#### University of New Mexico UNM Digital Repository

**Regulatorily Completed** 

Sandia National Labs/NM Technical Reports

3-1-2005

# Justification for Class III Permit Modification March 2005 DSS Site 1029 Operable Unit 1295 Building 6584 North Septic System at Technical Area III

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl\_complete

#### **Recommended** Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification March 2005 DSS Site 1029 Operable Unit 1295 Building 6584 North Septic System at Technical Area III." (2005). https://digitalrepository.unm.edu/snl\_complete/139

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.



Drain and Septic Systems (DSS) Area of Concern (AOC) Sites 1006, 1007, 1010, 1015 1020, 1024, 1028, 1029, 1083, 1086, 1108, and 1110

This work supported by the United States Department of Energy under contract DE-AC04-94AL85000

#### Site Histories

| Drain an              | d septic system site                          | e histories   | for the tw                              | velve DSS A                                    | OCs are as follo                           | ows:                                                  |
|-----------------------|-----------------------------------------------|---------------|-----------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| AOC<br>Site<br>Number | Site Name                                     | Loca-<br>tion | Year<br>Bldg.<br>and<br>System<br>Built | Year Drain<br>or Septic<br>System<br>Abandoned | Year(s) Septic<br>Tank Effluent<br>Sampled | Year Septic<br>Tank<br>Pumped<br>For the<br>Last Time |
| 1006                  | Bldg 6741 Septic<br>System                    | TA-III        | 1968                                    | 1994                                           | 1992, 1995                                 | 1996                                                  |
| 1007                  | Bldg 6730 Septic<br>System                    | TA-III        | 1964                                    | Early 1990s                                    | 1992, 1995                                 | 1996                                                  |
| 1010                  | Bldg 6536 Septic<br>System and<br>Seepage Pit | TA-III        | 1967                                    | 1991                                           | 1990/1991,<br>1992, 1995                   | 1996                                                  |
| 1015                  | Former MO 231-<br>234 Septic System           | TA-V          | 1988                                    | 1991                                           | 1990/1991,<br>1992, 1995                   | 1996                                                  |
| 1020                  | MO-146, MO-235,<br>T-40 Septic System         | ТА-Ш          | 1978                                    | 1991                                           | 1990/1991,<br>1995                         | 1996                                                  |
| 1024                  | MO 242-245<br>Septic System                   | TA-III        | 1976                                    | 1991                                           | 1990/1991,<br>1992, 1995                   | 1996                                                  |
| 1028                  | Bldg 6560 Septic<br>System and<br>Seepage Pit | TA-III        | 1955                                    | 1991                                           | 1990/1991,<br>1992, 1995                   | 1996                                                  |
| 1029                  | Bldg 6584 North<br>Septic System              | TA-III        | 1963                                    | 1991                                           | 1990/1991,<br>1992, 1995                   | 1996                                                  |
| 1083                  | Bldg 6570 Septic<br>System                    | TA-III        | 1956                                    | 1991                                           | 1990/1991                                  | Unknown<br>(backfilled<br>before 1995)                |
| 1086                  | Bldg 6523 Septic<br>System                    | TA-III        | 1954                                    | 1991                                           | 1990/1991                                  | Unknown<br>(backfilled<br>before 1995)                |
| 1108                  | Bldg 6531 Seepage<br>Pits                     | TA-III        | 1960                                    | 1991                                           | No septic tank<br>at this site.            | NA                                                    |
| 1110                  | Bldg 6536 Drain<br>System                     | TA-III        | 1967                                    | Early<br>1990s?                                | No septic tank<br>at this site.            | NA                                                    |

#### Depth to Groundwater

| Depth to groundwater at these twelve AOC sites is as follows: |                                         |          |                               |  |  |  |  |
|---------------------------------------------------------------|-----------------------------------------|----------|-------------------------------|--|--|--|--|
| DSS<br>Site<br>Number                                         | Site Name                               | Location | Groundwater<br>Depth (ft bgs) |  |  |  |  |
| 1006                                                          | Bldg 6741 Septic System                 | TA-III   | 460                           |  |  |  |  |
| 1007                                                          | Bldg 6730 Septic System                 | TA-III   | 465                           |  |  |  |  |
| 1010                                                          | Bldg 6536 Septic System and Seepage Pit | TA-III   | 487                           |  |  |  |  |
| 1015                                                          | Former MO 231-234 Septic System         | TA-V     | 496                           |  |  |  |  |
| 1020                                                          | MO-146, MO-235, T-40 Septic System      | TA-III   | 487                           |  |  |  |  |
| 1024                                                          | MO 242-245 Septic System                | TA-III   | 485                           |  |  |  |  |
| 1028                                                          | Bldg 6560 Septic System and Seepage Pit | TA-III   | 482                           |  |  |  |  |
| 1029                                                          | Bldg 6584 North Septic System           | TA-III   | 482                           |  |  |  |  |
| 1083                                                          | Bldg 6570 Septic System                 | TA-III   | 493                           |  |  |  |  |
| 1086                                                          | Bldg 6523 Septic System                 | TA-III   | 492                           |  |  |  |  |
| 1108                                                          | Bldg 6531 Seepage Pits                  | TA-III   | 483                           |  |  |  |  |
| 1110                                                          | Bldg 6536 Drain System                  | TA-III   | 480                           |  |  |  |  |

#### Constituents of Concern

· VOCs, SVOCs, PCBs, HE compounds, metals, cyanide, and radionuclides.

#### Investigations

- · A backhoe was used to positively locate buried components (drainfield drain lines, drywells) for placement of soil-vapor samplers and soil borings.
- Passive soil-vapor samples were collected in drainfield and seepage pit areas to screen for VOCs. Soil samples were collected from directly beneath drainfield drain lines, seepage pits, and drywells to determine if COCs were released to the environment from drain systems.

The years that site-specific characterization activities were conducted, and soil sampling

| DSS<br>Site<br>Number | Site Name                                     | Buried<br>Components<br>(Drain Lines,<br>Drywells)<br>Located With<br>A Backhoe | Soil Sampling<br>Beneath<br>Drainlines,<br>Seepage Pits,<br>Drywells | Type(s) of Drain System,<br>and Soil Sampling<br>Depths (ft bgs)            | Passive<br>Soil<br>Vapor<br>Sampling |
|-----------------------|-----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|
| 1006                  | Bldg 6741<br>Septic System                    | 1997                                                                            | 1998, 1999                                                           | Drainfield: 7, 12                                                           | 2002                                 |
| 1007                  | Bldg 6730<br>Septic System                    | 1997                                                                            | 1998, 1999                                                           | Drainfield: 4.5, 9.5                                                        | 2002                                 |
| 1010                  | Bldg 6536<br>Septic System<br>and Seepage Pit | None                                                                            | 2002                                                                 | Septic System Seepage<br>Pit: 15, 20<br>2 <sup>nd</sup> Seepage Pit: 23, 28 | 2002                                 |
| 1015                  | Former MO<br>231-234 Septic<br>System         | 1995                                                                            | 1998, 1999                                                           | Drainfield: 5, 10                                                           | None                                 |
| 1020                  | MO-146, MO-<br>235, T-40<br>Septic System     | 1997                                                                            | 1998, 1999                                                           | Drainfield: 5.5, 10.5                                                       | None                                 |
| 1024                  | MO 242-245<br>Septic System                   | 1997                                                                            | 1998, 1999                                                           | Drainfield: 5, 10                                                           | None                                 |
| 1028                  | Bldg 6560<br>Septic System<br>and Seepage Pit | None                                                                            | 2002                                                                 | Septic System Seepage<br>Pit: 14, 19<br>2 <sup>nd</sup> Seepage Pit: 7, 12  | 2002                                 |
| 1029                  | Bldg 6584<br>North Septic<br>System           | 1997                                                                            | 1998, 1999                                                           | Drainfield: 5, 10                                                           | 2002                                 |
| 1083                  | Bldg 6570<br>Septic System                    | 2002                                                                            | 2002                                                                 | Seepage Pit: 9, 14                                                          | 2002                                 |
| 1086                  | Bldg 6523<br>Septic System                    | 2003                                                                            | 2002                                                                 | Seepage Pit: 10, 15                                                         | None                                 |
| 1108                  | Bldg 6531<br>Seepage Pits                     | None                                                                            | 2002                                                                 | Seepage Pits: 10, 15                                                        | 2002                                 |
| 1110                  | Bldg 6536<br>Drain System                     | 1997                                                                            | 2002                                                                 | Drain Pipe: 10, 15, 20                                                      | None                                 |

#### Summary of Data Used for NFA Justification

- · Seven of the twelve DSS sites were selected by NMED for passive soil-vapor sampling to screen for VOCs, and no significant VOC contamination was identified at any of the seven sites.
- · Soil samples were analyzed at on- and off-site laboratories for VOCs, SVOCs, PCBs, HE compounds. metals, cyanide, gross alpha/beta activity, and radionuclides by gamma spectroscopy.
- Very low levels of VOCs were detected at eleven sites, SVOCs and PCBs were detected at seven sites, and cyanide was identified at six of the sites. HE compounds were not detected at any of these sites.
- Arsenic was detected above background at six sites, and barium was detected above background at one site. No other metals were detected above background concentrations.
- Either U-235 or U-238 was detected at an activity slightly above the background activity at three of the twelve sites and, although not detected, the MDA for one or both of these two radionuclides exceeded background levels at five sites. Gross alpha activity was slightly above background in one sample from one of the twelve sites, and gross beta activity was below background in all samples from the twelve
- All confirmatory soil sample analytical results were used for characterizing the sites, for performing the • risk screening assessments, and as justification for the NFA proposals for these sites.

## Recommended Future Land Use

#### **Results of Risk Analysis**

- (SNI October 2003)

- unrestricted radiological release.

#### follows: DSS Site Number 1006 1007 1010 1015 1020 1024 1028 1029 1110 NMED

U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089



Industrial land use was established for these twelve DSS AOC sites.

Risk assessment results for the residential scenario are calculated per NMED risk assessment guidance as presented in "Supplemental Risk Document Supporting Class 3 Permit Modification Process"

Because COCs were present in concentrations greater than background-screening levels or because constituents were present that did not have background screening numbers, it was necessary to perform risk assessments for these twelve DSS sites. The risk assessment analyses evaluated the potential for adverse health effects for the residential land-use scenario.

As shown in the table below, the total HIs and estimated excess cancer risks for six of the twelve DSS sites are below NMED guidelines for the residential land-use scenario.

For five additional sites, the HIs are below the residential guideline, but the total estimated excess cancer risks are slightly above the residential guideline. However, the incremental excess cancer risk values for these five sites are below the NMED residential guideline.

For one of the twelve sites (DSS Site 1029), the total HI and estimated excess cancer risk are slightly above the NMED guidelines for the residential land-use scenario due to an isolated detection of asphalt-like SVOCs in a single sample. With the removal of these SVOCs from the risk assessment. the incremental values are below the residential scenario guideline.

The residential land-use scenario TEDEs ranged from none to 0.18 mrem/yr, all of which are substantially below the EPA guideline of 75 mrem/yr. Therefore, these DSS sites are eligible for

Using the SNL predictive ecological risk assessment methodology, four of the twelve AOCs were evaluated for ecological risk based on the depth of the available data (i.e., 0 to 5 feet bgs). The ecological risk for all of these sites is acceptable.

In conclusion, human health and ecological risks are acceptable per NMED guidance. Thus, these sites are proposed for CAC without institutional controls.

|                                            | Residential Land Use Scenario                                            |                                                                            |  |  |  |
|--------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| DSS Site Name                              | Hazard Index                                                             | Excess Cancer<br>Risk                                                      |  |  |  |
| Bldg 6741 Septic System                    | 0.26                                                                     | 1E-5 Total/2.62E-7<br>Incremental                                          |  |  |  |
| Bldg 6730 Septic System                    | 0.22                                                                     | 1E-5 Total/7.72E-7<br>Incremental                                          |  |  |  |
| Bldg 6536 Septic System<br>and Seepage Pit | 0.00                                                                     | 2E-9                                                                       |  |  |  |
| Former MO 231-234<br>Septic Systems        | 0.23                                                                     | 1E-5 Total/1.29E-6<br>Incremental                                          |  |  |  |
| MO-146, MO-235, T-40<br>Septic System      | 0.00                                                                     | none                                                                       |  |  |  |
| MO 242-245 Septic<br>System                | 0.21                                                                     | 1E-5 Total/3.65E-7<br>Incremental                                          |  |  |  |
| Bldg 6560 Septic System<br>and Seepage Pit | 0.00                                                                     | 8E-10                                                                      |  |  |  |
| Bldg 6584 North Septic<br>System           | 2.17 Total/0.06 Incremental<br>(after removal of asphalt-<br>like SVOCs) | 8E-5 Total/2.93E-6<br>Incremental (after removal of<br>asphalt-like SVOCs) |  |  |  |
| Bldg 6570 Septic System                    | 0.00                                                                     | 2E-9                                                                       |  |  |  |
| Bldg 6523 Septic System                    | 0.00                                                                     | 2E-9                                                                       |  |  |  |
| Bldg 6531 Seepage Pits                     | 0.26                                                                     | 1E-5 Total/2.98E-6<br>Incremental                                          |  |  |  |
| Bldg 6536 Drain System                     | 0.00                                                                     | 3E-9                                                                       |  |  |  |
|                                            | ≤1                                                                       | <1E-5                                                                      |  |  |  |

Residential land use scenario risk assessment values for COCs at the twelve AOCs are as

#### For More Information Contact

Sandia National Laboratories Environmental Restoration Project Task Leader: Brenda Langkopf Telephone (505) 284-3272



Drain and Septic Systems (DSS) Area of Concern (AOC) Sites 1028, 1029, 1083, 1086, 1108, and 1110

This work supported by the United States Department of Energy under contract DE-AC04-94AL85000.



Gal Boring Landian
Gal Boring Landian
Gal Boring Landian
Galaria Status
Sayla Status
Galaria Status
Galaria Status

Nes Map of Diain and Saptic System (DBS) Site Number 1083. Nig. 8570 Reptie System, TA-IS





Collecting soil samples with the Geoprobe.



Subsurface soil recovered for analyses.



Seepage pit demolition and backfilling.







**Environmental Restoration Project** 



#### For More Information Contact

#### U.S. Department of Energy Sandia Site Office Environmental Restoration Mr. John Gould Telephone (505) 845-6089

Sandia National Laboratories Environmental Restoration Project Task Leader: Brenda Langkopf Telephone (505) 284-3272



Sandia National Laboratories

# Justification for Class III Permit Modification

March 2005

DSS Site 1029 Operable Unit 1295 Building 6584 North Septic System at Technical Area III

NFA (SWMU Assessment Report) Submitted March 2004

Environmental Restoration Project



United States Department of Energy Sandia Site Office

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.





#### National Nuclear Security Administration

Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400



MAR 2 3 2004

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

Mr. John E. Kieling, Manager Permits Management Program Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Rd., Building E Santa Fe, NM 87505

Dear Mr. Kieling:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed SWMU Assessment Reports and Proposals for No Further Action (NFA) for Drain and Septic Systems (DSS) Sites 1006, 1007, 1015, 1020, 1024, 1029, 1108, and 1110 at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518.

This submittal includes descriptions of the site characterization work, soil characterization data, and risk assessments for DSS Sites 1006, 1007, 1015, 1020, 1024, 1029, 1108, and 1110. The risk assessments conclude that for these eight sites (1) there is no significant risk to human health under both the industrial and residential land-use scenarios, and (2) that there are no ecological risks associated with these sites.

DOE and Sandia are requesting a determination that these DSS sites are acceptable for No Further Action.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner Manager

Enclosure

J. Kieling

cc w/enclosure:

L. King, EPA, Region 6 (2 copies, via Certified Mail)

W. Moats, NMED-HWB (via Certified Mail)

M. Gardipe, NNSA/SC/ERD

C. Voorhees, NMED-OB (Santa Fe)

D. Bierley, NMED-OB

cc w/o enclosure: K. Thomas, EPA, Region 6 S. Martin, NMED-HWB F. Nimick, SNL, MS 1089 D. Stockham, SNL, MS 1087 P. Freshour, SNL, MS 1087 M. Sanders, SNL, MS 1087 R. Methvin, SNL MS 1087 A. Willareal, SNL MS 1087 A. Villareal, SNL, MS 1035 A. Blumberg, SNL, MS 0141 M. J. Davis, SNL, MS 1089 ESHSEC Records Center, MS 1087



Sandia National Laboratories/New Mexico Environmental Restoration Project

# SWMU ASSESSMENT REPORT AND PROPOSAL FOR NO FURTHER ACTION DRAIN AND SEPTIC SYSTEMS SITE 1029, BUILDING 6584 NORTH SEPTIC SYSTEM

March 2004



United States Department of Energy Sandia Site Office

#### TABLE OF CONTENTS

| LIST O<br>LIST O<br>LIST O<br>ACROI | DF FIGU<br>DF TABL<br>DF ANNI<br>NYMS /             | IRES<br>LES<br>EXES<br>AND ABB                | REVIATIONS                                               | iii<br>. v<br>vii<br>ix |  |  |  |  |
|-------------------------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-------------------------|--|--|--|--|
| 1.0                                 | PROJE                                               |                                               | KGROUND1                                                 | -1                      |  |  |  |  |
| 2.0                                 | DSS SITE 1029: BUILDING 6584 NORTH SEPTIC SYSTEM2-1 |                                               |                                                          |                         |  |  |  |  |
|                                     | 2.1<br>2.2                                          | Summar<br>Site Des                            | y2<br>cription and Operational History2                  | -1<br>-1                |  |  |  |  |
|                                     |                                                     | 2.2.1<br>2.2.2                                | Site Description                                         | -1<br>-7                |  |  |  |  |
|                                     | 2.3                                                 | Land Us                                       | e2                                                       | -7                      |  |  |  |  |
|                                     |                                                     | 2.3.1<br>2.3.2                                | Current Land Use                                         | -7<br>-7                |  |  |  |  |
| 3.0                                 | INVES                                               | TIGATOF                                       | RY ACTIVITIES                                            | -1                      |  |  |  |  |
|                                     | 3.1<br>3.2<br>3.3<br>3.4                            | Summar<br>Investiga<br>Investiga<br>Investiga | y                                                        | -1<br>-1<br>-2          |  |  |  |  |
|                                     |                                                     | 3.4.1<br>3.4.2<br>3.4.3                       | Soil Sampling Methodology                                | -2<br>-6<br>20          |  |  |  |  |
|                                     | 3.5                                                 | Investiga                                     | ation 4—Passive Soil-Vapor Sampling3-                    | 22                      |  |  |  |  |
|                                     |                                                     | 3.5.1<br>3.5.2                                | Passive Soil-Vapor Sampling Methodology                  | 22<br>22                |  |  |  |  |
| 1                                   | 3.6                                                 | Site San                                      | npling Data Gaps3-                                       | 23                      |  |  |  |  |
| 4.0                                 | CONC                                                | EPTUAL                                        | SITE MODEL4                                              | -1                      |  |  |  |  |
|                                     | 4.1<br>4.2<br>4.3                                   | Nature a<br>Environr<br>Site Ass              | and Extent of Contamination4<br>nental Fate4<br>essment4 | -1<br>-1<br>-7          |  |  |  |  |
|                                     |                                                     | 4.3.1<br>4.3.2                                | Summary                                                  | -7<br> -7               |  |  |  |  |

•

### TABLE OF CONTENTS (Concluded)

|     | 4.4        | Baseline Risk Assessments |                            | 4-9        |
|-----|------------|---------------------------|----------------------------|------------|
|     |            | 4.4.1<br>4.4.2            | Human Health<br>Ecological | 4-9<br>4-9 |
| 5.0 | NO F       | URTHER                    | ACTION PROPOSAL            | 5-1        |
|     | 5.1<br>5.2 | Rationa<br>Criterio       | ale<br>m                   | 5-1<br>5-1 |
| 6.0 | REFE       | ERENCES                   | S                          | 6-1        |

,

#### LIST OF FIGURES

## Figure

| 2.2.1-1 | Location Map of Drain and Septic Systems (DSS) Site Number 1029,<br>Bldg. 6584 North Septic System, TA-III                                                    | 2-3 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.2.1-2 | Site Map of Drain and Septic Systems (DSS) Site Number 1029,<br>Building 6584 North Septic System, TA-III                                                     | 2-5 |
| 3.4-1   | Collecting soil samples with the Geoprobe™ in the drainfield area of DSS Site 1029, Building 6584 North Septic System. View to the southeast. August 24, 1999 | 3-3 |
| 4.2-1   | Conceptual Site Model Flow Diagram for DSS Site 1029, Building 6584<br>North Septic System                                                                    | 4-3 |

This page intentionally left blank.

.

.

#### LIST OF TABLES

#### Table

| 3.4-1    | Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1029, Building 6584 North Septic System Soil Samples                                               |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.4.2-1  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, VOC Analytical Results, August 1999<br>(Off-Site Laboratory)                            |
| 3.4.2-2  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, VOC Analytical MDLs, August 1999 (Off-Site<br>Laboratory)                               |
| 3.4.2-3  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, SVOC Analytical Results, July 1998 (Off-Site<br>Laboratory)                             |
| 3.4.2-4  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, SVOC Analytical MDLs, July 1998 (Off-Site<br>Laboratory)                                |
| 3.4.2-5  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, PCB Analytical Results, August 1999<br>(Off-Site Laboratory)                            |
| 3.4.2-6  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, PCB Analytical MDLs, August 1999 (Off-Site<br>Laboratory)                               |
| 3.4.2-7  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, HE Compound Analytical Results, July 1998<br>(On- and Off-Site Laboratories)            |
| 3.4.2-8  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, HE Compound Analytical MDLs, July 1998<br>(On- and Off-Site Laboratories)3-15           |
| 3.4.2-9  | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Metals Analytical Results, July 1998 and<br>August 1999 (On- and Off-Site Laboratories) |
| 3.4.2-10 | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Metals Analytical MDLs, July 1998 and<br>August 1999 (On- and Off-Site Laboratories)    |

### LIST OF TABLES (Concluded)

#### Table

| 3.4.2-11 | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Total Cyanide Analytical Results, August<br>1999 (Off-Site Laboratory)              | -18 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.4.2-12 | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Total Cyanide Analytical MDLs, August 1999<br>(Off-Site Laboratory)                 | -18 |
| 3.4.2-13 | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results,<br>July 1998 (On- and Off-Site Laboratories) | ·19 |
| 3.4.2-14 | Summary of DSS Site 1029, Building 6584 North Septic System<br>Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results, July<br>1998 (Off-Site Laboratory)             | ·20 |
| 4.2-1    | Summary of Potential COCs for DSS Site 1029, Building 6584 North Septic System                                                                                                 | 4-5 |
| 4.3.2-1  | Summation of Radiological and Nonradiological Risks from DSS<br>Site 1029, Building 6584 North Septic System Carcinogens                                                       | 4-8 |

#### LIST OF ANNEXES

#### Annex

- A DSS Site 1029 Septic Tank Sampling Results
- B DSS Site 1029 Soil Sample Data Validation Results
- C DSS Site 1029 Gore-Sorber™ Passive Soil Vapor Survey Analytical Results
- D DSS Site 1029 Risk Assessment

1

This page intentionally left blank.

#### ACRONYMS AND ABBREVIATIONS

| AOC    | Area of Concern                         |
|--------|-----------------------------------------|
| AOP    | Administrative Operating Procedure      |
| BA     | butyl acetate                           |
| bgs    | below ground surface                    |
| COC    | constituent of concern                  |
| DSS    | Drain and Septic Systems                |
| EB     | equipment blank                         |
| EPA    | U.S. Environmental Protection Agency    |
| ER     | Environmental Restoration               |
| FIP    | Field Implementation Plan               |
| g      | gram(s)                                 |
| GS     | Gore-Sorber™                            |
| HE     | high explosive(s)                       |
| HI     | hazard index                            |
| HWB    | Hazardous Waste Bureau                  |
| KAFB   | Kirtland Air Force Base                 |
| MDL    | method detection limit                  |
| MO     | mobile office                           |
| NFA    | no further action                       |
| NMED   | New Mexico Environment Department       |
| OU     | Operable Unit                           |
| PCB    | polychlorinated biphenyl                |
| pCi    | picocurie(s)                            |
| RCRA   | Resource Conservation and Recovery Act  |
| RPSD   | Radiation Protection Sample Diagnostics |
| SAP    | Sampling and Analysis Plan              |
| SNL/NM | Sandia National Laboratories/New Mexico |
| SVOC   | semivolatile organic compound           |
| SWMU   | Solid Waste Management Unit             |
|        | lechnical Area                          |
|        | trip plank                              |
| IUP    | reconical Operating Procedure           |
| VUC    | volatile organic compound               |

This page intentionally left blank.

#### 1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) Drain and Septic Systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfalls). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of SNL/NM Environmental Restoration (ER) Project activities. The twenty-third site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

Numerous other DSS sites that were not designated as SWMUs were also present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996; the list included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one- to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings and conducting field verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included the following:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, or would not, need initial shallow investigation work as required by the NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by the NMED.

A number of additional drain systems were identified from the engineering drawings and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual DSS sites was generated in 2000. Of these 121 sites, the NMED required environmental assessment work at a total of 61. No characterization was required at the remaining 60 sites because the sites either were found not to exist, were the responsibility of

other non-SNL/NM organizations, were already designated as individual SWMUs, or were considered by the NMED to pose no threat to human health or the environment. Subsequent backhoe excavation at DSS Site 1091 confirmed that the system did not exist, which decreased the number of DSS sites requiring characterization to 60.

Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for NFA. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by the NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001), was then written to formally document the updated DSS site list and the specific site characterization work required by the NMED for each of the 60 DSS sites. The FIP was approved by the NMED in February 2002 (Moats February 2002).

#### 2.0 DSS SITE 1029: BUILDING 6584 NORTH SEPTIC SYSTEM

#### 2.1 Summary

The SNL/NM ER Project conducted an assessment of DSS Site 1029, the Building 6584 North Septic System. There are no known or specific environmental concerns at this site. The assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report presents the results of the assessment and, based upon the findings, recommends a risk-based proposal for NFA for DSS Site 1029. This NFA proposal provides documentation that the site was sufficiently characterized, that no significant releases of contaminants to the environment occurred via the Building 6584 North Septic System, and that it does not pose a threat to human health or the environment under either industrial or residential land-use scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment. Septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for DSS Site 1029 indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, DSS Site 1029 is proposed for an NFA decision based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk under current and projected future land uses as set forth by Criterion 5, which states: "The SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land projected future land use" (NMED March 1998).

#### 2.2 Site Description and Operational History

#### 2.2.1 Site Description

DSS Site 1029 is located on the north side of the northern boundary of SNL/NM Technical Area (TA)-III on federally owned land controlled by Kirtland Air Force Base (KAFB) (Figure 2.2.1 1). The center of the site is located approximately 500 feet west-northwest of the entrance to TA-III and is approximately 250 northwest of the northwest corner of Building 6584 (Figure 2.2.1-2). The abandoned septic system consisted of a septic tank of unknown volume that emptied to an exceptionally large drainfield consisting of four 100-foot-long parallel drain lines (Figure 2.2.1-2). Construction details are based upon site inspections and backhoe excavations of the system. The system received discharges from Building 6584.

The surface geology at DSS Site 1029 is characterized by a veneer of aeolian sediments underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of DSS Site 1029, and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation and have moderate to low hydraulic

This page intentionally left blank.



2-3



conductivities (SNL/NM March 1996). Site vegetation in the general vicinity of DSS Site 1029 consists primarily of desert grasses, shrubs, and cacti.

The ground surface in the vicinity of the site is flat or slopes very slightly to the west. The closest major drainage is the Arroyo del Coyote, located approximately 1.2 miles north of the site. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996).

The site lies at an average elevation of approximately 5,404 feet above mean sea level (SNL/NM April 2003). Depth to groundwater is approximately 482 feet below ground surface (bgs) at the site. Groundwater flow is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production wells to DSS Site 1029 are KAFB-4 and KAFB-11, approximately 2.6 and 3.0 miles to the northwest and northeast, respectively. The nearest groundwater monitoring well (TAV-MW5) is approximately 100 feet south of the center of the DSS Site 1029 drainfield.

#### 2.2.2 Operational History

Available information indicates that Building 6584 was constructed in 1963 and it is assumed the septic system was constructed at the same time. Building 6584 was extensively remodeled in 2002 and is currently known as the Administrative Center for Test Engineering (SNL/NM March 2003). Because operational records are not available, the investigation of this site was planned to be consistent with other DSS site investigations and to sample for the COCs most commonly found at similar facilities. By June 1991 the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line would have been disconnected, capped, and the system abandoned in place concurrent with this change (Romero September 2003).

#### 2.3 Land Use

#### 2.3.1 Current Land Use

The current land use for DSS Site 1029 is industrial.

#### 2.3.2 Future/Proposed Land Use

The projected future land use for DSS Site 1029 is industrial (DOE et al. September 1995).

This page intentionally left blank.

#### 3.0 INVESTIGATORY ACTIVITIES

#### 3.1 Summary

Four assessment investigations have been conducted at this site. In late 1990 or early 1991, 1992, and 1995, waste characterization samples were collected from the septic tank (Investigation 1). In 1997, a backhoe was used to physically locate the buried drainfield drain lines at the site (Investigation 2). In 1998 and 1999, near-surface soil samples were collected from three borings in the drainfield area (Investigation 3). In 2002, a passive soil-vapor survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soil in the drainfield (Investigation 4). Investigations 2, 3, and 4 were required by the NMED/HWB to adequately characterize the site and were conducted in accordance with procedures presented in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) described in Chapter 1.0. These investigations are discussed in the following sections.

#### 3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

As part of the SNL/NM Septic System Monitoring Program, aqueous and/or sludge waste characterization samples were collected from the Building 6584 North Septic System septic tank in late 1990 or early 1991, 1992, and again in 1995 (SNL/NM April 1991, SNL/NM June 1993, SNL/NM December 1995). Aqueous samples collected in late 1990 or early 1991 were analyzed at an off-site laboratory for VOCs, semivolatile organic compounds (SVOCs), oil and grease, phenolics, metals, gross alpha/beta activity, and radionuclides. Sludge samples collected on July 28 and 29, 1992 were analyzed at an off-site laboratory for gross alpha/beta activity, tritium, and radionuclides by gamma spectroscopy. Sludge samples were also collected from the septic tank on July 10, 1995, and were analyzed at an off-site laboratory for VOCs, SVOCs, pesticides, polychlorinated biphenyls (PCBs), metals, and radiological constituents. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis prior to off-site release. The analytical results for these three septic tank sampling events are presented in Annex A.

On February 27 and 29, 1996, the residual contents, approximately 1,800 gallons of waste and added water, were pumped out and managed according to SNL/NM policy (Shain August 1996).

#### 3.3 Investigation 2—Backhoe Excavation

On May 30, 1997, a backhoe was used to determine the location, dimensions, and average depth of the DSS Site 1029 drainfield system. The drainfield was found to consist of four parallel drain lines, arranged as shown on Figure 2.2.1-2, with an average drain line depth of approximately 3 feet bgs. No visible evidence of stained or discolored soil or odors indicating

residual contamination was observed during the excavation. No samples were collected during the backhoe excavation at the site.

#### 3.4 Investigation 3—Soil Sampling

Once the system drain lines were located, soil sampling was conducted in accordance with the rationale and procedures in the SAP (SNL/NM October 1999) approved by the NMED. On July 1 and 6, 1998, and again on August 24 and 25, 1999, soil samples were collected from three drainfield boreholes. Soil boring locations are shown on Figure 2.2.1-2. Figure 3.4-1 shows soil samples being collected in the drainfield area of DSS Site 1029. A summary of the boreholes, sample depths, sample analyses, analytical methods, laboratories, and sample dates are presented in Table 3.4-1. Refusal was repeatedly encountered in the 10-foot depth interval at the borehole BH2 location (Figure 2.2.1-2) in 1998, and as a result, no SVOC, high explosive (HE) compounds, metals, gross alpha/beta activity, or gamma spectroscopy samples were collected from this location and depth at the site. Additional samples (including VOCs, PCBs, total cyanide, and hexavalent chromium) were successfully collected from the 10-foot interval in borehole BH2 in 1999, although difficult drilling and sampling conditions were again encountered at this location.

#### 3.4.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals, except as noted above. In the drainfield, the top of the shallow interval started at the bottom of the drain line trenches, as determined by the backhoe excavation, and the lower (deep) interval started at 5 feet beneath the top sample interval. Once the auger rig had reached the top of the sampling interval, a 3- or 4-foot-long by 1.5-inch inside diameter Geoprobe<sup>™</sup> sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven downward 3- or 4-feet to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve and capping the section ends with Teflon<sup>®</sup> film, then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the soil remaining in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on-site and off-site laboratories for analysis. The area sampled, analytical methods, and laboratories used for the DSS Site 1029 soil samples are summarized in Table 3.4-1.



Figure 3.4-1 Collecting soil samples with the Geoprobe™ in the drainfield area of DSS Site 1029, Building 6584 North Septic System. View to the southeast. August 24, 1999

C

Table 3.4-1 Summary of Area Sampled, Analytical Methods, and Laboratories Used for DSS Site 1029, Building 6584 North Septic System Soil Samples

| Sampling Area | Number of<br>Borehole<br>Locations | Top of Sampling<br>Intervals in each<br>Borehole (ft bgs) | Total Number of<br>Soil Samples | Analytical Parameters and<br>EPA Methods <sup>a</sup> | Analytical<br>Laboratory | Date Samples<br>Collected |
|---------------|------------------------------------|-----------------------------------------------------------|---------------------------------|-------------------------------------------------------|--------------------------|---------------------------|
| Drainfield    | 3                                  | 5, 10                                                     | 6                               | 6 VOCs<br>EPA Method 8260                             |                          | 08/24/99-<br>08/25/99     |
|               | 3                                  | 5, 10                                                     | 5 + 1 Duplicate                 | SVOCs<br>EPA Method 8270                              | GEL                      | 07/01/98-<br>07/06/98     |
|               | 3                                  | 5, 10                                                     | 6 + 1 Duplicate                 | PCBs<br>EPA Method 8082                               | GEL                      | 08/24/99-<br>08/25/99     |
|               | 3                                  | 5, 10                                                     | 5 + 1 Duplicate                 | HE Compounds<br>EPA Method 8330                       | ERCL, GEL                | 07/01/98-<br>07/06/98     |
|               | 3                                  | 5, 10                                                     | 5 + 1 Duplicate                 | RCRA Metals + Zinc<br>EPA Methods 6000/7000           | ERCL, GEL                | 07/01/98-<br>07/06/98     |
|               | 3                                  | 5, 10                                                     | 6 + 1 Duplicate                 | Hexavalent Chromium<br>EPA Method 7196A               | GEL                      | 08/24/99-<br>08/25/99     |
|               | 3                                  | 5, 10                                                     | 6 + 1 Duplicate                 | Total Cyanide<br>EPA Method 9012A                     | GEL                      | 08/24/99-<br>08/25/99     |
|               | 3                                  | 5, 10                                                     | 5 + 1 Duplicate                 | Gamma Spectroscopy<br>EPA Method 901.1                | RPSD, GEL                | 07/01/98-<br>07/06/98     |
|               | 3                                  | 5, 10                                                     | 5                               | Gross Alpha/Beta Activity<br>EPA Method 900.0         | GEL                      | 07/01/98-<br>07/06/98     |

<sup>a</sup>EPA November 1986.

- bgs = Below ground surface.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ERCL = Environmental Restoration Chemistry Laboratory.
- ft = Foot (feet).
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- RCRA = Resource Conservation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

#### 3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1029 are presented and discussed in this section.

#### <u>VOCs</u>

VOC analytical results for the six soil samples collected from the drainfield boreholes are summarized in Table 3.4.2-1. Method Detection Limits (MDLs) for the VOC soil analyses are presented in Table 3.4.2-2. Three VOCs (2-butanone, methylene chloride, and toluene) were detected in the VOC soil samples collected from this site. Even though these compounds were not detected in the associated trip blank, they are common laboratory contaminants and may not be indicative of soil contamination at this site.

#### <u>SVOCs</u>

SVOC analytical results for the five soil samples and one duplicate collected from the drainfield boreholes are summarized in Table 3.4.2-3. MDLs for the SVOC soil analyses are presented in Table 3.4.2-4. Twelve SVOCs were detected in the duplicate sample collected at 5 feet bgs in borehole BH2 (Figure 2.2.1-2), and no SVOCs were detected in the primary sample from this interval, or in any other SVOC sample collected at this site. The 12 SVOCs appear to be common components of asphalt (NPS July 1997), and probably indicate the presence of asphalt material in the duplicate sample. The area of the DSS Site 1029 drainfield is undeveloped and is easily accessed by vehicles. Small amounts of construction debris were also noted at the site during the sampling, and it is possible that asphalt fragments could have been incorporated into the sample while it was being collected. The absence of SVOCs in the other samples collected at this site suggests an isolated SVOC source (e.g., asphalt), rather than any kind of significant or widespread SVOC contamination at the site.

#### PCBs

PCB analytical results for the six soil samples and one duplicate collected from the drainfield boreholes are summarized in Table 3.4.2-5. MDLs for the PCB soil analyses are presented in Table 3.4.2-6. No PCBs were detected in any of the samples collected from this site.

#### **HE Compounds**

High explosive (HE) compound analytical results for the five soil samples and one duplicate collected from the drainfield boreholes are summarized in Table 3.4.2-7. MDLs for the HE soil analyses are presented in Table 3.4.2-8. No HE compounds were detected in any of the samples collected from this site.

#### Table 3.4.2-1 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, VOC Analytical Results August 1999 (Off-Site Laboratory)

|                                                 | Sample Attributes   |            | VOCs (EF   | PA Method 8260 <sup>a</sup> | ) (µg/kg) |  |
|-------------------------------------------------|---------------------|------------|------------|-----------------------------|-----------|--|
| Record                                          |                     | Sample     |            | Methylene                   |           |  |
| Number <sup>b</sup>                             | ER Sample ID        | Depth (ft) | 2-Butanone | Chloride                    | Toluene   |  |
| 602764                                          | 6584N-DF1-BH1-5-S   | 5          | ND (3.2 J) | 1.7 J (5)                   | 1.9       |  |
| 602764                                          | 6584N-DF1-BH1-10-S  | 10         | 11 J       | 2 J (5)                     | 1.6       |  |
| 602764                                          | 6584N-DF1-BH2-5-S   | 5          | 5.9 J      | 7.3                         | ND (0.9)  |  |
| 602764                                          | 6584N-DF1-BH2-10-S  | 10         | ND (3.2 J) | 1.7 J (5)                   | ND (0.9)  |  |
| 602764                                          | 6584N-DF1-BH3-5-S   | 5          | 3.6 J (5)  | 1.6 J (5)                   | 1.3       |  |
| 602764                                          | 6584N-DF1-BH3-10-S  | 10         | 4.9 J (5)  | 1.7 J (5)                   | 1.1       |  |
| Quality Assurance/Quality Control Sample (µg/L) |                     |            |            |                             |           |  |
| 602763                                          | T12/T42/T43-SP1-TB° | NA         | ND (5.9)   | ND (1.2)                    | ND (0.5)  |  |

Note: Values in **bold** represent detected analytes.

<sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

°ER sample ID reflects the final site for VOC samples included in this shipment.

BH = Borehole.

DF = Drainfield.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J = Analytical result was qualified as an estimated value.
- J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.
- MDL = Method detection limit.
- $\mu g/kg = Microgram(s) per kilogram.$
- $\mu g/L$  = Microgram(s) per liter.
- NA = Not applicable.
- ND () = Not detected above the MDL, shown in parentheses.
- S = Soil sample.
- SP = Seepage pit.
- TB = Trip blank.
- VOC = Volatile organic compound.

#### Table 3.4.2-2 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, VOC Analytical MDLs August 1999 (Off-Site Laboratory)

|                           | EPA Method 8260 <sup>a</sup> |
|---------------------------|------------------------------|
|                           | Detection Limit              |
| Analyte                   | (µg/kg)                      |
| Acetone                   | 10.3                         |
| Benzene                   | 0.5                          |
| Bromodichloromethane      | 0.1                          |
| Bromoform                 | 0.3                          |
| Bromomethane              | 0.3                          |
| 2-Butanone                | 3.2                          |
| Carbon disulfide          | 0.3                          |
| Carbon tetrachloride      | 0.5                          |
| Chlorobenzene             | 0.3                          |
| Chloroethane              | 0.3                          |
| Chloroform                | 0.1                          |
| Chloromethane             | 0.2                          |
| Dibromochloromethane      | 0.2                          |
| 1,1-Dichloroethane        | 0.1                          |
| 1,2-Dichloroethane        | 0.2                          |
| 1,1-Dichloroethene        | 0.3                          |
| cis-1,2-Dichloroethene    | 0.1                          |
| trans-1,2-Dichloroethene  | 0.1                          |
| 1,2-Dichloropropane       | 0.2                          |
| cis-1,3-Dichloropropene   | 0.2                          |
| trans-1,3-Dichloropropene | 0.3                          |
| Ethylbenzene              | 0.3                          |
| 2-Hexanone                | 2.8                          |
| Methylene chloride        | 1.4                          |
| 4-Methyl-2-pentanone      | 3.1                          |
| Styrene                   | 0.3                          |
| 1,1,2,2-Tetrachloroethane | 0.6                          |
| Tetrachloroethene         | 0.4                          |
| Toluene                   | 0.9                          |
| 1,1,1-Trichloroethane     | 0.1                          |
| 1,1,2-Trichloroethane     | 0.3                          |
| Trichloroethene           | 0.3                          |
| Vinyl acetate             | 2.1                          |
| Vinyl chloride            | 0.4                          |
| Xylene                    | 0.7                          |

<sup>a</sup>EPA November 1986.

= Drain and Septic Systems. DSS

= U.S. Environmental Protection Agency. EPA

= Method detection limit. MDL

- μg/kg
- = Microgram(s) per kilogram.= Volatile organic compound. VOC

#### Table 3.4.2-3 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, SVOC Analytical Results July 1998 (Off-Site Laboratory)

|                     | Sample Attributes  |            | SVOCs (EPA Method 8270 <sup>a</sup> ) (µg/kg) |            |            |              |              |              |
|---------------------|--------------------|------------|-----------------------------------------------|------------|------------|--------------|--------------|--------------|
| Record              |                    | Sample     |                                               | Benzo(a)   | Benzo(a)   | Benzo(b)     | Benzo(g,h,i) | Benzo(k)     |
| Number <sup>b</sup> | ER Sample ID       | Depth (ft) | Anthracene                                    | anthracene | pyrene     | fluoranthene | perylene     | fluoranthene |
| 600435              | 6584N-DF1-BH1-5-S  | 5          | ND (170 J)                                    | ND (170 J) | ND (170 J) | ND (170 J)   | ND (170 J)   | ND (170 J)   |
| 600435              | 6584N-DF1-BH1-10-S | 10         | ND (170 J)                                    | ND (170 J) | ND (170 J) | ND (170 J)   | ND (170 J)   | ND (170 J)   |
| 600435              | 6584N-DF1-BH2-5-S  | 5          | _ND (170 J)                                   | ND (170 J) | ND (170 J) | ND (170 J)   | ND (170 J)   | ND (170 J)   |
| 600435              | 6584N-DF1-BH2-5-DU | 5          | 370 J                                         | 2,700 J    | 2,200 J    | 3,100 J      | 910 J        | 1,000 J      |
| 600510              | 6584N-DF1-BH3-5-S  | 5          | ND (170)                                      | ND (170)   | ND (170)   | ND (170)     | ND (170)     | ND (170)     |
| 600510              | 6584N-DF1-BH3-10-S | 10         | ND (170)                                      | ND (170)   | ND (170)   | ND (170)     | ND (170)     | ND (170)     |

|        | Sample Attributes  |        |            | C N         | SVOCs (EPA Met | hod 8270 <sup>a</sup> ) (µg/kg) |              |            |
|--------|--------------------|--------|------------|-------------|----------------|---------------------------------|--------------|------------|
| Record | FB Sample ID       | Sample | Chrysene   | Dibenz[a,h] | Fluoranthene   | Indeno(1,2,3-cd)                | Phenanthrene | Pyrene     |
| 600435 | 6584N-DF1-BH1-5-S  | 5      | ND (170 J) | ND (170 J)  | ND (170 J)     | ND (170 J)                      | ND (170 J)   | ND (170 J) |
| 600435 | 6584N-DF1-BH1-10-S | 10     | ND (170 J) | ND (170 J)  | ND (170 J)     | ND (170 J)                      | ND (170 J)   | ND (170 J) |
| 600435 | 6584N-DF1-BH2-5-S  | 5      | ND (170 J) | ND (170 J)  | ND (170 J)     | ND (170 J)                      | ND (170 J)   | ND (170 J) |
| 600435 | 6584N-DF1-BH2-5-DU | 5      | 3,200 J    | 330 J (342) | 4,100 J        | 880 J                           | 1,600 J      | 3,500 J    |
| 600510 | 6584N-DF1-BH3-5-S  | 5      | ND (170)   | ND (170)    | ND (170)       | ND (170)                        | ND (170)     | ND (170)   |
| 600510 | 6584N-DF1-BH3-10-S | 10     | ND (170)   | ND (170)    | ND (170)       | ND (170)                        | ND (170)     | ND (170)   |

Note: Values in **bold** represent detected analytes.

<sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA  $\Rightarrow$  U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J = Analytical result was qualified as an estimated value.
- J() = The reported value is greater than or equal to the MDL but is less than the practical quantitation limit, shown in parentheses.
- MDL = Method detection limit.
- µg/kg ⇒ Microgram(s) per kilogram.
- ND () = Not detected above the MDL, shown in parentheses.
- S ≈ Soil sample.
- SVOC = Semivolatile organic compound.

#### Table 3.4.2-4 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs July 1998 (Off-Site Laboratory)

|                             | EPA Method 8270 <sup>a</sup> |
|-----------------------------|------------------------------|
|                             | Detection Limit              |
| Analyte                     | (µg/kg)                      |
| Acenaphthene                | 170                          |
| Acenaphthylene              | 170                          |
| Anthracene                  | 170                          |
| Benzo(a)anthracene          | 170                          |
| Benzo(a)pyrene              | 170                          |
| Benzo(b)fluoranthene        | 170                          |
| Benzo(g,h,i)perylene        | 170                          |
| Benzo(k)fluoranthene        | 170                          |
| Benzoic acid                | 330                          |
| Benzyl alcohol              | 170                          |
| 4-Bromophenyl phenyl ether  | 170                          |
| Butylbenzyl phthalate       | 170                          |
| 4-Chlorobenzenamine         | 330                          |
| bis(2-Chloroethoxy)methane  | 170                          |
| bis(2-Chloroethyl)ether     | 170                          |
| bis-Chloroisopropyl ether   | 170                          |
| 4-Chloro-3-methylphenol     | 170                          |
| 2-Chloronaphthalene         | 170                          |
| 2-Chlorophenol              | 170                          |
| 4-Chlorophenyl phenyl ether | 170                          |
| Chrysene                    | 170                          |
| m,p-Cresol                  | 170                          |
| o-Cresol                    | 170                          |
| Dibenz[a,h]anthracene       | 170                          |
| Dibenzofuran                | 170                          |
| 1,2-Dichlorobenzene         | 170                          |
| 1,3-Dichlorobenzene         | 170                          |
| 1,4-Dichlorobenzene         | 170                          |
| 3,3'-Dichlorobenzidine      | 830                          |
| 2,4-Dichlorophenol          | 170                          |
| Diethylphthalate            | 170                          |
| 2,4-Dimethylphenol          | 170                          |
| Dimethylphthalate           | 170                          |
| Di-n-butyl phthalate        | 170                          |
| Dinitro-o-cresol            | 170                          |
| 2,4-Dinitrophenol           | 330                          |
| 2,4-Dinitrotoluene          | 170                          |
| 2,6-Dinitrotoluene          | 170                          |
| Di-n-octyl phthalate        | 170                          |
| 1,2-Diphenylhydrazine       | 170                          |
| bis(2-Ethylhexyl) phthalate | 170                          |
| Fluoranthene                | 170                          |

Refer to footnotes at end of table.

#### Table 3.4.2-4 (Concluded) Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, SVOC Analytical MDLs July 1998 (Off-Site Laboratory)

|                           | EPA Method 8270 <sup>a</sup> |
|---------------------------|------------------------------|
|                           | Detection Limit              |
| Analyte                   | (µg/kg)                      |
| Fluorene                  | 170                          |
| Hexachlorobenzene         | 170                          |
| Hexachlorobutadiene       | 170                          |
| Hexachlorocyclopentadiene | 170                          |
| Hexachloroethane          | 170                          |
| Indeno(1,2,3-cd)pyrene    | 170                          |
| Isophorone                | 170                          |
| 2-Methylnaphthalene       | 170 .                        |
| Naphthalene               | 170                          |
| 2-Nitroaniline            | 170                          |
| 3-Nitroaniline            | 170                          |
| 4-Nitroaniline            | 170                          |
| Nitrobenzene              | 170                          |
| 2-Nitrophenol             | 170                          |
| 4-Nitrophenol             | 330                          |
| n-Nitrosodiphenylamine    | 170                          |
| n-Nitrosodipropylamine    | 170                          |
| Pentachlorophenol         | 170                          |
| Phenanthrene              | 170                          |
| Phenol                    | 170                          |
| Pyrene                    | 170                          |
| 1,2,4-Trichlorobenzene    | 170                          |
| 2,4,5-Trichlorophenol     | 170                          |
| 2,4,6-Trichlorophenol     | 170                          |

<sup>a</sup>EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

µg/kg = Microgram(s) per kilogram.

SVOC = Semivolatile organic compound.
### Table 3.4.2-5 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, PCB Analytical Results August 1999 (Off-Site Laboratory)

|                     | Sample Attributes  |            | PCBs                            |
|---------------------|--------------------|------------|---------------------------------|
| Record              |                    | Sample     | (EPA Method 8082 <sup>a</sup> ) |
| Number <sup>b</sup> | ER Sample ID       | Depth (ft) | (µg/kg)                         |
| 602764              | 6584N-DF1-BH1-5-S  | 5          | ND                              |
| 602764              | 6584N-DF1-BH1-10-S | 10         | ND                              |
| 602764              | 6584N-DF1-BH2-5-S  | 5          | ND                              |
| 602764              | 6584N-DF1-BH2-10-S | 10         | ND                              |
| 602764              | 6584N-DF1-BH3-5-S  | 5          | ND                              |
| 602764              | 6584N-DF1-BH3-5-DU | 5          | ND                              |
| 602764              | 6584N-DF1-BH3-10-S | 10         | ND                              |

<sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

BH = Borehole.

DF = Drain field.

DSS = Drain and Septic Systems.

DU = Duplicate sample.

- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.

µg/kg = Microgram(s) per kilogram.

ND = Not detected.

- PCB = Polychlorinated biphenyls.
- S = Soil sample.

### Table 3.4.2-6 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, PCB Analytical MDLs August 1999 (Off-Site Laboratory)

|              | EPA Method 8082 <sup>a</sup><br>Detection Limit |
|--------------|-------------------------------------------------|
| Analyte      | (µg/kg)                                         |
| Aroclor-1016 | 1.22                                            |
| Aroclor-1221 | 2.82                                            |
| Aroclor-1232 | 1.63                                            |
| Aroclor-1242 | 1.67                                            |
| Aroclor-1248 | 0.907                                           |
| Aroclor-1254 | 1.16                                            |
| Aroclor-1260 | 0.943                                           |

<sup>a</sup>EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

μg/kg = Microgram(s) per kilogram.

PCB = Polychlorinated biphenyls.

......

.....

#### Table 3.4.2-7

### Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, HE Compound Analytical Results July 1998 (On- and Off-Site Laboratories)

|                     | Sample Attributes  | HE         |                                 |
|---------------------|--------------------|------------|---------------------------------|
| Record              |                    | Sample     | (EPA Method 8330 <sup>a</sup> ) |
| Number <sup>b</sup> | ER Sample ID       | Depth (ft) | (mg/kg)                         |
| 600434              | 6584N-DF1-BH1-5-S  | 5          | ND                              |
| 600434              | 6584N-DF1-BH1-10-S | 10         | ND                              |
| 600434              | 6584N-DF1-BH2-5-S  | 5          | ND                              |
| 600435              | 6584N-DF1-BH2-5-DU | 5          | ND                              |
| 600449              | 6584N-DF1-BH3-5-S  | 5          | ND                              |
| 600449              | 6584N-DF1-BH3-10-S | 10         | ND                              |

Note: Values in **bold** represent detected analytes. <sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

DU = Duplicate sample.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

HE = High explosive(s).

ID = Identification.

mg/kg = Milligram(s) per kilogram.

ND = Not detected.

S = Soil sample.

### Table 3.4.2-8 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, HE Compound Analytical MDLs July 1998 (On- and Off-Site Laboratories)

|                              | EPA Method 8330 <sup>a</sup> |  |  |  |  |
|------------------------------|------------------------------|--|--|--|--|
|                              | Detection Limit              |  |  |  |  |
| Analyte                      | (mg/kg)                      |  |  |  |  |
| 2-Amino-4,6-dinitrotoluene   | 0.0066-0.12                  |  |  |  |  |
| 4-Amino-2,6-dinitrotoluene   | 0.0055-0.1                   |  |  |  |  |
| 1,3-Dinitrobenzene           | 0.0041-0.073                 |  |  |  |  |
| 2,4-Dinitrotoluene           | 0.0062-0.24                  |  |  |  |  |
| 2,6-Dinitrotoluene           | 0.0065-0.28                  |  |  |  |  |
| HMX                          | 0.0053-0.12                  |  |  |  |  |
| Nitrobenzene                 | 0.0052-0.17                  |  |  |  |  |
| 2-Nitrotoluene               | 0.0078-0.15                  |  |  |  |  |
| 3-Nitrotoluene               | 0.0011-0.15                  |  |  |  |  |
| 4-Nitrotoluene               | 0.011-0.12                   |  |  |  |  |
| Pentaerythritol tetranitrate | 0.0075-0.34                  |  |  |  |  |
| RDX                          | 0.0097-0.18                  |  |  |  |  |
| 1,3,5-Trinitrobenzene        | 0.0066-0.1                   |  |  |  |  |
| 2,4,6-Trinitrotoluene        | 0.0057-0.28                  |  |  |  |  |

<sup>a</sup>EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HE = High explosive(s).

HMX = Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

RDX = Hexahydro-1,3,5-trinitro-1,3,5-triazine.

### **RCRA Metals Plus Zinc and Hexavalent Chromium**

Resource Conservation and Recovery Act (RCRA) metals plus zinc and hexavalent chromium analytical results for the five soil samples and one duplicate (RCRA metals) and six soil samples and one duplicate (hexavalent chromium) collected from the drainfield boreholes are summarized in Table 3.4.2-9. MDLs for the metals soil analyses are presented in Table 3.4.2-10. Zinc was added to the metals analyte list for the soil samples because a relatively high amount of zinc was detected in a sludge sample collected from the septic tank in July 1995. With the exception of arsenic, none of the metal concentrations detected in the samples exceeded their corresponding NMED-approved background concentrations. Arsenic was detected at a concentration above the NMED-approved background in two of the six samples analyzed for arsenic from this site.

### Table 3.4.2-9 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Metals Analytical Results July 1998 and August 1999 (On- and Off-Site Laboratories)

| Sample Attributes   |                         |                   | Metals (EPA Method 6000/7000/7196A <sup>a</sup> ) (mg/kg) |        |                |          |                  |      |              |              |                |      |
|---------------------|-------------------------|-------------------|-----------------------------------------------------------|--------|----------------|----------|------------------|------|--------------|--------------|----------------|------|
| Record              |                         | Sample            |                                                           |        |                |          |                  |      |              |              |                |      |
| Number <sup>a</sup> | ER Sample ID            | Depth (ft)        | Arsenic                                                   | Barium | Cadmium        | Chromium | Chromium (VI)    | Lead | Mercury      | Selenium     | Silver         | Zinc |
| 600434,             | 6584N-DF1-BH1-5-S       | 5                 | 5                                                         | 120    | 0.14 J (0.16)  | 10       | 0.0608 J (0.203) | 6.2  | ND (0.041 J) | ND (0.31)    | 0.077 J (0.16) | 31   |
| 602764              |                         |                   |                                                           |        | ·              |          |                  |      |              |              |                |      |
| 600434,             | 6584N-DF1-BH1-10-S      | 10                | 5.5                                                       | 120    | 0.11 J (0.15)  | 12       | 0.0796 J (0.199) | 6.2  | ND (0.038 J) | 0.34 J (1.1) | ND (0.038)     | 30   |
| 602764              |                         |                   |                                                           |        |                |          |                  |      |              |              |                |      |
| 600434,             | 6584N-DF1-BH2-5-S       | 5                 | 3.8                                                       | 94     | 0.22           | 11       | ND (0.034)       | 7.2  | ND (0.039 J) | 0.3 J (1.2)  | 0.87           | 47   |
| 602764              |                         |                   |                                                           |        |                |          |                  |      |              |              | 1              |      |
| 600435              | 6584N-DF1-BH2-5-DU      | 5                 | 2.08                                                      | 78.5   | ND (0.0104)    | 4.72     | NS               | 4.55 | ND (0.0173)  | ND (0.07)    | 0.171 J (1.22) | 24.8 |
| 602764              | 6584N-DF1-BH2-10-S      | 10                | NS                                                        | NS     | NS             | NS       | 0.07 J (0.2)     | NS   | NS           | NS           | NS             | NS   |
| 600449,             | 6584N-DF1-BH3-5-S       | 5                 | 3                                                         | 61     | 0.14 J (0.16)  | 5.2      | 0.0601 J (0.2)   | 3.6  | ND (0.04)    | ND (0.3)     | ND (0.04)      | 20   |
| 602764              |                         | )                 |                                                           |        |                | 1        |                  |      |              | . ,          |                |      |
| 602764              | 6584N-DF1-BH3-5-DU      | 5                 | NS                                                        | NS     | NS             | NS       | ND (0.0341)      | NS   | NS           | NS           | NS             | NS   |
| 600449,             | 6584N-DF1-BH3-10-S      | 10                | 3                                                         | 100 J  | 0.082 J (0.16) | 8.1      | 0.0598 J (0.199) | 4.4  | ND (0.04)    | 0.33 J (1.2) | ND (0.04)      | 22   |
| 602764              |                         |                   |                                                           |        |                |          | , <i>,</i> ,     |      |              | . ,          | , <u>,</u>     |      |
| Background C        | Concentration-Southwest | Area <sup>b</sup> | 4.4                                                       | 214    | 0.9            | 15.9     | 1                | 11.8 | <0.1         | <1           | <1             | 62   |

#### Note: Values in **bold** exceed background soil concentrations.

<sup>a</sup>Analysis request/chain-of-custody record.

<sup>b</sup>Dinwiddie September 1997.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU
- = Duplicate sample. = U.S. Environmental Protection Agency. EPA
- ER = Environmental Restoration.
- Ħ = Foot (feet).
- 1D = Identification. J .
  - = Analytical result was qualified as an estimated value.
- J() = The reported value is greater than or equal to the method detection limit but is less than the practical quantitation limit, shown in parentheses.

mg/kg = Milligram(s) per kilogram.

- = Not detected above the method detection limit, shown in parentheses. ND ()
- NS = No sample.
- S = Soil sample.

### Table 3.4.2-10 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Metals Analytical MDLs July 1998 and August 1999 (On- and Off-Site Laboratories)

|               | EPA Method 6000/7000/7196A <sup>a</sup> |
|---------------|-----------------------------------------|
|               | Detection Limit                         |
| Analyte       | (mg/kg)                                 |
| Arsenic       | 0.149-0.62                              |
| Barium        | 0.0166-0.52                             |
| Cadmium       | 0.0104–0.041                            |
| Chromium      | 0.0365-0.72                             |
| Chromium (VI) | 0.0338-0.0345                           |
| Lead          | 0.0339–0.31                             |
| Mercury       | 0.0173-0.041                            |
| Selenium      | 0.07–0.31                               |
| Silver        | 0.031-0.041                             |
| Zinc          | 0.0483-4.1                              |

<sup>a</sup>EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method Detection Limit.

mg/kg = Milligram(s) per kilogram.

### Total Cyanide

Total cyanide analytical results for the six soil samples and one duplicate collected from the drainfield boreholes are summarized in Table 3.4.2-11. MDLs for the soil cyanide analyses are presented in Table 3.4.2-12. Cyanide was not detected in any of the samples collected from this site.

### **Radionuclides**

Gamma spectroscopy analytical results for the five soil samples and one duplicate collected from the drainfield boreholes are summarized in Table 3.4.2-13. No activities above the NMED-approved background levels were detected in any sample analyzed.

### Gross Alpha/Beta Activity

Gross alpha/beta analytical results for the five soil samples collected from the drainfield boreholes are summarized in Table 3.4.2-14. The gross alpha activity of 19.7 picocuries (pCi)/gram (g) in the 5-foot sample from borehole BH3 was slightly above the New Mexico-established background activity of 17.4 pCi/g. No other gross alpha or beta activity was detected above the New Mexico-established background levels (Miller September 2003) in any of the samples. These results indicate no significant levels of radioactive material are present in the soil at the site.

### Table 3.4.2-11 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Total Cyanide Analytical Results August 1999 (Off-Site Laboratory)

|                     | Sample Attributes  | _          | Total Cyanide<br>(EPA Method 9012A <sup>a</sup> )<br>(mg/kg) |
|---------------------|--------------------|------------|--------------------------------------------------------------|
| Record              |                    | Sample     |                                                              |
| Number <sup>b</sup> | ER Sample ID       | Depth (ft) | Total Cyanide                                                |
| 602764              | 6584N-DF1-BH1-5-S  | 5          | ND                                                           |
| 602764              | 6584N-DF1-BH1-10-S | 10         | ND                                                           |
| 602764              | 6584N-DF1-BH2-5-S  | 5          | ND                                                           |
| 602764              | 6584N-DF1-BH2-10-S | 10         | ND                                                           |
| 602764              | 6584N-DF1-BH3-5-S  | 5          | ND                                                           |
| 602764              | 6584N-DF1-BH3-5-DU | 5          | ND                                                           |
| 602764              | 6584N-DF1-BH3-10-S | 10         | ND                                                           |

<sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- DU = Duplicate sample.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- mg/kg = Milligram(s) per kilogram.
- ND = Not detected.
- S = Soil sample.

### Table 3.4.2-12

### Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Total Cyanide Analytical MDLs August 1999 (Off-Site Laboratory)

|               | EPA Method 9012A <sup>a</sup> |
|---------------|-------------------------------|
|               | Detection Limit               |
| Analyte       | (mg/kg)                       |
| Total Cyanide | 0.131-0.139                   |

<sup>a</sup>EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.

mg/kg = Milligram(s) per kilogram.

### Table 3.4.2-13 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results July 1998 (On- and Off-Site Laboratories)

| Sample Attributes |                         |            | Activity (EPA Method 901.1 <sup>a</sup> ) (pCi/g) |                    |             |                    |             |                    |             |                    |
|-------------------|-------------------------|------------|---------------------------------------------------|--------------------|-------------|--------------------|-------------|--------------------|-------------|--------------------|
| Record            |                         | Sample     | Cesiur                                            | n-137              | Thorium-232 |                    | Uranium-235 |                    | Uranium-238 |                    |
| Numberb           | ER Sample ID            | Depth (ft) | Result                                            | Error <sup>c</sup> | Result      | Error <sup>c</sup> | Result      | Error <sup>c</sup> | Result      | Error <sup>c</sup> |
| 600436            | 6584N-DF1-BH1-5-S       | 5          | 0.0210                                            | 0.00512            | 0.619       | 1.10               | ND (0.0637) |                    | 0.477       | 0.374              |
| 600436            | 6584N-DF1-BH1-10-S      | 10         | ND (0.0182)                                       |                    | 0.641       | 0.310              | ND (0.101   |                    | 0.818       | 0.362              |
| 600436            | 6584N-DF1-BH2-5-S       | 5          | 0.0449                                            | 0.0178             | 0.578       | 0.283              | ND (0.0522) |                    | 0.570       | 0.301              |
| 600435            | 6584N-DF1-BH2-5-DU      | 5          | 0.0306                                            | 0.0288             | 0.728       | 0.0919             | 0.0688      | 0.0823             | ND (0.344)  |                    |
| 600511            | 6584N-DF1-BH3-5-S       | 5          | ND (0.0147)                                       |                    | 0.555       | 0.541              | 0.102       | 0.0782             | 0.409       | 0.254              |
| 600511            | 6584N-DF1-BH3-10-S      | 10         | ND (0.0146)                                       |                    | 0.486       | 0.240              | ND (0.0842) |                    | 0.312       | 0.246              |
| Backgroun         | d ActivitySouthwest Are | a          | 0.079                                             | NA                 | 1.01        | ŇĂ                 | 0.16        | NA                 | 1.4         | NA                 |
| Supergrou         | p <sup>d</sup>          |            |                                                   |                    |             |                    |             |                    | l           | ·                  |

<sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record,

- <sup>c</sup>Two standard deviations about the mean detected activity.
  - <sup>d</sup>Dinwiddie September 1997.
  - = Borehole. BH
  - DF = Drainfield.
  - DSS = Drain and Septic Systems. DU = Duplicate sample.
  - = Environmental Restoration. ER
  - EPA = U.S. Environmental Protection Agency.
  - = Foot (feet). ft
  - ID = Identification.
  - MDL = Method detection limit.
  - = Not applicable. NA
  - ND () = Not detected above the MDL, shown in parentheses.
  - pCi/g = Picocurie(s) per gram. S
    - = Soil sample.
    - = Error not calculated for nondetectable results.

3-19

--

### Table 3.4.2-14 Summary of DSS Site 1029, Building 6584 North Septic System Confirmatory Soil Sampling, Gross Alpha/Beta Analytical Results July 1998 (Off-Site Laboratory)

|                     | Sample Attributes        |            | Activity (EPA Method 900.0 <sup>a</sup> ) (pCi/g) |                    |            |                    |  |
|---------------------|--------------------------|------------|---------------------------------------------------|--------------------|------------|--------------------|--|
| Record              |                          | Sample     | Gross                                             | Alpha              | Gross Beta |                    |  |
| Number <sup>b</sup> | ER Sample ID             | Depth (ft) | Result                                            | Error <sup>c</sup> | Result     | Error <sup>c</sup> |  |
| 600435              | 6584N-DF1-BH1-5-S        | 5          | 8.19                                              | 3                  | 20         | 3.56               |  |
| 600435              | 6584N-DF1-BH1-10-S       | 10         | 7.05                                              | 2.78               | 16.1       | 3.46               |  |
| 600435              | 6584N-DF1-BH2-5-S        | 5          | 9.21                                              | 3.3                | 19.4       | 3.7                |  |
| 600510              | 6584N-DF1-BH3-5-S        | 5          | 19.7                                              | 4.27               | 31.9       | 4.13               |  |
| 600510              | 6584N-DF1-BH3-10-S       | 10         | 12.4                                              | 3.84               | 22.1       | 3.77               |  |
| Backgrour           | nd Activity <sup>d</sup> |            | 17.4                                              | NA                 | 37.4       | NA                 |  |

Note: Values in **bold** represent analytes detected above their respective background activity level. <sup>a</sup>EPA November 1986.

<sup>b</sup>Analysis request/chain-of-custody record.

<sup>c</sup>Two standard deviations about the mean detected activity.

<sup>d</sup>Miller September 2003.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- NA = Not applicable.
- pCi/g = Picocurie(s) per gram.
- S = Soil sample.

### 3.4.3 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Throughout the DSS project, quality assurance/quality control samples were collected at an approximate frequency of 1 per 20 field samples. These included duplicates, equipment blanks (EBs), and trip blanks (TBs). Typically, samples were shipped to the laboratory in batches of up to 20 samples, so that any one shipment might contain samples from several sites. Aqueous EB samples were collected at an approximate frequency of 1 per 20 samples and sent to the laboratory. The EB samples were analyzed for the same analytical suite as the soil samples in that shipment. The analytical results for the EB samples appear only on the data tables for the site where they were collected. However, the results were used in the data validation process for all the samples in that batch. No EB samples were collected at DSS Site 1029.

Aqueous TB samples, for VOC analysis only, were included in every sample cooler containing VOC soil samples. The analytical results for the TB samples appear on the VOC data tables for the sites in that shipment. The results were used in the data validation process for all samples in that batch. No VOCs were detected in this TB (Table 3.4.2-1).

As shown in Tables 3.4.2-3, -5, -7, -9, -11, and 3.4.2-13, to assess the precision and repeatability of sampling and analytical procedures, duplicate soil samples (designated 'DU') were collected and analyzed at both the on- and off-site laboratories for SVOCs, PCBs, HE compounds, RCRA metals plus zinc and hexavalent chromium, cyanide, and radionuclides by gamma spectroscopy.

As shown in Table 3.4.2-3, no SVOCs were detected in the primary sample from the 5-foot depth in borehole BH2, whereas twelve SVOCs were detected in duplicate sample from the same interval. As explained in Section 3.4.2 above, this difference may be due to asphalt fragments that may have been incorporated into the duplicate sample while it was being collected.

As shown in Table 3.4.2-5, PCBs were not detected in either the primary or duplicate samples from the 5-foot depth in borehole BH3.

As shown in Table 3.4.2-7, no HE compounds were detected in either the primary or duplicate samples from the 5-foot depth in borehole BH2.

As shown in Table 3.4.2-9, metals concentrations in the primary and duplicate samples from the 5-foot interval in borehole BH2 that were sent to different laboratories compared as follows:

- Arsenic and barium concentrations were comparable.
- Mercury was not detected in either the primary or duplicate sample.
- Low concentrations of cadmium and selenium were detected in the primary sample but were not detected in the duplicate sample.
- Chromium, lead, and zinc concentrations in the primary sample were approximately twice that in the duplicate sample, and the silver concentration in the primary sample was approximately 5 times that in the duplicate sample.

In addition, hexavalent chromium was detected in the primary sample from the 5-foot depth in borehole BH3, and was not detected in the duplicate sample from that interval.

As shown in Table 3.4.2-11, total cyanide was not detected in either the primary or the duplicate sample from the 5-foot depth in borehole BH3.

Finally, as shown in Table 3.4.2-13, cesium-137 and thorium-232 activities in the primary and duplicate samples from the 5-foot depth in borehole BH2 were comparable. Uranium-235 activity was not detected in the primary sample but was detected in the duplicate sample, as opposed to uranium-238 which was detected in the primary sample but not in the duplicate sample.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94–03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00–03 (SNL/NM December 1999). In addition, SNL/NM Department 7713 (RPSD Laboratory) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). Annex B contains the data validation

AL/3-04/WP/SNL04:R5474.doc

reports for the samples collected at this site. The data are acceptable for use in this NFA proposal.

### 3.5 Investigation 4—Passive Soil-Vapor Sampling

In April and May 2002, a passive soil-vapor survey was conducted in the Building 6584 North Septic System drainfield area. This survey was required at this site by NMED/HWB regulators and was conducted to determine whether significant VOC contamination was present in the soil at the site.

### 3.5.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber™ (GS) passive soil-vapor survey is a qualitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. The technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil vapor chemistry over a two- to three-week period rather than at one point in time.

Each GS soil-vapor sampler consists of a 1-foot long, 0.25-inch diameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 3-foot-deep by 1.5-inch-diameter borehole was drilled with the Geoprobe<sup>™</sup>. A sample identification tag and location string were attached to the GS sampler and lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1-foot of the borehole, from the cork to the ground surface, was backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for the VOCs of interest are reported as mass (expressed in micrograms) of the individual VOCs absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

### 3.5.2 Soil-Vapor Survey Results and Conclusions

A total of five GS passive soil-vapor samplers were placed in the drainfield area of the site (Figure 2.2.1-2). Samplers were installed at the site on April 30, 2002, and were retrieved on May 15, 2002. Sample locations are designated by the same six-digit sample number both on Figure 2.2.1-2 and in the analytical results tables presented in Annex C.

As shown in the analytical results tables in Annex C, the GS samplers were analyzed for a total of 30 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and trans-dichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 12 VOCs were detected in the GS samplers installed at this site. The analytical results indicated there were no areas of significant VOC contamination at the site that would require additional characterization.

### 3.6 Site Sampling Data Gaps

-

1000 BA

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1029.

This page intentionally left blank.

•

The conceptual site model for DSS Site 1029, the Building 6584 North Septic System, is based upon the COCs identified in the soil samples collected from beneath the drainfield at this site. This section summarizes the nature and extent of contamination and the environmental fate of the COCs.

### 4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1029 consist of VOCs, SVOCs, PCBs, HE compounds, or cyanide, RCRA metals plus zinc, hexavalent chromium, and radionuclides. Three VOCs and twelve SVOCs were detected, and no PCBs, HE compounds, or cyanide were identified in samples from this site. None of the eight RCRA metals plus zinc and hexavalent chromium were detected at concentrations above the approved maximum background concentrations for SNL/NM Southwest Area Supergroup soils (Dinwiddie September 1997) or above the nonquantified background concentrations, with the exception of arsenic in two boreholes. None of the four representative gamma spectroscopy radionuclides were detected at activities exceeding the corresponding background levels. Finally, the gross alpha activity in one of the six gross alpha soil samples from this site exceeded the New Mexico-established background gross alpha activity level. No gross beta activity exceeded the New Mexico-established gross beta background activity level.

### 4.2 Environmental Fate

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system and drainfield. Possible secondary release mechanisms include the uptake of COCs that may have been released into the soil beneath the drainfield (Figure 4.2-1). The depth to groundwater at the site (approximately 482 feet bgs) most likely precludes migration of potential COCs into the groundwater system. The potential pathways to receptors include soil ingestion, dermal contact, and inhalation, which could occur as a result of receptor exposure to contaminated subsurface soil at the site. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Annex D provides additional discussion on the fate and transport of COCs at DSS Site 1029.

Table 4.2-1 summarizes the potential COCs for DSS Site 1029. All potential COCs were retained in the conceptual model and were evaluated in both the human health and ecological risk assessments. The current and future land use for DSS Site 1029 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure routes for the receptors are dermal contact and ingestion/inhalation; however, these are realistic possibilities only if contaminated soil is excavated at the site. The major exposure route modeled in the human health risk assessment is soil ingestion for COCs. The inhalation pathway is included because of the potential to inhale dust and volatiles. The dermal pathway is included because of the potential for receptors to be exposed to the contaminated soil.

This page intentionally left blank.

 $\widehat{\phantom{a}}$ 

÷





Conceptual Site Model Flow Diagram for DSS Site 1029, Building 6584 North Septic System

4-3

|                | 1                                     |                      |                        |                              |                            |                | Number of               |
|----------------|---------------------------------------|----------------------|------------------------|------------------------------|----------------------------|----------------|-------------------------|
|                |                                       |                      |                        |                              |                            |                | Samples Where           |
|                |                                       |                      | COCs Detected, or      |                              |                            |                | COCs Detected, or       |
|                |                                       |                      | With Concentrations    | Maximum                      |                            |                | With Concentrations     |
|                |                                       |                      | Greater Than           | Background                   | Maximum                    |                | Greater Than            |
|                |                                       | Number               | Background or          | Limit/Southwest              | Concentration <sup>c</sup> | Average        | Background or           |
|                |                                       | of                   | Nonquantified          | Area Supergroup <sup>b</sup> | (All Samples)              | Concentrationd | Nonquantified           |
| (              | ОС Туре                               | Samples <sup>a</sup> | Background             | (mg/kg)                      | (mg/kg)                    | (mg/kg)        | Background <sup>e</sup> |
| VOCs           |                                       | 6                    | 2-Butanone             | NA                           | 0.01 <u>1</u> J            | 0.005 J        | 4                       |
|                |                                       | 6                    | Methylene chloride     | NA                           | 0.0073 J                   | 0.003 J        | 6                       |
|                |                                       | 6                    | Toluene                | NA                           | 0.0019                     | 0.001          | 4                       |
| SVOCs          |                                       | 6                    | Anthracene             | NA                           | 0.370 J                    | 0.133 J        | 1                       |
|                |                                       | 6                    | Benzo(a)anthracene     | NA                           | 2.70 J                     | 0.521 J        | 1                       |
|                |                                       | 6                    | Benzo(a)pyrene         | NA                           | 2.20 J                     | 0.438 J        | 1                       |
|                |                                       | 6                    | Benzo(b)fluoranthene   | NA                           | 3.10 J                     | 0.588 J        | 1                       |
|                |                                       | 6                    | Benzo(g,h,i)perylene   | NA                           | 0.910 J                    | 0.226 J        | 1                       |
|                |                                       | 6                    | Benzo(k)fluoranthene   | NA                           | 1.00 J                     | 0.238 J        | 1                       |
|                |                                       | 6                    | Chrysene               | NA                           | 3.20 J                     | 0.604 J        | 1                       |
|                |                                       | 6                    | Dibenz[a,h]anthracene  | NA                           | 0.330 J                    | 0.126 J        | 1                       |
|                |                                       | 6                    | Fluoranthene           | NA                           | 4.10 J                     | 0.754 J        | 1                       |
|                |                                       | 6                    | Indeno(1,2,3-cd)pyrene | NA                           | 0.880 J                    | 0.218 J        | 1                       |
|                |                                       | 6                    | Phenanthrene           | NA                           | 1.60 J                     | 0.338 J        | 1                       |
|                |                                       | 6                    | Pyrene                 | NA                           | 3.50 J                     | 0.654 J        | 1                       |
| PCBs           |                                       | 7                    | None                   | NA                           | NA                         | NA             | None                    |
| HE Compounds   |                                       | 6                    | None                   | NA                           | NA                         | NA             | None                    |
| RCRA Metals +  | Zinc                                  | 6                    | Arsenic                | 4.4                          | 5.5                        | 3.73           | 2                       |
|                |                                       | 6                    | Mercury                | NQ                           | ND (0.041 J)               | 0.0179         | None                    |
|                | (                                     | 6                    | Selenium               | NQ                           | 0.34 J                     | 0.138          | None                    |
|                |                                       | 6                    | Silver                 | NQ                           | 0.87                       | 0.196          | None                    |
| Hexavalent Chr | omium                                 | 7                    | None                   | NA                           | NA                         | NA             | None                    |
| Cyanide        |                                       | 7                    | Cyanide                | NQ                           | ND (0.139)                 | 0.068          | None                    |
| Radionuclides  | Gamma Spectroscopy                    | 6                    | None                   | NA                           | NA                         | NA             | None                    |
| (pCi/g)        | Gross Alpha                           | 5                    | Gross Alpha            | 17.4 <sup>†</sup>            | 19.7                       | NCg            | 1                       |
|                | Gross Beta                            | 5                    | None                   | NA                           | NA                         | NA             | None                    |
|                | · · · · · · · · · · · · · · · · · · · |                      |                        | ····                         |                            |                | ····                    |

 Table 4.2-1

 Summary of Potential COCs for DSS Site 1029, Building 6584 North Septic System

<sup>a</sup>Number of samples includes duplicates and splits.

<sup>b</sup>Dinwiddie September 1997.

<sup>c</sup>Maximum concentration is either the maximum amount detected, or the maximum MDL or MDA if nothing was detected.

<sup>d</sup>Average concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half of the MDLs for nondetect results, divided by the number of samples.

## Table 4.2-1 (Concluded)Summary of Potential COCs for the DSS Site 1029, Building 6584 North Septic System

<sup>e</sup>See appropriate data table for sample locations.

<sup>f</sup>Miller September 2003.

<sup>g</sup>An average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities for gamma spectroscopy.

- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- HE = High explosive(s).
  - = Analytical result was qualified as an estimated value.
- MDA = Minimum detectable activity.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- NA = Not applicable.
- NC = Not calculated.
- NQ = Nonquantified background value.
- PCB = Polychlorinated biphenyl.
- pCi/g = Picocurie(s) per gram.
- RCRA = Resource Conservation and Recovery Act.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

1

Potential biota receptors include flora and fauna at the site. Major exposure routes for biota include direct soil ingestion, ingestion of COCs through food chain transfers, and direct contact with COCs in soil. Annex D provides additional discussion of the exposure routes and receptors at DSS Site 1029.

### 4.3 Site Assessment

Site assessment at DSS Site 1029 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex D discusses the risk assessment performed for DSS Site 1029 in more detail.

### 4.3.1 Summary

The site assessment concluded that DSS Site 1029 poses no significant threat to human health under either the industrial or residential land-use scenarios. Ecological risks are expected to be very low.

### 4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risk at DSS Site 1029. This section summarizes the results.

### 4.3.2.1 Human Health

DSS Site 1029 has been recommended for an industrial land-use scenario (DOE et al. September 1995). Because three VOCs, 12 SVOCs, arsenic, mercury, selenium, silver, and cyanide are present above background or have nonquantified background levels, it was necessary to perform a human health risk assessment analysis for the site, which included these COCs. Annex D provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land-use scenarios.

The HI calculated for the COCs at DSS Site 1029 is 0.60 under the industrial land-use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.59. The quantifiable excess cancer risk is 2E-5 for DSS Site 1029 COCs under an industrial land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is above the suggested acceptable risk value. The incremental excess cancer risk is 2.03E-5. The incremental HI is below NMED guidelines and the incremental excess cancer risk is above NMED guidelines.

The HI calculated for the COCs at DSS Site 1029 is 2.17 under the residential land-use scenario, which is greater than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The incremental HI risk, determined by subtracting risk associated with

background from potential nonradiological COC risk (without rounding), is 1.96. The excess cancer risk for DSS Site 1029 COCs is 8E-5 for a residential land-use scenario. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus the excess cancer risk for this site is above the suggested acceptable risk value. The incremental excess cancer risk is 6.94E-5. Both the incremental HI and incremental excess cancer risk are above NMED guidelines.

Because the HI and excess cancer risk values are above NMED guidelines for the industrial and residential land-use scenarios, additional evaluation of the data is warranted. SVOCs were the main risk drivers. SVOCs were detected in only one of the six SVOC soil samples collected from this site. The sample was located in the shallow (5-foot interval) duplicate soil sample in borehole 6584N-DF1-BH2. The twelve SVOC compounds detected in this sample are indicative of asphalt (NPS July 1997), and likely reflect asphalt fragments that were disposed at the site and that were collected in the sample. No significant VOC or metals contamination was detected in any of the samples from this site (except for arsenic slightly above background). It was noted during sampling that the Building 6584 drain field area contained small amounts of residual construction debris and appeared to be used on occasion as a vehicle parking area. It is therefore believed that the SVOC compounds detected in the single sample represent residual asphalt disposed at the site, and do not indicate significant or widespread SVOC contamination at the site that could pose a threat to human health or the environment. With the removal of the SVOCs from the risk calculation, the incremental HI is reduced to 0.06 for the residential land-use scenario, the incremental excess cancer risk is reduced to 7.39E-7 for the industrial land-use scenario, and the incremental excess cancer risk is reduced to 2.93E-6 for the residential land-use scenario. These are all well below NMED guidelines.

For the radiological COCs, none of the constituents had a minimum detected activity or reported value greater than the corresponding background values; therefore no risk was calculated.

The nonradiological and radiological carcinogenic risks are tabulated and summed in Table 4.3.2-1.

# Table 4.3.2-1Summation of Radiological and Nonradiological Risks fromDSS Site 1029, Building 6584 North Septic System Carcinogens

| Scenario    | Nonradiological Risk | Radiological Risk | Total Risk |
|-------------|----------------------|-------------------|------------|
| Industrial  | 7.39E-7              | 0.0               | 7.39E-7    |
| Residential | 2.93E-6              | 0.0               | 2.93E-6    |

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

### 4.3.2.2 Ecological

An ecological assessment that corresponds with the procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997) also was performed as set forth by the NMED Risk-Based Decision Tree in the "RPMP Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex D, Sections IV VII.2, and VII.3). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in "Predictive Ecological Risk Assessment Methodology Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998). The risk assessment also includes the estimation of exposure and ecological risk.

Table 17 of Annex D presents the results of the ecological risk assessment. Site-specific information was incorporated into the risk assessment when such data were available. Initial predictions of potential risk (hazard quotient greater than unity) to omnivorous and insectivorous deer mice from exposures to 11 polynuclear aromatic hydrocarbons (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) are attributable to conservative toxicity benchmarks, as well as assumption of 100 percent bioavailability and the use of maximum detected concentrations to estimate exposure. Based upon this final analysis, the potential for ecological risks associated with DSS Site 1029 is expected to be low.

### 4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

### 4.4.1 Human Health

a di bia

Because the results of the human health risk assessment summarized in Section 4.3.2.1 indicate that DSS Site 1029 poses insignificant risk to human health under both the industrial and residential land-use scenarios, a baseline human health risk assessment is not required for this site.

### 4.4.2 Ecological

Because the results of the ecological risk assessment summarized in Section 4.3.2.2 indicate that ecological risks at DSS Site 1029 are expected to be low, a baseline ecological risk assessment is not required for the site.

This page intentionally left blank.

### 5.0 NO FURTHER ACTION PROPOSAL

### 5.1 Rationale

Based upon field investigation data and the human health and ecological risk assessment analyses, an NFA decision is recommended for DSS Site 1029 for the following reasons:

- The soil has been sampled for all potential COCs.
- No COCs are present in the soil at levels considered hazardous to human health for either an industrial or residential land-use scenario.

None of the COCs warrant ecological concern after conservative exposure assumptions are analyzed.

### 5.2 Criterion

Based upon the evidence provided in Section 5.1, DSS Site 1029 is proposed for an NFA decision according to Criterion 5, which states, "the SWMU/AOC has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

-

This page intentionally left blank.

### 6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shephard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment for Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program. July 8, 1996.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB. September 24, 1997.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

Gore, see Gore, W.L. and Associates.

Gore, W.L. and Associates (Gore), June 2002. "Gore-Sorber Screening Survey Final Report, Non-ER Drain and Septic, Kirtland AFB, NM," W.L. Gore Production Order Number 10960025, Sandia National Laboratories/New Mexico, June 6, 2002

IT, see IT Corporation.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal Memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Miller, M. (Sandia National Laboratories/New Mexico), September 2003. Memorandum to F.B. Nimick (Sandia National Laboratories/New Mexico), regarding "State of New Mexico Background for Gross Alpha/Beta Assays in Soil Samples." September 12, 2003.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2002.

AL/3-04/WP/SNL04:R5474.doc

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

New Mexico Environment Department (NMED) March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

NPS, see U.S. National Park Service.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sandia National Laboratories/New Mexico (SNL/NM), April 1991. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Results for Detected Parameters, Technical Area III and Coyote Canyon Test Field, April 1991," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 1993. "Sandia National Laboratories/New Mexico Septic Tank Monitoring Report, 1992 Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquergue, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1995. "Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Reports, December 1995," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico. Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), April 2003. DSS Sites Mean Elevation Report, GIS Group, Environmental Restoration Department, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous Sandia National Laboratories/New Mexico septic tanks at Sandia National Laboratories/New Mexico, Albuquerque, New Mexico. August 23, 1996.

SNL/NM, see Sandia National Laboratories/New Mexico.

U.S. Department of Energy (DOE) and U.S. Air Force (USAF), and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service. September 1995.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

U.S. National Park Service (NPS), July 1997. "Environmental Contaminants Encyclopedia Listing, Asphalt Entry," U.S. National Park Service, Fort Collins, CO., pp. 27-28, July 1, 1997.

This page intentionally left blank.



ANNEX A DSS Site 1029 Septic Tank Sampling Results

4-17-91

•

Results of Septic tank sampling conducted between 12/18/90 and I 1/8/91 for buildings noted.

PBDionne

Nick Durand,

For your information.

David Dionne

· · · · · ·

4-17-91

### **TABLE 12**

### SUMMARY OF ANALYTICAL RESULTS FOR DETECTED PARAMETERS TECHNICAL AREA III AND COYOTE CANYON TEST FIELD SEPTIC TANK SAMPLING

### **BUILDING 6584 N**

### SAMPLE NUMBERS SNLA004919, SNLA004920

• •

| Parameter             | Results                               | Units  |
|-----------------------|---------------------------------------|--------|
| VOLATILE ORGANICS     | · · · · · · · · · · · · · · · · · · · | -<br>- |
| Methylene Chloride    | 6.9                                   | μα/ί   |
| Acetone*              | 13                                    | ug/i   |
| Toluene               | 27                                    | μg/I   |
| SEMIVOLATILE ORGANICS |                                       |        |
| Phenol*               | 49                                    | μg/l   |
| Benzoic Acid*         | 450                                   | μg/l   |
| INORGANICS            |                                       |        |
| Oil and Grease        | 180                                   | mg/l   |
| Phenolics             | 0.45                                  | mg/i   |
| METALS                |                                       |        |
| Arsenic               | 0.12                                  | mg/l   |
| Barium                | 9.3                                   | mg/l   |
| Cadmium               | 0.20                                  | mg/l   |
| Chromium              | 0.44                                  | mg/l   |
| Copper                | 8.7                                   | mg/l   |
| Lead                  | 0.96                                  | mg/l   |
| Manganese             | 2.7                                   | mg/l   |
| Mercury               | 0.0023                                | mg/l   |
| Nickel                | 0.64                                  | mg/l   |
| Selenium              | 0.13                                  | mg/l   |
| Silver                | 0.15                                  | mg/i   |
| Zinc                  | 68.9                                  | mg/i   |
| RADIOLOGICAL          |                                       |        |
| Gross Alpha           | 10                                    | pCi/l  |
| Gross Beta            | 36                                    | pCi/l  |
| Plutonium 239/240     | 1.3                                   | pCi/l  |

\*Not on total toxic organics list

Project No. 301181.26.01 FEG-BB.027



### Building 6584, West and North Tanks Area 3 Sample ID Nos. SNLA008578 and SNLA008580 Tank ID Nos. AD89002 and AD89001R

On July 28 and July 29, 1992, sludge samples were collected from the western and northern septic tanks serving Building 6584.

### North Tank

During review of the sludge radiochemistry data, the following item was noted:

 <sup>226</sup>Ra was measured at 0.673 pCi/mL, by gamma spectroscopy analysis, which does not exceed the IL calculated during this monitoring effort. However, this finding exceeds the DOE DCG of 0.5 pCi/mL. A more sensitive technique for assaying <sup>226</sup>Ra may be warranted.

### West Tank

During review of the radiological data, no parameters were detected that exceed U.S. Department of Energy (DOE) derived concentration guideline (DCG) limits or the investigation levels (IL) established during this investigation.


| 1                     | Results of Septic Tank /<br>(Sludge Sample) | Analyses<br>)                          |        |  |  |  |
|-----------------------|---------------------------------------------|----------------------------------------|--------|--|--|--|
| Building No./Area:    | 6584 N TANK A-3                             |                                        |        |  |  |  |
| Fank ID No.: AD89001R |                                             |                                        |        |  |  |  |
| Date Sampled:         | 7/29/92                                     | ······································ |        |  |  |  |
| Sample ID No.:        | SNLA008580                                  |                                        |        |  |  |  |
| Analytical Parameter  | Measured<br>Concentration                   | <u>+</u> 2 Sigma<br>Uncertainty        | Units  |  |  |  |
| Gross Alpha           | 14                                          | 17                                     | pCi/g  |  |  |  |
| Gross Beta            | 30                                          | 38                                     | pCi/g  |  |  |  |
| Gross Alpha           | 12                                          | 17                                     | pCi/g  |  |  |  |
| Gross Beta            | 37                                          | 37                                     | pCi/g  |  |  |  |
| Gross Alpha           | 12                                          | 17                                     | pCi/g  |  |  |  |
| Gross Beta            | 46                                          | 38                                     | pCi/g  |  |  |  |
| Gross Alpha           | 6                                           | 16                                     | pCi/g  |  |  |  |
| Gross Beta            | 32                                          | 38                                     | pCi/g  |  |  |  |
| Tritium               | 0E+02                                       | 3E+02                                  | pCi/L  |  |  |  |
| Bismuth-212           | 0.0376                                      | 0.0188                                 |        |  |  |  |
| Bismuth-214           | 0.150                                       | 0.0114                                 | pCi/mL |  |  |  |
| Cesium-137            | <0.0122                                     | NA                                     | pCi/mL |  |  |  |
| Potassium-40          | 1.19                                        | 0.0920                                 | pCi/mL |  |  |  |
| Lead-212              | 0.0598                                      | 0.00689                                | pCi/mL |  |  |  |
| Lead-214              | 0.144                                       | 0.0105                                 | pCi/mL |  |  |  |
| Radium-226            | 0.673                                       | 0.0818                                 | pCi/mL |  |  |  |
| Thorium-234           | 0.722                                       | 0.105                                  | pCi/mL |  |  |  |
| Thallium-208          | 0.0256                                      | 0.00428                                | pCi/mL |  |  |  |

ND = Not Detected

NA = Not Applicable

,...**46**.1mm

-----

# RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

| Building ID:Bidg 6584 N                                                                |                                       |         |           |           |                                       |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------|---------|-----------|-----------|---------------------------------------|--|--|--|
| Sample ID Number:024392                                                                |                                       |         |           |           |                                       |  |  |  |
| Date Sampled: 7-10-95                                                                  |                                       |         |           |           |                                       |  |  |  |
| Percent Moisture:85.60                                                                 |                                       |         |           |           |                                       |  |  |  |
| Parameter (Method) Result (DL) Limit <sup>a</sup> COA Discharge COA Discharge Comments |                                       |         |           |           |                                       |  |  |  |
| Volatile Organics (8260)                                                               | (µg/kg)                               | (µg/kg) | (mg/L)    | (mg/L)    |                                       |  |  |  |
| Methylene Chioride                                                                     | 17J                                   | 71      | 0.10      | TTO = 5.0 |                                       |  |  |  |
| Acetone                                                                                | 3208                                  | 71      | NR        | NR        |                                       |  |  |  |
| Acetone (reanalyses)                                                                   | 590B                                  | 71      | NR        | NR        |                                       |  |  |  |
| Toluene                                                                                | 200                                   | 71      | 0.75      | TTO = 5.0 |                                       |  |  |  |
| Toluene (reanalyses)                                                                   | 290                                   | 71      | 0.75      | TTO = 5.0 | · · · · · · · · · · · · · · · · · · · |  |  |  |
| Ethylbenzene                                                                           | 11J                                   | 71      | 0.75      | TTO = 5.0 |                                       |  |  |  |
|                                                                                        | · · · · · · · · · · · · · · · · · · · |         |           |           |                                       |  |  |  |
| Semivolatile Organics (8270)                                                           | (µg/kg)                               | (µg/kg) | (mg/L)    | (mg/L)    |                                       |  |  |  |
| 1,2-Dichlorobenzene                                                                    | 410J                                  | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| Phenanthrene                                                                           | 620J                                  | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| Fluoranthene                                                                           | 630J                                  | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| Pyrene                                                                                 | 1800J                                 | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| Benzo(a)Anthracene                                                                     | e 460J 2300 NR                        |         | TTO = 5.0 |           |                                       |  |  |  |
| Chrysene                                                                               | 4601                                  | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| bis(2-Ethylhexyl)Phthalate                                                             | 3600                                  | 2300    | NR        | TTO = 5.0 |                                       |  |  |  |
| Benzo(a)Pyrene                                                                         | 510J                                  | 2300    | 0.0007    | TTO = 5.0 | · · · · ·                             |  |  |  |
|                                                                                        |                                       |         |           |           |                                       |  |  |  |
| Pesticides/PCBs (8080)                                                                 | (µg/kg)                               | (µg/kg) | (mg/L)    | (mg/L)    |                                       |  |  |  |
| delta-BHC                                                                              | 13                                    | 12      | NR        | TTO = 5.0 |                                       |  |  |  |
| Aldrin                                                                                 | 55                                    | 12      | NR        | TTO = 5.0 |                                       |  |  |  |
| 4,4'-DDE                                                                               | 44                                    | 23      | NR        | TTO = 5.0 |                                       |  |  |  |
|                                                                                        |                                       |         |           |           |                                       |  |  |  |
| Metais (6010/7470)                                                                     | (mg/kg)                               | (mg/kg) | (mg/L)    | (mg/L)    |                                       |  |  |  |
| Arsenic                                                                                | 6.2J                                  | 6.9     | 0.1       | 2.0       |                                       |  |  |  |
| Barium                                                                                 | 363                                   | 139     | 1.0       | 20.0      |                                       |  |  |  |
| Cadmium                                                                                | 7.1                                   | 3.5     | 0.01      | 2.8       |                                       |  |  |  |
| Chromium .                                                                             | 25.6                                  | 13.9    | 0.05      | 20.0      |                                       |  |  |  |

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3816-37/1

-1.7864.944

# RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

| Building ID:      | Bldg 6584 N |   |
|-------------------|-------------|---|
| Sample ID Number: | 024392      | _ |
| Date Sampled:     | 7-10-95     |   |
| Percent Moisture: | 85.60       |   |
|                   |             |   |

| Parameter (Method) | Result  | Detection Limit<br>(DL) | NM Discharge<br>Limit <sup>a</sup> | COA Discharge<br>Limit <sup>b</sup> | Comments |
|--------------------|---------|-------------------------|------------------------------------|-------------------------------------|----------|
| Metals (6010/7470) | (mg/kg) | (mg/kg)                 | (mg/L)                             | (mg/L)                              |          |
| Copper             | 323     | 17.4                    | 1.0                                | 16.5                                |          |
| Lead               | 42.2    | 2.1                     | 0.05                               | 3.2                                 |          |
| Manganese          | 222     | 10.4                    | 0.2                                | 20.0                                |          |
| Nickel             | 28.6    | 27.8                    | 0.2                                | 12.0                                |          |
| Selenium           | 8.3     | 3.5                     | 0.05                               | 2.0                                 |          |
| Silver             | 12.1    | 6.9                     | 0.05                               | 5.0                                 |          |
| Thallium           | ND      | 6.9                     | NR                                 | NR                                  |          |
| Zinc               | 2650    | 13.9                    | 10.0                               | 28.0                                |          |
| Mercury            | 3.5     | 1.4                     | 0.002                              | 0.1                                 |          |

#### Notes:

<sup>a</sup> New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.

<sup>b</sup> City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M – maximum allowable concentration for grab sample. B = Analyte detected in method blank.

DL = Detection limit indicated on laboratory report.

IDL = Instrument detection limit.

J = Estimated concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

TTO = Total toxic organics.

#### AL/9-95/WP/SNL:T3816-37/2

1

# RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

| Building ID:                   | Building ID:Bldg 6584 N |          |                |         |          |  |  |
|--------------------------------|-------------------------|----------|----------------|---------|----------|--|--|
| Sample ID Number:              | ample ID Number:024392  |          |                |         |          |  |  |
| Date Sampied:7-10-95           |                         |          |                |         |          |  |  |
| Percent Moisture:              | - <u> </u>              | 85.60    | ······         |         |          |  |  |
|                                |                         |          |                |         |          |  |  |
| Parameter (Method)             | Result                  | MDA      | Critical Level | Limit*  | Comments |  |  |
| Isotopic Analyses <sup>b</sup> | (pCi/g ± 2-a)           | (pCi/g)  | (pCi/g)        | (pCi/g) |          |  |  |
| Tritium                        | 1650 ± 188 pCi/L        | 121 рСИL | 59.6 pCI/L     | NR      |          |  |  |
| Plutonium-239/240              | 0.004 ± 0.009           | 0.021    | 0.013          | NR      |          |  |  |
| Plutonium-238                  | -0.002 ± 0.006          | 0.021    | 0.013          | NR      | ¥        |  |  |
| Strontium-90                   | -0.16 ± 0.02            | 0.38     | 0.19           | NR      |          |  |  |
| Thorium-232                    | 0.16 ± 0.07             | 0.032    | 0.025          | NR      |          |  |  |
| Thorium-230                    | 0.20 ± 0.09             | 0.040    | 0.030          | NR      |          |  |  |
| Thorium-228                    | 0.53 ± 0.17             | 0.064    | 0.042          | NR      |          |  |  |
| Uranium-238                    | 7:10 ± 1.34             | 0.030    | 0.020          | NR      |          |  |  |
| Uranium-235/236                | 1.70 ± 0.36             | 0.020    | 0.017          | NR      |          |  |  |
| Uranium-234                    | 11.8 ± 2.2              | 0.025    | 0.018          | NR      |          |  |  |
|                                |                         |          |                |         |          |  |  |
| Dry Gamma Spectroscopy         | (pCi/g ± 2-3)           | (pCVg)   | (pCi/g)        | (pCi/g) |          |  |  |
| Cesium-137                     | 0.024 ± 0.009           | 0.010    | 0.005          | NR      |          |  |  |
| Cesium-134                     | ND                      | 0.009    | 0.004          | NR      |          |  |  |
| Potassium-40                   | 4.52 ± 0.50             | 0.10     | 0.046          | NR      |          |  |  |
| Chromium-51                    | ND                      | 0.11     | 0.052          | NR      |          |  |  |
| Iron-59                        | ND                      | 0.024    | 0.012          | NR      |          |  |  |
| Cobalt-60                      | ND                      | 0.011    | 0.005          | NR      |          |  |  |
| Zirconium-95                   | ND                      | 0.020    | 0.01           | NR      |          |  |  |
| Ruthenium-103                  | ND ·                    | 0.011    | 0.006          | NR      |          |  |  |
| Ruthenium-106                  | ND                      | 0.089    | 0.043          | NR      |          |  |  |
| Cerium-144                     | ND                      | 0.068    | 0.033          | NR      |          |  |  |
| Thallium-208                   | 0.11 ± 0.02             | 0.01     | NL             | NR      |          |  |  |
| Lead-212                       | 0.36 ± 0.04             | 0.02     | 0.008          | NR      |          |  |  |
| Lead-214                       | 0.28 ± 0.03             | 0.02     | 0.011          | NR      |          |  |  |
| Bismuth-212                    | 0.29 ± 0.10             | 0.09     | NL             | NR      |          |  |  |
| Bismuth-214                    | 0.24 ± 0.03             | 0.02     | NL             | NB      |          |  |  |

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3816-38/1

.

# RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

| Building ID:           |              | Bidg 6584 N | l              | ·····                                 |                                       |
|------------------------|--------------|-------------|----------------|---------------------------------------|---------------------------------------|
| Sample ID Number:      |              | 024392      |                | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| Date Sampled:          |              | 7-10-95     |                | ·                                     | ·                                     |
| Percent Moisture:      |              | 85.60       |                |                                       |                                       |
|                        | ·····        |             | <b></b>        |                                       |                                       |
| Parameter (Method)     | Result       | MDA         | Critical Level | NM Discharge<br>Limit                 | Comments                              |
| Dry Gamma Spectroscopy | (pCVg ± 2-a) | (pCi/g)     | (pCi/g)        | (pCl/g)                               |                                       |
| Radium-226             | 0.26 ± 0.02  | 0.02        | 0.010          | 30.0ª                                 |                                       |
| Radium-228             | 0.33 ± 0.04  | 0.04        | 0.018          | 30.0*                                 |                                       |
| Actinium-228           | 0.33 ± 0.04  | 0.04        | 0.018          | NB                                    |                                       |
| Thorium-231            | ND           | 0.33        | 0.16           | NR                                    |                                       |
| Thorium-232            | 0.33 ± 0.04  | 0.04        | 0.018          | NR                                    |                                       |
| Thorium-234            | 2.98 ± 0.52  | 0.32        | 0.16           | NR                                    |                                       |
| Uranium-235            | 0.18 ± 0.02  | 0.08        | 0.037          | NR                                    |                                       |
| Uranium-238            | 2.98 ± 0.52  | 0.32        | 0.16           | NR                                    |                                       |
| Americium-241          | ND           | 0.31        | 0.16           | NR                                    |                                       |

Notes:

ź

\* New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.

<sup>b</sup> Isotopic uranium analyzed by NAS-NS-3050; plutonium by SL13028/SL13033; strontium by 7500-SR; thorium by NAS-NS-3004.

\* Analyzed by method HASL 300 at Quanterra, St. Louis.

\* NMWQCCR standard for Ra-226 + Ra-228 combined in pCI/L.

MDA = Minimum detectable activity.

ND = Not detected above MDA indicated.

NL = Not listed in lab report.

NR = Not regulated.

AL/9-95/WP/SNL:T3816-38/2

#### 301455.221.07.000 10-12-95 12:19pm



ANNEX B DSS Site 1029 Soil Sample Data Validation Results

يح بعدين

10.7494



FOR AR/COC 600434 (DSS SITE 1029, ERCL 7/98)

. .....

| High Explosives by Capil         | lary Electrophoresis     | RC Check List HE - 027                                                           |
|----------------------------------|--------------------------|----------------------------------------------------------------------------------|
| Analyst: Jim BAN                 | rnett                    | Date: 7/7-8/58                                                                   |
| Peer Reviewer: Kathl             | in Swinse                | On Date: 8/7/98                                                                  |
| Instrument Run Date:             | 1/2-8/58                 | Instrument Run ID#:                                                              |
| Instrument-related QC:           |                          |                                                                                  |
| [1] Did ICAL pass?               | Yes VI Nol 1             | and all Pearson Coefficients > 0.995                                             |
| [2] Calibration Slopes Correct?  | Yes 🔨 No[ ]              | Are the slopes from the ICAL cut and pasted correctly into the CCV calculations? |
| [3] Did bracketing CCV pass?     | Yes[ ] No[Xĺ             | Target analytes recovered 90-110%, bracketing CCV every 10 samples               |
| l<br>Batch-related QC:           | (A batch is less than or | equal to 20 samples)                                                             |
| [4] Did Surrogates Recover?      | Yes[/] No[ ]             | Recovery should be inside charted range.                                         |
| [5] Did LMB Pass?                | Yesi No[ ]               | All analytes < PQL. Must prepare and analyze                                     |
|                                  | $\sim$                   | at least one LMB with each batch.                                                |
| [6] Did LCS Pass?                | Yes[) No[ ]              | All analytes recovered 80-120%. Must prepare and analyze                         |
|                                  |                          | at least one LCS with each batch of up to 20 samples.                            |
| [7] Did MS/MSD %REC Pass?        | Yes[X] No[ ]             | All analytes recovered 75-125%                                                   |
|                                  |                          | Must prepare and analyze an MS and MSD with each batch.                          |
| [8] Did MS/MSD RPD's Pass?       | Yes[] No[ ]              | All analytes recovered less than +/- 20%                                         |
| Sample-related QC:               |                          |                                                                                  |
| [9] Analytes inside Calibration? | Yes[ ] No[ ]             | Target analytes must be bracketed by calibration values or valid LRS.            |
| I<br>[10] Migration Times?       | Yes[ No[ ]               | Are migration times reasonable compared to bracketing CCV's                      |
|                                  | L                        | and batch related QC such as LCS and MS/MSD?                                     |

1-08 3) BILL STI ELV except 11,49 5. 2175500 TETRY 1-0 201A 1CR were ND -عرز samples therefore the CCU --had no TETRYC. U allect U/ t

· · ·

. 1 .

· · · · ·

1

RCRA + Zn

| Metals by ICP-MS QC Che                | ck List                    | 114/92                                               |                                                                     | 104                                                          |  |
|----------------------------------------|----------------------------|------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|--|
| Analyst: <u>Choca</u>                  | Date:                      | 1/22/60                                              | NCAR#/                                                              | 519819                                                       |  |
| Peer Reviewer:                         | ()0 -8 Date: /             | 120178                                               | Preparation Batch ID#:                                              | 7/14/190                                                     |  |
| tandards:                              | 51-13                      |                                                      |                                                                     |                                                              |  |
| Cal Level 0 (ICB, <u>CCB)</u>          |                            |                                                      | Instrument Run IU#:                                                 |                                                              |  |
| Cal Level 1                            |                            | ····                                                 |                                                                     |                                                              |  |
| Cal Level 2                            | - 11-09                    |                                                      | ICS-AB                                                              |                                                              |  |
| Cal Level 3                            | <u> </u>                   |                                                      | LRS                                                                 |                                                              |  |
| Cai Level 4                            | 1000                       |                                                      |                                                                     |                                                              |  |
| ICV, CCV                               | 106-0-1                    |                                                      |                                                                     | 111-08                                                       |  |
| [1] Did Tune Pass?                     | Yes[ No[ ]                 | 4 reps < 5% RPD for in                               | ternal standards Li, Y, In, Bi                                      |                                                              |  |
| [2a] Did ICV pass?                     | Yes[] No[J                 | Target analytes recover                              | ed 90-110%                                                          |                                                              |  |
| [2b] Did ICB Pass?                     | Yes[ VNo[ ]                | All analytes < PQL                                   | ad 00 110%                                                          |                                                              |  |
| [2d] Did CCV pass?                     | Yesi V Nol J               | All analytes < PQL                                   | ed 90-11076                                                         |                                                              |  |
| [2e] Did ISS recovery pass?            | Yes[] No[V]                | Internal standards 60-12                             | 25% of initial calibration values                                   |                                                              |  |
| [3] Did ICS_A's Pass?                  | Yes[] No[]                 | All analytes not present                             | < PQL                                                               |                                                              |  |
| [4] Did ICS_AB's Pass?                 | Yes[J No[]                 | All analytes present reco                            | overed 80-120%                                                      |                                                              |  |
| [5] Did LRS pass?                      | Yes[] No[1]                | Linear dynamic range cl                              | heck (if run) must agree to                                         |                                                              |  |
|                                        |                            | 95-105% of stated value                              | e to validate beyond calibration                                    | values                                                       |  |
| Batch-related QC:                      | Yest 1 Not V               | All analytes < POL-Mus                               | st prepare and analyze                                              |                                                              |  |
|                                        |                            | at least one LRB with ea                             | ach batch.                                                          |                                                              |  |
| [7] Did LCS/LCSD Pass?                 | Yes[I] No[ ]               | All analytes recovered 8<br>at least one LCS with ea | 0-120%. Must prepare and ana<br>ach batch.                          | ałyze                                                        |  |
| [8] Did MS/MSD Pass?                   | Yes[ ] No[1]               | All analytes recovered 7<br>Must prepare and analyz  | 5-125%, Recovery not required<br>ze an MS and MSD with each l       | 1 if spike < 30% of sample analyte level<br>batch.           |  |
| [9] Did M/MDup Pass?                   | Yes[ ] No[1]               | All analytes RPD 20% a                               | t 5 times the PQL. Must prepa                                       | re and analyze at least one with each batch.                 |  |
| [10] Did M/Mdil Pass?                  | Yes[1] No[ ]               | All analytes > 10X the M<br>Must prepare and analyz  | IDL in the 5X dilution agree 90-<br>ze at least one with each batch | -110% with the undiluted reference.                          |  |
| (11) Digestion Problems?               | No[ Pes[ ]                 | Digestion 3015, 3051 pr                              | oblems?                                                             |                                                              |  |
| Sample-related QC:                     | Veel Y Net 1               | internal standarda > - 60                            |                                                                     | the recurst a EV ditation                                    |  |
| [11] Did sample ISS pass?              | Test Not                   | Taraat analisa must be                               | the or <= 125% or sample mus                                        | t be rerun at a SX dilution.                                 |  |
| [12] Analytes inside Calibration /     |                            | larget analytes must be                              | bracketed by calibration value                                      |                                                              |  |
| 113 Analyte carryover OK7              | NO[V Test                  | Using the sequence ora                               | er, was carry over contaminatio                                     |                                                              |  |
| Note: When the HP E                    | nviroquant software refers | to an IDL, we are using th                           | e ERCL MDL;                                                         |                                                              |  |
| when it refers to                      | a CRDL, we are using the   | e ERCL PQL which is 4 til                            | mes the MDL                                                         |                                                              |  |
| (20) ICV Faile                         | d for Zn - w               | ill renn in sepan                                    | ate run batch                                                       |                                                              |  |
|                                        |                            |                                                      | ·····                                                               |                                                              |  |
| Ve CCU taile                           | N for on - s               | an above                                             |                                                                     |                                                              |  |
| (2e) Bi went                           | slightly high durin        | is the MDIL same                                     | ole - samples before.                                               | and after it are oh, tho.                                    |  |
| Alo the                                | - out dements for          | er this batch which                                  | In use Bi as come                                                   | hom (Hz & PD) are not                                        |  |
|                                        | s have MVIL A              | ecoveries, as then                                   | r come, is too low.                                                 |                                                              |  |
| (3) ICSA ha                            | 5. As present at mesore    | a level above Il<br>m samples and b                  | u POL, which indice<br>laules pass for this e                       | ates possible matrix interference<br>lement, thus any matrix |  |
| efter to app                           | los to be minim            | L.                                                   | ر                                                                   | 1                                                            |  |
| (5) Les fille                          | For As, but n              | to effect because                                    | 2 no sample was about                                               | re the high cal anyway.                                      |  |
| (b) LMB has<br>te reported             | E As Hy and F              | Pb present at le<br>for these elem                   | wels between the M                                                  | 1DL & ADL. Samples will                                      |  |
| RI JK IKK                              | P                          | Gr BA                                                |                                                                     |                                                              |  |
| due to sample vorhomogeneity.          |                            |                                                      |                                                                     |                                                              |  |
| ······································ | of criteria for f          | Ba. Again, likely                                    | due to sample nonth                                                 | onogeneitz.                                                  |  |
| Received by                            | 6A 7/29/98                 |                                                      |                                                                     |                                                              |  |

600434

45 of 50

| Metals by ICP-MS QC Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eck List                                                                                       |                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Analyst: Linda                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rear Date: 7                                                                                   | 7/16/98 NCAR#: $N/H$                                                           |  |  |  |
| Feer Reviewer: Kinthe                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h Gutenson Date: -                                                                             | 7/27/98Preparation Batch 10#:19311 and \$19819                                 |  |  |  |
| المعنى                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                              | Instrument Run Date: 116 [98                                                   |  |  |  |
| I Level 0 (ICB, <u>CCB)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51-14                                                                                          | Instrument Run ID#: Zn renn                                                    |  |  |  |
| Cal Level 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61-17                                                                                          | ICS-A 136-05                                                                   |  |  |  |
| Cal Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71-09                                                                                          | ICS-AB 146-09                                                                  |  |  |  |
| Cal Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81-09                                                                                          | LRSN/A                                                                         |  |  |  |
| Cal Level 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NIA                                                                                            | ISSISS                                                                         |  |  |  |
| :cv, ccv                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106-08                                                                                         | ICP-TUNE 171-09                                                                |  |  |  |
| Did Tune Pase?                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yesh & Nol 1                                                                                   | A rens < 5% RPD for internal standards Li Y In Bi                              |  |  |  |
| <ul> <li>[1] Did Yohe Pass?</li> <li>[2a] Did ICV pass?</li> <li>[2b] Did ICB Pass?</li> <li>[2c] Did CCV pass?</li> <li>[2c] Did CCB Pass?</li> <li>[2c] Did ICS_A's Pass?</li> <li>[3] Did ICS_A's Pass?</li> <li>[4] Did ICS_AB's Pass?</li> <li>[5] Did LCS_AB's Pass?</li> <li>[5] Did LCS_AB's Pass?</li> <li>[6] Did LCS/LCSD Pass?</li> <li>[7] Did LCS/LCSD Pass?</li> <li>[8] Did MS/MSD Pass?</li> <li>[9] Did M/MDup Pass?</li> <li>[10] Did M/Mdil Pass?</li> </ul> | I Did Tune Pass?       Yes[ ↓ No[ ]       4 reps < 5% RPD for internal standards Li, Y, In, Bi |                                                                                |  |  |  |
| Digestion Broblems2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Yari 1                                                                                     | Must prepare and analyze at least one with each batch.                         |  |  |  |
| _ample-related QC:                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                |  |  |  |
| [1] Did sample ISS pass?                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes[ No[ ]                                                                                     | Internal standards >= 60% or <= 125% or sample must be rerun at a 5X dilution. |  |  |  |
| 2] Analytes inside Calibration?                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes[y] No[ ]                                                                                   | Target analytes must be bracketed by calibration values or valid LDR.          |  |  |  |
| 3 Analvie carryover OK?                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No[ Yes[ ]                                                                                     | Using the sequence order, was carry over contamination probable?               |  |  |  |
| te: When the HP E                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inviroquant software refers                                                                    | to an IDL, we are using the ERCL MDL;                                          |  |  |  |
| when it refers to                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a CRDL, we are using th                                                                        | e ERCL PQ1, which is 4 times the MDL                                           |  |  |  |
| (b) LMB Lad Br present at a level between the reported is a "B" qualitier. Most litely due to contaminate                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                                                                |  |  |  |
| FUCS 30 recovery high at of criteria. MS and MSD recoveries are good,<br>thus this appears to be spot contournation. No net effect on data.                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                |  |  |  |

### **VOC Peer Review Check List**

| Batch ID: <u>500C - 642</u>                                                                                                                                                     |                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Did BFB Pass?                                                                                                                                                                   | Yes X No 🗆                                                                     |
| Did the ICAL Pass %RSD $\leq$ 30%                                                                                                                                               | Yes V No 🗆                                                                     |
| Did the ICAL and CCV pass:<br><u>+</u> 20% recovery for the individual analytes?<br>Calibration Check Compounds in criteria?<br>System Performance Check Compounds in criteria? | Yes I No X Der WCR/<br>Yes XI No I Case Marichive<br>Yes X No I Case Marichive |
| Did the blank pass?                                                                                                                                                             | Yes X No 🗆                                                                     |
| Did the MS/MSD pair pass accuracy and precision and criteria?                                                                                                                   | Yes X No 🗆                                                                     |
| Did LCS pass accuracy criteria?                                                                                                                                                 | Yes 🌮 No 🗆 N/A 🗆                                                               |
| Were all IS areas within a factor of 2 of the average area in the ICAL                                                                                                          | Yes 🗶 No E                                                                     |
| Did Retention Times remain inside windows for all standards and samples?                                                                                                        | Yes I No I                                                                     |
| Did all surrogates pass criteria for each standard and sample?                                                                                                                  | Yes 🗭 No 🗆                                                                     |

Check for:

Carry-over contamination Correct interpretation of mass spectra Errors in data entry, rounding and/or calculations

Reviewed by: Kathlen Juenson

122/98 Date:

### **VOC Peer Review Check List**

| Batch ID: 5V0C-043                                                                                                                                                              |                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Did BFB Pass?                                                                                                                                                                   | Yes S/ No 🗆                                                        |
| Did the ICAL Pass %RSD < 30%                                                                                                                                                    | Yes No 🗆                                                           |
| Did the ICAL and CCV pass:<br><u>+</u> 20% recovery for the individual analytes?<br>Calibration Check Compounds in criteria?<br>System Performance Check Compounds in criteria? | Yes No No See Ner/Case<br>Yes No D Narrahire<br>Yes No D Narrahire |
| Did the blank pass?                                                                                                                                                             | Yes 🗙 No 🗆                                                         |
| Did the MS/MSD pair pass accuracy and precision and criteria?                                                                                                                   | Yes 文 No 🗆                                                         |
| Did LCS pass accuracy criteria?                                                                                                                                                 | Yes 🗴 No 🗆 N/A 🗆                                                   |
| Were all IS areas within a factor of 2 of the average area in the ICAL                                                                                                          | Yes X No D                                                         |
| Did Retention Times remain inside windows for all standards and samples?                                                                                                        | Yes No D                                                           |
| Did all surrogates pass criteria for each standard and sample?                                                                                                                  | Yes 🗶 No 🗆                                                         |
|                                                                                                                                                                                 |                                                                    |

### Check for:

Carry-over contamination Correct interpretation of mass spectra Errors in data entry, rounding and/or calculations

OKX OKE

athleen Reviewed by: wenson

23/98 Date:

# **QA Officer Review Checklist**

SNL/NM Environmental Restoration Chemistry Laboratory

|                                                                                 | YES | NO | Comments           |
|---------------------------------------------------------------------------------|-----|----|--------------------|
| 1. Samples were preserved and handled in accordance with QAPjP and LOPs         |     |    |                    |
| 2. The appropriate number and type of laboratory QC check samples were analyzed |     |    |                    |
| 3. Laboratory QC checks met the established acceptance criteria                 |     | V  | See Case Mariabive |
| 4. Deviations from analytical methods are documented                            | NA  |    |                    |
| 5. Data package is complete, per section 10.4 of the ERCL QAPjP                 |     |    |                    |

# Data Package Checklist

|                                                                                                                                                                                                                          | YES | NO       | Comments            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------------------|
| Date of Issue                                                                                                                                                                                                            | V   |          |                     |
| Case Narrative                                                                                                                                                                                                           | ~   |          |                     |
| Description of data package                                                                                                                                                                                              | V   |          |                     |
| Index of samples, including sampling ID and laboratory ID                                                                                                                                                                |     |          |                     |
| Description of any problems encountered in analysis                                                                                                                                                                      | V   |          |                     |
| Circumstances leading to the use of data qualifiers                                                                                                                                                                      | V   |          |                     |
| Type of digestion used for general inorganic analysis of soil samples                                                                                                                                                    | 1   |          |                     |
| Analytical results for each sample - must include the parameter name, the parameter value, uncertainty value (where applicable), MDL and PQL, units of measure, data qualifier(s), method of analysis, and analysis date |     |          |                     |
| Calibration ranges                                                                                                                                                                                                       | ~   |          |                     |
| QC Summaries                                                                                                                                                                                                             |     | <u> </u> |                     |
| Surrogate data                                                                                                                                                                                                           | 1   |          |                     |
| Matrix spike or LCS recovery data for accuracy                                                                                                                                                                           | V   |          |                     |
| MS/MSD or LCS/LCSD for precision                                                                                                                                                                                         |     |          |                     |
| Method or reagent blank data                                                                                                                                                                                             |     |          | ·                   |
| QA review documentation:                                                                                                                                                                                                 |     |          |                     |
| QA Officer Review Checklist                                                                                                                                                                                              |     |          |                     |
| Electronic copy of the analytical data                                                                                                                                                                                   |     |          |                     |
| COC                                                                                                                                                                                                                      |     |          |                     |
| Data Package COC No. <u>600434</u> Reviewed by <u>Margie</u>                                                                                                                                                             | Mar | ley      | Date <u>8/18/98</u> |

c:\document\ercl\reports\qacheck.doc

| ה<br>מ | SE 2001 COC (10 87)              |                                                      |                     |                     |                     |             |                        |                  |                     |                    |                   |                                |                |                               |                                       |                   |
|--------|----------------------------------|------------------------------------------------------|---------------------|---------------------|---------------------|-------------|------------------------|------------------|---------------------|--------------------|-------------------|--------------------------------|----------------|-------------------------------|---------------------------------------|-------------------|
|        | Supersedes (5-97) issue          | Internal Lab<br>Batch No.                            |                     | SAF                 | ANAL<br>R/WR No     | YSI<br>».   | IS REQUI               | EST              |                     | CHAIN O            | F CUST            | rody                           |                |                               | Page                                  | <u>1 of 1</u>     |
| C<br>N | Dept No /Mail Stop: 6            |                                                      | Date Sam            |                     | pped                | -           |                        | ise              | Contract            | <br>No.:           |                   | <u></u>                        |                |                               | 00043                                 |                   |
|        | Project/Task Manager             | : Mike Sanders                                       | Carrier/W           | aybill No           | ·                   |             | <u></u>                |                  | Case No             | 7223.230           |                   |                                |                | Fride                         | 4-3                                   |                   |
| Ì      | Project Name: 101 N              | on-ER Septic Fields                                  | Lab Conta           | act: War            | ren Stro            | ona/2       | 284-3313               |                  | SMO Au              | thorization        |                   |                                |                |                               | 16-7                                  |                   |
|        | Record Center Code:              | ER/1295/DAT                                          | Lab Desti           | nation: E           | RCL                 |             |                        | [                | Bill to: Sa         | andia Nationa      | l Laboratorie     | es                             | -              | 500                           | 18-6                                  |                   |
|        | Logbook Ref. No.:                | ····                                                 | SMO Con             | tact/Pho            | ne: Douc            | ı Sal       | lmi/844-311(           | )                | P.O. Box            | (5800 MS 01        | 154               |                                |                |                               |                                       |                   |
|        | Service Order No.: 05            | 26                                                   | Send Rep            | ort to SM           | 10: Suzi            | Mor         | ntano                  | -                |                     |                    |                   |                                |                | frizu                         | jell                                  |                   |
|        | Location                         | Tech Area III                                        | ·                   |                     |                     |             |                        | Re               | ferend              | e LOV (            | availab           | le at S                        | SMO)           | ج ا                           | elfy                                  |                   |
|        | Building NW6584                  | Room                                                 |                     | <u> </u>            | Ŝ                   |             |                        |                  | Co                  | ntainer            |                   |                                |                |                               |                                       | LAB USE           |
|        | Sample No<br>Fraction            | ER. Sample ID or<br>Sample Location De               | tail                | Beginni<br>Depth in | ER Site             | Ĩ           | Date/Time<br>Collected | Sample<br>Matrix | Туре                | Volume             | Preser-<br>vative | Sample<br>Collection<br>Method | Sample<br>Type | Parameter & Meth              | od Requested                          | Lab<br>Sampi<br>e |
| ,      | 041477-001                       | ER-1295-NW6584-DF1-BH                                | 11-5-S              | 5                   | N/A                 | 7/1         | ba 1130                | S                | AC                  | 300mi              | 4C                | G                              | SA             | VOCs (8260)                   |                                       |                   |
|        | 041478-001                       | ER-1295-NW6584-DF1-BH                                | 11-10-S             | 10                  | N/A                 | 144         | 112-                   | S                | AC                  | 300ml              | 40                | G                              | SA             | VOCs (8260)                   |                                       |                   |
| ,      | 041479-001                       | ER-1295-NW6584-DF1-BH                                | 12-5-S              | 5                   | N/A                 | $\vdash$    | 1150                   | s                | AC                  | 300ml              | 4C                | G                              | SA             | VOCs (8260)                   |                                       |                   |
| -      | 041480-001                       | ER-1295-NW6584-DF1-BH                                | 12-10-S             | 10                  | N/A                 | $\vdash$    | i)70                   | s                | AC                  | 300ml              | 4C                | G                              | SA             | VOCs (8260)                   |                                       |                   |
|        | 041477-004                       | ER-1295-NW6584-DF1-BH                                | 11-5-S              | 5                   | N/A                 | +           | 1120                   | S                | G                   | 125ml              | 4C                | G                              | SA             | RCRA Met+Zn                   | HE(8330)                              |                   |
| د      | 041478-004                       | ER-1295-NW6584-DF1-BH                                | 11-10-S             | 10                  | N/A                 | ┝─┼╴        |                        | S                | G                   | 125ml              | 4C                | G                              | SA             | RCRA Met+Zn                   | HE(8330)                              |                   |
| ,      | 041479-004                       | ER-1295-NW6584-DF1-BH                                | 12-5-S              | 5                   | N/A                 | IJ          | 1150                   | S                | G                   | 125ml              | 40                | G                              | SA             | RCRA Met+Zn.                  | HE(8330)                              |                   |
| , ]_   | 041480-004                       | ER-1205 NW6584 DE1 BH                                | 12-10-S             | 10                  | -N/A                |             |                        | s                | 6                   | -125ml             | 40                | 6                              | -6A            | RGRA Met+Zn                   | HE(8330)-                             |                   |
| ð      |                                  |                                                      |                     |                     | <u> </u>            |             | ·                      |                  |                     | <u> </u>           |                   | <u> </u>                       |                |                               |                                       |                   |
|        |                                  |                                                      |                     |                     | <del> </del>        | <u>├</u> ── |                        |                  | {                   | <del> </del>       |                   | {                              |                |                               |                                       |                   |
|        | RMMA TYes X                      | No Ref No                                            |                     | l                   | 1                   | Sa          | mole Traci             | cina             |                     | 1<br>5119#         | Specia            | l Instru                       | ctions/Q       | C Requirements                | Abnormal                              |                   |
|        | Sample Disposa                   | Return to Client X                                   | Disposal            | hy lah              |                     | Da          | te Entered (r          | nm/dd            | /yy)                |                    | EDD X             | Yes 🔲                          | No             |                               | Conditions                            | on                |
|        |                                  |                                                      |                     |                     |                     | En          | tered by               |                  |                     |                    | Raw da            | ata pack                       | age XY         | es 🗌 No                       | Receipt LAB                           | USE               |
|        | Turnaround Tim                   | ne XNormal 🔄 Rush F                                  | Required            | Report              | Date                |             |                        |                  | <u>2 Inits.</u>     |                    | 4                 |                                |                |                               |                                       |                   |
|        | Sample 7                         |                                                      | Signatore           | M-E                 | 7.                  |             |                        | b mpan           | y/Organiz           | auon/Phone         | -                 |                                |                |                               |                                       |                   |
|        | Team                             | AWS SEARS                                            | Chin                | Leal                | <u></u>             |             | PIC                    | 1/6/             | 5/84                | 4-1136             | -                 | _                              |                |                               |                                       |                   |
|        | Members                          |                                                      |                     | <u></u>             |                     |             |                        |                  | <u></u>             | <u></u>            | Please            | list as s                      | eparate        | report.                       |                                       |                   |
|        | 1. Relinquished by               | this sear org.                                       | 6131                | Date 7              | 1/198               | Tir         | me [ 55]               | 4. Re            | elinquished         | d by               |                   | Org                            | J.             | Date                          | Time                                  |                   |
|        | 1. Received by                   | forg.                                                | (3)                 | Date                | 1/1/92              | Tir         | me 15:51               | 4. R             | eceived by          | /                  |                   | Org                            | j              | Date                          | Time                                  |                   |
|        | 2. Relinquished by               | Org,                                                 |                     | Date                |                     | Tir         | me                     | 5. R             | elinquishe          | d by               |                   | Org                            | ).             | Date                          | Time                                  |                   |
|        | 2. Received by                   | Org,                                                 |                     | Date                |                     | Tir         | me                     | 5. R             | eceived by          | /                  |                   | Org                            | 1              | Date                          | Time                                  |                   |
|        | 3. Reinquished by                | Org.                                                 |                     | Date                |                     | T ir<br>Tir | me<br>                 | 6. R             | eiinquishe          | a by<br>           | ·                 |                                |                | Date                          |                                       |                   |
| Σ)     | J. Received by                   | Ulg.                                                 |                     |                     |                     | н і<br>———— |                        | 0. 10            | eceived by          |                    |                   |                                | j.             |                               | · · · · · · · · · · · · · · · · · · · |                   |
| うわ     | <b>Original</b> To Acc<br>Labora | company Sam <mark>ples,</mark><br>atory Copy (White) | 1 <sup>st</sup> Coj | py To<br>Re         | Accomp<br>turn to S | oany<br>6MO | Samples,<br>(Blue)     |                  | 2 <sup>nd</sup> Cop | y SMO S<br>(Yellow | uspense (<br>)    | Сору                           |                | 3 <sup>rd</sup> Copy Field Co | vpy (Pink)                            |                   |

50

, s0 i a

......

-2

#### **DOCUMENTATION COMPLETENESS CHECKLIST** (DATA VERIFICATION/VALIDATION LEVEL 1 - DV1)

| Project Leader | Tony Roybal / Mile Sanders | Project Name   | 101 Non-ER Septic Fields | Case No.: | 7223,230 |
|----------------|----------------------------|----------------|--------------------------|-----------|----------|
| AR/COC No.     | 600434                     | Analytical Lab | ERCL                     | SDG No.   | NIA      |

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Cuslody Record

| Line |                                                                  | Complete? |    |                |     | ved? |
|------|------------------------------------------------------------------|-----------|----|----------------|-----|------|
| No.  | llem                                                             | Yes       | No | If no, explain | Yes | No   |
| 1.1  | All items on COC complete - data entry clerk initialed and dated | 1         |    |                |     |      |
| 1.2  | Container type(s) correct for analyses requested                 |           |    |                |     |      |
| 1.3  | Sample volume adequate for # and types of analyses requested     | 7         |    |                |     |      |
| 1.4  | Preservative correct for analyses requested                      | 1         |    |                |     |      |
| 1.5  | Custody records continuous and complete                          |           |    |                | ]   |      |
| 1.6  | Lab sample number(s) provided                                    |           |    |                |     |      |
| 1.7  | Condition upon receipt information provided                      | NIN       |    | see parative   |     |      |
| 1.8  | Tritium Screen data provided (Rad labs)                          | NIM       |    | NIA            |     |      |

### 2.0 Analytical Laboratory Report

| Line |                                                                 | Complete? |    |                               |     | lved? |
|------|-----------------------------------------------------------------|-----------|----|-------------------------------|-----|-------|
| No.  | liem                                                            | Yes       | No | If no, explain                | Yes | No    |
| 2.1  | Dala reviewed, signalure                                        |           |    |                               |     |       |
| 2.2  | Date samples received                                           |           |    | •                             |     |       |
| 2.3  | Method reference number(s) complete and correct                 |           | ·  |                               | 1   |       |
| 2.4  | Quality control data provided (MB, LCS, LCD, Detection Limit)   |           |    |                               |     | ,     |
| 2.5  | Matrix spike/matrix spike duplicate data provided(if requested) |           |    | not request data was reported |     | [     |
| 2.6  | Narrative provided                                              |           |    | <u> </u>                      | -   | [ !   |
| 2.7  | TAT met                                                         | NIM       |    | NIT                           |     | •     |
| 2.8  | Hold times met                                                  |           |    |                               |     |       |
| 2.9  | All requested result data provided                              |           |    |                               |     |       |

Based on the review, this data package is complete

Yes

No No

If no, provide : correction request tracking #

and date correction request was submitted:

-

TOP 94-03 Rev. I Attachment A November 1995

Mm 11- 8.95

# DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

| Project Name 101 -N. | On-ER Septic F        | ields     |        | Page 1 of 5                           |
|----------------------|-----------------------|-----------|--------|---------------------------------------|
| Case Number 7        | 223.230               |           |        |                                       |
| Sample Numbers 0414  | 77, 041478, 0414;     | 19,041480 |        |                                       |
| AR/COC No. 600434    | Analytical laboratory | ERCL      | SDG No | NA                                    |
| AR/COC No            | Analytical laboratory |           | SDG No | · · · · · · · · · · · · · · · · · · · |
| AR/COC No            | Analytical laboratory |           | SDG No | · · · · · · · · · · · · · · · · · · · |
| AR/COC No            | Analytical laboratory |           | SDG No |                                       |

Ξ,

### 1.0 EVALUATION

|    | Item                                                                                                              | Yes | No           | If no, Sample ID No./Fraction(s) and Analysis   |
|----|-------------------------------------------------------------------------------------------------------------------|-----|--------------|-------------------------------------------------|
| 1) | Sample volume, container, and preservation correct?                                                               |     |              |                                                 |
| 2) | Holding times met for all samples?                                                                                | 1   |              |                                                 |
| 3) | Reporting units appropriate for the matrix and meet project-specific requirements?                                |     |              |                                                 |
| 4) | Quantitation limit met for all samples?                                                                           | 41  | $\checkmark$ | DVOLS -> DF 1> 5X MDL and POL<br>"are elevated. |
| 5) | Accuracy<br>a) Laboratory control sample<br>accuracy reported and met for<br>all samples?                         |     | 1            | O Zn recovered outside al limits.               |
|    | b) Surrogate data reported and<br>met for all organic samples<br>analyzed by a gas chroma-<br>tography technique? | V   |              |                                                 |

...

Reviewed by: Tim Judy -

Date: 9/2/98

AL/2-94/SNL:SOP30448.R1

### DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

Page 2 of 5

|             |            | ltern                                                                                                 | Yes    | No             | If no. Sample ID No./Fraction(s) and Analysis                                            |
|-------------|------------|-------------------------------------------------------------------------------------------------------|--------|----------------|------------------------------------------------------------------------------------------|
|             | C)         | Matrix spike recovery data<br>reported and met for all<br>samples for which it was<br>requested?      | Thef.  | <del>4</del> ] | D Not request. data was reported<br>Ba recoverded outside QC limits. for 60th<br>ms/msD. |
| 6)          | Pre<br>a)  | cision<br>Laboratory control sample<br>precision reported and met for<br>all samples?                 | NI     | 9              | LSL duplicate was not analyzed.                                                          |
|             | b)         | Matrix spike duplicate RPD<br>data reported and met for all<br>samples for which it was<br>requested? | TA not | #/             | @ The RPD for Bu was obside<br>QC limits.                                                |
| 7)          | Biar<br>a) | k data<br>Method or reagent blank data<br>reported and met for all<br>samples?                        |        |                | BAS, BA, Hg, and Pb were detected<br>> MDL iA the LMB                                    |
| · - · · · · | b)         | Sampling blank (e.g., field,<br>trip, and equipment) data<br>reported and met?                        |        |                | @ wo trip blank submitted<br>with samples                                                |
| 8)          | Nari       | ative included, correct, and plete?                                                                   |        |                | ····                                                                                     |

2.0 COMMENTS: All items marked "No" above must be explained in this section. For each item, give SNL/NM ID No. and the analysis, if appropriate, of all samples affected by the finding.

Zinc recovered (high) outside Lab nurrative  $\mathcal{O}$ QC limits. states that contam, nation 5 Pot 15 the cause. Nithin The MS/MSD is ac for 21 limits:

アニ Reviewed by: 9/2/98 Date:

.. .

AL/2-94/SNL:SOP30448.R1

DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2) Page 3 of 5 2.0 COMMENTS CONTINUATION SHEET was not requested, but data was reported (2) MS/MSD by lab; therefore, data was used. Both accuracy and bius for Ba were outside QC limits. The report states matrix interference. ( As, Ba, Ha and Pb mere detected > MDL in the lab method blank. @ No trip blank submitted for VOCs. No vols were detected in any env. sample. Bivote: The dilution factor for VOG 15 5X. MOLS and PQLS are elevated Reviewed by: T=Andream Date: 9/2/58

AL/2-94/SNL:SOP30448.R1

مثلاً *الأحر* 

### DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

Page 4 of 5

3.0 SUMMARY: Summarize the findings in the table below. List only samples/tractions for which deficiencies have been noted. Use the qualifiers given at the end of the table if possible. Explain any other qualifiers in the comments column.

| Sample/<br>Fraction No. | Analysis | Qualifiers | Comments |
|-------------------------|----------|------------|----------|
|                         |          |            |          |
|                         |          |            |          |
|                         |          |            |          |
|                         |          | A          |          |
|                         | ,        | 11         |          |
| ·                       |          | a/2194     |          |
| · · · · ·               |          |            |          |
|                         |          |            |          |
|                         |          |            |          |

QUALIFIERS:

- J = Estimated quantity (provide reason)
- B = Contamination in blank (indicate which blank)
- P = Laboratory precision does not meet criteria
- R Reporting units inappropriate
- N = There is presumptive evidence of the presence of the material
- UJ = The material was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Q = Quantitation limit does not meet criteria

- A = Laboratory accuracy does not meet criteria
- U = Analyte is undetected (indicate which analyte and reason for qualification)
- NJ = There is presumptive evidence of the presence of the material at an estimated quantity.

Reviewed by:

T=9.0045-9/2/48 Date:

AL/2-94/SNL;SOP3044B.R1

#### SAMPLE FINDINGS SUMMARY

Site: 101 Non - ER . Static Fields

| AR COC: 600                          | +3+        | Data Classifi | cation: $DV-2$                |
|--------------------------------------|------------|---------------|-------------------------------|
| Sample                               |            | DV            |                               |
| Fraction No.                         | Analysis   | Qualifiers    | Comments                      |
| ER - 1295 - NW 6584-                 | 36 67-6    |               | O compte not detected In car. |
| DF1-B41-5-5                          | 7437-77-2  | и,В           | sample, but detected in LAB   |
| Ļ                                    | 7440-66-6  | в,А           |                               |
| ER-1295 - NW6584-<br>DEI -BI+1-10- 5 | 7439-97-6  | u,B           | 6                             |
| l .                                  | 7440-66-6  | B, A          |                               |
| ER- 1295-NW6584-<br>DF1- BH2-5-5     | 7439-97-6  | u,B           | Ø                             |
| L                                    | 7440-66-6  | B,4           |                               |
| =R- 1295. NW6584-                    | All method |               | MDLS & PRL elevated dur       |
| DF1-841-5-5                          | 8260       | Q             | to dilution.                  |
| FR-1295- NW+584-                     |            |               |                               |
| DF1-BH1-10-5                         |            |               |                               |
| ER- 1295 - NW6584-                   |            |               |                               |
| DF1-842-5-5                          |            |               |                               |
| ER- 1295 - NW 6584-                  |            |               |                               |
| DF1-BH2-10-5                         |            |               | $\checkmark$                  |
|                                      |            |               |                               |

Sample No. Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

8

2

5

á.

INEU

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010, EPA6020, EPA74701, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH\_ALK, HACH\_NO2, HACH\_NO3, MEKC\_HE, PCBRISC

| Reviewed by: | T=Andes- | Date: | 9/2/98 |  |
|--------------|----------|-------|--------|--|
|              |          |       |        |  |

5045

**INFORMATION COPY** SHEARS # 141/71

τ.,



FOR AR/COC 600449 (DSS SITE 1029, ERCL 7/98)

server - .

High Explosives by Capillary Electrophoresis QC Check List

| Analyst: Jim B                   | arnet                    | Date: 7/16-7/18/98                                                                                             |
|----------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|
| - Peer Reviewer: (ind            | a Kear                   | Date: 8/10/98                                                                                                  |
| Instrument Run Date:             | 116-7/18/98              | Instrument Run ID#:                                                                                            |
| Instrument-related QC:           |                          |                                                                                                                |
| [1] Did ICAL pass?               | Yes[ U No[ ]             | and all Pearson Coefficients > 0.995                                                                           |
| [2] Calibration Slopes Correct?  | Yes[Y No[ ]              | Are the slopes from the ICAL cut and pasted correctly into the CCV calculations?                               |
| [3] Did bracketing CCV pass?     | Yes[ ] No[//             | ちーいろ ジ<br>Target analytes recovered- <del>00-110%</del> , bracketing CCV every 10 samples                      |
| Batch-related QC:                | (A batch is less than or | equal to 20 samples)                                                                                           |
| [4] Did Surrogates Recover?      | Yes No[ ]                | Recovery should be inside charted range.                                                                       |
| [5] Did LMB Pass?                | Yest No[ ]               | All analytes < PQL. Must prepare and analyze at least one LMB with each batch.                                 |
| [6] Did LCS Pass?                | Yes[ No[ ]               | All analytes recovered 80-120%. Must prepare and analyze at least one LCS with each batch of up to 20 samples. |
| [7] Did MS/MSD %REC Pass?        | Yes[] No[]               | All analytes recovered 75-125%<br>Must prepare and analyze an MS and MSD with each batch.                      |
| [8] Did MS/MSD RPD's Pass?       | Yest No[ ]               | All analytes recovered less than +/- 20%                                                                       |
| Sample-related QC:               |                          |                                                                                                                |
| [9] Analytes inside Calibration? | Yes[ No[ ]               | Target analytes must be bracketed by calibration values or valid LRS.                                          |
| <br>[10] Migration Times?        | Yes No[ ]                | Are migration times reasonable compared to bracketing CCV's and batch related QC such as LCS and MS/MSD?       |

3 Prec low to c Tetra CW "Stds 1649" but has no on is reported effect a compil £ 10 Ų. in de ch 00000 ..... **INFORMATION COPY** SHEARS #\_144883

30 of 34

HE-028

# RCRA + Zn

| Metals by ICP-MS QC Che                | ck List                                | 15 161 AS                                                                                                           | 1.27                                       |
|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Analyst:                               | lear Date:                             | NCAR#: 78-1                                                                                                         | ·02                                        |
| Peer Reviewer: KAThleen                | Weson Date: 7                          | Preparation Batch ID#:                                                                                              | 517820                                     |
| Standards:                             |                                        | Instrument Run Date:                                                                                                | 7/15/98                                    |
| Cal Level 0 (ICB, <u>CCB)</u>          | 51-14                                  | instrument Run ID#:                                                                                                 | 519820                                     |
| Cal Level 1                            | 61-17                                  | ICS-A                                                                                                               | 136-05                                     |
| Cai Level 2                            | 71-09                                  | ICS-AB                                                                                                              | 146-09                                     |
| Cal Level 3                            | 81-09                                  | LRS                                                                                                                 | 118-01                                     |
| Cal Level 4                            | NA                                     | ISS                                                                                                                 | 120-02                                     |
|                                        | 106-08                                 |                                                                                                                     | <u>n-08</u>                                |
| Instrument-related QC.                 | Yest Not 1                             | 4 reps < 5% RPD for internal standards Li Y In Bi                                                                   |                                            |
|                                        |                                        | Target analytes recovered 90-110%                                                                                   |                                            |
| [2b] Did ICB Pass?                     | Yes No[ ]                              | All analytes < PQL                                                                                                  |                                            |
| [2c] Did CCV pass?                     | Yes[1] No[ ]                           | Target analytes recovered 90-110%                                                                                   |                                            |
| [2d] Did CCB Pass?                     | Yes[ No[ ]                             | All analytes < PQL                                                                                                  |                                            |
| [2e] Did ISS recovery pass?            | Yes[v] No[ ]                           | Internal standards 60-125% of initial calibration values                                                            |                                            |
| [3] Did ICS_A's Pass?                  | Yes[ J No[ ]                           | All analytes not present < PQL                                                                                      |                                            |
| [4] Did ICS_AB's Pass?                 | Yes[V No[ ]                            | All analytes present recovered 80-120%                                                                              |                                            |
| [5] Did LRS pass?                      | Yes[ / No[ ]                           | Linear dynamic range check (if run) must agree to<br>95-105% of stated value to validate beyond calibration val     | ues                                        |
| Batch-related QC:                      | (A batch is less than or               | qual to 20 samples) - MDL                                                                                           |                                            |
| [6] Did LMB Pass?                      | Yes[ ] No[                             | All analytes < <del>PQL</del> . Must prepare and analyze<br>at least one LRB with each batch.                       |                                            |
| [7] Did LCS/LCSD Pass?                 | Yes[ No[ ]                             | All analytes recovered 80-120%. Must prepare and analy:<br>at least one LCS with each batch,                        | 2e                                         |
| [8] Did MS/MSD Pass?                   | Yes[V] No[ ]                           | All analytes recovered 75-125%. Recovery not required if<br>Must prepare and analyze an MS and MSD with each bat    | spike < 30% of sample analyte level<br>ch. |
| [9] Did M/MDup Pass?                   | Yes[1] No[ ]                           | All analytes RPD 20% at 5 times the PQL. Must prepare :                                                             | and analyze at least one with each batch.  |
| [10] Did M/Mdil Pass?                  | Yes[] No[V                             | All analytes > 10X the MDL in the 5X dilution agree 90-11<br>Must prepare and analyze at least one with each batch. | 0% with the undiluted reference.           |
| (11) Digestion Problems?               | No[V Yes[ ]                            | Digestion 3015, 3051 problems?                                                                                      |                                            |
| [11] Did sample ISS pass?              | Yes[v No[ ]                            | Internal standards >= 60% or <= 125% or sample must b                                                               | e rerun at a 5X dilution.                  |
| [12] Analytes inside Calibration?      | Yes[ No[ ]                             | Target analytes must be bracketed by calibration values of                                                          | r valid LDR.                               |
| [13] Analyte carryover OK?             | No[ Yes[ ]                             | Using the sequence order, was carry over contamination                                                              | probable?                                  |
| Note: When the HP Er                   | wiroguant coffware refere              |                                                                                                                     |                                            |
| when it refers to                      | a CRDL, we are using th                | ERCL PQL which is 4 times the MDL                                                                                   |                                            |
| 1 1 42 400                             | Pho de la crassi                       | Florite Latin Main and FROM                                                                                         |                                            |
| a "R" cuel.                            | her for Hire 2                         | lowents.                                                                                                            | > xamples will have                        |
|                                        |                                        |                                                                                                                     |                                            |
| (C) MNH IZ                             | elavant en an                          | Dr Later Ha His is at -7                                                                                            | and a to a construction                    |
| error (re. +                           | Lee Dil Simple in                      | and really diluted and in a char                                                                                    | it. Nonetheliss when                       |
| their is take                          | " Anto account "                       | LOVENICS END COURT (979. For B. + 997. F                                                                            | Po). this NO effect                        |
| the data                               | . Data not                             | feeted & Did not mention                                                                                            | in E                                       |
| - Case Ta                              | reative                                | <u>10</u>                                                                                                           |                                            |
|                                        | <u></u>                                |                                                                                                                     |                                            |
| ······································ | ······                                 |                                                                                                                     |                                            |
|                                        |                                        |                                                                                                                     |                                            |
| · · · · · · · · · · · · · · · · · · ·  | <u> </u>                               |                                                                                                                     |                                            |
|                                        | ······································ |                                                                                                                     |                                            |
|                                        |                                        |                                                                                                                     |                                            |
|                                        |                                        |                                                                                                                     |                                            |
|                                        |                                        |                                                                                                                     | · · · · · · · · · · · · · · · · · · ·      |
| Par 1 his                              | RA SILLAS                              |                                                                                                                     |                                            |
| received of                            | 4. 91/10                               |                                                                                                                     |                                            |

600449

31 of 34

## VOC Peer Review Check List

| Batch ID: _ <u>5VCC - C45</u>                                                                                                                                                   |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Did BFB Pass?                                                                                                                                                                   | Yes 🖉 No 🗆                                                                 |
| Did the ICAL Pass %RSD $\leq$ 30%                                                                                                                                               | Yes No 🗆                                                                   |
| Did the ICAL and CCV pass:<br><u>+</u> 20% recovery for the individual analytes?<br>Calibration Check Compounds in criteria?<br>System Performance Check Compounds in criteria? | Yes I No I See NICR/<br>Yes I No I Case Manahir<br>Yes I No I Case Manahir |
| Did the blank pass?                                                                                                                                                             | Yes 🗭 No 🗆                                                                 |
| Did the MS/MSD pair pass accuracy and precision and criteria?                                                                                                                   | Yes D No & See rick!                                                       |
| Did LCS pass accuracy criteria?                                                                                                                                                 | Yes D No D N/A D                                                           |
| Were all IS areas within a factor of 2 of the average area in the ICAL                                                                                                          | Yes E No E                                                                 |
| Did Retention Times remain inside windows for all standards and samples?                                                                                                        | Yes S No C                                                                 |
| Did all surrogates pass criteria for each standard and sample?                                                                                                                  | Yes 🗓 No 🖸                                                                 |
| Did all surrogates pass criteria for each standard and sample?                                                                                                                  | Yes 🗔 No 🖸                                                                 |
| Carry-over contamination                                                                                                                                                        | OKO                                                                        |
| Correct interpretation of mass spectra                                                                                                                                          | OK Q                                                                       |
| Errors in data entry rounding and/or calculations                                                                                                                               |                                                                            |

Reviewed by: Kathlen Siluson Date: 8/10/98

600449

Level 1 . A

SNL/NM Environmental Restoration Chemistry Laboratory

|                                                                                 | YES | NO | Comments                 | ]        |
|---------------------------------------------------------------------------------|-----|----|--------------------------|----------|
| 1. Samples were preserved and handled in accordance with QAPjP and LOPs         | ~   |    |                          | ] ,      |
| 2. The appropriate number and type of laboratory QC check samples were analyzed | new | ~  | No MS or MSD; see Case 7 | fanative |
| 3. Laboratory QC checks met the established acceptance criteria                 |     | ~  | See Case Manative        | ]        |
| 4. Deviations from analytical methods are documented                            | NA  |    |                          |          |
| 5. Data package is complete, per section 10.4 of the ERCL QAPjP                 |     |    |                          | ]        |

# Data Package Checklist

|                                                                                                                                                                                                                          | YES | NO                                     | Comments            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------|---------------------|
| Date of Issue                                                                                                                                                                                                            | 4   |                                        |                     |
| Case Narrative                                                                                                                                                                                                           | 1   |                                        |                     |
| Description of data package                                                                                                                                                                                              | ~   |                                        |                     |
| Index of samples, including sampling ID and laboratory ID                                                                                                                                                                | ~   |                                        |                     |
| Description of any problems encountered in analysis                                                                                                                                                                      | ~   |                                        |                     |
| Circumstances leading to the use of data qualifiers                                                                                                                                                                      | ~   |                                        |                     |
| Type of digestion used for general inorganic analysis of soil samples                                                                                                                                                    |     |                                        |                     |
| Analytical results for each sample - must include the parameter name, the parameter value, uncertainty value (where applicable), MDL and PQL, units of measure, data qualifier(s), method of analysis, and analysis date | ~   |                                        |                     |
| Calibration ranges                                                                                                                                                                                                       | ~   |                                        |                     |
| QC Summaries                                                                                                                                                                                                             | ~   |                                        |                     |
| Surrogate data                                                                                                                                                                                                           | V   | •••••••••••••••••••••••••••••••••••••• |                     |
| Matrix spike or LCS recovery data for accuracy                                                                                                                                                                           | v   |                                        |                     |
| MS/MSD or LCS/LCSD for precision                                                                                                                                                                                         | ~   |                                        |                     |
| Method or reagent blank data                                                                                                                                                                                             | ~   |                                        |                     |
| QA review documentation:                                                                                                                                                                                                 | V   |                                        |                     |
| QA Officer Review Checklist                                                                                                                                                                                              | ~   |                                        |                     |
| Electronic copy of the analytical data                                                                                                                                                                                   | ~   |                                        |                     |
| COC                                                                                                                                                                                                                      | ~   |                                        |                     |
| Data Package COC No. <u>600449</u> Reviewed by <u>Margie</u>                                                                                                                                                             | Ma  | ley                                    | Date <u>8/25/98</u> |

c:\document\ercl\reports\qacheck.doc

33 of 34

-

| <b>Feed.</b> No. Mail Store: 13.3 MS-1147 <b>Date Stamples Output Constant</b> No:: <b>Constant</b> No:: <b>Supple:</b> No:: <b>Supple: Supple: Supple:</b> <th>age 1 of 1<br/>1<b>449</b></th> <th>Page<br/>60044</th> <th>AR/COC-</th> <th colspan="8">ANALYSIS REQUEST AND CHAIN OF CUSTODY</th> <th>al Lab<br/>No.</th> <th>- Inte<br/>Bate</th> <th>COC (10-97)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | age 1 of 1<br>1 <b>449</b> | Page<br>60044                         | AR/COC-                                | ANALYSIS REQUEST AND CHAIN OF CUSTODY                                                                                                                                                                                                          |                                |                             |                    |                              |                                        |                                                                                                   |                                                                        | al Lab<br>No.                                 | - Inte<br>Bate                                         | COC (10-97)                                                                                                                                       |                                       |                                |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|--------------------|------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|-----------------------------|
| Location       Tech Area       III       pst<br>gen<br>gen<br>gen<br>gen<br>gen<br>gen<br>gen<br>gen<br>gen<br>gen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 3                                     | Frickye 3<br>shelf-5<br>Frickye 4      | GMO USE       Contract No.:         Ong/284-3313       Case No.: 7223.230         SMO Authorization       Bill to: Sandia National Laboratories         Supplier Services, Dept.       P.O. Box 5800 MS 0154         i Montano       Formation |                                |                             |                    |                              | ren Stro<br>RCL<br>ne: Doug<br>O: Suzi | ples Ship<br>aybill No.<br>act: <u>Warn</u><br>nation: <u>E</u><br>nation: <u>E</u><br>nation: SM | Date Sam<br>Carner/W<br>Lab Conta<br>Lab Destii<br>SMO Con<br>Send Rep | <u>1147</u><br>anders<br>eptic Fields<br>/DAT | 5133 M<br><u>Mike</u><br>Ion-ER<br><u>ER/12</u><br>526 | Pept, No./Mail Stop:<br>Project/Task Manage<br>Project Name: <u>101</u><br>Record Center Code<br>Logbook Ref. No.:<br>Service Order No.: <u>0</u> |                                       |                                |                             |
| Sample No<br>Praction       ER Sample ID or<br>Sample Location Detail       Est<br>g g g<br>g g g<br>g g g<br>g g g<br>g g g<br>g g g g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LAB US                     | 3.                                    | shelf 3                                | MO)                                                                                                                                                                                                                                            | e at S                         | vailabl                     | <u>OV (a</u><br>er | rence<br>Cont                | Ref                                    |                                                                                                   |                                                                        | ö                                             | ing<br>Ft.                                             |                                                                                                                                                   | nh Area<br>m                          | ] 1<br>R                       | Location<br>Building NW6584 |
| 041400-004         EB-1235-JW/4584_DE1-0H2+10-3         10         N/A         5         G         125ml         4C         G         SA         RCRA Met+Zn, HE(8330)           041506-001         ER-1295-NW6584-DF1-BH3-5-S         5         N/A         7/4/8         0750         5         AC         300ml         4C         G         SA         VOCs (8260)           041506-004         ER-1295-NW6584-DF1-BH3-5-S         5         N/A         7/4/8         0750         5         AC         300ml         4C         G         SA         VOCs (8260)           041506-004         ER-1295-NW6584-DF1-BH3-5-S         5         N/A         7/4/8         0750         5         G         125ml         4C         G         SA         VOCs (8260)           041507-004         ER-1295-NW6584-DF1-BH3-10-S         10         N/A         7/4/8         0750         5         G         125ml         4C         G         SA         RCRA Met+Zn, HE(8330)           041507-004         ER-1295-NW6584-DF1-BH3-10-S         10         N/A         7/4/8         0760         5         G         125ml         4C         G         SA         RCRA Met+Zn, HE(8330)           041507-004         ER-1295-NW6584-DF1-BH3-10-S         10 <td>ed Lab<br/>Sampt<br/>e<br/>ID</td> <td>od Requested</td> <td>Parameter &amp; Method</td> <td>Sample<br/>Type</td> <td>Sample<br/>Collection<br/>Method</td> <td>Preser-<br/>vative</td> <td>ume</td> <td>Гуре</td> <td>Sample<br/>Matrix</td> <td>fime<br/>cted</td> <td>Date.<br/>Colle</td> <td>ER Site</td> <td>Beginn<br/>Depth ir</td> <td>ail</td> <td>ER Sample ID or<br/>ample Location Del</td> <td></td> <td>Sample No<br/>Fraction</td> | ed Lab<br>Sampt<br>e<br>ID | od Requested                          | Parameter & Method                     | Sample<br>Type                                                                                                                                                                                                                                 | Sample<br>Collection<br>Method | Preser-<br>vative           | ume                | Гуре                         | Sample<br>Matrix                       | fime<br>cted                                                                                      | Date.<br>Colle                                                         | ER Site                                       | Beginn<br>Depth ir                                     | ail                                                                                                                                               | ER Sample ID or<br>ample Location Del |                                | Sample No<br>Fraction       |
| 041506-001       ER-1295-NW6584-DF1-BH3-5-S       S       N/A       7/4/8       0750       S       AC       300ml       4C       G       SA       VOCs (8260)         041507-001       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       7/4/8       0750       S       AC       300ml       4C       G       SA       VOCs (8260)         041506-004       ER-1295-NW6584-DF1-BH3-5-S       5       N/A       7/4/8       0750       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       7/4/8       0760       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       7/4/8       0760       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       7/4/8       0760       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       7/4/8       DRC       S       G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | HE(8330)                              | RCRA Met+Zn; +                         | SA                                                                                                                                                                                                                                             | 6                              | 4C                          | ni -               |                              | 3                                      |                                                                                                   |                                                                        | NA                                            | 10                                                     | 2-10-5                                                                                                                                            | NW6584 DE1-DH                         | E8-1                           | -041480-094                 |
| 041507-001         ER-1295-NW6584-DF1-BH3-10-S         10         N/A         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | <u>}</u>                              | VOCs (8260)                            | SA                                                                                                                                                                                                                                             | G                              | 4C                          | nl i               | .c                           | , s                                    | 075                                                                                               | 7/6/28                                                                 | N/A                                           | 5                                                      | 3-5-S                                                                                                                                             | 5-NW6584-DF1-BH                       | ER-12                          | 041506-001                  |
| 041506-004       ER-1295-NW6584-DF1-BH3-5-S       5       N/A       N/A       0.750       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       N/A       N/A       0.750       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       N/A       N/A       0.750       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                       | VOCs (8260)                            | SA                                                                                                                                                                                                                                             | G                              | 4C                          | nl í               | C                            | S                                      | 08/1                                                                                              | TCAR                                                                   | N/A                                           | 10                                                     | 3-10-S                                                                                                                                            | 5-NW6584-DF1-BH                       | ER-1                           | 041507-001                  |
| 041507-004       ER-1295-NW6584-DF1-BH3-10-S       10       N/A       I/4/B       08/O       S       G       125ml       4C       G       SA       RCRA Met+Zn, HE(8330)         RMMA       Yes       XNo       Ref. No.       Sample       Tracking       secuse       Special Instructions/QC Requirements       Abnorm         Sample Disposal       Return to Client       XDisposal by lab       Date Entered (mm/dd/y)       Special Instructions/QC Requirements       Abnorm         Turnaround Time XNormal       Rush       Required Report Date       QC Inits.       Secuse       No         Sample       Chcis       Chcis       Chcis       Ch_start       Please list as separate report.       Please list as separate report.         1. Relinquished by       Org.       Date       Time 15/8       4. Relinquished by       Org.       Date       Time         1. Received by       Org.       Date       Time       5. Reinquished by       Org.       Date       Time         2. Received by       Org.       Date       Time       5. Reinquished by       Org.       Date       Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | HE(8330)                              | RCRA Met+Zn, H                         | SA                                                                                                                                                                                                                                             | G                              | 4C                          | ni -               | ;                            | s                                      | 0760                                                                                              | 7/1.60                                                                 | N/A                                           | 5                                                      | 3-5-S                                                                                                                                             | -NW6584-DF1-BH                        | ER-1                           | 041506-004                  |
| RMMA _Yes XNo       Ref. No.       Sample Tracking       swouse       Special Instructions/QC Requirements       Abnorm         Sample Disposal _Return to Client XDisposal by lab       Date Entered (mm/dd/yy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | HE(8330)                              | RCRA Met+Zn, H                         | SA                                                                                                                                                                                                                                             | G                              | 4C                          | ml -               | 3                            | S                                      | 08/0                                                                                              | 11498                                                                  | N/A                                           | 10                                                     | 3-10-S                                                                                                                                            | 5-NW6584-DF1-BH                       | ER-1                           | 041507-004                  |
| RMMA       Yes       XNo       Ref. No.       Sample       Sample       Sample       Special Instructions/QC Requirements       Abnorm         Sample Disposal       Return to Client       XDisposal by lab       Date Entered (mm/dd/yy)       EDD XYes       No       Condition         Turnaround Time XNormal       Rush Required Report Date       QC Inits;       Raw data package XYes       No       Receipt         Sample       Chcis       Cotechis       Classical company/Organization/Phone       Receipt       Receipt         Sample       Chcis       Cotechis       Classical company/Organization/Phone       Receipt       Receipt         Members       Init       Company/Organization/Phone       Please list as separate report.       Receipt         1. Received by       Org.       Gr.       Gr.       Date       Time       S/S         1. Received by       Org.       Gr.       Gr.       Date       Time       S. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       S. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       S. Relinquished by       Org.       Date       Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                       |                                        |                                                                                                                                                                                                                                                |                                |                             |                    |                              |                                        |                                                                                                   |                                                                        |                                               |                                                        |                                                                                                                                                   |                                       |                                | ·····                       |
| RMMA       Yes       XNo       Ref. No.       Sample Tracking       sawouse       Special Instructions/QC Requirements       Abnorm         Sample Disposal       Return to Client       XDisposal by lab       Date Entered (mm/dd/yy)       EDD XYes       No       Conditic         Turnaround Time XNormal       Rush       Required Report Date       QC Inits,       Rew data package XYes       No       Receipt         Name       Signature       Init       Company/Organization/Phone       Receipt       Receipt       Receipt         Sample       Chcis       Cla. Catech       Cl.       Monorm       Receipt       Receipt         Members       Init       Company/Organization/Phone       Please list as separate report.       Ime       Ime         1. Relinquished by       Org.       C/31       Date       7/7/97       Time /5/8       4. Received by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Received by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Received by       Org.       Date       Time         2. Received by       Org.       Date       Time       S. Received by       Org.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                       | ······································ |                                                                                                                                                                                                                                                |                                |                             |                    |                              |                                        |                                                                                                   |                                                                        |                                               |                                                        |                                                                                                                                                   | ·····                                 |                                |                             |
| Turnaround Time XNormal Rush Required Report Date       QC Inits         Name       Signature       Init       Company/Organization/Phone         Sample       Chcis Catechis       Cl. Catechi       Chcis Catechis       Cl. Catechi         Team       Chtels       SEANAS       Chsis       Cl. Catechi       Please list as separate report.         Members       Intelliquished by       Org. C(3)       Date       7/7/98       Time /5/8       4. Relinquished by       Org.       Date       Time         1. Received by       Org.       Org.       Li33       Date       7/7/98       Time /5/8       4. Received by       Org.       Date       Time         2. Relinquished by       Org.       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         1. Received by       Org.       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Received by       Org.       Date       Time         2. Received by       Org.       Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al<br>Ins on<br>LABUSE     | Abnormal<br>Conditions<br>Receipt LAI | Requirements                           | tions/QC<br>Io<br>age XYe                                                                                                                                                                                                                      | Instruc<br>′es ⊡N<br>ta pack   | Special<br>EDD XY<br>Raw da |                    | SMC L                        | king<br>mm/dd/                         | e Tra<br>itered<br>by                                                                             | Samp<br>Date E<br>Entere                                               |                                               | by lab                                                 | Disposal                                                                                                                                          | ef. No.<br>urn to Client X            | KNO<br>al 🗌 R                  | RMMA []Yes<br>Sample Dispos |
| Members       Please list as separate report.         1. Relinquished by       Org. C(3)       Date       7/7/98       Time /5/8       4. Relinquished by       Org.       Date       Time         1. Received by       Org.       Org.       L133       Date       7/7/98       Time /5/8       4. Received by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Received by       Org.       Date       Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                       |                                        | ·                                                                                                                                                                                                                                              |                                |                             | Phone<br>3/96<br>  | nits,<br>irganizat<br>(3/ 8/ | Company<br>MDM/                        | Init<br>(()<br>2                                                                                  |                                                                        | Date                                          | Report                                                 | Signature                                                                                                                                         | Confectios                            | ne XN<br>ame<br>Chcie<br>Chcie | Sample                      |
| 1. Relinquished by       Org.       Org.       Org.       Date       Time       1. Received by       Org.       Date       Time         1. Received by       Org.       Org.       Date       7/7/98       Time       5.16 pm       4. Received by       Org.       Date       Time         2. Relinquished by       Org.       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Relinquished by       Org.       Date       Time       5. Relinquished by       Org.       Date       Time         2. Received by       Org.       Date       Time       5. Received by       Org.       Date       Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                       | port.                                  | eparate i                                                                                                                                                                                                                                      | list as s                      | Please I                    |                    |                              |                                        |                                                                                                   |                                                                        |                                               |                                                        |                                                                                                                                                   | ······                                |                                | Members                     |
| 1. Received by     Org.     Org.     Date     Time       2. Relinquished by     Org.     Date     Time     5. Relinquished by     Org.     Date     Time       2. Relinquished by     Org.     Date     Time     5. Relinquished by     Org.     Date     Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Time                                  | Uate                                   |                                                                                                                                                                                                                                                | Org                            |                             |                    | quished I                    | 4. Re                                  | 518                                                                                               | Time                                                                   | 7/98                                          | Date 7                                                 | /31                                                                                                                                               | len Org. (                            | en.                            | . Relinquished by           |
| 2. Relinquished by Org. Date Time 5. Relinquished by Org. Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                       | Date                                   |                                                                                                                                                                                                                                                |                                |                             | <u> </u>           | ved by                       | 1 4. Re                                | 5:14                                                                                              | Time?                                                                  | <u>/7]9}</u>                                  | Date 7                                                 | -137                                                                                                                                              | Org.                                  | it                             | Received by                 |
| A RECEIVED DY LING LATE LINE I S RECEIVED DY LING LATE LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | l ime                                 | Date                                   |                                                                                                                                                                                                                                                |                                |                             |                    | quished I                    | 5. Re                                  |                                                                                                   | 1 Ime                                                                  |                                               | Date                                                   |                                                                                                                                                   | Urg,                                  | <u> </u>                       | . Relinquished by           |
| 2. Reference by Org. Data Time (C. Reference by Org. Data Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Time                                  |                                        |                                                                                                                                                                                                                                                |                                |                             |                    | ved by                       | 5, Ke                                  |                                                                                                   | Time                                                                   |                                               |                                                        |                                                                                                                                                   | Org.                                  | ··                             | Received by                 |
| S. Reininguisned by Org. Date time b. Keiinguisned by Org. Date time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                          | + ime                                 |                                        |                                                                                                                                                                                                                                                |                                |                             |                    | uisned I                     | b. Ké                                  |                                                                                                   | Time                                                                   |                                               |                                                        |                                                                                                                                                   | Org.                                  |                                | Reinquished by              |

-Coriginal To Accompany Samples, Laboratory Copy (White)

s, 1<sup>st</sup> Copy To Accompany Samples, e) Return to SMO (Blue) 2<sup>nd</sup> Copy SMO Suspense Copy (Yellow) 3<sup>re</sup> Copy Field Copy (Pink)

.

40

#### DOCUMENTATION COMPLETENESS CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 1 - DV1)

| Project Leader Tony Roybal | Project Name 101 Non-ER Septric Fields | Case No: 7223.230 |
|----------------------------|----------------------------------------|-------------------|
| AR/COC No 600449           | Analylical Lab ERCL                    | SDG No. NA        |

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record

| Line |                                                                  | Complete? |    |                                   | Resolved? |    |
|------|------------------------------------------------------------------|-----------|----|-----------------------------------|-----------|----|
| No.  | llem                                                             | Yes       | No | lf no, explain                    | Yes       | No |
| 1.1  | All items on COC complete - data entry clerk initialed and dated | NA        |    | Not applicable                    |           |    |
| 1.2  | Container type(s) correct for analyses requested                 | -         |    |                                   | · · · ·   |    |
| 1.3  | Sample volume adequate for # and types of analyses requested     | -         |    |                                   |           |    |
| 1.4  | Preservative correct for analyses requested                      | -         |    |                                   |           |    |
| 1.5  | Custody records continuous and complete                          | -         |    |                                   |           |    |
| 1.6  | Lab sample number(s) provided                                    |           |    |                                   |           |    |
| 1.7  | Condition upon receipt information provided                      | -         |    |                                   |           |    |
| 1.8  | Tritium Screen data provided (Rad labs)                          | NA        |    | Not applicable, non-RMMA location |           |    |

### 2.0 Analytical Laboratory Report

| Line |                                                                 | Com | plete? |                                          | Reso | lved? |
|------|-----------------------------------------------------------------|-----|--------|------------------------------------------|------|-------|
| No.  | llem                                                            | Yes | No     | lí no, explain                           | Yes  | No    |
| 2.1  | Dala reviewed, signature                                        | -   |        |                                          |      |       |
| 2.2  | Date samples received                                           |     |        |                                          |      |       |
| 2.3  | Method reference number(s) complete and correct                 | -   |        |                                          |      |       |
| 2.4  | Quality control data provided (MB, LCS, LCD, Detection Limit)   |     | -      | LCD not analyzed with submitted samples. |      |       |
| 2.5  | Matrix spike/matrix spike duplicate data provided(if requested) |     |        | Not requested (VOC analysis incomplete)  | 1    |       |
| 2.6  | Narrative provided                                              | -   |        |                                          | [    |       |
| 2.7  | TAT met                                                         | NA  |        | Not applicable                           |      |       |
| 2.8  | Hold times met                                                  | -   |        |                                          |      |       |
| 2.9  | All requested result data provided                              | -   |        |                                          |      |       |

Based on the review, this data package is complete

Dale: 10/14/98

No No

If no, provide : correction request tracking #

Yes

and date correction request was submitted:

Reviewed by:

Kale

Closed by:

Date:

TOP 94-03 Rev. 1 Attachment A November 1995

### DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

| Project Name                                                 | 101         | Non-ER Septir Fi                                                                                 | relds                                   | Page 1 of 5 |
|--------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| Case Number<br>Sample Numbers                                | 722<br>ER-1 | 3.230<br>295-NW6584-DF1-                                                                         | BH 3-5 (BH 3-10)-5                      | ·           |
| AR/COC No. <u>600</u><br>AR/COC No<br>AR/COC No<br>AR/COC No | <u>449</u>  | Analytical laboratory<br>Analytical laboratory<br>Analytical laboratory<br>Analytical laboratory | CL SDG No<br>SDG No<br>SDG No<br>SDG No | μΑ<br>      |

### 1.0 EVALUATION

|    | Item                                                                                                              | Yes | No | If no, Sample ID No./Fraction(s) and Analysis |
|----|-------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------------|
| 1) | Sample volume, container, and preservation correct?                                                               |     |    |                                               |
| 2) | Holding times met for all samples?                                                                                |     | -  |                                               |
| 3) | Reporting units appropriate for the matrix and meet project-specific requirements?                                | ~   |    |                                               |
| 4) | Quantitation limit met for all samples?                                                                           | -   |    |                                               |
| 5) | Accuracy<br>a) Laboratory control sample<br>accuracy reported and met for<br>all samples?                         | _   |    |                                               |
|    | b) Surrogate data reported and<br>met for all organic samples<br>analyzed by a gas chroma-<br>tography technique? | ~   |    |                                               |

Reviewed by:

Date:

1. Rala 10/14/98

:
# DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

Page 2 of 5

|    | ltem                                                                                                                         | Yes | No | If no. Sample ID No./Fraction(s) and Analysis                           |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------------------------------------------------|
|    | c) Matrix spike recovery data<br>reported and met for all<br>samples for which it was<br>requested?                          |     |    | S198-20 => No results<br>reported for Ba D<br>SUOC-045 => not analyzed  |
| 6) | Precision<br>a) Laboratory control sample<br>precision reported and met for<br>all samples?                                  | ŅА  |    | Not applicable; LCS duplicate<br>not analyzed with submitted<br>samples |
|    | <ul> <li>Matrix spike duplicate RPD<br/>data reported and met for all<br/>samples for which it was<br/>requested?</li> </ul> |     | /  | S198-ZO => No results<br>reported for Ba. O<br>SUDC-045 =7 not analyzed |
| 7) | Blank data<br>a) Method or reagent blank data<br>reported and met for all<br>samples?                                        |     | ~  | 5128-20 = "J" values reported<br>for Hg and Pb. (2)                     |
|    | <ul> <li>b) Sampling blank (e.g., field,<br/>trip, and equipment) data<br/>reported and met?</li> </ul>                      | NA  |    | Not applicable                                                          |
| 8) | Narrative included, correct, and complete?                                                                                   | /   |    |                                                                         |

2.0 COMMENTS: All items marked "No" above must be explained in this section. For each item, give SNL/NM ID No. and the analysis, if appropriate, of all samples affected by the finding.

Percent recoveries Ba  $\heartsuit$ for were not reported for the LRPD not calculated) MS MSO ple and Sam

**Reviewed by:** 10/14/9A Date:

AL/2-94/SNL:SOP3044B.R1

# DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

Page 3 of 5

| 2.0 COMMENTS CONTINUATION SHEET                    |
|----------------------------------------------------|
| @ 'J" values were reported for Hg and Pb in        |
| the LMB (5198-20). Lead was defected in both of    |
| the submitted sampler, mercury was not.            |
|                                                    |
| Note: Due to power Failures in TA III the          |
| NOC MSIMSD analysis was not completed. Because     |
| duplicate laboratory control samples were not ran  |
| precision can not be determined.                   |
|                                                    |
| No analytes were detected during the VOC analyses. |
|                                                    |
| 7                                                  |
|                                                    |
|                                                    |
| Ino JR                                             |
| 10/14 ( 10                                         |
|                                                    |
|                                                    |
|                                                    |
| $\int$                                             |
| Reviewed by: Affry 4-Rale                          |
| - inturlan                                         |
| Date:                                              |

AL/2-94/SNL:SOP3044B.R1

DATA QUALITY INDICATOR CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 2-DV2)

Page 4 of 5

<u>3.0 SUMMARY:</u> Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted. Use the qualifiers given at the end of the table if possible. Explain any other qualifiers in the comments column.

| Sample/<br>Fraction No. | Analysis | Qualifiers | Comments                                                                                                         |
|-------------------------|----------|------------|------------------------------------------------------------------------------------------------------------------|
|                         |          |            |                                                                                                                  |
|                         |          |            | R                                                                                                                |
| - 11 A                  |          | Þ.         |                                                                                                                  |
|                         |          |            | olli                                                                                                             |
|                         |          | 5 of s     | and the second |
|                         | see page |            |                                                                                                                  |
|                         |          |            |                                                                                                                  |
|                         |          |            |                                                                                                                  |
|                         |          |            |                                                                                                                  |

Mach commuteen sheet for additional samples

QUALIFIERS:

- J = Estimated quantity (provide reason)
- B = Contamination in blank (indicate which blank)
- P = Laboratory precision does not meet criteria
- R = Reporting units inappropriate
- N = There is presumptive evidence of the presence of the material
- UJ = The material was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Reviewed by:

114. A. Rale 10/14/98

Date:

Q = Quantitation limit does not meet criteria A = Laboratory accuracy does not meet criteria

- U = Analyte is undetected (indicate which analyte and reason for qualification)
- NJ = There is presumptive evidence of the presence of the material at an estimated quantity.

AL/2-94/SNL:SOP30448.R1

Page 5 of 5

| Site: 101 Non-E                    | K Septire Fields | -                         |          |  |  |  |  |
|------------------------------------|------------------|---------------------------|----------|--|--|--|--|
| AR COC: 6004                       | ५१               | Data Classification: DV-2 |          |  |  |  |  |
| Sample<br>Fraction No.             | Analysis         | DV<br>Qualifiers          | Comments |  |  |  |  |
| ER-1295-NW6584<br>- DF 1- BH 3-5-5 | EPA 8260         | UJ,PZ                     |          |  |  |  |  |
| ER-1295-NW6584<br>-DF1-BH3-10-5    | 3                | 5                         |          |  |  |  |  |
| 3                                  | 7439-97-6        | BI                        |          |  |  |  |  |
| Z                                  | 7440-39-3        | J<br>AZ,PZ                |          |  |  |  |  |
| -                                  |                  |                           |          |  |  |  |  |
|                                    |                  |                           |          |  |  |  |  |
|                                    |                  | R                         |          |  |  |  |  |
|                                    | 48               |                           |          |  |  |  |  |
|                                    | 10/11            |                           |          |  |  |  |  |
|                                    |                  |                           |          |  |  |  |  |
|                                    |                  |                           |          |  |  |  |  |

Sample No. Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010, EPA6020, EPA7470 1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH\_ALK, HACH\_NO2, HACH\_NO3, MEKC\_HE, PCBRISC

| Reviewed by: | Auffry J. Role | Date: | 10/14/98 |  |
|--------------|----------------|-------|----------|--|
|              |                |       |          |  |



FOR AR/COC 600435 (DSS SITE 1029, GEL 1995)

-

| sile: NON ER           | SEPTIC TANES      | 5                |                                            |
|------------------------|-------------------|------------------|--------------------------------------------|
| AR'COC: 600 4          | 135               | Data Classifi    | cation: INOI gAnic                         |
| Sample<br>Fraction No. | Analysis          | DV<br>Qualifiers | Comments                                   |
| 041481-003             | 7440-66.6<br>ZINC | B                | Bloan AR MOC<br>Data Conc. Excords the MDL |
|                        |                   |                  |                                            |
|                        |                   |                  |                                            |
|                        | Data 13           | Acce             | ofable                                     |
|                        |                   |                  |                                            |
|                        |                   |                  |                                            |
|                        |                   |                  |                                            |
|                        |                   |                  |                                            |
| -<br>-                 |                   |                  |                                            |
|                        |                   |                  |                                            |
|                        |                   |                  |                                            |

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample 1d field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method. use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010. EPA6020. EPA7470/1, EPA8015B. EPA8081. EPA8260. EPA8260-M3. EPA8270, HACH\_ALK-HACH\_NO2, HACH\_NO3, MEKC\_HE, PCBRISC

Sauce Date: 12/28/98. Reviewed by

TOP 94-03 Rev. 0 Altachment C Page 35 of 115 July 1954

1.14

÷

# **INORGANIC DATA ASSESSMENT SUMMARY FORM** (Data Verification/Validation Level 3-DV3)

|                             |                           |                   |                                       | Page 1 o            |
|-----------------------------|---------------------------|-------------------|---------------------------------------|---------------------|
| SITE OR PROJECT NON         | ER SEPTIC TANKS           | CASE NO.          | 7223.                                 | 2300                |
| ANALYTICAL LABORATORY       | Y GEL                     | SAMPLE IDS        | 0448                                  | 1-003               |
| LABORATORY REPORT #_        | 9807121                   |                   | · · · · · · · · · · · · · · · · · · · |                     |
| TASK LEADER A Re            | ybal                      |                   |                                       |                     |
| NO. OF SAMPLES              | 5 soils                   |                   |                                       |                     |
|                             |                           |                   |                                       | $\overline{\gamma}$ |
| - 1                         | UATA ASSESSME             |                   | CVAA 74                               | CVANIDE             |
| 1 HOLDING TIMES             | (6010)                    | NA "              |                                       | NK                  |
| 2. CALIBRATIONS             | · · ·                     |                   | 1                                     | 1                   |
| 3. BLANKS                   |                           |                   |                                       |                     |
| 4. ICS                      | ~                         |                   |                                       |                     |
| 5. LCS                      | 1                         |                   |                                       |                     |
| 6. DUPLICATE ANALYS         | SIS A                     |                   |                                       |                     |
| 7. MATRIX SPIKE             | Parket J                  |                   | <u> </u>                              |                     |
| 8. MSA                      |                           |                   |                                       | 1                   |
| 9. SERIAL DILUTION          | P3 🛲 J                    |                   |                                       |                     |
| 10. SAMPLE VERIFICAT        | 10N                       |                   |                                       |                     |
| 11. OTHER QC                | <u> </u>                  |                   | 1                                     |                     |
| 12. OVERALL ASSESSM         | IENT                      | <u>t</u>          |                                       |                     |
| ✓ (check mark) — Acceptable | e                         | 1/1 -             | 16T A.20                              | ICABIE              |
| Other - Qualified:          | J - Estimate              | N44 -             |                                       |                     |
|                             | UJ - Undetected, estimate | ed                |                                       |                     |
|                             | R - Unusable (analyte m   | hay or may not be | e present)                            |                     |
| ACTION ITEMS: NON           | <b>,</b>                  |                   |                                       |                     |
|                             | ð                         |                   |                                       |                     |

AREAS OF CONCERN:

REVIEWED BY: l 12 28 98 DATE REVIEWED:

AL2-94 WP/SNL:SOP3044C,R1

| ~ | TOP 94-03<br>Fiev. D<br>Attachment C<br>Fage 49 of 115<br>July 1994                                                                                               |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                   |
|   | INORGANIC DATA ASSESSMENT SUMMARY FORM<br>(Data Verification/Validation Level 3DV3)<br>Page 15 of                                                                 |
|   | 11.0 SAMPLE RESULT VERIFICATION                                                                                                                                   |
|   | 11.1 Verification of Instrumental Parameters                                                                                                                      |
|   | Are instrument detection limits present and verified on a quarterly basis? Yes $\square$ No $\square$                                                             |
|   | Are IDLs present for each analyte and each instrument used? Yes 🗹 No 🗔                                                                                            |
|   | Is the IDL greater than the required detection limits for any analyte? Yes $\Box$ No $\square$ (If IDL > required detection limits, flag values less than 5xIDL.) |
|   | Samples affected:                                                                                                                                                 |
|   |                                                                                                                                                                   |
|   |                                                                                                                                                                   |
| - | Are ICP Interelement Correction Factors established and verified annually? Yes 🗋 No 🗋 🎶                                                                           |
|   | Are ICP Linear Ranges established and verified quarterly? Yes 🔲 No 🗍 NA                                                                                           |
|   | It no for any of the above, review problems and resolutions in narrative report.                                                                                  |
|   |                                                                                                                                                                   |
|   | 11.2 Reporting Requirements                                                                                                                                       |
|   | Were sample results reported down to the POL? Yes I No                                                                                                            |
|   | If no, indicate necessary corrections.                                                                                                                            |
|   | Were sample results that were analyzed by ICP for Se. TI. As, or Pb at least 5xIDL? Yes P No                                                                      |
|   | Were sample weights, volumes, and dilutions taken into account when reporting sample results and detection                                                        |

AL2-94/WP.SNL:SOP3044C.R1

TOP 94-03 Fiev. 0 Attachment C Page 50 of 115 July 1994

# INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3)

Page 16 of 16

If no for any of the above, sample results may be inaccurate. Note necessary changes and if errors are present, request resubmittal of laboratory package.

Were any sample results higher than the linear range of calibration curve and not subsequently reanalyzed at the appropriate dilution? Yes No

Samples affected:

11.3 Sample Quantitation

Check a minimum of 10% of positive sample results for transcription calculation errors. Summarize necessary corrections. If errors are large, request resubmittal of laboratory package.

Comments:

OK- Looks to BE AccepTABLE Approved By:\* Date:

\*Task/Project Leader is responsible for approval of data set.

Sauill Reviewed By:

25 12 98 Date:

AL2-94-NP/SNL:SOP3044C.R1

| sine: NOAL ER,             | DEPTIC TAMES |                  |                      |
|----------------------------|--------------|------------------|----------------------|
| AR'COC: 4:004              | 35           | Data Classifi    | cation: Rachiologics |
| Sample :<br>Fraction N to. | Analysis     | DV<br>Qualifiers | Comments             |
| 041481-003                 | Cesium 137   | BU,              |                      |
|                            | Actinium 228 | 3 UI             |                      |
|                            | Radium 228   | B                |                      |
|                            | R-103        | B                | U,                   |
|                            | U-235        | B                | Uı                   |
| ۱<br>۷                     | Y- 58        | B                | иJ                   |
|                            |              |                  |                      |
|                            | Data is      | condition        | muelly Acceptallo    |
|                            |              |                  |                      |
|                            |              |                  |                      |
|                            |              |                  |                      |

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010. EPA6020. EPA7470/1, EPA8015B. EPA8081. EPA8260. EPA8260-M3. EPA8270, HACH\_ALK\_HACH\_NO2, HACH\_NO3. MEKC\_HE. PCBRISC

Epute 12/28/98. Date: Reviewed by:

20152200001 ; 32NT BY:Xerox Telecopier 7021 ; 12- 4-97 ; 1:33PM ;

.

# ANALYTICAL RADIOCHEMISTRY DATA VALIDATION CHECKLIST .

| Project Name NON ER SEPTIC                                    | TAN            | K\$                                                                                     |                |                       | Site Name        |            |
|---------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|----------------|-----------------------|------------------|------------|
| Laboratory Name/Job No./Batch No. GEL                         | 12:            | 5899                                                                                    | 1              | 58M                   | Chain of Custody | Na. 600435 |
| Analysis Method EPA 900.0 Hinsu                               | 300            |                                                                                         |                | Parameter List: Gros: | s AleAA/BETA -   | GAMMA SPEC |
| REVIEW ITEM                                                   | YES            | NO                                                                                      | NA             |                       | COMMENTS         |            |
| A. HOLDING TIMES                                              |                |                                                                                         |                | MET CO                | it eria          |            |
| 1. Preparation and analysis holding times met?                | ~              |                                                                                         |                |                       |                  |            |
| 2. Short-half life parameters analyzed for and checked?.      | J.             |                                                                                         |                | V                     |                  |            |
| B. CALIBRATION VERIFICATION                                   |                |                                                                                         |                | MET CI                | iteria           |            |
| 1. Detectors numbered and documented?                         | ~              | ·                                                                                       |                |                       |                  |            |
| 2. Frequency: Dalty weekly, or monthly?                       | 1              |                                                                                         |                |                       |                  |            |
| 3. Acceptance criteria: Met?                                  | 1              |                                                                                         |                | 4                     |                  |            |
| C. LABORATORY CONTROL SAMPLES                                 |                | t H - Carl Ia adarpa<br>t a conset C Sigla<br>H at - Sigla adarpa<br>t T a gi t ta biba |                | «B- MET CI            | iteria           |            |
| 1. Standard: Independent, certified reference material?       | -              |                                                                                         |                |                       |                  |            |
| 2. Frequency: Each batch?                                     |                |                                                                                         |                |                       |                  |            |
| % Recovery 80-120% or?                                        | 12             |                                                                                         | 1              | *                     |                  |            |
| D. METHOD BLANK                                               |                |                                                                                         | e acatha-se ha | NO TA IN              | BLANKS           |            |
| 1. Frequency: Each batch?                                     |                | I                                                                                       |                | >+MAN REDO            | tool Come.       |            |
| 2. Matrix: Matrix specific?                                   | -              |                                                                                         |                |                       |                  |            |
| 3. Preparation: Entire procedure?                             | 17             |                                                                                         |                |                       |                  |            |
| 4. Blanks show contamination?                                 |                |                                                                                         | -              | 7                     |                  |            |
| E. MATRIX SPIKE                                               | La contrata da |                                                                                         |                | MS/MSD within A       | CEPTANCE         |            |
| 1. Frequency: Each batch?                                     | V              | ·                                                                                       |                |                       |                  |            |
| 2. Matrix: Matrix specific?                                   | 「/             |                                                                                         |                |                       |                  |            |
| 3. Preparation: Entire procedure?                             | 17             |                                                                                         |                |                       |                  |            |
| 4. % Recovery: 75-125% or?                                    | 17             |                                                                                         |                | 7                     |                  |            |
| F. ANALYTICAL VIELDS/OTHER                                    |                |                                                                                         | 10 2           | NOT Equala            | ted              |            |
| 1. Tracer: Correct type, recovery met?                        |                | T                                                                                       | -              |                       |                  |            |
| 2. Ingrowth and/or decay: Correct factors applied?            |                |                                                                                         | -              |                       |                  |            |
| 3. Solids density: Planchette loading <5 mg/cm <sup>2</sup> ? |                |                                                                                         | 1              | V                     |                  |            |
| G. DUPLICATE                                                  |                |                                                                                         |                | met criter            | ·i1              |            |
| 1. Type: abor field?                                          | 12             |                                                                                         |                | 1                     |                  |            |
| 2. Frequency: Each batch?                                     | 17             |                                                                                         |                |                       |                  |            |
| 3_Matrix: Matrix specific?                                    | 1-             |                                                                                         |                | P                     |                  |            |

and to a

- ....

AL/09-95/WP/LITCO:T3452

- ---

Since

12/1R/GK

310723.00:01.000 12/08/97 12:17pm

| SENT BY:Xerox Telecopier 7021 ;12         | 19<br>- 4-97 | 50368 | 25109<br>34PM | ;         | 1503682   | 5109→ 5         | 505 884 7689;# |
|-------------------------------------------|--------------|-------|---------------|-----------|-----------|-----------------|----------------|
|                                           |              |       |               |           |           |                 |                |
|                                           |              |       |               |           |           |                 |                |
| ANALYTICA                                 | LRA          | DIOC  | HEMI          | STRY D    | ATA VAL   | DATION          |                |
|                                           | CHE          | CKL   | IST (C        |           | ED)       |                 | Į              |
| roject Name NON ER SEPTIL                 | : T/         | THKS  | ,             |           |           | Site Nama       |                |
| aboratory Name/Job No./Batch No. GEL      | 125          | 899   | / 12          | 5814      |           | Chain of Custod | y No. 60043:   |
| nelyéia Method Epa 500.0. HASL 3          | 300          |       |               | Parameter | List:     |                 |                |
| REVIEW ITEM                               | YES          | HO    | NA            |           |           | COMMENTS        |                |
| 4. Preparation: Entire procedure?         | ~            |       |               |           |           |                 |                |
| ANALYTE DETECTION                         |              |       |               |           |           |                 |                |
| 1. Delection limit sample/batch specific? |              |       |               |           |           |                 |                |
| 2. Errors evaluated?                      | -            |       | 1             |           |           | ·               |                |
| 3. False positives/negatives suspected?   | T            | 1     | -             | TH 251    | Not Dumli | Fiel due to la  | N ABATH DAY OF |
| minund her & Rouged 121                   | \$198        |       |               |           |           |                 |                |
| svience by.                               |              |       |               |           |           |                 | _              |
|                                           |              |       |               |           |           |                 |                |
|                                           |              |       |               |           |           |                 |                |
|                                           | •            |       |               |           |           |                 |                |
|                                           | 1            |       |               |           |           |                 | ł              |
|                                           |              |       |               |           |           |                 |                |
|                                           |              |       |               |           |           |                 | į              |
|                                           |              |       |               |           |           |                 |                |
|                                           |              |       |               |           |           |                 |                |
|                                           | -            |       |               |           |           |                 |                |
|                                           | •            | •     | •             |           |           |                 | ł              |
| ,                                         |              | •     |               |           |           |                 | l              |

.

.

•

. •

• •

.....

.

.

.

.

• •

,

310723.005-01.000 12/04/97 12:17pm

# Records Center Code: ER / 1295 / DAT

# SMO ANALYTICAL DATA ROUTING FORM

| Project Name: Non-ER S             | Septic Tanks                    | Case No./Service Order: 7223.230/CF0526 |                                   |                                                       |  |  |
|------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|-------------------------------------------------------|--|--|
| SNL Task Leader:                   | ROYBAL                          | _ Org/Mail Stop:                        | Org/Mail Stop:                    |                                                       |  |  |
| SMO Project Coordinator            | : SALMI                         | Sample Ship D                           | ate:                              | 7/2/98                                                |  |  |
| ARCOC Lab<br>600435 GEL            | Prelin<br>Lab ID Rec<br>9807121 | ninary Final<br>eived Receive<br>       | ed YES                            | D Req'd     EDD Rec'd       S     NO       YES     NO |  |  |
|                                    | <u> </u>                        |                                         |                                   |                                                       |  |  |
| Correction Requested from Lab:     | Date<br>8/10/98                 | Correction<br>Request #:                | 1125 – Case narrative<br>unsigned |                                                       |  |  |
| Corrections Received:              | 9/1/98                          | Requester:                              | MONTANO                           |                                                       |  |  |
| <b>Review Complete:</b>            | <u>9-8-98</u>                   | Signature:                              | W. Palencie                       |                                                       |  |  |
| Priority Data Faxed:               |                                 | Faxed To:                               | ·                                 |                                                       |  |  |
| Preliminary Notification:          |                                 | Person Notified:                        |                                   |                                                       |  |  |
| Final Transmittal:                 | 9-8.98                          | Transmitted To:                         | Roybal                            |                                                       |  |  |
|                                    |                                 | Transmitted By:                         | Pal                               | encia                                                 |  |  |
| TO ER:<br>Filed in Records Center: | <u>9-8-98</u>                   | Filed By:                               | Mor                               | tano                                                  |  |  |

Comments:

, container

a and the s

-----

Received (Records Center) By: \_\_\_\_\_

# SAMPLE FINDINGS SUMMARY

| ~            | Sine: NON ER S                 | EPTIC TANK          | \$               |                   |
|--------------|--------------------------------|---------------------|------------------|-------------------|
|              | AR/COC: 6004                   | 135                 | Data Classifi    | ication: ORGANICS |
|              | Sample/<br>Fraction No.        | Analysis            | DV<br>Qualifiers | Comments          |
| ER-1295-1    | 1W6584-DFI-BHI-<br>11 11 -BHI- | 8-5<br>10-5 EPA8270 | UJ               | Temp. outsid      |
| 11 11        | 11 11 -BH2                     | 55 F                |                  | of interna        |
| ER-1295      | NW6584-DFI-BI                  | 25-5D EPARDU        | UT               |                   |
| ER-1295-     | WU6584-DFI-B                   | 12-5-5D EPA833      | P UJ             |                   |
| 11 - 11<br>- | 11 11 1                        | II II EPA 807       | D UJ             | -all ND vesutto   |
|              |                                |                     |                  |                   |
|              |                                |                     |                  |                   |
|              |                                |                     |                  |                   |
| _            |                                |                     |                  |                   |
|              |                                |                     |                  |                   |
|              |                                |                     |                  |                   |

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tine Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010, EPA6020, EPA7470/1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH\_ALK, HACH\_NO2, HACH\_NO3, MEKC\_HE, PCBRISC

Reviewed by: fim A Tambert Date: 1-8-99

TOP 94-03<sup>2</sup> Rev. 0 Attachment C Page 99 of 115 July 1994

# ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 1 of 1

| SITE OR PROJECT NON ER SEPTIC TANKS.                        | SAMPLEIDS <u>3 Locutions + Dup</u> . |
|-------------------------------------------------------------|--------------------------------------|
| ANALYTICAL LABORATORY GEL                                   | NO. OF SAMPLES 5 smpls               |
| LABORATORY REPORT # 9807121                                 | ER- 1295 - NW6584 - DFI              |
| CASE NO. 7223. 2800                                         | 041477-02/041478-02/041479-02/       |
|                                                             | 041481-01 / 041481-003               |
| DATA ASSESSMEN                                              | SUMMARY                              |
| Describe problems qualifications below (Action Items and Ar | ezs of Concern) HE                   |

|     |                      |              |          | •        |          |
|-----|----------------------|--------------|----------|----------|----------|
|     |                      | VOC          | SVOC     | PEST/PCB | OTHER    |
| 1.  | HOLDING              | $\checkmark$ | ~        | NA       | <u> </u> |
|     | TIMES/PRESERVATION   |              |          | 1        |          |
| 2.  | GC/MS INST. PERFORM. | <u> </u>     |          |          | <u> </u> |
| 3.  | CALIBRATIONS.WINDOWS | <u> </u>     |          |          | <u> </u> |
| 4.  | BLANKS               | <u> </u>     |          |          | <u> </u> |
| 5.  | SUFROGATES           | <u> </u>     |          |          | <u> </u> |
| 6.  | MATRIX SPIKE/DUP     | ×            | <u> </u> |          |          |
| 7.  | LABORATORY CONTROL   | NA           | NA       |          | NAT      |
|     | SAMPLES              |              |          |          | •        |
| 8.  | INTERNAL STANDARDS   | <u> </u>     | ~        |          | <u> </u> |
| G.  | COMPOUND             | <u>V</u>     |          |          |          |
|     | IDENTIFICATION       |              |          |          |          |
| 19. | SYSTEM PERFORMANCE   |              |          |          |          |
| 11. | OVERALL ASSESSMENT   | <u> </u>     |          |          | /        |
|     |                      |              |          |          |          |

(check mark) — Acceptable: Data had no problems or qualified due to minor problems

N - Data qualified due to major problems

X - Problems, but do not affect data

Qualifiers: J - Estimate

UJ - Undetected, estimated

ACTION ITEMS: NOALE

AREAS OF CONCERN: NONE

Reviewed By: Will Munice Date: 12/12/60

TCP 94-03 Fev. 0 Attachment C Page 100 of 115 July 1994

.

•-

.

وساني

|                                                                                                            | (Data Verification/Validation Level 3 DV-3)                                    | n:                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|
| ORGANIC DATA ASSESSMENT SUMMARY FORM<br>(Data Verification/Validation Level 3 DV-3)<br>ROJECTITASK LEADER: | Page 2 of 18                                                                   |                                        |
| PROJECT/TASK L                                                                                             | EADER:                                                                         |                                        |
|                                                                                                            |                                                                                |                                        |
| CTION ITEMS:                                                                                               | Xlone                                                                          |                                        |
| · · · · · · · · · · · · · · · · · · ·                                                                      |                                                                                | · · ·                                  |
|                                                                                                            | ·····                                                                          |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                | ······································ |
|                                                                                                            |                                                                                |                                        |
| EEAS OF CONCE                                                                                              | EN AlDALE                                                                      |                                        |
|                                                                                                            |                                                                                |                                        |
| <u> </u>                                                                                                   |                                                                                | ·                                      |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                          | •                                      |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                |                                        |
|                                                                                                            |                                                                                | •                                      |
| VERALL DATA Q                                                                                              | UALITY ASSESSMENT DATA is Acceptable                                           |                                        |
| OVERALL DATA Q                                                                                             | UALITY ASSESSMENT DATA is Accord+ABIC                                          |                                        |
| OVERALL DATA Q                                                                                             | UALITY ASSESSMENT DATA is AcceptABle                                           |                                        |
| NOTE - Hold                                                                                                | UALITY ASSESSMENT DATA is Acceptable                                           |                                        |
| NOTE - Hold                                                                                                | UALITY ASSESSMENT <u>DATA is Acceptable</u><br>incy Time Lecepted by SAUL/SMD. |                                        |
| DVERALL DATA Q<br>Note - Hold                                                                              | UALITY ASSESSMENT <u>DATA is Acceptable</u><br>ing Time recepted by Sail/Smo.  |                                        |
| Note - Hold                                                                                                | UALITY ASSESSMENT <u>DATA is AcceptAB1e</u>                                    |                                        |
| Note - Hold                                                                                                | UALITY ASSESSMENT <u>DATA is Acceptable</u><br>ing Time recepted by SNU/Smo.   |                                        |

Reviewed By: H M Date: (2/28/98

•

۰.

# ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 7 of 18

#### 4.0 INITIAL CALIBRATION

Has initial calibration been performed as required in the EPA method? Yes 🗹 No 🗌

Were the correct number of standards used to calibrate the instrument? Yes 🗹 No 🗆

For GC analyses of PCBs and Pesticides, did the laboratory follow the correct 72-hour sequence of analysis? Yes No No+ Applicable

List below compounds which did not meet initial calibration criteria outlined by the EPA method.

| Instrument ID | Date       | Compound                       | RF.%RSD | Action           | Samples Affected |
|---------------|------------|--------------------------------|---------|------------------|------------------|
| VOAB.i        | 21- May 98 | Acrolein                       | 96.371  | 70.05 / \$ \$0 % | Not on .TCL      |
|               |            | tricklors flue returns         | 52.395  |                  | Not on TCL       |
|               |            | ISOUNTYKE<br>Alchol            | 52.312  |                  | on TCL           |
|               |            | Allychlorida                   | 37.992  |                  | ON TEL           |
|               |            | methyland<br>Chloride          | 107,461 |                  | on TCL.          |
|               | 1          | Ethyle Actulo                  | 43.938  |                  | Not on Tec       |
|               |            | propionitrila                  | 61.119  |                  | on TCL           |
| $\forall$     |            | 42, di Aroro 3<br>chlorene pro | 26.720  |                  | I on TCL         |
|               |            |                                |         |                  |                  |
|               | 1          |                                |         |                  |                  |

Check for transcription/calculation errors. If errors are present, summarize necessary corrections below:

.

Reviewed By

| ₽.                    | Unitiality Allan I Review (UVR)  | l i i i i i i i i i i i i i i i i i i i |
|-----------------------|----------------------------------|-----------------------------------------|
| Project Leader ROYBAL | Project Name NON-ER SEPTIC TANKS | Case No. 7223.230                       |
| AR/COC No. 600435     | Analytical Lab GEL               | SDG No. 9807121                         |

In the tables below, mark any information that is missing or incorrect and give an explanation.

# 1.0 Analysis Request and Chain of Custody Record and Log-In Information

| Line |                                                                  | Com | olete? |                | Reso | ved? |
|------|------------------------------------------------------------------|-----|--------|----------------|------|------|
| No.  | ltem                                                             | Yes | No     | If no, explain | Yes  | No   |
| 1.1  | All items on COC complete - data entry clerk initialed and dated | X   |        |                |      |      |
| 1.2  | Container type(s) correct for analyses requested                 | X   |        |                |      |      |
| 1.3  | Sample volume adequate for # and types of analyses requested     | Х   |        |                |      |      |
| 1.4  | Preservative correct for analyses requested                      | X   |        |                |      |      |
| 1.5  | Custody records continuous and complete                          | X   |        |                |      |      |
| 1.6  | Lab sample number(s) provided                                    | X   |        |                |      |      |
| 1.7  | Date samples received                                            | X   |        |                |      |      |
| 1.8  | Condition upon receipt information provided                      | X   |        |                |      |      |

# 2.0 Analytical Laboratory Report

| Line |                                                                  | Com | plete? |                | Reso | lved? |
|------|------------------------------------------------------------------|-----|--------|----------------|------|-------|
| No.  | item                                                             | Yes | No     | If no, explain | Yes  | No    |
| 2.1  | Data reviewed, signature                                         | X   |        |                |      |       |
| 2.2  | Method reference number(s) complete and correct                  | X   |        |                |      |       |
| 2.3  | QC analysis and acceptance limits provided (MB, LCS, LCD)        | X   |        |                |      |       |
| 2.4  | Matrix spike/matrix spike duplicate data provided (if requested) | NA  |        |                |      |       |
| 2.5  | Detection Limits provided; PQL and MDL(or IDL)                   | X   |        |                |      |       |
| 2.6  | QC batch numbers provided                                        | X   |        |                |      |       |
| 2.7  | Dilution Factors provided                                        | X   |        |                |      |       |
| 2.8  | Data reported using correct sig. fig. (2 for org.; 3 for inorg.) | X   |        |                |      |       |
| 2.9  | Rad analysis uncertainty provided (2 sigma error)                | X   |        |                |      |       |
| 2.10 | Narrative provided                                               | X   |        |                |      |       |
| 2.11 | TAT met                                                          | X   |        |                |      |       |
| 2.12 | Hold times met                                                   | X   |        |                |      |       |
| 2.13 | Were contractual qualifiers provided                             | X   | _      |                |      |       |
| 2.14 | All requested result data provided                               | X   |        |                |      |       |

# 3.0 Data Quality Evaluation

ł

| item                                                                                                                                                                                                                                  | Yes | No | If no, Sample ID No. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----------------------|
| 3.1)Reporting units appropriate for the matrix and meet contract specified or<br>project-specific requirements? Inorganics and metals reported as ppm<br>(mg/liter or mg/Kg). Units consistent between QC samples and sample<br>data. | x   |    |                      |
| 3.2)Quantitation limit met for all samples?                                                                                                                                                                                           | X   |    |                      |
|                                                                                                                                                                                                                                       | T V |    |                      |
| a) Laboratory control sample accuracy reported and met for all samples?                                                                                                                                                               |     |    |                      |
| b) Surrogate data reported and met for all organic samples analyzed by<br>a gas chromatography technique?                                                                                                                             | X   |    |                      |
| c) If requested, matrix spike recovery data reported and met                                                                                                                                                                          | NA  |    |                      |
| 3.4)Precision                                                                                                                                                                                                                         | X   |    |                      |
| <ul> <li>a) Laboratory control sample precision reported and met for all<br/>samples? For rad analysis, sample duplicate precision reported and<br/>met.</li> </ul>                                                                   |     |    |                      |
| b) If requested, matrix spike duplicate RPD data reported and met.                                                                                                                                                                    | NA  |    | · ·                  |
| 3 5)Blank data                                                                                                                                                                                                                        | X   | 1  |                      |
| a) Method or reagent blank data reported and met for all samples?                                                                                                                                                                     |     |    |                      |
| b) Sampling blank (e.g., field, trip, and equipment) data reported and<br>met?                                                                                                                                                        | NA  |    |                      |
| 3.6)Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found<br>in method blank; "U"- analyte undetected (results are below the MDL or<br>L <sub>c</sub> (rad)); "H"-analysis done beyond the holding time.        | X   |    |                      |
| 3.7)Narrative included, correct, and complete?                                                                                                                                                                                        | ×   |    |                      |

)

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

| Sample/<br>Fraction No. | Analysis            | Qualifiers      |                         | Comments                                  |
|-------------------------|---------------------|-----------------|-------------------------|-------------------------------------------|
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         | ······              |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
|                         |                     |                 |                         |                                           |
| Were deficiencies note  | d. 🛛 Yes 🔘          | No              |                         |                                           |
| Based on the review     | , this data package | is complete.    | Yes 🙁 No                |                                           |
| If no, provide : non    | conformance repor   | t or correction | request number          | and date correction request was submitted |
| Reviewed by:            | ). Pale             | neia            | Date: 9-8-98 Closed by: | Date:                                     |

Ŷ

T

1

| 5-21 <b>F</b>                                                                                                                                                   |                                                                            |                                                                                |                                                                                       |                                |                                     |                             |                  |                                                                      |                                                                                                                     |                                   |                                |                |                         | Ì                        |                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|-----------------------------|------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|----------------|-------------------------|--------------------------|-------------------------|
| SF 2001-COC (10-97)<br>Supersedes (5-97) issue                                                                                                                  | Internal Lab<br>Batch No.                                                  |                                                                                | SAR                                                                                   | ANAL                           | <b>YSIS</b><br>                     | REQUI                       | EST              |                                                                      | CHAIN O                                                                                                             | F CUSI                            | ODY                            | AR/COC- [      | Page<br>600435          | <u>e 1 of 1</u><br>5     |                         |
| Dept, No./Mail Stop: <u>6</u><br>Project/Task Manager<br>Project Name: <u>101 N</u><br>Record Center Code;<br>Logbook Ref. No.:<br>Service Order No.: <u>05</u> | 0133 MS-1147<br>Mike Sanders<br>Ion-ER Septic Fields<br>ER/1295/DAT<br>526 | Data Samp<br>Carrier/Wa<br>Lab Contac<br>Lab Destina<br>SMO Conta<br>Send Repo | ites Ship<br>yoli No.<br>ct: <u>Edie</u><br>ation: <u>Gi</u><br>act/Phon<br>wt to SMi | Ned<br>Kent/8<br>EL<br>e: Doug | 0 <u>3-556-</u><br>1 Salmi<br>Monta | -8171<br>-8171<br>-844-311( | );\$#;<br>       | Contract<br>Case No<br>SMO Au<br>Bill to: Sa<br>Supplier<br>P.O. Box | No.: <u>AJ-24</u><br>.: <u>7223,230</u><br>thorization<br>andia Nationa<br>Services, De<br>< 5800 MS 0 <sup>-</sup> | BOA<br>I Laboratorie<br>pt<br>154 | : <del>3</del>                 |                |                         | i                        |                         |
| Location                                                                                                                                                        | Tech Area III                                                              |                                                                                |                                                                                       | ö                              |                                     |                             | Re               | ferenc                                                               | e LOV (                                                                                                             | availab                           | le at S                        | SMO)           | 12.0                    | _ •                      |                         |
| Building <u>NW6584</u><br>Sample No<br>Fraction                                                                                                                 | Room<br>ER Sample ID or<br>Sample Location Det                             | ail                                                                            | Beginning<br>Depth in F                                                               | ER Site N                      | Date<br>Col                         | e/Time<br>lected            | Sample<br>Matrix | Со<br>Туре                                                           | ntainer<br>Volume                                                                                                   | Preser-<br>vative                 | Sample<br>Collection<br>Method | Sample<br>Type | Parameter & Meth        | od Requested             | LAB USE<br>Lab<br>Sempl |
| 041477-002                                                                                                                                                      | ER-1295-NW6584-DF1-8H                                                      | 1-5-S                                                                          | 5                                                                                     | N/A                            | 7/198                               | 1/30                        | S                | AG                                                                   | 500ml                                                                                                               | 4C                                | G                              | SA             | SVOCs (8270)            | Gross A/B                | 61                      |
| 041478-002                                                                                                                                                      | ER-1295-NW6584-DF1-BH                                                      | 1-10-S                                                                         | 10                                                                                    | N/A                            | 1                                   | 1140                        | S                | AG                                                                   | 500ml                                                                                                               | 4C                                | G                              | SA             | SVOCs (8270)            | Gross A/B                | 0 2                     |
| 041479-002                                                                                                                                                      | ER-1295-NW6584-DF1-BH                                                      | 2-5-S                                                                          | 5                                                                                     | N/A                            |                                     | 1150                        | S                | AG                                                                   | 500ml                                                                                                               | 4C                                | G                              | SA             | SVOCs (8270)            | Gross A/B                | 03                      |
| 041480-002                                                                                                                                                      | ER-1295-NW0504-DF1-DH                                                      | 2-10-6                                                                         | 10                                                                                    | -N/A                           | F                                   |                             | -6               | A0                                                                   | 500ml                                                                                                               | 46                                | 0                              | SA             | <del>6VOCs (8270)</del> | Gross A/B                |                         |
| 041481-001                                                                                                                                                      | ER-1295-NW6584-DF1-64                                                      | 2-5-SD                                                                         | 5                                                                                     | N/A                            | Π                                   | 1230                        | S                | AC                                                                   | 300ml                                                                                                               | 4C                                | G                              | DU             | .VOCs (8260)            |                          | 0.4                     |
| 041481-003                                                                                                                                                      | ER-1295-NW6584-DF1-                                                        | 25-SD                                                                          | 5                                                                                     | N/A                            | V                                   | 1230                        | S                | AG                                                                   | 1L                                                                                                                  | 4C                                | G                              | DU             | SVOC8270, HE            | 8330,                    | 05                      |
|                                                                                                                                                                 |                                                                            |                                                                                |                                                                                       |                                |                                     |                             |                  |                                                                      |                                                                                                                     |                                   | G Spec, RCRA Met+Zn            |                | 8                       |                          |                         |
|                                                                                                                                                                 |                                                                            |                                                                                |                                                                                       |                                |                                     |                             |                  |                                                                      |                                                                                                                     |                                   |                                |                |                         |                          |                         |
| RMMA TYes X                                                                                                                                                     | No Ref. No.                                                                | L_                                                                             | <u>I</u>                                                                              |                                | Same                                | Instract                    |                  | 1                                                                    | 119F                                                                                                                | Special                           | Instruc                        | tions/Q        | C Requirements          | Abnormal                 |                         |
| Sample Disposa                                                                                                                                                  |                                                                            | Disposal b                                                                     | by lab                                                                                |                                | Date Entere                         | ntered (n<br>d by           | nm/dd            | /yy)                                                                 |                                                                                                                     | EDD X1<br>Raw da                  | res []]N<br>ta pack            | lo<br>age XYe  | ⇒s □No                  | Conditions<br>Receipt (A | e ch<br>Euse            |
| Sample                                                                                                                                                          | he XNormal LIRUSH R<br>ame<br>heis Cadechis                                | Signature                                                                      | eport L                                                                               | <u>Date</u>                    |                                     | Init C                      | ompan<br>ompan   | y/Organiz<br>613/18                                                  | ation/Phone                                                                                                         |                                   |                                |                |                         | Ounde,                   | ent                     |
| Team <u>C</u><br>Members                                                                                                                                        | HRIS SEARS                                                                 | this.                                                                          | form                                                                                  | 2                              |                                     | R1 51                       | n/G              | 131/2                                                                | 44-1156                                                                                                             | Please                            | list as s                      | eparate .      | report.                 |                          |                         |
| 1. Relinquished by                                                                                                                                              | Ving Paty Org.                                                             | G131 D                                                                         | ate 7                                                                                 | 1/98                           | Time                                | 1515                        | 4. Re            | alinquished                                                          | 1 by                                                                                                                |                                   | Org                            |                | Date                    | Time                     |                         |
| 1. Received by                                                                                                                                                  | 4. 4. fue Org. 7                                                           | 5710                                                                           | ate 7/                                                                                | 198                            | Time                                | 1575                        | 4. Re            | eceived by                                                           | •                                                                                                                   |                                   | Org                            |                | Date                    | Time                     |                         |
| 2. Relinquished by                                                                                                                                              | hy golan Org. 7                                                            | 577 º                                                                          | ate 12                                                                                | 2/21                           | • Time                              | 130                         | 5. Re            | linquished                                                           | t by                                                                                                                |                                   | Org                            | •              | Date                    | Time                     |                         |
| 2. Received by                                                                                                                                                  | Think Nouch Org. G                                                         | ⊡ ا_ع                                                                          | ate 7/                                                                                | 6198                           | Time                                | 12:65                       | 5. Re            | ceived by                                                            |                                                                                                                     |                                   | Org                            |                | Date                    | Time                     |                         |
| 3. Relinquished by                                                                                                                                              | v Org.                                                                     | D                                                                              | ate                                                                                   |                                | Time                                |                             | 6. Re            | linquished                                                           | i by                                                                                                                |                                   | Org                            |                | Date                    | Time                     |                         |
| 3. Received by                                                                                                                                                  | Org.                                                                       | D                                                                              | ata                                                                                   |                                | Time                                |                             | 6 Re             | ceived by                                                            |                                                                                                                     |                                   | Ora                            |                | Data                    | Time                     |                         |

Original To Accompany Samples, Laboratory Copy (White)

;

1<sup>st</sup> Copy To Accompany Samples, Return to SMO (Blue)

2<sup>nd</sup> Copy SMO Suspense Copy (Yellow)

3<sup>rd</sup> Copy Field Copy (Pink)

| SF 2001-COC (10-97)<br>Supersedes (5-97) issue | <i>L</i> , <i>I</i>                                                                   | ANALYSIS REQUEST AND CHAIN OF CUSTODY |                                   |         |              |                  |                |               |                    |                   |                                         | AR/COC-         | Page<br>600435   | <u>e 1 or</u><br>5 |                  |
|------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|---------|--------------|------------------|----------------|---------------|--------------------|-------------------|-----------------------------------------|-----------------|------------------|--------------------|------------------|
| Dept. No./Mail Stop:                           | Dept. No./Mail Stop: <u>6133 MS-1147</u><br>Project/Task Manager: <u>Mike Sanders</u> |                                       |                                   |         | <u>Mad a</u> | <b>1</b>         | ISE            | Contract      | No.: AJ-248        | BOA               |                                         |                 |                  |                    |                  |
| Project/Task Manage                            |                                                                                       |                                       |                                   |         | <u></u>      | 7                |                | Case No       | .: <u>7223.230</u> |                   |                                         |                 |                  |                    |                  |
| Project Name: 101 N                            | Project Name: 101 Non-ER Septic Fields Lab Co                                         |                                       | ict: <u>Edie</u>                  | Kent/8  | 03-556-      | 8171             |                | SMO Au        | thorization        |                   |                                         |                 |                  |                    |                  |
| Record Center Code:                            | ecord Center Code: <u>ER/1295/DAT</u> Lab Destination                                 |                                       |                                   | EL      |              |                  | 1              | Supplier      | Services, De       | pt.               |                                         | 1               |                  |                    |                  |
| Logbook Ref. No.:                              |                                                                                       | SMO Con                               | ontact/Phone: Doug Salmi/844-3110 |         |              |                  |                |               | 65800 MS 01        | 154               |                                         |                 |                  |                    |                  |
| Service Order No.: 0                           | 526                                                                                   | Send Rep                              | ort to SM                         | O: Suzi | Monta        | no               |                |               |                    | ·                 | ······                                  |                 |                  |                    |                  |
| Location                                       | Tech Area                                                                             | <del></del>                           |                                   | ö       |              |                  | Re             | <u>ferenc</u> | <u>e LOV (</u>     | <u>availab</u>    | le at S                                 | SMO)            |                  |                    |                  |
| Building NW6584                                | Room                                                                                  |                                       |                                   | N A     |              |                  | .e.,           | Co            | ntainer            |                   | 600                                     | a .             |                  |                    |                  |
| Sample No<br>Fraction                          | ER Sample ID or<br>Sample Location De                                                 | tail                                  | Begin<br>Depth                    | ER Si   | Dati<br>Col  | e/Time<br>lected | Samp<br>Matri  | Туре          | Volume             | Preser-<br>vative | Sampl<br>Collection<br>Metho            | Samp<br>Type    | Parameter & Meth | od Requested       | Lai<br>Sam<br>IC |
| 041477-002                                     | ER-1295-NW6584-DF1-BH                                                                 | 11-5-S                                | 5                                 | N/A     | 7/1/98       | j/30             | s              | AG            | 500ml              | 4C                | G                                       | SA              | SVOCs (8270)     | Gross A/B          |                  |
| 041478-002                                     | ER-1295-NW6584-DF1-BH                                                                 | +1-10-S                               | 10                                | N/A     | 1            | 1140             | S              | AG            | 500ml              | 4C                | G                                       | SA              | SVOCs (8270)     | Gross A/B          |                  |
| 041479-002                                     | ER-1295-NW6584-DF1-BH                                                                 | 12-5-5                                | 5                                 | N/A     |              | 1150             | S              | AG            | 500mi              | 4C                | G                                       | SA              | SVOCs (8270)     | Gross A/B          |                  |
| 041480-002                                     | ER-1295-NW0504-DF1-01                                                                 | 12-10-S-                              | -10                               | -N/A    | -/-          |                  | - <del>c</del> | AG            | 500ml              | 40                | G -                                     | SA              | -EVOCs (8270)    | Gross A/B          | -                |
| 041481-001                                     | ER-1295-NW6584-DF1-#                                                                  | Q. 5-SD                               | 5                                 | N/A     |              | 1230             | s              | AC            | 300ml              | 4C                | G                                       | DU              | VOCs (8260)      |                    |                  |
| 041481-003                                     | ER-1295-NW6584-DF1-6                                                                  | 425-SD                                | 25-SD 5 N/A                       |         | V 1230 S     |                  | S              | AG 1L 4       | 4C                 | G                 | DU                                      | SVOC8270, HE 83 | 8330,            | 330,               |                  |
|                                                |                                                                                       | ·                                     |                                   |         |              |                  |                |               | 1                  |                   | ]                                       |                 | G Spec, RCRA     | Met+Zn             |                  |
|                                                |                                                                                       | ····                                  |                                   |         | 1            |                  | [              | 1             |                    |                   |                                         |                 |                  |                    |                  |
|                                                |                                                                                       |                                       |                                   |         |              |                  |                |               |                    |                   |                                         |                 |                  |                    |                  |
|                                                |                                                                                       |                                       |                                   |         |              |                  | [              |               |                    |                   | 1                                       |                 |                  |                    |                  |
| RMMA Yes                                       | XNo Ref. No.                                                                          |                                       |                                   |         | Sam          | ole Trac         | king           | Sh            | YUSE/ 6            | Specia            | il Instru                               | ctions/Q        | C Requirements   | Abnormal           |                  |
| Sample Dispos                                  | al Return to Client >                                                                 | (Disposal                             | by lab                            |         | Date         | Entered (        | mu/de          | uyy) 🛃        | 2/20               | EDD X             | Yes 📋                                   | No              |                  | Conditions         | s:on             |
| Turneround Th                                  |                                                                                       | Deguirod                              | Danad                             | Data    | Enter        | ediov            |                | O. Initios    |                    | Raw da            | ata paci                                | age XYe         |                  | Receipt La         | A CISH           |
| Tumaround III                                  | Name                                                                                  | Signaturi                             | Report                            | Date    |              | I Init C         | Compar         | v/Organiz     | ation/Phone        | ×                 |                                         |                 |                  |                    |                  |
| Sample 7                                       | Sample Chsis Catechis Co                                                              |                                       |                                   |         |              | C.C. M           | Dm /           | 612/18        | 181-3196           | -                 |                                         |                 |                  |                    |                  |
| Team                                           | CHILIS SEAROS                                                                         | Elli                                  | Jen                               | U.      |              | 12 51            | ~ ( C          | e131/ 2       | -44-1136           | 7                 |                                         |                 |                  |                    |                  |
| Members                                        | lembers                                                                               |                                       |                                   |         |              |                  |                |               |                    | Please            | list as a                               | separate        | report.          | Time               |                  |
| 1. Received by                                 | Nuclear Org.                                                                          | (431                                  | Date                              | 11/98   | Time         | 1515             | 4. R           | ennquisne     |                    |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                 | Date             | Time               | , <b></b>        |
| 2 Relingue had by                              | My Ti Huy Org.                                                                        | (5)                                   | Date                              | 1/198   | Time         | 1515             | 5 0            | elinguishe    | y<br>ud by         |                   |                                         | u.              | Date             | Time               | <del></del>      |
| 2. Received ov                                 | Art They Ora                                                                          | 211                                   | Date                              | 12/8    | Time         | 130              | 5.R            | eceived b     | v                  |                   | Or                                      | a.              | Date             | Time               |                  |
| 3. Relinguished by                             | Ora.                                                                                  | ······                                | Date                              |         | Time         |                  | 6. R           | elinguishe    | ,<br>id by         |                   | Or                                      | <u> </u>        | Date             | Time               | <u></u>          |
| }                                              |                                                                                       |                                       |                                   |         |              |                  | +              |               |                    |                   |                                         |                 | Date             | ¥1                 |                  |

Original To Accompany Samples, Laboratory Copy (White)

i i. ÷

1<sup>st</sup> Copy To Accompany Samples, Return to SMO (Blue)

2<sup>nd</sup> Copy SMO Suspense Copy (Yellow)

3<sup>rd</sup> Copy Field Copy (Pink)



# FOR AR/COC 600510 (DSS SITE 1029, GEL 7/98)

 $< \infty$  ,

TOP 94-03 Rev. 0 Attachment C Page 35 of 115 July 1954

# INORGANIC DATA ASSESSMENT SUMMARY FORM

 $(x_{i+1}, \dots, x_{i+1}) \in \mathbb{R}$ 

. . .

.

)

a Mire

- · .

| (Data Verificatio                                                                                                     | Validation Level 3—DV3) Page 1 of 16                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SITE OR PROJECT NON ER SEPTIC                                                                                         | INKS CASE NO. 7223.2300                                                                                                                                                          |
| ANALYTICAL LABORATORY GEL                                                                                             | SAMPLE IDS                                                                                                                                                                       |
| LABORATORY REPORT # 9807247 A.                                                                                        | C. Arcoc's 600 400                                                                                                                                                               |
| TASKIFADER A ROY GAL                                                                                                  | 600429                                                                                                                                                                           |
| NO. OF SAMPLES 14 Joils.                                                                                              | 600 510                                                                                                                                                                          |
| DATA AS                                                                                                               | SSMENT SUMMARY CVAL                                                                                                                                                              |
|                                                                                                                       | P AA MERCURY CYANIDE                                                                                                                                                             |
| 1. HOLDING TIMES                                                                                                      | NA V NA                                                                                                                                                                          |
| 2. CALIBRATIONS                                                                                                       |                                                                                                                                                                                  |
| 3. BLANKS                                                                                                             |                                                                                                                                                                                  |
| 4. ICS                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                            |
| 5. LCS                                                                                                                |                                                                                                                                                                                  |
| 6. DUPLICATE ANALYSIS                                                                                                 |                                                                                                                                                                                  |
| 7. MATRIX SPIKE                                                                                                       |                                                                                                                                                                                  |
| B. MSA                                                                                                                |                                                                                                                                                                                  |
| 9. SERIAL DILUTION                                                                                                    | <u> </u>                                                                                                                                                                         |
| 10. SAMPLE VERIFICATION                                                                                               |                                                                                                                                                                                  |
| 11. OTHER QC                                                                                                          |                                                                                                                                                                                  |
| 12. OVERALL ASSESSMENT                                                                                                |                                                                                                                                                                                  |
| r (check mark) — Acceptable<br>Dther — Qualified: J - Estimate<br>UJ - Undetected<br>R - Unusable (a<br>ACTION ITEMS: | stimated<br>lyte may or may not be present)                                                                                                                                      |
|                                                                                                                       |                                                                                                                                                                                  |
| AREAS OF CONCERN: NOW - EVCE<br>Small Anounts of Analyte in<br>Impact data, Case narratire                            | + ICBI/CCBI->B desterted<br>310mle - Does Not significantly<br>F supported by report QC report for<br>Scrial dilution and LCSACSD differences<br>without a garcative Tast louder |

AL2-94 WP:SNL:SOP3044C.R1

ġ

• •

.

; . .

i

1

| Site: | NON ER                           | SEPTIC     | TANKS                                 | -                |                        |                                        |                 |
|-------|----------------------------------|------------|---------------------------------------|------------------|------------------------|----------------------------------------|-----------------|
| AR'   | COC: 600400                      | 600429     | 600510                                | Data Classifi    | cation:2               | Nor genics                             |                 |
|       | Sample<br>Fraction No.           | An         | alysis                                | DV<br>Qualifiers |                        | Comments                               |                 |
| a. 0  | 41471-003                        | Rb         |                                       |                  | 000                    | 484 mg/25.                             |                 |
| ER    | 2-1795-могзі-<br>ДFI-в           | Ag         | · · · · · · · · · · · · · · · · · · · | U star           | <del>0.162</del>       | My/ the Defection Line<br>0.595 mg /k  | <del></del> -   |
| ĒŔ    | 2-1295-10231-<br>14115-<br>0FI-B | BA         |                                       | e.ptJ            | M5 oct<br>window (l    | 60.9 with<br>67.0-131) ASDSI (67-1     | <del>,</del> ,) |
| 9     | ļ                                | <u>A11</u> |                                       | B3               | Numeroas               | Analytes detected a                    | á               |
|       | t •                              | As, ed, C  | F, Cu,                                | Az               | CRAC STA<br>Ail out of | timits exception                       | 6,              |
| ·     |                                  |            | <u>N</u>                              |                  |                        |                                        |                 |
| -     |                                  |            |                                       |                  |                        | ······································ |                 |
|       |                                  | DAt,       | 4- 15                                 | Acc              | Ept AB,                | le                                     |                 |
|       |                                  |            |                                       |                  | -                      |                                        |                 |
|       |                                  |            |                                       |                  | •                      |                                        |                 |
|       |                                  |            |                                       |                  | · .                    |                                        |                 |

1

-----

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate. needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010. EPA6020. EPA7470/1, EPA8015B. EPA8081. EPA8260. EPA8260-M3. EPA8270, HACH\_ALK. HACH\_NO2. HACH\_NO3. MEKC\_HE. PCBRISC

Date: 12/29/98 Reviewed by: (1) 1 Jaty 18

TOP 94-03 Fiev. 0 Attachment C Page 50 of 115 July 1994

## INORGANIC DATA ASSESSMENT SUMMARY FORM. (Data Verification/Validation Level 3-DV3)

Page 16 of 16

•.

1

If no for any of the above, sample results may be inaccurate. Note necessary changes and if errors are present, request resubmittal of laboratory package.

Were any sample results higher than the linear range of calibration curve and not subsequently reanalyzed at the appropriate dilution? Yes  $\Box$  No  $\Box$ 

Samples affected:

#### 11.3 Sample Quantitation

Check a minimum of 10% of positive sample results for transcription calculation errors. Summarize necessary corrections. If errors are large, request resubmittal of laboratory package.

Comments:

OK- data is Good / ACCEPTABLE

Approved By:\*

Date:

\*Task/Project Leader is responsible for approval of data set.

wit Reviewed By:

Date: 12/29/98

AL2-94/WP/SNL:SOP3044C.R1

TOP 94-03 Rev. 0 Attachment C Page 49 of 115 July 1994 ÷

# INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3) Page 15 of 16 **11.0 SAMPLE RESULT VERIFICATION** 11.1 Verification of Instrumental Parameters Are instrument detection limits present and verified on a quarterly basis? Yes $\Box$ No $\Box$ XA-Are IDLs present for each analyte and each instrument used? Yes 🗹 No 🗋 No 🗹 Is the IDL greater than the required detection limits for any analyte? Yes $\Box$ (If IDL > required detection limits, flag values less than 5xIDL.) Samples affected: NO NA Are ICP Interelement Correction Factors established and verified annually? Yes Are ICP Linear Ranges established and verified guarterly? Yes NO D NA If no for any of the above, review problems and resolutions in narrative report. 11.2 Reporting Requirements Were sample results reported down to the PQL? Yes D No If no, indicate necessary corrections. Were sample results that were analyzed by ICP for Se, TI, As, or Pb at least 5xIDL? Yes Z No Were sample weights, volumes, and dilutions taken into account when reporting sample results and detection limits? Yes 🗹 🛛 No 🗍

Reviewed By:

Date: 12/29/58

AL2-94/WP/SNL:SOP3044C.R1

# ANALYTICAL RADIOCHEMISTRY DATA VALIDATION CHECKLIST

| ic i | TAN | KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                     | Site Name                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19   | 807 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           | Chain of Custody                                                                                                                                         | No. 600400                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameter List:                                                                                           |                                                                                                                                                          | 600 429                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| YES  | NO  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | COMMENTS                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET CR                                                                                                    | itoria                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~    | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET CR                                                                                                    | iteria                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| レ    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET CRI                                                                                                   | TERA                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET CRIT                                                                                                  | ERIS                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     | in he character<br>Second Constant<br>I have constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MET CR                                                                                                    | literig                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     | à                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    | 1   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MET CR                                                                                                    | itenig                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ~    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |     | $\begin{array}{c c} \hline C & TAH \\ \hline J & 9807 \\ \hline 0 \\ \hline V \hline \hline V \\ \hline V \\ \hline V \hline \hline V \\ \hline V \hline \hline V \hline \hline V \\ \hline \hline V \hline $ | IC TANKS<br>J 9807247<br>00<br>YES NO NA<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | $ \begin{array}{c c} \hline TANKS \\ \hline 9807247 \\ \hline \\ \hline$ | IC TANKS Site Name   19807247 Chain of Custody   20 Parameter List:   YES NO   NA COMMENTS   NET CRITERIA   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V   V V |

AL/09-95/WP/LITCO:13859

الواديا سيسانين المادية الاراسا بالسبسان المم

310723.00:01.000 12/04/97 12:17pm

١Ì

# ANALYTICAL RADIOCHEMISTRY DATA VALIDATION CHECKLIST (CONTINUED)

| Project Name NON ER SEPTIC                | TA    | NKS |     | Site Namo        |            |
|-------------------------------------------|-------|-----|-----|------------------|------------|
| Laboratory Name/Job No./Batch No. GEL     | 198   | 072 | 47  | Chain of Custody | No. 600400 |
| Analysis Method EPA 900.0 HASL            | . 300 | 2   |     | Parameter List:  | 600510)    |
| REVIEW ITEM                               | YES   | NO  | NA  | COMMENTS         |            |
| -4. Preparation: Entire procedure?        | ~     |     |     |                  |            |
| H. ANALYTE DETECTION                      |       |     |     | met criterie     |            |
| 1. Detection limit sample/batch specific? | V     |     |     | - 1              |            |
| 2. Errors evaluated?                      | ~     |     |     |                  |            |
| 3. False positives/nagatives/syspected?   |       | 1   |     | 4                |            |
| leviewed by: 4 and Sauce                  | Ð     |     | 121 | 129/98           |            |

į.

47

AL/09-95/WP/LITCO:T3859

B-2

310723.005 01.000 12/04/97 12:17pm

. . . .

.....

TCP 54-03 Fiev. 0 Attachment C Page 107 of 115 July 1994

# ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 9 of 18

# 6.0 BLANK ANALYSES

#### 6.1 Method/Reagent and Instrument Blanks

Has a method/reagent blank been analyzed for each set of samples or for every 20 samples of similar matrix, whichever is more frequent? Yes 🗹 No 🗌

Has an instrument blank been analyzed at least once every twelve hours for each GC/MS system used? Yes I No I

## 6.2 Field Rinse Equipment Blanks

Are there field rinse/equipment blanks associated with each sampling day or at frequency specified in the sampling plan. Yes  $\Box$  No  $\boxtimes$  Not submitted  $\omega$  ARCOC

List below compounds for which analyses were requested that were detected in any of the blanks analyzed:

| Date    | Elank ID | Compound                | Conc. | PQL<br>() | Action Level | Samples Affected<br>(Action) |
|---------|----------|-------------------------|-------|-----------|--------------|------------------------------|
| 7/17/98 | 126458   | methylene<br>  Chloride | 1.2   | 5 49/1g   | ND IN SAMPE  |                              |
|         |          |                         |       |           |              |                              |
|         | (        |                         |       |           |              |                              |
|         |          |                         |       |           |              |                              |
|         |          |                         |       |           |              |                              |
|         |          |                         |       |           |              |                              |
|         | •        |                         |       |           | 1            |                              |

POL = Practical Quantitation Limit from EPA Method.

Reviewed By: Date:

.

TOP 94-03<sup>4</sup> Rev. 0 Attachment C Page 99 of 115 July 1994

# ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 1 of 18

| SITE OR PROJECT NON ER SEPTIC TANK | SAMPLE IDS              |
|------------------------------------|-------------------------|
| ANALYTICAL LABORATORY GEL          | NO. OF SAMPLES 16 Soils |
| LABORATORY REPORT # <u>9807247</u> | Coc - 600 400 600 429   |
| CASE NO. 7223.230                  | 600 510                 |
|                                    |                         |

# DATA ASSESSMENT SUMMARY

Describe problems/qualifications below (Action Items and Areas of Concern)

| 1.   | HOLDING                          |                | svoc          | PEST/PCB        | OTHER<br>NA |
|------|----------------------------------|----------------|---------------|-----------------|-------------|
|      | TIMES/PRESERVATION               |                |               | ſ               | 1           |
| 2.   | GC/MS INST. PERFORM.             |                |               |                 |             |
| 3.   | CALIBRATIONS WINDOWS             | W              | W V           |                 | ·           |
| 4.   | ELANKS                           | XAGB           | X tal ges     |                 |             |
| 5.   | SURROGATES                       | <u> </u>       |               |                 |             |
| 6.   | MATRIX SPIKE/DUP                 |                | <u> </u>      |                 | · ·         |
| 7.   | LABORATORY CONTROL<br>SAMPLES    |                | _ <u>~</u>    |                 |             |
| 8.   | INTERNAL STANDARDS               | <i>L</i>       | <u> </u>      |                 |             |
| Ç.   | COMPOUND<br>IDENTIFICATION       |                |               |                 |             |
| 10.  | SYSTEM PERFORMANCE               |                |               |                 |             |
| 11.  | OVERALL ASSESSMENT               |                |               |                 | -           |
| (che | eck mark) — Acceptable: Data had | no problems or | qualified due | to minor proble | ns          |

Check mark) — Acceptable: Data had no problems or qualified due to minor problems
 N - Data qualified due to major problems
 <u>X</u> - Problems, but do not affect data
 Qualifiers: J - Estimate
 UJ - Undetected, estimated

to be tokon NONE ACTION ITEMS: FOR VOC/SYDC un ICB/CCB's AREAS OF CONCERN: \_\_\_\_\_\_ Contaminaton data. but does Not significantly AFfect MISSED @ 0/0 R on ms HE used 126117ms F m All MSD white Acceptance Reviewed By: Date:

4L2-54 WP SNL:SOP3044C R1

TOP 94-03 Rev. 0 Attachment C Page 115 of 115 July 1994

|                                                                                                                                            |                                                                                                                                               | (Data Verificati                                                                                                     | on/Validation L                                                               | evel 3 DV-3)                                                            | Page 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13.1 Chromatog                                                                                                                             | gram Ouality                                                                                                                                  |                                                                                                                      |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were baselines s                                                                                                                           | table? Yes 🗹                                                                                                                                  | No 🗌                                                                                                                 |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were any negativ                                                                                                                           | ve peaks or unus                                                                                                                              | sual peaks prese                                                                                                     | nt? Yes 🗋                                                                     | No 🗹                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Were early elutin                                                                                                                          | g peaks resolved                                                                                                                              | to baseline? Y                                                                                                       | es 🗹 🛛 No 🕻                                                                   | ]                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If incorrect quant                                                                                                                         | itations are evide                                                                                                                            | ent, note correcti                                                                                                   | ons necessary                                                                 | beisw:                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>                                                                                                                                   |                                                                                                                                               | · <u> </u>                                                                                                           | <u> </u>                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            |                                                                                                                                               |                                                                                                                      |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Are the required moisture? Yes [                                                                                                           | cuantitation limits                                                                                                                           | s (detection limit                                                                                                   | s) adjusted to r                                                              | efiest sample cliut                                                     | ions and for spils, san                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If no, make nece                                                                                                                           | ssary corrections                                                                                                                             | and note below                                                                                                       | ·.                                                                            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            |                                                                                                                                               |                                                                                                                      |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            |                                                                                                                                               |                                                                                                                      |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            |                                                                                                                                               |                                                                                                                      |                                                                               |                                                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14.0 TENTATIV                                                                                                                              | ELY IDENTIFIED                                                                                                                                | COMPOUNDS                                                                                                            |                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.0 TENTATIV<br>Are Tentatively k<br>concentration, an                                                                                    | ELY IDENTIFIED<br>dentified Compound J qualifier? Ye                                                                                          | D COMPOUNDS<br>uncis (TIC) prope<br>es 🖄 No 🗌                                                                        | rly identified wi                                                             | th scan number of                                                       | retention time, estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.0 TENTATIV<br>Are Tentatively k<br>concentration, an<br>Are the mass spe                                                                | ELY IDENTIFIED<br>dentified Compound J qualifier? Ye<br>ectra for TICs an                                                                     | D COMPOUNDS<br>uncis (TIC) prope<br>es D No D<br>d associated "be                                                    | rly identified wi                                                             | th scan number of<br>straincluded? Yes                                  | retention time, estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.0 TENTATIV<br>Are Tentatively Ic<br>concentration, an<br>Are the mass spe<br>Are any TCL con                                            | ELY IDENTIFIED<br>dentified Compound J qualifier? Ye<br>ectra for TICs an                                                                     | D COMPOUNDS<br>unds (TIC) prope<br>es D No D<br>d associated "be<br>s TIC compound                                   | rly identified wi<br>est match" spec<br>s? Yes 🗌                              | th scan number of<br>tra included? Yes                                  | retention time, estima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.0 TENTATIV<br>Are Tentatively lo<br>concentration, an<br>Are the mass spe<br>Are any TCL con<br>Are each of the in<br>present in the sa | ELY IDENTIFIED<br>dentified Compound<br>of J qualifier? Ye<br>ectra for TICs an<br>appounds listed as<br>ons present in th<br>mple mass spect | D COMPOUNDS<br>uncs (TIC) prope<br>es M No<br>d associated "be<br>s TIC compound<br>the reference mas<br>trum? Yes M | rly identified wi<br>est match* spec<br>s? Yes<br>s spectra with<br>No        | th scan number of<br>tra included? Yes<br>No IP<br>a relative intensity | retention time, estimated in the state of th |
| 14.0 TENTATIV<br>Are Tentatively k<br>concentration, an<br>Are the mass spe<br>Are any TCL con<br>Are each of the in<br>present in the sa  | ELY IDENTIFIED<br>dentified Compound<br>d J qualifier? Ye<br>ectra for TICs an<br>appounds listed as<br>ons present in th<br>mple mass spect  | COMPOUNDS<br>unds (TIC) prope<br>es No<br>d associated "be<br>s TIC compound<br>he reference mas<br>trum? Yes        | rly identified wi<br>est match" spec<br>s? Yes<br>ss spectra with<br>No<br>No | th scan number of<br>traincluded? Yes<br>No I                           | retention time, estimates and the set imates and th |

Reviewed By: 22 Date: 22 AL2-54 WP:SNL:SOF3044C.51

SY

**.** . .
TOP 94-03 Rev. 0 Attachment C Page 113 of 115 July 1994

.

.

|                                                                                                                             |                                                                             |                                                                                                            | Pa                                                                               | age 15 c                |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|
| Other:                                                                                                                      |                                                                             |                                                                                                            | ·····                                                                            |                         |
| Is the RRT of each re<br>continuing calibration?                                                                            | oorted compound wit                                                         | thin the limits given in the method                                                                        | d of the standard RR                                                             | l'in the                |
| Are all the ions preser the mass spectrum?                                                                                  | nt in the standard ma<br>Yes 🚺 No 🗖                                         | ess spectrum at a relative intensit                                                                        | y greater than 10% a                                                             | lso prese               |
| Do sample and standa                                                                                                        | rd relative intensities                                                     | s agree within 20%? Yes 🗹                                                                                  | No                                                                               |                         |
| If no for any of the ab                                                                                                     | ove, indicate below p                                                       | problems and qualifications made                                                                           | to data:                                                                         |                         |
|                                                                                                                             |                                                                             |                                                                                                            |                                                                                  |                         |
|                                                                                                                             | · · ·                                                                       |                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                            |                         |
| 11.2 GC Analyses                                                                                                            |                                                                             |                                                                                                            |                                                                                  | -                       |
| Are there any transcrip<br>Yes No I<br>If yes, review errors at<br>be necessary.                                            | ntion calculation erro                                                      | rs between the raw data and the<br>tions below; if errors are large, re                                    | reporting forms?                                                                 | y paskag                |
|                                                                                                                             |                                                                             |                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                            |                         |
|                                                                                                                             |                                                                             | 10/00                                                                                                      |                                                                                  |                         |
|                                                                                                                             |                                                                             |                                                                                                            |                                                                                  |                         |
| ·<br>                                                                                                                       |                                                                             |                                                                                                            |                                                                                  |                         |
| Are retention times of confirmation analysis?                                                                               | sample compounds<br>Yes No                                                  | within the calculated retention tin                                                                        | ne windows for both c                                                            | quantitatic             |
| Are retention times of<br>confirmation analysis?<br>Was GC/MS confirmat                                                     | sample compounds<br>Yes No I<br>ion performed when                          | within the calculated retention tin<br>required by the EPA method?                                         | ne windows for both c<br>Yes                                                     | quantitatio             |
| Are retention times of<br>confirmation analysis?<br>Was GC/MS confirmat<br>If no for any of the ab-<br>compounds are simila | sample compounds<br>Yes No<br>ion performed when<br>ove, reject positive re | within the calculated retention tin<br>required by the EPA method? Y<br>esults except for retention time w | ne windows for both c<br>'es  \Rightarrow No \Rightarrow<br>indows if associated | quantitatio<br>standard |

٠

1

.

.

.

.

# 3.0 Data Quality Evaluation

ż

| Item                                                                                                                                                                                                                                  | Yes | No | If no, Sample ID No./Fraction(s) and Analysis |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------------|
| 3.1)Reporting units appropriate for the matrix and meet contract specified or<br>project-specific requirements? Inorganics and metals reported as ppm<br>(mg/liter or mg/Kg). Units consistent between QC samples and sample<br>data. |     |    |                                               |
| 3.2)Quantitation limit met for all samples?                                                                                                                                                                                           | X   |    |                                               |
| 3.3)Accuracy<br>a) Laboratory control sample accuracy reported and met for all<br>samples?                                                                                                                                            | X   |    |                                               |
| <ul> <li>b) Surrogate data reported and met for all organic samples analyzed by<br/>a gas chromatography technique?</li> </ul>                                                                                                        | X   |    |                                               |
| c) If requested, matrix spike recovery data reported and met .                                                                                                                                                                        | NA  |    |                                               |
| 3.4)Precision <ul> <li>a) Laboratory control sample precision reported and met for all samples? For rad analysis, sample duplicate precision reported and met.</li> </ul>                                                             | X   |    |                                               |
| b) If requested, matrix spike duplicate RPD data reported and met.                                                                                                                                                                    | NA  |    |                                               |
| 3.5)Blank data<br>a) Method or reagent blank data reported and met for all samples?                                                                                                                                                   | x   |    |                                               |
| b) Sampling blank (e.g., field, trip, and equipment) data reported and<br>met?                                                                                                                                                        | NA  |    |                                               |
| 3.6)Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found<br>in method blank; "U"- analyte undetected (results are below the MDL or<br>L <sub>c</sub> (rad)); "H"-analysis done beyond the holding time.        | X   |    |                                               |
| 3.7)Narrative included, correct, and complete?                                                                                                                                                                                        | X   |    |                                               |

1

# Contract Verification Review (CVR)

| CVR. | àoc |
|------|-----|
|------|-----|

| Project Leader | SANDERS              | Project Name   | NON-ER SEPTIC FIELDS | Case No. | 7223.230 |
|----------------|----------------------|----------------|----------------------|----------|----------|
| AR/COC No.     | 600400/600429/600510 | Analytical Lab | GEL                  | SDG No.  | 9807247  |

In the tables below, mark any information that is missing or incorrect and give an explanation.

# 1.0 Analysis Request and Chain of Custody Record and Log-In Information

| Line |                                                                  | Com | olete? |                | Reso | lved? |
|------|------------------------------------------------------------------|-----|--------|----------------|------|-------|
| No.  | Item                                                             | Yes | No     | If no, explain | Yes  | No    |
| 1.1  | All items on COC complete - data entry clerk initialed and dated | Х   |        |                |      |       |
| 1.2  | Container type(s) correct for analyses requested                 | X   |        |                |      |       |
| 1.3  | Sample volume adequate for # and types of analyses requested     | X   |        |                |      |       |
| 1.4  | Preservative correct for analyses requested                      | X   |        |                |      |       |
| 1.5  | Custody records continuous and complete                          | Х   |        |                |      |       |
| 1.6  | Lab sample number(s) provided                                    | X   |        |                |      |       |
| 1.7  | Date samples received                                            | Х   |        |                |      |       |
| 1.8  | Condition upon receipt information provided                      | Х   |        |                |      |       |

### 2.0 Analytical Laboratory Report

| Line |                                                                  | Com | olete? |                                       | Reso | lved?     |
|------|------------------------------------------------------------------|-----|--------|---------------------------------------|------|-----------|
| No.  | ltem                                                             | Yes | No     | If no, explain                        | Yes  | No        |
| 2.1  | Data reviewed, signature                                         | X   |        | · · · · · · · · · · · · · · · · · · · |      |           |
| 2.2  | Method reference number(s) complete and correct                  | X   |        |                                       |      |           |
| 2.3  | QC analysis and acceptance limits provided (MB, LCS, LCD)        | X   |        |                                       |      |           |
| 2,4  | Matrix spike/matrix spike duplicate data provided(if requested)  | NA  |        |                                       |      |           |
| 2.5  | Detection Limits provided; PQL and MDL(or IDL)                   | X   |        |                                       |      |           |
| 2.6  | QC batch numbers provided                                        | X   |        |                                       |      |           |
| 2.7  | Dilution Factors provided                                        | X   |        |                                       |      |           |
| 2.8  | Data reported using correct sig. fig. (2 for org.; 3 for inorg.) | X   |        |                                       |      | · · · · · |
| 2.9  | Rad analysis uncertainty provided (2 sigma error)                | X   |        |                                       |      |           |
| 2.10 | Narrative provided                                               | X   |        |                                       |      |           |
| 2.11 | TAT met                                                          | X   |        |                                       |      |           |
| 2.12 | Hold times met                                                   | X   |        |                                       |      |           |
| 2.13 | Were contractual qualifiers provided                             | X   |        |                                       |      |           |
| 2.14 | All requested result data provided                               | X   |        |                                       |      |           |

And the second s

CVR.doc

Ś

# 4.0 Data Quality Evaluation Continuation

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

| Sample/<br>Fraction No. | Analysis                              | Qualifiers      |                | Commen     | ts                              |  |
|-------------------------|---------------------------------------|-----------------|----------------|------------|---------------------------------|--|
|                         |                                       |                 |                |            | •                               |  |
|                         |                                       |                 |                |            |                                 |  |
|                         | · · · · · · · · · · · · · · · · · · · |                 |                | · · · · ·  |                                 |  |
| 1                       |                                       |                 |                |            |                                 |  |
|                         |                                       |                 | ·              |            |                                 |  |
|                         |                                       |                 |                |            |                                 |  |
|                         |                                       |                 |                |            |                                 |  |
|                         |                                       |                 | ·····          |            |                                 |  |
|                         |                                       |                 |                |            |                                 |  |
| Were deficiencies note  | ed. 🛛 Yes 🔘                           | No              |                |            |                                 |  |
| Based on the review     | , this data package                   | is complete.    | Yes 😕 No       | · · ·      |                                 |  |
| If no, provide : nor    | nconformance repor                    | t or correction | request number | and date c | orrection request was submitted |  |
| Reviewed by:            | ). Palen                              | cia             | Date: Date: Cl | osed by:   | Date:                           |  |

| SF 2001-COC (10-97)<br>Supersedes (5-97) jesue                                                                                                                 | Internal Lab<br>Batch No.                                     | 4                                                                                              | ANA<br>SAR/WR I                                                                                     | LYSIS RI<br><sup>∿0.</sup> / _/                   | EQUE                 | ST /               | AND C                                                                  | HAIN O                                                                                                     | FCUST                   | ODY                           |                | AR/C                                  | oc- [                                 | Pag<br>600510            | ie 1 of          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|--------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|----------------|---------------------------------------|---------------------------------------|--------------------------|------------------|
| Dept. No./Mail Stop: <u>6</u><br>Project/Task Manager<br>Project Name: <u>101 N</u><br>Record Center Code:<br>Logbook Ref. No.:<br>Service Order No.: <u>0</u> | 7: <u>Mike Sanders</u><br>Ion-ER Septic Fields<br>ER/1295/DAT | Data Samples<br>Camer/Waybi<br>Lab Contact:<br>Lab Destination<br>SMO Contact<br>Send Report 1 | Shipped<br>II Na <u>P</u><br>Edie Kenta<br>on: <u>GEL</u><br>/Phone: <u>Dou</u><br>o SMO: <u>Su</u> | 18/58/<br>803-556-81<br>ug Salmi/84<br>zi Montano | <u>71</u><br>44-3110 | ŧ                  | Contract<br>Case No.<br>SMO Aut<br>Bill to: Sa<br>Supplier<br>P.O. Box | No.: <u>AJ-248</u><br>.: <u>7223.230</u><br>thorization<br>andia National<br>Services, Dep<br>: 5800 MS 01 | Laboratorie<br>ot<br>54 | <u>m</u> ()<br>               | ef<br>{        |                                       |                                       |                          |                  |
| Location                                                                                                                                                       | Tech Area III                                                 |                                                                                                |                                                                                                     |                                                   |                      | Ret                | ferenc                                                                 | e LOV (                                                                                                    | availab                 | le at S                       | SMO)           |                                       |                                       |                          |                  |
| Building NW6584                                                                                                                                                | Room                                                          |                                                                                                |                                                                                                     |                                                   |                      | ω                  | Cor                                                                    | ntainer                                                                                                    |                         | . <u>.</u> .                  | ø              |                                       |                                       |                          | LAB U            |
| Sample No<br>Fraction                                                                                                                                          | ER Sample ID or<br>Sample Location De                         | tail a                                                                                         | Depth i<br>ER Site                                                                                  | Date/Ti<br>Collect                                | ime<br>led           | Sample<br>Matrix   | Туре                                                                   | Volume                                                                                                     | Preser-<br>vative       | Sample<br>Collectio<br>Method | Sample<br>Type | Parameter                             | & Meth                                | nod Requested            | La<br>Sarr<br>IC |
| -041480-002                                                                                                                                                    | 5R-1295-NW6584 DF1-BI                                         | 12-10-3 10                                                                                     | N/A                                                                                                 |                                                   |                      | 3                  | -49                                                                    | - <del>500ml</del>                                                                                         | 40                      | e                             | SA             | SVOEs (                               | 8270)                                 | Gross A/B                |                  |
| 041506-002                                                                                                                                                     | ER-1295-NW6584-DF1-B                                          | 13-5-5 5                                                                                       | N/A                                                                                                 | 7/6/98                                            | 0750                 | s                  | AG                                                                     | 500ml                                                                                                      | 4C                      | G                             | SA             | SVOCs (                               | 8270)                                 | Gross A/B                |                  |
| 041507-002                                                                                                                                                     | ER-1295-NW6584-DF1-BF                                         | {3-10-S 10                                                                                     | N/A                                                                                                 | 7/4/91                                            | 0810                 | s                  | AG                                                                     | 500mi                                                                                                      | 4C                      | G                             | SA             | SVOCs (                               | 8270)                                 | Gross A/B                |                  |
|                                                                                                                                                                |                                                               |                                                                                                |                                                                                                     | · · · · · · · · · · · · · · · · · · ·             |                      |                    |                                                                        |                                                                                                            |                         |                               |                | · · · · · · · · · · · · · · · · · · · |                                       |                          |                  |
| RMMA TYes >                                                                                                                                                    | KNo Ref. No.                                                  |                                                                                                |                                                                                                     | Sample                                            | Tracki               | ng                 | SMC                                                                    | ) USE                                                                                                      | Specia                  | Instruc                       | tions/QC       | Requirer                              | nents                                 | Abnormal                 |                  |
| Sample Dispos                                                                                                                                                  | al Return to Client >                                         | Disposal by                                                                                    | lab                                                                                                 | Date Ent<br>Entered                               | ered yny<br>by 2     | m/dd               | /w/5/47                                                                | 1/92<br>Ann)                                                                                               | EDD X<br>Raw da         | res 🔲<br>Ita pack             | No<br>age XYe  | s 🗌 No                                |                                       | Conditions<br>Receipt LA | s on<br>Buse     |
|                                                                                                                                                                |                                                               | Signature                                                                                      | bon Date                                                                                            |                                                   | nit Co               | moan               | v/Organiz                                                              | ation/Phone                                                                                                |                         |                               |                |                                       |                                       |                          |                  |
| Sample C                                                                                                                                                       | Lais Catechis                                                 | Chi Cote                                                                                       | t                                                                                                   | (<br>(                                            | 1. AD                | m 16<br>161        | 3(189                                                                  | 31-3196                                                                                                    | -                       |                               |                |                                       |                                       |                          |                  |
| Members                                                                                                                                                        |                                                               |                                                                                                |                                                                                                     |                                                   |                      |                    |                                                                        |                                                                                                            | Please                  | list as s                     | eparate i      | report,                               |                                       |                          |                  |
| 1. Relinquished by                                                                                                                                             | hip ferry Org.                                                | 6131 Dat                                                                                       | <u>° 7/7/98</u>                                                                                     | Z Time /                                          | 985                  | 4. Re              | linquished                                                             | ву                                                                                                         | <u> </u>                | Org                           | l <b>.</b>     | Date                                  |                                       | Time                     |                  |
| 1. Received by                                                                                                                                                 | 199 Jun Org.                                                  | DZZ Dat                                                                                        | "7[ <i>7[7]</i>                                                                                     | Time                                              | 445                  | 4. Re              | eceived by                                                             | ·                                                                                                          |                         | Org                           | l.             | Date                                  |                                       | Time                     |                  |
| 2. Rélinquished by                                                                                                                                             | 49 Jay Org. 7                                                 | 2577Dat                                                                                        | • <i>7/8/</i>                                                                                       | Time                                              | 30                   | 5. Re              | elinquished                                                            | d by                                                                                                       |                         | Org                           | l.<br>         | Date                                  |                                       | Time                     |                  |
| 2. Kecerved by                                                                                                                                                 |                                                               |                                                                                                | · · /                                                                                               | Time                                              |                      | 5. Ke              | linguishes                                                             | d by                                                                                                       |                         |                               | l.             | Date                                  | · · · · · · · · · · · · · · · · · · · |                          |                  |
|                                                                                                                                                                |                                                               | 1 1 2 1                                                                                        | -                                                                                                   | 1.073.04                                          |                      | - το. <b>Π</b> . Ε |                                                                        | 1.1.7                                                                                                      |                         | UIG                           |                | េអាមើ                                 |                                       | 1 17716                  |                  |

n dike on

Original To Accompany Samples, Laboratory Copy (White)

ŧ

.

1<sup>st</sup> Copy To Accompany Samples, Return to SMO (Blue) 2<sup>nd</sup> Copy SMO Suspense Copy (Yellow) 3<sup>rd</sup> Copy Field Copy (Pink)

\*\*\*



# FOR AR/COC 602764 (DSS SITE 1029, GEL 8/99)

.

Per skine.

2.000

Records Center Code: ER / 1295 / DAT

# SMO ANALYTICAL DATA ROUTING FORM

| Project Name: Non-ER Septic           | Systems                              | Case No./Sei             | rvice Order:       | 7223.230 / CF0686                     |
|---------------------------------------|--------------------------------------|--------------------------|--------------------|---------------------------------------|
| SNL Task Leader: R                    | DYBAL                                | Org/Mail St              | op:                | 6135 / 1089                           |
| SMO Project Coordinator: SA           |                                      | Sample Ship              | Date:              | 8/25/99                               |
| ARCOC Lab Lab                         | Prelim<br>ID Rece                    | iinary Fi<br>ived Rec    | nal ED<br>eived YE | D Req'd EDD Rec'd<br>S NO YES NO      |
| <u>602764 GEL 9908</u>                | 965                                  | 9/2                      | 7/99 x             |                                       |
|                                       |                                      |                          |                    |                                       |
|                                       |                                      |                          |                    |                                       |
| Correction Requested from Lab:        | Date<br>10-13-59<br><del>21777</del> | Correction<br>Request #: | 213                | <del>ر ر</del>                        |
| <b>Corrections Received:</b>          | 10-26-99                             | Requester:               | Pal                | encia                                 |
| Review Complete:                      | 10-13.99                             | Signature:               | w,                 | Polencia                              |
| Priority Data Faxed:                  |                                      | Faxed To:                |                    |                                       |
| Preliminary Notification:             |                                      | Person Notifie           | d:                 | · · · · · · · · · · · · · · · · · · · |
| Final Transmittal:                    | 10-13-99                             | Transmitted T            | 'o: <u>Sa</u>      | nders                                 |
|                                       | A.                                   | Transmitted <b>E</b>     | y: Pa              | lencia                                |
| Filed in Records Center(ER:)          | 10-26-99                             | Filed By:                | Pale               | ncia                                  |
| Comments:<br>PPPPIVIE<br>NOV 0 2 1999 | ,                                    |                          |                    |                                       |

Received (Records Center) By: \_\_\_\_\_

.

# **Data Validation Qualifiers and Descriptive Flags\***

| Qualifiers                    | Comment                                                                                                                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J                             | The associated value is an estimated quantity.                                                                                                                        |
| J1                            | The method requirements for sample preservation/temperature were not met for the sample analysis. The associated value is an estimated quantity.                      |
| J2                            | The holding time was exceeded for the associated sample analysis. The associated value is an estimated quantity.                                                      |
| IJ                            | The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.                                            |
| U                             | The associated result is less than ten times the concentration in any blank and<br>is determined to be non-detect. The analyte is a common laboratory<br>contaminant. |
| U1                            | The associated result is less than five times the concentration in any blank and is determined to be non-detect.                                                      |
| R                             | The data are unusable for their intended purpose. The analyte may or may not be present. (Note: Resampling and reanalysis is necessary for verification.)             |
| Descriptive Flags             | • · · ·                                                                                                                                                               |
| A                             | Laboratory accuracy and/or bias measurements for the associated Laboratory Control Sample and/or duplicate (LCS/LCSD) do not meet acceptance criteria.                |
| Al                            | Laboratory accuracy and/or bias measurements for the associated Surrogate<br>Spike do not meet acceptance criteria.                                                   |
| A2                            | Laboratory accuracy and/or bias measurements for the associated Matrix Spike and/or duplicate (MS/MSD) do not meet acceptance criteria.                               |
| A3                            | Insufficient quality control data to determine laboratory accuracy.                                                                                                   |
| B                             | Analyte present in laboratory method blank                                                                                                                            |
| Bl                            | Analyte present in trip blank.                                                                                                                                        |
| B2                            | Analyte present in equipment blank.                                                                                                                                   |
| B3                            | Analyte present in calibration blank.                                                                                                                                 |
| P                             | Laboratory precision measurements for the Laboratory Control Sample and duplicate (LCS/LCSD) do not meet acceptance criteria.                                         |
| P1                            | Laboratory precision measurements for the Matrix Spike Sample and associated duplicate (MS/MSD) do not meet acceptance criteria.                                      |
| P2                            | Insufficient quality control data to determine laboratory precision.                                                                                                  |
| * This is not a definit list. | ive list. Other qualifiers are potentially available. Notify Tina Sanchez to revise                                                                                   |

Note: Qualifiers may be used in conjunction with descriptive flags [e.g., J, A; UJ, P; U, B].

| ARCOC #602764<br>Organic Analyses<br>(VOCs)<br>Sample NoFraction | 75-15-0<br>(carbon disulfide) | 75-09-2<br>(methylene chloride) | 78-93-3<br>(2-butanone) | 79-01-6<br>(trichloroethene) |      |   |   |      |   |   |  |   |   |    |   |
|------------------------------------------------------------------|-------------------------------|---------------------------------|-------------------------|------------------------------|------|---|---|------|---|---|--|---|---|----|---|
| 049955-001                                                       |                               | _                               | UJ                      | UJ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049956-001                                                       |                               | 7.8U,B                          | UJ                      | UJ                           |      |   |   |      |   |   |  |   |   | Γ. |   |
| 049957-001                                                       |                               | 5U,B                            | J                       | UJ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049958-001                                                       |                               | 5U,B                            | ບງ                      | ບງ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049959-001                                                       | J                             | 5U,B                            | J                       | UJ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049960-001                                                       |                               | 5U,B                            | J                       | IJ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049961-001                                                       |                               | 5U,B                            | UJ                      | · UJ                         |      |   |   |      | • | [ |  |   |   |    |   |
| 049962-001                                                       |                               | 5U,B                            | J                       | UJ                           |      |   |   |      |   |   |  |   |   |    | Γ |
| 049963-001                                                       |                               | 7.3U,B                          | J                       | UJ                           |      |   | [ |      |   |   |  |   |   |    |   |
| 049964-001                                                       |                               | 5U,B                            | UJ                      | UJ                           |      |   |   |      |   |   |  |   |   |    | [ |
| 049965-001                                                       |                               | 5U,B                            | 1                       | UJ                           |      |   |   |      |   |   |  |   |   |    | [ |
|                                                                  | +                             | 5U,B                            | J                       | ΟJ                           |      |   |   |      |   |   |  |   |   |    |   |
| 049968-001 /                                                     |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
| Kaller                                                           |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
| 12/14/99                                                         |                               |                                 |                         |                              |      | - |   |      |   |   |  |   |   |    |   |
| tri bert                                                         |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   | _ |      |   |   |  |   |   |    |   |
| Ker her"                                                         |                               |                                 |                         |                              |      |   | _ |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               | _                               |                         |                              |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              |      |   |   |      |   |   |  | 1 | ĺ |    |   |
|                                                                  |                               |                                 |                         | - 1                          |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         | 1                            |      |   |   |      |   |   |  |   |   |    |   |
|                                                                  |                               |                                 |                         |                              | <br> |   |   | <br> |   |   |  |   |   |    |   |

### SAMPLE FINDINGS SUMMARY

| Sample/<br>Fraction No. | Analysis    | DV<br>Qualifiers | Comments |
|-------------------------|-------------|------------------|----------|
|                         |             |                  |          |
|                         | ·           |                  |          |
|                         |             |                  |          |
|                         |             |                  |          |
|                         | No Data wer | gualifi          | ed.      |
|                         |             |                  |          |
|                         |             | +                |          |
|                         |             |                  |          |
|                         | ·           |                  |          |
|                         |             |                  |          |
|                         |             |                  |          |
|                         | Vata are    | accepto          | ble .    |
|                         |             |                  |          |
|                         |             |                  |          |
|                         |             |                  |          |
|                         |             |                  |          |

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

**DV** Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

**Comments** - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions\_CE, EPA6010, EPA6020, EPA7470/1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH\_ALK, HACH\_NO2, HACH\_NO3, MEKC\_HE, PCBRISC

Reviewed by: \_\_\_\_\_ Date: 12/8/99

### **MEMORANDUM**

DATE: December 6, 1999

TO: File

FROM: Kenneth Salaz

SUBJECT: Organic Data Review and Validation Non-ER Septic Systems, ARCOC #602764, Project/Task No. 7223.02.02.01

See the attached Data Assessment Summary Forms for supporting documentation on the data review and validation.

### <u>Summary</u>

All samples were prepared and analyzed with accepted procedures and specified methods: EPA8260A (VOCs) and EPA8082 (PCBs). Problems were identified with the data package that result in the qualification of data.

- <u>VOC Analysis</u>: The initial calibration response factor (RF) of trichloroethene was less than (<) the required minimum. The associated results of samples 9908965-01, -03, -05, -07, -09, -11, -13, -15, -17, -19, -21, and -25 were non-detect (ND) and will be qualified "UJ." The continuing calibration verification (CCV) percent difference (%D) of 2-butanone was greater than (>) 40%. The associated results of samples -05, -09, -11, -15, -17, -21, and -25 were positive and will be qualified "J." The associated results of samples -01, -03, -07, -13, and -19 were ND and will be qualified "UJ." Carbon disulfide had a CCV %D >20%. The associated result of sample -09 was positive and will be qualified "J."
- <u>VOC Analysis</u>: In the method blank, methylene chloride was detected. The associated results of samples 9908965-03 and -17 were positive, <10X the blank concentration, > the reporting limit (RL), and will be qualified "7.8U,B" and "7.3U,B," respectively. The associated results of samples -05, -07, -09, -11, -13, -15, -19, -21, and -25 were < the RL and will be qualified "5U,B."</li>
- 3. <u>PCB Analysis</u>: The surrogate percent recovery (%REC) for sample 9908965-20 was < QC limits. The sample results were ND and will be qualified "UJ,A1."

Data are acceptable. QC measures appear to be adequate. The following sections discuss the data review and validation.

### **Holding Times**

VOC Analysis: All samples were analyzed within the prescribed holding times.

<u>PCB Analysis</u>: All samples were analyzed within the prescribed holding times except the following. Sample 9908965-20 was re-extracted 1 day beyond the holding time as a result of an initial QC failure. However, the recoveries from the reanalysis were similar to the original, and the original results were reported. Thus, no data were qualified.

### **Calibration**

<u>VOC Analysis</u>: The initial and continuing calibrations met QC acceptance criteria except as noted above in the summary section and the following. Chloromethane, bromomethane, chloroethane, acetone, 1,2-dichloroethane, 2-hexanone, trans-1,3dichloropropene, 4-methyl-2-pentanone, and vinyl acetate had CCV %Ds outside QC limits. However, all associated sample results were ND. Thus, no data were qualified.

<u>PCB Analysis</u>: The initial and continuing calibrations met QC acceptance criteria.

#### <u>Blanks</u>

<u>VOC Analysis</u>: No target analytes were detected in the method blanks except as noted above in the summary section.

<u>PCB Analysis</u>: No target analytes were detected in the method blanks.

#### **Surrogates**

VOC Analysis: The surrogate %RECs met QC acceptance criteria.

<u>PCB Analysis</u>: The surrogate %RECs met QC acceptance criteria except as noted above in the summary section.

### Internal Standards (ISs)

VOC Analysis: The IS areas and retention times (RTs) met QC acceptance criteria.

PCB Analysis: No internal standards were required for this method.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

VOC Analysis: The MS/MSD met QC acceptance criteria.

<u>PCB Analysis</u>: The MS/MSD met QC acceptance criteria except for the following. The MSD relative percent difference (RPD) of Aroclor-1260 was > QC limits. However, the MS/MSD %RECs met QC acceptance criteria. Thus, no data were qualified.

### **Data Validation Summary**

| Site/Project: Non-ER Scotic Systems Project/Task #: 7223,02.02.01 | # of Samples: Matrix: Soil |
|-------------------------------------------------------------------|----------------------------|
| AR/COC #: 602764                                                  | Laboratory Sample IDs:     |
| Laboratory: <u>GEL</u>                                            |                            |
| Laboratory Report #: 9908965                                      |                            |

|                                           |              |   |     |                   |            |         | Anal    | ysis        |              |              |     |                                  |
|-------------------------------------------|--------------|---|-----|-------------------|------------|---------|---------|-------------|--------------|--------------|-----|----------------------------------|
| QC Element                                |              |   | Org | anics             |            |         |         | Inor        | ganics       |              |     |                                  |
|                                           | VOC          | S | voc | Pesticide/<br>PCB | HPL<br>(HE | C.<br>) | ICP/AES | GFAA/<br>AA | CVAA<br>(Hg) | CN           | RAD | $\frac{\text{Other}}{(Cr^{6r})}$ |
| 1. Holding Times/Preservation             | $\checkmark$ | / | vA  |                   | NA         | ł       | NA      | NA          | NA           | $\checkmark$ | NA  |                                  |
| 2. Calibrations                           | 5;45         |   |     | · /               |            |         |         |             |              |              | Ì   |                                  |
| 3. Method Blanks                          | u,B          |   |     | $\checkmark$      |            |         |         |             |              | V            |     | V                                |
| 4. MS/MSD                                 | $\checkmark$ |   |     | $\checkmark$      |            |         |         |             |              | $\checkmark$ |     |                                  |
| 5. Laboratory Control Samples             | $\checkmark$ |   |     | $\checkmark$      |            |         |         |             |              | $\checkmark$ |     | $\checkmark$                     |
| 6. Replicates                             |              |   |     |                   |            |         |         |             |              | M            |     | NA                               |
| 7. Surrogates                             | $\checkmark$ |   |     | UJ,AI             |            |         | -       |             |              |              |     | NA                               |
| 8. Internal Standards                     | $\checkmark$ |   |     |                   |            |         |         |             |              |              |     |                                  |
| 9. TCL Compound Identification            | $\checkmark$ |   |     |                   |            |         |         |             |              |              |     |                                  |
| 10. JCP Interference Check Sample         |              |   |     |                   |            |         |         |             |              |              |     |                                  |
| 11. ICP Serial Dilution                   |              |   |     |                   |            |         |         |             |              |              |     |                                  |
| 12. Carrier/Chemical Tracer<br>Recoveries |              |   |     |                   |            |         |         |             |              |              |     |                                  |
| 13. Other QC                              | NA           |   | /   | NA                |            |         | J       |             | 7            | NA           | J   | 1                                |

J = Estimated

U = Not Detected

Check  $(\sqrt{})$  = Acceptable

Shaded Cells = Not Applicable (also "NA") NP = Not Provided

11. = Not Detected, Estimated

R = Unusable

Other

Reviewed By: \_\_\_\_\_ Date: 12/0/99

| Sample ID  | Analytical<br>Method | Holding Time<br>Criteria | Days Holding<br>Time was<br>Exceeded | Preservation<br>Criteria | Preservation<br>Deficiency | Comments                                                               |
|------------|----------------------|--------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------------------------------------------------|
| 9908965-20 | £PA 8082<br>(PCB 5)  | 14 day s                 | 1                                    | NA                       | NA                         | Re-extracted out of holding due<br>Surogate Sailure, Original run used |
|            |                      |                          |                                      |                          |                            |                                                                        |
|            |                      |                          |                                      |                          |                            | · · · · · · · · · · · · · · · · · · ·                                  |
|            |                      |                          |                                      |                          |                            |                                                                        |
|            |                      |                          |                                      |                          |                            |                                                                        |
|            |                      |                          |                                      |                          |                            |                                                                        |
|            |                      |                          |                                      |                          |                            |                                                                        |

Holding Time and Preservation

Reviewed By: Date: 12/6/99

|          |                     |                             |                          |        |                                        |               | ۱                    | Volatili                                     | e Oi               | rga           | nic                | <b>s (</b> S1                                                                                                         | W 84     | 6 Mei      | thod 8                    | 3260)          |                                               |        |          |            |                |                                                                                                                          |               |             |                    | Pa           | age I    | of 2        |
|----------|---------------------|-----------------------------|--------------------------|--------|----------------------------------------|---------------|----------------------|----------------------------------------------|--------------------|---------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------|------------|---------------------------|----------------|-----------------------------------------------|--------|----------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--------------------|--------------|----------|-------------|
| Site/    | Project: <u>N</u> e | in-ERScotic System          | s                        | AR/CO  | )C #:                                  |               | 602-                 | 764                                          |                    |               |                    |                                                                                                                       | of Sa    | mples:     |                           | 2              |                                               | _ Matr | ix:      | 5          | ioil           |                                                                                                                          |               |             |                    |              |          |             |
| Labo     | ratory (            | SEI                         |                          | Iabora | tory )                                 | Reno          | rt #·                | 9908                                         | 765                | •             |                    | 1                                                                                                                     | abora    | tory Sa    | nnle ID                   | ls'            | 9909                                          | 2915.  | - 01.    | -03        | -05            | -07                                                                                                                      | -09 -         | -11 -       | 13-1               | 5-17         | -19-     | 11-2        |
| Daba     | · · · · ·           |                             |                          |        |                                        |               |                      | 1.1.9                                        |                    |               |                    | ~ *<br>•                                                                                                              |          |            |                           | ·····          |                                               |        |          |            |                |                                                                                                                          |               |             |                    | <u></u> 4    | <u> </u> | ~           |
| Meu      | 10ds:               | PA DOPOUR                   |                          |        |                                        |               |                      |                                              |                    |               |                    | ł                                                                                                                     | Satch #  | s:         | 3 10                      | (06)           |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              |          |             |
|          |                     |                             | T                        |        |                                        |               | Calib.               | Callb.<br>RSD                                | C                  | çv            |                    | a li a d                                                                                                              |          |            | 1.00                      | 1              |                                               | Me     | Fie      | 14         | e              | $\boldsymbol{\varphi}$                                                                                                   | τ.            |             | 92                 | H.J          | CC       | 2           |
| IS       | CAS #               | Name                        | C                        | RF     | Inter                                  | rcept         | Rr                   | R <sup>2</sup>                               |                    |               | E C                | lks                                                                                                                   | LCS      | LCSD       | RED                       | MS             | MSD                                           | RPD    | Du       | <b>p.</b>  | Blac           | ₩₽<br>Nk€                                                                                                                | Bia           | nke         | ß                  | h-K          | 0/       | 0           |
|          |                     |                             | 18                       |        |                                        |               | >.05                 | <20%/                                        | 20                 | >%            |                    |                                                                                                                       |          |            |                           |                | 1                                             | 1:5    | Kr       | "          |                |                                                                                                                          |               |             |                    |              | 2.0      |             |
| h        | 74-87-3             | Chloromethane               | 17                       | 0.10   |                                        | 7             |                      | 1-3-                                         | +                  |               |                    | 7                                                                                                                     | 1        |            | ]                         | l and a second | T                                             | 1      | AI       | A          | $\overline{N}$ | স                                                                                                                        | A.            | A I         | sin isi<br>L       | /            | -38      | 2           |
| 5        | 74-83-9             | Bromomethane                | Ť                        | 0.10   | A                                      | 14            |                      | 1V                                           | 135                | 0             | <u> </u>           | ۲<br>۱                                                                                                                | 1        |            | 1                         | 1              | 1                                             | 1      | 22       |            |                | 1                                                                                                                        | )             | <u> </u>    | -                  |              |          |             |
|          | 75-01-4             | vinyl chloride              | 1                        | 0.10   |                                        |               | V                    | 1                                            |                    | 1             |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                | 83 S                                                                                                                     |               |             |                    |              |          |             |
| 1        | 75-00-3             | Chloroethane                | 14                       | 0.01   |                                        | <u>+</u>      | L.Z.                 |                                              | 25                 | ,0            |                    |                                                                                                                       |          |            | }                         | ļ              |                                               | L      |          | _          |                | ·                                                                                                                        |               |             | ¥                  | <u> </u>     |          |             |
| 1        | 75-09-2             | methylene chloride (10xblk) | X                        | (0.01  |                                        |               | <u> </u>             | <u>                                     </u> | 1 and              | /             | Street.            |                                                                                                                       |          |            |                           | 1              | 1                                             | 1      |          | _          |                | -                                                                                                                        |               |             | _l:                | <u>()</u>    |          | Store       |
| <u>P</u> | 67-64-1             | acefone(10rblk)             | ĮΥ,                      | 0.01   | M                                      | Α.            | V.                   | ···                                          | 135                | ă.            |                    |                                                                                                                       | 1        |            |                           | <b> </b>       | 12020                                         | 1      | <b>1</b> | 2          | 000000         |                                                                                                                          |               |             |                    | <u>(</u>     | 23.      |             |
|          | 75-75-6             | L L dichlamathana           | K                        | 0.10   |                                        |               | - X-                 | t X                                          |                    | i Erro        | 3363               |                                                                                                                       | 10000    |            |                           |                | 1 7                                           |        | 0.00     | 800        |                | 89803                                                                                                                    | Calcula I     |             | ana                |              |          | <del></del> |
| 1220     | 75-34-3             | 1.1-dichlaroethane          | ťŹ                       | 0.10   |                                        |               | - <b>-</b>           |                                              | 1 Y                |               |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                | 1995.<br>1979 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - 1984 - |               |             | 346.005<br>S. (199 |              | h th     |             |
| f        | 67-66-3             | Chloroform                  | ťŻ                       | 0.20   |                                        | <u>.</u>      | 1                    | 1                                            |                    | 7             |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              |          |             |
| 1        | 107-06-2            | 1,2-dichloroethane          | K7                       | 0.10   |                                        |               | 1                    | V V                                          | 34                 | 1             |                    |                                                                                                                       |          | 10000      |                           |                |                                               |        |          | ×          |                | -                                                                                                                        |               |             | 121-16             |              | 1        |             |
| 13       | 78-93-3             | 2-butanone(10xblk)          | V                        | 0.01   |                                        |               | V                    | V                                            |                    | 6             | 79.98 <sup>1</sup> |                                                                                                                       |          |            |                           | liane.         |                                               |        |          |            |                | 200                                                                                                                      |               |             |                    |              | Ч.       | 3           |
| 2        | 71-55-6             | 1,1,1-trichloroethane       | N                        | 0.10   |                                        |               |                      | V                                            | ĪV                 |               |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              | V        |             |
| 2        | 56-23-5             | carbon tetrachloride        | Z                        | 0.10   |                                        |               | ,                    | V_                                           |                    |               |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              | 5.00 E   |             |
| 2        | 75-27-4             | Bromodichloromethane        | K                        | 0.20   |                                        |               |                      |                                              | 1-1                |               |                    | <u> </u>                                                                                                              |          |            |                           |                |                                               | L      |          | _          |                | ]                                                                                                                        |               |             |                    |              | ┝━━╇     |             |
| 12       | 78-87-5             | 1,2-dichloropropane         | ¥,                       | 0.01   | 1989                                   | <u>968</u>    | Ľ.                   | <u> </u>                                     |                    | <u> 2008</u>  | 33933              | <u> 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u> |          |            |                           |                | <u>                                      </u> |        |          | ÷.         | <u> 200</u>    | <u>1999</u>                                                                                                              |               | <u> </u>    |                    |              |          |             |
| 4        | 70.01 6             | Cis-1,3-dichloropropene     | H                        | 0.20   | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | व्यक्त        | 0.00                 |                                              |                    |               | NUCER              |                                                                                                                       | 25.22    | Call Call  | 1011.00 eT.004            |                |                                               |        | 1999     | <u>a</u> . | aanin          | 50087                                                                                                                    |               | ntises -    |                    |              | h        |             |
| 2        | 174.48.5            | Dibromochloromethane        | ľŻ                       | 0.30   | <u> 2008</u> 64                        | <u>2019</u> 2 | 4463                 |                                              |                    | <u>0990 (</u> |                    | <u>† * * * *</u>                                                                                                      |          | 100 - ANDA |                           |                |                                               |        |          | <u> </u>   | <u></u>        | <u> </u>                                                                                                                 |               |             |                    | <u> 2000</u> | }₽       |             |
| 5        | 79-00-5             | 1 1 2-trichlocoethane       | <del>ال</del> ا          | 010    |                                        |               | Y-                   |                                              | $\left  - \right $ |               |                    | <u> </u>                                                                                                              |          |            |                           | <u> </u>       |                                               |        |          | -+         | {              |                                                                                                                          |               |             |                    |              | $\vdash$ |             |
| 2        | 71-43-2             | Benzene                     | İŻ                       | 0.30   | 7.023                                  | 1993 - 1993   | Č,                   | t X                                          |                    |               | 1968 B             |                                                                                                                       | 1        |            | 57                        | 1              | 17                                            | 1      | 7.03     | <u>st</u>  |                | <u> </u>                                                                                                                 | <u>nask</u> a |             | 1990               |              | 7        | 1941 - C    |
| 2        | 10061-02-6          | trans-1,3-dichloropropene   | V                        | 0.10   |                                        |               |                      | TV                                           | 22                 | 3             |                    | 1                                                                                                                     |          |            |                           |                | f                                             |        |          | T          |                |                                                                                                                          | -             | 1           |                    |              | 23       | 0           |
| 2        | 75-25-2             | Bromoform                   | V                        | 0.10   |                                        |               | ~                    | IV                                           |                    |               |                    |                                                                                                                       |          |            |                           |                | 1                                             |        | T        | -          |                | -                                                                                                                        | -             |             |                    |              |          | -1          |
| 3        | 108-10-1            | 4-methyl-2-pentanone        | V                        | 0.10   |                                        |               | V                    |                                              | 24                 | .0            |                    |                                                                                                                       |          |            |                           |                |                                               |        |          | T          |                |                                                                                                                          |               |             |                    |              |          |             |
| 3        | 591-78-6            | 2-hexanone                  | V                        | 0.01   |                                        |               | <ul> <li></li> </ul> |                                              | 34.                | 6             |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              | 25       | 2           |
| 3        | 127-18-4            | Tetrachloroethene           | 14                       | 0.20   | <u> </u>                               |               |                      | <u> </u>                                     | -4                 |               | <u>1999</u>        |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                |                                                                                                                          |               |             |                    |              | V        | <u></u>     |
| 13       | 79-34-5             | 1,1,2,2-leirachloroethane   | K,                       | 0.30   |                                        |               |                      | <u>↓                                    </u> | 11                 | i             |                    |                                                                                                                       |          |            |                           | h              |                                               | +      |          | 4          |                |                                                                                                                          |               |             |                    |              |          |             |
|          | 105-88-3            | (loluene()UxDix)            | ĮΥ,                      | 0.40   | 22233                                  | <del></del> ł | <u> </u>             |                                              |                    |               |                    | 1000000                                                                                                               |          | VIII Pres  | $\mathbf{X}_{\mathbf{r}}$ | ~              | X                                             |        |          | 1          |                |                                                                                                                          |               | <del></del> |                    |              |          | ~~          |
| -        | 108-90-7.           | Chlorobenzene               | 14                       | 0.30   | <u></u>                                |               |                      |                                              |                    |               | <u> 1999</u> 22    | 070000                                                                                                                | 9        | <u></u>    | <u></u>                   |                | <u> </u>                                      | - V.   | -+-      | -          |                |                                                                                                                          |               |             | 200                |              |          |             |
| E        | 100-41-4            | Stypene                     | Y,                       | 0.10   |                                        | {             |                      | +- <del>&gt;</del>                           | ┟──╁               | ~~~           |                    |                                                                                                                       |          |            |                           |                |                                               |        |          |            |                | +                                                                                                                        |               |             |                    | {            |          |             |
| 61       | 1330-20-7           | xylenes(total)              | f)/                      | 0.30   |                                        | }             | Ť                    |                                              | ┟╌╂                |               |                    |                                                                                                                       | 1        |            |                           |                | <b>├</b> ───┤                                 |        |          | -+-        |                | +                                                                                                                        |               |             |                    |              |          |             |
| F        | 540-59-0            | 1.2-dichloroethvlene(total) | 7                        | 0.01   |                                        |               | Ż                    |                                              |                    | t d           | 733                |                                                                                                                       | Listeria |            |                           | nnar in        |                                               |        | -+       | +          | <u>_</u> †     |                                                                                                                          |               | <u>798</u>  |                    | <u>,</u>     | <u> </u> |             |
|          | 110-75-8            | 2-chloroethyl vinyl ether   |                          |        |                                        |               | NA                   | M                                            | N                  |               | <u></u>            | 'A                                                                                                                    |          | <u></u>    |                           |                |                                               | ~      |          | 1          | ····+          | +                                                                                                                        |               |             | <u></u>            |              | -NI      |             |
|          | 108-05-4            | Viny Acetate                | $\overline{\mathcal{N}}$ |        |                                        |               | V                    | V                                            | 21.                | 7 1           | ~                  | /                                                                                                                     |          |            |                           |                |                                               |        | V        | 1          | 1              |                                                                                                                          | J             |             | بالارتى.<br>مى     | 7            | Ţ        |             |
|          |                     |                             |                          |        |                                        |               |                      |                                              |                    |               |                    |                                                                                                                       |          |            |                           |                |                                               | 1      |          | 1          |                |                                                                                                                          |               | 1           |                    |              | ·····    |             |

NA=Not Applicable

Cumments: Notes: Shaded rows are RCRA compounds. ONO ES or FO Submitted on the CUC (or field dupi) (Smathed black applies to Samples - 03 and -17 only. (CCV also)

Reviewed By: \_\_\_\_\_ Sales Date: 12/6/25

| Volatile Organics                   |                             |                  |              | Page 2 of 2 |
|-------------------------------------|-----------------------------|------------------|--------------|-------------|
| Site/Project: Non-ER Septic Systems | AR/COC #: 6 02764           | Batch #s: 157266 |              |             |
| Laboratory:GEL                      | Laboratory Report #:9908965 | # of Samples:2   | Matrix: Soil |             |

### Surrogate Recovery and Internal Standard Outliers (SW 846 Method 8260)

| Sample | SMC 1 | SMC 2 | SMC 3 | IS 1<br>area | IS 1<br>RT | IS 2<br>area | IS 2<br>RT | IS 3<br>area | IS 3<br>RT |
|--------|-------|-------|-------|--------------|------------|--------------|------------|--------------|------------|
| All    |       |       |       |              |            |              |            |              |            |
| Passed |       |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |
|        | λ     |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |
|        |       |       |       |              |            |              |            |              |            |

SMC 1: +Bromofluorobenzene SMC 2: 1,2-Dichloroethane-d4 SMC 3: Toluene-d8 KAS

IS 1: Bromochloromethane Fluersberzene IS 2: 1,4-Diftuerobenzene-dy

Comments: \* Summer:

Calibration.

IS 3: Chlorobenzene-d5

1212199

Dibronofluorome there.

=>trichbroethere had a RF < the me. All results wee NO and will be qualified "UJ." =>2-butmon had Civ 960s > 40%. Results of samples -03,-09,-11,-15,-17,-21, and -25 were pos, and will be qualified "J" All she results were ND; qualified "UJ."

= Tearbon disulfide had a CCV%0 >20%, Result of -09 was pos.; qualified "J."

=> chloromethane, bromomethane, chloroethane, acctione, 1,2-dichloruethane, 2-hexanone,

trans-1,3-dichloropene, 4-rethyl-2-pentanone, and unglacetate had CCV %Ds outside QC limits. All results were NO; No data were qualified.

Method Black:

=7 Mestiglene childride was detented. The results of -03 and -17 were > the RL and will be qualified "7.84,6" and "7.34,6" respectively. The results of -05,-07,-09,-11,-13 PCBs (SW 846 - Method 8082)

| Site/Proj  | ect: Non-ER Se | e}          | 25   | <u><u><u>j</u>ete</u></u> | <u>~)</u>      | AR/CC                                  | )c #: <u>6</u>          | 02764            |      | · · · · · · · · · · · · · · · · · · · |              | Labora       | atory San    | aple IDs  | s:                   | 108965                 | - 02, -04,      | -06,-08,-10   | 0,-12,-14,-16; |
|------------|----------------|-------------|------|---------------------------|----------------|----------------------------------------|-------------------------|------------------|------|---------------------------------------|--------------|--------------|--------------|-----------|----------------------|------------------------|-----------------|---------------|----------------|
| Laborato   | IV: GEL        |             |      | ·                         |                | Labora                                 | lory Report             | #: 99            | 0891 | 55                                    |              |              |              |           |                      | <u> </u>               | -18, -20, -     | -12 - 13 - 24 | ,-26           |
| Methods:   | EPA 80         | 82          | 2    |                           |                |                                        |                         |                  | -    |                                       |              |              |              |           |                      |                        |                 | . ,           | •              |
| # of Sam   | ples: 14       |             |      | 1                         | Matri          | x:                                     | Soil                    |                  |      |                                       |              | Batch        | #s:          | 573       | 01                   |                        |                 |               |                |
| CAS #      | Name           | T<br>C<br>L | Inte | rcept                     | C<br>RS<br><20 | alib<br>D / R <sup>2</sup><br>% / 0.99 | CCV<br>%D<br>20%        | Method<br>Blanks | LCS  | LCSD                                  | LCS<br>RPD   | MS           | MSD          | MS<br>RPD | Field<br>Dup,<br>RPD | 2)<br>Equip.<br>Blanks | Field<br>Blanks |               |                |
| 12674-11-2 | Aroclor-1016   | V           | Λ    | TA-                       | 1              | 7                                      | 1                       |                  | Ī    |                                       |              |              |              |           | NA                   | M                      | NA              |               |                |
| 11104-28-2 | Aroclor-1221   | V           |      | 1                         |                |                                        |                         |                  |      |                                       |              |              |              |           | 1                    | 1                      |                 |               |                |
| 11141-16-5 | Aroclor-1232   | V           |      |                           |                |                                        |                         |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
| 53469-21-9 | Aroclor-1242   | V           |      |                           |                |                                        | $\overline{\mathbf{V}}$ |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
| 12672-29-6 | Aroclor-1248   | M           |      |                           |                |                                        |                         |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
| 11097-69-1 | Aroclor-1254   | V           |      |                           |                |                                        | $\overline{\mathbf{V}}$ |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
| 11096-82-5 | Aroclor-1260   | M           | J    | /                         |                |                                        | $\overline{\mathbf{v}}$ | I I              | V    | V                                     | $\checkmark$ | $\checkmark$ | $\checkmark$ | 47,3      | V                    |                        | Y               |               |                |
|            |                | Π           |      |                           |                |                                        | ·                       |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
|            |                | Ц           |      |                           |                |                                        |                         |                  |      |                                       |              |              |              |           |                      |                        |                 |               |                |
|            |                | $\square$   |      |                           |                |                                        |                         | <u> </u>         | l    |                                       |              |              |              |           |                      |                        |                 | <u>}</u>      |                |

NA>Not Applicable

|               |        |        |        |       | S22322020000000000000000000000000000000 |                  | •                           |
|---------------|--------|--------|--------|-------|-----------------------------------------|------------------|-----------------------------|
| Sample        | SMC    | SMC RT | Sample | SMC   | SMC RT                                  | Comments:        |                             |
|               | % REC  |        |        | % REC |                                         | WALL results for | the field draliant not ware |
| 9908965-20    | 44.3 V | V      |        |       |                                         | NO. Thus, as     | Repriver cale lated         |
| 9908965-24MSD | 44,32  | V      |        |       |                                         | AND FR FI        | Cil Hil a la com            |
|               |        |        |        |       |                                         |                  | susmitter on the Lice       |

| Confirmation |  |
|--------------|--|
|              |  |

| Sample | CAS # | RPD > 25%                              | Sample | CAS #   | RPD > 25% |
|--------|-------|----------------------------------------|--------|---------|-----------|
| AH     |       |                                        |        |         |           |
| Passed |       |                                        |        | <u></u> |           |
|        |       | ······································ |        |         |           |
|        |       |                                        |        |         |           |

\* Summy :

insp: 2 RPD was > QC limits: However, the MS/MSD %REC; met QC criteria. Thus, no data ware qualified.

The surrogate % REC for sample -20 was 2 QC limits. All results were

| Reviewed By: | 2 | Fr Sale | Date: | 1216199 |
|--------------|---|---------|-------|---------|
|              |   |         |       |         |

|                       | _        |             |         |              |          |                 |                  | G            | Senera       | al Che       | emist        | ry       |            | -           |                          |                         |                       |                      |                 | -           |
|-----------------------|----------|-------------|---------|--------------|----------|-----------------|------------------|--------------|--------------|--------------|--------------|----------|------------|-------------|--------------------------|-------------------------|-----------------------|----------------------|-----------------|-------------|
| ite/Project: <u>/</u> | Von-ERS  | ept.        | ic Syst | ens A        | R/COC #  | : <u>    6c</u> | 2764             |              |              | L            | aborato      | ry Sampl | e IDs:     | 99          | 089                      | 65-                     | 02,-04                | -06, -08             | -10,-12,        | -14,-11     |
| aboratory:            | GEL      |             |         | La           | boratory | Report #        | <u>99(</u>       | 0891         | 5            |              |              |          |            |             |                          | -1                      | 8,-20                 | <u> </u>             | 3,-24,-         | -26         |
| fethods:              | EPA 9012 | A           | (cN)    | ERA          | 7196A    | (Cr6+)          |                  |              |              | ~            | · .          |          |            |             |                          |                         |                       | ·                    |                 |             |
| of Samples:           | 14       |             | ·       | Matrix: _    | <u> </u> | síl 📃           |                  | <u> </u>     |              | B            | atch #s:     | 157      | 237(       | -02-7       | -18)                     | 157                     | 442                   |                      |                 | <del></del> |
|                       |          |             |         |              |          |                 |                  |              |              |              | OCF          | lemer    | nt         |             |                          |                         |                       |                      |                 |             |
| CAS#                  | Analyte  | T<br>A<br>L | ICV     | ccv          | ІСВ      | ССВ             | Method<br>Blanks | LCS          | LCSD         | LCSD<br>RPD  | MS           | MSD      | MSD<br>RPD | Rep.<br>RPD | ICS <sup>(1)</sup><br>AB | Serial<br>Dilu-<br>tion | FieldQ<br>Dup.<br>RPD | Equip. (2)<br>Blanks | Field<br>Blanks |             |
| <b>595</b> 5-<br>70-0 | СЛ       | 1           | V       | V            | V        | V               | $\checkmark$     | V            | $\checkmark$ | ~            | $\checkmark$ | NA       | NA         | NA          | NA                       | NA                      | NA                    | NA                   | NA              |             |
| 18540 -<br>J9- 9      | C+ 6+    | V           | 1       | $\checkmark$ | ~        | V               | $\checkmark$     | $\checkmark$ | ~            | $\checkmark$ | $\checkmark$ | NA       | MA         |             |                          |                         |                       |                      |                 |             |
|                       |          |             |         |              |          |                 |                  |              |              |              |              |          |            |             |                          |                         |                       |                      |                 |             |
|                       |          |             |         |              |          |                 |                  |              |              |              |              |          |            |             |                          |                         |                       |                      |                 |             |
|                       |          |             |         |              |          |                 |                  |              |              |              |              |          |            |             |                          |                         |                       |                      |                 |             |
|                       |          |             |         |              |          |                 |                  |              |              |              |              |          |            |             |                          | <b></b>                 |                       |                      |                 |             |
|                       |          |             |         |              |          |                 |                  |              |              |              |              |          |            |             |                          |                         |                       |                      |                 |             |
| omments:              |          |             |         |              |          |                 |                  |              | ]            |              |              |          | s¥ Si      | inami       | l                        |                         |                       | NA=                  | Not Ap          | plicusto    |

( No Ics or social dilution required for these nethods .

Di Field duplicate pair was submitted. However, results were & the RL. Thus,

no RADS were calculated.

(3) No EB or FB submitted on the COC.

(BReplicate criteria do not apply to sample results < the RL.

Reviewed By: Zanto Sala Date: 12/6/89

=> All QC criteria met. No data une qualitica,

### EContract Verification Review (CVR)

| Project Leader | ROYBAL | Project Name   | NON-ER SEPTIC SYSTEMS | Case No. | 7223.230 |
|----------------|--------|----------------|-----------------------|----------|----------|
| AR/COC No.     | 602764 | Analytical Lab | GEL                   | SDG No.  | 9908965  |

In the tables below, mark any information that is missing or incorrect and give an explanation.

### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

| Line |                                                                                     | Comp | lete? |                | Resc | lved? |
|------|-------------------------------------------------------------------------------------|------|-------|----------------|------|-------|
| No.  | Item                                                                                | Yes  | No    | If no, explain | Yes  | No    |
| 1.1  | All items on COC complete - data entry clerk initialed and dated                    | X    |       |                |      |       |
| 1.2  | Container type(s) correct for analyses requested                                    | X    |       |                |      |       |
| 1.3  | Sample volume adequate for # and types of analyses requested                        | X    |       |                |      |       |
| 1.4  | Preservative correct for analyses requested                                         | X    |       |                |      |       |
| 1.5  | Custody records continuous and complete                                             | X    |       |                |      |       |
| 1.6  | Lab sample number(s) provided and SNL sample number(s) cross referenced and correct | x    | •     |                |      |       |
| 1.7  | Date samples received                                                               | X    |       | · ·            |      |       |
| 1.8  | Condition upon receipt information provided                                         | X    |       |                |      |       |

### 2.0 Analytical Laboratory Report

| Line |                                                                                                     | Complete? |    |                                                            | Res |    |
|------|-----------------------------------------------------------------------------------------------------|-----------|----|------------------------------------------------------------|-----|----|
| No.  | Item                                                                                                | Yes       | No | If no, explain                                             | Yes | No |
| 2.1  | Data reviewed, signature                                                                            | X         |    |                                                            |     |    |
| 2.2  | Method reference number(s) complete and correct                                                     | X         |    |                                                            |     |    |
| 2.3  | QC analysis and acceptance limits provided (MB, LCS, Replicate)                                     | X         |    |                                                            |     |    |
| 2.4  | Matrix spike/matrix spike duplicate data provided(if requested)                                     | X         |    |                                                            |     |    |
| 2.5  | Detection limits provided; PQL and MDL(or IDL), MDA and L <sub>c</sub>                              | X         |    |                                                            |     |    |
| 2.6  | QC batch numbers provided                                                                           | X         |    |                                                            |     |    |
| 2.7  | Dilution factors provided and all dilution levels reported                                          | X         |    |                                                            |     |    |
| 2.8  | Data reported in appropriate units and using correct significant figures                            | X         |    |                                                            |     |    |
| 2.9  | Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery<br>(if applicable) reported | NA        |    |                                                            |     |    |
| 2.10 | Narrative provided                                                                                  | Х         |    |                                                            |     |    |
| 2.11 | TAT met                                                                                             | X         |    |                                                            |     |    |
| 2.12 | Hold times met                                                                                      |           | Х  | PCB SAMPLE #9908965-20 RE-EXTRACTED<br>OUTSIDE HOLDNG TIME | Х   |    |
| 2.13 | Contractual qualifiers provided                                                                     | X         |    |                                                            |     |    |
| 2.14 | All requested result and TIC (if requested) data provided                                           | Х         |    |                                                            |     |    |

### Contract Verification Review (Continued)

### 3.0 Data Quality Evaluation

| Item                                                                                                                                                                                                                                                                                                             | Yes | No | If no, Sample ID No./Fraction(s) and Analysis                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------------------------------------------------------------------------------|
| 3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data | X   |    |                                                                              |
| 3.2 Quantitation limit met for all samples                                                                                                                                                                                                                                                                       | ×   |    |                                                                              |
| 3.3 Accuracy<br>a) Laboratory control samples accuracy reported and met for all samples                                                                                                                                                                                                                          | X   |    |                                                                              |
| <ul> <li>b) Surrogate data reported and met for all organic samples analyzed by a gas<br/>chromatography technique</li> </ul>                                                                                                                                                                                    |     | X  | SURROGATES OUTSIDE RECOVERY LIMITS FOR PCB<br>SAMPLES #9908965-06, -14 & -20 |
| c) Matrix spike recovery data reported and met                                                                                                                                                                                                                                                                   | x   |    | ·                                                                            |
| <ul> <li>3.4 Precision</li> <li>a) Replicate sample precision reported and met for all inorganic and radiochemistry samples</li> </ul>                                                                                                                                                                           |     | x  | RPD FOR CHROMIUM ABOVE ACCEPTANCE LIMITS<br>FOR SAMPLE #9908965-24DUP        |
| b) Matrix spike duplicate RPD data reported and met for all organic samples                                                                                                                                                                                                                                      |     | x  | RPD FOR PCB 1260 ABOVE ACCEPTANCE LIMITS                                     |
| <ul> <li>3.5 Blank data</li> <li>a) Method or reagent blank data reported and met for all samples</li> </ul>                                                                                                                                                                                                     |     | X  | METHYLENE CHLORIDE DETECTED IN VOC METHOD<br>BLANK                           |
| b) Sampling blank (e.g., field, trip, and equipment) data reported and met                                                                                                                                                                                                                                       | NA  |    |                                                                              |
| 3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found<br>in method blank above the MDL for organic or above the PQL for inorganic; "U"-<br>analyte undetected (results are below the MDL, IDL, or MDA (radiochemical));<br>"H"-analysis done beyond the holding time                   | X   |    |                                                                              |
| 3.7 Narrative addresses planchet flaming for gross alpha/beta                                                                                                                                                                                                                                                    | NA  |    |                                                                              |
| 3.8 Narrative included, correct, and complete                                                                                                                                                                                                                                                                    |     | Х  | SEVERAL PCB & CYANIDE SAMPLES NOT LISTED IN<br>CASE NARRATIVES               |
| 3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs                                                                                                                                                                                                              | Х   |    |                                                                              |

10.00

| 4.0 Calibration and Validation Documentation   |     |    |          |
|------------------------------------------------|-----|----|----------|
| Item                                           | Yes | No | Comments |
| 4.1 GC/MS (8260, 8270, etc.)                   |     |    |          |
| a) 12-hour tune check provided                 | x   |    |          |
| b) Initial calibration provided                | x   |    |          |
| c) Continuing calibration provided             | X   | 1  |          |
| d) Internal standard performance data provided | X   | 1  |          |
| e) Instrument run logs provided                | ×   |    |          |
| 4.2 GC/HPLC (8330 and 8010 and 8081)           |     |    |          |
| a) Initial calibration provided                | x   | ,  |          |
| b) Continuing calibration provided             | X   |    |          |
| c) Instrument run logs provided                | x   |    |          |
| 4.3 Inorganics (metals)                        |     |    |          |
| a) Initial calibration provided                | NA  | }  |          |
| b) Continuing calibration provided             | NA  |    |          |
| c) ICP interference check sample data provided | NA  |    |          |
| d) ICP serial dilution provided                | NA  |    |          |
| e) Instrument run logs provided                | NA  |    |          |
| 4.4 Radiochemistry                             | 1   |    |          |
| a) Instrument run logs provided                | NA  |    |          |

Validation Documentation

2 Bit

### Contract Verification Review (Concluded)

### 5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

| Sample/Fraction No.                    | Analysis                 | Problems/Comments/Resolutions                                               |
|----------------------------------------|--------------------------|-----------------------------------------------------------------------------|
| 9908965-20                             | 8082                     | NOT LISTED IN CASE NARRATIVE                                                |
| 9908965-20—26                          | 9012A                    | NOT LISTED IN CASE NARRATIVE                                                |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
|                                        |                          |                                                                             |
| Were deficiencies unresolved?          | Yes 🗆 No                 | · · · · · · · · · · · · · · · · · · ·                                       |
| Based on the review, this data package | e is complete.           | Q Yes S No                                                                  |
| If no, provide: nonconformance report  | or correction request nu | mber <u>2177</u> and date correction request was submitted: <u>10-13-99</u> |
| Reviewed by: W. Palen                  | CLA Date:                | 10-13-99 Closed by: (1) . Palencia Date: 10-26-99                           |

AR/COC Case No.:7223.230 Non-ER Sypetic System Project/Task Manger: M Sanders Project Name: **Reference LOV (available at SMO)** Location Lab use Tech Area Building Room Sample Lab Collection Sample Parameter & Method Sample ER Sample ID or Depth ER Dale/Time Sample Container Preser-Sample No-Sample Location detail valive (Methods Requested 1D Fraction in Ft Site No Collected Matrix Type Volume Туре 049 960-001 21 C-R 5 A VOC mA  $\leq$ Δſ Mn 242 1245-051-BH3-10-5 A 1. WAL 1377 CN Color 5A infl 5 46 GK RC 649 960 4nz(12/245\_0FL\_R43-10~5 171164 1 27 2 CD -002 VOC P DOI 54 082419 MD2 5 10 51 N1991 DC. CN Cr6F 54 צויע CL 4G ~P 199 uaq 5 YOC 5A 5 10 Crht CN AC ic A K 54 < C 50 VOC 5 A 125 G 54 Cr6t AG VC B C.N 5 54 R SA 1199 250, 1555 GR 5 54 VOC AC ЮĤ ଜ୍ୟଙ୍କ n92325 658 Cr67 5 1G 54 PrB CN R 2 nt 0723 250 VOC 517 GR 5 54 AC 125 12.519 0975 <u> 10</u> GP Cr6+ RB CN S A -002 577 18:599 5 AC XI9 965 A 0945 N 5 ۵Ç GC PCR C.N Cr6t 701 A 82599 0945  $\Omega u$ 3 5 AG 122 GR KB CN ናር 082599 MS DS MSDS 1945 iof+ 5 AC GR MA SA VOC 132599 1000 001 -113-544 MU DFI AG CN Cr6t INFINIA GR PCB 1982599 1000 5 SA 207 Br.5848W ፋ 4 04**925**-**Q** 13199 . . -WIE NELE Advertises electricities of the second nie o tradición maneralise

÷

0

ſ

£

0



ANNEX C DSS Site 1029 Gore-Sorber™ Passive Soil-Vapor Survey Analytical Results



# W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

June 6, 2002

Mike Sanders Sandia National Laboratories Mail Stop 0719 1515 Eubank, SE Building 9925, Room 108 Albuquerque, NM 87123

### Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM Gore Production Order Number: 10960025

Dear Mr. Sanders:

Thank you for choosing a GORE-SORBER<sup>®</sup> Screening Survey.

The attached package consists of the following information (in duplicate):

- Final report
- Chain of custody and analytical data table (included in Appendix A)
- Stacked total ion chromatograms (included in Appendix A)

Please contact our office if you have any questions or comments concerning this report. We appreciate this opportunity to be of service to Sandia National Laboratories, and look forward to working with you again in the future.

Sincerely, W.L. Gore & Associates, Inc.

Jay W. Hodny, Ph.D Associate

Attachments cc: Andre Brown (W.L. Gore & Associates, Inc.)

I:\MAPPING\PROJECTS\10960025\020606R.DOC



# W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7500 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

1 of 6

# GORE-SORBER<sup>®</sup> Screening Survey Final Report

Non-ER Drain & Septic Kirtland AFB, NM

June 6, 2002

Prepared For: Sandia National Laboratories Mail Stop 0719, 1515 Eubank, SE Albuquerque, NM 87123

W.L. Gore & Associates, Inc.

Written/Submitted by: Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by: Jim E. Whetzel, Project Manager

Analytical Data Reviewed by: Jim E. Whetzel, Chemist

I:\MAPPING\PROJECTS\10960025\020606R.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

# **GORE-SORBER<sup>®</sup>** Screening Survey **Final Report**

### **REPORT DATE:** June 6, 2002

### AUTHOR: JWH

### SITE INFORMATION

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM **Customer Purchase Order Number: 28518** Gore Production Order Number: 10960025 Gore Site Code: CCT, CCX

### **FIELD PROCEDURES**

# Modules shipped: 142 Installation Date(s): 4/23,24,25,26,29,30/2002; 5/1,6/2002 **# Modules Installed:** 135 Field work performed by: Sandia National Laboratories

| Retrieval date(s): 5/8,9,10,14,15,16,21/2002 | Exposure Time: ~15 [days]    |
|----------------------------------------------|------------------------------|
| # Modules Retrieved: 131                     | # Trip Blanks Returned: 3    |
| # Modules Lost in Field: 4                   | # Unused Modules Returned: 3 |
| # Modules Not Returned: 1                    | •                            |

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002@1:30PM By: MM Chain of Custody Form attached:  $\checkmark$ Chain of Custody discrepancies: None **Comments:** Modules #179227, -228, and -229 were identified as trip blanks. Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field. Module #179231 was not returned. Modules #179230, 232, and -233 were returned unused.

# GORE-SORBER<sup>®</sup> Screening Survey Final Report

### ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

#### Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing  $5\mu g$  BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and  $50\mu g$  are analyzed at the beginning of each run. The criterion for each target compound is less than 35%RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of  $10\mu g$  per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Instrument ID: #2 Chemist: JW

Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1) Deviations from Standard Method: None

**Comments:** Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly.

Module #179101, no identification tag was returned with this module.

# GORE-SORBER<sup>®</sup> Screening Survey Final Report

### DATA TABULATION

### **# CONTOUR MAPS ENCLOSED:** No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Level 1) or three-level (QA Level 2) standard calibration.

### **General Comments:**

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.

# GORE-SORBER<sup>®</sup> Screening Survey Final Report

Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

### **Project Specific Comments:**

- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: <u>123456</u>S.D represents module #<u>123456</u>).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour mapping was performed. Larger and more comprehensive soil gas surveys may be warranted at the individual sites where elevated soil gas levels were observed.

# GORE-SORBER<sup>®</sup> Screening Survey Final Report

# KEY TO DATA TABLE Non-ER Drain & Septic, Kirtland AFB, NM

| micrograms (per sorber), reported for compounds                       |
|-----------------------------------------------------------------------|
| method detection limit                                                |
| below detection limit                                                 |
| non-detect                                                            |
|                                                                       |
| combined masses of benzene, toluene, ethylbenzene and total xylenes   |
| (Gasoline Range Aromatics)                                            |
| benzene                                                               |
| toluene                                                               |
| ethylbenzene                                                          |
| m p-xvlene                                                            |
| o-xylene                                                              |
| combined masses of undecane, tridecane, and pentadecane (C11+C13+C15) |
| (Diesel Range Alkanes)                                                |
| undecane                                                              |
| tridecane                                                             |
| pentadecane                                                           |
| combined masses of 1.3.5-trimethylbenzene and 1.2.4-trimethylbenzene  |
| 1.3.5-trimethylbenzene                                                |
| 1.2.4-trimethylbenzene                                                |
| cis- & trans-1 2-dichloroethene                                       |
| trans-1.2-dichloroethene                                              |
| cis-1.2-dichloroethene                                                |
| combined masses of nanhthalene and 2-methyl nanhthalene               |
| nanbihalene                                                           |
| 2-methyl nanhthalene                                                  |
| methyl t-butyl ether                                                  |
| 1 1-dichloroethane                                                    |
| chloraform                                                            |
|                                                                       |
| 1,1,1-mcnioroeinane                                                   |
| 1,2-dichioroethane                                                    |
| carbon tetrachloride                                                  |
| trichloroethene                                                       |
| octane                                                                |
| tetrachloroethene                                                     |
| chlorobenzene                                                         |
| 1,4-dichlorobenzene                                                   |
|                                                                       |
| unexposed trip blanks, travels with the exposed modules               |
| QA/QC module, documents analytical conditions during analysis         |
|                                                                       |

THITTO

# **APPENDIX A:**

# CHAIN OF CUSTODY DATA TABLE STACKED TOTAL ION CHROMATOGRAMS
# GORE-SORBER<sup>®</sup> Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # \_\_10960025

W. L. Gore & Associates, Inc., Survey Products Group 100 Chesapeake Boulevard • Elkion, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

| Instructions: Customer must complete          | <u>ALL</u> shad                       | led cells                           | · R                     |                     |            |  |
|-----------------------------------------------|---------------------------------------|-------------------------------------|-------------------------|---------------------|------------|--|
| Customer Name: SANDIA NATIONAL LABS           | Site Name: NON-ER DEAIN+ SEPTIC       |                                     |                         |                     |            |  |
| Address: ACCOUNTS PAYABLE MS0154              | Site Address: KIVL 2ND AFB, NM        |                                     |                         |                     |            |  |
| P.O.BOX 5130                                  |                                       | KI4                                 | 2TLAND                  |                     |            |  |
| ALBUQUERQUE NM 87185 U.S.                     | <u>A.</u>                             | Project Manager: MI                 | KE SANDERS              |                     |            |  |
| Phone: 505-284-3303                           |                                       | Customer Project No                 |                         |                     |            |  |
| FAX: 505-284-2616                             | · · · · · · · · · · · · · · · · · · · | Customer P.O. #: 28:                | 518 Qu                  | ote #: <u>21194</u> | 5          |  |
| Serial # of Modules Shipped                   |                                       | # of Modules for Inst               | allation <u>135</u> #   | of Trip Blank       | s <u>7</u> |  |
| # 179087 - # 179144 #179.087 - #              | 179/34                                | Total Modules Shipp                 | ed: 142                 | Piece               | ts         |  |
| # 179150 - # 179233 #71155 ** #               | 179136                                | Total Modules Recei                 | ved: 142                | Piec                | es         |  |
| # - # 1.19139 - #                             |                                       | Total Modules Instal                | led: 135                | Piec                | es         |  |
| ####                                          | 177144                                | Serial # of Trip Blan               | ks (Client Decides)     | #                   |            |  |
| · # # ################################        | 1115                                  | # 171227                            | #                       | #                   |            |  |
| - # # - #                                     |                                       | .#                                  | . <b>#</b>              | •#                  |            |  |
| - # _ # _ #                                   | ł                                     | .#                                  | #                       | ·# .                |            |  |
| # - # # - #                                   | ŧ                                     | #                                   | #                       | #                   |            |  |
| / <mark># - #</mark> // # - #                 | ł                                     | #                                   | #                       | #                   |            |  |
| # - # # - #                                   | ¥                                     | #                                   | #                       | #                   |            |  |
| Prepared By: <u>Clurene 1717</u>              |                                       | .#                                  | #                       | #                   |            |  |
| Verified By: Resigne Working                  |                                       | #                                   | #                       | :#                  |            |  |
| Installation Performed By:                    |                                       | Installation Method(                | s) (circle those that a | ppły):              |            |  |
| Name (please print): GILISTET QUINTAN         | <u>A</u>                              | Slide Hammer                        | Hammer Drill            | Auger               |            |  |
| Company/Affiliation: <u>SNC/NM</u>            |                                       | Other: <u>6Esph</u>                 | WBE                     |                     | · · ·      |  |
| Installation Start Date and Time: 4/23/02     | 1081                                  | 57                                  | :                       | AM PM               |            |  |
| Installation Complete Date and Time: 5/6/02   | 1094                                  | 01                                  | :                       | AM PM               |            |  |
| Retrieval Performed By:                       |                                       | Total Modules Retri                 | eved:                   | Piec                | es         |  |
| Name (please print):                          | MANA                                  | Total Modules Lost in Field: Pieces |                         |                     |            |  |
| Company/Affiliation:1_SNL/NM                  |                                       | Total Unused Modu                   | les Returned:           | Piec                | es         |  |
| Retrieval Start Date and Time: 5/8/02         | 1                                     | 1                                   | :                       | AM PM               |            |  |
| Retrieval Complete Date and Time:             | . 1                                   | 1                                   | :                       | AM PM               |            |  |
| Relinquished By Da                            | te Time                               | Received By:M                       | Ke Sander               | - Date              | Time       |  |
| Affiliation: W.L. Gore & Associates, Inc. 3-4 | 1-0712:00                             | Affiliation: 5                      | andia/EK                | -3-6-02             |            |  |
| Relinquished By Da                            | ate Time                              | Received By:                        |                         | _ Date              | Time       |  |
| Affiliation:5-14                              | 1-02 12:58                            | Affiliation:                        | 1 101 1                 |                     |            |  |
| Relinquished By Da                            | ate Time                              | Received By                         | flice Weighe            | ∠ Date              | Time       |  |
| Affiliation                                   |                                       | Affiliation: W.L.                   | fore & Associates, Inc  | c. 51702            | 14:00      |  |

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

## GORE-SORBER<sup>®</sup> Screening Survey Chain of Custody

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkion, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

### Instructions: Customer must complete ALL shaded cells Customer Name: SANDIA NATIONAL LABS Site Name: NON-ER DUAIN+ SEPTIC Site Address: KIVL 2ND AFB, NM ACCOUNTS PAYABLE MS0154 Address: KIRTLAND P.O.BOX 5130 ALBUQUERQUE NM 87185 U.S.A. Project Manager: MIKE SANDERS 505-284-3303 Customer Project No.: Phone: 505-289-2616 FAX: Customer P.O. #: 28518 Quote #: 211946 Serial # of Modules Shipped # of Modules for Installation 135 # of Trip Blanks 7 # 179144 Total Modules Shipped: # 179087 #11791522 # 179187 142 Pieces Total Modules Received: 142 # 179150 -# 179233 #179188 - #1792267 Pieces 35 Total Modules Installed: # Pieces # • # -Serial # of Trip Blanks (Client Decides) # # # # # # #179228 # # -# # -# #174229 # # # # 뷮 # # # # # # # # . # # # # # # -井 # # # # # # . aurone # # Prepared By: ¥ Theresand Verified By: Installation Performed By: Installation Method(s) (circle those that apply): Name (please print): GILISTET QUINTANA Slide Hammer Hammer Drill Auger Other: GESPRUBE Company/Affiliation: SNC/NM Installation Start Date and Time: 4/23/02 AM PM 108151 : Installation Complete Date and Time: </ 109401 AND PM : 6/02 **Retrieval Performed By:** Total Modules Retrieved: Pieces Name (please print): \_\_\_\_\_\_\_\_\_ CILBERT QUINTANA Total Modules Lost in Field: Pieces SNL Company/Affiliation:1\_ Total Unused Modules Returned: Pieces Retrieval Start Date and Time: AM PM 8/02 1 Retrieval Complete Date and Time : AM PM Relinquished By \_\_\_\_\_ Received By: Mike, Sanders Date Time Date Time 17:00 Affiliation: Sandia 6133 3-4-02 Affiliation: W.L. Gore & Associates, Inc. 3-7-02 Relinquished By \_\_\_\_\_\_ Date Time Received By: Date Time Sandia N.L.V 6135 5-21-02 0935 Affiliation: -Affiliation: elinquished By Time Received By 71212 Date Date Time Affiliation: W.L. Gore & Associates. Inc. Affiliation 5-24-1 K)

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

| GORI         | E-SORBE       | R <sup>®</sup> Screening Su | rvey           | SITE     | NAME          | & LOCA        | TION                                  |              |                  |               | _          |
|--------------|---------------|-----------------------------|----------------|----------|---------------|---------------|---------------------------------------|--------------|------------------|---------------|------------|
| nstal        | lation and    | Retrieval Log               |                |          |               |               |                                       |              |                  |               |            |
|              |               |                             |                |          |               |               |                                       |              |                  |               |            |
| <u>3.</u>    | of <u>4</u> . |                             |                |          |               |               |                                       |              |                  |               |            |
| $\checkmark$ |               |                             |                | EVIDE    | NCE OF I      | JQUID         |                                       |              | 1                |               |            |
|              |               |                             |                | HYDRO    | CARBON        | is (lph)      | MODU                                  | LE IN        |                  |               |            |
| UNE          | MODULE #      | INSTALLATION                | RETRIEVAL      | ממענו    | 70<br>10 - 10 |               | WA1                                   | ΓER ,        |                  |               |            |
| स            |               | DATE/IME                    | DATETIME       | (Chec    | k as appro    | n ODOR        | (CNEC                                 | (one)        |                  | AMEN 15       |            |
| 1.           |               |                             |                | LPH      | ODOR          | NONE          | YES                                   | NO           | 1                |               |            |
| 35.          | 179176        | 4/29/02 1431                |                |          |               |               |                                       |              | 1035/6           | 5715-6        | 5-         |
| 36.          | 179177        | 1440                        |                |          |               |               |                                       |              |                  |               |            |
| 37.          | 179178        | V 14455-                    | 14-02 0837     |          |               |               |                                       |              |                  | $\overline{}$ |            |
| <b>38</b> .  | 179179        | 4/30/02 09/05-              | 15-02 0842     |          |               |               |                                       |              | 1003/9           | 115-          |            |
| 89.          | 179180        | 0919                        |                |          |               |               |                                       |              | 1 1              |               |            |
| 90.          | 179181        | 0926                        | · ·            |          |               |               |                                       |              |                  |               |            |
| 91.          | 179182        | 0937                        |                |          |               |               |                                       |              |                  | _             | 1          |
| 92.          | 179183        | 0943                        | *              |          |               | <u> </u>      |                                       |              |                  |               | L          |
| 93.          | 179184        | 09475                       | -15-02,0912    | ┟╌╶┍┻┥   |               |               | <b> </b>                              | Ļ            | <u>↓</u> _¥      |               | Ļ          |
| 94.          | 179185        | 1/08 5                      | -15-02, 1146   | · ·      |               | L             |                                       |              | 1007/6           | 730 -         | ÷          |
| 95.          | 179186        | 1/13                        |                | <b></b>  |               |               |                                       |              | ╡╌╴┤             |               |            |
| <u>96.</u>   | 179187        | ///9                        |                | <u> </u> |               |               |                                       | <u> </u>     | ┿╾╌╌┾            |               | Ļ          |
| 97.          | 179188        | //326                       |                |          |               | <u> </u>      | · · · · · · · · · · · · · · · · · · · | [            | <del>:</del>     | <del></del>   | ╇          |
| 98.          | 179189        | 1/40 5                      | -15-02 1213    |          |               |               | <b></b>                               |              | <b>⊥</b> ¥       |               | ╇          |
| 99.          | 179190        | /2385                       | -13-02 10:09   | +        | <u> </u>      |               | +                                     |              | 1029/            | SBAN-         | ╪          |
| 100.         | 179191        | 1250                        |                |          | <u></u>       | <u> </u>      | +                                     |              | <u>/</u>         | <b>├</b> ──── | ÷          |
|              | 179192        | 1300                        |                | +        |               |               |                                       | <u> </u>     |                  |               | ŧ          |
| 102.         | 179193        | 1.5/5                       |                |          |               | <del> -</del> | +                                     |              | - <del> </del> ; | <u></u>       | ╞          |
| 103.         | 170105        | 12100                       | -15-02 10 32   |          |               | <u> </u>      |                                       |              | 1-011            | Y             | f          |
| 105          | 179196        | 1992                        | 13.02 14.03    |          | <u> </u>      | +             |                                       | <u>├</u>     | 100670           | <u>, 771-</u> | ╀          |
| 106.         | 179197        | 1455                        |                | +        |               |               |                                       |              |                  |               | ╈          |
| 107.         | 179198        | 1502                        |                |          | 1             |               | -                                     | <u>├</u> ─── |                  |               | ϯ          |
| 108.         | 179199        | 1508                        | 5-15-02 1142   | +        |               | 1             | +                                     |              | +                | V             | +          |
| 109.         | 179200        | 1525                        | 5-15-02, 1039  |          |               |               |                                       | 1            | 108711           | 743-          | $\uparrow$ |
| 110.         | 179201        | /530                        |                |          |               | 1             |                                       |              | 1-1/1            |               | ╈          |
| 111.         | 179202        | 1534                        |                |          | 1             |               |                                       | 1            | ++               |               | t          |
| 112.         | 179203        | V 1540                      | 5-15-02 1051   |          | -             |               |                                       | 1            |                  | /             | Ť          |
| 113.         | 179204        | 5/1/02 0822                 | 5-16-02,0801   |          |               |               |                                       |              | 1000/1           | 750           | T          |
| 114.         | 1792.05       | 0835                        |                |          | 1             |               |                                       |              |                  |               | T          |
| 115.         | 179206        | 0843                        | ¥              |          |               | 1             |                                       |              |                  |               | T          |
| 116.         | 179207        | 0851                        | 5-16-02,0832   |          |               |               |                                       |              |                  | /             | T          |
| 117.         | 179208        | 0944                        | 5-16-02 0341   |          |               |               |                                       |              | 1004/6           | 969-          | Ι          |
| 118.         | 179209        | 0952                        |                |          |               |               |                                       | ·            | 7                |               | Γ          |
| 119.         | 179210        | 1000                        |                |          |               |               |                                       |              |                  |               | T          |
| 120.         | 179211        | 1009                        | <u> </u>       |          |               |               |                                       |              |                  | ·             | T          |
| 121.         | 179212        | 1016                        | 5-16-02,0907   |          | 1             |               |                                       |              | Y                | /             | Γ          |
| 122.         | 179213        | 1110                        | 5-16-02.1105   |          |               |               |                                       |              | 1095/            | 7938-         | Γ          |
| ' '23.       | 179214        | 1114                        | L              |          |               |               |                                       |              |                  |               | Γ          |
| 24.          | 179215        | 1/22                        | 5-16-02,11:21  |          |               |               |                                       |              |                  | V             | L          |
| 1.568        | 170216        | 1205                        | C 12 00 - 1921 | 1        |               | 1             | 1                                     |              | Inadi            | 1:00          | T          |

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 29R.1 6/13/01 DSS SITE 1029

-----

### GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

| DATE      | SAMPLE | [        |          |         |            |           |          |                    |                  |            |              |          |
|-----------|--------|----------|----------|---------|------------|-----------|----------|--------------------|------------------|------------|--------------|----------|
| ANALYZED  | NAME   | BTEX, ug | BENZ, ug | TOL, ug | EtBENZ, ug | mpXYL, ug | oXYL, ug | C11, C13, &C15, ug | UNDEC, ug        | TRIDEC, ug | PENTADEC, ug | TMBs, ug |
|           | MDL=   |          | 0.03     | 0.02    | 0.01       | 0.01      | 0.01     |                    | 0.02             | 0.01       | 0.02         |          |
| 5/28/2002 | 179172 | nd       | nd       | nd      | nd         | nd        | nd       | 0.05               | 0.03             | 0.02       | bdi          | nd       |
| 5/29/2002 | 179173 | 0.39     | 0.09     | 0.18    | nd         | 0.09      | 0.03     | 0.19               | 0.10             | 0.04       | 0.05         | 0.09     |
| 5/29/2002 | 179174 | 0.03     | nd       | nd      | nd         | 0.03      | nd       | 0.00               | bdi              | bdl        | bdi          | 0.00     |
| 5/29/2002 | 179175 | nd       | nd       | nd      | nd         | nd        | nd       | 0.05               | 0.05             | bdl        | bdí          | nd       |
| 5/29/2002 | 179176 | 0.19     | 0.08     | 0.10    | nd         | 0.02      | nd       | 1.20               | 1.12             | 0.06       | 0.03         | 0.04     |
| 5/29/2002 | 179177 | 0,34     | 0.14     | 0.11    | nd         | 0.07      | 0.03     | 0.10               | 0.08             | 0.02       | bdi          | 0.14     |
| 5/29/2002 | 179178 | 0.08     | nd       | 0.05    | 0.01       | 0.02      | nd       | 0.14               | 0.06             | 0.03       | 0.05         | 0.00     |
| 5/29/2002 | 179179 | 0.03     | nd       | 0.03    | nd         | nd        | nd       | 0.07               | 0.03             | 0.02       | 0.02         | 0.04     |
| 5/29/2002 | 179180 | nd       | nd       | nd      | nd         | nd        | nd       | 0.04               | 0.02             | 0.01       | bdi          | 0.00     |
| 5/29/2002 | 179181 | 0.00     | nd       | nd      | nd         | bdl       | nd       | 0.10               | 0.03             | 0.02       | 0.05         | 0.00     |
| 5/29/2002 | 179182 | 0.09     | nd       | 0.08    | nd         | 0.01      | nd       | 0.08               | 0.03             | 0.02       | 0.03         | 0.00     |
| 5/29/2002 | 179183 | nd       | nd       | nd      | nd         | nd        | nd       | 0.08               | 0.04             | bdi        | 0.04         | 0.00     |
| 5/29/2002 | 179184 | nd       | nd       | nd      | nd         | nd        | nd       | .0.09              | 0.03             | 0.02       | 0.04         | 0.00     |
| 5/29/2002 | 179185 | nd       | nd       | nd      | nd         | nd        | nd       | 0.05               | bdl              | 0.01       | 0.04         | nd       |
| 5/29/2002 | 179186 | nd       | nd       | nd      | nd         | nd        | nd       | · 0.05             | 0.03             | bdl        | 0.03         | 0.04     |
| 5/29/2002 | 179187 | 0.60     | 0.18     | 0.30    | 0.03       | 0.06      | 0.03     | 0.15               | 0.05             | 0.05       | 0.05         | 0.11     |
| 5/29/2002 | 179188 | 0.02     | nd       | nd      | nd         | 0.02      | nd       | 0.10               | bdl              | 0.02       | 0.07         | 0.00     |
| 5/29/2002 | 179189 | 0.02     | nd       | nd      | nd         | 0.02      | nd       | 0.07               | 0.04             | 0.03       | bdi          | 0.00     |
| 5/29/2002 | 179190 | 0.06     | nd       | 0.03    | nd         | 0.03      | nd       | 0.11               | <u>    0.05 </u> | 0.03       | 0.04         | 0.00     |
| 5/29/2002 | 179191 | 0.10     | nd       | 0.04    | nd         | 0.05      | nd       | 0.08               | 0.02             | 0.01       | 0.05         | 0.00     |
| 5/29/2002 | 179192 | 0.01     | nd       | nd      | nd         | 0.01      | nd       | 0.11               | 0.04             | 0.02       | 0.05         | 0.00     |
| 5/29/2002 | 179193 | nd       | nd       | nd      | nd         | nd        | nd       | 0.07               | 0.03             | 0.01       | 0.02         | 0.00     |
| 5/29/2002 | 179194 | 0.04     | nd       | nd      | nd         | 0.04      | nd       | 0.08               | 0.04             | bdl        | 0.04         | 0.00     |
| 5/29/2002 | 179195 | 0.04     | nd       | nd      | nd         | 0.04      | nd       | 0.08               | 0.04             | 0.02       | 0.02         | 0.00     |
| 5/29/2002 | 179196 | 0.02     | nd       | nd      | nd         | 0.02      | nd       | 0.09               | 0.04             | 0.02       | 0.03         | 0.00     |
| 5/29/2002 | 179197 | 0.03     | nd       | nd      | nd         | 0.03      | nd       | 0.15               | 0.05             | 0.04       | 0.06         | 0.04     |
| 5/29/2002 | 179198 | 0.07     | nd       | 0.04    | nd         | 0.03      | nd       | 0.09               | 0.04             | 0.03       | 0.03         | nd       |
| 5/29/2002 | 179199 | nd       | nd       | nd      | nd         | nd        | nd       | 0.05               | 0.03             | 0.01       | bdi          | 0.00     |
| 5/29/2002 | 179200 | 0.00     | nd       | nd      | nd         | bdl       | nd       | 0.08               | 0.03             | 0.02       | 0.03         | 0.00     |
| 5/29/2002 | 179201 | 0.02     | nd       | nd      | nd         | 0.02      | nd       | 0.04               | 0.04             | bdl        | bdi          | 0.00     |
| 5/29/2002 | 179202 | 0.02     | nd       | nd      | nd         | 0.02      | nd       | 0.04               | 0.03             | 0.01       | bdi          | 0.00     |
| 5/29/2002 | 179203 | 0.04     | nd       | 0.04    | nd         | nd        | nd       | 0.06               | 0.04             | 0.02       | bdl          | 0.03     |
| 5/29/2002 | 179204 | 0.27     | nd       | 0.22    | nd         | 0.03      | 0.02     | 0.29               | 0.06             | 0.14       | 0.09         | 0.00     |
| 5/29/2002 | 179205 | 0.12     | nd       | 0.09    | nd         | 0.03      | bdl      | 1.28               | 1.13             | 0.08       | 0.07         | 0.03     |
| 5/29/2002 | 179206 | nd       | nd       | nd      | nd         | nd        | nd       | 0.02               | 0.02             | bdl        | bdl          | nd       |
| 5/29/2002 | 179207 | 0.03     | nd       | nd      | nd         | 0.03      | nd       | 0.04               | 0.04             | bdl        | bdi          | 0.00     |
| 5/29/2002 | 179208 | 0.06     | nd       | 0.04    | nd         | 0.02      | nd       | 0.09               | 0.04             | 0.03       | 0.03         | 0.00     |
| 5/29/2002 | 179209 | 0.07     | nd       | 0.04    | nd         | 0.03      | nd       | 0.01               | bdl              | 0.01       | bdl          | 0.00     |

No mdl is available for summed combinations of analytes. In summed

columns (eg., BTEX), the reported values should be considered

ESTIMATED if any of the individual compounds were reported as bdl.

5/30/2002 Page: 3 of 12

CCT\_CCXrpt

DSS SITE 1029



### GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

| SAMPLE |             | ADSTND US   |            | +12DCE    | 012DCE      |                 |      | 2MONARH UG         | MTRE US |       | 111700 10 | 12004 110 |
|--------|-------------|-------------|------------|-----------|-------------|-----------------|------|--------------------|---------|-------|-----------|-----------|
|        | 1241 MB, Ug | 0.02        | GIZDCE, Ug | 0.14      | 0.03        | NAF HOZ-WIN, US | 0.01 | 0.02               | 0.04    | 0.04  | 0.02      | 0.02      |
| 170125 | nd          | nd          | nd         | nd        | nd          | 0.00            | nd   | bdí                | nd      | nd    | nd        | nd        |
| 179173 | 0.06        | 0.03        | nd         | nd        | nd          | 0.09            | 0.03 | 0.06               | nd      | nd    | nd        | nd        |
| 179174 | bdl         | bdl         | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179175 | nd          | nd          | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179176 | 0.04        | bdl         | nd         | nd        | nd          | 0.05            | 0.02 | 0.02               | nd      | nd    | nd        | nd        |
| 179177 | 0.10        | 0.04        | nd         | nd        | nd          | 0.10            | 0.06 | 0.04               | nd      | nd    | nd        | nd        |
| 179178 | bdl         | bdl         | nd         | nd        | nd          | 0.06            | 0.02 | 0.03               | nd      | nd    | nd        | nd        |
| 179179 | 0.04        | bdl         | nd         | nd        | nd          | 0.06            | 0.02 | 0.04               | nd      | nd    | nd        | nd        |
| 179180 | bdl         | bdi         | nd         | nd        | nd          | 0.07            | 0.02 | 0.05               | nd      | nd    | nd        | nd        |
| 179181 | bdl         | bdl         | nd         | nd        | nd          | 0.00            | nd   | bdi                | nd      | nd    | nd        | nd        |
| 179182 | bdi         | nd          | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179183 | bdl         | nd          | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179184 | bdl         | nd          | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179185 | nd          | nd          | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179186 | 0.04        | nd          | nd         | nd        | nd          | 0.02            | nd   | 0.02               | nd      | nd    | nd        | nd        |
| 179187 | 0.09        | 0.02        | nd         | nd        | nd          | 0.05            | 0.02 | 0.03               | nd      | nd    | nd        | nd        |
| 179188 | bdl         | nd          | nd         | nd        | nd          | 0.00            | nd   | bdi                | nd      | nd    | nd        | nd        |
| 179189 | bdl         | bdl         | nd         | nd        | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179190 | bdl         | bdl         | nd         | nd        | nd          | 0.07            | 0.02 | 0.04               | nd      | nd    | nd        | nd        |
| 179191 | bdi         | bdl         | nd         | <u>nd</u> | nd          | 0.00            | nd   | bdl                | nd      | nd    | nd        | nd        |
| 179192 | bdl         | nd          | nd         | nd        | nd          | 0.05            | 0.02 | 0.03               | nd      | nd    | nd        | nd        |
| 179193 | bdl         | nd          | nd         | nd        | nd          | 0.00            | nd   | Ddl                | nd      | nd    | nd        | nd        |
| 179194 | bdl         | bdl         | nd         | nd        | nd          | 0.02            | 0.02 | bdl                | nd      | nd    | nd        | nd        |
| 179195 | bdl         | bdi         | nd         | nd        | nd          | 0.10            | 0.03 | 0.07               | nd      | nd    | nd        | nd        |
| 179196 | bdl         | nd          | nd         | nd        | nd          | 0.05            | 0.02 | 0.02               | nd      | nd    | nd        | nd        |
| 179197 | 0.04        | bdl         | na         | nd        | na          | 0.11            | 0.04 | 0.07               | nd      | nd    | nd        | nd        |
| 179198 | na          | na na       | na         | na        | na          | na              | na   | na                 | no      | na    | nd        | na        |
| 179199 | bdi         | na          | na         |           | na          | 0.00            |      |                    | nd      | na    | nd        | na        |
| 179200 |             |             | na         | no no     | nd          | 0.02            |      | 0.02               | na      | na na | na        | na        |
| 1/9201 | DOI         | na          |            | na na     | 10          | 0.00            | na   | DOI                | na      | na    | na        | na        |
| 179202 | DOI         |             | na         |           | <u>no</u>   | 0.00            | 0.00 |                    | na      | na    | na        | nd        |
| 1/9203 | 0.03        | 001         | na         | na        | na na       | 0.03            | 0.03 |                    | na      |       | na        | na        |
| 1/9204 |             | <u>  na</u> | na na      |           | na          | 0.11            | 0.04 | 0.07               |         |       |           | nd        |
| 179205 | 0.03        | DOI         |            |           |             | 0.13            | 0.05 | 0.07               |         | nd    | 0.05      | nd        |
| 1/9206 | <u>no</u>   | <u>na</u>   | na na      |           | na na       | 0.03            |      | 0.03               | na<br>  | nd    | 0.02      | nd        |
| 1/920/ |             |             | na na      | <u>no</u> | na          | 0.00            | no   | <u>ום ום ווידי</u> | na      |       | 0.03      | nd        |
| 1/9208 | DQI         |             |            | <u>na</u> |             | 0.00            | 002  |                    | na      | na    | nd        | nd        |
| 1/9209 | םמן למ      | 001         | na         | na na     | L <u>na</u> | 0.05            | 0.02 | 0.03               | na      | L na  | nd nd     | i nd      |

D55 51TE 1029

No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the ' vividual compounds were reported as bdl.

5/30/2002 Page: 7 of 12  $\mathcal{F} \in \mathcal{F}$ 

### GORE SORBER SCREENING SURVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025

| SAMPLE | 1       |         |         |           |           |          |            |
|--------|---------|---------|---------|-----------|-----------|----------|------------|
| NAME   | TCE, ug | OCT, ug | PCE, ug | 14DCB, ug | CHCI3, ug | CCI4, ug | CIBENZ, ug |
| MDL=   | 0.02    | 0.02    | 0.01    | 0.01      | 0.03      | 0.03     | 0.01       |
| 179172 | nd      | nd      | nd      | nd        | nd        | nd       | nď         |
| 179173 | nd      | 0.14    | 0.02    | nd        | nd        | nd       | nď         |
| 179174 | nd      | nd      | nd      | nd        | nd        | nd       | nd         |
| 179175 | nd      | nd      | 0.04    | nd        | nd        | nd       | nd         |
| 179176 | nd      | nd      | 0.03    | nd        | nd        | nd       | nd         |
| 179177 | nd      | 0.09    | 0.02    | nd        | nd        | nd       | nd         |
| 179178 | nd      | nd      | 0.01    | nd        | nd        | nd       | nd         |
| 179179 | 0.13    | nd      | 0.07    | nd        | 0.05      | nd       | nd         |
| 179180 | 0.08    | nd      | 0.02    | nd        | nd        | nd       | nd         |
| 179181 | 0.11    | nd      | 0.03    | nd        | nd        | nd       | nd         |
| 179182 | 0,15    | nd      | 0.04    | nd        | nd        | nd       | nd         |
| 179183 | 0.59    | nd      | 0.08    | nd        | nd        | nd       | nd         |
| 179184 | nd      | nd      | nd      | nd        | nd        | nd       | nd         |
| 179185 | 0.06    | nd      | nd      | nd        | nd        | nd       | nd         |
| 179186 | nd      | nd      | nd      | nd        | nd        | nd       | nd         |
| 179187 | 0.13    | nd      | 0.08    | nd        | nd        | nd       | nd         |
| 179188 | nd      | nd      | 0.11    | nd        | nd        | nd       | nd         |
| 179189 | 0.06    | nd      | 0.02    | nd        | nd        | nd       | nd         |
| 179190 | nd      | nd      | bdi     | nd        | nd        | bdl      | nd         |
| 179191 | nd      | nd      | 0.03    | nd        | nd        | 0.03     | nd         |
| 179192 | nd      | nd      | 0.03    | nd        | nd        | nd       | nd         |
| 179193 | nd      | nd      | 0.08    | nd        | nd        | nd       | nd         |
| 179194 | nd      | nd      | 0.04    | nd        | nd        | nd       | nd         |
| 179195 | nd      | nd      | nd      | nd        | nd        | nd       | nd         |
| 179196 | nd      | nd      | nd      | nd        | nd        | 0.03     | nd         |
| 179197 | nd      | nd      | nd      | nd        | nd        | bdi      | nd         |
| 179198 | nd      | 0.09    | nd      | nd        | nd        | nd       | nd         |
| 179199 | nd      | nd      | nd      | nd        | nd        | bdi      | nd         |
| 179200 | nd      | nd      | 0.09    | nd        | nd        | nd       | nd         |
| 179201 | nd      | nd      | 0.12    | nd        | nd        | nd       | nd         |
| 179202 | nd      | nd      | 0.12    | nd        | nd        | nd       | nd         |
| 179203 | nd      | nd      | 0.09    | nd        | nd        | nd       | nd         |
| 179204 | 1.49    | nd      | 3.01    | nd        | nd        | nd       | nd         |
| 179205 | 4.14    | nd      | 6.74    | nd        | nd        | nd       | nd         |
| 179206 | 4.72    | nd      | 2.69    | nd        | nd        | nd       | nd         |
| 179207 | 2.89    | nd      | 2.57    | nd        | nd        | nd       | nd         |
| 179208 | nd      | nd      | nd      | nd        | 0.05      | nd       | nd         |
| 179209 | nd      | nd      | nd      | nd        | nd        | nd       | nd         |

5/30/2002 Page: 11 of 12 No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

CCT\_CCXrpt

DSS SITE 1029



ANNEX D DSS Site 1029 Risk Assessment

مديني

229 **494 1**6

.....

This page intentionally left blank.

### TABLE OF CONTENTS

| ١.    | Site De      | escription and History                                       | D-1           |
|-------|--------------|--------------------------------------------------------------|---------------|
| 11.   | Data Q       | uality Objectives                                            | D-1           |
| III.  | Determ       | nination of Nature, Rate, and Extent of Contamination        | D-5           |
|       | 111.1        | Introduction                                                 | D-5           |
|       | III.2        | Nature of Contamination                                      | D-5           |
|       | III.3        | Rate of Contaminant Migration                                | D-5           |
|       | 111.4        | Extent of Contamination                                      | D-6           |
| IV.   | Compa        | arison of COCs to Background Screening Levels                | D-6           |
| V.    | Fate an      | nd Transport                                                 | D-6           |
| VI.   | Humar        | h Health Risk Assessment                                     | D-13          |
|       | VI.1         | Introduction                                                 | D-13          |
|       | VI.2         | Step 1. Site Data                                            | D-14          |
|       | VI.3         | Step 2. Pathway Identification                               | D-14          |
|       | VI.4         | Step 3. Background Screening Procedure                       | D-17          |
|       |              | VI.4.1 Methodology                                           | D-17          |
|       |              | VI.4.2 Results                                               | D- <b>1</b> 7 |
|       | VI.5         | Step 4. Identification of Toxicological Parameters           | D-18          |
|       | VI.6         | Step 5. Exposure Assessment and Risk Characterization        | D-18          |
|       |              | VI.6.1 Exposure Assessment                                   | D-18          |
|       |              | VI.6.2 Risk Characterization                                 | D-18          |
|       | VI.7         | Step 6. Comparison of Risk Values to Numerical Guidelines    | D-22          |
|       | VI.8         | Step 7. Uncertainty Discussion                               | D-23          |
|       | VI.9         | Summary                                                      | D-24          |
| VII.  | Ecolog       | jical Risk Assessment                                        | D-26          |
|       | VII.1        | Introduction                                                 | D-26          |
|       | VII.2        | Scoping Assessment                                           | D-26          |
|       |              | VII.2.1 Data Assessment                                      | D-26          |
|       |              | VII.2.2 Bioaccumulation                                      | D-27          |
|       |              | VII.2.3 Fate and Transport Potential                         | D-28          |
|       |              | VII.2.4 Scoping Risk-Management Decision                     | D-28          |
|       | VII.3        | Risk Assessment                                              | D-28          |
|       |              | VII.3.1 Problem Formulation                                  | D-29          |
|       |              | VII.3.2 Exposure Estimation                                  | D-30          |
|       |              | VII.3.3 Ecological Effects Evaluation                        | D-30          |
|       |              | VII.3.4 Risk Characterization                                | D-36          |
|       |              | VII.3.5 Uncertainty Assessment                               | D-36          |
|       |              | VII.3.6 Risk Interpretation                                  | D-39          |
|       |              | VII.3.7 Risk Assessment Scientific/Management Decision Point | D-40          |
| VIII. | Refere       | ences                                                        | D-40          |
| ۰     | o no alter a |                                                              | D /-          |
| Арр   | enaix 1.     |                                                              | D-45          |

-2014-03-1- IN

This page intentionally left blank.

### LIST OF TABLES

| Table | Page                                                                                                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Summary of Sampling Performed to Meet DQOsD-2                                                                                                                                      |
| 2     | Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1029D-3                                                                                                      |
| 3     | Summary of Data Quality Requirements for DSS Site 1029D-4                                                                                                                          |
| 4     | Nonradiological COCs for Human Health Risk Assessment at DSS<br>Site 1029 with Comparison to the Associated SNL/NM Background<br>Screening Value, BCF, and Log K <sub>ow</sub> D-7 |
| 5     | Nonradiological COCs for Ecological Risk Assessment at DSS Site 1029<br>with Comparison to the Associated SNL/NM Background Screening<br>Value, BCF, and Log K <sub>ow</sub> D-9   |
| 6     | Radiological COCs for Human Health Risk Assessment at DSS Site 1029<br>with Comparison to the Associated SNL/NM Background Screening<br>Value and BCF                              |
| 7     | Radiological COCs for Ecological Risk Assessment at DSS Site 1029<br>with Comparison to the Associated SNL/NM Background Screening<br>Value and BCF                                |
| 8     | Summary of Fate and Transport at DSS Site 1029D-13                                                                                                                                 |
| 9     | Toxicological Parameter Values for DSS Site 1029 Nonradiological COCs D-19                                                                                                         |
| 10    | Risk Assessment Values for DSS Site 1029 Nonradiological COCs D-21                                                                                                                 |
| 11    | Risk Assessment Values for DSS Site 1029 Nonradiological Background<br>ConstituentsD-22                                                                                            |
| 12    | Summation of Radiological and Nonradiological Risks from DSS Site<br>1029, Building 6584 North Septic System CarcinogensD-25                                                       |
| 13    | Exposure Factors for Ecological Receptors at DSS Site 1029 D-31                                                                                                                    |
| 14    | Transfer Factors Used in Exposure Models for COPECs at DSS<br>Site 1029D-32                                                                                                        |
| 15    | Media Concentrations for COPECs at DSS Site 1029D-33                                                                                                                               |
| 16    | Toxicity Benchmarks for Ecological Receptors at DSS Site 1029 D-34                                                                                                                 |

### LIST OF TABLES (Concluded)

| Table |                                                                                    | Page |
|-------|------------------------------------------------------------------------------------|------|
| 17    | HQs for Ecological Receptors at DSS Site 1029                                      | D-37 |
| 18    | HQs for Ecological Receptors Exposed to Background Concentrations at DSS Site 1029 | D-38 |

### LIST OF FIGURES

| Figure |                                                                     | Page |
|--------|---------------------------------------------------------------------|------|
| 1      | Conceptual Site Model Flow Diagram for DSS Site 1029, Building 6584 |      |
|        | North Septic System                                                 | D-15 |

### DSS Site 1029: RISK ASSESSMENT REPORT

### I. Site Description and History

Drain and Septic Systems (DSS) Site 1029, the Building 6584 North Septic System, at Sandia National Laboratories/New Mexico (SNL/NM), is located north of the northern boundary of SNL/NM Technical Area III on federally owned land controlled by Kirtland Air Force Base (KAFB). The abandoned septic system consisted of a septic tank of unknown volume that emptied to an exceptionally large drainfield consisting of four 100-foot-long parallel drain lines. Available information indicates that Building 6584 was constructed in 1963 (SNL/NM March 2003), and it is assumed that the septic system was also constructed at that time. By June 1991, the septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones June 1991). The old septic system line was disconnected and capped, and the system was abandoned in place concurrent with this change (Romero September 2003).

Environmental concern about DSS Site 1029 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic system drainfield at this site. Because operational records are not available, the investigation was planned to be consistent with other DSS site investigations and to sample for the COCs most commonly found at similar facilities.

The ground surface in the vicinity of the site is flat to very slightly sloping to the west. The closest major drainage is the Arroyo del Coyote, located approximately 1.2 miles north of the site. No springs or perennial surface-water bodies are located within 2 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport, is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface slope is flat to gently inclined to the west. Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1029 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1029 lies at an average elevation of approximately 5,404 feet above mean sea level. The groundwater beneath the site occurs in unconfined conditions in essentially unconsolidated silts, sands, and gravels. The depth to groundwater is approximately 482 feet below ground surface (bgs). Groundwater flow is to the west in this area (SNL/NM March 2002). The nearest groundwater monitoring well (TAV-MW8) is approximately 100 feet south of the center of the DSS Site 1029 drainfield. The production wells nearest to DSS Site 1029 are KAFB-4 and KAFB-11, approximately 2.6 and 3.0 miles to the northwest and northeast, respectively.

### II. Data Quality Objectives

The Data Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001) identified the site-specific sample locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the quality assurance (QA)/quality control (QC) requirements necessary for producing defensible analytical data suitable for risk assessment purposes. The baseline sampling conducted at this site was designed to:

- Determine whether hazardous waste or hazardous constituents were released at the site.
- Characterize the nature and extent of any releases.
- Provide analytical data of sufficient quality to support risk assessments.

Table 1 summarizes the rationale for determining the sampling locations at this site. The source of potential COCs at DSS Site 1029 was effluent discharged to the environment from the drainfield at this site.

| Table 1                                    |  |  |  |  |  |  |  |  |  |
|--------------------------------------------|--|--|--|--|--|--|--|--|--|
| Summary of Sampling Performed to Meet DQOs |  |  |  |  |  |  |  |  |  |

| DSS Site 1029<br>Sampling Area                  | Potential COC<br>Source                                             | Number of<br>Sampling<br>Locations | Sample<br>Density<br>(samples/acre) | Sampling<br>Location<br>Rationale                                                                              |
|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Soil beneath the<br>septic system<br>drainfield | Effluent<br>discharged to the<br>environment from<br>the drainfield | 3                                  | NA                                  | Evaluate potential<br>COC releases to<br>the environment<br>from effluent<br>discharged from<br>the drainfield |

COC = Constituent of concern.

DQO = Data Quality Objective.

DSS = Drain and Septic Systems.

NA = Not applicable.

The baseline soil samples were collected with a Geoprobe<sup>™</sup> in three locations across DSS Site 1029 from two 3- to 4-foot-long sampling intervals at each boring location. Drainfield sampling intervals started at 5 and 10 feet bgs in each of the three drainfield borings. The soil samples were collected in accordance with the procedures described in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site and the laboratories that performed the analyses.

The DSS Site 1029 baseline soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals plus zinc, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activity. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc.) and the on-site SNL/NM Environmental Restoration (ER) Chemistry Laboratory and Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical

|  |  | No. |
|--|--|-----|
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |

|                        | Table 2                  |                  |               |
|------------------------|--------------------------|------------------|---------------|
| Number of Confirmatory | / Soil and QA/QC Samples | Collected from D | OSS Site 1029 |

| Sample Type              | VOCs   | SVOCs | PCBs | HE        | RCRA<br>Metals +<br>Zinc | Hexavalent<br>Chromium | Cyanide | Gamma<br>Spectroscopy<br>Radionuclides | Gross<br>Alpha/Beta |
|--------------------------|--------|-------|------|-----------|--------------------------|------------------------|---------|----------------------------------------|---------------------|
| Confirmatory             | 6      | 5     | 6    | 5         | 5                        | 6                      | 6       | 5                                      | 5                   |
| Duplicates               | 0      | 1     | 1    | 1         | 1                        | 1                      | 1       | 1                                      | 0                   |
| EBs and TBs (VOCs only)  | 1      | 0     | 0    | 0         | 0                        | 0                      | 0       | 0                                      | 0                   |
| Total Samples            | 7      | 6     | 7    | 6         | 6                        | 7                      | 7       | 6                                      | 5                   |
| Analytical Laboratory    | GEL    | GEL   | GEL  | ERCL, GEL | ERCL, GEL                | GEL                    | GEL     | RPSD, GEL                              | GEL                 |
| DSS - Drain and Sontia S | vetome |       |      |           |                          |                        |         |                                        |                     |

DSS = Drain and Septic Systems. EΒ

= Equipment blank.

 Equipment blank.
 Environmental Restoration Chemistry Laboratory.
 General Engineering Laboratories, Inc.
 High explosive(s).
 Polychlorinated biphenyl.
 Quality assurance. ERCL

GEL ΗE

PCB

QA

QC

RCRA

 Quality assurance.
 Quality control.
 Resource Conservation and Recovery Act.
 Radiation Protection Sample Diagnostics Laboratory.
 Semivolatile organic compound. RPSD

SVOC

ΤВ

= Trip blank. = Volatile organic compound. VOC

AL/3-04/WP/SNL04:rs5474.doc

| Analytical                | Data Quality |      |      |      |
|---------------------------|--------------|------|------|------|
| Methoda                   | Level        | GEL  | ERCL | RPSD |
| VOCs                      | Defensible   | 6    | None | None |
| EPA Method 8260           |              | }    |      |      |
| SVOCs                     | Defensible   | 5    | None | None |
| EPA Method 8270           |              |      |      |      |
| PCBs                      | Defensible   | 6    | None | None |
| EPA Method 8082           |              |      |      |      |
| HE Compounds              | Defensible   | None | 5    | None |
| EPA Method 8330           |              |      |      |      |
| RCRA metals + Zinc        | Defensible   | None | 5    | None |
| EPA Method 6000/7000      |              | ]    |      | ]    |
| Hexavalent Chromium       | Defensible   | 6    | None | None |
| EPA Method 7196A          | H            |      |      |      |
| Total Cyanide             | Defensible   | 6    | None | None |
| EPA Method 9012A          |              |      |      |      |
| Gamma Spectroscopy        | Defensible   | None | None | 5    |
| Radionuclides             |              |      |      |      |
| EPA Method 901.1          |              |      | 1    | Į į  |
| Gross Alpha/Beta Activity | Defensible   | 5    | None | None |
| EPA Method 900.0          |              |      |      |      |

Table 3Summary of Data Quality Requirements for DSS Site 1029

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks.

<sup>a</sup>EPA November 1986.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ERCL = Environmental Restoration Chemistry Laboratory.
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- QA = Quality assurance.
- QC = Quality control.
- RCRA = Resource Conservation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

methods and the data quality requirements from the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001).

The QA/QC samples were collected during the baseline sampling effort according to the ER Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only) and three field duplicates. No significant QA/QC problems were identified in the QA/QC samples.

All laboratory data were reviewed and verified/validated according to "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0 (SNL/NM July 1994) or SNL/NM ER Project "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03 (SNL/NM December

### **RISK ASSESSMENT FOR DSS SITE 1029**

1999). The data validation reports are presented in the associated DSS Site 1029 proposal for no further action (NFA). The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). The gamma spectroscopy results are presented in the NFA proposal. The reviews confirm that the analytical data are defensible and therefore acceptable for use in the NFA proposal. Therefore, the DQOs have been fulfilled.

### III. Determination of Nature, Rate, and Extent of Contamination

### III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1029 was based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive soil-vapor sampling. The DQOs contained in the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001) identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1029, which is presented in Section 4.0 of the associated NFA proposal. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination is described in the following sections.

### III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1029 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activity. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and potential degradation products at DSS Site 1029.

### III.3 Rate of Contaminant Migration

The septic system at DSS Site 1029 was deactivated in the early 1990s when Building 6584 was connected to an extension of the City of Albuquerque sanitary sewer system. The migration rate of COCs that may have been introduced into the subsurface via the septic system at this site was therefore dependent upon the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system was discontinued has been dependent predominantly upon precipitation. However, it is highly unlikely that sufficient precipitation has fallen onto the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted are adequate to characterize the rate of COC migration at DSS Site 1029.

AL/3-04/WP/SNL04:rs5474.doc

### III.4 Extent of Contamination

Subsurface baseline soil samples were collected from boreholes drilled at three locations beneath the effluent release points and area (the drainfield) at the site to assess whether releases of effluent from the septic system caused any environmental contamination.

The DSS Site 1029 baseline soil samples were collected at sampling depths starting at 5 and 10 feet bgs in the drainfield area. Sampling intervals started at the depths at which effluent discharged from the drainfield drain lines and seepage pit would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environment Department (NMED) regulators and has been used at numerous DSS sites at SNL/NM. The baseline soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site and are sufficient to determine the vertical extent, if any, of COCs.

### IV. Comparison of COCs to Background Screening Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1029 NFA proposal describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs that were evaluated in this risk assessment included all detected organic compounds and all inorganic and radiological COCs for which samples were analyzed. When the detection limit of an organic compound was too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound was retained. Nondetected organic compounds not included in this assessment were determined to have detection limits low enough to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation used only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddie September 1997) was selected to provide the background screen listed in Tables 4 through 7.

Nonradiological inorganic compounds that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, were not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs were evaluated. The nonradiological COCs evaluated in the risk assessment consisted of inorganic and organic compounds.

Tables 4 and 5 list the nonradiological COCs for the human health and ecological risk assessments at DSS Site 1029, respectively; Tables 6 and 7 list the radiological COCs for the human health and ecological risk assessments, respectively. All tables show the associated SNL/NM maximum background concentration values (Dinwiddie September 1997). Section VI.4.2 discusses Tables 4 and 6; Sections VII.2 and VII.3 discuss Tables 5 and 7.

### V. Fate and Transport

The primary releases of COCs at DSS Site 1029 were to the subsurface soil resulting from the discharge of effluents from the Building 6584 North Septic System septic tank and drainfield. Wind, water, and biota are natural mechanisms of COC transport from the primary release point. However, because the discharge was to subsurface soil, none of these

| Table 4                                                                                         |
|-------------------------------------------------------------------------------------------------|
| Nonradiological COCs for Human Health Risk Assessment at DSS Site 1029 with                     |
| Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log ${\sf K}_{\sf ow}$ |
|                                                                                                 |

| сос                    | Maximum<br>Concentration<br>(All Samples)<br>(mg/kg) | SNL/NM<br>Background<br>Concentration<br>(mg/kg)ª | Is Maximum COC<br>Concentration Less<br>Than or Equal to the<br>Applicable SNL/NM<br>Background<br>Screening Value? | BCF<br>(maximum<br>aquatic) | Log K <sub>ow</sub><br>(for organic<br>COCs) | Bioaccumulator? <sup>b</sup><br>(BCF>40,<br>Log K <sub>ow</sub> >4) |
|------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|---------------------------------------------------------------------|
| Inorganic              | · · · · · · · · · · · · · · · · · · ·                |                                                   | ¥                                                                                                                   | ······                      |                                              |                                                                     |
| Arsenic                | 5.5                                                  | 4.4                                               | No                                                                                                                  | 44 <sup>c</sup>             | ······································       | Yes                                                                 |
| Barium                 | 120                                                  | 214                                               | Yes                                                                                                                 | 170 <sup>d</sup>            | -                                            | Yes                                                                 |
| Cadmium                | 0.22                                                 | 0.9                                               | Yes                                                                                                                 | 64 <sup>c</sup>             |                                              | Yes                                                                 |
| Chromium, total        | 12                                                   | 15.9                                              | Yes                                                                                                                 | 16 <sup>c</sup>             | _                                            | No                                                                  |
| Chromium VI            | 0.0796 J                                             | 1                                                 | Yes                                                                                                                 | 16°                         |                                              | No                                                                  |
| Cyanide                | 0.0695 <sup>e</sup>                                  | NC                                                | Unknown                                                                                                             | NC                          | -                                            | Unknown                                                             |
| Lead                   | 7.2                                                  | 11.8                                              | Yes                                                                                                                 | 49 <sup>c</sup>             |                                              | Yes                                                                 |
| Mercury                | 0.0205 <sup>e</sup>                                  | <0.1                                              | Unknown                                                                                                             | 5,500°                      |                                              | Yes                                                                 |
| Selenium               | 0.34 J                                               | <1                                                | Unknown                                                                                                             | 800 <sup>f</sup>            | _                                            | Yes                                                                 |
| Silver                 | 0.87                                                 | <1                                                | Unknown                                                                                                             | 0.5 <sup>c</sup>            |                                              | No                                                                  |
| Zinc                   | 47                                                   | 62                                                | Yes                                                                                                                 | 47°                         |                                              | Yes                                                                 |
| Organic                |                                                      |                                                   |                                                                                                                     |                             |                                              |                                                                     |
| Anthracene             | 0.37 J                                               | NA                                                | NA                                                                                                                  | 917°                        | 4.45°                                        | Yes                                                                 |
| Benzo(a)anthracene     | 2.7 J                                                | NA                                                | NA                                                                                                                  | 10,000 <sup>9</sup>         | 5.61 <sup>9</sup>                            | Yes                                                                 |
| Benzo(a)pyrene         | 2.2 J                                                | NA                                                | NA                                                                                                                  | 3,000°                      | 6.04°                                        | Yes                                                                 |
| Benzo(b)fluoranthene   | <u>3.1 J</u>                                         | NA                                                | NA                                                                                                                  | 14,500 <sup>9</sup>         | 6.124 <sup>g</sup>                           | Yes                                                                 |
| Benzo(g,h,i)perylene   | 0.91 J                                               | NA                                                | NA                                                                                                                  | 58,884 <sup>9</sup>         | 6.58 <sup>g</sup>                            | Yes                                                                 |
| Benzo(k)fluoranthene   | 1.0 J                                                | NA                                                | NA                                                                                                                  | 93,325 <sup>9</sup>         | 6.84 <sup>9</sup>                            | Yes                                                                 |
| 2-Butanone             | 0.011 J                                              | NA                                                | NA                                                                                                                  | 1 <sup>h</sup>              | 0.29 <sup>h</sup>                            | No                                                                  |
| Chrysene               | 3.2 J                                                | NANA                                              | NA                                                                                                                  | 18,000 <sup>g</sup>         | 5.91 <sup>g</sup>                            | Yes                                                                 |
| Dibenz[a,h]anthracene  | 0.33 J                                               | NA                                                | NA                                                                                                                  | 51,000 <sup>9</sup>         | 6.50 <sup>g</sup>                            | Yes                                                                 |
| Fluoranthene           | 4.1 J                                                | NA                                                | NA                                                                                                                  | 12,302 <sup>g</sup>         | 4.90 <sup>g</sup>                            | Yes                                                                 |
| Indeno(1,2,3-cd)pyrene | 0.88 J                                               | NA                                                | NA                                                                                                                  | 59,4079                     | 6.58 <sup>9</sup>                            | Yes                                                                 |

Refer to footnotes at end of table.

Ĩ

**RISK ASSESSMENT FOR DSS SITE 1029** 

# Table 4 (Concluded)Nonradiological COCs for Human Health Risk Assessment at DSS Site 1029 withComparison to the Associated SNL/NM Background Screening Value, BCF, and Log K<sub>ow</sub>

| сос                | Maximum<br>Concentration<br>(All Samples)<br>(mg/kg) | SNL/NM<br>Background<br>Concentration<br>(mg/kg)ª | Is Maximum COC<br>Concentration Less<br>Than or Equal to the<br>Applicable SNL/NM<br>Background<br>Screening Value? | BCF<br>(maximum<br>aquatic) | Log K <sub>ow</sub><br>(for organic<br>COCs) | Bioaccumulator? <sup>b</sup><br>(BCF>40,<br>Log K <sub>ow</sub> >4) |
|--------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|---------------------------------------------------------------------|
| Methylene chloride | 0.0073                                               | NA                                                | NA                                                                                                                  | 5 <sup>h</sup>              | 1.25 <sup>h</sup>                            | No                                                                  |
| Phenanthrene       | 1.6 J                                                | NA                                                | NA                                                                                                                  | 23,800°                     | 4.63 <sup>c</sup>                            | Yes                                                                 |
| Pyrene             | 3.5 J                                                | NA                                                | NA                                                                                                                  | 36,300°                     | 5.32 <sup>g</sup>                            | Yes                                                                 |
| Toluene            | 0.0019                                               | NA                                                | NA                                                                                                                  | 10.7°                       | 2.69°                                        | No                                                                  |

Note: **Bold** indicates the COCs that exceed the background screening values and/or are bioaccumulators.

<sup>a</sup>Dinwiddie September 1997, Southwest Area Supergroup.

<sup>b</sup>NMED March 1998.

°Yanicak March 1997.

D-8

<sup>d</sup>Neumann 1976.

eParameter was not detected. Concentration used is one-half of the highest detection limit.

<sup>f</sup>Callahan et al. 1979.

<sup>g</sup>Micromedex, Inc. 1998.

<sup>h</sup>Howard 1990.

- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- J = Estimated concentration.
- K<sub>ow</sub> = Octanol-water partition coefficient.
- Log = Logarithm (base 10).
- mg/kg = Milligram(s) per kilogram.
- NA = Not applicable.
- NC = Not calculated.
- NMED = New Mexico Environment Department.
- SNL/NM = Sandia National Laboratories/New Mexico.
  - = Information not available.

840858.01 03/10/04 8:50 AM

| Table 5                                                                                                 |
|---------------------------------------------------------------------------------------------------------|
| Nonradiological COCs for Ecological Risk Assessment at DSS Site 1029 with                               |
| Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log $\mathrm{K}_{\mathrm{ow}}$ |

10

| 000                    | Maximum<br>Concentration<br>(Samples ≤ 5 ft bgs) | SNL/NM<br>Background<br>Concentration | Is Maximum COC<br>Concentration Less<br>Than or Equal to the<br>Applicable SNL/NM<br>Background<br>Screening Value? | BCF<br>(maximum<br>aquatic) | Log K <sub>ow</sub><br>(for organic | Bioaccumulator? <sup>b</sup><br>(BCF>40,<br>Log K <sub>ow</sub> >4) |
|------------------------|--------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|---------------------------------------------------------------------|
|                        | (ilig/kg)                                        | (iiig/kg)                             | Screening value:                                                                                                    | aquatic/                    | 0003)                               |                                                                     |
| Arsenic                | 5                                                | 4.4                                   | No                                                                                                                  | 44 <sup>c</sup>             |                                     | Yes                                                                 |
| Barium                 | 120                                              | 214                                   | Yes                                                                                                                 | 170 <sup>d</sup>            |                                     | Yes                                                                 |
| Cadmium                | 0.22                                             | 0.9                                   | Yes                                                                                                                 | 64°                         |                                     | Yes                                                                 |
| Chromium, total        | 11                                               | 15.9                                  | Yes                                                                                                                 | 16°                         |                                     | No                                                                  |
| Chromium VI            | 0.0608 J                                         | 1                                     | Yes                                                                                                                 | 16 <sup>c</sup>             |                                     | No                                                                  |
| Cyanide                | 0.0695 <sup>e</sup>                              | NC                                    | Unknown                                                                                                             | NC                          | _                                   | Unknown                                                             |
| Lead                   | 7.2                                              | 11.8                                  | Yes                                                                                                                 | 49 <sup>c</sup>             |                                     | Yes                                                                 |
| Mercury                | 0.0205 <sup>e</sup>                              | <0.1                                  | Unknown                                                                                                             | 5,500°                      | _                                   | Yes                                                                 |
| Selenium               | 0.30 J                                           | <1                                    | Unknown                                                                                                             | 800 <sup>f</sup>            |                                     | Yes                                                                 |
| Silver                 | 0.87                                             | <1                                    | Unknown                                                                                                             | 0.5°                        |                                     | No                                                                  |
| Zinc                   | 47                                               | 62                                    | Yes                                                                                                                 | 47°                         |                                     | Yes                                                                 |
| Organic                |                                                  | _                                     |                                                                                                                     |                             |                                     |                                                                     |
| Anthracene             | 0.37 J                                           | NA                                    | NA                                                                                                                  | 917°                        | 4.45°                               | Yes                                                                 |
| Benzo(a)anthracene     | 2.7 J                                            | NA                                    | NA                                                                                                                  | 10,000 <sup>g</sup>         | 5.61 <sup>9</sup>                   | Yes                                                                 |
| Benzo(a)pyrene         | 2.2 J                                            | NA                                    | NA                                                                                                                  | 3,000°                      | 6.04°                               | Yes                                                                 |
| Benzo(b)fluoranthene   | 3.1 J                                            | NA                                    | NA                                                                                                                  | 14,500 <sup>9</sup>         | 6.124 <sup>9</sup>                  | Yes                                                                 |
| Benzo(g,h,i)perylene   | 0.91 J                                           | NA                                    | NA                                                                                                                  | 58,884 <sup>9</sup>         | 6.58 <sup>g</sup>                   | Yes                                                                 |
| Benzo(k)fluoranthene   | 1.0 J                                            | NA                                    | NA                                                                                                                  | 93,325 <sup>g</sup>         | 6.84 <sup>9</sup>                   | Yes                                                                 |
| 2-Butanone             | 0.0059 J                                         | NA                                    | NA                                                                                                                  | 1 <sup>h</sup>              | 0.29 <sup>h</sup>                   | No                                                                  |
| Chrysene               | 3.2 J                                            | NA                                    | NA                                                                                                                  | 18,000 <sup>g</sup>         | 5.91 <sup>g</sup>                   | Yes                                                                 |
| Dibenz[a,h]anthracene  | 0.33 J                                           | NA                                    | NA                                                                                                                  | 51,000 <sup>g</sup>         | 6.50 <sup>g</sup>                   | Yes                                                                 |
| Fluoranthene           | 4.1 J                                            | NA                                    | NA                                                                                                                  | 12,302 <sup>g</sup>         | 4.90 <sup>9</sup>                   | Yes                                                                 |
| Indeno(1,2,3-cd)pyrene | 0.88 J                                           | NA                                    | NA                                                                                                                  | 59,407 <sup>g</sup>         | 6.58 <sup>g</sup>                   | Yes                                                                 |

Refer to footnotes at end of table.

100 C

RISK ASSESSMENT FOR DSS SITE 1029

### Table 5 (Concluded) Nonradiological COCs for Ecological Risk Assessment at DSS Site 1029 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log Kow

| сос                | Maximum<br>Concentration<br>(Samples ≤ 5 ft bgs)<br>(mg/kg) | SNL/NM<br>Background<br>Concentration<br>(mg/kg) <sup>a</sup> | Is Maximum COC<br>Concentration Less<br>Than or Equal to the<br>Applicable SNL/NM<br>Background<br>Screening Value? | BCF<br>(maximum<br>aquatic) | Log K <sub>ow</sub><br>(for organic<br>COCs) | Bioaccumulator? <sup>b</sup><br>(BCF>40,<br>Log K <sub>ow</sub> >4) |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|---------------------------------------------------------------------|
| Methylene chloride | 0.0073                                                      | NA                                                            | NA                                                                                                                  | 5 <sup>h</sup>              | 1.25 <sup>h</sup>                            | No                                                                  |
| Phenanthrene       | 1.6 J                                                       | NA                                                            | NA                                                                                                                  | 23,800°                     | 4.63 <sup>c</sup>                            | Yes                                                                 |
| Pyrene             | 3.5 J                                                       | NA                                                            | NA                                                                                                                  | 36,300°                     | 5.329                                        | Yes                                                                 |
| Toluene            | 0.0019                                                      | NA                                                            | NA                                                                                                                  | 10.7°                       | 2.69°                                        | No                                                                  |

Note: Bold indicates the COCs that exceed the background screening values and/or are bioaccumulators.

<sup>a</sup>Dinwiddie September 1997, Southwest Area Supergroup.

<sup>b</sup>NMED March 1998.

°Yanicak March 1997.

AL/3-04/WP/SNL04:rs5474.doc

<sup>d</sup>Neumann 1976.

eParameter was not detected. Concentration is one-half the detection limit.

<sup>f</sup>Callahan et al. 1979.

<sup>9</sup>Micromedex, Inc. 1998.

<sup>h</sup>Howard 1990.

J

NA NC

\_

- BCF = Bioconcentration factor.
- = Below ground surface. bgs
- COC = Constituent of concern.
- DSS = Drain and Septic Systems. ft
  - = Foot (feet).
  - = Estimated concentration.
  - = Octanol-water partition coefficient.
- K<sub>ow</sub> = Logarithm (base 10). Log
- = Milligram(s) per kilogram. ma/ka
  - = Not applicable.
  - = Not calculated.
- = New Mexico Environment Department. NMED
- SNL/NM = Sandia National Laboratories/New Mexico.
  - = Information not available.

### Table 6 Radiological COCs for Human Health Risk Assessment at DSS Site 1029 with Comparison to the Associated SNL/NM Background Screening Value and BCF

| сос    | Maximum Activity<br>(All Samples)<br>(pCi/g) | SNL/NM Background<br>Activity<br>(pCi/g)ª | Is Maximum COC Activity<br>Less Than or Equal to the<br>Applicable SNL/NM<br>Background Screening<br>Value? | BCF<br>(maximum aquatic) | ls COC a<br>Bioaccumulator? <sup>b</sup><br>(BCF >40) |
|--------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|
| Cs-137 | 0.0449                                       | 0.079                                     | Yes                                                                                                         | 3,000 <sup>c</sup>       | Yes                                                   |
| Th-232 | 0.728                                        | 1.01                                      | Yes                                                                                                         | 3,000 <sup>c</sup>       | Yes                                                   |
| U-235  | 0.102                                        | 0.16                                      | Yes                                                                                                         | 900°                     | Yes                                                   |
| U-238  | 0.818                                        | 1.4                                       | Yes                                                                                                         | 900°                     | Yes                                                   |

Note: Bold indicates COCs that exceed background screening values and/or are bioaccumulators.

<sup>a</sup>Dinwiddie September 1997, Southwest Area Supergroup.

<sup>b</sup>NMED March 1998.

<sup>c</sup>Baker and Soldat 1992. BCF = Bioconcentration factor.

AL/3-04/WP/SNL04:rs5474.doc

COC = Constituent of concern.

DSS = Drain and Septic Systems.

= New Mexico Environment Department. NMED

pCi/g = Picocurie(s) per gram. SNL/NM = Sandia National Laboratories/New Mexico.

# Table 7Radiological COCs for Ecological Risk Assessment at DSS Site 1029 withComparison to the Associated SNL/NM Background Screening Value and BCF

| сос    | Maximum Activity<br>(Samples ≤ 5 ft bgs)<br>(pCi/g) | SNL/NM Background<br>Activity<br>(pCi/g)ª | Is Maximum COC Activity<br>Less Than or Equal to the<br>Applicable SNL/NM<br>Background Screening<br>Value? | BCF<br>(maximum aquatic) | Is COC a<br>Bioaccumulator? <sup>b</sup><br>(BCF >40) |
|--------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|
| Cs-137 | 0.0449                                              | 0.079                                     | Yes                                                                                                         | 3,000°                   | Yes                                                   |
| Th-232 | 0.728                                               | 1.01                                      | Yes                                                                                                         | 3,000°                   | Yes                                                   |
| J-235  | 0.102                                               | 0.16                                      | Yes                                                                                                         | 900°                     | Yes                                                   |
| J-238  | 0.570                                               | 1.4                                       | Yes                                                                                                         | 900°                     | Yes                                                   |

Note: Bold indicates COCs that exceed background screening values and/or are bioaccumulators.

<sup>a</sup>Dinwiddie September 1997, Southwest Area Supergroup.

<sup>b</sup>NMED March 1998.

<sup>o</sup>Baker and Soldat 1992.

- BCF = Bioconcentration factor.
- bgs = Below ground surface.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.

= Foot (feet).

NMED = New Mexico Environment Department.

pCi/g = Picocurie(s) per gram.

SNL/NM = Sandia National Laboratories/New Mexico.

ft

**RISK ASSESSMENT FOR DSS SITE 1029** 

mechanisms are considered to be of potential significance as transport mechanisms at this site. Because the septic system is no longer active, additional infiltration of water is not expected. Infiltration of precipitation is essentially nonexistent at DSS Site 1029, as virtually all of the moisture either drains away from the site or evaporates. Because groundwater at this site is approximately 482 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely low.

The COCs at DSS Site 1029 include both inorganic and organic constituents. The inorganic COCs are nonradiological analytes. With the exception of cyanide, the inorganic COCs are elemental in form and are not considered to be degradable. Transformations of these inorganic constituents could include changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide can be metabolized by soil biota.

The organic COCs at DSS Site 1029 include both SVOCs and VOCs. Organic COCs may be degraded through photolysis, hydrolysis, and biotransformation. Photolysis requires light and therefore takes place in the air, at the ground surface, or in surface water. Hydrolysis includes chemical transformations in water and may occur in the soil solution. Biotransformation (i.e., transformation caused by plants, animals, and microorganisms) may occur; however, biological activity may be limited by the arid environment at this site. Because of the depth of the COCs in the soil, the loss of VOCs through volatilization is expected to be minimal.

Table 8 summarizes the fate and transport processes that can occur at DSS Site 1029. COCs at this site include nonradiological inorganic and organic analytes. Wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. Significant leaching into the subsurface soil is unlikely, and leaching into the groundwater at this site is highly unlikely. The potential for transformation of COCs is low.

| Transport and Fate Mechanism | Existence at Site | Significance |
|------------------------------|-------------------|--------------|
| Wind                         | Yes               | Low          |
| Surface runoff               | Yes               | Low          |
| Migration to groundwater     | No                | None         |
| Food chain uptake            | Yes               | Low          |
| Transformation/degradation   | Yes               | Low          |

## Table 8Summary of Fate and Transport at DSS Site 1029

DSS = Drain and Septic Systems.

### VI. Human Health Risk Assessment

### VI.1 Introduction

The human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

AL/3-04/WP/SNL04:rs5474.doc

-----

| Step 1. | Site data are described that provide information on the potential COCs, as well as the relevant physical characteristics and properties of the site.                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2. | Potential pathways are identified by which a representative population might be exposed to the COCs.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Step 3. | The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure that compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.                                                                                                                                   |
| Step 4. | Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Step 5. | Potential toxicity effects (specified as a hazard index [H1]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction applies only when a radiological COC occurs as contamination and exists as a natural background radionuclide. |
| Step 6. | These values are compared with guidelines established by the U.S. Environmental<br>Protection Agency (EPA), NMED, and the U.S. Department of Energy (DOE) to determine<br>whether further evaluation and potential site cleanup are required. Nonradiological COC<br>risk values also are compared to background risk so that an incremental risk can be<br>calculated.                                                                                                                                                                    |
| Step 7. | Uncertainties of the above steps are addressed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### VI.2 Step 1. Site Data

Section I of this risk assessment provides the site description and history for DSS Site 1029. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

### VI.3 Step 2. Pathway Identification

DSS Site 1029 has been designated with a future land-use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land-use scenario is also considered in the pathway analysis. Because of the location and characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust and volatiles. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential for the receptor to be exposed to contaminated soil. No water pathways to the groundwater are considered. Depth to groundwater at DSS Site 1029 is approximately 482 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land-use scenarios. Figure 1 shows the conceptual site model flow diagram for DSS Site 1029.





Figure 1 Conceptual Site Model Flow Diagram for DSS Site 1029, Building 6584 North Septic System

### Pathway Identification

| Nonradiological Constituents    | Radiological Constituents |
|---------------------------------|---------------------------|
| Soil ingestion                  | Soil ingestion            |
| Inhalation (dust and volatiles) | Inhalation (dust)         |
| Dermal contact                  | Direct gamma              |

### VI.4 Step 3. Background Screening Procedure

This section discusses Step 3, the background screening procedure, which compares the maximum COC concentration to the background screening level. The methodology and results are described in the following sections.

### VI.4.1 Methodology

Maximum concentrations of nonradiological COCs were compared to the approved SNL/NM maximum screening level for this area (Dinwiddie September 1997). The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and used to calculate risk attributable to background in Sections VI.6.2 and VI.7. Only the COCs that were detected above the corresponding SNL/NM maximum background screening levels or did not have either a quantifiable or calculated background screening level were considered in further risk assessment analyses.

For radiological COCs that exceeded the SNL/NM background screening levels, background values were subtracted from the individual maximum radionuclide concentrations. Those that did not exceed these background levels were not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that do not have a background value and were detected above the analytical minimum detectable activity were carried through the risk assessment at the maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

### VI.4.2 Results

Tables 4 and 6 show DSS Site 1029 maximum COC concentrations that were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, the maximum concentration for one inorganic constituent exceeded the background screening concentration, and four inorganic constituents do not have quantified background screening concentrations; therefore, it is unknown whether these constituents exceeded background levels. Fifteen nonradiological COCs were organic compounds that do not have corresponding background screening values.

For the radiological COCs, no constituents exceeded background screening values. Therefore, the radiological COCs were eliminated from further evaluation in the risk assessment.

### VI.5 Step 4. Identification of Toxicological Parameters

Table 9 lists the nonradiological COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values for the nonradiological COCs presented in Table 9 were obtained from the Integrated Risk Information System (IRIS) (EPA 2003), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), and the EPA Region 6 electronic database (EPA 2002a).

### VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and excess cancer risk for both the potential nonradiological COCs and associated background for industrial and residential land-use scenarios.

### VI.6.1 Exposure Assessment

Appendix 1 provides the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways. The appendix shows parameters for both the industrial and residential land-use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000), as well as other EPA and NMED guidance documents, and reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). Although the designated land-use scenario is industrial for this site, risk and TEDE values for a residential land-use scenario are also presented.

### VI.6.2 Risk Characterization

Table 10 shows an HI of 0.60 for the DSS Site 1029 nonradiological COCs and an estimated excess cancer risk of 2E-5 for the designated industrial land-use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust and volatile inhalation for nonradiological COCs. Table 11 shows that for the DSS Site 1029 associated background constituents, the HI is 0.02 and the calculated excess cancer risk is 3E-6 for the industrial land-use scenario.

Because none of the radiological COCs exceeded background screening values, these COCs were eliminated from further evaluation in the risk assessment for the industrial land-use scenario.

For nonradiological COCs under the residential land-use scenario, the HI is 2.17 with an estimated excess cancer risk of 8E-5. The numbers in the table include exposure from soil ingestion, dermal contact, and dust and volatile inhalation. Although the EPA (1991) generally recommends that inhalation not be included in a residential land-use scenario, this pathway is

|                                   | RfD <sub>o</sub>  |                                | <b>RfD</b> inh      |                                | SFo                     | SF <sub>inh</sub>       | Cancer             |                   |
|-----------------------------------|-------------------|--------------------------------|---------------------|--------------------------------|-------------------------|-------------------------|--------------------|-------------------|
| COC                               | (mg/kg-d)         | <b>Confidence</b> <sup>a</sup> | (mg/kg-d)           | <b>Confidence</b> <sup>a</sup> | (mg/kg-d) <sup>-1</sup> | (mg/kg-d) <sup>-1</sup> | Class <sup>b</sup> | ABS               |
|                                   |                   |                                |                     |                                |                         |                         |                    |                   |
| Arsenic                           | 3E-4°             | M                              | -                   | _                              | 1.5E+0°                 | 1.5E+1°                 | A                  | 0.03 <sup>d</sup> |
| Cyanide                           | 2E-2°             | M                              | -                   | -                              | -                       | -                       | D                  | 0.1 <sup>d</sup>  |
| Mercury                           | 3E-4 <sup>e</sup> | -                              | 8.6E-5°             | М                              | -                       | -                       | D                  | 0.01 <sup>d</sup> |
| Selenium                          | 5E-3°             | H                              | -                   | -                              |                         | -                       | D                  | 0.01 <sup>d</sup> |
| Silver                            | 5E-3°             | L                              |                     | -                              |                         | -                       | D                  | 0.01 <sup>d</sup> |
| Organic                           |                   |                                | _                   |                                |                         |                         |                    |                   |
| Anthracene                        | 3E-1°             | L                              | 3E-1 <sup>†</sup>   | -                              |                         | _                       | D                  | 0.13 <sup>d</sup> |
| Benzo(a)anthracene                | -                 | -                              |                     | ~                              | 7.3E-1 <sup>†</sup>     | 3.1E-1 <sup>†</sup>     | B2                 | 0.13 <sup>d</sup> |
| Benzo(a)pyrene                    |                   | -                              | _                   | _                              | 7.3E+0°                 | 3.1E+0 <sup>f</sup>     | B2                 | 0.13 <sup>d</sup> |
| Benzo(b)fluoranthene              | -                 | -                              | _                   | _                              | 7.3E-1 <sup>†</sup>     | 3.1E-1 <sup>1</sup>     | B2                 | 0.13 <sup>d</sup> |
| Benzo(g,h,i)perylene <sup>g</sup> | -                 | -                              | —                   | _                              | 7.3E+0 <sup>f</sup>     | 3.1E+0 <sup>†</sup>     | B2                 | 0.13 <sup>d</sup> |
| Benzo(k)fluoranthene              | -                 | _                              | -                   | -                              | 7.3E-2 <sup>†</sup>     | 3.1E-2 <sup>f</sup>     | B2                 | 0.13 <sup>d</sup> |
| 2-Butanone                        | 6E-1°             | L                              | 2.9E-1°             | L                              |                         |                         | D                  | 0.1 <sup>d</sup>  |
| Chrysene                          | -                 |                                | -                   | -                              | 7.3E-3 <sup>f</sup>     | 3.1E-3 <sup>f</sup>     | B2                 | 0.13 <sup>d</sup> |
| Dibenz[a,h]anthracene             |                   |                                | -                   | -                              | 7.3E+0 <sup>f</sup>     | 3.1E+0 <sup>f</sup>     | B2                 | 0.13 <sup>d</sup> |
| Fluoranthene                      | 4E-2°             | L                              | 4E-2 <sup>f</sup>   | -                              | _                       | -                       | D                  | 0.13 <sup>d</sup> |
| Indeno(1,2,3-cd) pyrene           | _                 | _                              | _                   | -                              | 7.3E-1 <sup>f</sup>     | 3.1E-1 <sup>†</sup>     | B2                 | 0.13 <sup>d</sup> |
| Methylene chloride                | 6E-2°             | M                              | 8.6E-1 <sup>e</sup> | -                              | 7.5E-3°                 | 1.6E-3°                 | B2                 | 0.1 <sup>d</sup>  |
| Phenanthrene <sup>h</sup>         | 3E-1°             | L                              | 3E-1 <sup>f</sup>   | -                              | _                       |                         | D                  | 0.1 <sup>d</sup>  |
| Pyrene                            | 3E-2°             | L                              | 3E-2 <sup>f</sup>   | -                              |                         |                         | D                  | 0.1 <sup>d</sup>  |
| Toluene                           | 2E-10             | M                              | 1.1E-1°             | М                              |                         | _                       | D                  | 0.14              |

 Table 9

 Toxicological Parameter Values for DSS Site 1029 Nonradiological COCs

<sup>a</sup>Confidence associated with IRIS (EPA 2003) database values. Confidence: L = low, M = medium, H = high. <sup>b</sup>EPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003):

A = Human carcinogen.

B2 = Probable human carcinogen. Sufficient evidence in animals and inadequate or no evidence in humans.

D = Not classifiable as to human carcinogenicity.

°Toxicological parameter values from IRIS electronic database (EPA 2003).

<sup>d</sup>Toxicological parameter values from NMED December 2000.

eToxicological parameter values from HEAST (EPA 1997a).

**RISK ASSESSMENT FOR DSS SITE 1029** 

# Table 9 (Concluded)Toxicological Parameter Values for DSS Site 1029 Nonradiological COCs

<sup>1</sup>Toxicological parameter values from EPA Region 6 (EPA 2002a).

Provicological parameter values for benzo(g,h,i)perylene could not be found. Dibenz[a,h]anthracene was used as a surrogate. <sup>h</sup>Toxicological parameter values for phenanthrene could not be found. Anthracene was used as a surrogate.

| <b>v</b>                |                                             |
|-------------------------|---------------------------------------------|
| ABS                     | = Gastrointestinal absorption coefficient.  |
| COC                     | = Constituent of concern.                   |
| DSS                     | = Drain and Septic Systems.                 |
| EPA                     | = U.S. Environmental Protection Agency.     |
| HEAST                   | = Health Effects Assessment Summary Tables. |
| IRIS                    | = Integrated Risk Information System.       |
| mg/kg-d                 | = Milligram(s) per kilogram day.            |
| (mg/kg-d) <sup>-1</sup> | = Per milligram per kilogram day.           |
| NMED                    | = New Mexico Environment Department.        |
| RfD <sub>inb</sub>      | = Inhalation chronic reference dose.        |
| RfD                     | = Oral chronic reference dose.              |
| SFinh                   | = Inhalation slope factor.                  |
| SF                      | = Oral slope factor.                        |
| - `                     | = Information not available.                |

AL/3-04/WP/SNL04:rs5474.doc

|                        | Maximum<br>Concentration | Industrial Land-Use<br>Scenario <sup>a</sup> |        | Residential Land-Use<br>Scenario <sup>a</sup> |        |  |
|------------------------|--------------------------|----------------------------------------------|--------|-----------------------------------------------|--------|--|
|                        | (All Samples)            | Hazard                                       | Cancer | Hazard                                        | Cancer |  |
| coc                    | (mg/kg)                  | Index                                        | Risk   | Index                                         | Risk   |  |
| Inorganic              |                          |                                              |        |                                               |        |  |
| Arsenic                | 5.5                      | 0.02                                         | 3E-6   | 0.25                                          | 1E-5   |  |
| Cyanide                | 0.0695 <sup>b</sup>      | 0.00                                         |        | 0.00                                          | -      |  |
| Mercury                | 0.0205 <sup>b</sup>      | 0.00                                         | _      | 0.00                                          | _      |  |
| Selenium               | 0.34 J                   | 0.00                                         | _      | 0.00                                          | -      |  |
| Silver                 | 0.87                     | 0.00                                         | _      | 0.00                                          | _      |  |
| Organic                |                          |                                              |        |                                               |        |  |
| Anthracene             | 0.37 J                   | 0.00                                         |        | 0.00                                          | -      |  |
| Benzo(a)anthracene     | 2.7 J                    | 0.00                                         | 1E-6   | 0.00                                          | 4E-6   |  |
| Benzo(a)pyrene         | 2.2 J                    | 0.00                                         | 1E-5   | 0.00                                          | 4E-5   |  |
| Benzo(b)fluoranthene   | 3.1 J                    | 0.00                                         | 1E-6   | 0.00                                          | 5E-6   |  |
| Benzo(g,h,i)perylene   | 0.91 J                   | 0.00                                         | 4E-6   | 0.00                                          | 1E-5   |  |
| Benzo(k)fluoranthene   | 1.0 J                    | 0.00                                         | 5E-8   | 0.00                                          | 2E-7   |  |
| 2-Butanone             | 0.011 J                  | 0.00                                         |        | 0.00                                          | -      |  |
| Chrysene               | 3.2 J                    | 0.00                                         | 2E-8   | 0.00                                          | 5E-8   |  |
| Dibenz[a,h]anthracene  | 0.33 J                   | 0.00                                         | 2E-6   | 0.00                                          | 5E-6   |  |
| Fluoranthene           | 4.1 J                    | 0.00                                         |        | 0.00                                          |        |  |
| Indeno(1,2,3-cd)pyrene | 0.88 J                   | 0.00                                         | 4E-7   | 0.00                                          | 1E-6   |  |
| Methylene chloride     | 0.0073                   | 0.00                                         | 5E-8   | 0.00                                          | 1E-7   |  |
| Phenanthrene           | 1.6 J                    | 0.58                                         |        | 1.90                                          | -      |  |
| Pyrene                 | 3.5 J                    | 0.00                                         | -      | 0.00                                          | -      |  |
| Toluene                | 0.0019                   | 0.00                                         | -      | 0.00                                          | _      |  |
| Total                  | 0.60                     | 2E-5                                         | 2.17   | 8E-5                                          |        |  |

Table 10Risk Assessment Values for DSS Site 1029 Nonradiological COCs

<sup>a</sup>EPA 1989.

<sup>b</sup>Maximum concentration was one-half the detection limit.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

J = Estimated concentration.

mg/kg = Milligram(s) per kilogram.

- = Information not available.

-

. مەخرى

|          | Background                            | Industrial<br>Scen | Land-Use<br>ario <sup>b</sup> | Residential Land-Use<br>Scenario <sup>b</sup> |                |
|----------|---------------------------------------|--------------------|-------------------------------|-----------------------------------------------|----------------|
| сос      | Concentration <sup>a</sup><br>(mg/kg) | Hazard<br>Index    | Cancer<br>Risk                | Hazard<br>Index                               | Cancer<br>Risk |
| Arsenic  | 4.4                                   | 0.02               | 3E-6                          | 0.20                                          | 1E-5           |
| Cyanide  | NC                                    | _                  | _                             |                                               | -              |
| Mercury  | <0.1                                  | _                  |                               | -                                             | _              |
| Selenium | <1                                    | ~                  | _                             | -                                             | _              |
| Silver   | <1                                    |                    | _                             | _                                             | -              |
|          | Total                                 | 0.02               | 3E-6                          | 0.20                                          | 1E-5           |

Table 11Risk Assessment Values for DSS Site 1029 Nonradiological Background Constituents

<sup>a</sup>Dinwiddie September 1997, Southwest Area Supergroup. <sup>b</sup>EPA 1989

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

NC = Not calculated.

= Information not available.

included because of the potential for soil in Albuquerque, New Mexico, to be eroded and, subsequently, for dust to be present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 11 shows that for the DSS Site 1029 associated background constituents, the HI is 0.20 and the calculated excess cancer risk is 1E-5 for the residential land-use scenario.

Because none of the radiological COCs exceeded background screening values, these COCs were eliminated from further evaluation in the risk assessment for the residential land-use scenario.

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluated the potential for adverse health effects for both the industrial (the designated land-use scenario for this site) and residential land-use scenarios.

For the nonradiological COCs under the industrial land-use scenario, the HI is 0.60 (less than the numerical guideline of 1 suggested in the RAGS [EPA 1989]). The estimated excess cancer risk is 2E-5. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus, the excess cancer risk for this site is above the suggested acceptable risk value. This assessment also determined risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land-use scenarios. The incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantified background screening concentrations are assumed to have a hazard quotient (HQ) of 0.00. The incremental HI is 0.59 and the incremental estimated excess cancer risk is 2.03E-5 for the industrial land-use scenario. The incremental excess cancer risk calculation is above NMED guidelines, considering the industrial land-use scenario.

Because none of the radiological COCs exceeded background screening values, these COCs were eliminated from further evaluation in the risk assessment for the industrial land-use scenario.

The calculated HI for the residential land-use scenario nonradiological COCs is 2.17, which is slightly above numerical guidance. The estimated excess cancer risk is 8E-5. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001); thus, the excess cancer risk for this site is above the suggested acceptable risk value. The incremental HI is 1.96 and the estimated incremental cancer risk is 6.94E-5 for the residential land-use scenario. These incremental risk calculations are both above NMED guidelines, considering the residential land-use scenario.

Because none of the radiological COCs exceeded background screening values, these COCs were eliminated from further evaluation in the risk assessment for the residential land-use scenario.

### VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1029 was based upon an initial conceptual model that was validated with baseline sampling conducted at the site. The baseline sampling was implemented in accordance with the SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001). The DQOs contained in these two documents are appropriate for use in risk assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk assessment at DSS Site 1029.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land-use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Because the COCs are found in surface and near-surface soil and because of the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach was used to calculate the risk assessment values. This means that the parameter values in the calculations are conservative and that calculated intakes are probably overestimated. Maximum measured values of COC concentrations are used to provide conservative results.

Table 9 shows the uncertainties (confidence levels) in the nonradiological toxicological parameter values. There is a combination of estimated values and values from the IRIS (EPA 2003), HEAST (EPA 1997a), EPA Regions 6, 9, and 3 (EPA 2002a, EPA 2002b, EPA 2002c), and Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000).
Soil Screening Levels (NMED December 2000), Risk Assessment Information System (ORNL 2003), or EPA regions (EPA 2002a, EPA 2002b, EPA 2002c). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Because the HI and excess cancer risk values are slightly above NMED guidelines for the industrial and residential land-use scenarios, additional evaluation of the data is warranted. SVOCs, the main risk drivers, were detected in only one of the six SVOC soil samples collected from this site. The sample was located in the shallow (5-foot interval) soil sample in borehole 6584N-DF1-BH2. The 12 SVOC compounds detected in this sample are indicative of asphalt (NPS July 1997) and likely reflect asphalt fragments disposed of at the site that were collected in the sample. No significant VOC or metals contamination was detected in any of the samples from this site (except for arsenic concentrations slightly above background). It was noted during sampling that the Building 6584 drainfield area contained small amounts of residual construction debris and appeared to have been used on occasion as a vehicle parking area. It is therefore believed that the SVOC compounds detected in the single sample represent residual asphalt disposed of at the site and do not indicate significant or widespread SVOC contamination that could pose a threat to human health or the environment. With the removal of the SVOCs from the risk calculation, the incremental HI is reduced to 0.06 for the residential land-use scenario, the incremental excess cancer risk is reduced to 7.39E-7 for the industrial land-use scenario, and the incremental excess cancer risk is reduced to 2.93E-6 for the residential land-use scenario. These values are all well below NMED guidelines.

For the radiological COCs, the conclusion of the risk assessment is that potential effects on human health for both the industrial and residential land-use scenarios are below background and represent only a small fraction of the estimated 360 millirem per year received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is not considered to be significant with respect to the conclusion reached.

#### VI.9 Summary

DSS Site 1029 contains identified COCs consisting of some inorganic, organic, and radiological compounds. Because of the location of the site, the designated industrial land-use scenario, and the nature of contamination, potential exposure pathways identified for this site included soil ingestion, dermal contact, and dust and volatile inhalation for chemical COCs, and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways were applied to the residential land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that for the industrial land-use scenario the HI (0.60) is significantly lower than the accepted numerical guidance from the EPA. The estimated excess cancer risk is 2E-5; thus, excess cancer risk is also above the acceptable risk value provided by the NMED for an industrial land-use scenario (Bearzi January 2001). The incremental HI is 0.59, and the incremental estimated excess cancer risk is 2.03E-5 for the industrial land-use scenario. Incremental risk calculations are above NMED guidelines for the industrial land-use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that for the residential land-use scenario the HI (2.17) is slightly above the accepted numerical guidance from the EPA. The estimated excess cancer risk is 8E-5. Thus, excess cancer risk is also slightly above the acceptable risk value provided by the NMED for a residential land-use scenario (Bearzi January 2001). The incremental HI is 1.96 and the incremental estimated excess cancer risk is 6.94E-5 for the residential land-use scenario. Incremental risk calculations are above NMED guidelines for the residential land-use scenario.

Because the HI and excess cancer risk values are slightly above NMED guidelines for the industrial and residential land-use scenarios, additional evaluation of the data is warranted. SVOCs are the main risk drivers and were detected in only one of the six SVOC soil samples collected from this site. The sample was located in the shallow (5-foot interval) soil sample in borehole BH2. The 12 SVOC compounds detected in this sample are indicative of asphalt (NPS July 1997) and likely reflect asphalt fragments disposed of at the site that were collected in the sample. No significant VOC or metals contamination was detected in any of the samples from this site (except for arsenic concentrations slightly above background). It was noted during sampling that the Building 6584 drainfield area contained small amounts of residual construction debris and appeared to have been used on occasion as a vehicle parking area. It is therefore believed that the SVOC compounds detected in the single sample represent residual asphalt disposed of at the site and do not indicate significant or widespread SVOC contamination that could pose a threat to human health or the environment. With the removal of the SVOCs from the risk calculation, the incremental HI is reduced to 0.06 for the residential land-use scenario, the incremental excess cancer risk is reduced to 7.39E-7 for the industrial land-use scenario, and the incremental excess cancer risk is reduced to 2.93E-6 for the residential land-use scenario. These values are all well below NMED guidelines.

Because none of the radiological COCs exceeded background screening values, these COCs were eliminated from further evaluation in the risk assessment for both the industrial and residential land-use scenarios.

The excess cancer risk from the nonradiological and radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in Office of Solid Waste and Emergency Response (OSWER) Directive No. 9200.4-18 (EPA 1997b). The summation of the nonradiological and radiological carcinogenic risks are tabulated in Table 12.

# Table 12Summation of Radiological and Nonradiological Risks fromDSS Site 1029, Building 6584 North Septic System Carcinogens

| Scenario    | Nonradiological Risk | Radiological Risk | Total Risk |
|-------------|----------------------|-------------------|------------|
| Industrial  | 7.39E-7              | 0.0               | 7.39E-7    |
| Residential | 2.93E-6              | 0.0               | 2.93E-6    |

DSS = Drain and Septic Systems.

Uncertainties associated with the calculations are considered small relative to the conservatism of the risk assessment analysis. Therefore, it is concluded that this site poses insignificant risk to human health under both the industrial and residential land-use scenarios.

# VII. Ecological Risk Assessment

#### VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in the soil at DSS Site 1029. A component of the NMED Risk-Based Decision Tree (NMED March 1998) is to conduct an ecological assessment that corresponds with that presented in the EPA's Ecological RAGS (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment. Initial components of the NMED's decision tree (a discussion of DQOs, data assessment, and evaluations of bioaccumulation as well as fate and transport potential) are addressed in previous sections of this report. Following the completion of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary. If deemed necessary, the scoping assessment proceeds to a risk assessment incorporates conservatisms into the estimation of ecological risks, ecological relevance and professional judgment are also used as recommended by the EPA (1998) to ensure that predicted exposures of selected ecological receptors reflect those reasonably expected to occur at the site.

# VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at, or adjacent to, the site to constituents associated with site activities. Included in this section are an evaluation of existing data and a comparison of maximum detected concentrations to background concentrations, examination of bioaccumulation potential, and fate and transport potential. A scoping risk-management decision (Section VII.2.4) involves summarizing the scoping results and determining whether further examination of potential ecological impacts is necessary.

#### VII.2.1 Data Assessment

As indicated in Section IV (Table 5), inorganic constituents in soil within the 0- to 5-foot depth interval that either exceeded background concentrations or have no quantified background concentration were as follows:

- Arsenic
- Cyanide
- Mercury
- Selenium
- Silver

- Organic analytes detected in soil samples were as follows:
  - Anthracene
  - Benzo(a)anthracene
  - Benzo(a)pyrene
  - Benzo(b)fluoranthene
  - Benzo(g,h,i)perylene
  - Benzo(k)fluoranthene
  - 2-Butanone
  - Chrysene
  - Dibenz[a,h]anthracene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Methylene chloride
  - Phenanthrene
  - Pyrene
  - Toluene

As shown in Table 7, no radiological COPECs were identified for this site.

#### VII.2.2 Bioaccumulation

- Among the COPECs listed in Section VII.2.1, the following were considered to have bioaccumulation potential in aquatic environments (Section IV, Tables 5 and 7):
  - Arsenic
  - Mercury
  - Selenium
  - Anthracene
  - Benzo(a)anthracene
  - Benzo(a)pyrene
  - Benzo(b)fluoranthene
  - Benzo(k)fluoranthene
  - Benzo(g,h,i)perylene
  - Chrysene
  - Dibenz[a,h]anthracene
  - Fluoranthene
  - Indeno(1,2,3-cd)pyrene
  - Phenanthrene
  - Pyrene

It should be noted, however, that as directed by the NMED (March 1998), bioaccumulation for inorganic compounds is assessed exclusively based upon maximum reported bioconcentration factors (BCFs) for aquatic species. Because only aquatic BCFs are used to evaluate the bioaccumulation potential for metals, bioaccumulation in terrestrial species is likely to be overpredicted.

# VII.2.3 Fate and Transport Potential

The potential for the COPECs to migrate from the source of contamination to other media or biota is discussed in Section V. As noted in Table 8 (Section V), wind, surface water, and biota are expected to be of low significance as transport mechanisms for COPECs at this site. Migration to groundwater is not anticipated. In general, transformation of COPECs is expected to be of low significance, but may be of moderate significance for some of the organic COPECs. Volatile COPECs (2-butanone, methylene chloride, and toluene) that are near the soil surface may be lost to the atmosphere.

### VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it was concluded that complete ecological pathways may be associated with this site and that COPECs exist at the site. As a consequence, a risk assessment was deemed necessary to predict the potential level of ecological risk associated with the site.

# VII.3 Risk Assessment

As concluded in Section VII.2.4, both complete ecological pathways and COPECs are associated with DSS Site 1029. The risk assessment performed for the site involves a quantitative estimate of current ecological risks using exposure models in association with exposure parameters and toxicity information obtained from the literature. The estimation of potential ecological risks is conservative to ensure that ecological risks are not underpredicted.

Components within the risk assessment include the following:

- Problem Formulation—sets the stage for the evaluation of potential exposure and risk.
- Exposure Estimation—provides a quantitative estimate of potential exposure.
- Ecological Effects Evaluation—presents benchmarks used to gauge the toxicity of COPECs to specific receptors.
- Risk Characterization—characterizes the ecological risk associated with exposure of the receptors to environmental media at the site.
- Uncertainty Assessment—discusses uncertainties associated with the estimation of exposure and risk.
- Risk Interpretation—evaluates ecological risk in terms of HQs and ecological significance.
- Risk Assessment Scientific/Management Decision Point—presents the decision to risk managers based upon the results of the ecological risk assessment.

# VII.3.1 Problem Formulation

Problem formulation is the initial stage of the ecological risk assessment that provides the introduction to the risk evaluation process. Components that are addressed in this section include a discussion of ecological pathways and the ecological setting, identification of COPECs, and selection of ecological receptors. The conceptual model, ecological food webs, and ecological endpoints (other components commonly addressed in a risk assessment) are presented in "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998) and are not duplicated here.

# VII.3.1.1 Ecological Pathways and Setting

DSS Site 1029 is less than an acre in size. The site is located in an area originally dominated by grassland habitat; however, this habitat has been highly disturbed in the area of the site. No threatened or endangered species are known to occur at this site (IT February 1995), and no surface-water bodies, seeps, or springs are associated with the site.

Complete ecological pathways may exist at this site through the exposure of plants and wildlife to COPECs in the soil. It was assumed that direct uptake of COPECs from soil is the major route of exposure for plants and that exposure of plants to wind-blown soil is minor. Exposure modeling for the wildlife receptors was limited to the food and soil ingestion pathways. Because of the lack of surface water at this site, exposure to COPECs through the ingestion of surface water was considered insignificant. Inhalation and dermal contact were also considered insignificant pathways with respect to ingestion (Sample and Suter 1994). Groundwater is not expected to be affected by COCs at this site.

# VII.3.1.2 COPECs

Discharges of waste water from the Building 6584 North Septic System were the primary sources of COPECs at DSS Site 1029. Inorganic and organic COPECs identified for this site are listed in Section VII.2.1. The inorganic analytes were screened against background concentrations, and those that exceeded the approved SNL/NM background screening levels (Dinwiddie September 1997) for the area were considered to be COPECs. No radiological COPECs were identified for the site. Inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, were not included in this risk assessment as set forth by the EPA (1989). All organic analytes detected within the upper 5 feet of soil were considered to be COPECs for the site. In order to provide conservatism, this ecological risk assessment was based upon the maximum soil concentrations of the COPECs measured in the upper 5 feet of soil at this site. Table 5 presents maximum concentrations for the COPECs.

# VII.3.1.3 Ecological Receptors

A nonspecific perennial plant was selected as the receptor to represent plant species at the site (IT July 1998). Vascular plants are the principal primary producers at the site and are key to the diversity and productivity of the wildlife community associated with the site. The deer mouse (*Peromyscus maniculatus*) and the burrowing owl (*Speotyto cunicularia*) were used to

represent wildlife use. Because of its opportunistic food habits, the deer mouse was used to represent a mammalian herbivore, omnivore, and insectivore. The burrowing owl was selected to represent a top predator at this site. The burrowing owl is present at SNL/NM and is designated a species of management concern by the U.S. Fish and Wildlife Service in Region 2, which includes the state of New Mexico (USFWS September 1995).

# VII.3.2 Exposure Estimation

Direct uptake from the soil was considered the only significant route of exposure for terrestrial plants. Exposure modeling for the wildlife receptors was limited to food and soil ingestion pathways. Inhalation and dermal contact were considered insignificant pathways with respect to indestion (Sample and Suter 1994). Drinking water was also considered to be an insignificant pathway because of the lack of surface water at this site. The deer mouse was modeled under three dietary regimes: as an herbivore (100 percent of its diet as plant material), as an omnivore (50 percent of its diet as plants and 50 percent as soil invertebrates), and as an insectivore (100 percent of its diet as soil invertebrates). The burrowing owl was modeled as a strict predator on small mammals (100 percent of its diet as deer mice). Because the exposure in the burrowing owl from a diet consisting of equal parts of herbivorous, omnivorous, and insectivorous mice would be equivalent to the exposure consisting of only omnivorous mice, the diet of the burrowing owl was modeled with intake of omnivorous mice only. Both species were modeled with soil ingestion comprising 2 percent of the total dietary intake. Table 13 presents the species-specific factors used in modeling exposures in the wildlife receptors. Justification for use of the factors presented in this table is described in the ecological risk assessment methodology document (IT July 1998).

Although home range is also included in this table, exposures for this risk assessment were modeled using an area use factor of 1.0, implying that all food items and soil ingested come from the site being investigated. The maximum COPEC concentrations measured in the upper 5 feet of soil were used to conservatively estimate potential exposures and risks to plants and wildlife at this site.

Table 14 provides the transfer factors used in modeling the concentrations of COPECs through the food chain. Table 15 presents maximum concentrations in soil and derived concentrations in tissues of the various food chain elements that are used to model dietary exposures for each of the wildlife receptors.

#### VII.3.3 Ecological Effects Evaluation

Table 16 shows benchmark toxicity values for the plant and wildlife receptors. For plants, the benchmark soil concentrations are based upon the lowest-observed-adverse-effect level (LOAEL). For wildlife, the toxicity benchmarks are based upon the no-observed-adverse-effect level (NOAEL) for chronic oral exposure in a taxonomically similar test species. Sufficient toxicity information was not available to estimate the LOAELs or NOAELs for some COPECs.

| Receptor Species                                          | Class/Order           | Trophic<br>Level | Body Weight<br>(kg) <sup>a</sup> | Food Intake Rate<br>(kg/day) <sup>b</sup> | Dietary Composition <sup>c</sup>                              | Home Range<br>(acres) |
|-----------------------------------------------------------|-----------------------|------------------|----------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------|
| Deer Mouse<br>( <i>Peromyscus</i><br><i>maniculatus</i> ) | Mammalia/<br>Rodentia | Herbivore        | 2.39E-2 <sup>d</sup>             | 3.72E-3                                   | Plants: 100%<br>(+ Soil at 2% of intake)                      | 2.7E-1 <sup>e</sup>   |
| Deer Mouse<br>(Peromyscus<br>maniculatus)                 | Mammalia/<br>Rodentia | Omnivore         | 2.39E-2 <sup>d</sup>             | 3.72E-3                                   | Plants: 50%<br>Invertebrates: 50%<br>(+ Soil at 2% of intake) | 2.7E-1e               |
| Deer Mouse<br>(Peromyscus<br>maniculatus)                 | Mammalia/<br>Rodentia | Insectivore      | 2.39E-2 <sup>d</sup>             | 3.72E-3                                   | Invertebrates: 100%<br>(+ Soil at 2% of intake)               | 2.7E-1°               |
| Burrowing Owl<br>( <i>Speotyto cunicularia</i> )          | Aves/<br>Strigiformes | Carnivore        | 1.55E-1 <sup>f</sup>             | 1.73E-2                                   | Rodents: 100%<br>(+ Soil at 2% of intake)                     | 3.5E+19               |

Table 13Exposure Factors for Ecological Receptors at DSS Site 1029

<sup>a</sup>Body weights are in kg wet weight.

<sup>b</sup>Food intake rates are estimated from the allometric equations presented in Nagy (1987). Units are kg dry weight per day.

°Dietary compositions are generalized for modeling purposes. Default soil intake value of 2 percent of food intake.

# <sup>d</sup>Silva and Downing 1995.

<sup>e</sup>EPA 1993, based upon the average home range measured in semiarid shrubland in Idaho.

<sup>1</sup>Dunning 1993.

9Haug et al. 1993.

- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- kg = Kilogram(s).

**RISK ASSESSMENT FOR DSS SITE 1029** 

|                        | Soil-to-Plant Soil-to-Inver |                     | Food-to-Muscle      |
|------------------------|-----------------------------|---------------------|---------------------|
| COPEC                  | Transfer Factor             | Transfer Factor     | Transfer Factor     |
| Inorganic              |                             |                     |                     |
| Arsenic                | 4.0E-2ª                     | 1.0E+0 <sup>b</sup> | 2.0E-3 <sup>a</sup> |
| Cyanide                | 0.0E+0 <sup>c</sup>         | 0.0E+0 <sup>c</sup> | 0.0E+0 <sup>c</sup> |
| Mercury                | 1.0E+0 <sup>d</sup>         | 1.0E+0 <sup>b</sup> | 2.5E-1ª             |
| Selenium               | 5.0E-1 <sup>d</sup>         | 1.0E+0 <sup>b</sup> | 1.0E-1 <sup>d</sup> |
| Silver                 | 1.0E+0 <sup>d</sup>         | 2.5E-1°             | 5.0E-3 <sup>d</sup> |
| Organic <sup>f</sup>   |                             |                     |                     |
| Anthracene             | 1.0E-1                      | 2.2E+1              | 7.3E-4              |
| Benzo(a)anthracene     | 2.2E-1                      | 2.5E+1              | 1.2E-2              |
| Benzo(b)fluoranthene   | 6.2E-3                      | 2.8E+1              | 1.1E-1              |
| Benzo(k)fluoranthene   | 4.3E-3                      | 2.9E+1              | 2.1E-1              |
| Benzo(g,h,i)perylene   | 6.1E-3                      | 2.8E+1              | 1.2E-1              |
| Benzo(a)pyrene         | 1.1E-2                      | 2.7E+1              | 3.8E-2              |
| 2-Butanone             | 2.6E+1                      | 1.4E+1              | 3.7E-8              |
| Chrysene               | 1.5E-2                      | 2.6E+1              | 2.3E-2              |
| Dibenz[a,h]anthracene  | 6.8E-3                      | 2.8E+1              | 9.5E-2              |
| Fluoranthene           | 5.7E-2                      | 2.3E+1              | 2.1E-3              |
| Indeno(1,2,3-cd)pyrene | 6.1E-3                      | 2.8E+1              | 1.2E-1              |
| Methylene chloride     | 7.3E+0                      | 1.5E+1              | 3.6E-7              |
| Phenanthrene           | 8.9E-2                      | 2.2E+1              | 9.6E-4              |
| Pyrene                 | 3.3E-2                      | 2.4E+1              | 5.8E-3              |
| Toluene                | 1.0E+0                      | 1.8E+1              | 1.3E-5              |

Table 14Transfer Factors Used in Exposure Models for COPECs at DSS Site 1029

<sup>a</sup>Baes et al. 1984.

<sup>b</sup>Default value.

<sup>c</sup>No data found for food chain transfers of cyanide; however, because of its high metabolic activity, cyanide is assumed not to transfer in the food chain.

<sup>d</sup>NCRP January 1989.

eStafford et al. 1991.

<sup>1</sup>Soil-to-plant and food-to-muscle transfer factors from equations developed in Travis and Arms (1988). Soil-to-invertebrate transfer factors from equations developed in Connell and Markwell (1990). All three equations are based upon the relationship of the transfer factor to the Log  $K_{ow}$  value of compound. COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

K<sub>ow</sub> = Octanol-water partition coefficient.

Log = Logarithm (base 10).

NCRP = National Council on Radiation Protection and Measurements.

|                        | Soil                      |          |                           |                      |
|------------------------|---------------------------|----------|---------------------------|----------------------|
|                        | (Samples ≤ 5 ft bgs)      | Plant    | Soil                      | Deer Mouse           |
| COPEC                  | (Maximum) <sup>a</sup>    | Foliageb | Invertebrate <sup>b</sup> | Tissues <sup>c</sup> |
| Inorganic              |                           |          |                           |                      |
| Arsenic                | 5.0E+0                    | 2.0E-1   | 5.0E+0                    | 1.7E-2               |
| Cyanide                | 7.0E-2 <sup>d</sup>       | 0.0E+0   | 0.0E+0                    | 0.0E+0               |
| Mercury                | 2.1E-2 <sup>d</sup>       | 2.1E-2   | 2.1E-2                    | 1.6E-2               |
| Selenium               | 3.0E-1 <sup>e</sup>       | 1.5E-1   | 3.0E-1                    | 7.2E-2               |
| Silver                 | 8.7E-1                    | 8.7E-1   | 2.2E-1                    | 8.8E-3               |
| Organic                |                           |          |                           |                      |
| Anthracene             | 3.7E-1 <sup>e</sup>       | 3.8E-2   | 8.1E+0                    | 9.3E-3               |
| Benzo(a)anthracene     | 2.7E+0 <sup>e</sup>       | 6.0E-2   | 6.8E+1                    | 1.2E+0               |
| Benzo(b)fluoranthene   | 3.1E+0 <sup>e</sup>       | 1.9E-2   | 8.7E+1                    | 1.5E+1               |
| Benzo(k)fluoranthene   | 1.0E+0 <sup>e</sup>       | 4.3E-3   | 2.9E+1                    | 9.7E+0               |
| Benzo(g,h,i)perylene   | 9.1E-1 <sup>e</sup>       | 5.5E-3   | 2.6E+1                    | 4.6E+0               |
| Benzo(a)pyrene         | 2.2E+0 <sup>e</sup>       | 2.5E-2   | 5.9E+1                    | 3.5E+0               |
| 2-Butanone             | 5.9E-3 <sup>e</sup>       | 1.6E-1   | 8.0E-2                    | 1.4E-8               |
| Chrysene               | 3.2E+0 <sup>e</sup>       | 4.8E-2   | 8.3E+1                    | 3.1E+0               |
| Dibenz[a,h]anthracene  | <u>3.3E-1<sup>e</sup></u> | 2.2E-3   | 9.2E+0                    | 1.4E+0               |
| Fluoranthene           | 4.1E+0 <sup>e</sup>       | 2.3E-1   | 9.5E+1                    | 3.2E-1               |
| Indeno(1,2,3-cd)pyrene | 8.8E-1*                   | 5.4E-3   | 2.5E+1                    | 4.5E+0               |
| Methylene chloride     | 7.3E-3                    | 5.4E-2   | 1.1E-1                    | 9.3E-8               |
| Phenanthrene           | 1.6E+0 <sup>e</sup>       | 1.4E-1   | 3.6E+1                    | 5.4E-2               |
| Pyrene                 | 3.5E+0 <sup>e</sup>       | 1.1E-1   | 8.5E+1                    | 7.7E-1               |
| Toluene                | 1.9E-3                    | 1.9E-3   | 3.4E-2                    | 7.2E-7               |

Table 15Media Concentrationsa for COPECs at DSS Site 1029

<sup>a</sup>In milligrams per kilogram. All biotic media are based upon dry weight of the media. Soil concentration measurements are assumed to have been based upon dry weight. Values have been rounded to two significant digits after calculation.

<sup>b</sup>Product of the soil concentration and the corresponding transfer factor.

<sup>c</sup>Based upon the deer mouse with an omnivorous diet. Product of the average concentration ingested in food and soil times the food-to-muscle transfer factor times a wet weight-dry weight conversion factor of 3.125 (EPA 1993).

<sup>d</sup>Maximum concentration of parameter was one-half the detection limit. <sup>e</sup>Estimated value.

bgs = Below ground surface.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

ft = Foot (feet).

No Plant

|                        |                          | Mammalian NOAELs            |                      |                      | Avian NOAELs              |                      |                                       |
|------------------------|--------------------------|-----------------------------|----------------------|----------------------|---------------------------|----------------------|---------------------------------------|
|                        |                          |                             | Test                 | Deer                 | ·                         |                      | Burrowing                             |
|                        | Plant                    | Mammalian                   | Species              | Mouse                | Avian                     | Test Species         | Owl                                   |
| COPEC                  | Benchmark <sup>a,b</sup> | Test Species <sup>c,d</sup> | NOAEL <sup>d,e</sup> | NOAEL <sup>e,f</sup> | Test Species <sup>d</sup> | NOAEL <sup>d,e</sup> | NOAEL <sup>e,g</sup>                  |
| Inorganic              | <u> </u>                 |                             | <u> </u>             | L                    | å                         | <b>.</b>             | · · · · · · · · · · · · · · · · · · · |
| Arsenic                | 10                       | mouse                       | 0.126                | 6.42                 | mallard                   | 5.14                 |                                       |
| Cyanide                | -                        | rat <sup>h</sup>            | 68.7                 | 126                  | _                         | -                    | _                                     |
| Mercury (organic)      | 0.3                      | rat                         | 0.032                | 0.063                | mallard                   | 0.0064               | 0.0064                                |
| Mercury (inorganic)    | 0.3                      | mouse                       | 13.2                 | 14.0                 | Japanese quail            | 0.45                 | 0.45                                  |
| Selenium               | 1                        | rat                         | 0.2                  | 0.391                | screech owl               | 0.44                 | 0.44                                  |
| Silver                 | 2                        | rat                         | 17.8 <sup>i</sup>    | 34.8                 | -                         | —                    | -                                     |
| Organic                |                          |                             |                      |                      |                           |                      |                                       |
| Anthracene             | 18 <sup>j</sup>          | mouse                       | 100 <sup>k</sup>     | 106                  | -                         | _                    | -                                     |
| Benzo(a)anthracene     | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>1</sup>     | 1.1                  | _                         | -                    | -                                     |
| Benzo(b)fluoranthene   | 18 <sup>j</sup>          | mouse                       | 1.0                  | 1.1                  |                           |                      | -                                     |
| Benzo(k)fluoranthene   | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>1</sup>     | 1.1                  | _                         | -                    | -                                     |
| Benzo(g,h,i)perylene   | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>1</sup>     | 1.1                  | -                         | -                    | -                                     |
| Benzo(a)pyrene         | 18 <sup>j</sup>          | mouse                       | 1.0                  | 1.1                  | -                         | _                    |                                       |
| 2-Butanone             | _                        | rat                         | 1,771                | 3,464                | _                         | -                    | _                                     |
| Chrysene               | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>i</sup>     | 1.1                  | _                         | -                    | _                                     |
| Dibenz[a,h]anthracene  | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>1</sup>     | 1.1                  | _                         | _                    | _                                     |
| Fluoranthene           | 18 <sup>j</sup>          | mouse                       | 12.5 <sup>k</sup>    | 13.2                 | -                         | _                    |                                       |
| Indeno(1,2,3-cd)pyrene | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>k</sup>     | 1.1                  | _                         | -                    | -                                     |
| Methylene chloride     | -                        | rat                         | 5.85                 | 11.4                 | -                         | _                    | -                                     |
| Phenanthrene           | 18 <sup>j</sup>          | mouse                       | 1.0 <sup>1</sup>     | 1.1                  |                           | _                    | -                                     |
| Pyrene                 | 18 <sup>j</sup>          | mouse                       | 7.5 <sup>k</sup>     | 7.9                  |                           |                      | -                                     |
| Toluene                | 200                      | mouse                       | 26                   | 27.5                 |                           | _                    |                                       |

Table 16Toxicity Benchmarks for Ecological Receptors at DSS Site 1029

<sup>a</sup>ln mg/kg soil dry weight.

<sup>b</sup>Efroymson et al. 1997.

Body weights (in kg) for the NOAEL conversion are as follows: lab mouse, 0.030; lab rat, 0.350 (except where noted).

<sup>d</sup>Sample et al. 1996, except where noted.

<sup>e</sup>In mg/kg body weight per day.

Based upon NOAEL conversion methodology presented in Sample et al. (1996), using a deer mouse body weight of 0.0239 kg and a mammalian scaling factor of 0.25.

**RISK ASSESSMENT FOR DSS SITE 1029** 

# Table 16 (Concluded)Toxicity Benchmarks for Ecological Receptors at DSS Site 1029

<sup>9</sup>Based upon NOAEL conversion methodology presented in Sample et al. (1996). The avian scaling factor of 0.0 was used, making the NOAEL independent of body weight.

<sup>h</sup>Body weight: 0.273 kg.

7

Based upon a rat lowest-observed-adverse-effect level of 89 mg/kg/d (EPA 2003) and an uncertainty factor of 0.2.

Sims and Overcash 1983.

<sup>k</sup>EPA (2003) with the application of a subchronic to chronic uncertainty factor of 0.5.

No data available. Toxicity value based upon NOAEL for benzo(a)pyrene.

- COPEC = Constituent of potential ecological concern.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.

kg = Kilogram(s).

mg = Milligram(s).

- mg/kg/d = Milligram(s) per kilogram per day.
- NOAEL = No-observed-adverse-effect level.
- = Insufficient toxicity data.

AL/3-04/WP/SNL04:rs5474.doc

#### VII.3.4 Risk Characterization

Maximum concentrations in soil and estimated dietary exposures were compared to plant and wildlife benchmark values, respectively. Table 17 presents the results of these comparisons. HQs are used to quantify the comparison with benchmarks for plant and wildlife exposure. The only HQs that exceeded unity were for the omnivorous and/or insectivorous deer mice from exposure to the following:

- Arsenic
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Benzo(g,h,i)perylene
- Chrysene
- Dibenz[a,h]anthracene (insectivorous deer mouse only)
- Fluoranthene (insectivorous deer mouse only)
- Indeno(1,2,3-cd)pyrene
- Phenanthrene
- Pyrene (insectivorous deer mouse only)

Because of a lack of sufficient toxicity information, HQs for plants could not be determined for cyanide, 2-butanone, and methylene chloride. Similarly, for the burrowing owl, HQs could not be determined for cyanide, silver, and all of the organic COPECs. As directed by the NMED, HIs were calculated for each of the receptors (the HI is the sum of chemical-specific HQs for all pathways for a given receptor). Total HIs were greater than unity for plants and both the omnivorous and insectivorous deer mice, with a maximum HI of 71 for the insectivorous deer mouse.

#### VII.3.5 Uncertainty Assessment

Many uncertainties are associated with the characterization of ecological risks at DSS Site 1029. These uncertainties result from assumptions used in calculating risk that could overestimate or underestimate true risk presented at the site. For this risk assessment, assumptions are made that are more likely to overestimate exposures and risk rather than to underestimate them. These conservative assumptions are used to be more protective of the ecological resources potentially affected by the site. Conservatisms incorporated into this risk assessment include the use of maximum analyte concentrations measured in soil samples to evaluate risk, the use of wildlife toxicity benchmarks based upon NOAEL values, and the incorporation of strict herbivorous and strict insectivorous diets for predicting the extreme HQ values for the deer mouse. Each of these uncertainties, which are consistent among each of the site-specific ecological risk assessments, is discussed in greater detail in the uncertainty section of the ecological risk assessment methodology document for the SNL/NM ER Program (IT July 1998).

Table 17 HQs for Ecological Receptors at DSS Site 1029

| COPEC                  | Plant HQ <sup>a</sup>                 | Deer Mouse<br>HQ<br>(Herbivorous) <sup>a</sup> | Deer Mouse<br>HQ<br>(Omnivorous) <sup>a</sup> | Deer Mouse<br>HQ<br>(Insectivorous) <sup>a</sup> | Burrowing Owl<br>HQ <sup>a</sup> |
|------------------------|---------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------------|
|                        |                                       |                                                | (••••••••••••••••••••••••••••••••••••••       |                                                  |                                  |
| Arsenic                | 5.0E-1                                | 3.5E-1                                         | 3.2E+0                                        | 6.0E+0                                           | 2.5E-3                           |
| Cvanide                |                                       | 1.7E-6                                         | 1.7E-6                                        | 1.7E-6                                           |                                  |
| Mercury (Organic)      | 6.8E-2                                | 5.2E-2                                         | 5.2E-2                                        | 5.2E-2                                           | 2.9E-1                           |
| Mercury (Inorganic)    | 6.8E-2                                | 2.3E-4                                         | 2.3E-4                                        | 2.3E-4                                           | 4.1E-3                           |
| Selenium               | 3.0E-1                                | 6.2E-2                                         | 9.2E-2                                        | 1.2E-1                                           | 2.0E-2                           |
| Silver                 | 4.4E-1                                | 4.0E-3                                         | 2.5E-3                                        | 1.0E-3                                           | _                                |
| Organic                |                                       |                                                |                                               |                                                  |                                  |
| Anthracene             | 2.1E-2                                | 6.7E-5                                         | 6.0E-3                                        | 1.2E-2                                           | -                                |
| Benzo(a)anthracene     | 1.5E-1                                | 1.7E-2                                         | 5.0E+0                                        | 1.0E+1                                           | <del></del>                      |
| Benzo(b)fluoranthene   | 1.7E-1                                | 1.2E-2                                         | 6.4E+0                                        | 1.3E+1                                           |                                  |
| Benzo(k)fluoranthene   | 5.6E-2                                | 3.6E-3                                         | 2.1E+0                                        | 4.3E+0                                           |                                  |
| Benzo(g,h,i)pervlene   | 5.1E-2                                | 3.5E-3                                         | 1.9E+0                                        | 3.8E+0                                           |                                  |
| Benzo(a)pyrene         | 1.2E-1                                | 1.0E-2                                         | 4.3E+0                                        | 8.6E+0                                           | <u></u>                          |
| 2-Butanone             | _                                     | 7.0E-6                                         | 5.3E-6                                        | 3.6E-6                                           |                                  |
| Chrysene               | 1.8E-1                                | 1.6E-2                                         | 6.1E+0                                        | 1.2E+1                                           |                                  |
| Dibenz[a,h]anthracene  | 1.8E-2                                | 1.3E-3                                         | 6.8E-1                                        | 1.3E+0                                           |                                  |
| Fluoranthene           | 2.3E-1                                | 3.7E-3                                         | 5.6E-1                                        | 1.1E+0                                           |                                  |
| Indeno(1,2,3-cd)pyrene | 4.9E-2                                | 3.4E-3                                         | 1.8E+0                                        | 3.6E+0                                           |                                  |
| Methylene chloride     | · · · · · · · · · · · · · · · · · · · | 7.3E-4                                         | 1.1E-3                                        | 1.5E-3                                           |                                  |
| Phenanthrene           | 8.9E-2                                | 2.6E-2                                         | 2.6E+0                                        | 5.2E+0                                           | -                                |
| Pyrene                 | 1.9E-1                                | 3.6E-3                                         | 8.4E-1                                        | 1.7E+0                                           | _                                |
| Toluene                | 9.5E-6                                | 1.1E-5                                         | 1.0E-4                                        | 1.9E-4                                           |                                  |
| HIP                    | 2.6E+0                                | 5.7E-1                                         | 3.6E+1                                        | 7.1E+1                                           | 3.1E-1                           |

<sup>a</sup>**Bold** text indicates the HQ or HI exceeds unity.

<sup>b</sup>The HI is the sum of individual HQs.

COPEC = Constituent of potential ecological concern. DSS = Drain and Septic Systems.

- = Hazard index. HI
- HQ
- Hazard quotient.Insufficient toxicity data available for risk estimation purposes.

**RISK ASSESSMENT FOR DSS SITE 1029** 

-

In the estimation of ecological risk, background concentrations are included as a component of maximum on-site concentrations. Conservatisms in the modeling of exposure and risk can result in the prediction of risk to ecological receptors when exposed at background concentrations. As shown in Table 18, associated exposures to background are greater than 1.0 for arsenic. It is therefore likely that the actual risks from arsenic at DSS Site 1029 are overestimated by the HQs calculated in this risk assessment because of conservatisms incorporated into the exposure assessment and in the toxicity benchmarks for these COPECs. It should be noted that in the case of arsenic, exposure to background concentrations may account for the majority (88 percent) of the HQ values shown in Table 17.

# Table 18HQs for Ecological Receptors Exposed toBackground Concentrations at DSS Site 1029

|         |           | Deer Mouse                 | Deer Mouse                      | Deer Mouse                   | _         |
|---------|-----------|----------------------------|---------------------------------|------------------------------|-----------|
| COREC   | Diant UOa |                            | HQ<br>(Omniversus) <sup>a</sup> |                              | Burrowing |
| COPEC   |           | (Herbivorous) <sup>2</sup> | (Omnivorous) <sup>a</sup>       | (insectivorous) <sup>4</sup> |           |
| Arsenic | 4.4E-1    | 3.1E-1                     | 2.8E+0                          | 5.2E+0                       | 2.2E-3    |

<sup>a</sup>Bold text indicates HQ or HI exceeds unity.

<sup>b</sup>The HI is the sum of individual HQs.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

HI = Hazard index.

HQ = Hazard quotient.

With regard to the toxicity benchmarks, it should be noted that for eight of the twelve polynuclear aromatic hydrocarbon (PAH) COPECs that resulted in HQs greater than unity (benzo[a]anthracene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene, and phenanthrene), a chemical-specific toxicity benchmark was not available. The toxicity benchmarks for these eight PAHs were conservatively assumed to be equal to that of benzo(a)pyrene. Because benzo(a)pyrene is generally considered to be one of the most toxic PAHs, it is likely that the use of its toxicity benchmark for other PAHs could result in overestimation of actual risk.

A further source of uncertainty associated with the predictions of potential ecological risk at this site is the use of the maximum measured concentrations to evaluate exposure and risk. This results in a conservative exposure scenario that does not necessarily reflect actual site conditions. For DSS Site 1029, it should be noted that in the four soil samples used in the evaluation of ecological risk (i.e., the three samples from the 0-to-5-foot depth interval), all 11 of the maximum concentrations for PAHs that resulted in HQs greater than unity were from the same sample. Nondetections of these 11 COPECs were reported in the other three samples from this depth interval. Based upon one-half the detection limits for the nondetections, the average concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene are 0.74, 0.61, 0.84, 0.29, 0.31, 0.86, 0.15, 1.1, 0.28, 0.46, and 0.94 milligrams per kilogram, respectively. For the omnivorous deer mouse, these concentrations result in a reduction of all HQs to values lower than or equal to 1.7. For the insectivorous deer mouse these concentrations result in the reduction of all HQs to values lower than or equal to 3.5.

Because of the lack of avian toxicity information relative to that for mammals, only four toxicity benchmark values could be determined for the burrowing owl. Two of these were for the two forms of mercury and the others for arsenic and selenium. Because of this data gap, HQs for the burrowing owl could not be calculated for 17 of the 21 COPECs identified for this site. Therefore, a degree of uncertainty exists with regard to the potential for risk to this receptor. However, two factors make it unlikely that risk to this receptor exists. First, as shown in Table 15, the tissue concentrations in the small mammal prey of the burrowing owl are less than the tissue concentration modeled in the soil invertebrates for the COPECs lacking avian toxicity values (with the exception of cyanide). This, combined with the fact that the ingestion rate of the owl (normalized to body weight) is 71 percent of that of the deer mouse, results in the prediction that the exposures of the burrowing owl to these COPECs at this site are much lower (14 percent or less) than the exposures estimated for the insectivorous deer mouse. Second, the home range of the burrowing owl (35 acres) is much larger than the area of DSS Site 1029 (less than 1 acre). Therefore, an area use factor of 0.03 (or less) can be applied to the owl's exposure factors. This results in predicted exposures that are two or more orders of magnitude less than those of the insectivorous deer mouse. Based upon this difference in exposure, it is unlikely that the risk to the burrowing owl would be greater than the risk predicted for the insectivorous deer mouse in this assessment.

Finally, it should be noted that in this evaluation the COPECs are considered to be 100-percent bioavailable at this site. However, the releases of COPECs from the septic system at this site were to the subsurface soil. The soil samples upon which the risk assessment is based were from 5 feet bgs. This is the lower extreme of the soil considered accessible to ecological receptors, making it unlikely that burrowing animals will come into contact with these COPECs. The pathway resulting in the highest contribution to exposure in the deer mouse is the ingestion of soil invertebrates (see Table 14). These soil invertebrates are unlikely to be exposed to soil from these depths.

Based upon this uncertainty analysis, the potential for ecological risks at DSS Site 1029 is expected to be low. HQs greater than unity were predicted; however, closer examination of the exposure assumptions revealed an overestimation of risk primarily attributed to the use of conservative toxicity benchmarks, maximum concentrations, and maximum bioavailability to estimate exposure and risk to ecological receptors.

#### VII.3.6 Risk Interpretation

Ecological risks associated with DSS Site 1029 were estimated through a risk assessment that incorporated site-specific information when available. Initial predictions of potential risk to omnivorous and insectivorous deer mice from exposures to 11 PAHs (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene, fluoranthene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene) can be attributed to conservative toxicity benchmarks, as well as the assumption of 100-percent bioavailability and the use of maximum detected concentrations to estimate exposure. Based upon this final analysis, the potential for ecological risks associated with DSS Site 1029 is expected to be low.

#### VII.3.7 Risk Assessment Scientific/Management Decision Point

After potential ecological risks associated with the site have been assessed, a decision is made regarding whether the site should be recommended for NFA or whether additional data should be collected to assess actual ecological risk at the site more thoroughly. With respect to this site, ecological risks are predicted to be low. The scientific/management decision is to recommend this site for NFA.

#### VIII. References

Baes, III, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor, 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture," ORNL-5786, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Connell, D.W., and R.D. Markwell, 1990. "Bioaccumulation in Soil to Earthworm System," *Chemosphere*, Vol. 20, pp. 91–100.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

Dunning, J.B., 1993. CRC Handbook of Avian Body Masses, CRC Press, Boca Raton, Florida.

Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten, 1997. "Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants: 1997 Revision," ES/ER/TM-85/R3, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

EPA, see U.S. Environmental Protection Agency.

Haug, E.A., B.A. Millsap, and M.S. Martell, 1993. "*Spectyto cunicularia* Burrowing Owl," in A. Poole and F. Gill (eds.), *The Birds of North America*, No. 61, The Academy of Natural Sciences of Philadelphia.

Howard, P.H., 1990. Volume II: "Solvents," *Handbook of Environmental Fate and Exposure Data for Organic Chemicals*, Lewis Publishers, Inc. Chelsea, Michigan.

IT, see IT Corporation.

IT Corporation (IT), February 1995. "Sensitive Species Survey Results, Environmental Restoration Project, Sandia National Laboratories/New Mexico," IT Corporation, Albuquerque, New Mexico.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), June 1991. Internal memorandum to D. Dionne listing the septic tanks that were removed from service with the construction of the Area III sanitary sewer system. June 21, 1991.

Ma, W.C., 1982. "The Influence of Soil Properties and Worm-Related Factors on the Concentration of Heavy Metals in Earthworms," *Pedobiologia*, Vol. 24, pp. 109-119.

Micromedex, Inc., 1998. "Registry of Toxic Effects of Chemical Substances (RTECS)," Hazardous Substances Databank.

Nagy, K.A., 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds," *Ecological Monographs*, Vol. 57, No. 2, pp. 111–128.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Council on Radiation Protection and Measurements (NCRP), January 1989. "Screening Techniques for Determining Compliance with Environmental Standards: Releases of Radionuclides to the Atmosphere," *NCRP Commentary* No. 3, Rev. January 1989, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. "Local Climatological Data, Annual Summary with Comparative Data," Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," *in* New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico. New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanic and Atmospheric Administration.

NPS, see U.S. National Park Service.

Oak Ridge National Laboratory, 2003. "Risk Assessment Information System," electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL, see Oak Ridge National Laboratory.

Romero, T. (Sandia National Laboratories/New Mexico), September 2003. Internal communication to M. Sanders stating that during the connection of septic systems to the new City of Albuquerque sewer system, the old systems were disconnected and the lines capped. September 16, 2003.

Sample, B.E., and G.W. Suter II, 1994. "Estimating Exposure of Terrestrial Wildlife to Contaminants," ES/ER/TM-125, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sample, B.E., D.M. Opresko, and G.W. Suter II, 1996. "Toxicological Benchmarks for Wildlife: 1996 Revision," ES/ER/TM-86/R3, Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiochemical Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Sample Diagnostics Procedure No. RPSD-02-11, Issue No. 2, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM). October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico. October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data," Administrative Operating Procedure (AOP) 00-03, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico. Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the year that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Silva, M., and J.A. Downing, 1995. *CRC Handbook of Mammalian Body Masses*, CRC Press, Boca Raton, Florida.

Sims, R.C., and R.M. Overcash, 1983. "Fate of Polynuclear Aromatic Compounds (PNAs) in Soil-Plant Systems," *Residue Reviews*, Vol. 88, pp. 1-67.

SNL/NM, See Sandia National Laboratories, New Mexico.

Stafford, E.A., J.W. Simmers, R.G. Rhett, and C.P. Brown, 1991. "Interim Report: Collation and Interpretation of Data for Times Beach Confined Disposal Facility, Buffalo, New York," *Miscellaneous Paper* D-91-17, U.S. Army Corps of Engineers, Buffalo, New York.

Travis, C.C., and A.D. Arms, 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetables," *Environmental Science Technology*, Vol. 22, No. 3, pp. 271–274.

U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, U.S. Air Force, and U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1993. "Wildlife Exposure Factors Handbook, Volume I of II," EPA/600/R-93/187a, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

AL/3-04/WP/SNL04:rs5474.doc

U.S. Environmental Protection Agency (EPA), 1997a. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997b. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200.4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1998. "Guidelines for Ecological Risk Assessment," EPA/630/R-95/002F, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 2002a. "Region 6 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.

U.S. Environmental Protection Agency (EPA), 2002b. "Region 9 Preliminary Remediation Goals (PRGs) 2002," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.

U.S. Environmental Protection Agency (EPA), 2002c. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.

U.S. Environmental Protection Agency (EPA), 2003. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington D.C.

U.S. Fish and Wildlife Service (USFWS), September 1995. "Migratory Nongame Birds of Management Concern in the United States: The 1995 List," Office of Migratory Bird Management, U.S. Fish and Wildlife Service, Washington, D.C.

USFWS, see U.S. Fish and Wildlife Service.

U.S. National Park Service (NPS), July 1997. "Environmental Contaminants Encyclopedia Asphalt Entry," U.S. National Park Service, Fort Collins, Colorado, pp. 27-28. July 1, 1997.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

### APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

#### Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land-use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous, radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: Workbook: Future Use Management Area 2 (DOE et al. September 1995); Workbook: Future Use Management Area 1 (DOE et al. October 1995); Workbook: Future Use Management Areas 3, 4, 5, and 6 (DOE and USAF January 1996); Workbook: Future Use Management Area 7 (DOE and USAF March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land-use scenario. Therefore, all three land-use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- Ingestion of contaminated soil

AL/3-04/WP/SNL04:rs5474.doc

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different landuse scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land-use scenarios, SNL/NM ER has, therefore, excluded the following four potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

| Industrial                                                      | Recreational                                                          | Residential                                                     |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|
| Ingestion of contaminated drinking water                        | Ingestion of contaminated<br>drinking water                           | Ingestion of contaminated drinking water                        |
| Ingestion of contaminated soil                                  | Ingestion of contaminated soil                                        | Ingestion of contaminated soil                                  |
| Inhalation of airborne compounds (vapor phase or particulate)   | Inhalation of airborne<br>compounds (vapor phase or<br>particulate)   | Inhalation of airborne compounds (vapor phase or particulate)   |
| Dermal contact (nonradiological<br>constituents only) soil only | Dermal contact (nonradiological<br>constituents only) soil only       | Dermal contact (nonradiological<br>constituents only) soil only |
| External exposure to penetrating radiation from ground surfaces | External exposure to<br>penetrating radiation from<br>ground surfaces | External exposure to penetrating radiation from ground surfaces |

 Table 1

 Exposure Pathways Considered for Various Land-Use scenarios

#### Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land-use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS Il projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land-use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

#### Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

$$= C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
(1)

where;

C = contaminant concentration (site specific)
 CR = contact rate for the exposure pathway
 EFD= exposure frequency and duration
 BW = body weight of average exposure individual
 AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimated dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

# Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_{s} = \frac{C_{s} * IR * CF * EF * ED}{BW * AT}$$

where:

- = Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)

- CF = Conversion factor (1E-6 kg/mg)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

### Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_{s} = \frac{C_{s} * IR * EF * ED * \left(\frac{1}{VF} \text{ or } \frac{1}{PEF}\right)}{BW * AT}$$

where:

 $l_s$  = Intake of contaminant non-set.  $C_s$  = Chemical concentration in soil (mg/kg) = Intake of contaminant from soil inhalation (mg/kg-day)

- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- VF = soil-to-air volatilization factor  $(m^3/kg)$
- PEF = particulate emission factor (m<sup>3</sup>/kg)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

# Soil Dermal Contact

$$D_a = \frac{C_s * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

 $D_a = Absorbed dose (mg/kg-day)$ 

- $C_s$  = Chemical concentration in soil (mg/kg) CF = Conversion factor (1E-6 kg/mg)
- SA = Skin surface area available for contact (cm<sup>2</sup>/event)
- AF = Soil to skin adherence factor (mg/cm<sup>2</sup>)

ABS= Absorption factor (unitless)

EF = Exposure frequency (events/year)

ED = Exposure duration (years) BW = Body weight (kg)AT = Averaging time (period over which exposure is averaged) (days)

# Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{BW * AT}$$

where:

- $I_w =$  Intake of contaminant from water ingestion (mg/kg/day)  $C_w =$  Chemical concentration in water (mg/liter [L])
- IR = Ingestion rate (L/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)

BW = Body weight (kg)

AT = Averaging time (period over which exposure is averaged) (days)

# Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{BW * AT}$$

where:

- $I_w =$  Intake of volatile in water from inhalation (mg/kg/day)  $C_w =$  Chemical concentration in water (mg/L)
- K = volatilization factor (0.5 L/m<sup>3</sup>)
- $IR_i = Inhalation rate (m<sup>3</sup>/day)$
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1x10<sup>-5</sup> and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land-use scenarios for nonradiological and radiological COCs,

respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

#### Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land-use scenario. There are no current residential land-use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land-use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land-use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

A .....

14.4

| Parameter                                            | Industrial                             | Recreational              | Residential                           |
|------------------------------------------------------|----------------------------------------|---------------------------|---------------------------------------|
| General Exposure Parameters                          |                                        |                           |                                       |
|                                                      |                                        | 8.7 (4 hr/wk for          |                                       |
| Exposure Frequency (day/yr)                          | 250 <sup>a,b</sup>                     | 52 wk/yr) <sup>a,b</sup>  | 350 <sup>a,b</sup>                    |
| Exposure Duration (yr)                               | 25 <sup>a,b,c</sup>                    | 30 <sup>a,b,c</sup>       | 30 <sup>a,b,c</sup>                   |
|                                                      | 70 <sup>a,b,c</sup>                    | 70 Adult <sup>a,b,c</sup> | 70 Adulta,b,c                         |
| Body Weight (kg)                                     |                                        | 15 Child <sup>a,b,c</sup> | 15 Child <sup>a,b,c</sup>             |
| Averaging Time (days)                                |                                        | · · ·                     | · · · · · · · · · · · · · · · · · · · |
| for Carcinogenic Compounds<br>(= 70 yr x 365 day/yr) | 25,550 <sup>a,b</sup>                  | 25,550 <sup>a,b</sup>     | 25,550 <sup>a,b</sup>                 |
| for Noncarcinogenic Compounds<br>(= ED x 365 dav/yr) | 9,125 <sup>a,b</sup>                   | 10,950 <sup>a,b</sup>     | 10,950 <sup>a,b</sup>                 |
| Soil Ingestion Pathway                               | I                                      | L                         | L                                     |
| Ingestion Rate (mg/day)                              | 100 <sup>a,b</sup>                     | 200 Child <sup>a,b</sup>  | 200 Child <sup>a,b</sup>              |
|                                                      |                                        | 100 Adult <sup>a,b</sup>  | 100 Adult <sup>a,b</sup>              |
| Inhalation Pathway                                   | •••••••••••••••••••••••••••••••••••••• | ·                         |                                       |
|                                                      |                                        | 15 Child <sup>a</sup>     | 10 Child <sup>a</sup>                 |
| Inhalation Rate (m <sup>3</sup> /day)                | 20 <sup>a,b</sup>                      | 30 Adult <sup>a</sup>     | 20 Adult <sup>a</sup>                 |
| Volatilization Factor (m <sup>3</sup> /kg)           | Chemical Specific                      | Chemical Specific         | Chemical Specific                     |
| Particulate Emission Factor (m <sup>3</sup> /kg)     | 1.36E9ª                                | 1.36E9ª                   | 1.36E9 <sup>a</sup>                   |
| Water Ingestion Pathway                              |                                        |                           |                                       |
|                                                      | 2.4 <sup>a</sup>                       | 2.4 <sup>a</sup>          | 2.4 <sup>a</sup>                      |
| Ingestion Rate (liter/day)                           |                                        |                           |                                       |
| Dermal Pathway                                       |                                        |                           |                                       |
|                                                      |                                        | 0.2 Child <sup>a</sup>    | 0.2 Child <sup>a</sup>                |
| Skin Adherence Factor (mg/cm <sup>2</sup> )          | 0.2ª                                   | 0.07 Adult <sup>a</sup>   | 0.07 Adult <sup>a</sup>               |
| Exposed Surface Area for Soil/Dust                   |                                        | 2,800 Child <sup>a</sup>  | 2,800 Child <sup>a</sup>              |
| (cm²/day)                                            | 3,300 <sup>a</sup>                     | 5,700 Adult <sup>a</sup>  | 5,700 Adult <sup>a</sup>              |
| Skin Adsorption Factor                               | Chemical Specific                      | Chemical Specific         | Chemical Specific                     |

Table 2Default Nonradiological Exposure Parameter Values for Various Land-Use scenarios

<sup>a</sup>Technical Background Document for Development of Soil Screening Levels (NMED 2000).

<sup>b</sup>Risk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

<sup>c</sup>Exposure Factors Handbook (EPA August 1997).

ED = Exposure duration.

EPA = U.S. Environmental Protection Agency.

hr = Hour(s).

kg = Kilogram(s).

- m = Meter(s).
- mg = Milligram(s).
- NA = Not available.
- wk = Week(s).
- yr = Year(s).

| Parameter                                       | Industrial              | Recreational            | Residential             |
|-------------------------------------------------|-------------------------|-------------------------|-------------------------|
| General Exposure Parameters                     |                         |                         |                         |
|                                                 | 8 hr/day for            |                         |                         |
| Exposure Frequency                              | 250 day/yr              | 4 hr/wk for 52 wk/yr    | 365 day/yr              |
| Exposure Duration (yr)                          | 25 <sup>a,b</sup>       | 30 <sup>a,b</sup>       | 30 <sup>a,b</sup>       |
| Body Weight (kg)                                | 70 Adult <sup>a,b</sup> | 70 Adult <sup>a,b</sup> | 70 Adult <sup>a,b</sup> |
| Soil Ingestion Pathway                          |                         |                         |                         |
| Ingestion Rate                                  | 100 mg/day <sup>c</sup> | 100 mg/day <sup>c</sup> | 100 mg/day <sup>c</sup> |
| Averaging Time (days)<br>(= 30 yr x 365 day/yr) | 10,950 <sup>d</sup>     | 10,950 <sup>d</sup>     | 10,950 <sup>d</sup>     |
| Inhalation Pathway                              |                         |                         |                         |
| Inhalation Rate (m <sup>3</sup> /yr)            | 7,300 <sup>d,e</sup>    | 10,950 <sup>e</sup>     | 7,300 <sup>d,e</sup>    |
| Mass Loading for Inhalation g/m <sup>3</sup>    | 1.36 E-5 <sup>d</sup>   | 1.36 E-5 d              | 1.36 E-5 d              |
| Food Ingestion Pathway                          |                         |                         |                         |
| Ingestion Rate, Leafy Vegetables                |                         |                         |                         |
| (kg/yr)                                         | NA                      | NA                      | 16.5°                   |
| Ingestion Rate, Fruits, Non-Leafy               |                         |                         |                         |
| Vegetables & Grain (kg/yr)                      | NA                      | NA                      | 101.8 <sup>b</sup>      |
| Fraction Ingested                               | NA                      | NA                      | 0.25 <sup>b,d</sup>     |

Table 3Default Radiological Exposure Parameter Values for Various Land-Use scenarios

<sup>a</sup>Risk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991). <sup>b</sup>Exposure Factors Handbook (EPA August 1997).

<sup>c</sup>EPA Region VI guidance (EPA 1996).

<sup>d</sup>For radionuclides, RESRAD (ANL 1993).

<sup>e</sup>SNL/NM (February 1998).

EPA = U.S. Environmental Protection Agency.

g = Gram(s)

hr = Hour(s).

kg = Kilogram(s).

m = Meter(s).

mg = Milligram(s).

NA = Not applicable.

wk = Week(s).

yr = Year(s).

#### **References**

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. *Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD*, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

DOE and USAF, see U.S. Department of Energy and U.S. Air Force.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment," Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force. U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.