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PREFACE 
 
 
 
In lattice theory the two well known equational class of lattices 
are the distributive lattices and the modular lattices. All 
distributive lattices are modular however a modular lattice in 
general is not distributive.  

In this book, new classes of lattices called supermodular 
lattices and semi-supermodular lattices are introduced and 
characterized as follows: 

A subdirectly irreducible supermodular lattice is isomorphic 
to the two element chain lattice C2 or the five element modular 
lattice M3. 

A lattice L is supermodular if and only if L is a subdirect 
union of a two element chain C2 and the five element modular 
lattice M3. 

A modular lattice L is n-semi-supermodular if and only if 
there does not exist a set of (n + 1) elements a1, a2, …, an in L 
such that a + a1 = a + a2 = … = a + an > a with a > aiaj (i not 
equal j); i, j = 1, 2, …, n.  

A modular lattice L is n-semi-supermodular if and only if it 
does not contain a sublattice whose homomorphic images is 
isomorphic to 

1 2 ri 2,i 2,...,i 2M     or 
1 2 ri 2,i 2,...,i 2M   


 with i1 + i2 + … + 

ir = n – 1; i, j  1. 
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We define the concept of Smarandache lattices and GB-
algebraic structures are characterized in chapters six and seven 
respectively. 

This book has seven chapters. Chapter one is introductory in 
nature. A simple modular lattice of finite length is introduced 
and characterized in chapter three. In chapter four the notion of 
supermodular lattices is introduced and characterized and 
chapter five introduces the notion of n-semi-supermodular 
lattices and characterizes them. 

It is pertinent to keep on record part of this book is the 
second authors Ph.D thesis done under the able guidance of the 
first author Late Professor Iqbalunnisa. Infact the last two 
authors where planning for a lattice theory book a year back but 
due to other constraints we could not achieve it. Now we with a 
heavy heart have made this possible. 

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 

 
IQBAL UNNISA 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

  



 
 
 
 
Chapter One 
 
 

 
 
PRELIMINARIES 
 
 
 
In this chapter we recall some definitions and results which are 
made use of throughout this book. The symbols , , +, . will 
denote inclusion, noninclusion, sum (least upper bound) and 
product (greater lower bound) in any lattice L; while the 
symbols,  , , , ,  will refer to set inclusion, union (set 
sum), intersection (set product), membership, and non-
membership respectively.  Small letters a, b, … will denote 
elements of the lattice and greek letters, , , … will stand for 
congruences on the lattice.    
 

A binary relation  on L is said to be an equivalence 
relation if it satisfies. 

 
 (i) x  x () (reflexive) 
 (ii) x  y ()  y  x () symmetric 

(iii) x  y (); y  x ()  x  z () (transitive) 
If it further satisfies the substitution property. 

(iv) x  x (); y  y ()  x + y  x + y () then it is 
called an additive congruence.  An equivalence relation 
which has the substitution property. 

(v) x  x (); y  y ()  xy  xy () is called a 
multiplicative congruence.  If a binary relation satisfies 
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the conditions (1) to (v) then it is said to be a lattice 
congruence or merely a congruence on L. 

 
Result 1.1:  If a = b () in a lattice L then x = y () for all x, y 
in L such that ab  x, y  a + b [2]. 
 
 
 Let a, b in L such that a  b.  Then the set of all elements x 
in L such that a  x  b is called the interval (a, b).  If a = b(a, b) 
is called a prime interval.  If a = b (a, b) is called a trivial 
interval. 
 
 If a  b () (a, b in L; a  b) then x  y () for all x, y in L 
such that a  x, y  b (by result 1.1) and  is said to annul the 
interval (a, b). 
 
 Intervals of the form (x, x+y) and (xy, y) are said to be 
perspective intervals.  We say 
 

(xy, y)   (x, x+y) or equivalently (x, x+y)   (xy, y). 
 
 If I = (a, b) is an interval of L then the interval (a+x, b+x) 
for any x in L is called an additive translate of the interval I and 
is written as I+x; and the interval (ax, bx) for any x in L is 
called a multiplicative translate of the interval I and is written as 
Ix. 
 
 An interval J is the lattice translate of an interval I of L if 
elements x1, x2, …, xn can be found such that  
 
 J  = ((((I + x1)x2) + x3)…) xn or  
 
 J  = ((((I.x1) + x2) x3)…) xn,  
 
where n in finite and +, . occur alternatively. 
 
Result 1.2:  Lattice translation is a transitive relation. 
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Result 1.3:  Any lattice translate of an interval I of a distributive 
lattice L can be written as (I + y)x or (I.x) + y for some x, y in L 
[10]. 
 
Result 1.4: Any subinterval J of an interval I is a lattice 
translate of I [10]. 
 
Result 1.5:  Any conqruence  on L which annuls I annuls all 
lattice translates of I [10]. 
 
Result 1.6: Any non-null set S in L is a congruence class under 
some congruence relation on L if any only if 
 

(i) S is a convex sublattice and 
(ii) Lattice translate of intervals in S lie wholly within S or 

outside S [10]. 
 
DEFINITION 1.1:   The smallest congruence which annuls a set 
S of a lattice L is called the congruence generated by the set S. 
 
Result 1.7:  Let I be an interval of a lattice L.  I the congruence 
generated by I in L.  x  y (I) if and only if there exists a finite 
set of elements x+y = x0 > x1 > x2 … . xn = xy such that (xi, xi+1) 
is a lattice translate of the interval I [10]. 
 
Result 1.8:  The lattice translate of a prime interval in a 
modular lattice can only be a prime interval [10]. 
 
Result 1.9:  Let L be a modular lattice.  I and J intervals of L 
such that I is a lattice translate of J then I is projective with a 
subinterval of J [10]. 
 
DEFINITION 1.2:  The modular lattice consisting of n+2 
elements (n  3), a, x1, …, xn, b satisfying xi + xj = a  (i  j, i, j = 
1, 2, …, n), xi xj = b for all i, j = 1, 2, …, n; i  n is denoted by 
Mn. The modular lattice consisting of the elements a, xi, x2, …, 
xn, b, y1, …, ym–1, c satisfying 
 
  xi + xj =  a for all i  j, i, j = 1, 2, …, n 
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  xixj = b for all i, n  j, i, j = 1, 2, …, n 

b+yi = xn for all i = 1, 2, …, m–1 
yi + yj = xn for all i  j, i, j = 1, 2, …, m–1 
byi = c for all i=1, 2, …, m–1 
yiyj = c for all i, j = 1, 2, …, m–1 is denoted by Mn,m. 

 
 We denote 

1 2 kn ,n ,...,nM (nk  3) in a similar fashion. 
 
 We define m,n,rM̂  to be the modular lattice consisting of the 
elements a, x1, …, xn, b, y1, …, ym–1, c, z1, z2, …, zr–1, d, cd such 
that a, x1, …, xn, b form a lattice isomorphic to Mn. x1, b, y1, …, 
ym–1, c form a lattice isomorphic to Mm; x2, b, z1, …, zr–1, d form 
a lattice isomorphic to Mr. We extend definition to n,m,r ,sM̂  in 
two ways.   
 

First n,m,r ,sM̂  is got by taking elements a, x1, x2, …, b, y1, …, 
ym–1, b1, z1, …, zr–1, b2, u1, …, us–1, b3, b1 b2, b1b3, b3b1, b1b2b3 
such that a, x1, x2, …, xn, b form a lattice isomorphic to Mn; x1, 
b, y1, …, ym–1, b1 form a lattice isomorphic to Mm,  x2, b, z1, …, 
zr–1, b2 form a lattice isomorphic to Mr; x3, b, u1, …, us–1, b3  
form a lattice isomorphic to Ms. 
 
 In the second; we define m,n ,r ,sM̂  by taking the elements   

a, x1, …, xn, b, y1, …, ym–1, b1, z1, z2, …, zr–1, b2, u1, …, us–1, 
b3 b1b2, b2b3 such that a, x1, …, xn, b form a sublattice 
isomorphic to Mn, 

 
x1, b, y1, …, ym–1, b1, form a sublattice isomorphic to Mm,  
 
x2, b, z1, z2, …, zr–1, b2, form a sublattice isomorphic to Mr,  
 
y1, b1, u1, …, us–1, b3 form a sublattice isomorphic to Ms.  
 

m,n,r ,sM


 … is defined dually. 
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m,n,rM̂  Figure 1.1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n,m,r ,sM̂   Figure 1.2 
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Figure 1.3 
 
 These are illustrated in figures 1.1, 1.2 and 1.3. 
 
DEFINITION 1.3:  Let  be a congruence on a lattice L.  is 
called separable if and only if for every pair of comparable 
elements a < b there exist a finite sequence of elements. 

a = x0 < x1 < … < xn = b 
such that either (xi–1, xi) is annulled by  or (xi–1, xi) consist of 
single point congruence classes under . 
 
THEOREM [4]: Let L be a modular lattice and let C0 and CI be 
chains in L. The sublattice of L generated by C0 and CI is 
distributive. 
 
THEOREM [6, 7, 13]: Any subdirectly irreducible modular 
lattice of length n  3 has a sublattice whose homomorphic 
image is isomorphic to M3.3. 
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Chapter Two 
 
 

 
 
SIMPLE MODULAR LATTICES  
OF FINITE LENGTH 
 
 
 
In the first chapter we defined the notions of additive translate, 
multiplicative translate and lattice translate of an interval.  We 
introduce in this chapter, the notion of a distributive translate of 
an interval and study the properties of distributive translates of 
prime intervals in a modular lattice.  This study leads us to a 
characterization of simple modular lattices of finite length. 
 
 Throughout this chapter L will denote a modular lattice, 
unless otherwise stated. 
 
DEFINITION 2.1: A prime interval I of L is said to be 
distributive if for all nontrivial intervals J = (I+x)y there exist p, 
q  L with J = Ip + q for all the nontrivial intervals J1 = Ix1 + 
y1 there exist p1, q1 in L with J1 = (1 + p1)q1. 
 
Lemma 2.1:  Any prime interval of a distributive lattice is 
distributive. 
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Proof:  Follows as J = (I+x) y implies J = Iy + xy and J1 = Ix1 + 
y1 implies J1 = (I+y1) (x1 + y1). 
 
Lemma 2.2:   In a distributive lattice if a nontrivial interval J = 
(I+x)y, then Iy is nontrivial. 
 
Proof:  Now J = Iy + xy and if Iy were trivial, so would be J. 
 
DEFINITION 2.2:  If I = (a, b) and J = (c, d) then the intervals 
(a + c, b + d) and (ac, bd) are denoted by I + J and IJ 
respectively. 
 
Lemma 2.3:   If a nontrivial interval J = (I + x)y then I + J 
cannot be trivial. 
 
Proof:  Let I = (a, b) and J = (c, d) then 
  c = (a + x)y; d = (b + x)y. 
 
Also a+c = a + (a+x)y = (a+x) (a+y) and 

  b+d = b+(b+x)y = (b+x) (b+y).   
 
Now if I + J is trivial then a + c = b + d that is  
(a+x) (a+y) = (b+x) (b+y) which means 

 
 a + x  = (a + x) + (a + x) (a + y) 
   = (a + x) + (b + x) (b + y) 
   = (b + x) (a + x + b + y) 
   = b + x. 
 
So (a + x)y = (b+x)y that is J is trivial; a contradiction. 
 Dually we have 
 
Lemma 2.4:  If any nontrivial J = Ix + y then IJ cannot be 
trivial. 
 
Lemma 2.5:  If I = (a, b) is a prime interval and J = (c, d) =  
(I + x)y then I is distributive if and only if Iy is nontrivial and  
J = Iy + c.  (Equivalently J = Id + c). 
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Proof:  Under the hypothesis of the lemma let I = (a, b) be 
distributive then J = Ip + q for some p, q in L, then by Lemma 
2.4  IJ cannot be trivial. 
 
 Now IJ  = (a  (a+x)y, b(b+x)y) 
   = (ay, by) 
   = Iy. 
Hence Iy is nontrivial. 
 
 Conversely let Iy be nontrivial, then as the lattice L is 
modular and Iy is a lattice translate of a prime interval, it can 
only be a prime interval as shown in figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
      Figure 2.1 
 
 Iy  = (ay, by) 
  =  (a(a+x)y, b(b+x)y) 
  =  (ac, ad). 
 
 Hence ac is covered by bd (Iy is a prime interval).  Now L 
is a modular lattice of finite length hence we can define a 
dimension function d which satisfies d(a+b) + d(ab) = d(a) + 
d(b).  Thus we have 
 d(a+c) + d(ac)  =  d(a) + d(c) 
 d(b+d) + d(bd)  =  d(b) + d(d). 
 
Subtracting the former from the latter we get 
 [d(b+d) – d(a+c) + [d(bd) – d(ac)] 
 = [d(b) – d(a)] + [d(d) – d(c)] 







 c 

ac = bc = ad 

a 

a+c 

bd 





 d b 

b+c = b+d 
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 = 1 + 1  (as b covers a and d covers c). 
 = 2. 
 
 Now d(bd) – d(ac) = 1, implies d(b+d) – d(a+c) = 1 that is b 
+ d covers  a + c.  Now a + c  b + c  c  b + d and a + c is 
covered by  b + d. 
 
 Either b + c = a + c or b + c = b + d. 
 
 If a + c = b + c then a + c > b 

 a + (a + x)y > b 
 (a + x) (a + y) > b 
 (a + x) > (a + x) (a + y) > b 
 a + x > b + x 
 a + x = b + x 
 (a + x)y = (b +x)y 
 J is trivial.  A contradiction.  Thus b + c = b  + d. 

 
Now  ac  bc  bd and ac is covered by bd.  So bc = ac or 

bc = bd. bc  bd.  For if b + c = b + d, as  c < d and the lattice is 
modular, we have bc = ac.   

 
Next ad = a (b + x)y = ay = ac.  That is ad = ac. 
 
Now,  

  abd   = bad = bac = bbc = bc = ac 
ac = ad = abd = bc 

that is abd = bcd. 
 

So ac = bcd which can be written as a c c = b d c.  Now  
ac  bd.  So ac + c  bd + c (L is modular) that is c  c + bd.  So 
c  bd + c  d.  Also c is covered by d so bd + c = d that is J = 
Id + c = Iy + c. 
 

Dually we have 
 
Lemma 2.6:   If I = (a, c) is a prime interval and J = (c, d) = Ix 
+ y then J is a distributive lattice translate of I if and only if  
I + y is nontrivial and J = (I + y)d.  Equivalently J = (I + c)d. 
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Lemma 2.7:   If a is covered by  b  and c is covered by d with  
b  c then (c, d)   ((a + x)y, (b + x)y) for any x, y  L. 
 
Proof:   If (c, d)  = ((a + x)y, (b + x)y) and a is covered by  b 
and b   c and c is covered by d then c = (a + x)y. 
 
 c + x  =   (a + x)y + x 
   =   (a + x) (x + y) 
 (c+x)y  =  (a + x)y = c. 
 
But (b + x)y lies between (a + x)y and (c+x)y as a < b  c, so 
equals c, a contradiction, a c  d and (b + x)y = d. 
 
Lemma 2.8:  Let  a is covered by b  and c is covered by d with 
d  a then (c, d)  ((a + x)y, (b + x)y) for any x, y in L. 
 
Proof:   If d = (b + x)y then d + x = (b + x)y + x 
 = (b + x) (x + y) implies 
 (d + x)y   = (b + x)y = d. 
 Thus d = (d + x)y < (a + x)y < (b + x)y = d implies 
 (a + x)y = d = c; a contradiction.  
 
Corollary 2.1:  If there exists intervals  I = (a, b), J = (c, d) with 
a < b  c < d then neither can be a distributive translate of the 
other in any general lattice. 
 
Corollary 2.2:   If a < b  c < d in a distributive lattice then 
neither J = (a, b) nor J = (c, d) can be a lattice translate of the 
other. 
 
DEFINITION 2.3:  A prime interval J = (c, d) of a modular 
lattice L is called a distributive lattice translate of a prime 
interval I = (a, b) if and only if J can be expressed as (I + c)d or 
equivalently J can be expressed as Id + c. 
 
Lemma 2.9:   If (I + x)y = J with IJ = Iy  trivial then I + J 
contains a five element modular sublattice and is of length 2. 
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Proof:   Length (I + J) + Length (IJ) = 2.  As Length IJ = 0 
(given); Length (I + J) = 2. 
 
 Let I = (a, b) and J = (c, d),  IJ = 0 implies ac = bd.  Also  
ac  bc  bd and ac  ad  bd.  So ac = bc and ad = bd.  Now L 
is modular.  Therefore a + c  b + c and a + d  b + d.   Also  
ac = ad and bc = bd.  Again as L is modular a + c  a + d and  
b + c  b + d. 
 
 Next b + c  a + d.  For if b + c = a + d then b + c + a + d = 
a + d then is b + d = a + d; a contradiction. 
 
 But a + c  is covered by b + c  and b + c is covered by b + d 
and a + c is covered by  a + d and a + d is covered by b + d. 
 
 Also a + c = (a + x) (a + y) and b + c = (b + x) (b + y).  Let 
p = (a + x) (b + y) as b + d = (b + x) (b + y)  either (p, b + d) is 
trivial or p is covered by b + d.  If p = b + d, then (a + x) (b + y) 
= (b + x) (b + y).  So (a + x) (b + y)y = (b + x) (b + y) y  will 
imply (a + x)y = (b + x)y that is c = d; a contradiction. 
 
 So (p, b + d) is nontrivial.  Thus p is covered by b + d.  Now 
b + d covers b + c and a + d.  We assert neither b + c = p nor a + 
d = p.  For if b + c = p then (b + c, b + d) = (I + x) (b + d)  and a 
is covered by b  b + c and b + c is covered by b + d; a 
contradiction in view of Lemma 2.7. 
 
 If a + d = p  then (a + d,  b + d) = [J + a + x)] (b + d) and  
c is covered by d  a + d and a + d is covered by b + d; a 
contradiction in view of Lemma 2.8. 
 
 Thus a + c, b + c, p, a + d, b + d is isomorphic to the five 
element modular lattice of length 2 contained in I + J (cf.  figure 
2.2) 
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Figure 2.2 
 
Dually we have 
 
Lemma 2.10:    If Ix + y = J with I + J = I + y trivial then IJ 
contains a five element modular sublattice and is of length 2. 
 
Lemma 2.11:  Let L be a modular lattice of finite length.  Let 
C:0 = x0 < x1 < x2 < … < xn = 1 be a maximal chain connecting 
0 and 1.  Let I = (a, b)   (a is covered by b) be an arbitrary  
prime interval of L then I is a distributive lattice translate of a 
unique prime interval of C. 
 
Proof:   Now I = ((0, 1) + a) b  as (x0 + a)b = a and (xn + a)b = 
b.  Next a  (xi + a) b  b for all xi.  Given a is covered by  b; 
either  (x1 + a) b = a or b; for all xi. 
 
 Let k be the largest i for which (xk + a)b = a; then  
(xk+1 + a)b = b. 
 
 So I = ((xk, xk+1) + a)b. 
 
 Now as L is modular and a is covered by b we have I = ((xk, 
xk+1) b) + a also. 
 
 Thus I = (a, b) is a distributive lattice translate of (xk, xk+1). 







 

b+d 









ac=bd 

a 







 d 

c 

a+d 







b 

b+c 
p 

a+c 
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 Further this (xk, xk+1) is unique.  For if I is a distributive 
lattice translate of another (xj, xj+1) of C then 
 I = (a, b) = ((xj, xj+1) + a) b by Lemmas 2.5 and 2.6. 
 
 Now as k and j are comparable without loss in generality we 
can assume k > j, then we see that (xj + a) b = (xj+1 + a)b = a; a 
contradiction.  Thus k = j and so the uniqueness of the interval 
is established. 
 
Remark:  The modularity of the lattice is a necessary condition 
in Lemma 2.11. 
 
Proof:  Consider the lattice of figure 2.3    
 
 
 
 
 
 
 
 
 
 

Figure 2.3 
 

and the chain C : 0 = x0 < x1 < x2 = 1.  Let I = (a, b) be the prime 
interval.  Now I is not a distributive lattice translate of any 
interval in C. 
 
 For ((x0, x1) + a)b  =   (a, b)  (x0, x1)b + a 
 ((x1, x2)b)+a   = (a, b)  [(x1, x2) + a]b. 
 
 Let L be a modular lattice of length n and C : 0 = x0 < x1 <  
… < xn = 1 be a maximal chain connecting 0 to 1.  Let P denote 
the totality of all prime intervals of L.  Partition P with respect 
to C into n classes P1, P2, …, Pn by the following procedure. 
 








a 

x0=0

x1 

x2=1

b 


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 Pi = the set of all intervals P which are distributive lattice 
translates of (xi–1, xi). 
 
 Now it follows as a consequence of Lemma 2.11 above that 
any prime interval of L belongs to one and only one class Pi. 
 
Lemma 2.12:  If L is a distributive lattice then for each interval 
Ji = (xi–1, xi) of C, 

iJ  annuls just those prime intervals of L 
which belong to Pi and no more. 
 
Proof:  Follows as any lattice translate of any prime interval Ji 
of L is a distributive lattice translate of Ji. 
 
Lemma 2.13:  If Ji is a distributive interval of a modular lattice 
L then 

iJ  annuls just those prime intervals of L which belong 
to Pi and no more. 
 
Proof:   Follows as in the case of Lemma 2.12. 
 
Lemma 2.14:  If a prime interval I = (a, b) of L is a distributive 
lattice translate of some interval Ji = (xi–1, xi) of C then I is a 
lattice translate of Ji considered as intervals in the distributive 
sublattice generated by I and C. 
 
Proof:  As in this case 
 
 I  = ((xi–1, xi) + a)b 
  = ((xi–1, xi)b) + a 
 
and all the elements involved belong to the sublattice generated 
by I and C. 
 
Lemma 2.15:  If I = (a, b), I1 = (a1, b1) are prime intervals of L 
such that a  is covered by b and b  a1 is covered by b1 then the 
classes to which I and I1 belong in the partition of P with respect 
to any arbitrary chain C are distinct. 
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Proof:  Let D denote the chain of L consisting of the intervals I 
and I1; and let S be the distributive sublattice generated by C 
and D.  Let P1, P2, …, Pn be the classes corresponding to the 
partitioning of the prime intervals of L with respect to the chain 
C; and 1 2 nP ,P ,...,P    be the classes corresponding to the 
partitioning of the prime intervals of S with respect to the  
chain C. 
 
 In view of Lemma 2.14  observe that the interval I belongs 
to Pi (i.e., the class containing (xi–1, xi)) if and only if I belongs 
to iP  (i.e.,  the class (xi–1, xi)). 
 
 Now as S is a distributive lattice, I and I1 cannot be lattice 
translates of each other in S; hence will belong to different 
classes under the partitioning of S with respect to C which in 
turn gives the required result. 
 
Lemma 2.16:  If C1 is any other maximal chain connecting 0 to 
1 of L then C1 has exactly n prime intervals each of them belong 
to the classes P1, P2, …, Pn, taken in some order. 
 
Proof:  Follows from Lemma 2.15.  
 
Lemma 2.17:  If a lattice translate K = (Ji + x)y or (Jix + y) of Ji 
is non-distributive then K belongs to a class Pj different from Pi.  
Further the prime intervals of the five element sublattice K + Ji 
(KJi) belong either Pi or to Pj. 
 
Proof:   Lemma 2.9  and Lemma 2.10 assert the existence of the 
five element sublattice K + Ji (and KJi) respectively consider 
any maximal chain C1 of L connecting 0 and 1 which passes 
through the end points of K + Ji (or KJi).  From the previous 
lemma it follows that the prime intervals of C except those 
within K+Ji (or KJi) belong to (n–2) classes of the partitioning 
of L with respect to C.  Let the two classes which are omitted be 
Pi and Pj.  These are the classes to which the prime intervals in 
K + Ji (or KJi) belong irrespective of the element of K + Ji (or 
KJi) occurring in the chain C1. 
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Lemma 2.18:  If the lattice translates of (xi–1, xi) and (xj–1, xj) of 
the previous lemma are contained completely within the classes 
Pi and Pj then 

i 1 i(x ,x )
  annuals just the prime intervals belonging 

to these two classes. 
 
Proof:  Follows as 

i 1 i(x ,x )
  being the smallest congruence 

annulling (xi–1, xi) annuls just those intervals which can be 
written as a finite sum of lattice translates of (xi–1, xi). 
 
 Let K1 be a non-distributive lattice translate of (xi–1, xi) or 
(xj–1, xj) lying outside the classes Pi and Pj, then the classes Pi 
and Pu (or Pj and Pu) meet in a five element modular lattice 
(where Pu denotes the class to which K1 belongs).  Thus to pass 
from one of the classes Pi to another class Pk one has to pass 
through a five element modular lattice. 
 
 Hence we have 
 
THEOREM 2.1:  A modular lattice L of finite length n is simple 
if and only if the partition of L with respect to some arbitrary 
chain C satisfies property (). 
 
 “Any two of the classes P1, P2, …, Pn in the partitioning can 
be linked to one another by a sequence such that any two 
consecutive classes of the sequence meet at a five element 
modular lattice”. 
 
Proof:  Let C : 0 = y0 < y1 < … < yn = 1 be the chain.  If L is 
simple then every prime interval of L is a lattice translate of any 
other prime interval.  Now the prime interval J = (y1, y2) of L is 
a lattice translate of I = (y0, y1).  Let 
 

J = (I + x1)x2) + x3…) + x2r 
 
be a  representation of J as a lattice translate of I.  Let this 
representation be one of those which cannot be further reduced; 
that is (I + x1)x2 is a nondistributive translate of I, (I + x1)x2 + x3 
is a nondistributive translate of 
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I + x1 … ((I + x1)x2 + … + x2i–2) + x2i–1 
 
is a nondistributive translate of 
 
 (I + x1) x2 + x3 …) + x2i–3 … etc. 
 
Let I, I+x1  

1
P  = P1 

 
((1 +x1) x2, (1+x1) x2 + x3  

2
P  

((1 + x1) x2+x3)x4, ((I+x1)x2 + x3)x4 + x5  
3

P  
… 
J 

r
P  = P2. 
 

I  P1 = 
1

P , 
2

P , …, 
r

P = P2; J  P2 is the sequence by 
which these are linked.  Similarly any Pi and Pj would be linked. 
 

Conversely if a modular lattice L satisfies property () then 
any two of the prime intervals of L are lattice translates of each 
other and hence L is simple. 
 
Remark:   Start with any class P1.  Now this class P1 should be 
linked to some class 

2
P  so we should pass through a five 

element modular lattice.  If those two are not further linked we 
would set a congruence on L just annulling these two classes 
and hence L will not be simple.  So in the class of a simple 
lattice, atleast one of P1 or 

2
P  should be linked to another class 

3
P  and this will give another five element modular lattice etc.  
This process will continue until all the classes are exhausted and 
so, we would atleast have (n–1) such five element modular 
lattices existing in L. 
 
 Conversely if we have a modular lattice L containing (n–1) 
such five element modular lattice in such a way that these link 
any two of the classes Pi with respect to some chain C then L is 
simple. 
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Corollary 2.3:  L is a modular lattice containing a maximal 
chain C such that any two of the classes of the partition of P 
with respect to C satisfy property () then the classes of the 
partition of P with respect to any other chain C1 also satisfy 
property (). 
 
Proof:  This follows as the first condition implies the simplicity 
of the lattice and the second is obtained as the choice of the 
chain C in the previous theorem is arbitrary. 
 
Corollary 2.4:  If L is a simple modular lattice then every class 
Pi has atleast one direct link with some other class Pj. 
 
Corollary 2.5:  Let L is a simple modular lattice of length n 
with n  3, then there exists atleast one class Pi which has direct 
links with two or more classes. 
 
THEOREM 2.2: A simple modular lattice of length n  3 
contains a sublattice isomorphic to the lattice of figure 2.4 
(M3,3) or figure 2.5. 
 
 
 
 
 
 
 
 
 
 

Figure 2.4   M3,3 
 

having a homomorphic image isomorphic to M3, 3. 







 






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Figure 2.5    M3,3 
 

Proof:  Let Pk be the class mentioned in corollary 2.5 which has 
direct links with two or more classes then the two terms which 
the class Pk takes would give sublattices isomorphic to M3,3 or 
to figure 2.5, that is a sublattice with a homomorphic image 
isomorphic to the lattice M3,3. 
 
Corollary 2.6:  L is a simple modular lattice of length n, with n 
 4 then either there are (n–2) different sublattices of the type 
mentioned in the above lemma or there exists a sublattice in L 
isomorphic to the lattice of figure 2.6, figure 2.7, figure 2.8 or 
figure 2.9, that is a sublattice with a homomorphic image 
isomorphic to the lattice M3,3,3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6  M3,3,3 
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Figure 2.7   M3,3,3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8     M3,3,3 
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Figure 2.9   M3,3,3 
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Chapter Three 
 
 

 
 
SUPERMODULAR LATTICES 
 
 
 

Distributive lattices and modular lattices are the two well 
known equational classes of lattices.  In this chapter we 
introduce another equational class of lattices - called the 
supermodular lattices.  This equational class lies between the 
equational class of modular lattices and the equational class of 
distributive lattices. 

 
 It is well known that a modular lattice is nondistributive if 
and only if it contains a sublattice isomorphic to M3. In a similar 
fashion, we prove that a modular lattice is nonsupermodular if 
and only if it contains a sublattice whose homomorphic image is 
isomorphic to M4 or M3,3. 
 
 Further we obtain (cf. Theorem 3.6).  A super modular 
lattice is isomorphic to a subdirect union of copies of C2 and 
M3. 
 
DEFINITION 3.1: A lattice L is said to be supermodular if it 
satisfies the following identity 
 
 (a + b) (a + c) (a + d) = a + bc (a + d) + cd (a + b) +  
bd (a + c) for all a, b, c, d in L. 
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Lemma 3.1:   Every supermodular lattice is modular. 
 
Proof:  Put c = d 

(a+b) (a + c)  = a + bc + c (a + b) + bc 
  = a + c(a + b) 

 
is true for all a, b, c in L, which can easily be recognized as the 
modular law. 
 
Lemma 3.2:  Every modular lattice is not necessarily 
supermodular. 
 
Proof:  By an example. 
 

Consider the elements a, b, c, d as marked in the lattice M4 
of figure 3.1 then 
 

 

 

 

Figure 3.1   M4 
 

(a + b) (a + c) (a + d) = 1 
a + bc (a + d) + cd (a + b) + db (a + c) = a. 

 
Hence it is not supermodular. 

 
Lemma 3.3:  Every distributive lattice is supermodular. 
 
Proof:  If L is distributive then 
  L.H.S.  = R. H. S.  = a + bcd. 
 
Lemma 3.4:   In a modular lattice L if a, b, c, d are 4 elements 
such that any two are comparable then this set of 4 elements 
satisfies the supermodular law. 







 c 

0 

a 

1 

b  c 
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Proof:  Let a > b. 
(a + b) (a + c) (a + d) =  a  a + bc (a + d) + bd (a + c) +  

cd (a + b)  a. 
So the law holds. 
 
Let a < b 

L.H.S.  = b (a + c) (a + d) = b (a + c (a + d)) 
= a + bc (a + d). 

So a + bc (a + d)  R.H.S.  a + bc (a + d). 
So L.H.S.  = R.H.S. 
 

Let b > c 
(a + b) (a + c) (a + d) = (a + c) (a + d) 
= a + c (a + d) 
= a + bc (a + d). 

 
So 
 L.H.S. = a + bc (a + d)  R.H.S. 
  a + bc (a + d). 

So the law is satisfied. 
 
Lemma 3.5:  Every supermodular lattice is not necessarily 
distributive. 
 
Proof:  By an example. 
The lattice of figure 3.2  is supermodular but not distributive. 
 

 

 

  

         Figure 3.2 

 Supermodularity of L can easily be checked as L is a 
modular lattice and does not contain elements a, b, c, d such that 
any two of these are mutually incomparable (cf. Lemma 3.4). 
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