, 2002 Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Polssant

Contact:

Parmoame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Aulet	Date Time
Volatile-GC/MS Federal										·
Batch 204910										
QC1200308691 LCS										
1,1-Dichloroethylene	50.0			43.0	ug/L		86	(78%-140%)		09/30/02 19:13
Benzene	50.0			47.5	ug/L		95	(78%-119%)		
Chlorobenzene	50.0			50.0	ug/L		100	(82%-120%)		
Toluene	50.0			49.4	ug/L		99	(68%-133%)		
Trichloroethylene	50.0			47.5	ug/L		95	(80%-123%)		
**Bromoffuorobenzene	50. 0	•		47,9	ug/L		96	(67%-136%)		
**Dibromofluoromethane	50.0			49.7	ug/L		99	(62%-148%)		
**Toluene-d8	50.0			46.2	ug/L		93	(58%-139%)	ı	
QC1200308592 LCSD										
1,1-Dichloroethylene	50.0			42.4	ug/L		85	(0%-30%)		09/30/02 19:39
Benzene	50.0			47.7	ug/L		95	(0%-30%)		
Chlorobenzene	50.0			49.5	ug/L		99	(0%-30%)		
Toluene	50.0			49.1	ug/L		98	(0%-30%)		
Trichloroethylene	50.0			47.1	ug/L		94	(0%-30%)		
**Bromofluorobenzene	50.0			49.4	ug/L		99	(67%-136%)		
**Dibromofluoromethane	50.0			49.7	ug/L		99	(62%-148%)		
**Toluene-d8	50.0			46.3	ug/L	•	93	(58%-139%)	1	
QC1200308688 MB										
1,1,1-Trichloroethane			υ	ND	ug/L					09/30/02 21:23
1,1,2,2-Tetrachloroethane			U	ND	ug/L					
1,1,2-Trichloroethane			U	ND	ug/L					
1,1-Dichloroethane			U	ND	ug/L					
1,1-Dichloroethylene			U	ND	ug/L	ı				•
1,2-Dichloroethane			U	ND	ug/L					
1,2-Dichloropropane			υ	ND	ng/L					4.1
2-Butanone			U	ND	ug/L					
2-Hexanone			Ū	ND	ug/L					
4-Methyl-2-pentanone	•		U	ND	ug/L					
Acetone			U	ND	ug/L					
Benzonc			ט	ND	ug/L					
Bromodichloromethane			υ	ND	ug/L					
Bromoform			Ū	ND	ug/L					
Bromomethane			น	ND	ug/L					
Carbon disulfide			Ŭ	ND	ug/L					
Carbon tetrachloride			บั	ND	ug/L					
Chlorobenzene			บ	ND	ug/L					
Chloroethane			บ	ND	ug/L					
Chloroform			บ	ND	ug/L					
Chloromethans			Ü	ND	ug/L					
Dibromochloromethane	•		Ü	ND	ug/L			0		
Ethylbenzene		•	Ü.	ND	ug/L					
— · • · · · · · ·			Ü	ND	ug/L				**	
Methylene chloride			U	MD	ug/L	•				

Workorder: 67798					Page 2 of 2							
Рагшлаше	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlat	Date	Time		
Volatile-GC/MS Fadoral												
Betch 204910	•											
Styrane	•	υ	ND	u g/ L								
Totrachloroethylene		ប	ND	Ug/L								
Toluene		บ	ND	ug/L								
Trichloroethylene		U	ND	ug/L	•							
Vinyl chloride		. U	ND	ug/L		,						
Xylenes (total)		บ	ND	ug/L								
cis-1,2-Dichloroethylene		Ü	ND	ug/L								
cis-1,3-Dichloropropylene		U	ND	ng/L								
trans-1,2-Dichloroethylene		U	ND	ug/L								
trans-1,3-Dichloropropylene		U	ND	ng/L								
* Brongoffuorobenzene	50.0		66.5	ug/L		133	(67%-136%)	i		•		
*Dibromofluoromethane	50.0		48.2	ug/L		96	(62%-148%))				
**Tolnene-d8	50.0		47.3	ug/L		95	(58%-139%))				

Notes:

RER is calculated at the 95% confidence level (2-sigma). The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where if
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC/MS SEMIVOLATILE ANALYSIS

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 67794

Method/Analysis Information

Procedure:

Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8270C

Prep Method:

SW846 3550B

Analytical Batch Number:

204423

Prep Batch Number:

204422

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
6779 40 21	059914-002
67794022	059915-002
1200307670	SBLK01 (Biank)
1200307671	SBLK01LCS (Laboratory Control Sample)

Page 1 of 4

1200307672

059903-002MS (Matrix Spike)

1200307673

059903-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the #RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank contained hits of target analytes below the reporting limit; however, there were no hits in the associated samples. The data will be reported as is.

1200307670

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 67794012 059903-002

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

Page 2 of 4

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

Column ID

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film);

Column Description.

001712111	Continue a cooking the continue and continue
J&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane

Page 3 of 4

(identified by a HP-5MS designation)

HP-5MS 5% Phenylmethylsiloxane (identified by a

HP-5MS designation)

ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5

designation)

Similar to the J&W DB-5.625 with low bleed

characteristics (identified by a DB-5MS2

designation)

Instrument Configuration

HP

Phenomenex

J&W DB-5MS2

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2
MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Certification Statement

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: Frin Haubert Date: 10/22/02

^{*} Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Semi-Volatile Case Narrative Sandia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Procedure:

Semivolatile Analysis by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8270C

Prep Method:

SW846 3510C

Analytical Batch Number:

204661

Prep Batch Number:

204660

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8270C:

Sample ID	Client ID
67798005	059926-002
1200308140	SBLK01 (Blank)
1200308141	SBLK01LCS (Laboratory Control Sample)
1200308146	059926-002MS (Matrix Spike)
1200308147	059926-002MSD (Matrix Spike Duplicate)

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Due to the limited capacity of software we do not display all of the current initial calibration files here. If necessary, a calibration history will be inserted in the package prior to the appropriate Form 6.

Diphenylamine has now superseded N-Nitroso-diphenylamine as a CCC on Quantitation Reports, Initial Calibration Reports, Calibration Check Standard Reports, etc. Previous versions of EPA Method 8270 (prior to 8270C) listed N-Nitroso-diphenylamine as a CCC. However, as stated in EPA Method 8270C, Revision 3, December, 1996, Section 1.4.5, "N-Nitroso-diphenylamine decomposes in the gas chromatographic inlet and cannot be separated from

Diphenylamine." Studies of these two compounds at GEL, both independent of each other and together, show that they not only coelute, but also have similar mass spectra. N-Nitroso-diphenylamine and Diphenylamine will be reported as Diphenylamine on all reports and forms.

When calibrations are performed for Appendix IX compounds some of the compounds may not be calibrated exactly according to the criteria in Method 8270C. If the %RSD is greater than 15% or the correlation coefficient is less that 0.99 then the analyte is quantitated using the response factor. If the analyte is detected then the sample is reanalyzed for that analyte on an instrument that is compliant with the criteria in the method.

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The laboratory control sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 67798005 059926-002

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate (MSD) recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses were within the required acceptance criteria for all samples and QC.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Page 2 of 4

Sample Dilutions

None of the samples analyzed in this SDG required dilution.

Miscellaneous Information:

Nonconformance (NCR) Documentation

No nonconformance report (NCR) was generated for this SDG.

Manual Integrations

No manual integrations were required for any data file in this SDG.

System Configuration

The laboratory utilizes a HP 6890 Series gas chromatograph and a HP 5973 Mass Selective Detector. The configuration is equipped with the electronic pressure control. All MS interfaces are capillary direct.

Chromatographic Columns

Chromatographic separation of semivolatile components is accomplished through analysis on one or more of the following columns (all with dimensions of 30 meters x 0.25 millimeters ID and 0.25 micron film except J&W DB-5MS2 which is 25 meters x 0.20 mm ID and 0.33 micron film):

Column ID	Column Description
I&W	DB-5.625(5% Phenyl)-methylpolysiloxane (identified by a DB-5.625 designation on quantitation reports and reconstructed ion chromatograms)
J&W DB-5MS	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS designation)
Alltech	EC-5 (SE-54) 5% Phenyl, 95% Methylpolysiloxane (identified by a HP-5MS designation)
HP	HP-5MS 5% Phenylmethylsiloxane (identified by a HP-5MS designation)
Phenomenex	ZB-5 5% Phenyl Polysiloxane (identified by a ZB-5 designation)
J&W DB-5MS2	Similar to the J&W DB-5.625 with low bleed characteristics (identified by a DB-5MS2 designation)

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below:

Instrument ID	System Configuration	Chromatographic Column
MSD2	HP6890/HP5973	DB-5MS2

MSD4	HP6890/HP5973	DB-5MS2
MSD5	HP6890/HP5973	DB-5MS2
MSD7	HP6890/HP5973	DB-5MS2
MSD8	HP6890/HP5973	DB-5MS2

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP-like packaging will receive a third level validation upon completion of the data package.

	\sim				4	, .	
Reviewer:	Tain	11 au 6-1	-	Date:	10/22	102-	
VELICACI. "	U VVII	17 600-100					

RECORDS CENTER/ ORIGINAL COPY

CASE NARRATIVE
for
Sandia National Laboratories
ARCOC-605728
SDG#67794A
ARCOC-605729
SDG#67794B
Case No. 7223.02.03.02

October 22, 2002

Laboratory Identification:

General Engineering Laboratories, Inc.

Mailing Address:

P.O. Box 30712 Charleston, South Carolina 29417

Express Mail Delivery and Shipping Address:

2040 Savage Road Charleston, South Carolina 29407

Telephone Number:

(843) 556-8171

Summary:

Sample receipt

Sandia collected twenty-two soil samples and eleven aqueous samples on September 19, 24, and 25, 2002. The samples arrived at General Engineering Laboratories, Inc., (GEL) Charleston, South Carolina on September 26, 2002, for environmental analyses. Cooler clearance (screening, temperature check, etc.) was done upon login. The coolers arrived without any visible signs of tampering and with custody seals intact. The samples were delivered with chain of custody documentation and signatures. The temperature of the samples was 4.0 and 5.0°C, as measured from the temperature control bottles.

Soil sample ID 059906-002 from ARCOC-605728 was received broken inside the ziploc bag. Client was notified and instructed GEL to proceed with analysis. Sample ID 059926-006 from ARCOC-605728 was received out of holding for Hexavalent

GENERAL ENGINEERING LABORATORIES

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 • Fax (843) 766-1178

Chromium analysis. This was the aqueous equipment blank for Hexavalent Chromium. Client was contacted regarding the issue, and an NCR was generated.

The samples were screened according to GEL Standard Operating Procedures (SOP) EPI SOP S-007 rev. 2 "The Receiving of Radioactive Samples." The samples were stored properly according to SW-846 procedures and GEL SOP.

The samples were received and collected as listed in the table below:

ARCOC	SDG#	#of samples	Collection Date	Date Rec'd by Lab
605728	67794A	24	09/19/02,09/24/02,	09/26/02
	l		09/25/02	
605729	67794B	9	09/24/02	09/26/02

The laboratory received the following samples:

<u>Laboratory ID</u> ARCOC-605728:	<u>Description</u>
67794001	059903-001
67794002	059904-001
67794003	059905-001
6779 400 4	059906-001
677 94005	059907-001
67794006	059908-001
67794007	059909-001
67794012	059903-002
67794013	059904-002
6779 40 14	059905-002
6779 40 15	059906-002
677 940 16	059907-002
67794017	059908-002
6779 800 1	059911-001
67798002	059926-001
67798003	059927-001
67798005	059926-002
67798 00 6	059926-003
67798007	059926-004
67798008	059926-005
67798 009	059926-006
67798010	059926-007
67798011	059926-008

GENERAL ENGINEERING LABORATORIES

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407

(843) 556-8171 • Fax (843) 766-1178

ARCOC-605729:

67794008	059912-001
67794009	059913-001
67794010	059914-001
67794011	059915-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
67798004	059916-001

Case Narrative

Sample analyses were conducted using methodology as outlined in General Engineering Laboratories (GEL) Standard Operating Procedures. Any technical or administrative problems during analysis, data review, and reduction are contained in the analytical case narratives in the enclosed data package.

Internal Chain of Custody:

Custody was maintained for the samples.

Data Package:

The enclosed data package contains the following sections: Case Narrative, Chain of Custody, Cooler Receipt Checklist, Qualifier Flag and Data Package Definitions, Laboratory Certifications, Volatiles Data, Volatiles QC Summary, Semivolatiles Data, Semivolatiles QC Summary, PCB Data, PCB QC Summary, Explosives Data, Explosives QC Summary, Metals Data, Metals QC Summary, General Chemistry Data, General Chemistry QC Summary, Radiochemistry Data, Radiochemistry QC Summary, and Level C Data Package.

This data package, to the best of my knowledge, is in compliance with technical and administrative requirements.

Project Manager

GENERAL ENGINEERING LABORATORIES
P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407
(843) 556-8171 • Fax (843) 766-1178

GC/MS VOLATILES SAMPLE DATA

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG# 67794

Method/Analysis Information

Procedure:

Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8260A

Prep Method:

SW846 5030A

Analytical Batch Number:

204483

Prep Batch Number:

204482

Sample Analysis

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
67794001	059903-001
67794002	059904-001
67794003	059905-001
67794004	059906-001
67794005	059907-001
67794006	059908-001
67794007	059909-001
67794008	059912-001
67794009	059913-001
67794010	059914-001
67794011	059915-001
1200307822	VBLK01 (Blank)

SDG# 67794 -VOA

Page 1 of 4

1200307828	VBLK01LCS (Laboratory Control Sample)
1200307823	VBLK02 (Blank)
1200307829	VBLK02LCS (Laboratory Control Sample)
1200308582	VBLK03 (Blank)
1200308583	VBLK03LCS (Laboratory Control Sample)
1200307825	059903-001MS (Matrix Spike)
1200307827	059903-001MSD (Matrix Snike Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-026 REV.8.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Quality Control (OC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blanks.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control samples were within the acceptance limits.

QC Sample Designation

The following sample was designated for matrix spike analysis: 67794001 059903-001

MS Recovery Statement

All the required matrix spike recoveries were within the acceptance limits.

MSD Recovery Statement

All the required matrix spike duplicate recoveries were within the acceptance limits.

SDG# 67794 -VOA

Page 2 of 4

MS/MSD RPD Statement

The relative percent differences (RPD) between the matrix spike and matrix spike duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

Nonconformance (NCR) Documentation

A nonconformance report was not required for this sample delivery group/work order.

Manual Integrations

Data files associated with the initial calibration, continuing calibration check, and samples did not require manual integrations.

Additional Comments

The following package was generated using an electronic data processing program referred to as "virtual packaging". In an effort to increase quality and efficiency, the laboratory is developing systems to eventually generate all data packages electronically. The following change from "traditional" packages should be noted:

Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are on the original raw data. These hard copies are temporary stored in the laboratory. An electronic signature page inserted after the case narrative of each electronic package will indicate the analyst, reviewer, and report specialist names associated with the generation of the data package. The data validator will always sign and date the case narrative. Data that are not generated electronically, and such as hand written pages, will be scanned and inserted into the electronic package.

System Configuration

The laboratory utilizes the following GC/MS configurations:

Chromatographic Columns

Chromatographic separation of volatile components is accomplished through analysis on one of the following columns:

SDG# 67794 -VOA

Page 3 of 4

Column ID

Column Description

J&W1

DB-624, 60m x 0.25mm, 1.4um

J&W2

DB-624, 75m x 0.53mm, 3.0um

Instrument Configuration

Instrument systems are reference in the raw data and individual form headers by the Instrument ID designations below:

Instrument ID	System Configuration	Chromatographic Column	P & T Trap
VOA1	HP6890/HP5973	J&WI	Тгар С
VOA2	HP6890/HP5973	J&W1	Тгар С
VOA4	HP5890/HP5972	J&W1	Trap K
VOA5	HP5890/HP5972	J&W1	Тгар С
VOA7	HP5890/HP5972	J&W2	Trap K
VOA8	HP6890/HP5973	J&W1	Ттар К
VOA9	HP6890/HP5973	J&W1	Тгар С

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

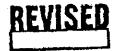
	$0.0 \mathrm{m}$	1 . 1			
Reviewer.	Charles	1 1 Nome	Date:	10-21-02	
**********		<u> </u>			

SDG# 67794 -VOA

Page 4 of 4

Organics Package Creation

This package has been originally reviewed by Richard Bomar (9/30/2002 12:13)
This package has been peer reviewed by Crystal Stacey (10/11/2002 15:48)
This package has been packaged by LySandra Gathers (10/21/2002 10:00)
This roadmap has been edited by
Package Requirements


Raw Data	TICS	Standards Traceability
N ·	N	

Samples

exclude	datafile	sampleno	client-id	injdate	injtime	sublist	comments
	/chem/VOA1.i/092702v1.b/1c508.d	67794001	059903-001	27-SEP-2002	11:50	67794.sub	
	/chem/VOA1.i/092702v1.b/1c516.d	67794009	059913-001	27-SEP-2002	15:52	67794,sub	
	/chem/VOA1;i/092702v1,b/1c517.d	67794010	059914-001	27-SEP-2002	16:22	67794.sub	
	/chem/VOA1.i/092702v1,b/1c518.d	67794011	059915-001	27-SEP-2002	16:52	67794.sub	
	/chcm/VOA1.i/092702v1.b/1c509.d	67794002	059904-001	27-SEP-2002	12:19	67794.sub	
	/chem/VOA1.i/092702v1.b/1c510.d	67794003	059905-001	27-SEP-2002	12:50	67794.sub	
	/chem/VOA1:i/092702v1.b/1c511.d	67794004	059906-001	27-SEP-2002	13:20	67794.sub	
0	/chem/VOA1.i/092702v1.b/1c512.d	67794005	059907-001	27-SEP-2002	13:51	67794.sub	
	/chem/VOA1.i/092702v1,b/1c513.d	67794006	059908-001	27-SEP-2002	14:21	67794,sub	not used
	/chem/VOA1.i/093002v1.b/1d106.d	67794006	059908-001	30-SEP-2002	10:12	67794.sub	
o o	/chem/VOA1.i/092702v1.h/1c514.d	67794007	059909-001	27-SEP-2002	14:52	67794.suh	
	/chém/VOA1.i/092702v1.b/1c515.d	67794008	059912-001	27-SEP-2002	15:22	67794.sub	

QC Samples

datafile	sampleno	client-id	injdale	injtime	aublist	comments
/chem/VOA1.i/092702v1.b/1c542.d	1200307825	059903-001MS	28-SEP-2002	03:39	67794.sub	
/chem/VOA1.i/092702v1.b/1c543.d	1200307827	059903-001MSD	28-SEP-2002	04:05	67794.sub	
/chem/VOA1.i/092702v1.b/1c502lcsB.d	1200307828	VBLK01LCS	27-SEP-2002	08:11	67794.sub	
/chem/VOA1.i/092702v1.b/1c525lcsB.d	1200307829	VBLK02LCS	27-SEP-2002	20:15	67794.sub	
/chem/VOA1.i/093002v1.b/1d102lcsB.d	1200308583	VBLK03LCS	30-SEP-2002	08:08	67794_sub	
/chem/VOA1.i/092702v1.b/1c505B.d	1200307822	VBLK01	27-SEP-2002	09:45	67794.sub	
/chem/VOA1.i/092702v1.b/1c529B.d	1200307823	VBLK02	27-SEP-2002	22:00	67794.sub	
/chem/VOA1,i/093002v1.b/1d105B.d	1200308582	VBLK03	30-SEP-2002	09:41	67794.sub	
	/chem/VOA1.i/092702v1.b/1c542.d /chem/VOA1.i/092702v1.b/1c543.d /chem/VOA1.i/092702v1.b/1c502lcsB.d /chem/VOA1.i/092702v1.b/1c525lcsB.d /chem/VOA1.i/093002v1.b/1d102lcsB.d /chem/VOA1.i/092702v1.b/1c505B.d /chem/VOA1.i/092702v1.b/1c529B.d	/chem/VOA1.i/092702v1.b/1c542.d 1200307825 /chem/VOA1.i/092702v1.b/1c543.d 1200307827 /chem/VOA1.i/092702v1.b/1c502lcsB.d 1200307828 /chem/VOA1.i/092702v1.b/1c525lcsB.d 1200307829 /chem/VOA1.i/093002v1.b/1d102lcsB.d 1200307823 /chem/VOA1.i/092702v1.b/1c505B.d 1200307822 /chem/VOA1.i/092702v1.b/1c529B.d 1200307823	/chem/VOA1.i/092702v1.b/1c542.d 1200307825 059903-001MS /chem/VOA1.i/092702v1.b/1c543.d 1200307827 059903-001MSD /chem/VOA1.i/092702v1.b/1c502lcsB.d 1200307828 VBLK01LCS /chem/VOA1.i/092702v1.b/1c525lcsB.d 1200307829 VBLK02LCS /chem/VOA1.i/093002v1.b/1d102lcsB.d 1200307829 VBLK03LCS /chem/VOA1.i/092702v1.b/1c505B.d 1200307822 VBLK01 /chem/VOA1.i/092702v1.b/1c529B.d 1200307823 VBLK02	/chem/VOA1.i/092702v1.b/1c542.d 1200307825 059903-001MS 28-SEP-2002 /chem/VOA1.i/092702v1.b/1c543.d 1200307827 059903-001MSD 28-SEP-2002 /chem/VOA1.i/092702v1.b/1c502lcsB.d 1200307828 VBLK01LCS 27-SEP-2002 /chem/VOA1.i/092702v1.b/1c525lcsB.d 1200307829 VBLK02LCS 27-SEP-2002 /chem/VOA1.i/093002v1.b/1d102lcsB.d 1200308583 VBLK03LCS 30-SEP-2002 /chem/VOA1.i/092702v1.b/1c505B.d 1200307822 VBLK01 27-SEP-2002 /chem/VOA1.i/092702v1.b/1c529B.d 1200307823 VBLK02 27-SEP-2002	/chem/VOA1.i/092702v1.b/1c542.d 1200307825 059903-001MS 28-SEP-2002 03:39 /chem/VOA1.i/092702v1.b/1c543.d 1200307827 059903-001MSD 28-SEP-2002 04:05 /chem/VOA1.i/092702v1.b/1c502lcsB.d 1200307828 VBLK01LCS 27-SEP-2002 08:11 /chem/VOA1.i/092702v1.b/1c525lcsB.d 1200307829 VBLK02LCS 27-SEP-2002 20:15 /chem/VOA1.i/093002v1.b/1d102lcsB.d 1200307829 VBLK03LCS 30-SEP-2002 08:08 /chem/VOA1.i/092702v1.b/1c505B.d 1200307822 VBLK01 27-SEP-2002 09:45 /chem/VOA1.i/092702v1.b/1c529B.d 1200307823 VBLK02 27-SEP-2002 22:00	/chem/VOA1.i/092702v1.b/1c542.d 1200307825 059903-001MS 28-SEP-2002 03:39 67794.sub /chem/VOA1.i/092702v1.b/1c543.d 1200307827 059903-001MSD 28-SEP-2002 04:05 67794.sub /chem/VOA1.i/092702v1.b/1c502lcsB.d 1200307828 VBLK01LCS 27-SEP-2002 08:11 67794.sub /chem/VOA1.i/092702v1.b/1c525lcsB.d 1200307829 VBLK02LCS 27-SEP-2002 20:15 67794.sub /chem/VOA1.i/093002v1.b/1d102lcsB.d 1200307829 VBLK03LCS 30-SEP-2002 08:08 67794.sub /chem/VOA1.i/092702v1.b/1c505B.d 1200307822 VBLK01 27-SEP-2002 09:45 67794.sub /chem/VOA1.i/092702v1.b/1c529B.d 1200307823 VBLK02 27-SEP-2002 22:00 67794.sub

GC/MS Volatile Organics Sandia National Labs (SNLS) SDG# 67794-1

Method/Analysis Information

Procedure:

Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer

Analytical Method:

SW846 8260B

Prep Method:

SW846 5030B

Analytical Batch Number:

204910

Sample Analysia

The following client and quality control samples were analyzed to complete this sample delivery group/work order using the methods referenced in the Analysis Information section:

Sample ID	Client ID
67798001	059911-001
67798002	059926-001
67798003	059927-001
67798004	059916-001
1200308688	VBLK01 (Blank)
1200308691	VBLK01LCS (Laboratory Control Sample)
1200308692	VBLK01LCSD (Laboratory Control Sample Duplicate)

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-OA-E-038 REV.6.

Calibration Information

Due to software limitations, all the data files comprising the initial calibration curve may not be listed on the initial calibration summary form. All calibration files are listed in the calibration history report in the "Standard Data" section.

SDG#67794-1 -VOA

Page 1 of 4

Initial Calibration

All the initial calibration requirements were met.

CCV Requirements

All the continuing calibration verification (CCV) requirements were met.

Quality Control (QC) Information

Surrogate Recoveries

Surrogate recoveries, in all samples and quality control samples, were within the acceptance limits.

Blank Acceptance

Target analytes were not detected above the reporting limit in the blank.

QC Sample Designation

Since the samples in this sample delivery group/work order were field QC samples (i.e.: trip hiank, equipment blank, etc.), the analysis of a matrix spike (MS) and a matrix spike duplicate (MSD) was not required. Instead, a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) were analyzed for QC purposes.

LCS Recovery Statement

All the required analyte recoveries in the laboratory control sample were within the acceptance limits.

LCSD Recovery Statement

All the required analyte recoveries in the laboratory control sample duplicate were within the acceptance limits.

LCS/LCSD RPD Statement

The relative percent differences (RPD) between the laboratory control sample and laboratory control sample duplicate recoveries were within the acceptance limits.

Internal Standard (ISTD) Acceptance

The internal standard responses, in all samples and quality control samples, met the required acceptance criteria.

Technical Information

Holding Time Specifications

All the samples were prepared and/or analyzed within the required holding time period.

Sample Preservation and Integrity

All samples met the sample preservation and integrity requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this sample delivery group/work order did not require dilutions.

Sample Re-prep/Re-analysis

Re-analyses were not required for samples in this sample group/work order.

Miscellaneous Information

SDG#67794-1 -VOA

Page 2 of 4

GC/MS SEMI- VOLATILES QUALITY CONTROL SUMMARY

Report Date: October 21, 2002 Page 1 of 4

Anlst

Date Time

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Worksrder: 67794		•		• .		
Рагипате	NOM	Sample Qual	QC	Units RPD	% REC%	Range
Semi-Volatiles-GC/MS Federal Batch 204423					:	
QC1200307671 LCS 1,2,4-Trichlorobenzene	1670		1190	ug/kg	72	(27%-91%

Semi-Volatiles-GC/MS Federal							•
Batch 204423						:	
OC1200307671 LCS							
1,2,4-Trichlorobenzene	1670		1190	ng/kg	72	(27%-91%) KGB1	10/02/02 21:20
1,4-Dichlorobenzene	1670		1080	ug/kg	65	(25%-85%)	
2,4,5-Trichlorophenol	3330	•	2790	ug/kg	84	(42%-96%)	
2,4,6-Trichlorophenol	3330		2 57 0	ug/kg	. 77	(32%-91%)	
2,4-Dinitrotoluene	1670		1370	ug/kg	82	(50%-109%)	
2-Chlorophenol	3330		2470	ug/kg	74	(31%-85%)	
4-Chloro-3-methylphenol	3330		2880	ug/kg	86	(3 4% -97%)	
4-Nürophenol	3330		2190	ng/kg	. 66	(22% -128%)	
Acenaphthene	1670	•	1290	ug/kg	78	(39%-98%)	
Hexachlorobenzene	1670		1420	ug/kg	85	(41%-105%)	
Hexachlorobutadiene	1670		1190	ug/kg	72	(21%-94%)	•
Hexachloroethane	1670		1190	ug/kg	72	(25%-86%)	
N-Nitrosodipropylamine	1670		1200	ug/kg	72	(34 %-90%)	
Nitrobenzene	1670		1150	ug/kg	69	(30%-84%)	
Pentachlorophenol	3330	1.	1970	ug/kg	59	(27%-109%)	
Phenol	3330		2290	ug/kg	- 69	(31%-83%)	
Pyrene	1670		0811	ug/kg	68	(37%-110%)	•
m,p-Cresols	3330		2460	ug/kg	74	(40%-83%)	•
o-Cresol	3330		2240	ug/kg	67	(34%-86%)	
**2,4,6-Tribromophenol	3330		2750	ug/kg	83	(23%-111%)	
**2-Fluorobiphenyl	1670		1100	ug/kg	66	(21%-104%)	•
**2-Fluorophenol	3330		2420	ug/kg	73	(22%-93%)	
**Nitrobenzene-d5	1670		1090	ug/kg	66	(24%-97%)	
**Phenol-d5	3330		2370	ug/kg ·	71	(22%-99%)	
**p-Terphonyl-d14	1670		1160	ug/kg	. 70	(30%-133%)	
QC1200307670 MB							
1,2,4-Trichlombenzene		U	ND	ug/kg			10/02/02 20:59
1,2-Dichlorobenzene		U	ND	ug/kg		1	
1,3-Dichlorobenzene	,	U	ND	ug/kg			
1,4-Dichlorobenzene		U	ND	ug/kg			
2,4,5-Trichforophenol	•	U	ND	ug/kg			
2,4,6-Trichlorophenol		บั	ND	ug/kg			
2,4-Dichlorophenol		· U	ND	ug/kg			
2,4-Dimethylphenol		Ū	ND	ug/kg		•	
2,4-Dinitrophenol		บ	ND	ug/kg			
2,4-Dinitrotoluene		์ บ	ND	ug/kg			
2.6-Dinitrotolucne		U	ND	ug/kg			
2-Chloronaphthalene		· U	ND	ug/kg			
2-Chlorophenol		Ū	ND	υϩ/κϩ	•		
2-Methyl-4,6-dinitrophenol		U	ND	ug/kg		•	
2-Methylnaphthalene		U	ND	ug/kg			
2-Nitrophenol		U	, ND	ug/kg			
• • • • • • • • • • • • • • • • • • • •		_	_				

STO Accordance (STO)	QOD manney								Page 2 of 4		
Workorder: 67794										<u> </u>	
Parmame	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Ankt	Date	Time
Semi-Volutiles-GC/MS Federal											
Batch 204423											
3,3'-Dichlorobenzidine			Ų	ND	ug/kg						
4-Bromophenylphenylether			Ū	ND	ug/kg						
4-Chloro-3-methylphenul			U	ND	ug/kg						
4-Chloroanlline		,	Ū	ND	ug/kg						
4-Chlorophenylphenylether			U	ND	· ug/kg						
4-Nitrophenol			Ū	ND	ug/kg						
Acenaphthene			Ü	ND	ug/kg						
Acenaphthylene			บ	ND	ug/kg						
Anthracene			Ŭ	ND	ug/kg						
Benzo(a)anthracene			Ŭ	ND	ug/kg						
Benzo(a)pyrene			Ŭ	ND	ug/kg						
Benzo(b)fluoranthene			Ū	ND	ug/kg						
Benzo(ghi)perylene			Ŭ	ND	ug/kg						
Benzo(k)fluoranthene			ับ -	ND	ug/kg						
Butylbenzylphthalate			Ü	ND	ug/kg						
Carbazole			บ	ND	ug/kg						
Chrysene			บ	ND	nā∖rē rēv≠2						
Oi-n-butylphthalate			บ	ND	ug/kg						
			ប	ND	ug/kg						
Di-n-octylphthalate Dibenzo(a,h)anthracene			Ü	ND							
			Ü	ND	ng/kg						
Dibenzofuran			บ	ND	nā\kā nā\kā						
Diethylphthalate			บ	ND	ng/kg ng/kg						
Dimethylphthalate			u U	· ND							
Diphenylamine			-		ug/kg						
Fluoranthene			ប	ND	ug/kg						
Fluorene			ប	ND	ug/kg						
Hexachlorobenzene	-		ប	ND	ug/kg						
Hexachlorobutadiene			ប	ND	ug/kg						
Hexachlorocyclopentadiene			ប	ND	n&\ra						
Hexachloroethane			U	ND	ug/kg	•					
Indeno(1,2,3-cd)pyrene			ប	ND	пБ\к5						
Isophorone		-	Ū	ND	n&\r8						
N-Nitrosodipropylamine			ប	ND	n&\r8					•	
Naphthalene			U	ND	ug/kg	•					
Nitrobenzene			ប	ND	ug/kg	-					
Pentachlorophenol	•		\mathbf{U}^{\cdot}	ND	սջ/kչ						
Phenanthrene			ប	ND	ug/kg					•	
Phenal			Ū	ND	ug/kg	3					
Ругеле			ប	ND	ug/kg	,					
bis(2-Chloroethoxy)methane	•		ប	ND	ug/kg	?					
bls(2-Chlorocthyl) ether	-		U	, ND	ug/kį	5					
bis(2-Chloroisopropyl)ether			ับ	ND	ug/kį	3					
bis(2-Ethylhexyl)phthalate			J	84.1	ug/kg		•				
m.p-Cresols			ប	ND	ug/kj						
m-Nitroamiline			ប	ND	ng/k						
o-Cresol			Ū	ND	ug/k						
o-Nitroaniline			บั	ND	ug/k						
p-Nitroaniline			บั	ND	ug/k						

								Dags 2 of 4				
Workorder: 67794				۱۰ میں مصدرتات اورین					Page 3 of 4			
Parroname	NOM		Sample	Qual	QC	Units	RPD%	REÇ%	Range Anist	Date Time		
Semi-Volatiles-GC/MS Federal						•						
Butch 204423									•			
*2,4,6-Tribromophenol	3330				2010	ug/kg		60	(23%-111%)			
*2-Fluorobiphenyl	1670				1140	ug/kg		69	(21%-104%)			
*2-Fluorophenol	3330				2520	ug/kg		76	(22%-93%)			
*Nitrobenzene-d5	1670				1180	ug/kg		71	(24%-97%)			
*Phenoi-d5	3330				2310	ug/kg		69	(22%-99%)			
*p-Terphenyl-d14	1670				1210	ug/kg		. 73	(30%-133%)			
QC1200307672 67794012 MS												
1,2,4-Trichlorobenzene	1670	U ·	ND		1220	ug/kg		73	(15%-112%)	10/02/02 22:0		
1,4-Dichlorobenzene	1670	U	ND		1180	ug/kg		71	(19%-89%)			
2,4,5-Trichlorophenol	3330	U	ND		2730	ug/kg		82	•			
2,4,6-Trichlorophenol	3330	U	ND		2440	ug/kg		73				
2,4-Dinitrotoluene	1670	U	ND		1270	ug/kg		76	(32%-117%)			
2-Chlorophenol	3330	U	ND		2590	ug/kg		78	(13%-101%)			
4-Chloro-3-methylphenol	3330	U	ND		2790	ug/kg		84	(23%-114%)			
4-Nitrophenol	3330	U	ND		2260	ug/kg		68	(20%-126%)			
Acenaphthene	1670	U	ND		1240	ug/kg		74	(15%-114%)			
Hexachlorobenzene	1670	U	ND		1310	ug/kg		78				
Hexachlorobinadiene	1670	υ	ND		1180	ug/kg		71	•			
Hexachloroethane	1670	U	ND		1220	ug/kg		74				
N-Nitrosodipropylamine	1670	υ	ND		1250	ug/kg		. 75	(18%-106%)			
Nitrobenzene	1670	. U	ND		1190	ug/kg		71	•			
Pentachlorophenol	3330	U	ND		1600	ug/kg		48	(34%-110%)			
Phenol	3330	U	ND		2340	ug/kg	;	70	(17%-104%)			
Ругеле	1670		132		973	ນຣົ\KB		50	(26%-130%)			
m,p-Cresols	3330	Ų	ND		2570	ug/kg		77				
o-Cresol	3330	U:	ND		2330	ug/kg	;	70				
*2,4,6-Tribromophenol	3330				2720	ug/kg		82	(23%-111%)			
*2-Fluorobiphenyl	1670	•			1140	սջ/kջ	}	69	(21%-104%)			
*2-Fluorophenol	3330				2650	ug/kg		79	(22%-93%)			
*Nitrobenzene-d5	1670				1160	ug/kg	;	70	(24%-97%)			
*Phenol-d5	3330				2540	ug/kg		76	(22%-99%)	•		
**p-Terphenyl-d14	1670		•		1010	ug/kg	,	61	(30%-133%)			
QC1200307673 67794012 MSD						_						
i,2,4-Trichiorobenzene	1670	U	ND	i .	1240	ug/kg	, 1	74	(0%-31%)	10/02/02 22:2		
1,4-Dichlorohenzene	1670	U	ND	,	1170	ug/kg	; 1	70	(0%-36%)			
2,4,5-Trichlorophenol	3330	U	NE)	2970	ug/kg	, 9	89				
2.4.6-Trichlorophenol	3330	U	ND	٢	2620	ug/kg	, 7	79	•			
2,4-Dinitrotoluene	1670	U	ND	þ	1380	ug/kg	, 9	83	(0%-37%)			
2-Chlorophenol	3330	U	ND	I	2540	ug/kg	, 2	. 76	(0%-34%)			
4-Chloro-3-methylphenol	3330	U	ND)	3130	ug/kj	; 11	94	(0%-34%)			
4-Nitrophenol	3330	U	NE	•	2060	ug/kg	10	62	(0%-35%)			
Acenaphthene	1670	U	NE	•	1320	ug/kg		79	(0%-33%)			
Hexachlorobenzene	1670	U	NE		1490	ug/kg		89				
Hexachlorobutadiene	1670	U	NE		1230	ug/kj	-	74				
Hexachloroethane	1670	Ū	NE		1170	ug/kj		70.	•	•		
N-Nitrosodipropylamine	1670	Ü	NI		1270	ug/kj	•	76	(0%-29%)			
Nitrobenzene	1670	U	NI.		1220	ш g/k j		73				
Pentachlorophenol	3330	บ	NI		1750	ug/k	_	52	(0%-40%)			

Workorder: 67794								Page 4	of 4	
Parmname	NOM		Sampte Qual	OC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-GC/MS Federal Batch 204423										
Phenol	3330	U	ND	2400	ug/kg	3	72	(0%-37%)		
Pyrene	1670		132	1140	ug/kg	18	61	(0%-39%)		
m.o-Cresols	3330	U	· ND	2580	ug/kg	1	77			
o-Cresol	3330	U	ND	2410	ug/kg	4	72			
**2.4.6-Tribromophenol	3330			2590	ug/kg		78	(23%-111%)		
**2-Fluorobiphenyl	1670			1160	ug/kg		70	(21%-104%)		
*+2-Fluorophenol	3330			2460	ug/kg		74	(22%-93%)		
**Nitrobenzenc-d5	1670			1150	ug/kg		69	(24%-97%)		
**Phenol-d5	3330			2440	ug/kg		73	(22%-99%)		
**p-Terphenyl-d14	1670			1150	ug/kg		69	(30%-133%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where C
- ** Indicatos analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary cutumn is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of #-the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Bate: October 21, 2002 Page 1 of 4

Clien1:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder:

67798

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal										
Batch 204661	4	_								
QC1200308141 LCS										
Pyridine	50.0			19.4	ug/L		39		KGBI	10/01/02 22:14
1,2,4-Trichlorobenzene	50.0			36.3	. ug/L		73	(53%-104%)		
1,4-Dichlorobenzeue	50.0			35.4	ug/L		71.	(47%-102%)		
2,4,5-Trichlorophenol	. 100			95.3	ug/L		95	(67%-106%)		*.
2,4,6-Trichlorophenol	100			92.8	α g/ L		93	(45%-111%)		
2,4-Dinitrotoiuene	50.0			42.7	ug/L		. 86	(55%-121%)		
2-Chlorophenol	100			71.7	ug/L		72	(47%-87%)		
4-Chloro-3-methylphonol	100			88.6	ug/L		89	(51%-100%)		
4-Nitrophenol	100			23.4	ug/L		23	(10%-55%)		
Acenaphthene	50.0			44.2	ug/L		88	(63%-111%)		
Hexachlorobenzene	50.0			47.1	ug/L		94	(67%-114%)		
Hexachlorobutadiene	50.0			35.1	ug/L		70	(44%-106%)		
Hexachloroethane	50.0		•	35.6	u g/L		71	(47%-97%)		
N-Nitrosodipropylamine	50.0			41.2	ug/L		83	(52%-118%)		
Nitrobenzene	50.0			35.1	ug/L		70	(49%-110%)		
	100			62.2	ug/L		62	(31%-110%)		•
Pentachlorophenol	100			25.0	ug/L		25	(16%-44%)		
Phonoi	50.0			36.4	ո ն /_T		73	(68%-117%)	•	
Pyrens	100			57.8	սբ/L	•	58	(43%-100%)		
m.p-Cresols	100			60.9	ug/L		61	(47%-87%)		
o-Cresol	100							•		
*2,4,6-Tribromophenol				95.5	ug/L		96	(27%-126%)		
*2-Fluorobipbezyl	50.0			40.3	ug/L		81	(32%-109%)		
*2-Fluorophenol	100			40.3	ug/L		40	(13%-73%)		
*Nitrobenzene-d5	50.0			34.3	ug/L		69	(33%-107%)		
*Phenol-d5	100			26.5	nΦĮΓ		27	(14%-66%)		
*p-Terphenyl-d14	50.0			37.9	ug/L		76	(36%-130%)		
QC1200308140 MB										100100 110
1,2,4-Trichlorobenzene			Ŭ	ND	ug/L					10/01/02 14:57
1,2-Dichlorobenzene		•	U	ND	υg/L					•
1,3-Dichlorobenzene			ប	ND	ug/L					
1,4-Dichlorobenzene			U	ND	ug/L					
2,4,5-Trichlorophenol			U	ND	ug/L					•
2,4,6-Trichlorophenol			U	ND	ug/L					
2,4-Dichlorophenol	-		U	ND	ng/L					•
2,4-Dimethylphenol			U	ND	นฐ/L					
2,4-Dinitrophenol			U	ND	ug/L					
2,4-Dinitrotoluene			Ü	ND	ug/L	•				
2.6-Dinluotoluene			U	ND	ng/L					
2-Chloronaphthalene			บ	ND	ag/L					•
2-Chlorophenol			บ	ND	ug/L					
			_							
2-Methyl-4,6-dinitrophenol	•		U	ND	ug/L					

QC Summary

		<u> </u>	INIDATED ,							
Workorder: 67798							Page 2	of 4		
Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Semi-Volatiles-GC/MS Federal										
Batch 204661									-	
2-Nitrophenol		υ	ND	ug/L						
3,3'-Dichlorobenzidine		U .	ND	ug/L						
4-Bromophenylphenylether		U	ND	ug/L						
4-Chloro-3-methylphenol		Ü	ND	ug/L		•				
4-Chloroaniline		U	ND	ug/L						
4-Chlorophenylphenylether		บ	ND	ug/L						
4-Nitrophenol		บ	ND	ug/L						
Acenaphthene		บ	ND.	ug/L					•	
Acenaphthylene		U,	ND	ug/L		:				
Anthracene		, U	ND	ug/L						
Benzo(a)anthracene		. U	ND	ug/L			•			
Benzo(a)pyrene		U	ND	ug/L						
Benzo(b)fluorantnene		U.	ND	ug/L						
Benzo(ghi)perylene		U	ND	ug/L		• .				
Benzo(k)fluoranthene		U	ND	ug/L						
Butylbenzylphthalate		U	ND	# 8 /₽						
Carbazole		U	ND	ug/L						
Chrysene		U	ND	ug/L						
Di-n-buryiphthalate		U	ND	п g /L						
Di-n-octylphthalate		<u>u</u>	ND	ug/L						
Dibenzo(a,h)anthracene		U	ND	ug/L						
Dibenzofuran		Ü	ND.	π g /L		•	•			
Diethylphthalate		υ	ND	ug/L						
Dimethylphthalate	•	U.	ND	ug/L						
Diphenylamine		บ	ND	ng/L						
Fluoranthene		U	ND	ug/L						
Fluorene		U	ND	ng/L		:				
Hexachlorobenzene		U	ND	ug/L						
Hexachlorobutadiene		U	ND	ug/L						•
Hexachlorocyclopentadiene		บ	ND	ug/I						
Hexachloroethane		U	ND	ng/I			•			
Indeno(1,2,3-cd)pyrene		្ឋ	ND	ug/L						
Isophorone		· U	ND	ug/L						
N-Nitrosodipropylamine		U	ND	ug/L						
Naphthalene		U	ND	ug/L		•				
Nitrobenzene		U	ND	ug/I						
Peniachiorophenol	•	Ŭ,	ND	ug/L						
Phenaothrene		บ	. ND	ug/L						
Phenol		<u>บ</u>	ND	ug/I	•					
Pyrene	•	U	ND .	ug/L			•			
bis(2-Chloroethoxy)methanc		U	ND	ng/l		• .				
bis(2-Chloroethyl) ether	•	U	ND	ng/I						
bis(2-Chloroisopropyl)ether		ឬ	ND	ug/I						
bis(2-Ethylhexyl)phthalate		บ	ND	ug/l						
m,p-Cresols		U	ND	ug/l						
m-Nitroaniline		U	ND	ug/I						
o-Cresol		บ	ND	ug/I						
o-Nitroaniline		U	ND	ug/l	•					

Workorder: 67798			•				Page 3 of 4			
Parmname	NOM		Sample Qual	QC_	Units	RPD%	REC%	Range A	nkl Date Time	
Semi-Volatiles-GC/MS Federal									•	
Batch 204661				•						
p-Nitroanitine			U	ND	ug/L			•		
*2,4,6-Tribromophenol	100		₹	54.8	ug/L		55	(27%-126%)		
*2-Fluorohiphenyl	50.0			34.3	ug/L		69	(32%-109%)		
*2-Pluorophenol	100			36.3	uz/L		36	(13%-73%)		
*Nitrobenzene-d5	50.0			32.9	ug/L		- 66	(33%-107%)		
*Phenol-d5	100			21.1	ug/L		21	(14%-66%)		
*p-Terphenyl-d14	50.0			33.7	ug/L		67	(36%-130%)		
QC1200308146 67798005 MS					_				,	
Pyridine	100		•	0.00	ug/L				10/01/02 17:0	
1,2,4-Trichlorobenzene	100	U	ND	73.9	ug/L		74	(44%-102%)		
1.4-Dichlorobenzene	100	U	ND	68.1	ug/L		68	(48%-95%)	· . *	
2,4,5-Trichlorophenol	200	U	ND	177	ug/L		88			
2,4,6-Trichlorophenol	200	Ū	ND	174	ս g/L		87			
2,4-Dinitrotoluene	100	U	ND	77.3	ug/L		77	(48%-120%)		
2-Chlorophenol	200	U	ND	145	ug/L		72	(32%-98%)		
4-Chloro-3-methy/phenol	200	U	ND .	167	ug/L		84	(40%-107%)		
4-Nitrophenol	200	U	ND	63.5	ug/L		32	(16%-78%)		
Acenaphthene	100	U	ND	84.3	ug/L		84	(32%-127%)		
Hexachlorobenzene	100	U	ND	103	ug/L		103			
Hexachlorobutadiene	100	Ū	ND	70.3	ug/L		70	•		
Hexachloroethane	100	Ü	ND	72.4	ug/L		72			
N-Nitrosodipropylamine	100	Ū	ND	77.6	ug/L		78	(44%-119%)		
Nitrobenzene	100	U	ND	68.7	ug/L		69			
Pentachlorophenol	200	U	ND	124	սջ/Լ,		62	(44%-104%)		
Phenol	200	Ū	ND	77.6	ug/L		39	(15%-70%)	*	
Pyrene	100	Ŭ	ND	81.0	ug/L		81	(29%-142%)		
m.p-Cresols	200	Ü	ND	127	ug/L		64	•	4	
o-Cresol	200	Ŭ	ND	129	ug/L		65		•	
**2,4,6-Tribromopheool	200	_	55.6	162	ա ջ/ Լ,		81	(27%-126%)	•	
**2-Fluorobiphenyl	100		29.6	76.B	ug/L	٠	77	(32%-109%)		
*2-Fluorophenol	200		28.7	107	ug/L		53	(13%-73%)	\$	
**Nitrobenzene-d5	100		28.6	64.5	ug/L		65	(33%-107%)		
**Phenol-d5	200		16.9	BQ.9	ug/L		40	(14%-66%)		
**p-Terphenyl-d14	100		36.0	80.4	ug/L		80	(36%-130%)		
QC1200308147 67798005 MSD	-00		3014		-6-			(2212 2227		
Pyridine	100			0.00	ug/L				10/01/02 17:2	
1,2,4-Trichlorobenzene	100	υ	ND	78.8	ug/L	6	79	(0%-20%)		
1,4-Dichlorobenzene	100	U	ND	73.3	ug/L	7	73	(0%-20%)		
2,4,5-Trichlorophenol	200	Ų	ND	204	ug/L	15	102	,		
2,4,6-Trichlorophenol	200	U	ND	189	ug/L.		94			
2,4-Dinitrotoluene	100	Ū	ND	84.2	ug/L	9	84	(0%-16%)	•	
2-Chlorophenol	200	Ũ	ND	153	սաջ/Լ.		76	(0%-25%)		
4-Chloro-3-methylphenol	200	Ū	ND	181	ng/L		90	(0%-25%)		
4-Nitrophenol	200	Ū	ND	79.1	ug/L,		40	(0%-25%)		
Acenaphthene	100	Ū	ND	93.5	ug/L,		94	(0%-24%)		
Hexachlorobenzene	100	Ŭ	ND	102	ug/L		102	(
Hexachlorobutadiene	100	Ū	ND	75.9	ug/L		76			
Hexachloroethane	100	Ŭ	ND	76.6	ug/L		77			
*******************************	200	~	112	, 4.0	~ ~~	~				

Workorder: 67798								Page 4	of 4	
Parmname	NOM		Sample Qual	QC .	Units	RPD%	REC%	Range	Ankı	Date Time
Semi-Volatiles-GC/MS Federal Batch 204661							•	÷		
N-Nitrosodipropylamiac	100	U	ND	85.5	ug/L	10	86	(0%-20%)		
Nitrobenzene	100	U,	ND	. 75.8	ug/L	10	76		•	
Pentachlorophenol	200	U	ND .	132	ug/L	6	66	(0%-17%)		
Phenol	200	ប	ND	82.9	ug/L	7	42	(0%-29%)		
Pyrene	100	ប	ND	70.9	սջ/Լ	13	71	(0%-30%)		
m,p-Cresois	200	U	NTD	145	ug/L		72			
o-Crasol	200	U	ND	140	ug/L	8	70			
**2,4,6-Tribromophenol	200		55.6	174	ug/L		87	(27%-126%)		
**2-Fluorobiphenyi	100		29.6	83.0	ug/L		83	(32%-109%)		
**2-Fluorophenol	200		28.7	107	ug/L		54	(13%-73%)		4
**Nitrobenzene-d5	100		28.6	68.6	ug/L		· 69	(33%-107%)		
**Phenol-d5	200		16.9	84.5	ug/L		42	(14%-66%)		
**p-Terphenyl-d14	100		36.0	70.5	ug/L		71	(36%-130%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where d
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the enalyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyse is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

HPLC EXPLOSIVES ANALYSIS

HPLC Narrative Sandia National Labs (SNLS) SDG 67794

Method/Analysis Information

Procedure:

Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method:

SW846 8330

Prep Method:

SW846 8330 PREP

Analytical Batch

Number:

204696

Prep Batch Number:

204695

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002

 67794022
 059915-002

 1200308210
 XBLK01 (Blank)

 1200308211
 XBLK01LCS (Laboratory Control Sample)

 1200308212
 059903-002MS (Matrix Spike)

1200308213 059903-002MSD (Matrix Spike Duplicate)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplce in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm LD.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

All the LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was used for matrix spike analysis: 059903-002 (059903-002).

MS Recovery Statement

All the matrix spike recoveries were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between the MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system.

Those holding times expressed as days expire at midnight on the day of expiration.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance report (NCR) has been generated for this SDG.

Manual Integrations

Some initial calibration standards, continuing calibration standards, and/or samples required manual integrations due to software limitations.

Additional Comments

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The samples were concentrated prior to analysis to achieve the required detection limit.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: HeberTK Maler Date: 10/21/02

HPLC Narrative Sandia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Procedure:

Nitroaromatics and Nitramines by High Performance Liquid

Chromatography (HPLC)

Analytical Method:

SW846 8330

Prep Method:

SW846 8330 PREP

Analytical Batch

Number:

205512

Prep Batch Number:

205511

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8330:

Sample ID	Client ID
67798007	059 926-004
1200310005	XBLK01 (Blank) 205511
1200310006	XBLK01LCS (Laboratory Control Sample)
1200310007	059926-004MS (Matrix Spike)

System Configuration

The laboratory utilizes a high performance liquid chromatography (HPLC) instrument configuration for explosives analyses. The chromatographic hardware system consists of an HP Model 1050 HPLC or HP Model 1100 HPLC with programmable gradient pumping and a 100 ul loop injector for the primary system and a 100 ul loop injector for the confirmation system. The HPLC 1050 is coupled to a HP Model G1306A Diode Array UV detector, and the HPLC 1100 is coupled to a HP Model G1315A Diode Array UV detector which monitor absorbance at the following five wavelengths: 1) 214 nm; 2) 224 nm; 3) 235 nm; 4) 254 nm; 5) 264 nm.

The primary HPLC system is usually identified with either a designation of HPLC #2, or hplcb in the raw data printouts. The confirmation HPLC system is usually identified with a designation of HPLC #1, or hplca in the raw data printouts. The HP 1100 HPLC system is identified as HPLC #3, or hplcc in the raw data printouts. The HP 1100 HPLC has a Column Switching Valve which enables this system to be used for primary analysis or confirmation analysis.

Chromatographic Columns

Chromatographic separation of nitroaromatic and nitramine components is accomplished through analysis on the following reversed phase columns:

HP: Hypersil BDS-C18, 250 mm x 4 mm O.D. containing 5 um particle size.

Confirmation of nitroaromatic and nitramine components, initially identified on one of the above columns, is accomplished through analysis on the following column:

PH: Develosil CN-UG5-5, 250 mm x 4.6 mm I.D.

The primary column is used for quantitation while the confirmation column is for qualitative purposes only.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

Not all the required spiking analytes were within the acceptance limits in the laboratory control sample (LCS). Several spiking compounds were not within the acceptance limits. Please see nonconformance report 6088.

QC Sample Designation

The following sample analyzed with this SDG was chosen for matrix spike analysis: 67798007 (059926-004).

MS Recovery Statement

All the matrix spike recoveries were within the established acceptance limits.

MSD Recovery Statement

There was only enough sample provided for one matrix spike.

Technical Information

Holding Time Specifications

All samples in this SDG met the specified holding time requirements. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. GEL assigns holding times based on the associated methodology that assigns the date and time from sample collection or sample receipt.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required dilutions.

Miscellaneous Information

Nonconformance (NCR) Documentation

Nonconformance report 6088 was generated for this SDG.

Not all the required spiking analytes were within the acceptance limits in the laboratory control sample (LCS). Several spiking compounds were not within the acceptance limits. Please see nonconformance report 6088.

Manual Integrations

Some initial calibration standards, continuing calibration standards, and/or samples required manual integrations due to software limitations.

Additional Comments

The samples were concentrated prior to analysis to achieve the required detection limit.

Page 3 of 4

Sample 67798007 (059926-004) had a response for some target analytes whose concentration greatly differed between the primary and confirmation analysis (greater than 40% difference). Because both columns or detectors indicated an acceptable peak in the appropriate retention time window for these analytes, the analytes are reported as positive results. Due to the high percent difference between the two columns, it is indicated as such on the appropriate Form I with a P qualifier. Those analytes reported with a percent difference greater than 40% but less than 70% are qualified as presumptive evidence of the presence of the material. Analytes reported with a percent difference greater than 70% should be considered undetected.

The Form 8 uses the retention time of the surrogate as a measure of how close the retention time of the samples and QC are to a standard component. The Instrument Blank does not contain the surrogate.

Confirmation analysis was performed on some of the samples in this batch. The values reported are from the primary analysis. The confirmation analysis is used for qualitative purposes only.

The following analytes coelute on the cyano column: a.) 2,4,6-Trinitrotoluene, 2,4-Dinitrotoluene, and 2,6-Dinitrotoluene b.) 1,3,5-Trinitrotoluene and 1,3-Dinitrobenzene c.) m-Nitrotoluene, p-Nitrotoluene and o-Nitrotoluene. As a result some of these analytes may be flagged with a P qualifier. The coelution from the cyano column should be considered and the values as suspect to the sample.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

Reviewer: 16 shoad Marie Date: 10/21/02

HPLC QUALITY CONTROL SUMMARY

Report Date: October 21, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756 P.O. Bax 5800

Albuquerque, New Mexico Pameia M. Puissant

Contact:

n	NO	M	Sample	· Augi	QC	Units	RPD%	REC%	Range Ar	alsi	Date Time
Parmname		HAT	Signific	Quai		Vinus .	KIDW	1000/0	Wanter in		27474 1144
HPLC Explosives Federal Batch 204696					,						
QC1200308211 LCS					700			99	(77%-124%) J	LW	10/07/02 11:14
),3,5-Trinitrobenzene	. 800				790	ug/kg		102	(80%-120%)	Lπ	10/07/02 11:14
2,4,6-Trinitrotoluene	800				818	ug/kg		95	(77%-122%)		
2,4-Dinfrotolyene	800				756	ug/kg		98	(74%-121%)		
2,6-Dinitrotoluene	800		•		786	ug/kg		104	(81%-125%)		
2-Amino-4,6-dinitrotoluene	800		-	•	832	ug/kg		98	(79%-123%)		
4-Amino-2,6-dinitrotoluenc	800				781	ug/kg		105	(84%-131%)		
HMX	800				843	ug/kg		91 ·	(75%-125%)		
Niurobenzene	800				725	ug/kg			(80%-123%)		
RDX	800		•		830	ug/kg		104	•		
Teuryl	800				544	ug/kg		68	(65%-124%)		
m-Dinitrobenzene	800				778	пā\ķĒ		97	(77%-124%)		
m-Nitrotoluene	800				731	ng/kg		91	(77%-117%)		
o-Nitrotoluene	800				723	ng/kg		90	(75%-119条)		
p-Nitrotoluene	800				731	ug/kg		91	(76%-121%)		
**1,2-dinitrobenzene	400)			384	п5\rš		96	(71%-118%)	_	
QC1200308210 MB											10/07/02 10:32
1,3,5-Trinitrobenzene				U	ND	ug/kg					10/07/02 10:32
2.4.6-Trinitrotoluene				U	ND	л 5\к Б					•
2,4-Dinitrotoluene				บ	ND	ug/kg					
2,6-Dinkrotohucne	•			υ	ND	ug/kg					
2-Amino-4,6-dinitrotoluene				U	ND.	n8/K8					
4-Amino-2,6-dinitroteluene				U	ИD	ug/kg					
HMX	•			U	ND	ug/kg					
Nitrobenzene				U	ND	ug/kg			•		
RDX				ប	ND	ug/kg					
Tetryl				U	ND	ug/kg					
m-Dioitrobenzenc				U	ND	ug/kg					
m-Nitrotoluene	,			υ	ND	n5\ κ 8					
o-Nitrotoluene				U	ND	ug/kg					
p-Nitrotoluene				Ū	ND	ug/kg					
** 1,2-dinitrobenzene	40	ם .			373	ug/kg	:	93	(71%-118%)		
QC1200308212 67794012 1											
1,3,5-Trinitrobenzene	80		NI		836	π ā /kā		104	(66%-133%)		10/07/02 11:56
2,4,6-Trinitrotoluene	80		NI		842	ug/kg		105	(77%-132%)		
2,4-Dinitrotoluene	80		NI		. 825	. ug/kg		103	(61%-134%)		
2,6-Dinitrototuene	80		NI	•	872	ug/kg	•	109	(70%-121%)		
2-Amino-4,6-dinitrotoluene	. 80	-	NI		865	ug/kg		108	(79%-124%)		
4-Amino-2,6-dinitrotoluene	80		, NI)	818	ug∕kg	; ·	102	(71%-120%)		
HMX	80	-	N)	840	ug/kg	5	105	(75%-138%)		
Nitrobenzene	80	0 U	NI)	788	ug/kg	;	99	(72%-120%)		
RDX	80	0 U.	NI)	839	ug/kg	Ţ	105	(61%-13 6%)		
Tetryl	80	0 U	· NI	3	656	ug/kg		82	(65%-135%)		

OC Summary

Workorder: 67794			_		Page 2 of 2				
Parmname	NOM	[Sample Qua	ı QC	Units	RPD%	REC#	Range Anlst	Date Time
HPLC Explosives Federal Batch 204696					÷				
m-Dinitrobenzeae	800	บ	ND	848	ug/kg		106	(75%-125%)	
m-Nitrotoluene	800	U	ND	796	ug/kg	•	99	(73%-116 %)	
o-Nitrotoluene	800	U	ND	790	ug/kg		99	(68%-122%)	
p-Nitrotoluene	800	U	ND	7 99	ug/kg		100	(67%-125%)	
**1,2-dinitrobenzene	400		389	404	ug/kg		10l	(71%-118%)	
QC1200308213 67794012 MSD									
1,3,5-Trinitrobenzene	800	U	ND	865	ug/kg	3	108	(0%-20%)	10/07/02 12:38
2,4,6-Trinitrotoluene	800	IJ	ND	894	ug/kg	6	112	(0%-20%)	
2,4-Diaitrotoluene	800	Ū	ND	. 866	ug/kg	. 5	108	(0%-24%)	
2,6-Dinitrotaluene	800	Ū	ND	936	ug/kg		117	(0%-21%)	
2-Amino-4.6-dinitrotoluene	800	U	ND	901	ug/kg	4	113	(0%-20%)	
4-Amino-2,6-dinitrotoluene	800	U	ND	838	ug/kg	2	105	(0%-20%)	
HMX	800	U	ND	868	ug/kg	3	109	(0%-38%)	•
Nitrobenzene	800	U	ND	834	ug/kg	6	104	(0%-21%)	
RDX	\$0 0	U	ND	871	ug/kg	. 4	109	(0%-35%)	
Tetryl	800	U	ND	580	ug/kg	12	73	(0%-30%)	
m-Dinitrobenzens	800	υ	ND	890	ug/kg	5	111	(0%-23%)	
m-Nitrotoluene	800	Ų	ND	845	ug/kg		106	(0%-20%)	
o-Nitrotoluene	800	U	ND	830	ug/kg		104	(0%-23%)	
p-Nitrotoluena	800	Ū	ND	840	ug/kg		105	(0%-22%)	
**1,2-dinitrobenzene	400		389	413	ug/kg		103	(71%-118%)	

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 21, 2002 Page 1 of 2

Chent:

Sandia National Laboratories MS-0756 P.O. Box \$800

Afbuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder:

67798

			<u>C1</u>	T	<u></u>	TI-ten	RPD%	REC%	Range Anls	t Date Time
Parmame	NOM		Sample	Qual	QC_	Units	KPD%			. 17ace Lune
HPLC Explosives Federal Batch 205512		٠								
QC1200310006 LCS										
1,3,5-Trinitrobenzene	1.04			٠,	0.997	u g/ L		96	(84%-110%) JLN	V 10/04/02 22:13
2,4,6-Trinitrotoluene	1.04				1:01	ug/L		97	(85%-110%)	
2,4-Dinitrotolucne	1.04				0.815	u g/L		79	(78%-110%)	
2,6-Dinitrotoluene	1.04			•	0.855	ug/L		82	(79%-110%)	
2-Amino-4,6-dinitrotoluene	1.04				1.02	ug/L		99	(77%-110%)	
4-Amino-2,6-dinitrotoluene	1.04				0.799	ս ջ /L		77	(59%-110%)	
HMX	1.04				1.01	ug/L		97	(86%-110%)	
Nitrobenzene	1.04				0.710	ug/L		68	(68%-110%)	
RDX	1.04	•			0.997	ug/L		96	(76%-110%)	
Teiryl	1.04				0.910	ug/L		88	(73%-110%)	
m-Dinitrobenzene	1.04				0.789	ug/L		76	(76%-110%)	
m-Nitrotoluene	1.04				0.740	ug/L		71*	(73%-11 0%)	
o-Nitrotoluene	1.04				0.746	ug/L		72	(69%-11 0%)	
p-Nitrotoluene	1.04				0.749	սջ/Լ		72*	(73%-11 0%)	
**1,2-dinitrobenzene	0.519	•			0.399	ug/L	•	77	(59%-118%)	
QC1200310005 MB										
1,3,5-Trinirrobenzene				Ü	ND	пã⁄Г				10/04/02 21:31
2,4,6-Trinitrotoluene				ប	ND	ug/L				
2,4-Dinitrocoluene				U	ND	սջ/Լ				
2,6-Dinitrotoluene				U	ND	ug/L				
2-Amino-4,6-dinitrotoluene				· U	, ND	u g/L				•
4-Amino-2,6-dinitrotoluene				U	ND	ug/L				
HMX				U	ND	ug/L				
Nitrobenzene				U	ND	u g/ L				4
RDX				. U	ND	ug/L				
Tetryl				U	ND	ug/L				
m-Dinitrobenzene		•		U	ND	ag/L	, '			
m-Nitrotoluene				υ	ND	ug/L				
o-Nitrotoluene				U	ND	ug/L				
p-Nitrotoluene				U	ND	ng/L				
**1,2-dinitrobenzene QC1200310007 67798007 MS	0.519				0.448	ug/L		86	(59%-118%)	
1.3.5-Trinitrobenzene	1.04	U	NE)	1.05	ug/L	,	101	(62%-121%)	10/04/02 22:56
2.4,6-Trinitrotoluene	1.04	บ	NIC)	1.07	ug/L		103	(56%-137%)	
2.4-Dinitrotoluene	1.04	Ū	NE		1.03	ug/L		100	(69%-118%)	
2,6-Dinitrotoluene	1.04	Ū	ND		1.06	ug/L		102	(63%-123%)	
2-Amino-4,6-dinitrotoluene	1.04	Ū	ND		1.08	ug/L		104	(60%-133%)	
4-Amino-2.6-dinitrotoluene	1.04	Ŭ	NE		1.01	ug/L		97	(50%-121%)	
HMX	1.04	ŭ	NI		1.05	ug/L		101	(66%-131%)	
Nitrobenzene	1.04	Ü	NE		0.945	ug/L		91	(61%-106%)	
RDX	1.04	บ	NI		1.06	ug/L		102	(52%-135%)	
Tetryl	1.04	ЛP	0.042		0.860	ug/L		79	(52%-124%)	
	4.40-	31	. 0.047		0.000	σ₽/T	-	, ,	Chair Tarin's	

OC Summary

Workorder: 67

7798

Page 2 of 2

						-	
Parmname	NOM	Sample Qual	QC	Units RPD%	REC%	Range Anist	Date Time
HPLC Explosives Federal Batch 205512		·					
m-Dinitrobenzene	1.04	U ND	1.03	ug/L	99	(64%-117%)	
m-Nitrotoluene	1.04	ם אוס	0.983	.ug/L	95	(56%-129%)	
o-Nitrotoluene	1.04	מואי נו	0.988	ug/L	95	(58%-122%)	
p-Nitrotoluene	1.04	U NTD	0.986	ug/L	95	(65%-116%)	
**1,2-dinitrobenzene	0.519	0.485	0.505	ug/L	97	(59%-118%)	

Notes:

RER is calculated at the 95% confidence level (2-sigma). The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GC SEMIVOLATILE PCB ANALYSIS

PCB Case Narrative Sandia National Labs (SNLS) SDG# 67794

Method/Analysis Information

Procedure:

Polychlorinated Biphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW846 3550B

Analytical Batch Number:

204381

Prep Batch Number:

204380

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200307556	PBLK01(Method Blank)
1200307557	PBLK01LCS(Laboratory Control Sample)
1200307560	059903-002MS(Matrix Spike)
1200307561	059903-002MSD(matrix Spike Duplicate)

SNLS SDG#67794 - PCB

Page 1 of 5

System Configuration

Chromatographic Columns

Column D	Column Description
J&WI	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm
RESTEK	Rtx-CLPesticides 30m x 0.25mm x 0.25mm x 0.25mm x 0.20mm 30m x 0.25mm x 0.20mm
	•

^{*} Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

SNLS SDG#67794 - PCB

Page 2 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CVS Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

OC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID#

Laboratory Sample ID#

059903-002

67794012

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

SNLS SDG#67794 - PCB

Page 3 of 5

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All samples underwent sulfur cleanup procedure.

Sample Dilutions

None of the samples in this SDG was required dilution.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and samples required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations are performed, copies of all manual integration peak profiles will be included in the raw data section of this package.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm". Sample 67794018 contained more than one PCB. The quantitation of PCB may be elevated due to overlapping PCB patterns.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

SNLS SDG#67794 - PCB

Page 4 of 5

Review Validation:

GEL require all analytical data to be verified by a qualified data validator. In addition, all data designated or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewa: Jamin Cao Date: 10/18/or

GENERAL CHEMISTRY ANALYSIS

General Chemistry Narrative Sandia National Labs (SNLS) SDG 67794

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

205123

Prep Batch Number:

205122

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
1200309255	MB
1200309256	DUP of 67601015

1200309257 DUP of 67601016 1200309258 MS of 67601015 1200309259 MS of 67601016 1200309261 LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (OC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 67601015 and 67601016

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The Relative Percent Differences between the samples and duplicates for this SDG were within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200309261

Sample Reanalysis

The method blank (1200309255) was reanalyzed because there was no sample in the autosampler cup during the original analysis.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

206136

Prep Batch Number:

206135

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
67794022	059915-002
1200311349	MB
1200311351	DUP of 67794022
1200311352	MS of 67794022
1200311367	LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 67794022.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200311367.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW8467196A

Prep Method:

SW846 3060A

Analytical Batch Number:

205618

Prep Batch Number:

205617

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
67794012	059903-002
1200310247	MB
1200310248	DUP of 67601013
1200310249	DUP of 67601023
1200310250	MS of 67601013
1200310251	MS of 67601023
1200310252	LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 67601013 and 67601023.

Sample Spike Recovery

The spike recoveries for this sample set were within the GEL SPC limits, but were outside of the client's required acceptance limits of 75%-125%. See NCR# 6532.

Sample Duplicate Acceptance

The Relative Percent Differences between the samples and duplicates for this SDG were within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions
No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

NCR# 6532 was written for this sample batch.

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW846 7196A

Prep Method:

SW846 3060A

Analytical Batch Number:

205620

Prep Batch Number:

205619

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Client ID
059904-002
059905-002
059906-002
059907-002
059908-002
059910-001
059912-002
059913-002
059914-002
059915-002
MB
DUP of 67794013
MS of 67794013
LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 67794013.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

	٠,٠٠٠		. ,	•
Reviewer:	 /	Date:	16/21152	
	·)		1	

General Chemistry Narrative Sandia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW846 7196A

Analytical Batch Number:

204193

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
67798009	059926-006
1200307123	MB for batch 204193
1200307124	DUP of 67608009
1200307125	PS of 67608009
1200307126	LCS for batch 204193

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

SNLS sample 67608009 was designated for Quality Control.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The Relative Percent Difference between the sample and duplicate for this SDG was within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

The samples from this sample group were received by the lab outside of the method specified holding time. The samples were analyzed on the day they were received.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

Nonconformance report (NCR) 5078 was submitted by the project manager for sample 67798009 because the sample was received out of holding for hexavalent chromium analysis.

Additional Comments

Sample 67798009 was analyzed before being logged in to LIMS. Therefore, the sample could not be scanned to custody prior to analysis.

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

205981

Prep Batch Number:

205980

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA 335.3:

Sample ID	Client ID
67798008	059926-005
1200311080	MB for batch 205981
1200311081	LCS for batch 205981
1200311082	DUP of 67798008
1200311083	MS of 67798008
1200311474	LCSD for batch 205980

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

LCS Duplicate Recovery

The LCS Duplicate recovery was within the required acceptance limits.

LCS Duplicate RPD

The Relative Percent Difference between the LCS and LCS Duplicate was within the required acceptance limits.

Quality Control

Samples 67798008 was designated for Quality Control.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	DA-	Date:	10/10/02	

GENERAL CHEMISTRY QUALITY CONTROL SUMMARY

Report Date: October 18, 2002 Page 1 of 2

Client:

Sandis National Laboratories MS-0756 P.O. Box 5800

Contact:

Albuquerque, New Mexico Pameia M. Puissant

Workorder:

Rapid Flow Analysis Federal Batch 205123 QC 1200309256 67601015 DUP Cytanide, Total	Workorder: 67794			•		-						
Batch	Parmname		NOM	(Sample	Qual	QC	Units	RPD%	REC%	Range Anisl	Date Time
Cyanida, Total	•											
Cyanide, Total U ND U ND mg/kg N/A (++0.250) 10/02/02 12	*	DUP .		U	ND	u .	ND	mg/kg	N/A		(+/-0.250) ADF	10/02/02 12:36
Cyanide, Total Cyan		DUP	:	บ	ND	U	ИD	mg/kg	N/A		(+/-0.250)	10/02/02 12:38
Cyanide, Total Cyan	Cyanide, Total		277				252	mg/kg		91	(62%-138%)	10/02/02 12:34
Cyanide, Total	Cyanide, Total					U	ND	ung/kg				10/02/02 13:51
Cyanide, Total 4.55 U ND 4.49 mg/kg 98 (55%-145%) 10/02/02 12	Cyanide, Total		5.00	U	ND		5.26	mg/kg		105	(55%-145%)	10/02/02 12:36
QC 2003 135 67794012 DUP DU ND mg/kg N/A	Cyanide, Total	M2	4.55	Ü	ND		4.49	mg/kg		98	(55%-145%)	10/02/02 12:39
Cyunide, Total BU ND BU ND mg/kg N/A												
Cyanide, Total 277 B 264 mg/kg 96 (62%-138%) 10/08/02 10 C(21200311349 MB C)	Cyanide, Total	DUP		ВŲ	ND	BU	ND	mg/kg	N/A		(+/-0.227) ADF	10/08/02 10:39
Cyanide, Total J 0.0883 mg/kg 10/08/02 10 QC1200311352 67794022 MS Cyanide, Total 5.00 BU ND B 4.60 mg/kg 92 (55%-145%) 10/08/02 10 Spectrogetric Analysis Federal Batch 205518 QC1200310248 6760103 DUP Hexavalent Chromium U ND U ND mg/kg N/A (+/-0.0995) BEP2 10/11/02 09 QC1200310249 67601023 DUP Hexavalent Chromium 0.985 0.956 mg/kg 97 (72%-121%) QC1200310251 LCS Hexavalent Chromium 0.985 0.956 mg/kg 97 (72%-121%) QC1200310254 from U ND mg/kg N/A (+/-0.0985) QC1200310251 from U ND mg/kg QC1200310251 from U ND mg/kg QC1200310251 from U ND mg/kg QC1200310251 from U ND mg/kg QC1200310251 from U ND 0.665 mg/kg 63 (49%-130%) QC1200310251 from U ND 0.715 mg/kg 71 (49%-130%) Batch 205620 QC1200310254 67794013 DUP Hexavalent Chromium 0.998 U ND 0.715 mg/kg 71 (49%-130%) Hexavalent Chromium 0.998 U ND 0.715 mg/kg 100 (72%-121%) QC1200310255 from U ND 0.998 1.00 mg/kg 100 (72%-121%) QC1200310253 MB Hexavalent Chromium 0.998 U ND mg/kg 100 (72%-121%) QC1200310255 MB Hexavalent Chromium U ND mg/kg 100 (72%-121%)	Cyanide, Total		277			В	264	mg/kg		96	(62%-138%)	10/08/02 10:35
Cyanide, Total 5.00 BU ND B 4.60 mg/kg 92 (55%-145%) 10/08/02 10 Spectrorectric Analysis Federal Basch 205618 QC 1200310248 67601013 DUP Hexavalent Chromium U ND U ND mg/kg N/A (+/-0.0995) BEP2 10/11/02 09 QC 1200310249 67601023 DUP Hexavalent Chromium U ND U ND mg/kg N/A (+/-0.0985) QC 1200310252 LCS Hexavalent Chromium 0.985 0.955 mg/kg 97 (72%-121%) QC 1200310254 MB Hexavalent Chromium U ND mg/kg 97 (72%-121%) QC 1200310250 67601013 MS Hexavalent Chromium 0.993 U ND 0.665 mg/kg 63 (49%-130%) QC 1200310251 67601023 MS Hexavalent Chromium 0.993 U ND 0.715 mg/kg 71 (49%-130%) Basch 205620 QC 1200310254 67794013 DUP Hexavalent Chromium U ND Mg/kg N/A (+/-0.0993) BEP2 10/11/02 09 QC 1200310254 LCS Hexavalent Chromium U ND Mg/kg N/A (+/-0.0993) BEP2 10/11/02 09 QC 1200310253 MB Hexavalent Chromium U ND Mg/kg 100 (72%-121%) PREVAILENT CHromium U ND Mg/kg 100 (72%-121%) QC 1200310253 MB Hexavalent Chromium U ND Mg/kg 100 (72%-121%) QC 1200310255 67794013 MS	Cyanide, Total	246				J	0.0883	mg/kg				10/08/02 10:31
Description	Cyanide, Total		5.00	BU	ND	В	4.60	mg/kg		92	(55%-145%)	10/08/02 10:40
Hexavalent Chromium												
Hexavalent Chromium	Hexavalent Chromium			บ	ND	Ų	. ND	mg/kg	N/A		(+/-0.0995) BEP2	10/11/02 09:00
Hexavalent Chromium	Hexavalent Chromium	DUP		ับ	ND	· u	ИD	mg/kg	N/A		(+/-0.0985)	
Hexavalent Chromium	Hexavalent Chromium		0.985		•		0.956	mg/kg		97	(72%-121%)	
Hexavalent Chromium 0.993 U ND 0.665 mg/kg 63 (49%-130%) QC1200310251 67601023 MS Hexavalent Chromium 0.993 U ND 0.715 mg/kg 71 (49%-130%) Batch 205620 QC1200310254 67794013 DUP Hexavalent Chromium U ND mg/kg N/A (+/-0.0993) EEP2 10/11/02 09 QC1200310256 LCS Hexavalent Chromium 0.998 1.00 mg/kg 100 (72%-121%) QC1200310253 MB Hexavalent Chromium U ND mg/kg QC1200310255 67794013 MS	Hexavelent Chromium	MS				υ	ИD	mg/kg				•
Hexavalent Chromium 0.993 U ND 0.715 mg/kg 71 (49%-130%) Batch 205620 QC1200310254 67794013 DUP Hexavalent Chromium U ND mg/kg N/A (+/-0.0993) BEP2 10/11/02 09 QC1200310256 LCS Hexavalent Chromium 0.998 1.00 mg/kg 100 (72%-121%) QC1200310253 MB Hexavalent Chromium U ND mg/kg QC1200310255 67794013 MS	Hexavalent Chromium		0.993	บ	ND	-	0.665	mg/kg		63	(49%-130%)	
Hexavalent Chromium U ND U ND mg/kg N/A (+/-0.0993) EEP2 10/11/02 09 QC1200310256 LCS Hexavalent Chromium 0.998 1.00 mg/kg 100 (72%-121%) QC1200310253 MB Hexavalent Chromium U ND mg/kg QC1200310255 67794013 MS	Hexavalent Chromium		0.993	U	· ND		0.715	mg/kg		71	(49%-130%)	
Hexavalent Chromium 0.998 1.00 mg/kg 100 (72%-121%) QC1200310253 MB Hexavalent Chromium U ND mg/kg QC1200310255 67794013 MS		DUP		U	ND	υ	ND	mg/kg	N/A		(+/-0.0993) BEP2	10/11/02 09:30
Hexavalent Chromium U ND mg/kg QC1200310255 67794013 MS	-		0.998				1.00	mg/kg		100	(72%-121%)	
	Hexavalent Chromium		•			U	ND	mg/kg				
·	•	MS	0.985	. บ	ND	1	0.936	mg/kg		95	(49%-130%)	

Workorder: Page 2 of 2 Units RPD% Parmuame REC% Date Time

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or SRPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- Indicates analyte is a surrogate compound.
- The analyte was found in the blank above the effective MDL.
- н Holding time was exceeded

67794

- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- The response between the confirmation column and the primary column is >40%D
- The analyze was analyzed for but not descreed below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.
- Х Presumptive evidence that the analyte is not present. Please see parrative for further information.
- x Presumptive evidence that the analyte is not present. Please see parrative for further infromation.
- Х Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP cartification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 9, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Panela M. Poissant

Workerder: 67798

Parmueme	NOM	Sample Qual	QC	Units	RPD%	REC%	Range A	nist	Date Time
Repid Flow Analysis Federal Batch 205981							•		
QC1200311082 67798008 DUP Cyanida, Yotal	U	ע מא	ND	mg/L	N/A		· (+/-0.005) ·	ADF	10/04/02 1 0:52
QC1200311081 LCS Cyunide, Total	0.050		0.0483	mg/L		97			10/04/02 10:46
QC1200911474 LCSD Cyanide, Total	0.050		0.0506	mg/L	5	101	. :	•	10/04/02 10:49
QC1200511080 MB Cymride, Total		Ţ	ND.	mg/L					10/04/02 10:47
QC1200311083 67798008 MS Cyanida, Total	0.100 U	ND	0.100	mg/L		100			10/04/02 10:50
Spectrometric Analysis Federal Batch 204193					•				
QC1200307124 67608009 DUP Hexavalent Chromium	, HU	ND HTU	ND	mg/L	NA		(+/-0.010)	VH1 ·	09/26/02 14:2
QC1200307126 LC5 Hexavalent Chromium	0.100		0.099	шуL		99			
QC1200307123 MB Hexavalent Chromium		υ	КD	mg/L	•				•
QC1200307125 67606009 PS Hexavalent Chromium	0.100 HU	ND H	0.093	mg/L	•	93	. •		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where d
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D $\,\cdot\,$
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see nametive for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder:

67796

Page 2 of 2

Parmaname NOM Sample Qual QC Units RPD% REC% Range Anist Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPO) obtained from the sample duplicate (DUP) is evaluated against the acceptence extens when the sample is greater than five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a countral limit of +/ths RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workerder 67794

Method/Analysis Information

Batch Number:

205013

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67 794020	059913-002
67794021	059914-002
67794022	059915-002
1200308987	MB for batch 205013
1200308988	059915-002(67794022DUP)
1200308989	059915-002(67794022MS)
1200308990	059915-002(67794022MSD)
1200308991	LCS for batch 205013

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

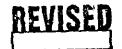
All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.


Quality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample was used for QC: 67794022.

OC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All propagation criteria have been mot for these analyses.

Sample Re-prop/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Grees Alpha/Beta Proparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to exides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technotium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLima. therefore only the alpha count data will appear on the instrument runlog.

Miscellancous Information:

NCR Decementation

No NCR were generated for the preparation or analysis of this sumple set.

Oughtfur information

Manual qualifiers were not required.

Certification Statement
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation;

GEL requires all analytical data to be varified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case narrative:

Radiochemistry Case Narrative Saudia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Batch Number:

204950

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Client ID
059926-008
MB for batch 204950
059826-008(67169011DUP)
059826-008(67169011MS)
059826-008(67169011MSD)
LCS for batch 204950

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Ouality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated OC

The following sample was used for QC: 67169011. The QC sample is from SNLS work order 67169.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, especially to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR's were generated for the preparation or analysis of this sample set.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:	
GEL requires all analytical data to be verified by a qualified data validator. In addition, all data design	gnated for CLP
or CLP-like packaging will receive a third level validation upon completion of the data package.	•
The following data validator verified the information presented in this case parrative:	
2 2	
Reviewer: n. nome Date: 12 Oct	2.081

RADIOCHEMISTRY QUALITY CONTROL SUMMARY

GENERAL ENC. JEERING LABORATORIES

Meeting today's needs with a vision for tomorrow:

QC Summary

Client:

Sandia National Laboratories

MS-8756 P.O. Box 5840

Albuquerque, New Mexico Pamela M. Puissant

WOUNDERET: "	17/34						`		`.			•
Permane			MOM	Sample () Kal	· QC	Units	RER	REC%	Range	Anlst	Date Time
Gravimetric Solidi Betch 29	Ø14			•	•	:						
OC1200367411	67794017	DIP ·				•	:	·				•
Moisture	01171012			5.17		3.50	percent	.39*		(0%-24%)	AWB	09/27/02 11:42
		•	•						•			•
Rad Gas Flow 20	5013	:.,			•	•						
QC12003089#8	67794022	DUP			_	• •	•	•			•	
Alpha				12.3		· 11.1	pCi/g	0.190		(0%-20%)	131	10/16/02 01:36
•		• •	Uncert: ·	+/-3.06		+/-2.71						•
-	•	•	TPU:	3.30		2.80						
Beta	_			18.0	.'	18.6	pCVg	0.243		(0%-20%)		;
		•	Uncort: .	+/-1,38		+/-1.40						
•		•	TPU:	1.40		1.45						•
QC1200308991	LCS		•						٠			
Alpha			9.89			11.2	pCi/g		113	(75%-125%)		10/16/02 19:13
	•		Uncert:			+/-1.77						
			TPU:			2.04	en:4	•		/8/9/ 14/5A		
Beta	•		39.7			46.2	pCi/g		: 117	(75%-125%)		
		1	Uncert	•		+/-2.55						•
			TPU:			2.69					-	:
QC1200308987	МВ				U	0.0348	pCi/g					10/16/02 01:36
Alpha			Uncert:		U	+/-0.0996	beag		•			10/10/04/01/36
':		••	TPU:			0.0997	٠,					
Beta		١.	170:		U	0.126	pCI/g		:			
DCIA		• • •	Uncert	•	•	+/-0.0876	heng					٠
•			TPU:			0.0876						
QC1200308989			IPU:			0.00/0		: *				
Alpha Alpha	91 /Y4022		84.5	12.3		83.6	pCi/g		84	(75%-125%)		10/16/02 18:33
rupa			Uncert	+/-3.06		+/-17.8	1		•	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(4,000,000
,			TPU:	3.30		19.4						
Beta .			339	18.0		326	pCVg		91	(75%-125%)	-	•
		•	Uncert:	+/-1.38		+/-19.3	F	•		(,		
-			TPU:	1.40		20,0						
QC1200308990	67794022	DZM		. 2.00						•		•
Alpha	3 · • • · · · · · · · · · · · ·		97.9	12.3		105	pCt/g		94			
<u></u>			Uncert	+/-3.06		+/-22.5						•
			TPU:	3.30		26.1						
Beta			. 393	18.0		381	· pCi/g		92			
•		•••	Uncert:	+/-1.38		+/-22.3	• •		•		•	•
			TPU:	1.40	•	23.2	•	•		-		
•									•			

P O Box 30712 * Charleston, SC 29417 * 2040 Savage Road * 29407

(843) 556-8171 * Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES

· Meeting today's needs with a vision for tomorrow.

QC Summary:

Workerder: 67794

Page 2 of 2

Paraupame NOM Sample Qual QC Units RER REC% Range Asist Date Time

Notes:

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the deplicate RPD's are not applicable where
 the concentration falls below the effective PQL.
- Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MOL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analyses the result is less than the effective MDL. For radiochemical analyses the result is less than the Decision Level
- X. Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X' Presumptive evidence that the analyse is not present. Please see narrative for further infromation.
- X Uncertain identification for garman spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

The Relative Percent Difference (RFD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (SE) the contract regained detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to avaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 * Charleston, SC 29417 * 2040 Savage Road * 29407 (843) 556-8171 * Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary

Report Date: October 12, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Panela M. Prissant

__ . . .

67798

Paramame	NOM	Sample Q	أحد	OC "	Units	RER	REC%	Range Anlet	Date Time
	11024	<u> Dampie Q</u>							
Rad Gas Flow Batch 204950		•							•
ptics 204730	·				•				
QC1200300805 67169011 DUP									
Alpha	. บ		ប	-0.582	pCi/L	0.389	^ ,	(+/-1.00)HOB1	10/08/02 05:44
	Uncort:		;	+/-0.403					•
	TPU:	0.334		0.408	:				
Beta	U	-0.0536	U	0.077	b Cy/r	0.188	^	(+/-1.00)	
	Uncerc	+/-0.341		+/-0.354					
	TPU:	0.341		0.354		-			
QC1200908808 LC3					-51 -				1000000000
Alpha	9.89			10.9	pCi/L		110	(75%-125%)	10/07/02 21:03
*	Uncert			+/-1.84				•	•
	TPU:	-		218				men 1060)	
Beta	39.7			44.1	рCM	•	111	(75%-12 5%)	
e e	Uncert:			+/-2,45					
•	TPU:			2.52					
QC1200308804 MB									10/08/02 05:44
Alpha			U	0.0431	pCi/L	•			10/08/02 05:44
•	Uncert	•		+/-0.0745				•	
	TPU:			0.0746					
Beta			U	0.126	pCVL	•		•	
	Uncerti			+/-0.162					
	TPU:	. •		0.162				1.	
QC1200308806 67169011 MS					,,,,		117	men 1000)	10/02/03 21/03
Alpha	. 49.4 U	-0.293		56,9	p Ci/L	,	110	(75 %-125%)	10/07/02 21:03
	Uncert:	+4-0.333		+/-9.21					
_	TPU:	0.334		. 12.7	:			+ACA\	
Beta	199 U	-0.0536	. '	227	pCi/L	' '	114	(75%-125%)	
•	Uncert	+/-0.341		+/-12.3					
•	TPU;	0.341		.12,4	•				
QC1200308807 67169011 MSD								MCM 105m	
Alpha	49.4 U	-0.293		55.3	pCi/L	,	. 113	(75%-125%)	
	Uncert:	+/-0.333		+/-9.67					
	TPU:	0.334		11.9				MEN 100m3	
Beta	199 U	-0.0536		214	pCi/L	,	108	(75%-125%)	
•	Uncert	+/-0.341		+/-12.3					
•	TPU:	0341		12.9				•	

Notes:

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not with in acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- ** Indicates analyte is a surrog: to compound.
- B The analyse was found in the blank above the effective MDL.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES.

Meeting today's needs with a vision for tomorrow.

QC Summary.

Wartenders 67796

Page 2 of 2

Parrunatus NOM Sample Qual QC Units RER REC% Range Anist Date Time

- H Holding time was exceeded.
- I Estimated value, the analyse concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.

 For radiochemical analytes the result is less than the Decision Level
- K Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gaussia spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more,

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than

five times (5%) the contract required detection limit (RL). In cases whem either the sample or duplicans value is less than 5% the RL, a control limit of +/- the

RL is used to evaluate the DUP result.

For PS, PSD, and SDIL T results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

PCB Case Narrative Sandia National Labs (SNLS) SDG# 67794-1

Method/Analysis Information

Procedure:

Polychlorinated Blphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW8463510C

Analytical Batch Number:

204654

Prep Batch Number:

204653

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample	ID
--------	----

Client ID

67798006

059926-003

1200308119

PBLK01 (Method Blank)

1200308120

PBLK01LCS (Laborstory Control Sample)

System Configuration

Chromatographic Columns

Column ID	Column Description
J&W1	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5ur
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x

SNLS SDG#67794-1 - PCB

0.25um

J&W6 DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm x 0.25mm x 0.25mm x 0.25mm x

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK*
ECD2	HP 6890 Series GC ECD/ECD	RESTEK*
ECD3	HP 6890 Series GC ECD/ECD	RESTEK*
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK*

^{*}The columns were changed to RTX-CLPEST1 and RTX-CLPEST2.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (OC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

SNLS SDG#67794-1 - PCB

^{*} Durabond and DB-XLB are trademarks of J & W.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The MS and MSD were analyzed on a sample contained in another SNLS SDG (67821).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required any dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

SNLS SDG#67794-1 - PCB

Manual Integrations

No manual integrations were required for any data file in this SDG. Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent a positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer: _	Friii	Cas	Date:	10/18	/or	
Treatemet.	<i></i>		 DATE:		/	

SNLS SDG#67794-1 - PCB

Page 4 of 4

GC/ECD PCB QUALITY CONTROL SUMMARY

Report Date: October 18, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder:

67794

77012010011										
Parmamo	NOM	Sample	Qual	QC	Units	RPD%	REC%	Rango	Anist	Date Time
8cmi-Volatiles-PCB Federal Batch 204381						٠		•		
QC1200307557 LCS				***				/400/ 116h/)	OTT	10/01/02 10:40
Aroclor-1260	. 33.3			29.7	ug/kg		89	(48%-116%)	GH!	10/01/02 10:49
**4cmx	6.67			5.06	ug/kg		76	(31%-120%)		
**Decachlorohiphenyi	6.67			5.52	ug/kg		83	(34%-115%)		
QC1200307556 MB	•	· :			_					
Aroclor-1016			· U	ND	ug/kg					10/01/02 10:37
Aroclor-1221			U	ND	ug/kg			_		
Aroclor-1232	,		U	ND	ug/kg					
Aroclor-1242			Ų	ND	ug/kg			•		
Aroclor-1248	•		U	ND.	ug/kg					•
Aroclor-1254			U	ND	ug/kg					
Aroclor-1260		•	ับ	ND	ug/kg	•				
++4cmx	6.67			5.16	ug/kg	:	77	(31%-120%)		
**Decachlorobiphenyl	6.67			5.43	ug/kg	• .	82	(34%-115%)		
OC1200307560 67794012 MS					•			•		
Aroclar-1260	33.3	t ND		14.8	ug/kg		44	(36%-134%)		10/01/02 14:03
**4cmx	6.67	4.81		2,39	ug/kg		36	(31%-120%)		
**Decachlorobiphenyl	6.67	5.27		2.72	ug/kg	•	41	(34%-115%)		
QC1200307561 67794012 MSD	•.•	4.2.			-86			(
Aroctor-1260	33.3	U ND		15.6	ug/kg	. 5	47	(0%-30%)		10/01/02 14:16
**4cmx	6.67	4.81		2.53	ug/kg	_	38	(31%-120%)		
**Decachlorobiphenyl	6.67	5.27		. 2.86	ug/kg		43	(34%-115%)		
	. 0.01	J.47		. 2.00	~£, r.g		7.3	()		

Nates: .

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery nr %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U ... The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder:

Page 2 of 2

MOM Sample Qual QC Units RPD% REC% Parmame Range Anist

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone. by a factor of 4 or more.

^The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 17, 2002 Page 1 of 2

Cllent:

Sandia National Laboratories

MS-0756 P.O. Box 5800

P.O. BOX 5800

Albuquerque, New Mexico

Contact:

Pamela M. Poissant

Workorder: 67798

Parminame	NOM	Sa	mple	Qual	QC	Units_	RPD%	REC%	Range	Ankt	Date Time
Semi-Volatiles-PCB Federal Batch 204654			•					•			
QC1200308120 LCS						_			4150 1010L		100100100
Aroclor-1260	1,00			,	0.770	ug/L		77	(47%-131%)	MM	10/01/02 13:03
**4cmx	0.200				0.148	u <u>g</u> /L		74	(34%-116%)		
**Decacblorobiphenyl	0.200				0.126	ug/L		63	(21%-122%)		
QC1200308119 MB	-							,			
Aroclor-1016				U	ND	ug/L			• [10/01/02 12:52
Aroclor-1221				U	ND	ug/L					•
Aroclor-1232				U	ND	ug/L					
Aroclor-1242				u	ND	ug/L					
Aroclor-1248				U	· ND	ug/L					
Aroclor-1254				U	ND	ug/L					
Aroclor-1260				U	ND	ug/L					
**4cmx	0.200		-		0.145	սջ/Լ		72	(34%-116%)		
**Decachlorobiphenyl	0.200				0.140	ug/L		70	(21%-122%)		
QC1200308125 67821005 MS			•								
Aroclor-1260	1.00	ប	ND	_	0.560	ug/L		56	(21%-113%)		10/01/02 12:18
**4cmx	0.200		0.132		0.130	ug/L		65	(34%-116%)		
**Decachlorobiphenyl	0.200	(0.0574		0.0692	ug/L		35	(21%-132%)		
QC1200308126 67821005 MSD				,		•					
Arocior-1260	1.00	Ų	ND		0.600	սջ/Լ	7	60 ·	(0%-30%)		10/01/02 12:29
*=4cmx	0.200		0.132		0.133	ug/L		66	(34%-116%)		
**Decachiorobiphenyl	0.200		0.0574	•	0.0771	ug/L		39	(21%-122%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not computible with the sample or the duplicate RPD's are not applicable where to
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte coacemration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder:

Page 2 of 2

Parmname QC Units RPD% Range Anlat NOM Sample Qual

N/A indicates that spake recovery limits do not apply when sample concentration exceeds spike cone. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

INORGANIC ANALYSIS

Inorganic Case Narrative for Sandia National Laboratory SDG# 67794

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200307723	Method Blank (MB) ICP
1200307727	Laboratory Control Sample (LCS)
1200307725	059903-002L (67794012) Serial Dilution (SD)
1200307724	059903-002D (67794012) Sample Duplicate (DUP)
1200307726	059903-002S (67794012) Matrix Spike (MS)
1200307714	Method Blank (MB) CVAA
1200307717	Laboratory Control Sample (LCS)
1200307715	. 059903-002D (67794012) Sample Duplicate (DUP)
1200307716	059903-002S (67794012) Matrix Spike (MS)

Method/Analysis Information:

Analytical Batch:

204440, 204452

Prep Batch:

204439, 204451

Standard Operating Procedures: GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

Analytical Method:

SW846 6010B, SW846 7471A

Prep Method:

SW846 3050B, SW846 7471A Prep

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits.

Continuing Calibration (CCV) Requirements

All CCV standards bracketing this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 67794012 was designated as the quality control sample for the ICP and CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria, with the exceptions of arsenic, chromium, and lead, as indicated by the "*" qualifiers.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the MDL for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. No dilutions were required for the CVAA analysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer:	allingue -	<u>, </u>
Date: _	10/17/12	

Metals Case Narrative for Sandia National Labs (SNLS) SDG# 67794-1

Sample Analysis:

The following samples first extracted by SW 846 method 1311, then prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
67798010	059926-007
1200307728	Methods Blank (MB) ICP-204455/204453
1200307729	LCS for batch 204453
1200307666	Methods Blank (MB) CVAA-204420/204419
1200307669	Laboratory Control Sample (LCS)

Method/Analysis Information:

Analytical Batch #:		204455, 204420
Prep Batch #:		204453, 204419

Analytical Method: SW846 6010B, SW846 7470A
Prep Method: SW846 3010, SW846 7470A

Standard Operating Procedure: GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for the analyses.

CRDL Requirements

All element recoveries in the CRDL standards met the advisory control limits (70% - 130).

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Continuing Calibration (CCV) Requirements

All CCV standards bracketing samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) bracketing samples from this SDG met the established acceptance criteria.

Quality Control (OC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the required acceptance limits.

OC Sample Statement

Sample 060043-003 (67821004) from SNLS SDG 67821 was designated as the quality control sample for the ICP batch. Sample 059582-007 (67354008) from SNLS SDG 67354 was designated as the quality control sample for the CVAA batch. A matrix spike (MS) and a sample duplicate (DUP) were analyzed in each batch. A serial dilution (SD) was analyzed in the ICP batch.

MS Recovery Statement.

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The MS analyses met the recommended quality control acceptance criteria for percent recovery (75%-125%) for all applicable analytes.

DUP RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the MDL for ICP analyses are applicable for serial dilution assessment. All applicable analyses met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

Sample Dilutions

Dilutions are performed to minimize matrix interferences (e.g., those resulting from elevated mineral element concentrations) present in the sample and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. No dilution was required.

Miscellaneous Information:

NCR Documentation

Nonconformance reports (NCR) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer:	000i sad	K.C)	_
Date:	191315		

INORGANICS QUALITY CONTROL SUMMARY

Report Date: October 17, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pameta M. Puissant

Contact:

Werkorder: 67794

Parmoame			NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Ankt	Date Time
Metals Analysia-ICE	Federal				•								
Barch 204	452												
QC1200307724	67794012	DUP	•										
Arsenic					1.87		1.35	mg/kg	32* ^		(+/-0.481)	HSC	10/15/02 02:49
Barium					44,2		50.4	mg/kg	13		(0%-20%)		
Cadmium				J	0.196	3	0.126	mg/kg	NA ^		(+/-0.481)		
Chromium	1				6.62		4.39	mg/kg	40*	•	(0%-20%)		
Lead		•	.*		4.44	,	2.81	mg/kg	45*		(0%-20%)		
Selenium				υ	ND	U	ND	mg/kg	ΝA		(+/-0.481)	i	
Silver				J	0.323	j.	0,333	mg/kg	N/A ^		(+/-0.481)		
QC1200307727	LCS			•	****	•					(,		
Arrenic			192				214	mg/kg		112	(79%-121%)		10/15/02 02:32
Bartum			417				484	me/kg		116	(80%-120%)		
Cadmium			125				139	mg/kg		111	(81%-119%)		
Chromaum			133		•		152	mg/kg		114	(77%-123%)		
Lead			160				181	mg/kg		113	(78%-123%)		
Selenium			97.0				105	mg/kg		108	(72%-128%)		
Silver			115				135	mg/kg		118	(55%-145%)		
QC1200307723	MOB						135				(55 10 2 15 16)		
Arsenic	1-22					ซ	ND	mg/kg					10/15/02 02:26
Barium						Ŭ	ND	mg/kg					
Cadmium						Ŭ	ND	mg/kg					
Chromium						Ŭ	ND	mg/kg					
Lead						ŭ	ND	mg/kg					
Selenium	•					ับ	ND	mg/kg			•		
Silver						บ	ND	mg/kg					
QC1200307726	47704012	Me				U	1110	m@.rg					
Arsenic	61134075	14172	24.3		1.87		25.5	mg/kg		97	(75%-125%)	ı	10/15/02 02:55
Barium	•		24.3		44.2		68.2	mg/kg		99	(75%-125%)		
Cadmion.			24.3	J	0.196		23.3	mg/kg		95	(75%-125%)		
Chromium			24.3	•	6.62		30.5	mg/kg		98	(75%-125%)		
Lead	•		24.3		4.44		27.7	mg/kg		96	(75%-125%)		
Selenium	•		24.3	U	ND		22.3	mg/kg		92	(75%-125%)		
Silver			24.3	j	0.323		26.5			108	(75%-125%)		
	<990 A010			. *	0.323		20.3	mg/kg		100	(1370-12370)	,	
QC1200307725 Arsenic	0//94012	SDITT			19.1	U	ND	ս ջ/ L	N/A				10/15/02 02:43
						U	-						TM 17/02 02:43
Barium Cadmium			•	1	451	••	91.4	ug/L					
				J	1.99	U	ND	ug/L	N/A				
Chromium					. 67.5		14.0	ug/L	3.63				
Lead					45.3		9.16	ug/L	1.13				
Selenium				U	ND	v	ND	ug/L	N/A				
Silver				J.	3.29	v	ND	ug/L	NA				•

QC1200307715 67794012 DUP

Workerder: 67794 Page 2 of 2 RPD% REC% Parmname NOM Sample Qual Units <u>Anist</u> Date Time Metals Analysis-Moroury Federal 204440 Batch N/A (+/-0.00979) NOR1 10/15/02 11:15 Mercury 0.00147 mg/kg 0.00179 J QC1200307717 LCS 88 10/15/02 11:07 21.1 (66%-134%) Mercury 24.0 mg/kg QC1200307714 MB 10/15/02 11:05-Mercury Ų ND mg/kg QC1200307716 67794012 MS 0.00179 0.0954 101 (75%-125%) 10/15/02 11:17 . Mercury 0.093 mg/kg

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyse is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds splice conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

OC Summary

Report Data: October 3, 2002 Page 1 of 2

Client:

Saudia National Laboratories MS-0756 P.O. Box 5800 Albuquerque, New Maxico Paroela M. Puissant

Contact:

Workorder:

67798

Растопатае		NOM		Sample	Qual	QC_	Units	RFD%	REC%	Range	4 nkt	Date Time
Matols Analysis-ICT Federal Butch 204455						t .						
										•		
QC1200307730 67821004 Arsenic	DUP	•	U	ND	· u	ND	m e/ L	N/A		(+/-0.005)	HSC	10/01/02 23:30
Barium		:	•	112	ĩ	0.00381	mg/L	N/A ^		(+/-0.005)		
Cadmium			1	0.00473	j	0.00469	mg/L	N/A ^		(+/-0,005)		
Chromium			BJ	0.00101	BJ	0.000999	xng/L	N/A ^		(+/-0.005)		-
Lend			J.	0.00387	-	0.00421	mg/L	N/A ^		(+/-0.005)		
Selection			ŭ	ND	Ü	ND	mg/L	N/A		(+/-0,005)		
Silver			·Ū	ND	ŭ	ND	mg/L	NA		(+/-0.005)		
OC1200307729 LCS			. •	1110	ŭ	1100	تربيس		•	(0.200)		
Arsenic		0.500				0.504	mg/L		101	(80%-120%)		10/01/02 22:54
Barinm		0.500				0.516	mg/L		103	(80%-120%)		•
Cadmium		0.500				0.510	mg/L		102	(80%-120%)		
Chromium	:	0.500			В	0.513	mg/L		103	(80%-120%)		
Lead		0.500			•	0.520	mg/L		104	(80%-120%)		
Sclenium		0.500				0,495	mg/L		99	(80%-120%)		
Silver	•	0.500				0.491	mg/L		98	(80%-120%)		
OC1200307728 MB		V				0.43			,,	(50.50.05)		
Arsonic					U	ND	mg/L					10/01/02 22:48
Barium					ับ	ND	me/L			•		
Cadmium			•	٠.	Ü	ND	me/L					
Chromium					ĭ	0.000567	mg/L					•
Lead ·					Ú	ND	mg/L				100	
Selecium					ซ	ND	mg/L					
Silver	•				U	ND	mg/L			•		•
OCI200907731 67821004	Ме		•	*	U	, LD	(III)					
Arsenic	IPAS .	0.500	IJ	ND		0.504	mg/L		101	(75%-125%)		10/01/02 23:36
Barinm		0.500	•	IND		0.523	mg/L		104	(75%-125%)		1000,02 02.00
Cadmium		0.500	ı	0.00473		0.514	mg/L	-	102	(75%-125%)		
Chromium		0.500	Bi	0.00101	В	0.514	mg/L		103	(75%-125%)		
Lead		0.500	1	0.00387	9	0.515	mg/L		104	(75%-125%)		•
Selenium		0.500	Ü	U.UU387		0.503	mg/L		101	(75%-125%)		•
Silver		0.500	Ü	אס מא	•	0.491	mg/L		98	(75%-125%)		
	end T	0.500	U	MD		0.431	INE		20	(1570-12570)	,	
QC1200307732 67821004 Arsenic	SULL		U	ND	1	2.65	ug/L	NA				10/01/02 23:24
Barjum			v	ND	ĵ	0.888	ug/L	N/A				10/0//02 25.27
- · ·		•					_					
Cadmium]	4.73	1	0.787	ug/L.					
Chromium			BJ	1.01	Bì	0.917	ug/L	352				
Lead	,		1	3,87	1	1.91	ug/L					
Selevium			U	ND	Ŭ,	ND.	oyl.					
Silver			U	ND	U.	ИĎ	¤⊈/L	NA				
Metals Analysis-Morcury Fader	ral lar											
Barob 204420										•		

QC1200307667 67354008 DUP

OC Summary

Workerder: 67798							Page 2 of 2	
Parmnance	NOM	Sample	Qual	QC	Units	RPD% REC%	Range Anist	Date Time
Metals Analysis-Mercary Fo Batch 204420	oleral							
Mercury		מא אס	Ų	ХD	mg/L	N/A	(+/-0.0002) NOR1	10/01/02 11:27
QC1200307669 LCS Meseury	0.002			0.00213	mg/L	106	(80%-120%)	10/01/02 11:17
QC1200307666 MB Mercury			υ	ND	mg/L		·	10/01/02 11:15
QC1200307668 67354 Mercury	008 MS 0.002	U ND		0.0021	mg/L	104	(75 %-125%)	10/01/02 11:29

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or SAPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable when it
- Andicates analyte is a surrogate compound.
- B The analyte was found in the biank above the effective MDL.
- Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyse was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see merative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

A The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of where the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Surumary.

Report Date: October 17, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pameta M. Puissant

Contact:

Werkorder: 67794

Parmoame			NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Ankt	Date Time
Metals Analysia-ICE	Federal				•								
Barch 204	452												
QC1200307724	67794012	DUP	•										
Arsenic					1.87		1.35	mg/kg	32* ^		(+/-0.481)	HSC	10/15/02 02:49
Barium					44,2		50.4	mg/kg	13		(0%-20%)		
Cadmium				J	0.196	3	0.126	mg/kg	NA ^		(+/-0.481)		
Chromium	1				6.62		4.39	mg/kg	40*	•	(0%-20%)		
Lead		•	.*		4.44	,	2.81	mg/kg	45*		(0%-20%)		
Selenium				υ	ND	U	ND	mg/kg	ΝA		(+/-0.481)	i	
Silver				J	0.323	j.	0,333	mg/kg	N/A ^		(+/-0.481)		
QC1200307727	LCS			•	****	•					(,		
Arrenic			192				214	mg/kg		112	(79%-121%)		10/15/02 02:32
Bartum			417				484	me/kg		116	(80%-120%)		
Cadmium			125				139	mg/kg		111	(81%-119%)		
Chromaum			133		•		152	mg/kg		114	(77%-123%)		
Lead			160				181	mg/kg		113	(78%-123%)		
Selenium			97.0				105	mg/kg		108	(72%-128%)		
Silver			115				135	mg/kg		118	(55%-145%)		
QC1200307723	MOB						135				(55 10 2 15 16)		
Arsenic	1-22					ซ	ND	mg/kg					10/15/02 02:26
Barium						Ŭ	ND	mg/kg					
Cadmium						Ŭ	ND	mg/kg					
Chromium						Ŭ	ND	mg/kg					
Lead						ŭ	ND	mg/kg					
Selenium	•					ับ	ND	mg/kg			•		
Silver						บ	ND	mg/kg					
QC1200307726	47704012	Me				U	1110	m@.rg					
Arsenic	61134075	14172	24.3		1.87		25.5	mg/kg		97	(75%-125%)	ı	10/15/02 02:55
Barium	•		24.3		44.2		68.2	mg/kg		99	(75%-125%)		
Cadmion.			24.3	J	0.196		23.3	mg/kg		95	(75%-125%)		
Chromium			24.3	•	6.62		30.5	mg/kg		98	(75%-125%)		
Lead	•		24.3		4.44		27.7	mg/kg		96	(75%-125%)		
Selenium	•		24.3	U	ND		22.3	mg/kg		92	(75%-125%)		
Silver			24.3	j	0.323		26.5			108	(75%-125%)		
	<990 A010			. *	0.323		20.3	mg/kg		100	(1370-12370)	,	
QC1200307725 Arsenic	0//94012	SDITT			19.1	U	ND	ս ջ/ L	N/A				10/15/02 02:43
						U	-						TM 17/02 02:43
Barium Cadmium			•	1	451	••	91.4	ug/L					
				J	1.99	U	ND	ug/L	N/A				
Chromium					. 67.5		14.0	ug/L	3.63				
Lead					45.3		9.16	ug/L	1.13				
Selenium				U	ND	v	ND	ug/L	N/A				
Silver				J.	3.29	v	ND	ug/L	NA				•

QC1200307715 67794012 DUP

Workerder: 67794 Page 2 of 2 RPD% REC% Parmname NOM Sample Qual Units <u>Anist</u> Date Time Metals Analysis-Moroury Federal 204440 Batch N/A (+/-0.00979) NOR1 10/15/02 11:15 Mercury 0.00147 mg/kg 0.00179 J QC1200307717 LCS 88 10/15/02 11:07 21.1 (66%-134%) Mercury 24.0 mg/kg QC1200307714 MB 10/15/02 11:05-Mercury Ų ND mg/kg QC1200307716 67794012 MS 0.00179 0.0954 101 (75%-125%) 10/15/02 11:17 . Mercury 0.093 mg/kg

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyze was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyse is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds splice conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

OC Summary

Report Data: October 3, 2002 Page 1 of 2

Client:

Saudia National Laboratories MS-0756 P.O. Box 5800 Albuquerque, New Maxico Paroela M. Puissant

Contact:

Workorder:

67798

Растопатае		NOM		Sample	Qual	QC	Units	RFD%	REC%	Range	4 nkt	Date Time
Matols Analysis-ICT Federal Butch 204455						t .						
										•		
QC1200307730 67821004 Arsenic	DUP	•	U	ND	· u	ND	m e/ L	N/A		(+/-0.005)	HSC	10/01/02 23:30
Barium		:	•	112	ĩ	0.00381	mg/L	N/A ^		(+/-0.005)		
Cadmium			1	0.00473	j	0.00469	mg/L	N/A ^		(+/-0,005)		
Chromium			BJ	0.00101	BJ	0.000999	xng/L	N/A ^		(+/-0.005)		-
Lend			J.	0.00387	-	0.00421	mg/L	N/A ^		(+/-0.005)		
Selection			ŭ	ND	Ü	ND	mg/L	N/A		(+/-0,005)		
Silver			·Ū	ND	ŭ	ND	mg/L	NA		(+/-0.005)		
OC1200307729 LCS			. •	1110	ŭ	1100	تربيس		•	(0.200)		
Arsenic		0.500				0.504	mg/L		101	(80%-120%)		10/01/02 22:54
Barinm		0.500				0.516	mg/L		103	(80%-120%)		•
Cadmium		0.500				0.510	mg/L		102	(80%-120%)		
Chromium	:	0.500			В	0.513	mg/L		103	(80%-120%)		
Lead		0.500			•	0.520	mg/L		104	(80%-120%)		
Sclenium		0.500				0,495	mg/L		99	(80%-120%)		
Silver	•	0.500				0.491	mg/L		98	(80%-120%)		
OC1200307728 MB		V				0.43			,,	(50.50.05)		
Arsonic					U	ND	mg/L					10/01/02 22:48
Barium					ับ	ND	me/L			•		
Cadmium			•	٠.	Ü	ND	me/L					
Chromium					ĭ	0.000567	mg/L					•
Lead ·					Ú	ND	mg/L				100	
Selecium					ซ	ND	mg/L					
Silver	•				U	ND	mg/L			•		•
OCI200907731 67821004	Ме		•	*	U	, LD	(III)					
Arsenic	IPAS .	0.500	IJ	ND		0.504	mg/L		101	(75%-125%)		10/01/02 23:36
Barinm		0.500	•	IND		0.523	mg/L		104	(75%-125%)		1000,02 02.00
Cadmium		0.500	ı	0.00473		0.514	mg/L	-	102	(75%-125%)		
Chromium		0.500	Bi	0.00101	В	0.514	mg/L		103	(75%-125%)		
Lead		0.500	1	0.00387	9	0.515	mg/L		104	(75%-125%)		•
Selenium		0.500	Ü	U.UU387		0.503	mg/L		101	(75%-125%)		•
Silver		0.500	Ü	אס מא	•	0.491	mg/L		98	(75%-125%)		
	end T	0.500	U	MD		0.431	INE		20	(1570-12570)	,	
QC1200307732 67821004 Arsenic	SULL		U	ND	1	2.65	ug/L	NA				10/01/02 23:24
Barjum			v	ND	ĵ	0.888	ug/L	N/A				10/0//02 25.27
- · ·		•					_					
Cadmium]	4.73	1	0.787	ug/L.					
Chromium			BJ	1.01	Bì	0.917	ug/L	352				
Lead	,		1	3,87	1	1.91	ug/L					
Selevium			U	ND	Ŭ,	ND.	oyl.					
Silver			U	ND	U.	ИĎ	¤⊈/L	NA				
Metals Analysis-Morcury Fader	ral lar											
Barob 204420										•		

QC1200307667 67354008 DUP

OC Summary

Workerder: 67798						Page 2 of 2	
Parmnance	NOM	Sample Qual	QC	Units RP	D% REC%	Range Anist	Date Time
Metals Analysis Mercury Fe Batch 204420	deral						
Mercury		יט סואי ט	ХD	mg/L N	∜A	(+/-0.0002) NOR1	10/01/02 11:27
Moreury LCS	0.002		0.00213	mg/L	106	(80%-120%)	10/01/02 11:17
QC1200307666 M/B Mercury		ď	ND	mg/L	•		10/01/02 11:15
QC1200307668 673540 Mercury	0.002	U ND	0.0021	mg/L	104	(75%-125%)	10/01/02 11:29

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or SAPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable when it
- Andicates analyte is a surrogate compound.
- B The analyte was found in the biank above the effective MDL.
- Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyse was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see merative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

A The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of where the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Surumary.

Report Date: October 21, 2002 Page 1 of 4

Client:

Sandia National Laboratories

MS-0756 P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Puissant

Workorder:

67794

Parmname	NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Semi-Volatiles-GC/MS Federal							_			
Batch : 204423										
OC1200307671 LCS										
1,2,4-Trichlorobenzene	1670			1190	ug/kg		72	(27%-91%)	KGBl	10/02/02 21:20
1.4-Dichlorobenzene	1670			1080	ug/kg		65	(25%-85%)		
2.4.5-Trichkorophenol	3330			2790	ug/kg		84	(42%-96%)		
2.4.6-Trichlorophenol	3330			2570	ug/kg		77	(32%-91%)		
2.4-Dinitrotoluene	1670			1370	ug/kg		82	(50%-109%)		
2-Chlorophenol	3330			2470	ng/kg		74	(31%-85%)		
4-Chloro-3-methylphenol	3330			2880	ug/kg		86	(34%-97%)		
4-Nitrophenol	3330			2190	ng/kg		66	(22%-128%)		
Acenaphthene	1670	-		1290	ng/kg		78	(39%-98%)	-	
Hexachlorobenzene	1670			1420	ug/kg		85	(41%-105%)		
Hexachlorobutadiene	1670			1190	ug/kg		72	(21%-94%)		
Hexachlorgethane	1670			1190	ug/kg		72	(25%-B6%)		
N-Nitrosodipropylamine	1670			1200	ug/kg		72	(34%-90%)		
Nitrobenzene	1670			1150	u <i>g/</i> kg	•	69	(30%-84%)		
Pentachlorophenol	3330			1970	п g/k g		59	(27%-109%)		
Phenol	3330			2290	ug/kg		69	(31%-83%)		
Pyrene	1670			1130	ug/kg		68	(37%-110%)		•
m.p-Cresols	3330			2460	ug/kg		74	(40%-83%))	
o-Cresol	3330			2240	ug/kg		67	(34%-86%)	٠.	
**2,4,6-Tribromophenol	3330			2750	ug/kg		83	(23%-111%))	
**2-Fluorobiphenyl	1670			1100	ug/kg	;	66	(21%-104%)		
**2-Fluorophenol	3330			2420	ug/kg	;	73	(22%-93%)		
**Nitrobenzene-d5	1670			1090	ug/kg		66	(24%-97%))	
**Phenol-d5	3330			2370	ug/kg		71	(22%-99%)		
**p-Terphenyl-d14	1670			1160	ug/kg	· ·	70	(30%-133%))	
QC1200307670 MB										
1,2,4-Trichlorobenzene			U	ND	ug/kg	-				10/02/02 20:59
1,2-Dichlorobenzene			V	МD	ug/kg					
1,3-Dichlorobenzene			U	ND	ug/kg					
1,4-Dichlorobenzene			U	ND	ug/kg	-				
2,4,5-Trichlorophenol			U	ND	ug/kg	=				
2,4,6-Trichtorophenol			บั	ND	ug/kg	-				
2,4-Dichlerophenol		•	U	ND	ng/k	•				
2,4-Dimethylphenol			U	ND	ug/kį					
2,4-Dinitrophenol			บ	ַ מא	n8\kt					
2,4-Dinitrotoluene			ប	ND	ug/k _i					
2,6-Dinitrotolucne			υ	ND	υ g/k (-				
2-Chiaronaphthaleae			U	ND	ug/k	_				
2-Chlorophenol			σ	ND	υ ξ /k					
2-Methyl-4,6-dinitrophenol			U	ND	ug/k	_				
2-Methylnaphthalene			U	ND	ug/k	_				
2-Nitrophenol			U	ND	ug/k	8				

Workorder: 67794										
Parmname	NOM	Sample	Qual	<u>õc</u>	Units	RPD%	REC%	Range Ankst	Date	Time
Semi-Volutiles-G-C/MS Federal										
Batch 204423										
3,3'-Dichlorobenzidine			U	ND	ug/kg					
4-Bromophenylphenylether			Ü	ND	πδ∖κβ					
4-Chloro-3-methylphenol			U	ND	ug/kg					
4-Chloroaniline			υ	ND	ug/kg					
4-Chlorophenylphenylether			U	ND	ug/kg					
4-Nitrophenal			U	ND	ug/kg					
Acenaphthene			U	ND	nā∖ķā					
Acenaphthylene			U	ND	ug/kg					
Anthracene			U	ND	nā/kā					
Benzo(a)anthracene			U	ND	ug/kg					
Benzo(a)pyrene			Ú	ND	ug/kg					
Benzo(b)fluoranthene			U	ND	nā\ķā					
Benzo(ghi)perylene			U	ND	n\$/k§			*		
Benzo(k)fluoranthene			· U	ND	ug/kg					
Butylbenzylphthalate			U	ND	ug/kg					
Carbazole			ប	ND	ug/kg					
Chrysene		•	U	ND	nã∖r8	;				
Di-n-buty lphthalate			υ	ND	ug/kg					
Di-u-octylphthalate			U	ND	ug/kg	;				
Dibenzo(n,h)anthracene			U	ND	пg/kg					
Dibenzofuran			U	ND	ug/kg					
Diethylphthalate			Ü	ND	ug/kg	•				
Dimethylphthalate			U	ND	ug/kg	Ş				
Diphenylumine			Ū	ND	ug/kg					
Fluoranthene			Ū	ND	ug/k		•			
Fluorene			Ŭ	ND	ug/k				•	
Hexachlorobenzene			Ü	ND	ug/k					
Hexachlorobuildiene			บั	ND	ug/k				•	
Hexachlorocyclopentadiene			บ	ND	ug/kj					
Hexachloroethane			Ū	ND	υ g/ ((
Indeno(1,2,3-cd)pyrene			Ŭ	ND	ug/k					
-			บั	ND	n6\r					
(sophorone			บ	ND	ug/k					
N-Nitrosodipropylamine			U	ND	ug/k					
Naphthalene			บ	ND	ug/k					
Nitrobenzene			ັນ	ND	ug/k					
Pentachlorophenol			บ	ND	ug/k			•		
Phenanthrene			บ	ND	ug/k					
Phenol			บ	ND	ug/k					
Pyrene			บ	ND	ug/k					
bis(2-Chloroethoxy)methane			_	ND	ug/k					
bis(2-Chloroethyl) ether			บ บ	מא	nS/k					
bis(2-Chloroisopropyl)ether				84.1	nS/s					
bis(2-Ethylhexyl)phthalate			J							
m,p-Cresols			IJ	ND	11g/N					
m-Nitroaniline	•		ប	ND	ug/l					
o-Cresol			ប	ND	-					
o-Nitroaniline			U	ND					•	
p-Nitroaniline			ប	ŊD	ug/)	Œ				

Parmname Semi-Volatiles-GC/N Butch 204	4423	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range Anist	Date Time
Semi-Volatiles-GCM Batch 204 **2.4,6-Tribromophe **2-Fluorobiphenyl **2-Fluorobiphenyl **2-Fluorophenol **Nitrobenzenc-d5 **Phenol-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe	4423	11000									
**2,4,6-Tribromophe **2-Fluorobiphonyl **2-Fluorobiphonyl **2-Fluorophenol **Nitrobenzenc-d5 **Phenoi-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe	4423										
**2,4,6-Tribromophe **2-Fluorobiphonyl **2-Fluorobenzenc-d5 **Phenol-d5 **Phenol-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe											
**2-Fluorobiphenyl **2-Fluorophenol **Nitrobenzene-d5 **Phenol-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe	1					2010	ug/kg		60	(23%-111%)	
**2-Fluorophenol **Nitrobenzene-d5 **Phenol-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe	SUOT .	3330					ug/kg		69	(21%-104%)	
**Nitrobenzenc-d5 **Phenoi-d5 **p-Terphenyl-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		1670				1140 2520	ug/kg		76	(22%-93%)	
**Phenoi-d5 **p-Terphenyi-d14 QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		3330				11 8 0	ug/kg		71	(24%-97%)	
**p-Terphenyl-d14 QC1200307672 1,2,4-Trichlorober 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		1670				2310	ug/kg		69	(22%-99%)	
QC1200307672 1,2,4-Trichloroben 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		3330				1210	ug/kg		73	(30%-133%)	
1,2,4-Trichlorober 1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		1670				1210	-53		, -	•	
1,4-Dichlorobenze 2,4,5-Trichlorophe 2,4,6-Trichlorophe		1.770	U	NE		1220	ug/kg		73	(15%-112%)	10/02/02 22:02
2,4,5-Trichlorophi 2,4,6-Trichlorophi		1670	Ŭ	NE		1180	ug/kg		71	(19 %-8 9%)	
2,4,6-Trichlorophi		1670	U	NE		2730	ug/kg		82		
		3330	Ü	NI		2440	ug/kg		73		
2,4-Dinitrotoluene		3330		NI MI		1270	ug/kg		76	(32%-117%)	
	8	1670	U	-		2590	ug/kg		78	(13%-101%)	
2-Chlorophenol		3330	U	· NI		2790	ug/kg	•	84	(23%-114%)	
4-Chloro-3-methy	yiphenol	3330	U	NI		2260	սց/հր		68	(20%-126%)	
4-Nitrophenol		3330	U	N			ug/ki	-	74	(15%-114%)	
Acenaphthene		1670	U	N		1240 1310	ug/kį	-	78	,	
Hexachlorobenze	ene	1670	U	N			ug/kj		71		
Hexachlorobutadi	liene	1670	υ	Ю		.1180	n8∖¢i nê∖vi		74		
Hexachloroethan	10	1670	U	N		1220			75	(18%-106%)	
N-Nitrosodipropy	ylamine	1670	υ	N.		1250	ug/kj	-	71		
Nitrobenzene		1670	Ü	N.		1190	ug/k		48	(34%-110%)	
Pentachlorophene	ol	3330	U	N		1600	ug/k	-	70	(17%-104%)	
Phenol		3330	U	N		2340	ug/k	-	50	(26%-130%)	
Pyrene		1670			32	973	nδ\κ	-	77	(20%)-130%)	
m,p-Cresols	a a	3330	υ		D	2570	ug/k	-	70		
o-Cresol		3330	Ų	N	D	2330	ug/k		82	(23%-111%)	
**2,4,6-Tribromop	phenol	3330				2720	ug/k		69	(21%-104%)	
**2-Pluorobipheny	yl	1670				1140	ug∕k	-	79	(22%-93%)	
**2-Fluorophenol		3330				2650	ug/k	•	70	(24%-97%)	
**Nitrobenzene-d5	5	1670			-	1160	πā\j		•		
**Phenol-d5		3330				2540	π\$\j	-	76	(22%-99%) (30%-133%)	
**p-Terphenyl-di4	4	1670				1010	ug/l	(3	61	(2030-13334)	
	73 67794012 MSD						0	1	74	(0%-31%)	10/02/02 22:2
1,2,4-Trichlorob		1670	U		AD.	1240	. ug/l	-	70	(0%-36%)	10.02.0
1,4-Dichlorober	nzens	1670	U		1D	1170			70 89	(0%-30%)	
2,4,5-Trichlaror		3330	U		AD:	2970	ug/l		79		
2,4,6-Trichlorop	phenol	3330	U		ND	2620	ug/				
2,4-Dinitrotolue	ene	1670	U		AD.	1380	ug/		83	•	
2-Chlorophenol		3330	Ų		ND	2540	n 84	-	. 76	•	
4-Chloro-3-met		3330	U		ND	3130	_	_	94	·	
4-Nitrophenol	- 1	3330			ND	2060					
Acenaphthene		1670			ND	1320					
Hexachloroben	120110	1670	บ	•	ND	1490	_				
Hexachlorobut		1670	U	l	ND	1230		/kg 4			
Hexachiarocth		1670			מא	1170		Akg 5			
N-Nitrosodipro		1670		ī	ND	1270		/kg 1			
Nitrobenzene	abh amarina	1670			ND	1220) n \$	/kg 3			
Pentachlorophe	enol	3330			ND	1750) աջ	/kg 9	52	(0%-40%)	

Workorder: 67794	4						•	Page 4	of 4	
Parmname	NOM		Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-GC/MS Federal Batch 204423										
Phenol	3330	U	ND	2400	ug/kg	3	72	(0%-37%)		
Pyrene	16 7 0		132	1140	ug/kg	18	61	(0%-39%)		
m.p-Cresols	3330	IJ	ND	2580	ug/kg	1	77			
o-Cresol	3330	U	ND	2410	ug/kg	4	72			
**2,4,6-Tribromophesol	3330			2590	ug/kg		78	(23%-111%)		
**2-Fluorobiphenyl	1670			1160	ug/kg		70	(21%-104%)		
**2-Fluorophenol	3330			2460	ug/kg		74	(22%-93%)		
**Nitrobenzenc-d5	1670		-	1150	ug/kg		69	(24%-97%)		
**Phenol-d5	3330			2440	ug/kg		73	(22%-99%)		
**p-Terphenyl-d14	1670			1150	ug/kg		69	(30%-133%))	

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where t
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 21, 2002 Page 1 of 4

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder: 67798

Parmname	MOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anist	Date Time
Serpi-Voladies-GC/MS Federal										
Batch 204661										
QC1200308141 LCS										
Pyridine	50.0	-		19.4	ng/L		39		KGB1	10/01/02 22:14
1,2,4-Trichlorobenzene	50.0 -			36:3	ug/L		73	(53%-104%)		
1,4-Dichlorobenzeue	50.0			35.4	ug/L		71	(47%-102%)		
2,4,5-Trichlorophenol	100			95.3	ug/L		95	(67%-106%)		-
2,4,6-Trichlorophenol	100			92.8	ag/L		93	(45%-111%)		
2,4-Dinitrotoluene	50.0			42.7	ug/L		86	(55%-121%)		
2-Chlorophenol	100			71.7	ug/L		72	(47%-87%)		
4-Chloro-3-methylphenol	100			88.6	ug/L		89	(51%-100%)		
4-Nitrophenol	100			23.4	ug/L		23	. (10%-55%)		
Acenaphtheno	50.0	•		44.2	ug/L		88	(63%-111%)		
Hexachlorobenzene	50.0			47.1	ug/L		94	(67%-114%)		
Hexachlorobunadiene	50 .0			35.1	ug/L		70	(44%:106%)		
Hexachloroethane	50.0		•	35.6	ug/L		71	(47%-97%)		
N-Nitrosodipropylamine	50.0			41.2	ug/L		83	(52%-118%)		
Nitrobenzene	50.0			35.1	ug/L		70	(49%-110%)		
Pentachiorophenoi	100	•		62.2	ug/L		62	(31%-110%)		
Phonol	100			25.0	ug/L		25	(16%-44%)		
Pyrens	50.0			36.4	ug/L		73	(68%-117%)		
m.p-Cresols	100			57.8	ug/L		58	(43%-100%)		
o-Cresul	100			60.9	ug/L		6l	(47%-87%)		
*2,4,6-Tribromophenal	100			95.5	ug/L ug/L		96	-		
*2-Fluorobiphenyl	50.0	•		40.3	ug/L		18	(27%-126%)		
*2-Fluoropheaol	100			40.3	_			(32%-109%)		
*Nitrobenzene-d5	50.0				ug/L		40	(13%-73%)		
*Phenoi-d5	100			34.3	ug/L		69 07	(33%-107%)		
	50.0			26.5	ug/L		27	(14%-66%)		
*p-Terphenyl-d14	30.0			37.9	ug/L		76	(36%-130%)		
QC1200308140 MB 1,2,4-Trichlorobenzene			·υ	3773						100100115
1.2-Dichlorobenzene				ИD	ug/L					10/01/02 14:57
1,3-Dichlorobenzene		•	ŭ	סא	ug/L					-
1,4-Dichlorobenzene			ប	ND	ug/L					
-		*	ប	ND	ug/L					
2.4.5-Trichlorophenol			Ŭ	ND	ug/L	,				•
2,4,6-Trichlorophenot			ŭ	ND	πâ√Γ					
2,4-Dichlorophenol			U	ND	ug/L					
2,4-Dimethylphonal		•	ប	ND	ug/L					
2,4-Dinitrophenol			U	ND	ug/L					
2,4-Dinitrotoluene			Ü	ND	ug/L					
2.6-Dinitrotoluene			U	ND	ug/L					
2-Chloronaphthalene	-		Ü	ND	ug/L					•
2-Chlorophenol	•		ับ	ND	ug/L					
2-Methyl-4,6-dinitrophenol	•		ប	ND	ug/L					
2-Methylnaphthalene			u	ND	սջ/Ն					

		QC SIII	innar y	•						
Workorder: 67798							Page 2	t of 4		
Parmname	NOM	Sample Qual	QÇ	Units	RPD%	REC%	Range	Anlst	Date	Time
Semi-Volatiles-GC/MS Federal										
Batch 204661										
2-Nitrophenol		υ	ND	ug/L						
3,3'-Dichlorobenzidine		บ็	ND	ug/L						
4-Bromophenylphenylether		ับ	ND	ug/L			•			
4-Chloro-3-methylphenol		ับ	ND	ug/L						
4-Chloroaniline		Ü	ND	ug/L						
4-Chlorophenylphenylether		ŭ	ND	ug/L						
4-Nitrophenol		Ū	ND	ս <u>ր</u> /և						
Acenaphthene		บั	ND	ug/L						
Acenaphthylene	Ť	Ü	ND	ug/L						
Anthracene		Ŭ	ND	ug/L	-					
Benzo(a)anthracene		· ŭ	מא	ug/L						
Benzo(a)pyrene		บั	ND	ug/L			•			
Benzo(b)fluoranthene		Ŭ·	ND	ug/L		-				
Benzo(ghi)perylene		บั	ND	ug/L						
Benzo(k)fluoranthene		บ	ND	ng/L					•	
Butylbenzylphthalate	•	Ü	ND	ug/L						
Carbazole		บ	ND	ug/L						
Chrysene		Ü	ND	ug/L						
Di-n-buyiphthalale		ŭ	ND	ug/L						
Di-n-octylphthalate		Ü	ND	ug/L						
Dibenzo(a,h)anthracene		ັບ	ND	ug/L						
Dibenzofuran		Ü	ND.	ug/L						
Diethylphthalate		บ	עע עע	_						
Dimethylphchalate		ů.	סא	ug/L						
Diphenylamine		ប	ND	ug/L						
Fluoranthene		บ	ND	ug/L ug/L						
Fluorene		บ	ND							
Hexachlorobenzene		บ	ND	ng/L		5.				
Hexachlorobutadiene		Ü		ug/L						
Hexachlorocyclopentaciene		บ	ND ND	ug/L	•					
Hexachloroethane		น	ND	ug/L ug/L						
Indeno(1,2,3-cd)pyrene		บ	ND				•			
Isophorone		່ີ	ND	ug/L						
N-Nitrosodipropylamine		บ	ND	ug/L						
Naphthalene		บ		ug/L						
Nitrobenzene		Ü	ND	ug/L		•				
Peotachiorophenol			ND	ug/L						
Phonanthrene		Ú	ND	ug/L						
Phenol		ប	. ND	ug/L						
Pyrene		ບ •••	ND	ug/L						
bis(2-Chloroethoxy)methane			ND	ug/L		-	-			
bis(2-Chloroethyl) ether		บ	ND	ug/L						
bis(2-Chloroisopropyl)ether			ND	ug/L						
bis(2-Ethylhexyl)phthalate		Ů,	ND	ug/L						
m,p-Cresols		ប	ND	ug/L						
m-Nitroaniline		U	ND	ug/L						
o-Creso)		Ų	ND	ug/L						
		U	ND	ug/L						
o-Nitroaniline		Ū	ND	ug/L						

OC Summary

Workorder:

Partuname	NO	34							Page 3	of 4	
Semi-Volatiles-GC/MS Federal			Sample	Qual	QC	Units	RPD%	REC	& Runge	Anist	Date Time
Batch 204661											Tune Tune
p-Nitroaniline				. +1	••-						
**2,4,6-Tribromophenol	100			U	ND	ug/L					
**2-Fluorobipheny!	50.0				54.8	ug/L,		55	(27%-126%)	1	
**2-Fluoropheno!	100				34.3	ug/L		69	(32%-109%)		
**Nitrobenzene-d5	50,0				36.3	ug/L		36	(13%-73%)		
**Phenoi-d5	100		•		32.9	ug/L		66	(33%-107%)		
""p-Terphenyl-d14	50.0				21.1	ug/L		21	(14%-66%)		
QC1200308146 67798005 MS Pyridine	100				33.7	ug/L		67	(36%-130%)		
1,2,4-Trichlorobenzene	100	υ			0.00	og/L,					10/01/02 17:02
1,4-Dichlorobenzene	100	U	ND		73.9	μg/L		74	(44%-102%)		1000102 17:02
2,4,5-Trichiorophenol	200	บ	ND		68.1	ug/L		68	(48%-95%)		
2,4,6-Trichlorophenoi	20 0		ND		177	n g/ L,		- 88	(,		
2.4-Dinitrotoluene	100	U	ND		174	ug/L		87			
2-Chlorophenol	200	Ű	ND		. 773	ug/L,		77	(48%-120%)		
4-Chloro-3-methylphenol	200	Ū	ND		145	ug/L		72	(32%-98%)		
4-Nitrophenol	200	Ü	ND		167	ug/L,		84	(40%-107%)		
Acenaphthene	100	ប	ND		63.5	ug/L		32	(16%-78%)		
Hexachlorobeuzene	100	U .	ND		84.3	ug/L		84	(32%-127%)		
Hexachlorobutadiene	100	Ū.	ND		103	ug/L		103	(
Hexachloroethane	100	U	ND		70.3	ug/L		70			
N-Nitrosodipropylamine	100	U	ND		72.4	ug/L		72			
Nitrobenzene	100	U	ND		77.6	ug/L		78	(44%-119%)		
Pentachlorophenol	200	U	ND		68.7	ug/L		69			
Phenol	200	U ·	ND		124	ug/L		62	(44%-104%)		
Pyrene	100	U	ND		77.6	ug/L		39	(15%-70%)		
m,p-Cresols	200	U	ND		81.0	ug/L			(29%-142%)		
o-Cresol	200	U	ND		127	ug/L		64	(
**2,4,6-Tribromophenol	200	U	ND		129	Ug/L		65			
**2-Fluorobiphenyl	100		55.6		162	սջ/Լ		81	(27%-126%)		
**2-Fluorophenol	200		29.6		76.8	ug/L			(32%-109%)		
**Nitrobenzene-d5	100		28.7		107	ug/L		53	(13%-73%)		
**Phenol-d5	200		28.6		64.5	ug/L		65	(33%-107%)		
**p-Terphenyl-d14	100		16.9		80.9	ug/L	:	40	(14%-66%)		
QC1200308147 67798005 MSD Pyriding			36.0		80.4	ug/L		80	(36%-130%)		
1.2.4-Trichlorobenzene	100				0.00	ug/L	*				
1,4-Dichlorobenzene	100	Ü	ND		78.8	ug/L	6	79	(OF SOFT)		10/01/02 17:22
2,4,5-Trichlorophenol	100	Ü	ND		73.3	ug/L	7	73	(0%-20%) (0%-20%)		
2,4,6-Trichlorophenol	200	U	ND		204	ug/L	15	102	(0.00-2039)		
2,4-Dinitrocoluene	200	U	ND		189	ug/L	8	94	·		
2-Chlorophenol	100	Ü	ND		84.2	ug/L	9	84	(0%-15%)		
4-Chloro-3-methylphenol	200	Ü	ND		153	ug/L	6	76	(0%-25%)		
4-Nicrophenol	200	Ŭ	ND		181	ug/L	8	90	•		
Acenaphthene	200	Ū	ND		79.1	ug/L	22	40	(0%-25%)		
Rexachiorobenzene	100	Ū	ND		93.5	ug/L	10	94	(0%-25%)		
Hexachlorobutadiene	100	Ū	ND		102	ug/L	1	102	(0%-24%)		
Hexachioroethane	100	U	ND		75.9	ug/L	8	76			
	100	U	ND		76.6	ug/L	6	70 77			
*						-6	•	11			

Workorder: 67798

Page 4 of 4

Parmname	NOM		Sample	Qual	QC .	Units	RPD%	REC%	Range	Ankt	Date Time
Semi-Volatiles-GC/MS Federal Batch 204661	-							•			
N-Nitrosodipropylamine	100	ប	ND		85.5	ug/L	10	86	(0%-20%)		
Nitrobenzene	100	U.	ND		75.8	ug/L	10	76		-	
Pentschlorophenal	200	U	ND		132	υ <u>ε</u> /L	6	66	(0%-17%)		
Phenol	200	U	ND		82.9	ug/L	7	42	(0%-29%)		
Pyrene	100	U	ND		70.9	ug/L		71	(0%-30%)		
m,p-Cresols	200	U	סא		145	ug/L	13	72			
o-Cresol	200	U	ND		140	ug/L	8	70			
**2,4,6-Tribromophenol	200		55.6		174	ug/L		87	(27%-126%)		
**2-Fluorobiphenyl	100		29.6		83.0	ug/L		83	(32%-109%)		
**2-Pluorophenol	200		28.7		107	ug/L		54	(13%-73%)		
**Nitrobenzene-d5	100		28.6		68.6	ug/L		· 69	(33%-107%)		
* *Phenol-d5	200		16.9	•	84.5	ug/≟		42	(14%-66%)		
**p-Terphenyl-d14	100		36.0		70.5	ug/L		71	(36%-130%)		

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where it
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. }
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDiLT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

PCB Case Narrative Sandia National Labs (SNLS) SDG# 67794

Method/Analysis Information

Procedure:

Polychlorinated Biphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW846 3550B

Analytical Batch Number:

204381

Prep Batch Number:

204380

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200307556	PBLK01(Method Blank)
1200307557	PBLK01LCS(Laboratory Control Sample)
1200307560	059903-002MS(Matrix Spike)
1200307561	059903-002MSD(matrix Spike Duplicate)

SNLS SDG#67794 - PCB

Page 1 of 5

System Configuration

Chromatographic Columns

Column ID	Column Description
J&WJ	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
J&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.51mn
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25um DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25um
J&W6	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.25mm
RESTEK	Rtx-CLPesticides 30m x 0.25mm x 0.25mm x 0.25mm x 0.25mm x 0.20mm

^{*} Durabond and DB-XLB are trademarks of J & W.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK
ECD2	HP 6890 Series GC ECD/ECD	RESTEK
ECD3	HP 6890 Series GC ECD/ECD	RESTEK
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK

SNLS SDG#67794 - PCB

Page 2 of 5

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CVS Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The following sample was selected for the PCB method QC:

Client Sample ID#

Laboratory Sample ID#

059903-002

67794012

The method QC included a Matrix Spike (MS) and Matrix Spike Duplicate (MSD).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

SNLS SDG#67794 - PCB

Page 3 of 5

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology, which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP. All samples underwent sulfur cleanup procedure.

Sample Dilutions

None of the samples in this SDG was required dilution.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

Manual Integrations

Certain standards and samples required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations are performed, copies of all manual integration peak profiles will be included in the raw data section of this package.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm". Sample 67794018 contained more than one PCB. The quantitation of PCB may be elevated due to overlapping PCB patterns.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

SNLS SDG#67794 - PCB

Page 4 of 5

GEL require all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. Review Validation: nation presented in this case narrative: data package.

ata package.	tion presented in this case
sidator verif	jed the information pro
The following data valuator	ned the information presented in this case Date:Date:
Paviewer: Juni Cao	

PCB Case Narrative Sandia National Labs (SNLS) SDG# 67794-1

Method/Analysis Information

Procedure:

Polychlorinated Biphenyls by Method 8082

Analytical Method:

SW846 8082

Prep Method:

SW846 3510C

Analytical Batch Number:

204654

Prep Batch Number:

204653

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 8082:

Sample ID	Client ID
67798006	059926-003
1200308119	PBLK01 (Method Blank)
1200308120	PBLK01LCS (Laboratory Control Sample)

System Configuration

Chromatographic Columns

Column ID	Column Description
J&WI	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-608 Durabond stationary phase* 30m x 0.53mm x 0.5um
J&W2	DB-5(5%-Phenyi)-methylsiloxane 30m x 0.32mm x 1.0um DB-1701 Durabond stationary phase* 30m x 0.32mm x 0.5um
1&W3	DB-5(5%-Phenyl)-methylsiloxane 30m x 0.53mm x 1.5um DB-1701(14% Cyanopropylphenyl)-methylsiloxane 30m x 0.53mm x 0.5um
J&W4	DB-608 Durabond stationary phase* 30m x 0.53mm x .83um DB-XLB* 30m x 0.53mm x 1.5um
J&W5	DB-XLB* 30m x 0.25mm x 0.25mm DB-17MS(50%-Phenyl)-methylsiloxane 30m x 0.25mm x

SNLS SDG#67794-1 - PCB

0.25um

DB-5(5%-Phenyl)-methylsiloxane 30m x 0.25mm x 0.

Instrument Configuration

The samples reported in this SDG were analyzed on one or more of the following instrument systems. Instrument systems are referenced in the raw data and individual form headers by the Instrument ID designations listed below.

Instrument ID	System Configuration	Chromatographic Column
ECD1	HP 6890 Series GC ECD/ECD	RESTEK*
ECD2	HP 6890 Series GC ECD/ECD	RESTEK*
ECD3	HP 6890 Series GC ECD/ECD	RESTEK*
ECD4	HP 5890 Series II Plus GC ECD/ECD	J&W5
ECD5	HP 6890 Series GC ECD/ECD	J&W5
ECD7	HP 6890 Series GC ECD/ECD	J&W5
ECD8	HP 6890 Series GC ECD/ECD	RESTEK*

^{*}The columns were changed to RTX-CLPEST1 and RTX-CLPEST2.

Preparation/Analytical Method Verification

Procedures for preparation, analysis, and reporting of analytical data are documented by General Engineering Laboratories, Inc. (GEL) as Standard Operating Procedures (SOP).

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this SDG.

CCV Requirements

All calibration verification standard(s) (CVS, ICV or CCV) requirements have been met for this SDG.

Quality Control (QC) Information

Surrogate Recoveries

All the surrogate recoveries were within the established acceptance criteria for this SDG.

^{*} Durabond and DB-XLB are trademarks of J & W.

Blank Acceptance

The blank(s) analyzed with this SDG met the established acceptance criteria.

LCS Recovery Statement

The Laboratory Control Sample (LCS) spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

The MS and MSD were analyzed on a sample contained in another SNLS SDG (67821).

MS Recovery Statement

The matrix spike recoveries for this SDG were within the established acceptance limits.

MSD Recovery Statement

The matrix spike duplicate recoveries for this SDG were within the established acceptance limits.

MS/MSD RPD Statement

The relative percent differences (RPD) between each MS and MSD were within the required acceptance limits.

Technical Information

Holding Time Specifications

GEL assigns holding times based on the associated methodology which assigns the date and time from sample collection or sample receipt. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time requirements.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

None of the samples in this SDG required any dilutions.

Sample Re-prep/Re-analysis

None of the samples in this sample group were reprepped or reanalyzed.

Miscellaneous Information

Nonconformance (NCR) Documentation

No nonconformance reports (NCRs) have been generated for this SDG.

SNLS SDG#67794-1 - PCB

Manual Integrations

No manual integrations were required for any data file in this SDG. Certain standards and QC samples may have required manual integrations to correctly position the baseline as set in the calibration standard injections. If manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this PCB fraction.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. The following additional comments were required for this sample set:

Aroclors quantitated on the raw data report by the Target data system do not necessarily represent a positive aroclor identification. In order for positive identification to be made, the aroclor must match in pattern and retention time; as well as quantitate relatively close between the primary and confirmation columns, as specified in SW846 method 8000. When these conditions are not met, the aroclor is reported as a non-detect on the data report. These situations will be noted on the raw data as DMP, representing "does not match pattern", or DNC "does not confirm".

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

		1		1.	. 🖋 🕠	
T)		100	Th - 4	10/18	1 m	
Keviewer:	Frin		Date:	14/13	,	

GC/ECD PCB QUALITY CONTROL SUMMARY

Report Date: October 18, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Paraela M. Puissant

Workorder:

67794

÷										
Parmname NOM	<u> </u>	Sample	Qual	QC	Units	RPD%	REC%	Rango	Anlst	Date Time
Semi-Volatiles-PCB Federal Batch 204381										
QC1200307557 LCS			•							
Aroclor-1260 33.3				29.7	ug/kg	,	89	(48%-116%)	GH1	10/01/02 10:49
**4cmx 6.67				5.06	ug/kg		76	(31%-120%)		
**Decachlorobiphenyl 6.67				5.52	ug/kg	-	83	(34%-115%)		
QC1200307556 MB				٠.						
Areclor-1016			· U	ND	ug/kg					10/01/02 10:37
Aroclor-1221			U	ND	ug/kg					
Aroclor-1232			U	ND	ug/kg					
Aroclor-1242			U	ND	vg/kg			•		
Aroclor-1248			U	ND.	ug/kg			•		•
Aroclor-1254			ប	ND	ug/kg					
Aroclor-1260			ັບ	ND	ug/kg	•				
**4cmx 6.67				5.16	ug/kg	-	77	(31%-120%)		•
**Decachlorobiphenyl 6.67				5.43	ug/kg	•	82	(34%-115%)		
OC1200307560 67794012 MS					• •	,				
Aroclor-1260 33.3	U	ND		14.8	ug/kg		44	(36%-134%)		10/01/02 14:03
**4cmx 6.67		4.81		2,39	ug/kg		36 .	(31%-120%)		
**Decachlorobipheayl 6.67		5.27		2.72	ug/kg		41	(34%-115%)		
QC1200307561 67794012 MSD										
Aroclor-1260 33.3	U -	ND		15.6	ug/kg	5	47	(0%-30%)		10/01/02 14:16
**4cmx 6.67	•	4.81		2.53	· ug/kg		38	(31%-120%)		
**Decachlorobiphenyl 6.67		5.27		2.86	ug/kg		43	(34%-115%)		

Notes: .

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. I
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- K Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder: 67794

Page 2 of 2

Date Time Units RPD% REC% Range Anlst Sample Qual QC NOM Parmname

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-

the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 17, 2002 Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Pnissant

Workorder:

67798

Parminame	NOM	Sa	mple.	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Semi-Volatiles-PCB Fedural Botch 204654											
QC1200308120 LCS					0.770			77	(47%-131%)	MM	10/01/02 13:03
Aroclor-1260	1.00				0.770	ug/L		74	(34%-116%)		10/01/02 13:03
**4cmx	0.200				0.148	ug/L					
**Decachlorobiphenyl	0.200				0.126	ug/L		63	(21%-122%)	١.	
QC1200308119 MB											10401400 10.60
Aroctor-1016				U	ND	ug/L					10/01/02 12:52
Aroclor-1221				U	ND	ug/L					
Aroclor-1232				U	ND	ug/L					
Aroclor-1242				u	ND	ug/L					
Aroclor-1248				U	ND	ug/L					
Aroclor-1254				U	ND	սg/L					•
Aroclor-1260				U	ND	ug/L					
**4cmx	0.200				0.145	ug/L		72	(34%-116%))	
**Decachlorobiphenyl	0.200				0.140	นg/L		70	(21%-122%))	
QC1200308125 67821005 MS						_					
Arocior-1260	00.1	U	ND		0.560	ug/L		56	(21%-113%))	10/01/02 12:18
**4cmx	0.200		0.132		0.130	น <u>ะ</u> /โ		65	(34%-116%)	
**Decuchlorabiphenyl	0.200	9	0.0574		0.0692	ug/L		35	(21%-132%)	•
QC1200308126 67821005 MSD				-	V	-5		-	•	•	
Aroclor-1260	1.00	U	ΝD		0.600	սջ/Ն	7	60	(0%-30%)	10/01/02 12:29
**4cmx	0.200	-	0.132		0.133	ug/L		66	(34%-116%		
**Decachlorobiphenyl	0.200		0.0574	•	0.0771	ug/L		39	(21%-122%	-	
Decacington buenkt	0.200		V-VJ /~		0.0171	rê D			(~1. m-142 N	,	

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not computible with the sample or the duplicate RPD's are not applicable where t
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

Workorder:	67798	•			01 2	2					
Parmame		NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anist	Date	Time
N/A indicates ^ The Relative	e Percent Differences (5X) the contract	y limits do not apply who ce (RPD) obtained from a required detection limit the DUP result. s, the values listed are the	(RL). In cases where	either the samp	le or dupl	licate value	of 4 or more. ptence criter is less than.	ia when the SX the RL,	e sample i a control	is greater t limit of +	than /-
Where the n	nalytical method	l has been performed u standard unless qualif	inder NELAP certif	fication, the an			of the			.`	

INORGANIC ANALYSIS

Inorganic Case Narrative for Sandia National Laboratory SDG# 67794

Sample Analysis:

The following samples were prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200307723	Method Blank (MB) ICP
1200307727	Laboratory Control Sample (LCS)
12003 07725	059903-002L (67794012) Serial Dilution (SD)
1200307724	059903-002D (67794012) Sample Duplicate (DUP)
1200307726	059903-002S (67794012) Matrix Spike (MS)
1200307714	Method Blank (MB) CVAA
1200307717	Laboratory Control Sample (LCS)
1200307715	. 059903-002D (67794012) Sample Duplicate (DUP)
1200307716	059903-002S (67794012) Matrix Spike (MS)

Method/Analysis Information:

Analytical Batch:

204440, 204452

Prep Batch:

204439, 204451

Standard Operating Procedures: GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

Analytical Method:

SW846 6010B, SW846 7471A

Prep Method:

SW846 3050B, SW846 7471A Prep

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min,

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for this analysis.

CRDL Requirements

All CRDL standards met the referenced advisory control limits.

Continuing Calibration (CCV) Requirements

All CCV standards bracketing this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) bracketing this SDG met the established acceptance criteria.

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the required detection limits (RDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the established acceptance limits.

QC Sample Designation

Sample 67794012 was designated as the quality control sample for the ICP and CVAA batches. Each batch included a sample duplicate (DUP) and a matrix spike (MS). The ICP batch included a serial dilution (SD).

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. All qualifying elements met the established acceptance limits for percent recovery.

RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria, with the exceptions of arsenic, chromium, and lead, as indicated by the "*" qualifiers.

Serial Dilotion % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the MDL for ICP analyses are applicable for serial dilution assessment. All applicable analytes met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples were analyzed within the specified holding times.

Sample Dilutions

Dilutions are performed to minimize matrix interference resulting from elevated mineral element concentrations and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. The samples were diluted the standard 2x for soils on the ICP. No dilutions were required for the CVAA analysis.

Miscellaneous Information:

NCR Documentation

Nonconformance reports are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR's were issued for this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer: _	allis ple C	
Date:	interior	

Metals Case Narrative for Sandia National Labs (SNLS) SDG# 67794-1

Sample Analysis:

The following samples first extracted by SW 846 method 1311, then prepared and analyzed using the methods referenced in the "Method/Analysis Information" section of this narrative:

Sample ID	Client ID
67798010	059926-007
1200307728	Methods Blank (MB) ICP-204455/204453
1200307729	LCS for batch 204453
1200307666	Methods Blank (MB) CVAA-204420/204419
1200307669	Laboratory Control Sample (LCS)

Method/Analysis Information:

Analytical Batch #: 204455, 204420 Prep Batch #: 204453, 204419

Analytical Method: SW846 6010B, SW846 7470A
Prep Method: SW846 3010, SW846 7470A

Standard Operating Procedure: GL-MA-E-013 REV.6, GL-MA-E-010 REV.10

System Configuration

The ICP analysis was performed on a Thermo Jarrell Ash 61E Trace axial-viewing inductively coupled plasma atomic emission spectrometer. The instrument is equipped with a Meinhardt nebulizer, cyclonic spray chamber, and yttrium internal standard. Operating conditions for the Trace ICP are set at a power level of 950 watts. The instrument has a peristaltic pump flow rate of 140 RPM (2.0 mL/min sample uptake rate), argon gas flows of 15 L/min and 0.5 L/min for the torch and auxiliary gases, and a pressure setting of 26 PSI for the nebulizer.

Mercury analysis was performed on a Perkin-Elmer Flow Injection Mercury System (FIMS-400) automated mercury analyzer. The instrument consists of a cold vapor atomic absorption spectrometer set to detect mercury at a wavelength of 254 nm. Sample introduction through the flow injection system is performed via a peristaltic pump at 9 mL/min and nitrogen carrier gas rate of 5 L/min.

Sample Preparation

All samples were prepared in accordance with the referenced SW-846 procedures.

Calibration Information:

Initial Calibration

Instrument calibrations are conducted using method and instrument manufacturer's specifications. All initial calibration requirements have been met for the analyses.

CRDL Requirements

All element recoveries in the CRDL standards met the advisory control limits (70% - 130).

ICSA/ICSAB Requirements

All interference check standard (ICSA and ICSAB) elements associated with this SDG met the established acceptance criteria.

Continuing Calibration (CCV) Requirements

All CCV standards bracketing samples from this SDG met the established recovery acceptance criteria.

Continuing Calibration Blanks (CCB) Requirements

All continuing calibration blanks (CCB) bracketing samples from this SDG met the established acceptance criteria.

Quality Control (QC) Information:

Method Blank Acceptance

The preparation blanks analyzed with this SDG did not contain analytes of interest at concentrations greater than the client required detection limits (CRDL).

LCS Recovery Statement

All LCS spike recoveries for this SDG were within the required acceptance limits.

OC Sample Statement

Sample 060043-003 (67821004) from SNLS SDG 67821 was designated as the quality control sample for the ICP batch. Sample 059582-007 (67354008) from SNLS SDG 67354 was designated as the quality control sample for the CVAA batch. A matrix spike (MS) and a sample duplicate (DUP) were analyzed in each batch. A serial dilution (SD) was analyzed in the ICP batch.

MS Recovery Statement

The percent recoveries (%R) obtained from the MS analyses are evaluated when the sample concentration is less than four times (4X) the spike concentration added. The MS analyses met the recommended quality control acceptance criteria for percent recovery (75%-125%) for all applicable analytes.

DUP RPD Statement

The relative percent difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria of 20% when the sample is greater than five times (5X) the contract required detection limit (RDL). In cases where either the sample or duplicate value is less than 5X the RDL, a control limit of +/- the RDL is used to evaluate the DUP results. All applicable elements met the DUP acceptance criteria.

Serial Dilution % Difference Statement

The serial dilution is used to assess interference caused by matrix suppression or enhancement. Raw element concentrations that are at least 50X the MDL for ICP analyses are applicable for serial dilution assessment. All applicable analyses met the acceptance criteria.

Technical Information:

Holding Time Specifications

All samples in this SDG met the specified holding time requirements.

Sample Dilutions

Dilutions are performed to minimize matrix interferences (e.g., those resulting from elevated mineral element concentrations) present in the sample and/or to bring over range target analyte concentrations into the linear calibration range of the instruments. No dilution was required.

Miscellaneous Information:

NCR Documentation

Nonconformance reports (NCR) are generated to document procedural anomalies that may deviate from referenced SOP or contractual documents. No NCR was generated with this SDG.

Additional Comments

The additional comments field is used to address special issues associated with each analysis, clarify method/contractual issues pertaining to the analysis and to list any report documents generated as a result of sample analysis or review. Additional comments were not required for this SDG.

Review/Validation:

GEL requires all analytical data to be verified by a qualified data validator.

The following data validator verified the data presented in this SDG:

Reviewer:	College Supplier	
Date:	19131 52	

INORGANICS QUALITY CONTROL SUMMARY

Report Date: October 17, 2002 Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexica Pamela M. Puissant

Contact:

Workorder:

Parmoame	 .,		NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Tin
Metals Analysis-IC	P Federal						•						
Barch 20	445 2												
QC1200307724	67794012	DUP											
Arsenic					1.87		1.35	mg/kg	32* ^		(+/-0.481)	HSC	10/15/02 02:
Barium					44.2		50.4	mg/kg	13		(0%-20%)		
Cadmium				J	0.196	J	0.126	mg/kg	N/A ^		(+/-0.481)	ŀ	
Chromium	•				6.62		4.39	mg/kg	40*		(0%-20%)		
Lead		٠.			4.44		2.81	mg/kg	45*		(0%-20%)		
Selenium				υ	ND	U	ND	mg/kg	N/A		(+/-0.481)		
Silver				J	0,323	j	0,333	mg/kg	N/A A		(+/-0.481)		
QC1200307727	LCS					Ť							
Arsenic			192				214	mg/kg		112	(79%-121%)	1	10/15/02 02
Baciem			417				484	mg/kg		116	(80%-120%)		
Cadmium			125				139	mg/kg		111	(81%-119%)	1	
Chromium			133		•		152	mg/kg		114	(77%-123%)	1	
Lead			160				181	nog/kg		113	(78%-123%)	1	
Selenium			97.0				105	mg/kg		108	(72%-128%)		
Silver			115				135	mg/kg		118	(55%-145%)		
QC1200307723	MB										•		
Arsenic						υ	ND	mg/kg					10/15/02 02
Barium						υ	. ND	mg/kg					
Cadmium						U	ND	mg/kg					
Chromium						U	ND	mg/kg					
Lead						U	ND	mg/kg					
Selenium	•					ับ	ND	mg/kg			·		
Silver						v	ND	mg/kg					
QC1200307726	6779401	2 MS					,						
Arsenic			24.3		1.87	. *	25.5	mg/kg		97	(75%-125%))	10/15/02 02
Barium	•		24.3		44.2	,	68.2	mg/kg		99	(75%-125%))	
Cadmium			24.3	J	0.196	;	23.3	mg/kg		95	(75%-125%))	
Chromium			24.3		6.62	:	30.5	mg/kg		98	(75%-125%)		
Lead			24.3		4.44		27.7	mg/kg		96	(75%-125%))	
Selenium			24.3	U	ND		22.3	mg/kg		92	(75%-125%))	
Silver			24.3	J	0.323		26.5	mg/kg		108	(75%-125%))	
QC1200307725	5 67794011	2 SDELT	ı	:							•	•	
Arsenic					19.1	U	ND	ug/L	N/A				10/15/02 02
Barium					451		91.4	ug/L	1.41				
Cadmium				J	1.99		ND	ug/L					
Chromium					67.5	_	14.0	ug/L					
Lead					45.3		9.16	ug/L					
Selenium				U	ND		ND	ug/L					
Silver			•	Ĵ.	3.29		ND	ug∕L					
	farmery Fast	امحما		. •	J.E.	Ŭ		ح رون	7.41.7				
Metals Analysis-M Batch 2	iercury Fed 194440	eral				•		-					

QC1200307715 67794012 DUP

G

QC Summary

Workorder: 67794

Page 2 of 2

									60 - 01 -	
Рагтияте	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time
Metals Analysis-Mercury Federal Batch 204440		•			,		٠			
Mercury		ı	0.00179	3	0.00147	mg/kg	N/A		(+/-0.00979) NOR1	10/15/02 11:15
QC1200307717 LC\$	•				•					
Mercury	24.0				21.1	mg/kg		88	(66%-134%)	10/15/02 11:07
QC1200307714 MB									•	
Mercury				ប	ND	mg/kg	•			10/15/02 11:05-
OC1200307716 67794012 MS										
Mercury	0.093	J	0.00179		0.0954	mg/kg		101	(75%-125%)	10/15/02 11:17

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** Indicates analyte is a surrogate compound,
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analytic concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Report Date: October 3, 2002

Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Contact:

Albuquerque, New Mexico Panuela M. Puissant

Workorder.

67798

Parmname			NOM		Sample	Qual	<u>QC</u>	Units	RPD%	REC%	Range	Aukt	Date Time
Metak Analysis-ICP		_											
Batch 204	455		•					•					
QC1200307730	67821004	DUP											
Amenic				U	ND	Ŋ	ИD	mg/L	N/A		(+/-0.005)	HSC	10/01/02 23:30
Bariam			•			3	0.00381	mg/L	N/A ^		(+/-0.005)		•
Carricon				J	0.00473	J	0.00469	mg/L	N/A ^		(+/-0.005)		
Chromium				BJ	0.00101	BJ	0.000999	mg/L	N/A ^		(+/-0.005)		
Lead				3 .	0.00387	` J	0.00421	mg/L	N/A ^		(+/-0.005)		
Selenium				ับ	ND	Ų	ND	Theor	N/A		(+/-0.005)		
Silver				· U	ND	ט	ND	mg/L	N/A		(+/-0.005)		
QC1200307729	LCS							_					
Arsenic			0.500				0.504	må∖r		101	(80%-120%)		10/01/02 22:54
Barium			0.500				0.516	mg/L		103	(80%-120%)		
Cadmium			0.500				07210	mg/L		102	(80%-120%)		
Chromium		:	0.500			В	0. 5 13	mg/L		103	(80%-120%)		
Lead		•	0.500				0.520	mg/L		104	(80%-120%)		
Scienium			0.500				0.495	mg/L		99	(80%-120%)		
Silver	٠.		0.500				0.491	mg/L		98	(80%-120%)		
QC1200307728	MB												
Arsonic						υ	ďИ	mg/L			•		10/01/02 22:48
Barium						υ	ND	ng/L					
Cadmium			•			υ	ďИ	mg/L					:
Chromium						J	0.000567	mg/L	•				
Lead						U	ND	mg/L					
Seleaium						U	NJD	mg/L					
Silver		•				\boldsymbol{v}	ND.	mg/L					
QC1200307731	67821004	MS											
Arsenic			0.500	IJ	ND		0,5 0 4	mg/L		101	(75%-125%)		10/01/02 23:36
Barinra			0.500				0.523	mg∕L		104	(75%-125%)		
Cadmium			0.500	J	0.00473		0.514	mg/L		102	(75%-125%)		
Chromium			0.500	BI	0.00101	B	0.518	mg/L		103	(75%-125%)		
Lead			0.500	1	0.00387		0.525	mg/L		104	(75%-125%)		
Selenium			0,500	υ	ŊD	٠.	0.503	mg/L		101	(75%-125%)		
Silver			0.500	U	МD		0.491	mg/L		98	(75%-125%))	
QC1200307732	67823004	SDELT				_		_					14 10 1 10 00 0
Arsenic				U	ND	J	2.65	ugL	N/A				10/01/02 23:2
Barium			-	_		J	0.888	ug/L	NA				
Cedmium				J	4.73	1	0.787	ug/L	16.8				
Chromium				BJ	1.01	BI	0.917	ug/L					
Lead				1	3.87	J	1.91	ug/L	145				
Selevium				U	ND	บ	, ND	a y L	NA				
Silver				U	ND	ŭ	ND	og/L	NA		• .		
Metals Analysis-Ma	ecury Fed	era i											
	4420												•

QC1200307667 67354008 DUP

Workerder: 67798	•			Page 2 of 2				
Рагипалье	NOM	Sample Qual	QC	Units R	PD% REC%	Range Ankt	Date Time	
Metals Analysis-Mercury Federal Brich 204420								
Mercury QC1200307669 LCS	. 0	NO U	ND	mf√L	N/A	(+/-0.0002) NOR1	10/01/02 1:27	
Mercury QC1200307666 MB	0.002		0.00213	mg/L	106	(80%-120%)	10/01/02 11:17	
Mercury OC1200307668 67354008 Ms	· .	ט	ND	mg/L	•		10/01/02 11:15	
Mercury	0.002 U	ND	0.0021	mg/L	104	(75%-125%)	10/01/02 11:29	

Notes

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or SRPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where it
- hdicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyse was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presuroptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone, by a factor of 4 or more.

A The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5%) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5% the RL, a control limit of +/the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GENERAL CHEMISTRY ANALYSIS

General Chemistry Narrative Sandia National Labs (SNLS) SDG 67794

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

205123

Prep Batch Number:

205122

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
1200309255	MB
1200309256	DUP of 67601015

1200309257 DUP of 67601016 1200309258 MS of 67601015 1200309259 MS of 67601016 1200309261 LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (OC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 67601015 and 67601016

Sample Spike Recovery

The spike recoveries for this sample set were within the required acceptance limits.

Sample Duplicate Acceptance

The Relative Percent Differences between the samples and duplicates for this SDG were within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200309261.

Sample Reanalysis

The method blank (1200309255) was reanalyzed because there was no sample in the autosampler cup during the original analysis.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

206136

Prep Batch Number:

206135

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 9012A:

Sample ID	Client ID
67794022	059915-002
1200311349	MB
1200311351	DUP of 67794022
1200311352	MS of 67794022
1200311367	LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 67794022.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

<u>Technical Information:</u>

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The following QC sample in this sample group was diluted 1:50 due to high concentration for this analysis: 1200311367.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Method/Analysis Information

Procedure: Hexavalent Chromium

Analytical Method: SW8467196A

Prep Method: SW846 3060A

Analytical Batch Number: 205618

Prep Batch Number: 205617

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
67794012	059903-002
1200310247	MB
1200310248	DUP of 67601013
1200310249	DUP of 67601023
1200310250	MS of 67601013
1200310251	MS of 67601023
1200310252	LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following SNLS samples were designated for Quality Control: 67601013 and 67601023.

Sample Spike Recovery

The spike recoveries for this sample set were within the GEL SPC limits, but were outside of the client's required acceptance limits of 75%-125%. See NCR# 6532.

Sample Duplicate Acceptance

The Relative Percent Differences between the samples and duplicates for this SDG were within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

NCR# 6532 was written for this sample batch.

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW846 7196A

Prep Method:

SW846 3060A

Analytical Batch Number:

205620

Prep Batch Number:

205619

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200310253	MB
1200310254	DUP of 67794013
1200310255	MS of 67794013
1200310256	LCS

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

The following sample was designated for Quality Control: 67794013.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	2	Date:	10/21102	•
20012017-021		Dau.	75456	

General Chemistry Narrative Sandia National Labs (SNLS) SDG 67794-1

Method/Analysis Information

Procedure:

Hexavalent Chromium

Analytical Method:

SW846 7196A

Analytical Batch Number:

204193

Sample Analysis

The following samples were analyzed using the analytical protocol as established in SW846 7196A:

Sample ID	Client ID
67798009	059926-006
1200307123	MB for batch 204193
1200307124	DUP of 67608009
1200307125	PS of 67608009
1200307126	LCS for batch 204193

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-044 REV.4.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Milton Roy Spectrophotometer 200

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

Quality Control

SNLS sample 67608009 was designated for Quality Control.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The Relative Percent Difference between the sample and duplicate for this SDG was within the required acceptance limits.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

The samples from this sample group were received by the lab outside of the method specified holding time. The samples were analyzed on the day they were received.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

Nonconformance report (NCR) 5078 was submitted by the project manager for sample 67798009 because the sample was received out of holding for hexavalent chromium analysis.

Additional Comments

Sample 67798009 was analyzed before being logged in to LIMS. Therefore, the sample could not be scanned to custody prior to analysis.

Method/Analysis Information

Procedure:

Total Cyanide

Analytical Method:

SW846 9012A

Prep Method:

SW846 9010B Prep

Analytical Batch Number:

205981

Prep Batch Number:

205980

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA 335.3:

Sample ID	Client ID
67798008	059926-005
1200311080	MB for batch 205981
1200311081	LCS for batch 205981
1200311082	DUP of 67798008
1200311083	MS of 67798008
1200311474	LCSD for batch 205980

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-GC-E-095 Rev. 1.

Preparation/Analytical Method Verification

The SOP stated above has been prepared based on technical research and testing conducted by General Engineering Laboratories, Inc. and with guidance from the regulatory documents listed in this "Method/Analysis Information" section.

Calibration Information:

The instrument used in this analysis was the following: Lachat QuickChem FIA+

Initial Calibration

The instrument was properly calibrated.

Calibration Verification Information

All calibration verification standards were within the required limits.

Quality Control (QC) Information:

Blank Acceptance

The method and calibration blanks associated with this data were within the required acceptance limits.

Laboratory Control Sample Recovery

The recovery for the laboratory control sample was within the required acceptance limits.

LCS Duplicate Recovery

The LCS Duplicate recovery was within the required acceptance limits.

LCS Duplicate RPD

The Relative Percent Difference between the LCS and LCS Duplicate was within the required acceptance limits.

Quality Control

Samples 67798008 was designated for Quality Control.

Sample Spike Recovery

The spike recovery for this sample set was within the required acceptance limits.

Sample Duplicate Acceptance

The values for the sample and duplicate for this sample group are less than the Practical Quantitation Limit (PQL); therefore, the RPD is not applicable.

Technical Information:

GEL assigns holding times based on the date and time of sample collection. Those holding times expressed in hours are calculated in the AlphaLims system by hours. Those holding times expressed as days expire at midnight on the day of expiration.

Holding Times

All samples from this sample group were analyzed within the required holding time for this method.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

No samples in this sample group required dilutions.

Miscellaneous Information:

Nonconformance Reports

No Nonconformance Reports (NCR) were required for any of the samples in this sample group for this analysis.

Certification Statement

* Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:	O A	Date:	10/10/02	

GENERAL CHEMISTRY QUALITY CONTROL SUMMARY

Report Date: October 18, 2002 Page 1 of 2

Client:

Sandia National Laboratories MS-0756 P.O. Box 5800

Albuquerque, New Mexico Pamela M. Puissant

Contact:

Workorder:

67794

Parinname		NO	М	Sample	Qual	QC	Units	RPD%	REC%	Paner 4-34	
Rapid Flow Analysis Federal							A-11179	AL D 70	"'ĒC.20	Range Aulst	Date Time
Batch 205123											•
QC1200309256 6760101	S DUP										
Cyanide, Total			υ	ND	υ.	ND		KT/A			
QC1200309257 57501016	י פעם		•	110	U	IND	mg/kg	N/A		(+/-0.250) ADF	10/02/02 12:36
Cyanide, Total			U	ND	υ	ND	mg/kg	N/A		1. (A ora)	
QC1200309261 LCS					-		π.e.v€	IVA		(+/-0.250)	10/02/02 12:38
Cyanide, Total		277				252	mg/kg		91	(62%-138%)	10/00/00 10:04
QC1200309255 MB									~*	(0110-13010)	10/02/02 12:34
Cyanide, Total					U	ND	mg/kg				10/02/02 13:51
QC1200309258 67601015 Cyunide, Total	MS										10,02,02,13,31
QC1200309259 67601016	. 3.49	5.00	· U	ND		5.26	mg/kg		105	(55%-145%)	10/02/02 12:36
Cyanide, Total	MS .	4.55	Ü							•	·.
Barch 206136		4,33	U	ND		4,49	mg/kg		98	(55%-145%)	10/02/02 12:39
								,			
QC1200311351 67794022 Cyanide, Total	DUP										
			BU	ND	BU	УD	mg/kg	N/A		(+/-0.227) ADF	10/08/02 10:39
QC1200311367 LCS Cyanide, Total		277			_					•	
QC1200311349 MB	•	211			В	264	mg/kg		96	(62%-138%)	10/08/02 10:35
Cyanide, Total							_				
QC1200311352 67794022	MS				1	0.0883	mg/kg				10/08/02 10:31
Cyanide, Total		5.00	BU	ND	В	4.60	A		00		
Spectrometric Analysis Federa	1			2,423	В	4,00	mg/kg		92	(55%-145%)	10/08/02 10:40
Batch 205618	-									* .	
QCI200310248 67601013	Th: IB			1							
Hexavalent Chromium	DGF		U	ND	U						•
QC1200310249 67501023	DUP		v	IND	U	, ND	mg/kg	N/A		(+/-0.0995) BEP2	10/11/02 09:00
Hexavalent Chromium			บ่	ND	. u	ND		MILA			
QC1200310252 LCS			•			ערו	mg/kg	N/A		(+/-0.0985)	
Hexavalent Chromium		0.985				0.956	mg/kg		97	/70# 101#\	•
QC1200310247 MB						0.750			97	(72%-121%)	•
Hexavalent Chromium					U	ND	mg/kg				
QC1200310250 67601013	MS										
Hexavalent Chromium		0.993	υ	ND		0.665	mg/kg		63 1	(49%-130 %)	
QC1200310251 67601023 Hexavalent Chromium	MS								,		
Batch 205620		0.993	U	ND		0.715	mg/kg		71 ((49%-130%)	
										•	
QC1200310254 67794013	DUP										
Hexavalent Chromium			U	ND	U	ND	mg/kg	N/A		(+/-0.0993) BEP2	10/11/04 00:20
QC1200310256 LCS Hexavalent Chromium										(11 010)55) 01022	10/11/02 09:30
		0.998			·	1.00	mg/kg		100 (72%-121%}	
QCI200310253 MB Hexavalent Chromium		•				•			•	/	
QC1200310255 67794013	340				U	ХD	mg/kg				
Hexavalent Chromium	MS	0.985	u ·	h/F-			<u>.</u>				
		A1303	U	ND		0.936	mg/kg		95 (49%-130%)	

QC Summary

Workerder: 6

\$7794

Page 2 of 2

Parminame NOM Sample Qual QC Units RPD% REC% Range Anist Date Time

Notes:

RER is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the
- ** . Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.
- H Holding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- X Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see parrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of #the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

QC Summary

Report Date: October 9, 2002

Page 1 of 2

Client:

Sandia National Laboratories

MS-0756

P.O. Box 5800

Albuquerque, New Mexico Pamela M. Poissent

Contact:

Workerder:

67798

Parmname	NOM	Sample (Qual	QÇ	Units	RPD%	REC%	Range	Anist	Date Time
Rapid Flow Analysis Federal Batch 205981				•						
QC1200311082 67798008 DUP Cyanide, Total	Ú	ИD	U .	ND	mg/L	N/A		(+/-0.005)	ADF	10/04/02 10:52
QC1200311081 LCS Cyanide, Total	0.050			0.0483	mg/L		97			10/04/02 10:48
QC1200311474 LCSD Cyanide, Total	0.050			0.0506	mg/L	5	101			10/04/02 10:49
QC1200311080 MB Cyamide, Total			U	ND	mg/L					10/04/02 10:47
QC1200311083 67798008 MS Cyanide, Total	0.100 U	ND		0.100	mg/L		100	•		10/04/02 10:56
Spactrametric Analysis Federal Batch 204193										
QC1200307124 67608009 DUP Hexavalent Chromium	HU	ND	HU	ND	mg/L	N/A		(+/-0.010)	VH1	09/26/02 14:20
QC1200307126 LCS Hexavalent Chromium	0.100	•		0.099	mg/L		99			
QC1200307123 MB Hexavalent Chromium QC1200307125 67608009 PS			บ	ND	mg/L					•
Hexavalent Chromium	0.100 HU	ND	H	D.093	mg/L	•	93	, .		

Notes:

RHR is calculated at the 95% confidence level (2-sigma).

The Qualifiers in this report are defined as follows:

- Recovery or KRPD not within acceptance limits and/or spike amount not competible with the sample or the duplicate RPD's are not applicable where d
- Indicates analyte is a surrogate compound.
- В The analyte was found in the blank above the effective MDL.
- Н Holding time was exceeded
- Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL 1
- P The response between the confirmation column and the primary column is >40%D .
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. 1
- Х Presumptive evidence that the analyte is not present. Please see narrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

QC Summary

Workorder: Date Time REC% Range Anist Units RPD% QÇ NOM Sample Qual Parmname

Page 2 of 2

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike cone by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-

the RL is used to evaluate the DUP result.
For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

67798

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

RADIOLOGICAL ANALYSIS

Radiochemistry Case Narrative Sandia National Labs (SNLS) Workorder 67794

Method/Analysis Information

Batch Number:

205013

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample ID	Client ID
67794012	059903-002
67794013	059904-002
67794014	059905-002
67794015	059906-002
67794016	059907-002
67794017	059908-002
67794018	059910-001
67794019	059912-002
67794020	059913-002
67794021	059914-002
67794022	059915-002
1200308987	MB for batch 205013
1200308988	059915-002(67794022DUP)
1200308989	059915-002(67794022MS)
1200308990	059915-002(67794022MSD)
1200308991	LCS for batch 205013

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (QC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample was used for QC: 67794022.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prop/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt com int in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minemia: it is interference, the salts are converted to oxides by heating the sample under a flame until s dull red color is (2) ined. The conversion to exides stabilizes the sample weight and ensures that proper alpharti a efficiencies are, ssigned for each sample. Volatile radicisotopes of carbon, hydrogen, techneticas, polonian, and cosium may be lost during sample beating, especially to a dull red heat. For this sample set, the previous planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha at livity. This sequence causes the alpha count run data to record over the bota count run data in AlphaLims, therefore only the sighs count data will appear on the instrument rankog,

Miscel | Decus Information:

NCR Documentation

No NCR were generated for the preparation or analysis of this sample set.

Onalifier Information

Manual qualifiers were not required.

Certification Statement
Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative,

Review Validation:

GEL requires all analytical data to be varified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package. The following data validator verified the information presented in this case marrative:

Radiochemistry Case Narrative Saudia National Laba (SNLS) SDG 67794-1

Method/Analysis Information

Batch Number:

204950

Procedure:

Determination of Gross Alpha And Gross Non-Volatile Beta in Water

Analytical Method:

EPA 900.0

Sample ID	Client 1D
67798011	059926-008
1200308804	MB for batch 204950
1200308805	059826-008(67169011DUP)
1200308806	059826-008(67169011MS)
1200308807	059826-008(67169011MSD)
1200308808	LCS for batch 204950

SOP Reference

Procedure(s) for preparation, analysis and reporting of analytical data are controlled by General Engineering Laboratories, Inc. as Standard Operating Procedure(s) (SOP). The data discussed in this narrative has been analyzed in accordance with GL-RAD-A-001 REV.6.

Calibration Information:

Calibration Information

All initial and continuing calibration requirements have been met. The initial calibration was performed on June 12, 2002.

Standards Information

Standard solution(s) for these analyses are NIST traceable and used before the expiration date(s).

Sample Geometry

All counting sources were prepared in the same geometry as the calibration standards.

Quality Control (OC) Information:

Blank Information

The blank volume is representative of the sample volume(s) in this batch.

Designated QC

The following sample was used for QC: 67169011. The QC sample is from SNLS work order 67169.

QC Information

All of the QC samples met the required acceptance limits.

Technical Information:

Holding Time

All sample procedures for this sample set were performed within the required holding time.

Preparation Information

All preparation criteria have been met for these analyses.

Sample Re-prep/Re-analysis

None of the samples in this sample set required reprep or reanalysis.

Gross Alpha/Beta Preparation Information

High hygroscopic salt content in evaporated samples can cause the sample mass to floctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile refloisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating, expected by to a dull red heat. For this sample set, the prepared planchet was counted for beta activity before being flamed. After flaming, the planchet was counted for alpha activity. This sequence causes the alpha count run data to record over the beta count run data in AlphaLims, therefore only the alpha count data will appear on the instrument runlog.

Miscellaneous Information:

NCR Documentation

No NCR's were generated for the preparation or analysis of this sample set.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Review Validation:

GEL requires all analytical data to be verified by a qualified data validator. In addition, all data designated for CLP or CLP-like packaging will receive a third level validation upon completion of the data package.

The following data validator verified the information presented in this case narrative:

Reviewer:

Date: 12 Oct 2. on

RADIOCHEMISTRY QUALITY CONTROL SUMMARY

Meeting today's needs with a vision for tomorrow:

QC Summary

Report Date: October 18, 2002

Page 1 of 2

Sandia National Laboratories

MS-0756 P.O. Bex 5840

Contact:

Client :

Albuquerque, New Mexico Pamela M. Puissant

Workorder: 67794

Permusine	17025				*	·			•
	NOM	Sample Qu	u oc	Units	RER	REC%	Range	Anlat	Date Time
Gravimetric Sellds		٠.							
Betch 294314		•	:						
QC1200307411 67794012 DUP			•		-				
Moisture	•	5.17	3.50		30.				•
		2.11	220	percent	.39*		(0%-24%)	YMB	09/27/02 11:40
Red Gas Flow									•
305013									
QC1200308988 67794022 DUP	••								
Alpha		٠	• •		•				
- Copular - Copu	**	12.3	11.1	pCi/g	0.190		(0%-20%)	131	10/16/02 01:36
	Uncert:	+/-3.06	+/-2.71						•
Bletz.	TPU:	3.30	2.80						
	•	18.0	18.6	pCi/g	0.243		(0%-20%)		
	Uncort:	+/-1.38	₩-1.40				•		
QC1200308991 LCS	· TPU:	1.40	1.45						
Albin	9.89								
	Uncert		11.2	pCi/g		113	(75%-125%)		10/16/02 19:13
			+/-1.77			• .			
Beta	TPU: 39.7		2.04						
			46.2	pCVg	:	117	(75%-125%)		
*	Uncert	•	+/-2.55						
QC1200308987 - Mrs	TPU:		2.69						
Alpha		•	0.0348					•	
	Uncert:	L	414410	pCi∕g					10/16/02 01:36
•	TPU:		+/-0.0996	٠	*	•		•	•
3eta	170:	•	0.0997			<u>:</u>			
*: *	Tlasses	Ū.	******	pC1/g					
•	Uncert		+/-0.0876						•
QC1200308989 67794022 MS	TPU:		. 0.0876						
Lipha	84.5	12.3		· 					
	Uncert	+/-3.06	83.6	pCi/g		84 ((75%-125%)		10/16/02 18:33
:			+/-17.8						
leta ·	TPU: 339	3.30	19.4	•					
	*	18.0	326	pCi/g		´ 91 (75%-125%)	•	
	Uncert	+/-1.38	+/-19,3		•	•			
QC1200308990 67794022 MSD	TPU:	1.40	20,0						
Loha	97.9	100					•		
		12.3	105	pCi/g		. 94			
•	Uncert:	+/-3.06	+/-22.5						•
eta ·	Tru:	3.30	26.1						
<u></u>	393	18.0	381	, bcy.a.	-	92			
• • •	Uncert	+/-1.38	+/-22.3					•	•
•	TFU:	1.40	23,2		•				

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 * Fax (843) 766-1178

GENERAL ENGINEE ING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary:

Workerder:

677**54**

Page 2 of 2

Parmname NOM Sample Qual QC Units RER REC% Range Anist Date Time

Notes:

The Qualiflers in this report are defined as follows:

- Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- Indicates applyte is a surrogate compound.
- B The analyse was found in the blank above the effective MDL.
- H Halding time was exceeded
- J Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for our not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL. For radiochemical analytes the result is less than the Decision Level
- X: Presumptive evidence that the analyte is not present. Please see marrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infimmation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spiles recovery limits do not apply when sample concentration acceeds spike cone. By a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than

five times (SX) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- tha

RL is used to evaluate the DUP result.

For PS, PSD, and SDLIT results, the values listed are the measured amounts, not finel concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 * Charleston, SC 29417 * 2040 Savage Road * 29407

(843) 556-8171 " Fax (843) 766-1178

Printed on Recycled Paper.

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

QC Summary

Report Date: October 12, 2002

Page 1 of 2

Client:

Sandis National Laboratories

MS-9756

P.O. Box 5800

Albuquerque, New Mexico

Contact:

Pamela M. Poissant

Workorder:

67798

Paramane	NOM	Sample ()ual	QC	Units	RER	REC%	Range Anist	Date Time
Red Gas Yew									
Batch 204950									•
QC1200300805 67169011 DUP	•				٠.				
Alpha	u	-0.293	U	-0.582	~C5/I	0.389		(+/-1.00)HOB1	10000000000
	Uncert:	+/-0.333	. •	+/-0.403	pos	V.242		(47-1.00)(100)	10/06/02 03:44
	TPU:	0.334	•	0.408		٠.		•	
Beta	V. U	-0,0536	U.	0.077	pCi/L	0.188		(+/-1.00)	
	Uncere	+/-0.341	•	+/-0.354				(11-1300)	
	TPU:	0.341		0.354					
QC1200906806 LCS				0120					
Alpha	9.89			10.9	pCi/L		110	(75%-125%)	10/07/02 21:03
*	Uncert			4/-1,84	•			,	
	TPU:			2.18					
Beta .	39.7	•		44.1	pCi/L		111	(75%-125%)	
	Uncert			4/-2,45					
	TPU:			2.52					
QC1200308&04 MB				•	•	•			
Alpha			U	0.0431	pCi/L	•			10/08/02 05:44
	Uncert:			+/-0.0745					
_	TPU:		•	D.0746				•	
Beta			U	0.126	pCi/L	•		•	
	Uncert			+/-0.162			*		
	TPU:	•		0.162					
QC1200308806 67169011 MS									
Alpha	49.4 U	-0.293		56.9	p Ci/L	,	116	(75 %-125%)	10/07/02 21:03
	Uncert:	+/-0.333		+/-9.21					
P	TPU:	0.334		. 12.7					
Beta	199 U	-0.0536		227	pCi/L		114	(75%-125%)	
	Uncert	+/-0.341		+/-12.3					
OCTOORSON CTIONS I MAD	TPU;	0.341		12,4					
QC1200308807 67169011 MSD Alpha	49.4 U	-0.293		55.3	_0.0		112	MER IAEM	
Zupus .	Uncert:	+/-0.333		+/-9.67	pCi/L	,	. 113	(75%-125%)	
	TPU:	0.334		11.9				•	
Beta	199 tj	-0.0 536		214	pCi/L		100	(75%-125%)	
	Uncert	+/-0.341		+/-12.3	PLPL		TÁP	(1378-1218)	
	TPU:	0.341		12.9					
	IPŲ:	U.341		14.9				•	

Notes:

The Qualifiers in this report are defined as follows:

- * Recovery or %RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective PQL.
- ** Indicates analyte is a surrogate compound.
- B The analyte was found in the blank above the effective MDL.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES.

Meeting today's needs with a vision for tomorrow.

QC Summary

Workerder: 67198

Page 2 of 2

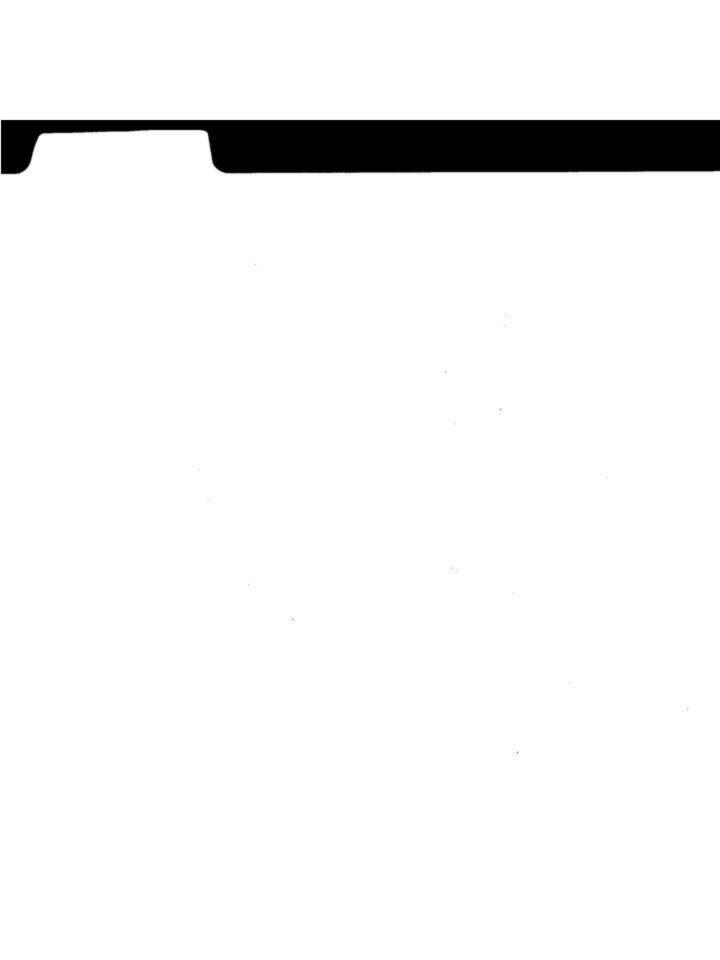
Parmname NOM Sample Qual QC Units RER REC% Range Anist Date Time

- H Holding time was exceeded
- I Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- P The response between the confirmation column and the primary column is >40%D
- U The analyte was analyzed for but not detected below this concentration. For Organic and Inorganic analytes the result is less than the effective MDL.

 For radiochemical analytes the result is less than the Decision Level
- X Presumptive evidence that the analyte is not present. Please see marrative for further information.
- X Presumptive evidence that the analyte is not present. Please see narrative for further infromation.
- X Uncertain identification for gamma spectroscopy.

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample displicate (DUP) is evaluated against the acceptance criseria when the sample is greater than


five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicans value is less than 5X the RL, a pointed limit of 4/- the

RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29407 (843) 556-8171 • Fax (843) 766-1178

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 9/26/02 9:57:52 AM

Customer : SANDERS M (6135)

Customer Sample ID : 059903-003 Lab Sample ID : 20134201

Sample Description : 6710/1034-SP1-BH1-14-S

Sample Quantity : 884.000 gram

Sample Date/Time : 9/19/02 11:25:00 AM Acquire Start Date/Time : 9/26/02 8:17:38 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram
U-238 RA-226 PB-214 214 210	Not Detected 1.17E+000 5.20E-001 4.78E-001 Not Detected	4.46E-001 8.08E-002 8.29E-002	4.26E-001 6.32E-001 4.61E-002 4.95E-002 7.12E+000
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212 TL-208	3.22E-001 3.44E-001 4.99E-001 5.89E-001 5.17E-001 4.98E-001 1.87E-001 4.36E-001	1.85E-001 1.36E-001 1.16E-001 1.91E-001 1.38E-001 7.60E-002 2.17E-001 8.56E-002	1.82E-001 1.82E-001 1.05E-001 3.60E-001 6.63E-002 3.33E-002 3.48E-001 7.12E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		1.74E-001 5.72E+000 1.22E+000 2.67E-001 1.42E-001 3.20E-001 7.30E-001
AM-241 PU-239 NP-237 F 233	Not Detected Not Detected Not Detected Not Detected Not Detected		1.47E-001 3.00E+002 1.63E+000 4.79E-002 1.70E-001

lide	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.67E-002
AG-110m	Not Detected		2.91E-002
BA-133	Not Detected		3.64E-002
BE-7	Not Detected		
CD-115	Not Detected		2.33E-001
CE-139	Not Detected Not Detected		4.73E-001
CE-141	Not Detected Not Detected		2.19E-002
CE-144	Not Detected Not Detected		4.41E-002
CM-243	Not Detected	~	1.67E-001
CO-56	Not Detected	~	1.49E-001
CO-57	Not Detected Not Detected	*******	3.08E-002
CO-58	Not Detected Not Detected	~-~	2.12E-002
CO-60	Not Detected Not Detected	~~~~~~	3.21E-002
CR-51	Not Detected Not Detected	~	3.86E-002
CS-134	Not Detected Not Detected		2.38E-001
CS-134	1.16E-002	1 167 000	3.84E-002
EU-152	Not Detected	1.16E-002	1.83E-002
EU-154		~~~~~	6.28E-002
EU-155	Not Detected Not Detected	~~~~~	1.70E-001
FE-59	Not Detected Not Detected	~	9.47E-002
GD-153		~	7.98E-002
HG-203	Not Detected	~~~~~~	5.63E-002
I <u>-</u> 131	Not Detected Not Detected		2.99E-002
192			4.39E-002
7 5 7 5 7 5	Not Detected		2.44E-002
MN-52	1.83E+001	2.49E+000	2.82E-001
MN-54	Not Detected		7.84E-002
MO-99	Not Detected		3.29E-002
NA-22	Not Detected Not Detected	~~	1.27E+000
NA-24			4.58E-002
ND-147			6.53E+001
NI-57		~	2.97E-001
RU-103			1.24E+000
RU-106			2.66E-002
SB-122			2.51E-001
SB-122 SB-124	Not Detected		1.98E-001
SB-124 SB-125	Not Detected		2.66E-002
SN-113	Not Detected		7.32E-002
SR-85	Not Detected		3.37E-002
TA-182	Not Detected		3.34E-002
TA-183	Not Detected		1.52E-001
TL-201	Not Detected	~-~	3.21E-001
Y-88	Not Detected		3.28E-001
ZN-65	Not Detected	~	2.45E-002
ZR-95	Not Detected		1.03E-001
7V-33	Not Detected		5.72E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 1:19:59 PM

Analyzed by: $\sqrt{\frac{3}{26}}$ Reviewed by: $\sqrt{\frac{3}{26}}$

Customer : SANDERS M (6135)

Customer Sample ID : 059904-003 Lab Sample ID : 20134202

Sample Description : 6710/1034-SP1-BH1-19-S

Sample Quantity : 871.000 gram

Sample Date/Time : 9/19/02 12:00:00 PM Acquire Start Date/Time : 9/26/02 9:59:58 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
Not Detected		4.28E-001
1.24E+000	4.20E-001	5.72B-001
6.17E-001	9.42E-002	5.35E-002
5.60E-001	9.33E-002	4.77E-002
Not Detected		7.57E+000
4.43E-001	2.33E-001	1.93E-001
	1.21E-001	1.44E-001
		1.77E-001
3.90E-001		3.87E-001
7.30E-001		8.77E-002
5.24E-001	7.95E-002	3.43E-002
6.08 E-001	2.44E-001	3.21E-001
4.48E-001	9.21E~002	8.53E-002
Not Detected		1.74E-001
Not Detected		5.84E+000
Not Detected		1.24E+000
Not Detected		2.70E-001
Not Detected		1.48E-001
Not Detected		3.11E-001
Not Detected		7.08E-001
Not Detected		1.35E+001
Not Detected		1.49E-001
Not Detected		3.12E+002
Not Detected		1.64E+000
Not Detected		5.17E-002
Not Detected		1.69E-001
	(pCi/gram) 1.24E+000 6.17E-001 5.60E-001 Not Detected 4.43E-001 5.17E-001 Not Detected 3.90E-001 7.30E-001 6.08E-001 4.48E-001 Not Detected	(pCi/gram)

	Juclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected		3.62B-002
	AG-110m	Not Detected		2.63E-002
	BA-133	Not Detected		3,72E-002
	BE-7	Not Detected		2.48E-001
	CD-115	Not Detected		4.86E-001
	CE-139	Not Detected		2.28E-002
	CE-141	Not Detected		4.36E-002
	CE-144	Not Detected		1.73E-001
	CM-243	Not Detected		1.48E-001
	CO-56	Not Detected		3.26E-002
	CO-57	Not Detected		2.20E-002
	CO-58	Not Detected		3.13E-002
	CO-60	Not Detected		3.80E-002
	CR-51	Not Detected		2.38E-001
	CS-134	Not Detected		3.96E-002
	CS-137	Not Detected		2.85E-002
	EU-152	Not Detected	*****	6.52E-002
	EU-154	Not Detected		1.69E-001
	EU-155	Not Detected		9.76E-002
	FE-59	Not Detected		8.06E-002
	GD-153	Not Detected		5.76E-002
	HG-203	Not Detected		2.93E-002
	I-131	Not Detected		4.41E-002
	IR-192	Not Detected		2.53E-002
4	K-40	1.46E+001	2.01E+000	2.85E-001
•	MN-52	Not Detected		6.89E-002
	MN-54	Not Detected	~	3.21E-002
	MO-99	Not Detected	~~~~~	1.28E+000
	NA-22	Not Detected	~	4.46E-002
	NA-24	Not Detected		7.20E+001
	ND-147	Not Detected		2.87E-001
	NI-57	Not Detected		1.33E+000
	RU-103	Not Detected		2.77E-002
	RU-106	Not Detected	~~~~~~	2.52E-001
	SB-122	Not Detected	~~~~~~	2.17E-001
	SB-124	Not Detected		2.71E-002
	SB-125	Not Detected		7.52B-002
	SN-113	Not Detected	*******	3.45E-002
	SR-85	Not Detected		3.23E-002
	TA-182	Not Detected		1.59E-001
	TA-183	Not Detected		3.24E-001
	TL-201	Not Detected		3.40E-001
	Y-88	Not Detected	***	2.70E-002
	ZN-65	Not Detected		1.04E-001
	ZR-95	Not Detected		5.58E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 1:22:31 PM

Analyzed by: Burely Key 9/27/02 Reviewed by: 1/3/

Customer : SANDERS M (6135)

Customer Sample ID : 059905-003 Lab Sample ID : 20134203

Sample Description : 803/1052-SP1-BH1-22-S

Sample Quantity : 932.000 gram

Sample Date/Time : 9/19/02 3:05:00 PM Acquire Start Date/Time : 9/26/02 11:42:16 AM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		4.608-001
RA-226	1.00E+000	4.36E-001	6.37E-001
PB-214		9.56E-002	6.08E-002
~ BI-214	5.58E-001	9.38E-002	5.44E-002
PB-210	Not Detected		7.96E+000
TH-232	7.42E-001	3.66E-001	2.49E-001
RA-228	7.16E-001	1.46E-001	1.51B-001
AC-22B	6.74E-001	1.37E-001	1.02B-001
TH-228	6,35E-001	1.96E-001	4.01E-001
RA-224	7.86E-001	1.86E-001	6.64E-002
PB-212	7.57E-001	1.11E-001	3.30E-002
BI-212	7.95E-001	2.92E-001	3.83E-001
TL-208	6.43E-001	1.15E-001	8.87E-002
U-235	2.38E-001	1.60E-001	1.87E-001
TH-231	Not Detected		6.29E+000
PA-231	Not Detected		1.28E+000
TH-227	Not Detected	'	3.03E-001
.RA-223	Not Detected		1.55E-001
RN-219	Not Detected		3,42E-001
PB-211	Not Detected		7.76E-001
TL-207	Not Detected	*****	1.46E+001
AM-241	Not Detected		1.55E-001
PU-239	Not Detected		3.32E+002
NP-237	Not Detected		1,80E+000
PA-233	Not Detected		5.09E-002
TH-229	Not Detected		1.79E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG~108m	Not Dotinted	~~~~~~~	
	Not Detected		3.87E-002
AG-110m	Not Detected		2.90B-002
BA-133	Not Detected		3.84B-002
BE-7	Not Detected		2.51E-001
CD-115	Not Detected		5.13B-001
CE-139	Not Detected		2.35E-002
CE-141	Not Detected	~~	4.71E-002
CE-144	Not Detected	~	1.85E-001
CM-243	Not Detected		1.56E-001
CO-56	Not Detected		3.33E-002
CO-57	Not Detected	~~~~	2.31E-002
CO-58	Not Detected		3.38E-002
CO-60	Not Detected		3.84E-002
CR-51	Not Detected		2.47B-001
CS-134	Not Detected		4.10E-002
CS-137	Not Detected	~~~~~~	3.03E-002
EU-152	Not Detected		6.86E-002
EU-154	Not Detected	~~~~~~	1.81E-001
EU-155	Not Detected		1.05E-001
FE-59	Not Detected		8.90E-002
GD-153	Not Detected		6.13E-002
HG-203	Not Detected		3.09E-002
I-131	Not Detected		4.39E-002
IR-192	Not Detected		2.61E-002
K-40	2.16E+001	2.91E+000	3.30E-001
J MN-52	Not Detected	2.5157000	6.91E-002
MN-54	Not Detected		3.44E-002
MO-99	Not Detected		1.32E+000
NA-22	Not Detected		4.59B-002
NA-24	Not Detected		7.22B+001
ND-147	Not Detected		2.97B-001
NI-57	Not Detected		1.23E+000
RU-103	Not Detected		2.88E-002
RU-106	Not Detected		2.66E-002
SB-122 ·	Not Detected		
SB-124	Not Detected		2.29E-001
SB-125			2.95E-002
SN-113	Not Detected		7.98E-002
SR-85	Not Detected		3.63E-002
	Not Detected		3.55E-002
TA-182	Not Detected		1.72E-001
TA-183	Not Detected		3.37E-001
TL-201	Not Detected		3.58E-001
Y-88	Not Detected		3.18E-002
ZN-65	Not Detected		1.17E-001
ZR-95	Not Detected		6.50E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 3:41:01 PM

Analyzed by: Levely Cey 9/27/02 Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059906-003 Lab Sample ID : 20134204

Sample Description : 803/1052-SP1-BH1-27-S

Sample Quantity : 812.000 gram

Sample Date/Time : 9/19/02 3:45:00 PM Acquire Start Date/Time : 9/26/02 1:24:37 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		4.93E-001
RA-226	1.34E+000	5.34E-001	7.68B-001
PB-214	6,78E-001	1.04E-001	6.09B-002
BI-214	5,68E-001	9.71E-002	5.67E-002
PB-210	Not Detected		8.55E+000
TH-232	7.37E-001	3.58E-001	2.23E-001
RA-228	7.66E-001	1.57E-001	1.56E-001
AC-228	7.32E-001	1.51E-001	1.14E-001
TH-228	7.71E-001	2.30E-001	4.35E-001
RA-224	8.85E-001	2.10E-001	7.56E-002
PB-212	7.88E-001	1.16E-001	3.70E-002
BI-212	8.03E-001	3.03E-001	3.98E-001
TL-208	6.01E-001	1.10E-001	8.368-002
U-235	1.25E-001	1.72E-001	2.01E-001
TH-231	Not Detected		6.33E+000
PA-231	Not Detected		1.36E+000
TH-227	Not Detected	*****	3.26B-001
RA-223	Not Detected		1.60E-001
RN-219	Not Detected		3.60E-001
PB-211	Not Detected		8.28E-001
TL-207	Not Detected		1.41E+001
AM-241	Not Detected		1.68E-001
PU-239	Not Detected		3.57E+002
NP-237	Not Detected		1.84E+000
PA-233	Not Detected		5.48E-002
TH-229	Not Detected		1.84E-001

Nuclid Name	(pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108	n Not Detected		4 355 000
AG-110			4.35E-002
BA-133			3.19E-002
BE-7	Not Detected		4.33E-002
CD-115			2.60E-001
CE-139		********	5.58E-001
CE-141			2.51E-002
CE-144			5.12E~002
CM-243			1.94E-001
CO-56	Not Detected		1.71E-001
CO-57	Not Detected		3.56E-002 2.43E-002
CO-58	Not Detected		3.55B-002
CO-60	Not Detected		4.02E-002
CR-51	Not Detected	*********	2.61E-001
CS-134			4.26E-002
CS-137			3.36E-002
EU-152			7.21E-002
EU-154			2.02E-001
EU-155			1.11E-001
FE~59	Not Detected		9.05B-002
GD-153			6.39B-002
HG-203		~~~~	3.40E-002
I-131	Not Detected		4.96E-002
IR-192			2.74E-002
√ K-40	1.74E+001	2.39E+000	3.53E-001
MN-52	Not Detected	~=====	8.11E-002
MN-54	Not Detected	~	3.57E-002
MO-99	Not Detected		1.40E+000
NA-22	Not Detected	~	4.91E-002
NA-24	Not Detected		7.67E+001
ND-147	7 Not Detected	~~~~~~	3.24E-001
NI-57	Not Detected		1.38E+000
RU-103	Not Detected		3.10E-002
RU-106	Not Detected		2.81E-001
SB-122	Not Detected	~~~~~~	2.49E-001
SB-124	Not Detected		3,09E-002
SB-125	Not Detected		8.71E-002
SN-113	Not Detected		3.80E-002
SR-85	Not Detected		3.78E-002
TA-182	Not Detected		1.79E-001
TA-183			3.65E-001
TL-201	l Not Detected		3.81E-001
Y-88	Not Detected		2.81E-002
ZN-65	Not Detected		1.16E-001
ZR-95	Not Detected		6.60E-002
			· · · ·

Sandia National Laboratories

Radiation Protection Sample Diagnostics Program 9/26/02 5:22:25 PM

Analyzed by: Bevaly lay 9127/02 Reviewed by:

Customer : SANDERS (6135)
Customer Sample ID : 059907-003

Lab Sample ID : 033907-00

Sample Description : 829/276-SP1-BH1-8-S Sample Quantity : 730.000 gram

Sample Date/Time : 9/24/02 2:05:00 PM Acquire Start Date/Time : 9/26/02 3:42:11 PM

Detector Name : LAB01

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

U-235/Ra-226 peaks not resolved. Either isotope may be overestimated.

)

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram
บ-238	Not Detected		5.54E-001
RA-226	1.79E+000	6.26E-001	8.72E-001
_ PB-214	9.41E-001	1.38E-001	6.98E-002
BI-214	7.43E-001	1.23E-001	6.53E-002
_ PB-210	Not Detected		9.33E+000
		4 245 222	0 305 003
TH-232	9.08E-001	4.31E-001	2.32E-001
RA-228	8.82E-001	1.77E-001	1.65E-001
AC-228	8.67E-001	1.72E-001	1.16B-001
TH-228	9.76E-001	2.76E-001	5.02B-001
RA-224	1.11E+000	2.58E-001	9.448-002
PB-212	9.41E-001	1.38E-001	
BI-212	8.97E-001	3.62E-001	4.91E-001
TL-208	8.04E-001	1.38E-001	9.03E-002
U-235	9.46E-002	1.86E-001	2.17E-001
TH-231	Not Detected		7.20E+000
PA-231	Not Detected		1.57E+000
TH-227	Not Detected		3.67E-001
RA-223	Not Detected		`1.38E-001
RN-219	Not Detected		4.18E-001
PB-211	Not Detected		9.28E-001
TL-207	Not Detected		1.56E+001
AM-241	Not Detected	*********	1.93E-001
PU-239	Not Detected		3.89E+002
NP-237	Not Detected	*****	2.07E+000
PA-233	Not Detected		6.18B-002
TH-233	Not Detected		2,11B-001
111-777	MOC Derected		W 1 2 2 2 2 2 2 2

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected		4.74E-002
	AG-110m	Not Detected		3.45E-002
	BA-133	Not Detected		4.92E-002
	BE-7	Not Detected		2.72B-001
	CD-115	Not Detected		1.48B-001
	CE-139	Not Detected		2.72E-002
	CE-141	Not Detected		4.89E-002
	CE-144	Not Detected		2.16B-001
	CM-243	Not Detected		1.94E-001
	CO-56	Not Detected		3.69E-002
	CO-57	Not Detected		2.71E-002
	CO-58	Not Detected		3.70E-002
	CO-60	Not Detected		4.39B-002
	CR-51	Not Detected		2.53E-001
	CS-134	Not Detected		5.09E-002
	CS-137	Not Detected		3.86B-002
	EU-152	Not Detected		B.11E-002
	EU-154	Not Detected	NG ND	2.21E-001
	EU-155	-1.71E 001	-8.598 -002 വർ ^{സ്}	1.27E-001
	FE-59	Not Detected	Y	9.06E-002
	GD-153	Not Detected	V	7.04E-002
	HG-203	Not Detected		3.53E-002
	I-131	Not Detected		3.61E-002
	IR-192	Not Detected		2.93E-002
1	K-40	1.66E+001	2.30E+000	3.12E-001
	MN-52	Not Detected		5.10E-002
	MN-54	Not Detected		4.01E-002
	MO-99	Not Detected		4.78E-001
	NA-22	Not Detected		5.21E-002
	NA-24	Not Detected		3.83E-001
	ND-147	Not Detected		2.45E-001
	NI-57	Not Detected	****	1.55E-001
	RU-103	Not Detected		3.31E-002
	RU-106	Not Detected	~	3.24E-001
	SB-122	Not Detected		7.48E-002
	SB-124	Not Detected		3.26E-002
	SB-125	Not Detected	********	9.58E-002
	SN-113	Not Detected		4.30E-002
	SR-85	Not Detected		4.03E-002
	TA-182	Not Detected	~ ~ ~ ~ ~ ~ ~ ~	1.92E-001
-	TA-183	Not Detected		2.16E-001
	TL-201	Not Detected		1.42E-001
	Y-88	Not Detected		3.45E-002
	ZN-65	Not Detected		1.32E-001
	ZR-95	Not Detected		6.46E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 9:34:00 AM

Analyzed by: 9/26/62 Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059908-003
Lab Sample ID : 20134206

Sample Description : 829/276-SP1-BH1-13-S

Sample Quantity : 743.000 gram

Sample Date/Time : 9/24/02 2:20:00 PM Acquire Start Date/Time : 9/26/02 7:53:41 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		7.14E-001
RA-226	1.59E+000	5.45E-001	7.58E-001
PB-214	8.54E-001	1.23E-001	6.15E-002
BI-214	7.11E-001	1.13E-001	5.58E-002
PB-210	Not Detected		2.81E+001
TH-232	7.55E-001	3.62E-001	2,12E-001
RA-228	9.43E-001	1.65E-001	1.21E-001
AC-228	8.11E-001	1.56B-001	1.11E-001
TH-228	1.30E+000	4.65E-001	6.35E-001
RA-224	1.05E+000	2.24E-001	6.88E-002
	8.87E-001	1.28E-001	3.87E-002
BI-212	7.76E-001	2.69E-001	3.48E-001
TL-208		1.38E-001	1.33E-001
11208	7.25E-001	1.306-001	1.335-001
U-235	9.72E-0 02	1.82E-001	2.30E-001
TH-231	Not Detected		1.13E+001
PA-231	Not Detected		1.42E+000
TH-227	Not Detected		3.56E-001
RA-223	Not Detected		1.95E-001
RN-219	Not Detected		3.69E-001
PB-211	Not Detected		8.28E-001
TL-207	Not Detected		1.31E+001
111 20,	NOC Decected		1.5114001
AM-241	Not Detected		4.25E-001
PU-239	Not Detected		4.19E+002
NP-237	Not Detected		2.28E+000
PA-233	Not Detected	******	5.57E-002
TH-229	Not Detected		2.42E-001

-	•				
	Nuclide	Activity	2-sigma	MDA	
•	Name	(pCi/gram)	Error		
		(pax/ 32am /	51101	(pCi/gram)	
	AG-108m	Not Detected		3.41B-002	
	AG-110m	Not Detected		2.75E-002	
	BA-133	Not Detected			
	BE-7	Not Detected		4.85E-002	
	CD-115	Not Detected		2.38E-001	
	CE-139	Not Detected		1.11E-001	
	CE-141	Not Detected Not Detected		2.88E-002	
	CE-144	Not Detected		5.18E-002	
	CM-243			2.32E-001	
	CO-56	Not Detected		1.72E-001	
	CO-57	Not Detected		3.19E-002	
	CO-58	Not Detected		3.04E-002	
	CO-60	Not Detected		3.07E-002	
	CR-51	Not Detected		3.47E-002	
		Not Detected		2.31E-001	
	CS-134	Not Detected		3.97E-002	
	CS-137	Not Detected		2.90E-002	
	EU-152	Not Detected		9.13E-002	
	EU-154	Not Detected		1.57 E- 001	
	EU-155	Not Detected		1.32E-001	
	FE-59	Not Detected		7.06E-002	
	GD-153	Not Detected		9.62E-002	
	HG-203	Not Detected		3.16E-002	
	I-131	Not Detected	~	3.14E-002	
	IR-192	Not Detected		2.68E-002	i
1	K-40	2.41E+001	3.20E+000	3.14E-001	•
	MN-52	Not Detected		3.58E-002	
	MN-54	Not Detected		3.32E-002	
	MO-99	Not Detected		3.28E-001	
	NA-22	Not Detected		3.99E-002	
	NA-24	Not Detected		2.17E-001	,
	ND-147	Not Detected		1.98E-001	ه سر
	NI-57	1.54E-001	5.11E-002	5.75E-002	between Detection
	RU-103	Not Detected		2.68E-002	Dezgros
	RU-106	Not Detected		2.41E-001	•
	SB-122	Not Detected	~~~~~~	5.73E-002	
	SB-124	Not Detected		2.65E-002	
	SB-125	Not Detected		7.95E-002	
	SN-113	Not Detected		3.51E-002	
	SR-85	Not Detected		3.40E-002	<i>;</i>
	TA-182	Not Detected	********	1.55E-001	
	TA-183	Not Detected	********	4.62E-001	
	TL-201	Not Detected			
	Y-88	Not Detected		2.31E-001	•
	ZN-65			2.42E-002	1
	ZR-95	Not Detected	*****	9.91E-002	?
	- Y X	Not Detected	~~~~~~	5.15E-002	
					,

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 12:58:06 PM

Analyzed by: $\int_{\mathcal{L}} g/26/\sigma L$ Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : 059912-003 Lab Sample ID : 20134208

Sample Description : 915-922/1003-SP1-BH1-27-S

Sample Quantity : 881.000 gram

Sample Date/Time : 9/24/02 8:45:00 AM Acquire Start Date/Time : 9/26/02 11:17:42 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6004 seconds

Comments:

	•			1
Nuclide	Activity	2-sigma	MDA	
Name	(pCi/gram)	Error	(pCi/gram)	
Ծ-238	Not Detected		6.58E-001	
RA-226	1.39E+000	4.83E-001	6.76E-001	İ
PB-214	7.10E-001	1.04E-001	5.86E-002	
BI-214	6.43E-001	1.02E-001 .	5.06E-002	į
₽B-210	Not Detected		2.56E+001	
TH-232	9.28E-001	4.27E-001	1.84E-001	
RA-228	8.53E-001	1.49E-001	1.16E-001	
AC-228	8.86E-001	1.55E-001	7.75E-002	-
TH-228	8.57E-001	4.08E-001	5.99E-001	İ
RA-224	9.75E-001	2.05E-001	5.81E-002	
PB-212	8.55E-001	1.23E-001	3.60E-002	ļ
BI-212	1.08E+000	2.81E-001	3.18E-001	ĺ
TL-208	7.57E-001	1.19E-001	6.79E-002	
U-235	Not Detected		2.04E-001	į
TH-231	Not Detected		1.03E+001	ļ
PA-231	Not Detected		1.24E+000	
TH-227	Not Detected		3.21E-001	i
RA-223	Not Detected		1.82E-001	NCT LO
RN-219	1.64E-001	2.75E-001	3.16B-001	- Lecture
PB-211	Not Detected		6.87E-001	9-26-07
TL-207	Not Detected		1.15E+001	4.00
AM-241	Not Detected		3.74E-001	!
PU-239	Not Detected		3.78E+002	*
NP-237	Not Detected		2.03E+000	
PA-233	Not Detected		4.85E-002	}
TH-229	Not Detected		2.19E-001	

	Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
	AG-108m	Not Detected		2.98E-002
	AG-110m	Not Detected		2.45E-002
	BA-133	Not Detected		
	BE-7	Not Detected		4.21E-002
	CD-115	Not Detected		2.05E-001
	CE-139	Not Detected		1.12E-001
	CE-141	Not Detected		2.48E-002
	CE-144	Not Detected Not Detected		4.59E-002
	CM-243	Not Detected		2.03E-001
	CO-56	Not Detected		1.53E-001
	CO-57	Not Detected		2.74E-002
	CO-58	Not Detected		2.66E-002
	CO-60	Not Detected		2.67E-002
	CR-51	Not Detected Not Detected		3.14E-002 2.04E-001
	CS-134	Not Detected		3.50E-001
	CS-137	Not Detected		2.56B-002
	EU-152	Not Detected		7.96E-002
	EU-154	Not Detected		1.37B-001
	EU-155	Not Detected		1.21E-001
	FE-59	Not Detected		6.26E-002
	GD-153	Not Detected		8.93E-002
	HG-203	Not Detected		2.87E-002
	I-131	Not Detected		2.86E-002
~	IR-192	Not Detected		2.32E-002
	K-40	2.35E+001	3.11E+000	2.25E-001
-	MN-52	Not Detected		3.25E-002
	MN-54	Not Detected		2.88E-002
	MO-99	Not Detected		3.28E-001
	NA-22	Not Detected		3.56E-002
	NA-24	Not Detected		2.77E-001
	ND-147	Not Detected		1.85E-001
	NI-57	Not Detected		6.93E-001
	RU-103	Not Detected		2.41E-002
	RU-106	Not Detected		2.32E-001
	SB-122	Not Detected		5.73E-002
	SB-124	Not Detected		2.48E-002
	SB-125	Not Detected		7.09E-002
	SN-113	Not Detected		3.07E-002
	SR-85	Not Detected		3.06E-002
	TA-182	Not Detected		1.27E-001
	TA-183	Not Detected		4.28E-001
	TL-201	Not Detected		4.28E-001 2.30E-001
	Y-88	Not Detected		2.14E-002
	ZN-65	Not Detected		
	ZR-95	Not Detected		8.24E-002 4.74E-002
	'	not beceled	· · -	4.146-002
	ſ			

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 4:58:56 PM

9/26/c2 Reviewed by: Analyzed by:

: SANDERS M (6135) Customer

: 059913-003 Customer Sample ID : 20134209 Lab Sample ID

: 915-922/1003-SP1-BH1-33-S Sample Description

: 846.000 gram

Sample Quantity
Sample Date/Time : 9/24/02 9:35:00 AM Acquire Start Date/Time: 9/26/02 12:59:51 PM

: LAB02 Detector Name

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.43E-001
RA-226	1.70E+000	4.88E-001	6.40E-001
PB-214	6.63E-001	9.88E-002	5.92E-002
BI-214	6.56E-001	1.04E-001	4.99E-002
PB-210	Not Detected	****	2.48E+001
TH-232	8.00E-001	3.74E-001	1.84E-001
RA-228	7.84E-001	1.41E-001	1.19E-001
AC-228	7.79E-001	1.46E-001	9.82E-002
TH-228	9.10E-001	3.36E-001	4.57E-001
RA-224	9.45E-001	2.00E-001	5.01E-002
PB-212	7.83E-0 01	1.14E-001	3.47E-002
BI-212	8.00E-001	2.56E-001	3.22E-001
TL-208	7.09E-001	1.14E-001	6.78E-002
บ-235	8.15E-002	1.61E-001	2.04E-001
TH-231	Not Detected		1.03E+001
PA-231	Not Detected		1.23E+000
TH-227	Not Detected		3.18E-001
RA-223	Not Detected		1.80E-001
RN-219	Not Detected		3.11E-001
PB-211	Not Detected		7.12E-001
TL-207	Not Detected		1.12E+001
AM-241	Not Detected		3.83E-001
PU-239	Not Detected		3.81E+002
NP-237	Not Detected		2.02E+000
PA-233	Not Detected		4.90E-002
TH-229	Not Detected		2.17E-001

[Summary Report] - Sample ID: : 20134209

Juclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		*
AG-110m	Not Detected		3.02E-002
BA-133			2.51E-002
BE-7	Not Detected		4.23E-002
CD-115	Not Detected Not Detected		2.10E-001
CE-139			1.10E-001
CE-141	-		2.60E-002
CE-141	Not Detected		4.57E-002
CM-243	Not Detected		2.08E-001
CO-56	Not Detected		1.49E-001
CO-56	Not Detected		2.89E-002
CO-58	Not Detected		2.75E-002
CO-50	Not Detected Not Detected		2.66E-002
CR-51			3.03E-002
CS-134			2.10E-001
CS-134			3.53E-002
EU-152			2.66E-002
EU-154	Not Detected		8.23E-002
EU-155	Not Detected		1.39E-001
FE-59	Not Detected Not Detected		1.20E-001
GD-153			6.01E-002
HG-203			8.88E-002
I-131	Not Detected Not Detected		2.78E-002
IR-192	Not Detected		2.80E-002
∡ K-40	2.12E+001	2.83E+000	2.40E-002 2.43E-001
MN-52	Not Detected	2.0367000	3.31E-002
MN-54	Not Detected		1.83E-002
MO-99	Not Detected		3.15E-001
NA-22	Not Detected		3.53E-002
NA-24	Not Detected		2.82E-001
ND-147	Not Detected		1.88E-001
NI-57	Not Detected		6.72E-002
RU-103	Not Detected		2.43B-002
RU-106	Not Detected		2.31E-001
SB-122	Not Detected		5.62E-002
SB-124	Not Detected		2.44E-002
SB-125	Not Detected		6.79E-002
SN-113	Not Detected		3.17E-002
SR-85	Not Detected		2.89E-002
TA-182	Not Detected		1.35E-001
TA-183	Not Detected		4.40E-001
TL-201	Not Detected		2.30E-001
Y-88	Not Detected		2.02E-002
ZN-65	Not Detected		8.60E-002
ZR-95	Not Detected		4.63E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 4:22:12 PM

Analyzed by: Boraly Key 9/27/02 Reviewed by:

: SANDERS M (6135) Customer

Customer Sample ID : 059914-003 Lab Sample ID : 20134210

: 915-922/1003-SP1-BH1-26-S : 767.000 gram Sample Description

Sample Quantity

Sample Date/Time : 9/24/02 11:10:00 AM Acquire Start Date/Time : 9/26/02 2:41:52 PM

: LAB02 Detector Name

6003 seconds 6000 / Elapsed Live/Real Time :

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		7.24B-001
RA-226	1.80E+000	5.48E-001	7.36E-001
PB-214	8.05E-001	1.18E-001	6.45E-002
BI-214	6.89E-001	1.10E-001	5.74E-002
PB-210	Not Detected		2.78E+001
TH-232	9.31E-001	4.32E-001	2.01E-001
RA-228	7.92E-001	1.47B-001	1.38E-001
AC-228	9.11E-001	1.688-001	1.10B-001
TH-228	9.37E-001	3.96 E -001	5.77B-001
RA-224	1.03E+000	2.21E-001	8.12E-002
PB-212	9.87E-001	1.42E-001	3.85E-002
BI-212	1.08E+000	2.89B-001	3.24E-001
TL-208	8.14E-001	1.318-001	8.09E-002
U-235	Not Detected		2.28E-001
TH-231	Not Detected		1.12E+001
PA-231	Not Detected		1.38E+000
TH-227	Not Detected		3.64E-001
RA-223	Not Detected		2.04E-001
RN-219	Not Detected		3.51E-001
PB-211	Not Detected		8.11E-001
TL-207	Not Detected		1.25E+001
AM-241	Not Detected		4.10E-001
PU-239	Not Detected		4.16E+002
NP-237	Not Detected		2.21E+000
PA-233	Not Detected		5.39E-002
TH-229	Not Detected		2.35E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		2 527 002
AG-110m	Not Detected		3.53E-002
BA-133	Not Detected		2.69E-002
BE-7	Not Detected		4.68E-002
CD-115	Not Detected		2.27E-001
CE-139	Not Detected		1.22E-001
CE-141	Not Detected		2.85E-002
CE-144	Not Detected		5.128-002
CM-243	Not Detected		2.25E-001
CO-56	Not Detected		1.68E-001
CO-57	Not Detected		3.00E-002 2.95E-002
CO-58	Not Detected		2.93B-002 2.93B-002
CO-60	Not Detected		3.35E-002
CR-51	Not Detected		2.23E-001
CS-134	Not Detected		3.92E-002
CS-137	Not Detected		2.94E-002
EU-152	Not Detected		8.79E-002
EU-154	Not Detected		1.62E-001
EU-155	Not Detected		1.32E-001
FE-59	Not Detected	**	6.83E-002
GD-153	Not Detected		9.66E-002
HG-203	Not Detected		3.10E-002
I-131	Not Detected		3.17E-002
IR-192	Not Detected		2.58E-002
K-40	2.26E+001	3.01E+000	3.04E-001
MN-52	Not Detected		3.31E-002
MN-54	Not Detected		3.16E-002
MO-99	Not Detected		3.86E-001
NA-22	Not Detected		3.89E-002
NA-24	Not Detected		3.26E-001
ND-147	Not Detected `		2.06E-001
NI-57	Not Detected		7.68E-002
RU-103	Not Detected		2.53E-002
RU-106	Not Detected		2.65E-001
SB-122	Not Detected		6.10E-002
SB-124	Not Detected		2.67E-002
SB-125	Not Detected	*****	7.73E-002
SN-113	Not Detected		3.40E-002
SR-85	Not Detected		3.37E-002
TA-182	Not Detected		1.46E-001
TA-183	Not Detected		4.72E-001
TL-201	Not Detected		2.52E-001
Y-88	Not Detected		2.40B-002
ZN-65	Not Detected		9.94B-002
ZR-95	Not Detected		4.95E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 8:26:56 AM

Analyzed by: 4/26/02 Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059915-003
Lab Sample ID : 20134211

Sample Description : 915-922/1003-SP2-BH1-31-S

Sample Quantity : 859.000 gram

Sample Date/Time : 9/24/02 11:40:00 AM Acquire Start Date/Time : 9/25/02 10:50:23 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.23E-001
RA-226	1.63E+000	4.77E-001	6.30E-001
PB-214	6.47E-001	1.04E-001	8.34E-002
BI-214	6.05E-001	9.61E-002	4.62E-002
) PB-210	Not Detected		2.44E+001
,		•	
TH-232	7.09E-001	3.37E-001	1.90E-001
RA-228	7.26E-001	1.32E-001	1.12E-001
AC-228	7.58E-001	1.39E-001	8.39E-002
TH-228	8.12E-001	3.48E-001	4.96E-001
RA-224	9,13E-001	1.96E-001	7.09E-002
PB-212	7.58E-001	1.09E-001	3.12E-002
BI-212	7.85E-001	2.84E-001	3.82E-001
TL-208	6.10E-001	1.00E-001	6.35E-002
11 225	Not Detected		2.01E-001
U-235	_,,,,		9.60E+000
TH-231	Not Detected		1.18E+000
PA-231	Not Detected		3.02E-001
TH-227	Not Detected		1.62E-001
RA-223	Not Detected		3.00E-001
RN-219	Not Detected		6.78E-001
PB-211	Not Detected		1.15E+001
TL-207	Not Detected		1,1567001
AM-241	Not Detected		3.73E-001
PU-239	Not Detected		3.73E+002
NP-237	Not Detected		1.92E+000
PA-233	Not Detected		4.86E-002
TH-229	Not Detected		2.09E-001

			-
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
			(PCI/GIAM)
AG-108m	Not Detected		3.02E-002
AG-110m	Not Detected		
BA-133	Not Detected		2.38E-002 4.17E-002
BE-7	Not Detected		
CD-115	Not Detected	*****	2.01E-001
CE-139	Not Detected		7.50E-002
CE-141	Not Detected		2.47E-002
CE-144	Not Detected		4.42E-002
CM-243			1.99E-001
CO-56	Not Detected		1.43E-001
CO-57	Not Detected		2.68E-002
CO-58	Not Detected		2.62E-002
	Not Detected		2.55E-002
CO-60	Not Detected		2.96E-002
CR-51	Not Detected		1.94E-001
CS-134	Not Detected	===,=====	3.30E-002
CS-137	Not Detected		2.63E-002
EU-152	Not Detected		7.90E-002
EU-154	Not Detected		1.39E-001
EU-155	Not Detected		1.18E-001
FE-59	Not Detected	****	6.10E-002
GD-153	Not Detected		8.66E-002
HG-203	Not Detected		2.64E-002
I-131	Not Detected		2.61E-002
、IR-192	Not Detected		2.28E-002
` K-4 0	2.31E+001	3.06E+000	2.25E-001
MN-52	Not Detected		2.92E-002
MN-54	Not Detected		2.79E-002
MO-99	Not Detected		2.34E-001
NA-22	Not Detected		3.55E-002
NA-24	Not Detected		7.81E-002
ND-147	Not Detected		1.67E-001
NI-57	Not Detected		3.37E-002
RU-103	Not Detected		2.23E-002
RU-106	Not Detected		2.20E-001
SB-122	Not Detected		4.04E+002
SB-124	Not Detected		2.32E-002
SB-125	Not Detected		6.82E-002
SN-113	Not Detected		3.08E-002
SR-85	Not Detected		2.92E-002
TA-182	Not Detected		
TA-183	Not Detected		1.28E-001
TL-201	Not Detected		3.66E-001
Y-88	Not Detected		1.75E-001
ZN-65	Not Detected		2.20E-002
ZR-95	Not Detected		8.44E-002
4K)	wor peregred		4.62E-002
	•		

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 2:12:55 PM

* Analyzed by: 4/26/02 Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059917-003 Lab Sample ID : 20134212

Sample Description : 6969/1004-DF1-BH1-8-S

Sample Quantity : 675.000 gram

Sample Date/Time : 9/20/02 9:20:00 AM Acquire Start Date/Time : 9/25/02 12:32:34 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		7.98E-001
RA-226	1.93E+000	5.82E-001	7.74E-001
PB-214	7.89E-001	1.17E-001	6.80E-002
BI-214	6.99E-001	1.13E-001	5.82E-002
PB-210	Not Detected		2.99E+001
TH-232	9.56E-001	4.45E-001	2.11E-001
RA-228	1.17E+000	1.97E-001	1.20E-001
AC-228	9.86E-0 01	1.84E-001	1.24B-001
TH-228	1.10E+000	4.57E-001	6.48E-001
RA-224	1.21E+000	2.56E-001	7.02E-002
PB-212	1.04E+000	1.50E-001	3.92E-002
BI-212	1.14E+000	3.32E-001	3.99E-001
TL-208	9.46E-0 01	1.48E-001	7.89E-002
U-235	Not Detected		2.35E-001
TH-231	Not Detected		1.19E+001
PA-231	Not Detected		1.38E+000
TH-227	Not Detected		3.89E-001
RA-223	Not Detected		2.61E-001
RN-219	Not Detected		3.74E-001
PB-211	Not Detected		8.40E-001
TL-207	Not Detected		1.17E+001
AM-241	Not Detected		4.56E-001
PU-239	Not Detected		4.39E+002
NP-237	Not Detected		2.34E+000
PA-233	Not Detected		5.73E-002
TH-229	Not Detected		2.47E-001

[Summary Report] - Sample ID: : 20134212

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.66E-002
AG-110m	Not Detected		2.87E-002
BA-133	Not Detected		5.04E-002
BE-7	Not Detected		2.45E-001
CD-115	Not Detected		3.44E-001
CE-139	Not Detected		2.98E-002
CE-141	Not Detected		5.83E-002
CE-144	Not Detected		2.42E-001
CM-243	Not Detected		1.77E-001
CO-56	Not Detected		3.31E-002
CO-57	Not Detected		3.10E-002
CO-58	Not Detected		3.14E-002
CO-60	Not Detected		3.48E-002
CR-51	Not Detected		2.61E-001
CS-134	Not Detected		4.11E-002
CS-137	Not Detected		3.02E-002
EU-152	Not Detected		9.18E-002
EU-154	Not Detected		1.68E-001
EU-155	Not Detected		1.40E-001
FE-59	Not Detected		6.84E-002
GD-153	Not Detected		1.01E-001
HG-203	Not Detected		3.38E-002
I-131	Not Detected		4.26E-002
IR-192	Not Detected		2.83E-002
K-40	1.84E+001	2.48E+000	3.02E-001
MN-52	Not Detected		5.45E-002
MN-54	Not Detected		3.42E-002
MO-99	Not Detected		8.01E-001
NA-22	Not Detected		4.03E-002
NA-24	Not Detected		9.80E+000
ND-147	Not Detected		2.58E-001
NI-57	Not Detected		5.29E-001
RU-103	Not Detected		3.01E-002
RU-106	Not Detected		2.73E-001
SB-122	Not Detected		1.48E-001
SB-124	Not Detected		2.88E-002
SB-125	Not Detected	~~~~~~	7.97E-002
SN-113	Not Detected		3.78E-002
SR-85	Not Detected		3.71E-002
TA-182	Not Detected		1.52E-001
TA-183 TL-201	Not Detected		7.87E-001
	Not Detected		5.33E-001
Y-88 ZN-65	Not Detected		2.59E-002
ZN-65 ZR-95	Not Detected		9.97E-002
6K-70	Not Detected		5.35E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 3:55:00 PM

Analyzed by: $\int_{\mathbb{R}^2} q/2i/cz$ Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059918-003
Lab Sample ID : 20134213

Sample Description : 6969/1004-DF1-BH1-13-S

Sample Quantity : 770.000 gram

Sample Date/Time : 9/20/02 9:35:00 AM Acquire Start Date/Time : 9/25/02 2:14:41 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)	
U-238	Not Detected		7.02E-001	
RA-226	2.17E+000	5.71E-001	7.20E-001	
PB-214	7.90E-001	1.15E-001	6.04E-002	
BI-214	7.36E-001	1.15E-001	5.15E-002	
PB-210	Not Detected		2.78E+001	
TH-232	1.00E+000	4.74E-001	2.63E-001	
RA-228	9.73E-0 01	1.70E-001	1.32E-001	•
AC-228	9.77E-001	1.75E-001	9.94E-002	
TH-228	9.36E-001	4.35E-001	6.35E-001	
RA-224	1.26E+000	2.62E-001	7.86E-002	
PB-212	1.06E+000	1.51E-001	3.58E-002	
BI-212	1.08E+000	3.14E-001	3.81E-001	
TL-208	9.21E-001	1.44E-001	7.91E-002	
U-235	Not Detected		2.31E-001	
TH-231	Not Detected		1.13E+001	
PA-231	Not Detected		1.33E+000	
TH-227	Not Detected		3.67E-001	
RA-223	Not Detected		2.41E-001	NOT O
RN-219	· 2.31E-001	3.11E-001	3.60E-001	• • • • •
PB-211	Not Detected		7.91E-001	Defection
TL-207	Not Detected		1.19E+001	Defections a-26-c2
AM-241	Not Detected		4.13E-001	
PU-239	Not Detected		4.17E+002	•
NP-237	Not Detected		2.19E+000	
PA-233	Not Detected		5.40E-002	•
TH-229	Not Detected		2.37E-001	

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3 458 000
AG-110m	Not Detected		3.45E-002
BA-133	Not Detected		2.59E-002
BE-7	Not Detected		4.69E-002
CD-115			2.23E-001
CE-139			3.30E-001
CE-139	Not Detected		2.79E-002
CE-141	Not Detected		5.55E-002
CM-243	Not Detected	*	2.29E-001
	Not Detected		1.68E-001
CO-56	Not Detected		3.03E-002
CO-57	Not Detected	~~~~~	2.97E-002
CO-58	Not Detected	*	2.81E-002
CO-60	Not Detected	*	3.24E-002
CR-51	Not Detected		2.43E-001
CS-134	Not Detected		3.76E-002
CS-137	Not Detected	~	2.85E-002
EU-152	Not Detected		8.82E-002
EU-154	Not Detected		1.59E-001
EU-155	Not Detected		1.33E-001
FE-59	Not Detected		6.51E-002
GD-153	Not Detected		9.82E-002
HG-203	Not Detected	**	3.30E-002
I-131	Not Detected		4.01E-002
IR-192	Not Detected	~	2.66E-002
K-40	1.82E+001	2.44E+000	2.60E-001
MN-52	Not Detected		4.79E-002
MN-54	Not Detected		2.92E-002
MO-99	Not Detected	*	7.54E-001
NA-22	Not Detected	•	3.65E-002
NA-24	Not Detected		8.75E+000
ND-147	Not Detected	p	2.43E-001
NI-57	Not Detected		3.31E-001
RU-103	Not Detected	~	2.75E-002
RU-106	Not Detected		2.50E-001
SB-122	Not Detected	*	1.33E-001
SB-124	Not Detected	*	2.59E-002
SB-125	Not Detected		7.72E-002
SN-113	Not Detected	d=	3.53E-002
SR-85	Not Detected		3.40E-002
TA-182	Not Detected		1.38E-001
TA-183	Not Detected		7.19E-001
TL-201	Not Detected		5.11E-001
Y-88	Not Detected	~=	2.43E-002
ZN-65	Not Detected	~	9.09E-002
ZR-95	Not Detected		4.94E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 5:37:06 PM

Analyzed by: 4/26/62 Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059919-003
Lab Sample ID : 20134214

Sample Description : 6969/1004-DF1-BH2-8-S

Sample Quantity : 762.000 gram

Sample Date/Time : 9/20/02 10:35:00 AM Acquire Start Date/Time : 9/25/02 3:56:45 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		7.44B-001
RA-226	2.37E+000	5.86E-001	7.16E-001
PB-214	8.97E-001	1.28E-001	6.35E-002
BI-214	8.14E-001	1.35E-001	9.40E-002
PB-210	Not Detected	P	2.81E+001
TH-232	8.82E-001	4.11E-001	1.95E-001
RA-228	9.36E-001	1.63E-001	1.18E-001
AC-228	1.02E+000	1.81E-001	9.97E-002
TH-228	9.84E-001	3.80E-001	5.24E-001
RA-224	1.05 E+000	2.25E-001	7.81E-002
PB-212	9.73E-001	1.40E-001	3.73E-002
BI-212	1.16E+000	2.99E-001	3.28E-001
TL-208	8.87E-001	1.39E-001	7.47E-002
U-235	1.66E-001	1.81E-001	2.30E-001
TH-231	Not Detected		1.11E+001
PA-231	Not Detected		1.31E+000
TH-227	Not Detected	~	3.55E-001
RA-223	Not Detected		2.40E-001
RN-219	Not Detected		3.33E-001
PB-211	Not Detected		7.46E-001
TL-207	Not Detected	~~~~	1.18E+001
AM-241	Not Detected		4.16E-001
PU-239	Not Detected		4.09E+002
NP-237	Not Detect ed		2.25E+000
PA-233	Not Detect ed		5.17E-002
TH-229	Not Detected		2.31E-001

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.38E-002
AG-110m	Not Detected		2.67E-002
BA-133	Not Detected		5.00E-002
BE-7	Not Detected		2.28E-001
CD-115	Not Detected		3.22E-001
CE-139	Not Detected		2.87E-002
CE-141	Not Detected		5.50E-002
CE-144	Not Detected		2.27E-001
CM-243	Not Detected		1.68E-001
CO-56	Not Detected		2.91E-002
CO-57	Not Detected		2.93E-002
CO-58	Not Detected		2.92E-002
CO-60	Not Detected		3.10E-002
CR-51	Not Detected		2.46E-001
CS-134	Not Detected		4.01E-002
CS-137	Not Detected		2.85E-002
EU-152	Not Detected		8.71E-002
EU-154	Not Detected		1.56E-001
EU-155	Not Detected		1.37E-001
FE-59	Not Detected		6.35E-002
GD-153	Not Detected		9.58E-002
HG-203	Not Detected		3.28E-002
I-131	Not Detected		4.07E-002
IR-192	Not Detected		2.63E-002
K-40	1.67E+001	2.25E+000	2.74E-001
MN-52	Not Detected		5.11E-002
MN-54	Not Detected		2.99E-002
MO-99	Not Detected		7.38E-001
NA-22	Not Detected		3.56E-002
NA-24	Not Detected		9.45E+000
ND-147	Not Detected		2.49E-001
NI-57	Not Detected		2.66E-001
RU-103	Not Detected		2.55E-002
RU-106	Not Detected		2.55E-001
SB-122	Not Detected		1.37E-001
SB-124	Not Detected		2.79E-002
SB-125	Not Detected		7.63E-002
SN-113	Not Detected		3.57E-002
SR-85	Not Detected		3.46E-002
TA-182	Not Detected		1.47E-001
TA-183	Not Detected		7.28E-001
TL-201	Not Detected	••	5.00E-001
Y-88	Not Detected		2.37E-002
ZN-65	Not Detected		9.62E-002
ZR-95	Not Detected		4.97E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 7:19:08 PM

* Analyzed by: 4/26/02 Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059920-003 Lab Sample ID : 20134215

Sample Description : 6969/1004-DF1-BH2-13-S

Sample Quantity : 765.000 gram

Sample Date/Time : 9/20/02 10:55:00 AM Acquire Start Date/Time : 9/25/02 5:38:51 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		6.98E-001
RA-226	2.10E+000	5.51E-001	6.92E-001
PB-214	7.90E-001	1.14E-001	5.88E-002
BI-214	6.62E-001	1.06E-001	5.45E-002
PB-210	Not Detected		2.65E+001
TH-232	9.66E-001	4.45E-001	1.93E-001
. RA-228	9.35E~0 01	1.64E-001	1.27E-001
AC-228	8.67E-001	1.58E-001	9.12E-002
TH-228	8.49E-001	3.71E-001	5.29 E -001
RA-224	1.10E+000	2.32E-001	6.64E-002
PB-212	9.54E-001	1.37E-001	3.598-002
BI-212	1.40E+000	3.28E-001	3.35E-001
TL-208	8.63E-001	1.35E-001	7.31E-002
U-235	2.03E-001	1.75E-001	2.23E-001
TH-231	Not Detected		1.06E+001
PA-231	Not Detected		1.31E+000
TH-227	Not Detected		3.49E-001
RA-223	Not Detected		2.26E-001
RN-219	Not Detected		3.42E-001
PB-211	Not Detected		7.56E-001
TL-207	Not Detected		1.15E+001
AM-241	Not Detected		4.33E-001
PU-239	Not Detected		4.09E+002
NP-237	Not Detected		2.16E+000
PA-233	Not Detected		5.15E-002
TH-229	Not Detected		2.31E-001

Normal dialor			
Nuclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		3.46E-002
AG-110m	Not Detected		2.61E-002
BA-133	Not Detected		4.65E-002
BE-7	Not Detected		2.23E-001
CD-115	Not Detected		3.23E-001
CE-139	Not Detected		2.78E-002
CE-141	Not Detected		5.33E-002
CE-144	Not Detected		2.26B-001
CM-243	Not Detected		1.62E-001
CO-56	Not Detected		2.91E-002
CO-57	Not Detected		2.92E-002
CO-58	Not Detected		2.88E-002
CO-60	Not Detected		3.02E-002
CR-51	Not Detected		2.40E-001
CS-134	Not Detected		3.77E-002
CS-137	Not Detected		2.81E-002
EU-152	Not Detected		8.70E-002
EU-154	Not Detected		1.59E-001
EU-155	Not Detected		1.32E-001
FE-59	Not Detected		6.81E-002
GD-153	Not Detected	=======	9.79E-002
HG-203	Not Detected		3.14E-002
I-131	Not Detected		3.96E-002
IR-192	Not Detected		2.60E-002
K-40	1.72E+001	2.32E+000	2.58E-001
MN-52	Not Detected	2.3257000	5.08E-001
MN-54	Not Detected		3.23E-002
MO-99	Not Detected		7.14E-001
NA-22	Not Detected		3.56E-002
NA-24	Not Detected		9.53E+000
ND-147	Not Detected		2.30E-001
NI-57	Not Detected Not Detected		3.31E-001
RU-103	Not Detected		2.69E-002
RU-106	Not Detected		
SB-122	Not Detected		2.47E-001
SB-124	Not Detected		1.34E-001
SB-125	Not Detected		2.64E-002 7.72E-002
SN-113	Not Detected		3.31E-002
SR~85	Not Detected		
TA-182	Not Detected		3.31E-002 1.34E-001
TA-183	Not Detected		
TL-201	Not Detected		7.63E-001
Y-88	Not Detected		5.09E-001
ZN-65	Not Detected		2.47E-002
ZR-95	Not Detected		8.64E-002
	Hot betetted		4.99E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 9:01:10 PM

Analyzed by:

: SANDERS, M (6135) Customer

Customer Sample ID : 059921-003 Lab Sample ID : 20134216 🗸

Sample Description : 6969/1004-DF1-BH3-8-S

Sample Quantity : 873.000 gram Sample Date/Time : 9/20/02 11:30:00 AM Acquire Start Date/Time: 9/25/02 7:20:52 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.35E+000 6.43E-001 5.98E-001 Not Detected	4.62E-001 9.51E-002 9.55E-002	6.21E-001 6.43E-001 5.43E-002 4.86E-002 2.45E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212	6.67E-001 7.40E-001 6.86E-001 7.95E-001 8.03E-001 7.78E-001 1.05E+000 7.10E-001	3.21E-001 1.35E-001 1.34E-001 3.99E-001 1.75E-001 1.12E-001 2.67E-001	1.94E-001 1.17E-001 1.02E-001 5.91E-001 5.90E-002 3.35E-002 2.93E-001 6.58E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.02E-001 1.01E+001 1.21E+000 3.08E-001 2.15E-001 3.06E-001 6.84E-001 1.17E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		3.78E-001 3.66E+002 2.00E+000 4.75E-002 2.12E-001

[Summary Report] - Sample ID: : 20134216

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		0 000 000
AG-110m	Not Detected		2.99E-002
BA-133	Not Detected		2.40E-002
BE-7	Not Detected		4.19E-002
CD-115	Not Detected	*******	2.19E-001
CE-139	Not Detected		2.90E-001
CE-141	Not Detected		2.55E-002
CE-144	Not Detected		4.82E-002 2.07E-001
CM-243	Not Detected		1.51E-001
CO-56	Not Detected		2.88E-002
CO-57	Not Detected		2.70E-002
CO-58	Not Detected		2.70E-002 2.72E-002
CO-60	Not Detected		3.25E-002
CR-51	Not Detected		2.19E-001
CS-134	Not Detected		3.47E-002
CS-137	Not Detected		2.58E-002
EU-152	Not Detected		8.00E-002
EU-154	Not Detected		1.38E-001
EU-155	Not Detected		1.17E-001
FE-59	Not Detected		6.83E-002
GD-153	Not Detected		8.85 E -002
HG-203	Not Detected		2.97E-002
I-131	Not Detected		3.67E-002
IR-192	Not Detected		2.33E-002
K-40	2.53E+001	3.35E+000	2.35E-001
MN-52	Not Detected		4.40E-002
MN-54	Not Detected		2.92E-002
MO-99	Not Detected		7.23E-001
NA-22	Not Detected		3.70E-002
NA-24	Not Detected		1.03E+001
ND-147 NI-57	Not Detected Not Detected		2.24E-001
RU-103	Not Detected		2.52E-001
RU-106	Not Detected		2.53E-002
SB-122	Not Detected		2.24E-001
SB-124	Not Detected	_	1.30E-001
SB-125	Not Detected		2.49E-002
SN-123	Not Detected		7.15E-002
SR-85	Not Detected		3.23E-002
TA-182	Not Detected		3.05E-002
TA-183	Not Detected		1.29E-001
TL-201	Not Detected		6.71E-001 4.57E-001
Y-88	Not Detected		
ZN-65	Not Detected		1.98E-002 8.64E-002
ZR-95	Not Detected		8.64E-002 4.68E-002
	50000000		4.005-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/25/02 10:43:10 PM

* Analyzed by: Reviewed by: *****

Customer : SANDERS, M (6135)

Customer Sample ID : 059922-003 Lab Sample ID : 20134217

Sample Description : 6969/1004-DF1-BH3-13-S

Sample Quantity : 779.000 gram

Sample Date/Time : 9/20/02 11:50:00 AM Acquire Start Date/Time : 9/25/02 9:02:55 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
บ-238	Not Detected		7.01E-001
RA-226	1.94E+000	5.38E-001	6.94E-001
PB-214	7.27E-001	1.06E-001	5.71E-002
BI-214	6.68E-001	1.06E-001	5.06E-002
, PB-210	Not Detected		2.67E+001
TH-232	9.21E-001	4.26E-001	1.89E-001
RA-228	8.98E-001	1.57E-001	1.08E-001
AC-228	8.46E-001	1.56E-001	9.69E-002
TH-228	9.37E-001		5.99E-001
RA-224	9.66E-001	2.08E-001	6.58E-002
PB-212	9.26E-001	1.33E-001	3.65E-002
BI-212	8.84E-001	3.01E-001	3,94E-001
TL-208	7.70E-001	1.24E-001	7.71E-002
U-235	Not Detected		2.19E-001
TH-231	Not Detected		1.06E+001
PA-231	Not Detected		1.26B+000
TH-227	Not Detected		3.43E-001
RA-223	Not Detected		2.36E-001
RN-219	Not Detected		3.27E-001
PB-211	Not Detected		7.46E-001
TL-207	Not Detected		1.17E+001
AM-241	Not Detected		4.13E-001
PU-239	Not Detect ed		4.05E+002
NP-237	Not Detected		2.09E+000
PA-233	Not Detected		5.13E-002
TH-229	Not Detected		2.30E-001

____[Summary Report] - Sample ID: : 20134217

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)	
AG-108m	Not Detected		3.09E-002	
AG-110m	Not Detected		2.59E-002	
BA-133	Not Detected		4.34E-002	
BE-7	Not Detected		2.22E-001	
CD-115	Not Detected		3.31E-001	
CE-139	Not Detected		2.69E-002	
CE-141	Not Detected		5.40E-002	
CE-144	Not Detected		2.20E-001	
CM-243	Not Detected		1.55E-001	
CO-56	Not Detected	******	2.94E-002	
CO-57	Not Detected		2.84E-002	
CO-58	Not Detected	*	2.93E-002	
CO-60	Not Detected		3.12E-002	
CR-51	Not Detected	*********	2.38E-001	
CS-134	Not Detected		3.65E-002	
CS-137	Not Detected		2.78E-002	
EU-152	Not Detected		8.43E-002	
EU-154	Not Detected	*****	1.42E-001	
EU-155	Not Detected		1.27E-001	
FE-59	Not Detected		6.75E-002	
GD-153	Not Detected		9.43E-002	
HG-203	Not Detected		3.07E-002	
I-131	Not Detected		3.90E-002	
IR-192	Not Detected		2.58E-002	
∮ K-40	1.81E+001	2.43E+000	2.74E-001	
MN-52	Not Detected		5.08E-002	
MN-54	Not Detected		3.02E-002	
MO-99	Not Detected		7.68E-001	
NA-22	Not Detected		3.50E-002	
NA-24	Not Detected		1.08E+001	
ND-147	Not Detected		2.35E-001	
NI-57	Not Detected		5.19E-001	
RU-103	Not Detected		2.54E-002	40T, 0
RU-106	7.35E-002	7.05E-002	1:10E=001	
SB-122	Not Detected		1.36 E-001	DUKOS COZ
SB-124	Not Detected		2.50E-002	9-26-02
SB-125	Not Detected		7.27E-002	٦,
SN-113	Not Detected		3.36E-002	
SR-85	Not Detected		3.34E-002	
TA-182	Not Detect ed		1.39E-001	
TA-183	Not Detected		7.39E~001	
TL-201	Not Detected		5.11E-001	
88-Y	Not Detected		2.06E-002	
ZN-65	Not Detected		8.56E-002	
ZR-95	Not Detected		5.11E-002	

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 12:25:14 AM

* Analyzed by: fr 9/20/02 Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059923-003 Lab Sample ID : 20134218

Sample Description : 9978/1114-DW1-BH1-6-S

Sample Quantity : 711.000 gram

Sample Date/Time : 9/23/02 8:45:00 AM Acquire Start Date/Time : 9/25/02 10:44:54 PM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6002 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 1.83E+000 6.57E-001 5.48E-001 Not Detected	4.84E-001 1.00E-001 9.14E-002	6.46E-001 5.99E-001 6.21E-002 5.25E-002 2.64E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212	6.04E-001 7.15E-001 5.75E-001 6.60E-001 6.85E-001 6.50E-001 8.65E-001 5.67E-001	2.95E-001 1.36E-001 1.21E-001 4.00E-001 1.65E-001 9.59E-002 2.76E-001 9.98E-002	1.89E-001 1.12E-001 9.73E-002 6.07E-001 9.51E-002 3.36E-002 3.41E-001 7.22E-002
U-235 TH-231 PA-231 TH-227 RA-223 RN-219 PB-211 TL-207	Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected Not Detected		2.10E-001 1.03E+001 1.22E+000 3.16E-001 1.85E-001 3.30E-001 7.39E-001 1.12E+001
AM-241 PU-239 NP-237 PA-233 TH-229	Not Detected Not Detected Not Detected Not Detected Not Detected		3.92E-001 3.69E+002 2.00E+000 5.12E-002 2.06E-001

[Summary Report] - Sample ID: : 20134218

Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)	
AG-108m	Not Detected		3.04E-002	
AG-110m	Not Detected		2.53E-002	1
BA-133	Not Detected		4.51E-002	
BE-7	Not Detected		2.07E-001	į į
CD-115	Not Detected		1.28E-001	#
CE-139	Not Detected		2,60E-002	Į.
CE-141	Not Detected		4.76E-002	i i
CE-144	Not Detected		2.02E-001	Ì
CM-243	Not Detected		1.49E-001	
CO-56	Not Detected		2.70E-002	1
CO-57	Not Detected		2.70B-002 2.59E-002	
CO-58	Not Detected		2.53E-002	
CO-60	Not Detected		2.98B-002	
CR-51	Not Detected		2.05E-001	·
CS-134	Not Detected		3.64E-002	
CS-137	Not Detected		2.75E-002	
EU-152	Not Detected		7.79E-002	
EU-154	Not Detected		1.40E-001	1 ·
EU-155	Not Detected		1.18E-001	ľ
FE-59	Not Detected		5.86E-002	
GD-153	Not Detected		8.38E-002	1
HG-203	Not Detected		2.78E-002	i
I-131	Not Detected		3.01E-002 `	
)IR-192	Not Detected		2.38E-002	i .
K-40	1.48E+001	2.02E+000	2.50E-001	
MN-52	Not Detected		3.64E-002	
MN-54	Not Detected		2.92E-002	
MO-99	Not Detected		3.54E-001	1
NA-22	Not Detected		3.34E-002	L
NA-24	Not Detected	******	4.89E-001	671678D 3
ND-147	Not Detected	0 015 000	1.94E-001	NOT DE 9-16.
NI-57			1.04E 001	NOT DETECTED
RU-103	Not Detected	~~~~~~	2.37E-002	j
RU-106 SB-122	Not Detected	********	2.33E-001	į į
	Not Detected		6.11E-002	l l
SB-124 SB-125	Not Detected	******	2.50E-002	
SN-113	Not Detected	*	6.80E-002	ì
	Not Detected	*****	3.13E-002	
SR-85	Not Detected	*****	3.10E-002	f
TA-182	Not Detected		1.29E-001	
TA-183	Not Detected		4.79E-001	l
TL-201 Y-88	Not Detected		2.52E-001	
ZN-65	Not Detected Not Detected	~~~~~~	2.36E-002	ſ
ZR-95			8.63E-002	{
ムベーソコ	Not Detected		4.67E-002	

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 2:07:15 AM

Analyzed by: $\sqrt{g/26/o2}$ Reviewed by:

Customer : SANDERS, M (6135)

Customer Sample ID : 059924-003 Lab Sample ID : 20134219

Sample Description : 9978/1114-DW1-BH1-11-S

Sample Quantity : 906.000 gram

Sample Quantity : 906.000 gram

Sample Date/Time : 9/23/02 9:10:00 AM

Acquire Start Date/Time : 9/26/02 12:26:59 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
U-238	Not Detected		5.82E-001
RA-226	1.33E+000	4.34E-001	5.95E-001
PB-214	4.86E-001	7.74E-002	5,65E-002
BI-214	5.03E-001	8.23E-002	4.65E-002
PB-210	Not Detected		2.30E+001
× 12 210	NOC DOCCOOL		
TH-232	6.51E-0 01	3.10E-001	1.75E-001
RA-228	6.45E-001	1.22E-001	1.17E-001
AC-228	5.80E-001	1.45E-001	1.64E-001
TH-228	9.08E-001	3.71E-001	5.25E-001
RA-224	7.33E-001	1.62E-001	5.94E-002
PB-212	6.32E-001	9.21E-002	3.15E-002
BI-212	8.13E-001	2.61E-001	3.34E-001
TL-208	5.67E-001	9.57E-002	6.68E-002
			1 025 001
U-235	Not Detected		1.92E-001
TH-231	Not Detected		9.16E+000
PA-231	Not Detected		1.12E+000
TH-227	Not Detected		2.76E-001
RA-223	Not Detected		1.70E-001
RN-219	Not Detected		2.92E-001
PB-211	Not Detected		6.57E-001
TL-207	Not Detected		1.05E+001
AM-241	Not Detected		3.40E-001
PU-239	Not Detected		3.44E+002
NP-237	Not Detected		1.85E+000.
PA-233	Not Detected		4.66E-002
TH-229	Not Detected		1.97E-001
			•

Juclide	Activity	2-sigma	MDA
Name	(pCi/gram)	Error	(pCi/gram)
AG-108m	Not Detected		2.84E-002
AG-110m	Not Detected	*	2.26E-002
BA-133	Not Detected		3.77E-002
BE-7	Not Detected		1.948-001
CD-115	Not Detected		1.17E-001
CE-139	Not Detected		2.39E-002
CE-141	Not Detected		4.45E-002
CE-144	Not Detected		1.89E-001
CM-243	Not Detected		1.35E-001
CO-56	Not Detect ed		2.83E-002
CO-57	Not Detected		2.54E-002
CO-58	Not Detected		2.45E-002
CO-60	Not Detected		3.00E-002
CR-51	Not Detected		1.90B-001
CS-134	Not Detected		3.15E-002
CS-137	Not Detected		2.42E-002
EU-152	Not Detected		7.63E-002
EU-154	Not Detected		1.31E-001 1.10E-001
EU-155	Not Detected		5.72E-001
FE-59 GD-153	Not Detected Not Detected		8.03E-002
HG-203	Not Detected		2.55E-002
_ I-131	Not Detected		2.78E-002
IR-192	Not Detected		2.23E-002
) _{K-40}	2.31E+001	3.06E+000	2.44B-001
MN-52	Not Detected		2.92E-002
MN-54	Not Detected		2.59E-002
MO-99	Not Detected		3.35E-001
NA-22	Not Detected		3.57E-002
NA-24	Not Detected		4.82E-001
ND-147	Not Detect ed		1.74E-001
NI-57	Not Detected		6.76E-002
RU-103	Not Detected		2.25E-002
RU-106	Not Detected		2.17E-001
SB-122	Not Detected		5.99E-002
SB-124	Not Detected		2.34E-002
SB-125	Not Detected		6.49E-002
SN-113	Not Detected		2.95E-002
SR-85	Not Detected		2.77E-002
TA-182	Not Detected		1.23E-001 4.18E-001
TA-183 TL-201	Not Detected		2.37E-001
Y-88	Not Detected Not Detected		1.65E-002
1-88 ZN-65	Not Detected Not Detected		8.13E-002
ZN-65 ZR-95	Not Detected		4.11E-002
J. / _	1.00 2000000	. —	

Sandia National Laboratories
Radiation Protection Sample Diagnostics Program
9/26/02 11:15:58 AM

Customer : SANDERS M (6135)

Customer Sample ID : 059931-001 Lab Sample ID : 20134207

Sample Description : 829/276-SP1-BH1-8-DU

Sample Quantity : 735.000 gram

Sample Date/Time : 9/24/02 2:00:00 PM Acquire Start Date/Time : 9/26/02 9:35:43 AM

Detector Name : LAB02

Elapsed Live/Real Time : 6000 / 6003 seconds

Comments:

Nuclide	Activity (pCi/gram)	2-sigma	MDA
Name		Error	(pCi/gram)
U-238 RA-226 PB-214 BI-214 PB-210	Not Detected 2.02E+000 9.18E-001 7.84E-001 Not Detected	5.63E-001 1.30E-001 1.21E-001	7.37E-001 7.28E-001 6.03E-002 4.84E-002 2.80E+001
TH-232 RA-228 AC-228 TH-228 RA-224 PB-212 BI-212	1.00E+000 9.91E-001 9.13E-001 1.21E+000 1.05E+000 1.04E+000	4.61E-001 1.72E-001 1.66E-001 4.61E-001 2.27E-001 1.49E-001 3.15E-001	1.90E-001 1.23E-001 9.81E-002 6.42E-001 8.66E-002 3.75E-002
TL-208	8.85E-001	1.40E-001	8.07E-002 2.31E-001
TH-231	Not Detected		1.16E+001
PA-231	Not Detected		1.34E+000
TH-227	Not Detected		3.75E-001
RA-223	Not Detected		2.03E-001
RN-219	Not Detected		3.68E-001
PB-211	Not Detected		8.25E-001
TL-207	Not Detected		1.16E+001
AM-241	Not Detected		4.27E-001
PU-239	Not Detected		4.13E+002
NP-237	Not Detected		2.22E+000
PA-233	Not Detected		5.35E-002
TH-229	Not Detected		2.35E-001

iclide Name	Activity (pCi/gram)	2-sigma Error	MDA (pCi/gram)
AG-108m	Not Detected		3.57E-002
AG-110m	Not Detected		2.75E-002
BA-133	Not Detected	******	4.90E-002
BE-7	Not Detected		2.29E-001
CD-115	Not Detected		1.14E-001
CE-139	Not Detected		2.89E-002
CE-141	Not Detected		5.23E-002
CE-144	Not Detected		2.25E-001
CM-243	Not Detected	****	1.62E-001
CO-56	Not Detected		3.01E-002
CO-57	Not Detected		2 98E-002
CO-58	Not Detected		2.85E-002
CO-60	Not Detected		3.38E-002
CR-51	Not Detected		2.22E-001
CS-134	Not Detected		3.96E-002
CS-137	Not Detected		2.96E-002
EU-152	Not Detected		8.96E-002
EU-154	Not Detected		1.64E-001
EU-155	Not Detected		1.34E-001
FE-59	Not Detected		6.20E-002
GD-153	Not Detected		9.58E-002
HG-203	Not Detected		2.95E-002
I-131	Not Detected		3.19E-002
IR-192	Not Detected		2.62E-002
K-40	1.71E+001	2.30E+000	2.65E-001
MN-52	Not Detected		3.498-002
MN-54	Not Detected		3.09E-002
MO-99	Not Detected		3.32E-001
NA-22 NA-24	Not Detected		3.61E-002
NA-24 ND-147	Not Detected Not Detected		2.28E-001
NI-57	Not Detected		1.95E-001 7.28E-002
RU-103	Not Detected		2.55E-002
RU-106	Not Detected		2.39E-001
SB-122	Not Detected		5.81E-002
SB-124	Not Detected		2.49E-002
SB-125	Not Detected		7.27E-002
SN-113	Not Detected		3.49E-002
SR-85	Not Detected		3.38E-002
TA-182	Not Detected		1.43E-001
TA-183	Not Detected		4.70E-001
TL-201	Not Detected		2.38E-001
Y-88	Not Detected		2.49E-002
ZN-65	Not Detected		9.51E-002
ZR-95	Not Detected		4.93E-002

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 7:40:07 AM

Analyzed by: Reviewed by:

Customer : SANDERS M (6135)

Customer Sample ID : LAB_CONTROL_SAMPLE_USING_CG-134

Lab Sample ID : 20134220

Sample Description : MIXED_GAMMA_STANDARD_CG-134

Sample Quantity : 1.000 Each

Sample Date/Time : 11/1/90 12:00:00 PM Acquire Start Date/Time : 9/26/02 7:29:51 AM

Detector Name : LAB01

Elapsed Live/Real Time : 600 / 604 seconds

Comments:

		0	LOD X
Nuclide	Activity	2-sigma	MDA
Name	(pCi/Each)	Error	(pCi/Each)
BE-7	Not Detected		1.00E+026
NA-22	Not Detected		4.50E+003
NA-24	Not Detected		1.00E+026
K-40	Not Detected		1.34E+003
CR-51	Not Detected		1.00E+026
/MN-52	Not Detected		1.00E+026
MN-54	Not Detected		5.15E+006
CO-56	Not Detected		2.96E+019
CO-57	Not Detected		1.11E+007
NI-57	Not Detected		1.00E+026
CO-58	Not Detected		8.61E+020
FE-59	Not Detected		1.00E+026
CO-60	7.93E+004	1.05E+004	9.20E+002
ZN-65	Not Detected		1.90E+008
SR-85	Not Detected		1.00E+026
Y-88	Not Detected		2.94E+014
ZR-95	Not Detected		1.00E+026
MO-99	Not Detected		1.00E+026
RU-103	Not Detected		1.00E+026
RU-106	Not Detected		9.72E+006
AG-108m	Not Detected		3.24E+002
AG-110m	Not Detected		2.87E+008
SN-113	Not Detected		1.01E+014
CD-115	Not Detected		1.00E+026
SB-122	Not Detected		1.00E+026
SB-124	Not Detected		1.00E+026
SB-125	Not Detected		2.38E+004
I-131	Not Detected		1.00E+026
BA-133	Not Detected		9.09E+002
2 100			- · · ·

•	Nuclide Name	Activity (pCi/Each)	2-sigma Error	MDA (pCi/Each)
	J-134	Not Detected	******	
	CS-137	6.80E+004		1.51E+004
	CE-139	Not Detected	8.63E+003	3.65B+002
	CE-141	Not Detected		5.72B+011
	CE-144	Not Detected		1.00B+026
	ND-147	Not Detected		5.17E+007
	EU-152	Not Detected		1.00E+026
	GD-153	Not Detected		9.43E+002
	EU-154	Not Detected	*******	1.11E+008
	EU-155	Not Detected	*******	3.66E+003 4.26E+003
	TA-182	Not Detected		2.50E+003
	TA-183	Not Detected		
	IR-192	Not Detected		1.00E+026
	TL-201	Not Detected		1.48E+020 1.00E+026
	HG-203	Not Detected		
	TL-207	Not Detected		1.00E+026 2.34E+005
	TL-208	Not Detected		6.32E+004
	PB-210	Not Detected		9.80E+004
	PB-211	Not Detected		1.51E+004
	BI-212	Not Detected		2.99E+005
	PB-212	Not Detected		3.36E+004
	BI-214	Not Detected		5.79E+002
	PB-214	Not Detected		6.74E+002
	RN-219	Not Detected		6.71E+003
	RA-223	Not Detected		1.00E+026
	RA-224	Not Detected		1.86E+004
	RA-226	Not Detected		5.65E+003
	TH-227	Not Detected	·	2.57E+003
	AC-228	Not Detected		1.45E+003
	RA-228	Not Detected		2.46E+003
	TH-228	Not Detected		4.75E+005
	TH-229	Not Detected		1.26E+003
	PA-231	Not Detected		1.39E+004
	TH-231	Not Detected		4.04E+004
	TH-232 PA-233	Not Detected		2.05E+003
	U-235	Not Detected	******	5.84E+002
	NP-237	Not Detected		1.38E+003
	U-238	Not Detected	*****	1.23E+004
	PU-239	Not Detected	*******	2.59E+003
	AM-241	Not Detected	1 000.004	2.32E+006
	CM-241	8.91E+004	1.29E+004	1.91E+003
	U1-243	Not Detected	~	2.16E+003

Sandia National Laboratories Radiation Protection Sample Diagnostics Program Quality Assurance Report

Report Date : 9/26/02 7:40:12 AM

QA File : C:\GENIE2K\CAMFILES\LCS1.QAF

Analyst : KICHAVE Sample ID : 20134220

Sample Quantity : 1.00 Each

Sample Date : 11/1/90 12:00:00 PM
Measurement Date : 9/26/02 7:29:51 AM
Elapsed Live Time : 600 seconds
Elapsed Real Time : 604 seconds

Parameter	Mean	1S Error	New Value	<	LU :	SD:	υD	: BS >
AM-241 ACTIVITY	8.574E-002	3.464E-003	B.909E-002	<	:	:	:	>
CS-137 Activity	6.836E-002	1.361E-003	6.799E-002	<	:	:	:	>
CO-60 Activity	7.658E-002	3.463E-003	7.716E-002	<	:	:	:	>

lags Key: LU = Boundary Test (Ab = Above , Be = Below)
SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)
UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)
BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by:

Sandia National Laboratories Radiation Protection Sample Diagnostics Program 9/26/02 7:36:45 AM

Analyzed by:

Customer : SANDERS M (6135)

Customer Sample ID : LAB_CONTROL_SAMPLE_USING_CG-134

Lab Sample ID : 20134221

Sample Description : MIXED_GAMMA_STANDARD_CG-134

Sample Quantity : 1.000 Each

Sample Date/Time : 11/01/90 12:00:00 PM Acquire Start Date/Time : 9/26/02 7:26:30 AM

Detector Name : LAB02

Elapsed Live/Real Time : 600 / 604 seconds

Comments:

Nuclide	Activity	2-sigma	MDA
Name	(pCi/Each)	Error	(pCi/Each)
			2 045 002
ប-238	Not Detected		3.94E+003
RA-226	Not Detected		5.61E+003
PB-214	Not Detected	· - -	5.75E+002
BI-214	Not Detected		4.66E+002
PB-210	Not Detect e d		2.67E+005
.			1 555.000
TH-232	Not Detected		1.77E+003
RA-228	Not Detected		1.77E+003
AC-228	Not Detected		1.05E+003
TH-228	Not Detected		4.27E+005
RA-224	Not Detected		1.90E+004
PB-212	Not Detect ed	*	3.36E+004
BI-212	Not Detected		2.08E+005
TL-208	Not Detected		5.50E+004
U-235	Not Detected		1.55E+003
TH-231	Not Detected		6.77E+004
PA-231	Not Detected		1.22E+004
TH-227	Not Detected		2.58E+003
RA-223	Not Detected		1.00E+026
RN-219	Not Detected		5.66E+003
PB-211	Not Detected		1.26E+004
TL-207	Not Detected		1.74E+005
111.201	NOT DECECTE		20112
AM-241	8.21E+004	1.22E+004	3.94E+003
PU-239	Not Detected		2.60E+006
NP-237	Not Detected		1.41E+004
PA-233	Not Detected		5.09E+002
TH-229	Not Detected		1.49E+003

				_			
_	[Summary F	Report] - Sample	ID: : 20134221				
	Nuclide	Activity	2-sigma	MDA			
	Name	(pCi/Each)	Error	(pCi/Each)			
				1202/2001/			
	AG-108m	Not Detected		2.21E+002			
	AG-110m	Not Detected		2.27E+008			
	BA-133	Not Detected		7.80E+002			
	BE-7	Not Detected		1.00E+026			
	CD-115	Not Detected		1.00E+026			
	CE-139	Not Detected		6.26E+011			
	CE-141	Not Detected		1.00E+026			
	CE-144	Not Detected		5.81E+007			
	CM-243	Not Detected		1.88E+003			
	CO-56	Not Detected		2.28E+019			
	CO-57	Not Detected		1.28E+007			
	CO-58	Not Detected	*	6.47E+020			
	CO-60	8.15E+004	1.06E+004	7.25E+002			
	CR-51 CS-134	Not Detected		1.00E+026			
	CS-134 CS-137	Not Detected		1,22E+004			
	EU-152	7.02E+004	8.88E+003	3.35E+002			
	EU-154	Not Detected Not Detected		1.09E+003			
	EU-155	Not Detected		2.49E+003			
	FE-59	Not Detected		4.92E+003			
	GD-153	Not Detected		1.00E+026			
	HG-203	Not Detected		1.61E+008			
3. 32. 100 (S .)	I-131	Not Detected		1.00E+026 1.00E+026			
	IR-192	Not Detected	~=====	1.28E+020			
	K-40	Not Detected	. =======	1.06E+003			
	MN-52	Not Detected		1.00E+026			
	MN-54	Not Detected		3.76E+006			
	MO-99	Not Detected		1.00E+026			
	NA-22	Not Detected		3.47E+003			
	NA-24	Not Detected		1.00E+026			
	ND-147	Not Detected	~~~~~	1.00E+026			
	NI-57	Not Detected		1.00E+026			
	RU-103	Not Detected	~	1.00E+026			
	RU-106	Not Detected		8.00E+006			
	SB-122 SB-124	Not Detected		1.00E+026			
	SB-124 SB-125	Not Detected	*******	1.00E+026			
	SN-113	Not Detected Not Detected	*	1.98E+004			
	SR-85	Not Detected	******	8.64E+013			
	TA-182	Not Detected	*******	1.00E+026			
	TA-183	Not Detected		1.84E+014 1.00E+026			
	TL-201	Not Detected	~	1.00E+026			
	Y-88	Not Detected		2.73E+014			
	ZN-65	Not Detected	*******	1.38E+008			
	ZR-95	Not Detected		1.00E+026			
			•	_ , UUDTUEU			

Sandia National Laboratories Radiation Protection Sample Diagnostics Program Quality Assurance Report

Report Date : 9/26/02 7:36:51 AM

QA File : C:\GENIE2K\CAMFILES\LCS2.QAF

Analyst : KICHAVE Sample ID : 20134221

Sample Quantity : 1.00 Each

Sample Date : 11/01/90 12:00:00 PM
Measurement Date : 9/26/02 7:26:30 AM
Elapsed Live Time : 600 seconds
Elapsed Real Time : 604 seconds

Parameter	Mean	1S Error	New Value	<	LU:	SD:	סט	: BS >	
AM-241 Activity	8.240E-002	3.922E-003	8.212E-002	<	:	:	•	>	
CS-137 Activity	7.182E-002	3.734E-003	7.023E-002	. <	:		:	>	
_CO-60 Activity	8.001E-002	5.095E-003	8.027E-002	<	:	:	:	>	

Flags Key: LU = Boundary Test (Ab = Above , Be = Below)

SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action)

UD = User Driven N-Sigma Test (In = Investigate, Ac = Action)

BS = Measurement Bias Test (In = Investigate, Ac = Action)

Reviewed by: //o/low