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ABSTRACT

In this thesis we consider ordinary differential equations (ODEs) with random
parameters. We focus on Monte Carlo (MC) sampling for computing the statistics
of some quantities of interest (QoIs) given by the solution of the ODE problems. We
use the 4th order accurate Runge-Kutta (RK4) method as the deterministic ODE
solver. We then develop a hybrid MC sampling method that combines RK4 with
neural network models to efficiently compute the statistics of QoIs within a desired
accuracy. We present several numerical examples to verify the accuracy and efficiency
of the proposed hybrid method compared to classical MC sampling. The hybrid
method that we develop can be applied to more complicated physical problems given
by partial differential equations (PDEs).
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Chapter 1

Introduction

Many systems in science and engineering can be modelled using differential equations.
Due to inaccuracies in the model or the presence of uncertainty, a modelled system
can never be one hundred percent accurate. The goal of uncertainty quantification
(UQ) is to understand how these unknowns affect our model outputs.

One of the most useful tools in uncertainty quantification is the MC method due
to its simplicity and dimension independent convergence rate. Generally, the MC
method work by averaging over a sufficiently large number of samples [Metropolis
and Ulam 1949; Cunha Jr et al. 2014]. In our case, a sample will have associated
with it a deterministic differential equation which must be solved using a numerical
solver. Since MC takes many samples to converge, problems over long time periods
or with many dimensions may be intractable if the DE solver is computationally too
expensive.

In this thesis we consider ODEs with random parameters. We focus on MC sam-
pling for computing the statistics of some QoIs given by the solution of the ODE
problem. We use the RK4 method as the deterministic ODE solver. We then de-
velop a hybrid MC sampling method that combines RK4 with neural network models
to efficiently compute the statistics of QoIs within a desired accuracy. We present
several numerical examples to verify the accuracy and efficiency of the proposed hy-
brid method compared to classical MC sampling. It is to be noted that the proposed
strategy can be applied to more complicated models given by partial differential equa-
tions and use more advance UQ techniques, such as stochastic collocation [Mathelin,
Hussaini, and Zang 2003].

The rest of the thesis is organized as follows. In Chapter 2 we discuss the pre-
requisites of feed-forward neural networks. In Chapter 3 we present a general MC
method and an RK4 version of the MC method called RK4MC. In Chapter 4, we
introduce a hybrid MC method named NNMC. Finally, we discuss the results of our
numerical examples in Chapter 5 and the conclusion is in Chapter 6.
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Chapter 2

Artificial Neural Networks

The term artificial neural networks(ANN) refers to a large group of algorithms inspired
by the biological function of the human brain. Such algorithms have the ability to
"learn" from data and make decisions or determine trends with little to no domain
knowledge. This feature has led ANNs being applied to problems in many fields. In
this chapter we will explain the core ANN algorithms used to generate our thesis
result.

Regression

Most machine learning (ML) algorithms are based on supervised learning, that is
when both training inputs and outputs are available. Supervised ML problems can
be divided into regression and classification problems. In this thesis we are per-
forming function approximation which falls in to the regression category. The most
popular neural network (NN) architecture for solving regression problems is called
feed-forward. One reason these neural networks is so popular is because they can the-
oretically approximate a large class of functions to arbitrary accuracy. This property
is known as the universal approximation theorem for feed-forward networks [Hassoun
1995].

Feed-Forward Networks

In figure 2.1 a typical diagram of a neural network is shown. The action of the
network is to take a vector of length 3, apply an affine transformation and feed the
result through an activation function. A general feed-forward network will perform
this operation multiple times with different affine transformations. These models are
called feed-forward because the information among the neurons flows in a forward
direction from the input layer to the output layer.
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Figure 2.2 is an example of feed forward deep neural network with two hidden
layers. Formally we can define a feed-forward network as a function a : Rn1 → R
defined by
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a(x) = aL ◦ aL−1 ◦ · · · ◦ a2 ◦ a1(x)

aj(x) = σj(wjx+ bj)

wj ∈ Rnj−1×nj

,

bj ∈ Rnj

,

σj : Rnj → Rnj

,

where σji = σj and σj : R → R is smooth and monotonically increasing. We refer to
wk, bk, σk as the weights, biases and activation function of layer k. The elements
of wk, bk are generally referred to as parameters of the network. Now we can discuss
the universal approximation theorem.

Universal approximation theorem. Let σ be a smooth monotonically increas-
ing function. Then given any continuous real-valued function f on a compact subset
K of Rn and ε > 0, there exists vectors w1, . . . , wN , α, and b such that

|a(x,w, α, b)− f(x)| < ε for all x ∈ K

where

a(x,w, α, b) =
N∑
j=1

αjσ(wTj x+ bj)

and wj ∈ Rn, αj, bj ∈ R. [Hassoun 1995].
The remaining challenge is the actual determination of activation functions and

parameters. This brings us to the process of training.

2.1 Training Process
We wish to find a neural network a which is close to f with respect to some metric
which we call the cost function. The training process starts by choosing a cost function
which can greatly affect the training process in practice. Once a cost function is
chosen, it is minimized with respect to the weights and biases. The final weights and
biases are then used by the network. One example of a cost function is the Mean
Squared Error

C(w, b) =
1

2

∑
xj

(f(xj)− a(xj))2 (2.1)
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where {xj} is some finite subset of the domain.
To evaluate and validate the network during the training process we first generate

or collect a representative dataset of f function evaluations with corresponding input
values, which is typically split into three parts:

• Training: This data is used in the optimization step which may entail calculating
gradients of the cost function in the case of gradient descent.

• Validation: This data provides an unbiased evaluation of a model on the training
dataset while tuning hyperparameters. This dataset can be used to influence
training and therefore cannot be used to test the final model without introducing
bias.

• Testing: This data provides an unbiased evaluation of final model selection.
After testing the model on this dataset we save the model for further use.

The most popular optimizers used in practice are variants of gradient descent. For
neural networks, the gradient can be calculated efficiently using the feed-forward and
back propagation algorithms [Nielsen 2015].

Algorithm 1 Gradient Descent(GD)

1. Input x: Assuming a1 is the output of input layer.

2. Feedforward: For each layer, l = 2, 3, 4, ...., L compute

zl = wlal−1 + bl and al = σ(zl) = σ(wlal−1 + bl)

Where zl is input and al is output vector of layer l.

3. Output error: Compute the error vector,

εL = ∇aC � σ′(zL).

Where, a � b is the element-wise product of two vectors a and b, sometimes
called Hadamard product.

4. Backpropagate the error: For each layer, l = L− 1, L− 2, ...., 2 compute

εl = ((wl+1)T εl+1)� σ′(zl)

5. Gradient descent: The gradient of the cost function is given by

∂C

∂wljk
= al−1

k εlj and
∂C

∂blj
= εlj.
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6. Weight and bias update: For each layer l = L− 1, L− 2, ...., 2 update the
weights and biases according to

wl → wl − η∇wlC = wl − η
∑
x

εl(al−1)T ,

and
bl → bl − η∇blC = bl − η

∑
x

εl

where η is the learning rate.

Repeatedly applying the above algorithm, we can find a model with best fit of weights
and biases that minimizes the cost function. Gradient descent is one of commonly used
training algorithms. Discussion about other optimization algorithms are in section
2.2.5.

2.2 Hyperparameters and Tuning Technique

2.2.1 Activation Functions

The human brain has billions of neurons and they pass electronic signals from one neu-
ron to another through synapses.Whenever we see, hear or feel something a synapses
is fired from one neuron to another. The activation function, denoted by σ, does the
same work for ANN. An activation function decides whether the weighted input of
the current neuron is going to pass to the next neuron or not.

a = σ(
∑

z) = σ(
∑

xw + b),

where a is the neuron output and z is the neuron input for a layer.
It introduces non-linearity to our network. If we do not apply the activation function
then the neurons output would be linear to the input, which is a polynomial of degree
one. That is, a ANN without an activation function is a simple linear regression
model and it will fail to learn correlation between more complex and multidimensional
nonlinear data.
There many activation functions for different kind of problems. Most NN learning is
based on gradient-descent which requires derivative of activation functions. Figure
2.3 provides the activation functions and their derivatives that we used in our thesis
[Géron 2018].
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Linear

σ(z) = z

The linear activation function gives the same output as input. Since it’s derivative is
1 everywhere, the gradient descent is constant and does not depend on the input data
z. That is, changing the number of input data doesn’t affect the model performance.
Furthermore, if all layers have a linear activation function, then the final activation
function of the last layer is equivalent to a linear function of the input of first layer.
That means all layers can be replaced by a single layer.

Hyperbolic Tangent

σ(z) = tanh(z) =
2

1 + e−2z
− 1

This activation function is S-shaped, continuous, differentiable and it’s output ranges
from −1 to 1, which makes each layer output normalized at the beginning of the
training. This often helps to speed up the training.

Rectified Linear Unit(Relu)

σ(z) = max(0, z)

The relu is a popular method for function approximation. It is fast to compute and
continuous and differentiable everywhere except at 0. It’s derivative changes directly
from 0 to 1, which makes gradient descent bounce around. Since the relu activation
function vanishes all the negative inputs, neurons with negative values can not make
any contribution to the results.

Leaky-ReLU

The Leaky-ReLU function is an improved version of the ReLU activation function.
For relu, the gradient is 0 for x < 0, which made the neurons die for the activation
in that region. Leaky-relu is introduced to address this problem. Which is defined as

σ(z) =

{
0.01z z < 0

z z ≥ 0

2.2.2 Learning Rate, η

During the training process we update the weights of the model using backpropagation
algorithm. The size of the update during this process is controlled by the step size
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or learning rate. Learning rate ranges from 0 to 1 is a hyperparameter that controls
the rate at which the model can learn. We always have to be very careful to choose
a leaning rate that is not too large or too small. Because, "When the learning rate
is too large, gradient descent can inadvertently increase rather than decrease the
training error. When the learning rate is too small, training is not only slower, but
may become permanently stuck with a high training error" [Goodfellow, Bengio, and
Courville 2016].

2.2.3 Number of Epochs

One epoch is a one complete cycle of feed-forward and backpropagation of the entire
dataset through the NN. One epoch is never enough to train a NN. Choosing a number
of epochs highly depends on the diversity of data, but not using an appropriate
number of epochs would lead the model to overfit or underfit. Unfortunately, there
is no way to choose one specific number but there are some regularization techniques
that we can use to overcome this situation.

2.2.4 Batch Size

Applying the NN to a large dataset is usually too time and memory intensive. We
can divide training dataset into smaller batches and use smaller samples to train the
NN, which makes training faster and more memory efficient. Batch size is the total
number of training examples present in a single batch.

2.2.5 NN Optimization

Optimization is a process of searching for parameters w, b that optimize a given
function. For NN, we minimize a cost1 function C(w, b) and save best parameters
of our model. Usually finding a minimum of a non-convex cost function is not easy.
Often gradient descent gets stuck in the local minimum or saddle point2, finding a
way out these local minimum or saddle point is challenging. We will talk about some
popular optimization functions and general techniques to handle this challenge.

Gradient Descent

In the gradient descent algorithm, the weight and bias updates are done by,

w → w − η∇wC and b→ b− η∇bC,

1The choice of cost function is specifically related to the problem and the result we care about.
2Gradient is almost zero in all directions of this point, making it impossible to escape
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where η is the learning rate. If η is very small, the training requires large number
of iterations and time, whereas a very large step size might prevent the model from
finding the minimum. If the gradient is zero in all direction, GD fails to escape from
the saddle point. Moreover, GD uses the entire training dataset in each iteration.
This is not a problem if we are using few thousands training data, but usually NNs
work best with millions of training data. Working with the entire training dataset is
time and memory consuming.

Mini-Batch GD

To overcome problems with GD, we apply the mini-batch GD algorithm where we
divide the whole training dataset into smaller batches and train over each batch
sequentially. Doing so makes algorithm faster and more memory efficient and gives
us an intuition of GD before finishing the entire training dataset. For a mini-batch
of m training examples, the cost function for one mini-batch (xm, fm) ,

Cm =
1

m

[
1

2

∣∣fm(xm)− am,L
∣∣2 ]

=
1

2m
Σm
j=1

∣∣∣fmj − am,Lj

∣∣∣2 (2.2)

Algorithm 2 MBGD

1. Input a set of m training examples.
2. For a mini-batch of m training examples: Set the corresponding input

activation am,1 and perform the following steps:
• Feed-forward: For each l = 2, 3, ...., L compute

zm,l = wlam,l−1 + bl and am,l = σ(zm,l).

• Output Error εm,L: Compute the error vector

εm,l = ∇aCm � σ′(zm,l).

• Backpropagate the error: For each l = L− 1, L− 2, ..., 2 compute

εm,l = ((wl+1)T εm,l+1)� σ′(zm,l).

• Weight and bias update: For each l = L − 1, L − 2, ..., 2 update the
weights and biases according to

wm,l → wm,l − η

m
Σmε

m,l(am,l−1)T ,
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and
bm,l → bm,l − η

m
Σmε

m,l.

where η is the learning rate.

The path of gradient descent using the mini-batch GD algorithm is a little noisy
than the GD algorithm [Ng 2017]. The possible reason of the noise could be because
some mini-batches with misleading examples. There is no specific rule how to choose
the mini-batch size. But if the mini-batch size is very large then it will behave like
the batch GD and if it is very small(say 1) then each example will be a mini batch.
Which is Stochastic gradient descent(SGD) with very large noise and we loose the
speedup since we do the feed forward and back-propagation process for each training
example.

GD With Momentum

In mini-batch GD we use a subset of training data to update the network parameters,
which brings some oscillation to the gradient path towards the convergence. GD
with momentum makes the path smooth by updating the parameter with a weighted
average of gradient, V .
From now we will denote the derivatives ∂C

∂W
as dW and ∂C

∂b
as db for simplicity of

writing.
Momentum is responsible for a smooth path towards convergence by taking pre-

vious gradients into account. We can apply it with batch GD, mini-batch GD or
SGD.

Root Mean Squared Propagation

The root mean squared propagation (RMSProp) focus on reducing the oscillations of
the gradient path towards the convergence, in a different way than the gradient de-
scent with momentum. Unlike GDM algorithm, there is no need to adjust the learning
rate for the RMSProp algorithm. The RMSProp optimizer adjusts the learning rate
automatically by choosing a different learning rate for each parameter according to
the equations in the following algorithm.

Denote the exponential average of squares of past gradients along W and b as SdW

and Sdb respectively.
To avoid dividing by zero, we add a very small number ε in the denominator.

Dividing the gradient by corresponding square root makes the learning rate reduce
faster for the parameter where the gradient is large and slower for the parameter
where the gradient is smaller. This prevents the noise in the convergence path.
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Algorithm 3 GDM
On iteration t:

1. Compute the derivatives dW, db using current the mini-batch.

2. Denote VdW and Vdb as the exponential average of past gradients along the
weight W and the bias b respectively, defined by:

VdW = βVdW + (1− β)dW,

Vdb = βVdb + (1− β)db.

3. Update the weight and bias:

W = W − ηVdW ,

b = b− ηVdb.

Where η is learning rate and β is another hyperparameter ranging from 0 to
1, called momentum [Ng 2017].

Algorithm 4 RMSProp
On iteration t:

1. Compute the derivatives dW, db using current mini-batch.

2. Compute:
SdW = βSdW + (1− β)dW 2,

Sdb = βSdb + (1− β)db2.

3. Update weight and bias:

W = W − η√
SdW + ε

SdW ,

b = b− η√
Sdb + ε

Sdb.

Where η is the learning rate and momentum β ranges from 0 to 1 [Ng 2017].

Adaptive Moment Estimation(Adam)

The GDM algorithm accelerates the search of gradient descent path towards the di-
rection of minima, whereas in the RMSProp algorithm continue the search in the
direction of oscillations. The Adam optimizer takes biggest pros of RMSProp and
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combine them with idea known from momentum optimization. The following algo-
rithm includes the update equations required for the Adam optimizer.

Algorithm 5 Adam
On iteration t:

1. Initialize Vdw = 0, Sdw = 0, Vdb = 0, Sdb = 0,

2. Compute the derivatives dW, db using current the mini-batch.
3. Compute Vdw and Vdb like momentum:

VdW = β1VdW + (1− β1)dW

Vdb = β1Vdb + (1− β1)db.

where VdW and Vdb are the exponential average of past gradients along W and
b respectively.

4. Compute Sdw and Sdb like RMSProp:

SdW = β2SdW + (1− β2)dW 2

Sdb = β2Sdb + (1− β2)db2.

where SdW and Sdb are the exponential average of squares of past gradients
along W and b respectively.

5. Compute:

V corrected
dW =

VdW
(1− βt1)

,

V corrected
db =

Vdb
(1− βt1)

,

Scorrected
dW =

SdW
(1− βt2)

,

Scorrected
dW =

Sdb
(1− βt2)

.

6. Update W, b:
W = W − η√

Scorrected
dW + ε

V corrected
dW

b = b− η√
Scorrected
db + ε

V corrected
db

Where η is learning rate needs to be tuned during training and momentum
β1 and β2 ranges from 0 to 1 and common choice for them is 0.9 and 0.999
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respectively and ε = 10−8 recommended by Adam paper [Kingma and Ba
2014].

2.3 Regularization Technique
There are many parameters that can cause overfitting of a model. Overfitting is a
situation when the NN model memorize the training data but fails to perform on new
data. Regularization is a techniques that makes some modifications to the leaning
algorithm in order to generalize the model. There are some popular regularization
technique. In our computation we use Early stopping to prevent the model from
overfitting.

Early stopping

A large number of epochs may lead the model to overfit on training data, whereas too
few may result to underfitting. Early stopping is a technique that allows us to give
an arbitrary large number of training epochs to our model and stop training once the
model performance on the validation data starts decreasing.
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Chapter 3

Uncertainty Quantification for
Differential Equations

Many physical and biological systems are modeled by differential equations. A major
difficulty in the study of these systems arises from the presence of uncertainty, due to
our limited knowledge about the system and/or the intrinsic variability of the system
[Sullivan 2015].

Uncertainty Quantification is a process that enables us to identify and characterize
uncertainty in the system and propagate it through the mathematical model to obtain
output predictions.

Among different types of UQ, we are concerned with the forward propagation
of uncertainty, where the uncertainty in the input model parameters is known and
described by a set of random variables. Our goal is to obtain the uncertainty for
output at some QoIs given by the solution of the underlaying mathematical models
presented in 3.1.

3.1 Problem Statement
We consider ordinary differential equations (ODEs) of the following form:

ut(t, Y ) = f(t, u, Y ), t ≥ 0, Y ∈ Γ ⊂ RN

u(0, Y ) = g(Y )
(3.1)

where u = (u1, u2, ...., ur)
T ∈ Rr is the vector of unknowns, Y = (y1, y2, ...., yP )T ∈

Γ ⊂ RP is a vector of P random variables, f(t, u, Y ) is a given function and g(Y ) is
a random function.

We want to evaluate expected value, E
[
u(T, Y )

]
of the ODE 3.1 at t = T .
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3.2 Monte Carlo Sampling
MC is a simple and popular method for computing integrals and in particular expected
values. A basic MC method to compute the expected value of u(t, Y ) with respect to
Y is the following:

Algorithm 6 MC

1. Draw N samples {Y (n)}Nn=1 of a random distribution Y.

2. Compute approximations
{
ũ(T, Y (n))

}N
n=1

, which require solving N determin-

istic ODEs.

3. Evaluate the expected value E ≈ 1
N

N∑
n=1

ũ(T, Y (n)) := AMC.

3.2.1 MC Error Analysis

Let ũ(T, Y (n)) be n approximate solutions of the ODE 3.1. We define the MC esti-
mator,

AMC =
1

N

∑
ũ(T, Y (n)) (3.2)

There are two errors in AMC [Motamed 2018]:

• Error in approximating the solution u(T, Y (n)) by ũ(T, Y (n)).

• Error in approximating the integral by sum.

Therefore, error in the approximated expected values is,

εMC =
∣∣∣E [u(T, Y )]−AMC

∣∣∣
=
∣∣∣E [u(T, Y )]− E [ũ(T, Y )] + E [ũ(T, Y )]−AMC

∣∣∣
≤
∣∣∣E [u(T, Y )− ũ(T, Y )]

∣∣∣+
∣∣∣E [ũ(T, Y )]−AMC

∣∣∣
= εI + εII.

(3.3)

We call εI and εII the discretization error and statistical error respectively. We wish
to find an upper bound for εMC; to do this we must assume that both u and the error
in the approximation to u are bounded. That is, there exists C, ε > 0 such that for
all T and Y , |u| < C and |u− ũ| < ε.
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We obtain an upper bound for the discretization error,

εI = |E [u− ũ]| ≤ E [|u− ũ|] ≤ ε.

To bound the statistical error we use the following result,

Var [ũ] = E
[
ũ2
]
− E [ũ]2

≤ E
[
ũ2
]

= E
[
(u− (u− ũ))2

]
≤ E

[
u2
]

+ E
[
(u− ũ)2

]
.

The first term of the last expression is bounded since u is bounded,

E
[
u2
]

=

∫
Γ

u2π(Y )dY ≤
∫

Γ

C2π(Y )dY <∞.

where π(Y ) is the probability density function.
The other term is bounded since the approximation error is bounded,

E
[
(u− ũ)2

]
=

∫
Γ

(u− ũ)2π(Y )dY ≤
∫

Γ

ε2π(Y ) = ε2.

Therefore, Var[ũ] <∞, by Central Limit Theorem, we have

εII = |E [ũ(T, Y )]−AMC|

=

∣∣∣∣∣E [ũ(T, Y )]− 1

N

N∑
n=1

ũ(T, Y (n))

∣∣∣∣∣
. C

√
Var [ũ(T, Y )]√

N

= O
( 1√

N

)
.

(3.4)

Here, we use notation . instead of ≤, because the left-hand-side is a random quantity
(since it depends on

{
Y (n)

}N
n=1

), while the right-hand-side is a deterministic quantity.
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Hence, the bound for the total MC error,

εMC ≤ εI + εII

. ε+
C√
N

= O(ε) +O
(
N−

1
2

)
.

(3.5)

3.2.2 Deterministic ODE Solver

Consider the ODE problem 3.1. We choose the RK4 method to evaluate u(T, Y ).
The MC algorithm with RK4 ODE solver is,

Algorithm 7 RK4MC

1. Draw N samples {Y (n)}Nn=1 of a random vector Y.

2. Compute approximate solutions
{
uh(T, Y

(n))

}N
n=1

, of the ODE using RK4

method.

3. Evaluate the expected value, ARK4MC := 1
N

N∑
n=1

uh(T, Y
(n)).

RK4 Method

The RK4 method is based on the higher order terms of the Taylor series expansion
of u(·, Y ). For step-size h > 0, define

u0 = u(0, Y )

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4),

tn+1 = tn + h

(3.6)

for n = 0, 1, 2, 3, . . .

k1 = f(tn, un, Y ),

k2 = f(tn +
h

2
, un +

k1

2
, Y ),

k3 = f(tn +
h

2
, un +

k2

2
, Y ),

k4 = f(tn + h, un + k3, Y ).

(3.7)
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The value un approximates u at time t = nh.

3.2.3 MC complexity analysis with RK4 ODE solver

The cost to compute each ũ(T, Y (n)) = uh(T, Y
(n)) is 4Cf

(
T
h

)
, where Cf is the com-

putation cost of each slope ki and T
h
is the total number of steps. Since Cf and T are

constants the computation cost of RK4 method is proportional to h−1. To evaluate
uh(T, Y ) for N realizations costs Nh−1.

Therefore, the computational cost of MC estimator, A RK4MC = 1
N

N∑
n=1

uh(T, Y
(n)) is

WRK4MC ∝ Nh−1. (3.8)

Optimal selection of h and N

For RK4 method, the discretization error, generated from the ODE solver, εI = C1h
4,

makes the Monte-Carlo error bound,

εRK4MC . C1h
4 +

C√
N

= O(h4) +O(N−
1
2 ).

In addition, we desire that the minimum of WRK4MC is subject to the MC error
εRK4MC being less than or equal to some given tolerance εtol. Hence, we can find hopt

and Nopt by solving the following optimization problem

min
h,N

WRK4MC s.t εMCRk4 ≤ εtol

i.e. min
h,N

(Nh−1) s.t C1h
4 +

C2√
N

= εtol

(3.9)

Let’s introduce the Lagrangian to solve the minimization problem,

L(h,N, λ) = Nh−1 + λ
(
C1h

4 +
C2√
N
− εtol

)
Applying, ∂hL = ∂NL = ∂λL = 0, yields three equations with three unknowns

(h,N, λ).
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∂hL(h,N, λ) = 0,

−Nh−2 + 4λC1h
3 = 0,

λ =
1

4C1

Nh−5

(3.10)

Similarly,

∂NL(h,N, λ) = 0,

h−1 − 1

2
λC2N

−3
2 = 0,

λ =
2

c2

N
3
2h−1

(3.11)

Equating both λ’s,

1

4C1

Nh−5 =
2

C2

N
3
2h−1

N−
1
2 =

8C1

C2

h4

(3.12)

Finally

∂λL(h,N, λ) = 0

C1h
4 + C2N

− 1
2 − εtol = 0

(3.13)

Substituting N−
1
2 =

(
8C1

C2

)
h4 gives,

C1h
4 + C2

(
8C1

C2

)
h4 = εtol

9C1h
4 = εtol

h4 =
εtol

9C1

hopt = O(ε
1
4
tol)

(3.14)
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Replacing h into N ,

N−
1
2 =

8

9C2

εtol

Nopt = O(ε−2
tol )

(3.15)

(3.16)

Therefore, with the optimal choice of h and N and using equation 3.8, the optimal
cost of MC becomes:

Wopt = O
(
ε
−2− 1

4
tol

)
= O

(
ε−2.25
tol

)
(3.17)

In summary, MC method converges at a rate of N−
1
2 , which means that the deter-

ministic ODE solver needs to be evaluated for a large number of samples. In the
RK4 method, the larger N couples with a small step size h, which makes the overall
computation process expensive. In Chapter 4, we will discuss an algorithm which
reduces the cost of solving ODE.
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Chapter 4

A Hybrid Neural Network Monte
Carlo Sampling Method

Monte Carlo converges at a rate of O(N−
1
2 ), which requires a large number of samples

for AMC to approximate E well. In chapter 3, we discussed the numerical method
RK4. Here, we will introduce another method which is a combination of RK4 and
a NN. Our goal is to develop a model using a small training dataset which can find
solutions with the same accuracy as RK4. Once the model is trained, we will use it
to evaluate the approximate solutions

{
u(T, Y (n))

}N
n=1

of the ODE 3.1 for a large set{
Y (n)

}N
n=1

of samples, where N is the number of samples defined in equation 3.15.
The algorithm for this method is discussed below:

Algorithm 8 Hybrid NNMC

1. Draw M random samples {Y (m)}Mm=1, where M � N.

2. Solve the ODE M times with step size h using the RK4 method.

3. Train a NN using the dataset of M training examples.

4. Draw N random samples, {Y (n)}Nn=1.

5. Use trained NN to predict the approximate solutions uh,NN(T, Y (n)), of the
ODE at {Y (n)}Nn=1.

6. Evaluate ANNMC :=
1

N

N∑
n=1

uh,NN(T, Y (n)).
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4.1 NN Training Cost
As we see from the training algorithms in chapter 2, the training happens in three
steps:

Forward propagation:

• Propagate the input to the first layer with a1 = w1x takes n1n0 operations
where n0 is the number of neurons in the input layer and n1 is the number of
neurons in the first hidden layer.

• For each of the hidden layer that goes from (l− 1) to l, compute the output of
layer l, al = σ(zl) and the input of layer l, zl = wlal−1 + bl. Computing zl is
the cost of a matrix-vector product and a vector addition. That is, the order of
cost to compute zl is nl−1nl.

• Similarly at the output layer L, compute aL = σ(zL) and zL = wLaL−1 + bL.
This has the order of cost, nLnL−1.

Therefore, the order of the cost of one forward propagation is
∑L

l=1 n
l−1nl.

Backpropagation:

Consider the MSE cost function, C = 1
2
(aL − f)2, where f is the target vector. For

backpropagation we must differentiate the cost function with respect to the weights
and biases. To do this we must first find the error vectors. For the output layer, the
error vector is computed as

εL = (aL − f)� σ′(zL),

and for layers 1 ≤ l ≤ L the error vector is

εl−1 = (εl)Twl.

Then the gradients are calculated as

∂C

∂wl
= (εl)Tal−1,

∂C

∂bl
= εl.

To calculate εL, we perform a vector subtraction and one element-wise vector mul-
tiplication which is O(nL) operations. Then calculating εl−1 from εl we perform a
matrix-vector multiplication which costs O(nlnl−1).
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Finally, calculating ∂C
∂wl for each layer requires a vector outer product which leads to

a total cost of O
(∑

j≥l n
jnj−1

)
.

Parameter Updates:

To update the weights and biases we must do

wl ← wl − η ∂C
∂wl

,

bl ← bl − η∂C
∂bl

.

The computation of new weight is component-wise sum ofO(nlnl−1)+O
(∑

j≥l n
jnj−1

)
=

O
(∑

j≥l n
jnj−1

)
. The computation of bias is dominated by the time complexity of

weights.
Hence, the complexity of one backpropagation is O

(∑L
l=1 n

lnl−1
)
which is equal

to the number of weights in the network. Therefore we see backpropagation and
forward propagation are both linear in the number of parameters in the network.
The computational cost of one forward and backpropagation is

O
( L∑
l=1

nlnl−1
)

+O
( L∑
l=1

nlnl−1
)

= O
( L∑
l=1

nlnl−1
)
.

If we have M training examples and e epochs then the cost is, O
(
Me

∑L
l=1 n

lnl−1
)
.

4.2 MC complexity analysis using an NN ODE solver
For this hybrid algorithm we perform step 2 of the MC algorithm using a neural
network and leave the remaining steps unchanged. The total cost can be broken up
into three parts:

• The cost to generateM training data using RK4 method is T1 = O(Mh−1),M �
N .

• The cost to train a NN is T2 = O
(
Me

L∑
l=1

nlnl−1
)
.

Here, M, e and nl are the number of training examples, epochs and number of
neurons in layer l respectively.
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• The cost to predict
{
uh,NN(T, Y (n))

}N
n=1

using the trained NN is T3 = O
(
N

L∑
l=1

nlnl−1
)
.

Combining these, the total computational cost of algorithm 8 is,

WNNMC = T1 + T2 + T3 (4.1)

where, T1 is small since M << N . The training time T2 could be large depending
on the NN architecture. Furthermore, since T1 and T2 are a one time cost, once the
model is trained it can be saved and reused. The prediction cost, T3 is the cost of N
evaluations of the network, which scales linearly with N . In the next chapter we will
present some numerical examples to see how the cost of the hybrid NNMC method
behaves in practice compared to the cost of the classical RK4MC sampling method.
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Chapter 5

Numerical Examples

In this chapter, we present numerical experiment on three ODEs of type 3.1. Our
goal is to predict the expected value of the solutions of the ODE using RK4MC and
NNMC algorithms. For each ODE we compare the relative error of the expected
values, rate of convergence and run-time of both algorithms for three different step
sizes h.

NNData Preparation For each step size h we generate a dataset
{(
Y (m), uh(T, Y (m))

)}M
m=1

of M training examples using the RK4 method, where {Y (m)} is the NN input and
uh(T, Y (m)) is the corresponding target output. Then we split the dataset of M ex-
amples into three parts, we use 70% for training, 20% for validation and 10% for
testing respectively. However, we update the parameters and select hyperparameters
by observing the model performance on validation data and finalize the model after
checking the performance on test data. We follow the same procedure for all ODEs.

NN development choice: For each ODE we use a different NN architecture. How-
ever for each h we use the same architecture but train different models for the NNMC
algorithm. The final architectures and models were determined heuristically and by
trial and error. This is typical in developing a neural network. In this thesis we have
compared three different size of models to select a final model with best performance
on the validation and test data.

Error Function: For all examples we will use the following error definition. Denote
E as the expected value of the exact solutions, we define the error function of the
NNMC and RK4MC algorithms as

εRK4MC =
|E−ARK4MC|

|E|

and
εNNMC =

|E−ANNMC|
|E|

.
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5.1 Example 1
ODE: The first ODE we consider is,

du(t, Y )

dt
+

1

2
u(t, Y ) = 5(Y + sin(2t)), 0 ≤ t ≤ T, Y ∼ U [1, 2], (5.1)

u(0, Y ) = 0.

where T = 20 and Y is a scalar uniform random variable ranging from 0 to 1. The
exact solution at any t is,

u(t, Y ) = 10Y (1− e−
t
2 ) +

20

17
(0.5 sin(2t)− 2 cos(2t) + 2e−

t
2 ).

For t = T , the expected value of the exact solution is E =
∫ 2

1
u(T, Y )dY. We wish

to estimate the expected value of u(T, Y ) for various maximum relative error of
εtol = 10−2, 10−3, 10−4 using both NNMC and RK4MC. Using the theory developed in
section 3.2.3, the choices of step size and sample count which ensure this tolerance for
the RK4MC algorithm are h = 0.05, 0.025, 0.0125 and N = 7 × 102, 5 × 104, 5 × 106

respectively. Figure 5.1 shows the training dataset generated by RK4 method.

Figure 5.1: Training data generated by RK4 with step size, h =
0.0125.

NN Architecture: For each step size,h we will generate a training dataset using
the RK4 method and train a corresponding NN model. We found that a small number
of examples, M = 10 was sufficient to train the NN. This is to be expected since the
solution u is linear in Y .
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All three models for this ODE share the same architecture and same number of
training examples, M . Each model has three layers, an input, output and a single
hidden layer. Both input and output layers have one neuron each and the hidden

Figure 5.2: Semi-log plot of MSE loss with respect to epochs. The
error plot is for the dataset with h = 0.0125 and N = 5× 106

layer has 10 neurons. There is no activation function for the input and output layer.
For the hidden layer we used the Leaky-ReLU activation function. We used themean
squared error loss function and stochastic gradient descent with momentum
as the optimizer. Figure 5.2 shows the training and validation loss corresponding to
the number of epochs. In this figure, we see both the validation and training loss are
decreasing, which is a sign that there is no overfitting.

Figure 5.3: NN predicted solution verses the target solution on the
test data for h = 0.0125.
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Furthermore, figure 5.3 shows the true target solution against the NN predicted
solution. We see that the model generates accurate predictions on the test data and
completes the training process.

The next results will be generated by the performance of the large number of
samples with the saved NN models. The right graph in figure 5.4, shows the NNMC
method inherits the order O(h4) from the RK4 method.

Figure 5.4: Convergence rate of the algorithm RK4MC [left] and the
algorithm NNMC [right].

We will now compare the computation time of the NNMC and RK4MC algorithms.
All the computations are done on CPU. Figure 5.5 (left) shows that NNMC prediction
time, that is excluding the training time, is much less than the prediction time needed
for the RK4MC method. The black line is proportional to the theoretical cost of
RK4MC method.

Figure 5.5: CPU time excluding training time[left] and including
training time [right] of the algorithms RK4MC and NNMC.
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Even including the costly NNMC training step, for smaller tolerances we see that
the NNMC method takes less time than the RK4MC method in the right graph of
figure 5.5. For larger tolerances the hybrid NNMC method is relatively costly but as
the tolerance decreases there is almost no change in the NNMC method computation
time unlike the RK4MC method.

Figure 5.6: The RK4MC and NNMC errors in 10 different run

Figure 5.6 represents the relative error of the expected values predicted by both
RK4MC and NNMC method over 10 different runs. We can see that the error goes
above the tolerance level for some runs which is due to the statistical error.

5.2 Example 2
The second ODE we consider is,

du(t, Y )

dt
+

1

2
u(t, Y ) = 1 +

y2

2
+ ycos(tY ) +

sin(tY )

2
− sin(4t)

Y
− sin2(2t)

4Y
,

u(0, Y ) = 2 + Y 2,

where 0 ≤ t ≤ T, Y ∼ U [1, 2] and T = 20. The exact solution is,

u(t, Y ) = 2 + Y 2 + sin(tY )− sin2(2t)

2Y
.
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For T = t, the expected value of the exact solution is, E =
∫ 2

1
u(T, Y )dY.

The setup for this example is the same as example 1. We choose the error tol-
erance, εtol = 10−1, 10−2, 10−3 and we find corresponding sufficient choices of h =
0.1, 0.05, 0.025 and N = 5 × 102, 6 × 104, 5 × 106 following the same procedure as in
example 5.1. Figure 5.7 shows the RK4 solutions of the ODE at the final time T for
a set of training input Y .

Figure 5.7: Training data generated by RK4 with step size h = 0.025.

NN Architecture: For each h we train a NN with M = 80 training examples.
Each model has same architecture with 6 layers, one input, four hidden layers and
one output. There is one input and one output neuron and each hidden layer has
32 neurons. The input and output layer has no activation function and each hidden
layer uses the hyperbolic tangent activation function. We use the Adam optimizer
with initial learning rate 0.03, the mean absolute error (MAE) loss function and
early stopping to prevent overfitting.

Figure 5.8: MAE loss function with respect to epochs. The error
plot is for the dataset with h = 0.025 and N = 5× 106.



Chapter 5. Numerical Examples 32

Figure 5.8 shows the model performance on training and validation data. In this
figure, the decreasing validation and training error indicate that the model is not
overfitting.

Figure 5.9: NN predicted solution verses the target solution on the
test data for h = 0.025.

In figure 5.9 we see the NN predicted value verses the target values, Where uh are
the target values and uh,NN are the corresponding model predictions. Since the model
is not overfitting and has good performance on unseen test data, we can say this is a
well trained model and this completes the training process.

Figure 5.10: Convergence rate of the RK4MC [left] and NNMC [right]
method.

Now we compare the relative error and performance of both algorithms for a large
sample size, N . Similar to the previous example 5.1 we can see from figure 5.10 that
the NNMC method inherits the order O(h4) from the the RK4 method.
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Figure 5.11: CPU time of RK4MC and NNMC method without
training time [left] and with training time [right]. The black line is
proportional to the theoretical cost of RK4MC method. All the com-

putation is done in the CPU.

As in the first example, the left graph of figure 5.11 shows that NNMC prediction
cost is again lower than the RK4MC method prediction cost. Furthermore, the right
graph shows the training cost is almost independent of the error tolerance and for
smaller error the hybrid NNMC method is faster than the classical RK4MC method.

Figure 5.12: RK4MC error and NNMC error in 10 different runs.

Finally, figure 5.12 shows relative error for both methods in 10 different runs. The
errors above the tolerance level for some runs is due to the statistical failure.
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5.3 Example 3
ODE: The third and final ODE we consider is,

du(t, Y )

dt
+

1

2
u(t, Y ) =

(
10∑
i=1

1
16
yi cos(tyi)

1 + 1
16

sin(tyi) + 0.25y2
i

+
1

2

)
10∏
i=1

(
1 +

1

16
sin(tyi) + 0.25y2

i

)
,

u(0, Y ) =
10∏
i=1

(
1 + 0.25y2

i

)
,

where 0 ≤ t ≤ T , T = 20, and Y = (y1, y2, . . . y10)T with yi ∼ U [0, 2] for i =
1, 2, . . . , 10 corresponds to the 10 input neurons. The exact solution is,

u(t, Y ) =
10∏
i=1

(
1 +

1

16
sin(tyi) + 0.25y2

i

)
.

At the final time T , the expected value of the exact solution of the ODE is,

E =
1

210

(
10∏
i=1

∫ 2

0

ui(T, yi)dyi

)
.

For this ODE we consider the error tolerance, εtol = 10−1, 10−2, 10−3. In the same way
as the last two problems we choose h = 0.5, 0.25, 0.125 and N = 3× 102, 5× 103, 106.
The training dataset has ten input variables y1, y2, . . . y10 and one output variable
u. Figure 5.13 represents the joint distribution of three columns y1, y10 and u of
training data, which gives some intuition of the training dataset. The histograms on
the diagonal shows the probability distribution of a single variable while the scatter
plots on the upper and lower triangles show the relationship between two valuables.
For example, on the third row the right most plot shows the probability distribution
of the solution u and the left most plot shows the scatter plot of the solution u with
respect to the input variable y1.

NN Architecture: Similar to the previous examples, for each h we will develop a
NN model with M = 7000 training examples. The models with M training examples
generated with step sizes h = 0.5 and h = 0.125 has exactly the same NN architecture:
one input layer, four hidden layers and one output layer. The architecture was pri-
marily determined by trial and error. Table 5.1 gives detailed information about the
layers. Additionally, we use the Adam optimizer with initial learning rate η = 0.005
and the mean absolute error (MAE) loss function. We initiate the training with 200
epochs and use early stopping to prevent over fitting. The model with training data
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Figure 5.13: Joint distribution of few columns of the training data
generated by RK4 method with step size, h = 0.125.

generated with step size h = 0.25 gives the desired performance with Leaky-ReLU
activation function. The rest of the choice of hyperparameters of NN architecture is
the same as 5.1.

M Layers Neurons Activation function Loss function Optimizer
Input Layer 10 None

Hidden Layer 1 44 ReLU
7000 Hidden Layer 2 44 ReLU MAE Adam

Hidden Layer 3 44 ReLU
Hidden Layer 4 44 ReLU
Hidden Layer 5 44 ReLU
Output Layer 1 None

Table 5.1: NN architecture
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Figure 5.14: MAE error/loss function with respect to epochs. The
error plot is for the dataset with h = 0.125 and N = 106.

Figure 5.15: NN predicted solution verses the target solution on the
test data for h = 0.125.

Figure 5.14 shows the MAE loss function over train and validation data and figure
5.15 shows the model performance on the test data. Where uh are the target values
and uh,NN are the corresponding model predictions.
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Figure 5.16: Convergence rate of the RK4MC [left] and NNMC [right]
method.

Similar to the previous two examples, for this example we develop a NN model
to obtain relative error on the same order as RK4MC for all h. We see in figure 5.16
that NNMC inherits the O(h4) from RK4 method.

Figure 5.17: CPU time of RK4 and NN with training time [left] and
without train time [right].Theoretical cost is proportional to the cost

of the algorithm RK4MC. The coputation was done in the CPU.

Figure 5.17 shows the computational cost of both methods. Again, we observe
that the prediction cost required by NNMC is smaller than the the RK4MC method
for larger sample sizes. From the graph on the right we see that the training time is
comparatively higher for this ODE. Furthermore, we notice that the training time is
almost independent of the tolerance. Hence, if we use smaller εtol, then RK4MC has
higher cost than the NNMC method. Due to computational and time limitations we
had to set our error tolerance relatively larger than the previous two problems.
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Figure 5.18 shows the relative error for both methods over 10 different runs. We
see that the relative error of both methods is below the desired tolerance level for
more than 95% of the runs. The remaining 5% are above the tolerance level due to
statistical error.

Figure 5.18: The RK4MC error and NNMC errors in 10 different
runs.

Overall, We find that with a good NN architecture it is possible to generate
the approximate solutions of ODEs for a large number of samples. In addition, we
observe that the NN prediction time is significantly faster than the classical RK4
method. Furthermore, the NN training time is a one time cost and is independent of
step size and error tolerance. This can be especially beneficial, when solving complex
ODEs or PDEs for which slopes are expensive to compute or large final times are
required. This will in turn enable the computation of the statistics of QoIs by the
NNMC sampling much more efficiently compared to when we use the classical MC
sampling, particularly when high accuracy within small tolerances are desired.
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Chapter 6

Conclusion

In this thesis we have investigated the applicability of using NNs to find the ap-
proximate solutions of ODEs for use in MC integration. We observe though several
numerical examples that a properly trained NN can produce solutions with the same
accuracy as the RK4 method. Furthermore, the training and evaluation of a model
does not depend on the step size. Whereas, when using the RK4 method with a very
small step size to compute solutions for a large number of samples can be extremely
time consuming. Therefore the MC algorithm can be significantly accelerated if a NN
can be found which is cheap to evaluate and requires few training examples.

Our work involves simple ODEs with a short time interval (T = 20). A further
study can be done with more complex ODEs and PDEs problems and using more
advanced deterministic solvers. It can be extended to other UQ technique such as
stochastic collocation.
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