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Abstract 

This study investigated the efficacy of Home-Based Renal Care (HBRC) in diabetic Zuni 

Indians with Chronic Kidney Disease (CKD) in New Mexico using propensity scores. Home 

based intervention as opposed to standard clinical care is a pragmatic treatment approach that 

incorporates the preference of population in hopes of addressing a cultural barrier to healthcare 

in this high risk population. This study uses a logistic regression model and a linear regression 

model to estimate the average effect of HBRC on increasing the likelihood of participants taking 

a more active role in the management of their chronic condition compared to the control group. 

We used generalized estimating equations (GEE) to account for household clustering and 

stabilized inverse probability of treatment weighting (SIPTW) to reduce any estimate bias that 

may have been introduced. 
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Chapter 1 

 

Introduction 

 

In 2013, Americans spent an estimated 101.4 billion US dollars on diabetes mellitus management 

making it the largest spending on a health condition in the United States.1 Though alarming, it does not 

come as a surprise that the prevalence of diabetes has been on the rise in the last couple of decades. The 

estimated percentage of Americans diagnosed with diabetes has doubled from 4% to 8.4% between 1999 

and 2018.2 Diabetes impacts the quality of life of many Americans.  

Furthermore, diabetes is a risk factor for many chronic health conditions. For example, diabetes 

has been previously described as the leading cause of advanced kidney disease worldwide.3 Specifically, 

chronic kidney disease (CKD) affects 13% of the general adult American population diagnosed with type 

2 diabetes mellitus (T2DM).4 In high-risk populations, the high prevalence rate of diabetes leads to a 

faster progression of CKD. Particularly, studies have demonstrated that CKD is prevalent among ethnic 

and racial minorities.5 It is important to recognize that diabetes has been identified as a modifiable risk 

factor for CKD progression that disproportionately affect socially disadvantaged groups.   

The burden of CKD is greater in ethnic and racial minorities, and rural communities where access 

to healthcare is limited.6 For example, the majority of Zuni Indians in New Mexico live in remote parts of 

the state and subsequently have limited access to health care. The combination of their lack of access to 

health services and high rates of chronic diseases among them masks the true nature of their sickness as 

seen with the cardiovascular disease in the Zuni tribe.7 This health disparity is worsened by the barriers of 

healthcare. The focus of our work will be on Zuni Indians in New Mexico. 
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Cultural barriers are another dimension that goes beyond limited access to health care. However, 

many interventions fail to address such barriers specifically by not accounting for the cultural awareness 

and the preference of the population of interest. The Zuni Indians, for instance, have experienced 

considerable historical and cultural trauma that resulted in fear of participating in health screening and 

healthcare.8 In addition to the fear, the mistrust and difficulty in building a trusting relationship with 

healthcare providers, due to the high turnover rate of medical staff at the Indian Health Services, were 

identified as barriers within the operation of health care systems.7  

Home based intervention as opposed to standard clinical care addresses another barrier to 

healthcare—the preference of population. For instance, a recent study found that the Zuni Indians in New 

Mexico culturally preferred to receive care where confidentiality is easily attained.7 In this community, 

going to a clinic, where patients could be seen by others in waiting rooms, could sometimes lead to 

feeling embarrassed which in turns might prevent the patients from receiving care at the health services 

on a regular basis.  

In this study, the proposed intervention was designed to address these barriers by using 

community health workers (CHW) who are members of the Zuni tribe but were trained specifically for 

the delivery of the intervention. In contrast to standard clinical care, where patients visit clinics, CHWs in 

this intervention provided care at patients’ homes which takes into consideration that most patients feel 

more comfortable when receiving care from people who look like them. In this 12-month randomized 

controlled trial, the intervention was specifically designed to improve patients’ inclination to take a more 

active role in the management of their chronic health condition. Hence, the primary outcome of interest of 

this study was patient’s activation score which is a measure of their involvement in the health care 

management. The objective of this trial is to examine the effectiveness of home-based renal care in 

comparison to standard care with respect to patients’ activation scores. We hypothesized that patients 

were more likely to engage in their health care management if they received care at home. 
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Chapter 2 

Methods 

 The aim of this thesis was to analyze the effectiveness of home-based renal care (HBRC) on 

increasing the likelihood of the diabetic Zuni Indians to be more active in the management of CKD. The 

primary outcomes of interest were (1) whether patient activation improved where activation is considered 

level 3 or greater (binary) and (2) the change in the patient activation score collected through a self-

reported questionnaire (continuous). A logistic regression model was used to estimate the odds of 

improvement in patient activation level for the intervention group relative to the control group. A linear 

regression model was used to estimate the mean patient activation score for patients in the intervention 

group relative to controls. Because we enrolled family units into the study, Generalized Estimated 

Equations (GEE) were used to account for household clustering.  

Participants 

 Potential participants (n = 1,436) from a previously established cohort were screened for relevant 

clinical factors.9 Exactly 315 individuals were screened for eligibility where 127 met the criteria for 

inclusion in the study. The criteria included being between 21 and 80 years of age and having urine 

albumin : creatinine ratio ≥ 30 kg/m2, hemoglobin A1c ≥ 7%, or a family history of diabetes and kidney 

disease. Two individuals declined to participate in the study. The remaining 125 were enrolled in the 12 

month randomized controlled trial. The data from 72 individuals who were on diabetes medication (DM) 

at baseline were used for the purpose of this thesis. 

Randomization 

 The randomization sequence was generated using the PROC PLAN procedure in SAS to assign 

participants to either the standard clinical care group or the home-based renal care group. The 
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randomization procedure permuted the two levels of treatment randomly and without replacement within 

blocks containing two, four, or six households. More than one person in a household could participate in 

the study. Because of this, we randomized households in a 1:1 allocation to the standard clinical care or 

the intervention to ensure that members of the same household were allocated to the same treatment 

group. While 96 households were enrolled in the study, only 40 households were enrolled in the diabetic 

subset that were analyzed for this thesis; 14 participants enrolled in the standard clinical care and 17 

participants enrolled in the intervention group were from single-participant households. Neither the 

investigator nor the participants were blinded at randomization because it was clear which participants 

were receiving the intervention at home or the standard care at a local Indian Health Service clinic. 

Data Flowchart 

The data flow from enrollment to randomization to final assignment into the intervention and 

control groups is shown in Figure 2.1. 

 

Figure 2.1 Data Flowchart 
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Explanatory Variables 

Intervention/Treatment 

 The intervention group received Home-Based Renal Care (HBRC). The Community Health 

Workers (CHWs) were Zuni Indians who were trained to provide the HBRC to the intervention group. 

The CHWs received 40 hours of training that consisted of education about CKD and its self-management 

education, the theoretical framework of the intervention and its implementation. They visited the 

participants on a biweekly basis to educate them on various topics including but not limited to healthy 

eating, exercise, medication management and risk factor management.  

The intervention focused on providing a pragmatic treatment plan that addressed cultural 

awareness. The participants chose to receive care in their native language if preferred by the participant. 

The diet and exercise plan incorporated traditional food items and culturally popular activities, and 

promoted group cohesion. Receiving care at home reflected the preference of the population that aimed to 

reduce any anxiety and discomfort that commonly result from going to the clinic.7 They provided point-of 

care testing. This meant that the lab results were taken and interpreted to the participants immediately 

during the home visit. They were also provided with cellphones and text message plans, and received 

motivational text messages a few times per day.  

The control group received standard clinical care from a local Indian Health Services clinic. They 

received publicly-available up-to-date information about diabetes prevention, weight loss, diet and 

exercise. They were only contacted by the study staff for the purpose of data collection. 

Response Variables 

Primary Outcomes of Interest 

Patient Activation Score 
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 The patient activation score (PAM score) has been previously reported as a validated tool that 

assesses a patient’s ability to effectively participate in his or her care.10 This instrument was collected 

through a short form questionnaire consisting 13 questions with 4 response options: (1) strongly disagree, 

(2) disagree, (3) agree, and (4) strongly agree. The raw score ranged from 39 to 53. If there were any 

missing response, the total score was divided by the number of answered questions and multiplied by 13 

to yield a normalized raw score. A nomogram, provided under a licensing agreement with Insignia 

Health, converted raw scores to an activation score that ranged from 0 to 100. We note that in this work 

we will be using the converted activation score and not the raw score. 

Patient Activation Level  

 The patient activation score was further categorized into 4 levels. They were: 

  Level 1: Believing the patient’s role is important but not taking action; 

  Level 2: Having the confidence and knowledge necessary to take action; 

  Level 3: Taking action to maintain and improve one’s health; and  

  Level 4: Staying the course even under stress.  

Scoring level 3 and higher was grouped into one category representing patient activation. Scoring level 2 

and lower was grouped into the other category representing the lack of patient activation. Figure 2.2 

shows the identification of each patient activation levels from calibrating the patient activation score from 

the 13 item questionnaire.11 The raw score of patient activation scores ranged from 38.6 to 53. A raw 

score of 39 to 41, 42 to 47, 50 to 51 and 52 to 53 were calibrated into level 1, level 2, level 3 and level 4 

respectively.  
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Figure 2.2 Calibration of the patient activation score into patient activation levels 

Secondary Outcomes of Interest 

Body Mass Index 

 Among clinicians, Body Mass Index (BMI) has been accepted as the better estimate of total body 

fat compared to body weight alone.12 Obesity has been reported to be associated with multiple conditions 

that are known to cause compromised renal function such as hypertension and diabetes.13 Also, it was 

found that it may be independently associated with the risk of developing CKD.14 Hence, it was measured 

to evaluate the degree of excess weight and as a risk factor for CKD in this study. BMI was calculated by 

dividing body weight (kg) by height squared (m2).  

Blood Pressure 

Hypertension is present in estimated 80-85% of patients with CKD.14 The increased prevalence of 

hypertension has been primarily caused by sodium retention among other factors and been identified as a 

contributory factor in the development of kidney disease.15 For this study, blood pressure (systolic and 

diastolic) was measured 3 times about 5 minutes apart with the participants resting in a seated position, 

then averaged. 
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Hemoglobin A1c  

 It has been found that hemoglobin A1c (HbA1c) level in blood reflects the mean blood glucose 

over 120-day lifespan of the red blood cell.16 Hence, it is the most widely used clinical test to estimate the 

long-term mean blood glucose.16 It is recommended that the target A1c value should be 7% or lower for 

most diabetic patients.17 Hemoglobin A1c level (≥ 6.5 %) is a diagnostic criterion for diabetes.18  

Serum Glucose 

Fasting plasma glucose (≥ 126 mg/dL) is another diagnostic criterion for diabetes.18 It is 

important to note that plasma glucose concentration fluctuates within the same day depending on food 

intake and other factors. A measure of plasma glucose should be supplemented by a measure of the 

hemoglobin A1c. 

Serum Total Protein  

 Adaptive hyperfiltration induces proteinuria and progressive renal failure.19 Hyperfiltration and 

proteinuria could lead to changes in the total protein concentration in plasma. Protein malnutrition is a 

common finding in chronic renal failure and is associated with poor outcome.20  

Serum Cholesterol  

 Hyperlipidemia refers to high levels of lipids in blood including cholesterol and triglycerides. 

This does not directly cause symptoms but has been identified as a risk factor for cardiovascular disease, 

diabetes mellitus, and chronic kidney disease.21 Cholesterol is essential for normal function of all animal 

cells and is a precursor of various critical substances such as steroid hormones and bile acids.22 A total 

cholesterol level of less than 200mg/dL is considered normal.23 A total cholesterol level greater than or 

equal to 240 mg/dL is considered high.23 
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Serum Triglycerides 

 Triglycerides is one type of lipid in blood. Triglycerides is different than cholesterol in that 

triglycerides represents the main lipid component of dietary fat.22 High triglyceride level is associated 

with high risk of cardiovascular disease, diabetes and chronic kidney disease.21 Less than 150 mg/dL is 

considered to be normal level and greater than 886 mg/dL is considered very high level of triglycerides.23    

Serum HDL Cholesterol 

 High-density lipoproteins (HDL) is commonly known as the “good” cholesterol because it plays 

the role of reverse transporting cholesterol from different tissues to liver where cholesterol is eventually 

removed from the body.22 Hence, HDL prevents excess cholesterol build up in the body.22 Greater than or 

equal to 60 mg/dL is considered to be normal level whereas less than 40 mg/dL is considered to be lower 

than desirable.23 

Serum LDL Cholesterol 

 Low-density lipoproteins (LDL) is rich in cholesterol. LDL delivers cholesterol to cells where it 

can be used for normal cell functions.22 High levels of LDL is associated with reduced synthesis of LDL 

receptors which then can lead to excess cholesterol accumulation in blood.22 LDL cholesterol in blood is 

calculated by subtracting the HDL cholesterol level and the VLDL cholesterol level from the total 

cholesterol level.23 For a high risk individual, the recommended LDL level is less than 130 mg/dL.23  

Estimated GFR 

 Serum and urine creatinine were measured by an enzymatic method and estimated glomerular 

filtration rate (eGFR) was computed using the Chronic Kidney Disease Epidemiology Collaborations 

(CKD-EPI) equation.24 GFR is generally used as the best index of overall kidney function.25 Decline in 

GFR is a hallmark of progressive kidney disease.25 Less than 60 mL/min per 1.73 m2 is considered as 

decreased GFR.26 Less than 15 mL/min per 1.73 m2 is defined as kidney failure.26 



10 

 

Urine ACR 

 Urine albumin-to-creatinine ratio (UACR) is used to estimate 24-hour proteinuria.27 Proteinuria 

describes protein excretion in urine. Less than 150 mg/day is considered as normal level of total urinary 

protein excretion.28 As UACR is a ratio of albumin to creatinine, it is measured in mg of protein per g of 

creatinine.27 Greater than 30 mg/g is considered as an abnormally elevated ACR.28 Individuals with 

UACR above this threshold is considered to be at high risk for chronic kidney disease.28 

High Sensitivity CRP 

 High Sensitivity C-reactive protein (hsCRP) is an acute phase protein that is produced by 

hepatocytes and is a biomarker of inflammation.29 Its pathogenic role in a specific cause for inflammation 

in the development of chronic kidney disease is currently unknown.30 There is no standardized hsCRP 

value that is associated with abnormalities.31 However, a study reported elevated hsCRP levels (>8 

mg/dL) in 46 percent of its cohort (n=280) who were on chronic hemodialysis.32 We note to take caution 

in interpreting the results regarding hsCRP given the lack of clinical understanding of its pathogenic role 

in chronic kidney disease.  

Morisky Score 

 The Morisky score was assessed as a measure of adherence with prescribed medicines.33 Higher 

score on the scale correspond to improved quality of life. 

KDQDL Measures 

 Health related quality of life was assessed by the Kidney Disease Quality of Life survey 

(KDQOL-36).34 Higher scores on the scales corresponded to improved quality of life. 

Optimal Cutoffs for Continuous Measures 

 There were variables that displayed a ceiling effect where the response variable clustered toward 

the upper limit of the measurement. There were three such variables—Symptoms/Problems List, Effect of 
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Kidney Disease, and Burden of Kidney Disease. To dichotomize these variables, we first regressed the 

Treatment group against each variable via logistic regression modeling and secondly we used the area 

under the ROC curve (AUC) to identify the Euclidean distance that maximizes the difference between the 

ROC curve and the point (0, 1).35 In turn, this allowed for minimizing the false positive rate while 

maximizing the true positive rate. We then applied this optimal cut-off threshold to categorize the three 

continuous variables into binary variables—1 indicating improvement of health-related quality of life and 

0 indicating lack of improvement of health-related quality of life. 

Models 

Linear regression  

 Most of the dependent variables (DVs) that we were interested in were continuous with normal 

distribution. For example, the primary outcome of interest in this study was patient activation score which 

is a continuous variable. A linear regression model, using the SAS procedure PROC GENMOD, was used 

to estimate the treatment effect for the primary exposure on these DVs. In order to account for the 

household clustering, using Generalized Estimated Equations in PROC GENMOD rather than PROC 

REG was more appropriate.  

Logistic regression 

 There were four variables of interest that were categorized into binary outcomes. For example, 

the primary outcome of interest, the patient activation level, was categorized into “activation” vs. “lack of 

activation”. A logistic regression model, using the SAS procedure PROC GENMOD, was used to 

estimate the treatment effect for the primary exposure on these binary DVs. In order to account for the 

household clustering, using Generalized Estimated Equations in PROC GENMOD rather than PROC 

REG was more appropriate.  

A cross-validation technique was used to examine the generalizability of our findings. We 

estimated cross-validation error using a Monte-Carlo approach. A training set (80% of the entire dataset) 
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was randomly selected from the dataset to construct the model. The remaining observations were 

collectively named the testing set (20% of the entire dataset). The fitted model was tested using the testing 

set. The matric used to evaluate the results from cross-validation were Root Mean Square Error (RMSE), 

the mean absolute error (MAE), and R2 in the test set for the continuous DVs and Mean Percentage of 

Correct Classifications (MPCC) and its corresponding Standard Error (SE) for binary DVs. 

Propensity Score 

 Propensity score is the probability of receiving treatment given a set of observed covariates. 

Traditionally, the propensity score was intended to be used specifically as a method of treatment selection 

bias reduction in non-randomized studies. In this thesis, the purpose of using the propensity score was to 

adjust for the imbalanced covariates at baseline to obtain more precise estimate for the treatment effect. A 

logistic regression model, for which the primary exposure was used as the primary outcome, was utilized 

to estimate the propensity scores. The estimated propensity scores were then used to generate Inverse 

Probability of Treatment Weights (IPTWs) that eventually were used to account for any imbalance in the 

covariates between groups at baseline.  
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Chapter 3 

Analysis 

The primary outcome in this study was patient activation score (PAM score) which was a 

continuous measure that ranges from 0 to 100. This was further dichotomized such that patients could be 

either in an activation level or in a lack of activation level (PAM level). Two models were fitted to 

analyze the data from the 12-month randomized controlled trial: (a) a logistic regression model was used 

to analyze the binary response variable “activation/lack of activation” in determining whether patients 

have higher odds of being activated in the management of their care, and (b) a linear regression model 

was used to analyze patient activation score that ranged from 0 to 100. 

Data Visualization 

  Before any modeling, we visualized the collected data. We generated bar charts to visualize the 

changes in the patient activation levels from baseline to the 12-month measurements between groups. The 

bar charts in Figure 3.1 gave the frequency of participants in each patient activation levels in the control 

group and in the intervention group. The bar chart on the left gave the baseline measures and the one on 

the right gave the 12-month measures. The yellow bars represented control group and the blue bar 

represented intervention group.  

At baseline, about 22% of the participants in the control group were in the “lack of activation” 

level and about 29% of the participants in the intervention group were in the “lack of activation” level. In 

other words, about 78% of the participants in the control group and about 71% of the participants in the 

intervention group were in the “activation” level at baseline. At the end of the 12-month randomized 

controlled trial (RCT), about 59% of the participants in the control group and about 92% of the 

participants in the intervention group were in the “activation” level.   
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Figure 3.1 Percent of participants (control and intervention groups) in each PAM levels at baseline and 

12 months  

 We generated histograms of the patient activation score (PAM score) differences between 

baseline measurement and the 12 month measurements showing the measured differences between the 

control group and the intervention group (Figure 3.2). The yellow represented the control group and the 

blue represented the intervention group. The positive differences were dominated by the blue whereas the 

negative differences were dominated by the yellow indicating higher improvement in the participants in 

the intervention group based on the PAM scores.  

 

Figure 3.2 PAM score differences between groups. 
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Figure 3.3 Change in PAM score between groups 

A scatterplot of the PAM score at 12 months against the PAM score at baseline was generated to 

visualize the relationship between the baseline and the 12-month patient activation score between groups 

(Figure 3.3). The yellow filled dots represented the control group. The blue filled dots represented the 

intervention group. The diagonal line represented no change between the PAM scores from baseline to 12 

months. If the PAM score increased, then it would be plotted above the line whereas if the PAM score 

decreased, then it would be plotted below the line. Mostly, the blue dots representing the intervention 

group were plotted above the line whereas the yellow dots representing the control group clustered around 

the reference line of no change. There might be a couple of outliers in the data; see further 

characterization of the outliers and influential points in chapter 3. 
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Baseline Comparison 

To make a meaningful interpretation of the treatment effect, it is important to ascertain the 

participants in each group had similar baseline characteristics. The sample mean for numerical 

demographical variables, primary and secondary outcome measurements was reported as a measure of the 

central tendency along with the standard deviation as a measure of variability. As an informal test, we 

generated histograms to visualize the distribution of all of the variables by Treatment group. Some of the 

variables such as glucose, hemoglobin A1c, cholesterol, triglycerides, urine ACR, high sensitive CRP, the 

KDQDL measures displayed skewedness suggesting that the sample data may not be normally 

distributed.   

Formally, we used the χ2-tests to examine the association between any of the categorical variables 

with the Treatment groups. Further, to compare population means between the Treatment groups, we 

conducted two samples independent T-tests for continuous variables. To examine the assumptions of the 

latter test, we used the Folded F-test to determine the constant variance. If constant variance was 

established, then we reported the p-values from the pooled method. If constant variance was violated, then 

we reported the p-values from the Satterthwaite approximation method as it does not assume that 

variances of the two samples are equal. (Table 3.1) 

 Because of the skewedness of some of the variables in the data, we also reported the sample 

median and the interquartile range for the continuous variables (Table 3.2). We have conducted Wilcoxon 

Rank-Signed Tests (WRST) for median comparisons between the Treatment groups. The p-values from 

the WRST tests were reported. The sample median and the interquartile range are less sensitive to 

extreme observations compared to the sample mean and the standard deviation and hence Table 3.2 might 

provide better estimates for central tendency and variability of the data compared to Table 3.1. All 

comparisons were made based on the 5% significance level. 
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Usual Care,  

n=32 

Home-Based Renal Care, 

n=24 

 

Characteristic Mean (±SD) 

or n (%a) 

Mean (±SD) 

or n (%) 

p-valueb 

Demographics    

Age, yr 50.9 (±13.0) 47.4 (±11.2) 0.2871 

Women 16 (50%) 16 (66.7%) 0.2785 

High school education 22 (68.8%) 17 (70.8%) 1.0000 

Primary outcome measures    

   Patient activation total score 63.0 (±11.2) 57.3 (±19.1) 0.1999c 

   Patient activation level ≥ 3 25 (78.1%)              17 (70.8%) 0.5507 

Secondary outcome measures    

Body mass index, kg/m2 31.4 (±7.0) 32.8 (±7.8) 0.4877 

BP, mm HG 
   

   Systolic 126.6 (±15.5) 128 (±12.2) 0.6556 

   Diastolic 81.8 (±10.5) 80.3 (±12.9) 0.6465 

HbA1c, % 8.5 (±2.3) 9.1 (±2.6) 0.3697 

Glucose, mg/dl 167.3 (±81.2) 182.9 (±92.4) 0.5035 

Serum total protein, mg/dl 7.5 (±0.5) 7.6 (±0.5) 0.6275 

Serum cholesterol, mg/dl 175.3 (±35.7) 220.9 (±69.9) 0.0064c  

Serum triglycerides, mg/dl 180.9 (±92.6) 411.1 (±656.3) 0.1011c  

Serum HDL cholesterol, mg/dl 45.8 (±1.4) 46.6 (±1.5) 0.6505c  

Serum LDL cholesterol, mg/dl 105.0 (±30.5) 125.0 (±42.5) 0.0444 

eGFR, ml/min per 1.73 m2  115.1 (±63.7) 148.9 (±63.2) 0.0540 

Urine ACR, mg/g 1082.0 (±1631.6) 598.3 (±1372.1) 0.2458 

hsCRP, mg/L 3.6 (±3.6) 10.7 (±13.2) 0.0191c  

Morisky scored 3.9 (±2.2) 4.3 (±1.8) 0.4109 

KDQDL measures 
   

   Symptom/ problem list 84.0 (±13.1) 82.2 (±13.8) 0.6232 

   Effects of kidney disease 90.0 (±11.8) 92.1 (±7.2) 0.4215c  

   Burden of kidney disease 71.2 (±24.8) 67.4 (±19.1) 0.5460 

   SF-12 physical score 44.9 (±8.3) 45.2 (±9.2) 0.9331 

   SF-12 mental score 49.9 (±10.1) 45.4 (±11.7) 0.1243 

Table 3.1 Baseline characteristics of the participants by treatment group given by the mean 

a %=column percentage 
b P-value corresponds to the two sample independent T-test for continuous variables and the χ2 test for categorical variables. 
c  an indication of using the Satterthwaite  p-value for having the constant variance assumption violated. 
d Use of the Morisky Medication Adherence Scale is protected by United States copyright laws. Permission for use is required. A 

license agreement is available from Donald E. Morisky, Department of Community Health Sciences, University of California, 

Los Angeles School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772. 
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Usual Care, 

n=32 

Home-Based Renal Care, 

n=24 

 

Characteristic Median (Q1,Q3) 

or n (%a) 

Median (Q1,Q3) 

or n (%) 

p-valueb 

Demographics    

Age, yr 49.5 (43.5, 56.0) 48.5 (41.5, 54.5) 0.5397 

Women 16 (50%) 16 (66.7%) 0.2785 

High school education, % 22 (68.8%) 17 (70.8%) 1.0000 

Primary outcome measures    

   Patient activation total score 60.6 (55.6, 72.6) 57.3 (50.0, 67.9) 0.2603 

   Patient activation level ≥ 3 25 (78.1%) 17 (70.8%) 0.5507 

Secondary outcome measures    

Body mass index, kg/m2 31.0 (26.7, 34.4) 33.6 (26.3, 36.5) 0.3892 

BP, mm HG 
   

   Systolic 122.3 (118.7, 139.7) 130.7 (119.5, 137.7) 0.5291 

   Diastolic 80.3 (77.0, 86.0) 79.7 (70.3, 92.0) 0.6309 

HbA1c, % 8.1 (6.1, 10.2) 9.4 (6.8, 11.3) 0.4265 

Glucose, mg/dl 134.5 (118.7, 139.7) 149.5 (106.4, 239.2) 0.4816 

Serum total protein, mg/dl 7.5 (7.3 ,7.8) 7.6 (7.2, 8.0) 0.8117 

Serum cholesterol, mg/dl 174.0 (144.5, 198.5) 197.0 (172.0, 247.5) 0.0113 

Serum triglycerides, mg/dl 169.4 (92.0, 235.5) 162.6 (122.4, 270.7) 0.5131 

Serum HDL cholesterol, mg/dl 45.5 (36.5, 57.0) 45.5 (38.0, 55.0) 0.8554 

Serum LDL cholesterol, mg/dl 99.0 (86.0, 127.0) 117 (107.5, 140.5) 0.0228 

eGFR, ml/min per 1.73 m2 111.4 (68.3, 168.8) 139.7 (114.9, 179.3) 0.0698 

Urine ACR, mg/g 348.8 (75.9, 992.1) 135.5 (80.2, 263.9) 0.1382 

hsCRP, mg/L 2.1 (1.3, 5.4) 6.3 (0.7, 11.1) 0.1133 

Morisky scorec 3.6 (2.1, 5.8) 4.5 (2.8, 4.8) 0.3779 

KDQDL measures 
   

Symptom/ problem list 86.4 (76.1, 92.0) 86.4  (77.3, 93.2) 0.6749 

Effects of kidney disease 95.3 (81.3, 100.0) 93.8 (87.5, 96.9) 0.9517 

Burden of kidney disease 68.8 (50.0, 100.0) 62.5 (50.0, 87.5) 0.4914 

SF-12 physical score 45.2 (40.1, 50.9) 48.6 (40.9, 51.8) 0.6511 

SF-12 mental score 52.7 (43.2, 57.9) 48.4 (35.7, 55.1) 0.1069 

Table 3.2 Baseline characteristics of the participants by treatment group given by the median 

a %=column percentage 
b P-value corresponds to the Wilcoxon Rank Sum Test for continuous variables and the χ2 test for categorical variables. 
c Use of the Morisky Medication Adherence Scale is protected by United States copyright laws. Permission for use is required. A 

license agreement is available from Donald E. Morisky, Department of Community Health Sciences, University of California, 

Los Angeles School of Public Health, 650 Charles E. Young Drive South, Los Angeles, CA 90095-1772. 
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Generalized Estimating Equations  

Generalized Estimating Equations (GEE) were introduced by Liang and Zeger (1985).36 GEE is 

not a likelihood-based method. It uses pseudo maximum likelihood (PML) method rather than maximum 

likelihood (ML) to estimate the model parameters. The PML method is based on the exponential family. 

When estimating parameters using the ML method, one must have the correct specification of the 

likelihood function. If misspecified, ML estimation could result in invalid conclusions. On the contrary, 

PML method allows for consistent estimation of the mean structure even if the covariance structure is 

misspecified. However, the efficiency is lowered when the covariance structure is misspecified.37  

GEE arises from normality-based log-likelihood without assuming the response is normally 

distributed.38 GEE were appropriate to use for the home-based renal care (HBRC) data analysis because 

we collected repeated measurements of variables of interest over time. GEE allows for modelling 

potentially correlated data accounting for the household clustering. It was appropriate to model both 

categorical and continuous response variables using GEE.  

Pseudo Maximum Likelihood (PML) Method 

 The PML method is a generalization of the ML method such that it allows for a partial model 

misspecification of a density from the linear exponential family.27 When using PML estimation, only the 

mean structure must be correctly specified.27 In GEE, one can choose the mean structure by using a link 

function from the generalized linear model.27 Further, the existence of a variance matrix is assumed but 

the correct specification of the covariance matrix is not required.27 Also, we assume that the pseudo 

distribution is in the linear exponential family with fixed nuisance parameter.27 A nuisance parameter is 

any parameter that is not of direct interest but must be accounted for in the analysis to estimate the 

parameters of direct interest. PML is computed by first replacing the nuisance parameters in the model by 

estimates which in turn reduces the system of likelihood equations (hence called partial ML) and secondly 

solving the reduced system of equations for the parameters of interest (i.e. the non-nuisance parameters).39 
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In essence, GEE does not specify a complete joint distribution—rather, it uses a marginalized joint 

distribution in estimating the model parameters.27 It is important to note that if covariance structure is 

misspecified, the standard errors will be underestimated.27 When the covariance structure is correctly 

specified, the PML solution will agree with the ML estimation.  

Covariance Structure  

 GEE allows for heterogeneity of variance. To specify the covariance structure, firstly we obtained 

the Quasi-likelihood under the Independence model Criterion (QIC)40 using the saturated model under 

each covariance structure type including exchangeable (EXCH), compound symmetry (CS), unstructured 

(UN) and autoregressive (AR) covariance structure patterns. Secondly, we compared the obtained QICs 

from all conducted saturated models, covering all covariance structure types, such that a covariance 

structure model with the smallest QIC was deemed to be the most adequate.40  In the HBRC study, we 

used EXCH covariance structure because it gave the smallest QIC score (Table 3.3). The QIC score is 

analogous to AIC score used for fitting likelihood-based methods. Hence, a small QIC indicates a good fit 

of the model. 

Covariance Pattern Model QIC 

EXCH 52.3621 

CS 52.3621 

UN 52.3789 

AR 52.6008 

Table 3.3 Covariance Structure given by the smallest QIC score 

Logistic Regression Model  

We had four binary outcomes in this study. The primary outcome of interest was PAM level 

where 1 indicated “activation” and 0 indicated “lack of activation” of patient-involvement in the 

management of their care.  The other three secondary binary outcomes were the following KDQDL 
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measures, where 1 indicated improvement in quality of health: (i) Symptom/ Problem List, (ii) Effects of 

Kidney Disease, and (iii) Burden of Kidney Disease. Multiple logistic regression models were employed 

to examine the effect of the primary exposure (i.e. home-based renal care) on the odds of event of interest 

in these outcomes while adjusting for (A) outcome levels at baseline only, and (B) outcome levels and 

imbalanced covariates at baseline including Cholesterol, LDL, and hsCRP.  The functional form for 

Model-A and Model-B were presented below and illustrated only for the primary outcome noting that the 

same functional form was applied for the secondary outcomes. 

Model-A: Adjusting for outcome levels at baseline only: 

When modeling PAM level, the outcome response was PAM level at 12 months, the primary 

exposure was Treatment group, and the adjusted-for IV was PAM level at baseline. The results from these 

logistic models were presented in the bottom of Table 3.6. 

Let Z be an indicator of the binary Treatment with 1 for home-based renal care (HBRC) and 0 for 

the standard clinical care (SC), X1 be the baseline level of the primary outcome of interest, and Y be the 

primary outcome of interest. Then, mathematically, the logistic regression model for estimating the 

treatment effect was: 

[1] logit (π) = ln (
π

1−π
) = β0 + γZ + β1X1 + ε 

⇔ π = 
exp (β0 + γZ + β1X1 + ε)

1+ exp (β0 + γZ + β1X1 + ε)
 , 

where γ was the estimated parameter for the treatment effect and π = Pr(Y=1).  

Model-B: Adjusting for outcome levels and imbalanced covariates at baseline: 

When modeling PAM level, the outcome response was PAM level at 12 months, the primary 

exposure was Treatment group, and the IVs that were adjusted for were PAM level at baseline, 

Cholesterol level (continuous measure), LDL (continuous measure), and hsCRP (continuous measure)—
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the imbalanced baseline covariates. The results from these logistic models were presented in bottom of 

Table 3.7. 

Let Z be an indicator of the binary Treatment with 1 for home-based renal care (HBRC) and 0 for 

the standard clinical care (SC), X1 be the baseline level of the primary outcome of interest, X2 be the 

baseline cholesterol level, X3 be the baseline LDL level, X4 be the baseline hsCRP level, and Y be the 

primary outcome of interest. Then, mathematically, the logistic regression model for estimating the 

treatment effect was: 

[2] logit (π) = ln (
π

1−π
) = β0 + γZ + β1X1 + β2X2 + β3X3 + β4X4 + ε 

⇔ π = 
exp (β0 + γZ + β1X1 + β2X2+ β3X3+ β4X4+ ε)

1+ exp (β0 + γZ + β1X1 + β2X2+ β3X3+ β4X4+ ε)
 , 

where γ was the estimated parameter for the treatment effect and π = Pr(Y=1).  

Checking Assumptions 

 For our logistic regression analysis, we used GEE that do not assume that the responses are 

independent. Though it was not necessary to check independence, normality and constant variance for 

GEE models, we still examined the QQ-plots for normality because GEE is more efficient when 

estimating parameters for normally distributed data.  

Outliers/Influential Points 

 We checked the standardized Pearson chi-square residuals to identify outlying points on the Y 

direction, leverage to determine outlying points on the X direction outliers, and Cook’s distance to 

determine influential points. Standardized Pearson's chi-square residuals in the absolute value that were 

larger than 3.84 (i.e. critical value of the Chi-square distribution with one degrees of freedom) were 

deemed outliers in the Y direction while leverage values that exceeded 
2p

n
, where p was the number of 

parameters, were deemed outliers in the X direction.  
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For the HBRC data, we defined X outliers to be any observations with leverage greater than 

0.0714 for Model-A and 0.1786 for Model-B. We further defined influential points to be any observations 

with Cook’s D greater than 1.41 Table 3.4 showed the values of standardized residuals, leverage, and 

Cook’s D for the potential outliers or influential points identified for both models when modeling PAM 

level. We note that Standardized Pearson's chi-square residuals were calculated with respect to the data 

without clustering. Table 3.4 revealed one outlying point in the Y direction for Model-A and 14 outlying 

points on the X direction for Model-A and 7 for Model-B.  No influential points were found in both 

models according to Cook’s D.   

  
ID 

PAM level 

baseline 

PAM level 

12 months 
Group 

Standardized 

residuals 
Leverage 

Cook’s 

D 

M
o
d

el
-A

 

1 2441-1 1 0 Intervention 4.640 0.034 0.252 

2 1008-1 0 0 Control 0.724 0.118 0.029 

3 1008-2 0 0 Control 0.724 0.118 0.029 

4 1071-4 0 1 Intervention -0.484 0.096 0.009 

5 1123-3 0 0 Control 0.724 0.113 0.017 

6 1341-1 0 1 Control -1.558 0.111 0.107 

7 1581-1 0 0 Control 0.724 0.111 0.022 

8 1654-2 0 1 Intervention -0.484 0.102 0.011 

9 179-1 0 1 Intervention -0.484 0.096 0.009 

10 1922-2 0 1 Intervention -0.484 0.096 0.009 

11 2064-2 0 0 Intervention 2.292 0.101 0.209 

12 2165-6 0 1 Intervention -0.484 0.096 0.009 

13 332-1 0 1 Intervention -0.484 0.096 0.009 

14 383-5 0 0 Control 0.724 0.111 0.022 

15 961-6 0 1 Control -1.558 0.111 0.090 

M
o

d
el

-B
 

1 1105-1 1 1 Intervention -0.644 0.523 0.080 

2 1341-1 0 1 Control -1.499 0.207 0.105 

3 1654-2 0 1 Intervention -0.463 0.512 0.041 

4 2064-2 0 0 Intervention 3.137 0.196 0.410 

5 2165-6 0 1 Intervention -0.511 0.194 0.012 

6 2441-1 1 0 Intervention 0.516 0.554 0.055 

7 961-6 0 1 Control -1.212 0.233 0.058 

Table 3.4: Possible outlying points in the X and Y direction and influential points when modeling PAM 

level for Model-A and Model-B. 
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 Figure 3.4 Identifying influential points in Model-A          Figure 3.5 Identifying influential points in Model-B      

                    when modeling PAM level                                                   when modeling PAM level 

 

Transformation: Categorization  

 Three variables (secondary outcomes) in the kidney disease quality of life survey (KDQOL) 

measures displayed ceiling effect where the primary exposure no longer had an effect on them. For ease 

of interpretation and to arrive at a more meaningful conclusion, these three continuous variables were 

transformed into binary variables. Symptom/Problems List, Effects of Kidney Disease, and Burden of 

Kidney Disease were each categorized into binary variables “improvement/lack of improvement”.  
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There were not clinically relevant thresholds for determining improvements in each of these 

variables. Instead, we first identified optimal thresholds using 

QQ-plots as an informal technique by identifying points at which 

the curvature changes or inflection points occur. Secondly, we 

confirmed these thresholds formally by using the area under the 

ROC curve (AUC). This formal technique relies on either 

minimizing the Euclidean distance of the ROC curve from the 

point (0, 1) or maximizing the Youden Index.42 These two 

distances that either minimized D or maximized J were illustrated 

in Figure 3.6. 

Using the ROC curve to find the optimal “cut-off” threshold 

1. Maximizing the Youden Index 

One way to find the optimal cut-off point is to maximize the Youden Index denoted by J. Let Sn 

be sensitivity and Sp be specificity, then J = max [Sn + Sp].42 The idea is to find a point where the distance 

between the Y = X line and the ROC curve is maximized. In turn, this maximizes the difference between 

the true positive rate and the false positive rate.  

2. Minimizing the Euclidean distance 

Another way to find the optimal cut-off point is to minimize the Euclidean distance denoted by D. 

D is the distance between (0, 1) and the ROC curve and is given by D = √(1 − Sn)2 + (1 − Sp)2.42 This 

would also maximize the difference between the true positive rate and the false positive rate.  

We used the 12 month measurements to generate the ROC curve then calculated both J and D to 

determine the optimal cut-off points for the three variables. If they were in disagreement, we used the 

minimized D as the optimal cut-off point. For Symptoms/Problems List, Effect of Kidney Disease, and 

Burden of Kidney Disease, probability of 0.438 corresponded to a score of 79.545, probability of 0.439 

Figure 3.6 Using the ROC curve to find 

the optimal threshold point 
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corresponded to a score of 96.875 and probability of 0.462 corresponded to a score of 87.5 respectively. 

This was presented in Table 3.5. 

 Probability at 

which J maximized 

Probability at which 

D is minimized 

Optimal  

Cut-off 

Symptoms/Problems List 0.379 0.438 79.545 

Effect of Kidney Disease 0.439 0.439 96.875 

Burden of Kidney Disease 0.462 0.462 87.5 

 

Table 3.5 Corresponding probabilities with corresponding optimal cut-offs at maximized J and at 

minimized D. 

 

Figure 3.7 visually illustrates the formal and informal ways of identifying the optimal threshold 

for Symptoms/Problems List at 12 months. In particular, the QQ-plot in the top left panel showed an 

inflection point around the 25th percentile which was also highlighted in the distribution/histogram of the 

variable at the bottom left panel at 80. Formally, this threshold was indeed found to give the minimal 

Euclidean distance D between the ROC curve and the (0, 1) point. Note that quantiles of this variable 

emphasized the ceiling effect and hence justifying the use of optimal cut-off. 
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Figure 3.7 Identifying optimal cut-off for Symptoms/Problems List. Top left panel: QQ-plot of 

Symptoms/Problems List at 12 months, Top right panel: ROC curve indicating classification between 

improvement and lack of improvement for the Symptoms/Problems List based on optimal cut-off between 

Treatment groups; Bottom left panel: The distribution of Symptoms/Problems List at 12 months with a reference 

line at the optimal threshold, and Bottom right panel: Quantiles of the Symptoms/Problems List at 12 months. 
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Figure 3.8 Identifying optimal cut-off for Effect of Kidney Disease. Top left panel: QQ-plot of Effect of 

Kidney Disease at 12 months, Top right panel: ROC curve indicating classification between improvement and 

lack of improvement for the Effect of Kidney Disease based on optimal cut-off between Treatment groups; 

Bottom left panel: The distribution of Effect of Kidney Disease at 12 months with a reference line at the optimal 

threshold, and Bottom right panel: Quantiles of the Effect of Kidney Disease at 12 months. 
 

Figure 3.8 visually illustrates the formal and informal ways of identifying the optimal threshold 

for Effect of Kidney Disease at 12 months. Informally, in the QQ-plot in the top left panel showed an 

inflection point around the 50th percentile which was also highlighted in the distribution/histogram of the 

variable at the bottom left panel at 95. Formally, this threshold was indeed found to give the minimal 

Euclidian distance D between the ROC curve and the point (0, 1) and the maximal Youden Index J 

between the ROC curve and Y = X line. Note that quantiles of this variable emphasized the ceiling effect 

and hence justifying the use of optimal cut-off. 
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Figure 3.9 Identifying optimal cut-off for Burden of Kidney Disease. Top left panel: QQ-plot of Burden of 

Kidney Disease at 12 months, Top right panel: ROC curve indicating classification between improvement and 

lack of improvement for the Burden of Kidney Disease based on optimal cut-off between Treatment groups; 

Bottom left panel: The distribution of Burden of Kidney Disease at 12 months with a reference line at the optimal 

threshold, and Bottom right panel: Quantiles of the Burden of Kidney Disease at 12 months. 

 

Figure 3.9 visually illustrates the formal and informal ways of identifying the optimal threshold 

for Burden of Kidney Disease at 12 months. Informally, in the QQ-plot in the top left panel showed an 

inflection point between the 50th and 70th percentile which was also highlighted in the distribution/ 

histogram of the variable at the bottom left panel at 85. Formally, this threshold was indeed found to give 

the minimal Euclidian distance D between the ROC curve and the point (0, 1) and the maximal Youden 

Index J between the ROC curve and Y = X line. Note that quantiles of this variable emphasized the 

ceiling effect and hence justifying the use of optimal cut-off. 
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Linear Regression Model 

The primary outcome of interest, PAM score, was a continuous response variable ranging from 0 

to 100. There were also 16 other continuous variables (secondary outcomes) of interest including but not 

limited to body mass index (BMI) and cholesterol. To obtain the treatment effect, multiple linear 

regression models were employed to examine the effect of the primary exposure (i.e. home-based renal 

care) on the mean of outcome of interest while adjusting for (A) outcome scores at baseline only, and (B) 

outcome scores and imbalanced covariates at baseline including Cholesterol, LDL, and hsCRP. The 

functional form for Model-A and Model-B were presented below and illustrated only for the primary 

outcome noting that the same functional form was applied for the secondary outcomes. 

Model-A: Adjusting for outcome scores at baseline only: 

When modeling PAM score, the outcome response was PAM score at 12 months minus the 

baseline measurements for PAM, the primary exposure was Treatment group, and IV that was adjusted-

for was PAM scores at baseline. The results from these linear models were presented in the top of Table 

3.6. 

Let Z be an indicator of the binary Treatment with 1 for home-based renal care (HBRC) and 0 for 

the standard clinical care (SC), X1 be the baseline measurement of the continuous variable of interest and 

Y be the difference between the 12-month measurement and the baseline measurement. Mathematically, 

the linear regression model for estimating the treatment effect was: 

[3] Y = β0 + γZ + β1X1 + ε , 

where γ is the estimated parameter for the treatment effect.  

Model-B: Adjusting for outcome scores and imbalanced covariates at baseline: 

When modeling PAM score, the outcome response was PAM score at 12 months minus PAM 

score at baseline, the primary exposure was Treatment group, and our adjusted-for IVs were PAM score 
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at baseline, Cholesterol level (continuous measure), LDL (continuous measure), and hsCRP (continuous 

measure)—the imbalanced baseline covariates. The results from these linear regression models were 

presented in top of Table 3.7. 

Let Z be an indicator of the binary Treatment with 1 for home-based renal care (HBRC) and 0 for 

the standard clinical care (SC), X1 be the baseline scores of the primary outcome of interest, X2 be the 

baseline cholesterol level, X3 be the baseline LDL level, X4 be the baseline hsCRP level, and Y be the 

primary outcome of interest (i.e. the difference between measurement at 12 month and baseline). Then, 

mathematically, the linear regression model for estimating the treatment effect was: 

[4] Y = β0 + γZ + β1X1 + β2X2 + β3X3 + β4X4 + ε, 

where γ is the estimated parameter for the treatment effect.  

Log Transformation 

 Even though normality and constant variance were not required assumptions due to using GEE, 

we still log-transformed variables that were not normally distributed to improve efficiency as GEE is 

more efficient with normal data.43 We log-transformed three variables—Triglycerides, Urine ACR and 

High sensitivity CRP. We note that the interpretation of the effect switches from change in units in the 

outcome to percentage change (i.e. 100%*𝛾 ) instead due to the log-transformation of the outcome.44 

Estimating Treatment Effect using Linear Regression and Logistic Regression 

 We constructed Table 3.6 of estimated treatment effect with respect to all of the variables of 

interest. For the estimated parameters from the logistic regression model, at α = 0.05, the testing 

hypotheses were:  

H0: OR = 1 vs. H1: OR ≠ 1. 

For estimated patient activation level, we rejected the null hypotheses and concluded that on average, the 

odds of patient activation level were 9.7 times higher in the intervention group compared to the control 
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group when adjusting for outcome baseline levels (OR=9.7; 95% C.I. 1.7-54.3) and 13.2 times higher in 

the intervention group compared to the control group when adjusting for outcome baseline levels and 

imbalanced covariates at baseline (OR=13.2; 95% C.I. 1.1-166.1).  

For the estimated parameters from the linear regression model, the testing hypotheses, at α = 0.05, 

were  

                                             H0: γ = 0 vs. H1: γ ≠ 0. 

For estimated patient activation total score, we rejected the null hypothesis and concluded that on 

average, patient activation score was 16 points higher in the intervention group compared to the control 

group when adjusting for outcome baseline scores (𝛾=16; 95% C.I. 8.8-23.1; p<0.0001), and 15.7 points 

higher in the intervention group compared to the control group when adjusting for outcome baseline 

scores and imbalanced covariates at baseline (𝛾=15.7; 95% C.I. 7.6-23.8). For estimated body mass index 

(BMI), we rejected the null hypothesis and concluded that on average, BMI was 1.2 lower in the 

intervention group compared to the control group when adjusting for outcome baseline scores (𝛾=-1.2; 

95% C.I. -2.2 to -0.2; p=0.0212), and -1.0 points lower in the intervention group compared to the control 

group when adjusting for outcome baseline scores and imbalanced covariates at baseline (𝛾=-1.0; 95% 

C.I. -2.0 to -0.1; p=0.0392). For high sensitivity CRP, we rejected the null hypothesis and concluded that 

on average, hsCRP was lower in the intervention group compared to the control group by 70% (𝛾=-0.7; 

95% C.I. -1.0 to -0.3; p<0.0001), and similarly when adjusting for outcome baseline scores and 

imbalanced covariates at baseline (𝛾=-0.7; 95% C.I. -1.0 to -0.3; p=0.0001). For all other variables, we 

failed to reject the null hypothesis. We note that when running the same models while removing the 

influential points we obtained similar results as seen in the right most columns of Tables 3.6 and 3.7.  
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Table 3.6 Estimated treatment effect of intervention compared control for Model-A with and without 

influential points 

 

 

 

 

 

 

 

 

 

 

  With Influential Point # of  

Influential 

points 

Without Influential Points 

 Characteristic Treatment Effect  

�̂� (95% C.I.)  

p-value  Treatment Effect  

�̂� (95% C.I.)  

p-value 

L
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ea
r 
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ss
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Primary outcome measures 
  

   

 Patient activation total score 16 (8.8 to 23.1) <.0001 1 14.5 (8.1 to 20.9) <.0001 

Secondary outcome 

measures 

     

   Body mass index, kg/m2 -1.2 (-2.2 to -0.2) 0.0212 0   

   BP, mm HG      

      Systolic -3.7 (-11.2 to 3.7) 0.3237 5 1.6 (10.3 to 7.1) 0.7120 

      Diastolic -1.9 (-7.4 to 3.6) 0.4954 0   

HbA1c, % -0.8 (-1.9 to 0.4) 0.1896 2 -1.1 (-2.0 to -0.20) 0.0161 

Glucose, mg/dl -3 (-47.5 to 41.6) 0.8957 0   

Serum total protein, mg/dl -0.1 (-0.3 to 0.1) 0.3495 0   

Serum cholesterol, mg/dl 4.8 (-15.9 to 25.5) 0.6513 0   

Serum triglycerides, mg/dla -0.1 (-0.3 to 0.2) 0.5573 0   

Serum HDL cholesterol, 

mg/dl 

-0.1 (-7.9 to 7.7) 0.9706 0   

Serum LDL cholesterol, 

mg/dl 

4.9 (-11.2 to 21) 0.5529 0   

eGFR, ml/min per 1.73 m2  9.1 (-12.6 to 30.9) 0.4110 0   

Urine ACR, mg/ga -0.5 (-1.2 to 0.3) 0.2631 0   

hsCRP, mg/La -0.7 (-1 to -0.3) <.0001 0   

Morisky scoreb -0.2 (-1.1 to 0.8) 0.6903 0   

KDQDL measures      

   SF-12 physical score 2 (-3.2 to 7.1) 0.4531 0   

   SF-12 mental score 1.2 (-3.3 to 5.8) 0.5975 5 2.3 (-1.9 to 6.4) 0.2841 

L
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 Primary outcome measures OR (95% C.I.) p-value    

   Patient activation level ≥ 3 9.7 (1.7 to 54.3) 0.0097 0   

Secondary outcome 

measures 

     

KDQDL measures      

   Symptom/ problem list 0.8 (0.2 to 2.9) 0.7209 0   

   Effects of kidney disease 2.5 (0.7 to 8.7) 0.1519 0   

   Burden of kidney disease 2.7 (0.9 to 8.3)  0.0862 0   
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With Influential Point # of  

Influential 

points 

Without Influential Points 

 Characteristic Treatment Effect  

�̂� (95% C.I.)  

p-value  Treatment Effect  

�̂� (95% C.I.) 

p-value 

L
in

ea
r 

R
eg

re
ss

io
n

 

Primary outcome 

measures 

  
   

   Patient activation total 

score 

15.7 (7.6 to 23.8) 0.0001 1 14.0 (7.5 to 20.5) <.0001 

Secondary outcome 

measures 

     

   Body mass index, kg/m2 -1.0 (-2.0 to -0.1) 0.0392 0   

   BP, mm HG      

      Systolic -4.4 (-11.5 to 2.6) 0.2182 5 -2.3 (-12.7 to 8.0) 0.6569 

      Diastolic -4.5 (-10.3 to 1.2) 0.1207 4 -0.9 (-6.5 to 4.6) 0.7415 

HbA1c, % -0.2 (-1.1 to 0.8) 0.7098 5 -0.6 (-1.6 to 0.4) 0.2374 

Glucose, mg/dl 10.8 (-40.2 to 61.7) 0.6790 0   

Serum total protein, mg/dl -0.2 (-0.4 to 0) 0.0712 5 -0.1 (-0.4 to 0.3) 0.6956 

Serum cholesterol, mg/dl 12 (-10 to 34.1) 0.2841 2 2.2 (-22.3 to 26.8) 0.8590 

Serum triglycerides, mg/dla 0.1 (-0.2 to 0.4) 0.6466 0   

Serum HDL cholesterol, 

mg/dl 

-2.3 (-10.5 to 6) 0.5920 0   

Serum LDL cholesterol, 

mg/dl 

9.8 (-8.3 to 27.9) 0.2904 1 1.6 (-16.3 to 19.6) 0.8582 

eGFR, ml/min per 1.73 m2  -0.4 (-27.9 to 27) 0.9755 0   

Urine ACR, mg/ga 0.2 (-0.8 to 1.2) 0.6997 1 0.2 (-0.8 to 1.2) 0.6360 

hsCRP, mg/La -0.7 (-1.0 to -0.3) 0.0001 0   

Morisky scoreb -0.5 (-1.6 to 0.7) 0.4191 1 -0.6 (-1.6 to 0.5) 0.2810 

KDQDL measures      

   SF-12 physical score 2.7 (-3.5 to 8.9) 0.3950 0   

   SF-12 mental score 0.9 (-3.1 to 4.9) 0.6608 5 1.4 (-2.9 to 5.7) 0.5196 

L
o
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Primary outcome 

measures 

OR (95% C.I.) p-value  OR (95% C.I.) p-value 

 Patient activation level ≥ 3 13.2 (1.1 to 166.1) 0.0454 0   

Secondary outcome 

measures 

     

KDQDL measures      

   Symptom/ problem list 1.1 (0.3 to 4.1) 0.8547 0   

   Effects of kidney disease 3.7 (0.8 to 17.4) 0.0951 0   

   Burden of kidney disease 1.8 (0.5 to 6.3) 0.3749 0   

Table 3.7 Estimated treatment effect of intervention compared control for Model-B with and without 

influential points 
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Cross Validation 

 To assess if the results of a statistical analysis could be generalizable to an independent dataset, 

cross-validation could be used. This technique estimates how accurately a predictive model is performing 

in practice. Through cross-validation, one firstly partitions the sample data, repeatedly, into 

complementary subsets called the training sets and testing sets respectively. Secondly, one performs the 

analysis on the training set, and thirdly validates the analysis on the other subset (called the validation set 

or testing set).40 

 For the purpose of this study, we have conducted cross validation for the models that only 

showed statistically significant treatment effect in Table 3.6 (while adjusting for outcome baseline 

measurements only) since they didn’t substantially differ than the results from Table 3.7 (while adjusting 

for outcome baseline measurements plus imbalanced covariates at baseline).   

 The matric we use to evaluate cross validation for the linear regression are Root Mean Square 

Error (RMSE), the mean absolute error (MAE), and R2 in the test set.45 Here, the RMSE is the standard 

deviation of the differences Y-�̂� , while the MAE is the average of their absolute values. For logistic 

regression, we used Mean Percentage of Correct Classifications (MPCC) and its corresponding Standard 

Error (SE) as a measure of reliability and validity for the cross validation.46 

Table 3.8 Cross validation results 

 
 

Treatment Effect  

�̂� (95% C.I.)  
p-value  

RMSE 

 

MAE 

 

R2 
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 Primary outcome measures 

 Patient activation total score 16 (8.8 to 23.1) <.0001 14.2 9.7 0.39 

Secondary outcome 

measures 

     

   Body mass index, kg/m2 -1.2 (-2.2 to -

0.2) 

0.0212 2.0 1.5 0.09 

   hsCRP, mg/La -0.7 (-1 to -0.3) <.0001 0.61 0.47 0.38 

L
o
g
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R
eg
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 Primary outcome measures OR (95% C.I.) P-value MPCC (SE) 

For training 

sets 

MPCC (SE) 

For testing 

sets 

   Patient activation level ≥ 3 9.7 (1.7 to 54.3) 0.0097 78.7 (0.08) 77.5 (0.34) 
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 For patient activation score, the R2 reflects that 39% of the variation in patient activation score 

can be attributed to the Treatment while adjusting for the baseline measurement of PAM score. For BMI, 

9% of the variation in BMI can be attributed to the Treatment while adjusting for the baseline 

measurement of BMI. For high sensitivity CRP levels, 38% of the variation in hsCRP levels can be 

attributed to the Treatment while adjusting for the baseline measurement of hsCRP. For patient activation 

level, MPCC for the testing set reflects that 77.5% of the predictions made using the logistic regression 

model for PAM level was correct.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

Chapter 4 

Propensity Score 

Though the treatment assignment was allotted through randomization, there remained three 

variables at baseline that were statistically significantly different between groups—cholesterol, LDL and 

hsCRP. This imbalance may have introduced treatment selection bias to the estimated parameters in the 

model. As a remedy, we used inverse probability of treatment weighting derived from propensity scores 

as a method to reduce the potentially induced bias. Propensity score has been defined as the probability of 

being assigned to the intervention group given a set of observed independent variables.47 

Let Z be an indicator of the binary Treatment with 1 for home-based renal care and 0 for standard 

clinical care—hence primary exposure, xi be a row vector of observed values of imbalanced variables, 

and Pr(Z = 1| X = xi) be the propensity towards assignment to Treatment 1 given the observed ith values of 

imbalanced variables (i.e. xi). 

[5] PSi = Pr(Z = 1| X = xi) 

Estimating Propensity Scores 

To obtain propensity scores (PSs), we used a multiple logistic regression model including the 

three imbalanced variables and the baseline measurement as independent variables (IVs), and Treatment 

Z as dependent variable (DV). Note that the primary exposure— Treatment—became the dependent 

variable for this intermediate calculation. We note that the choice of only four predictors to calculate PSs 

is due to the small sample size especially for the events of interest in the dichotomized primary outcome. 

According to Vittinghoff and McCulloch (2006), we need at least 6-7 observation in logistic regression 

per event to avoid overfitting and bias in parameters’ estimates. Mathematically, the logistic regression 

model for estimating the propensity score was: 
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[6] ln (
PSi

1−PSi
) = βxi+ε 

⇔ PSi = 
exp(𝛃𝐱i+ε)

1 + exp(𝛃𝐱i+ε)
 , 

where β was a vector of parameters for imbalanced variables and PSi as described in [2].  

Properties of Propensity Scores 

An important property of propensity score is that if Treatment is independent given the realization 

xi, then it is also independent given the propensity score. That is: 

[7.1] (y1, y0) ╨ Z | xi 

[7.2] ⇒ (y1, y0) ╨ Z | PSi, 

where y0 is the response that would have resulted if the participant were assigned to Treatment Z=1 and y1 

is the response that would have resulted if the participant were assigned to Treatment Z=0. Equation [7.1] 

is referred to as the conditional independence assumption.  

Another property of propensity score is that if every participant has a positive probability of 

receiving each Treatment given the realization xi, then this is also true given the propensity score. That is:  

[8.1] 0 ˂ Pr(Z = 1| X = xi) ˂ 1 

[8.2] ⇒ 0 ˂ Pr(Z = 1| PSi) ˂ 1 

Equation [8.1] is referred to as the common support assumption. Thus, when these two properties are true, 

it is said that Treatment is strongly ignorable given the realization xi.  

Inverse Probability of Treatment Weighting (IPTW) 

Though the concept of propensity scores was introduced in 1983 by Rosenbaum, it was only in 

1987 when he introduced IPTW.48 The idea behind IPTW is that one could minimize treatment selection 
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bias by weighting the observations in both groups of the intervention while utilizing the estimated 

propensity scores.49 Going from PSs to weights, denoted by W, is done as follows. 

[9] Wi = 
Zi

PSi
 + 

(1−Zi)

1−PSi
 

⇔ Wi = {

1
PSi

  when Z = 1

1
1−PSi

 when Z = 0
 

Assumptions for conducting IPTW: 

1. Common Support Assumption: This assumption entails having an overlap in the support of the 

distribution of PSs between the two groups of the intervention (i.e. between Z=1 and Z=0). 

 

Figure 3.10 Three scenarios for the common support assumption. A: no overlap indication 

significant violation of the common support assumption, B: complete overlap indicating 

compliance with the common support assumption, and C: partial overlap indicating minor 

violation of the common support assumption that could be remedied via some techniques 

suggested below.50 

 

A situation as in A of Figure 3.10 suggests that propensity scores is less likely to be helpful in reducing 

treatment selection bias; the imbalance is so drastic to the extent that such approach cannot bring any 
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benefits. However, in a situation as in C of Figure 3.10 one could resolve the violation of the common 

support assumption by either (a) truncate the non-overlapping support segments or (b) utilize the 

Stabilized Inverse Probability of Treatment Weighting (SIPTW) as shown below. 

 

2. Balance Assumption: 

This assumption entails having similar distribution for the IPTW between the two groups of the 

intervention (i.e. between Z = 1 and Z = 0). Figure 3.11 demonstrates a real example showing a graphical 

examination for this assumption. 

 

Figure 3.11 An example for the distribution of IPTW from a real example.51  

Stabilized Inverse Probability of Treatment Weighting (SIPTW) 

Using the unstabilized IPTW has been previously reported to underestimate the variance of the 

treatment effect producing narrow confidence intervals that leads to inflation of the probability of a type-I 

error.52 The SIPTW can be obtained by multiplying the IPTW by the marginal probability of Treatment to 
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Z=1 without considering independent variables. Let θ be the marginal probability of Treatment to 1. The 

stabilized SIPTW was calculated as follows: 

[10] SIPTWi = {

θ
PSi

  when z = 1

1−θ
1−PSi

when z = 0
 

Application of Propensity Scores: An Example from Nephrology 

 Applying these principles to the HBRC data. Firstly, the propensity score was estimated 

according to equation [6] using PROC LOGISTIC in SAS where we used Treatment as the primary 

outcome and cholesterol, LDL, hsCRP, and baseline PAM score as IVs. Secondly, stabilized weights 

were created according to equation [10].  Thirdly, weighted simple logistic regression model with PAM 

as the primary outcome, using the SIPTW weights, with Treatment as the primary exposure was 

employed to produce parameter estimates with minimal treatment selection bias.  

1. Testing if SIPTW could balance baseline characteristics between intervention groups: 

To assess if the generated weights were able to fix the imbalance at baseline, we have conducted 

multiple unweighted logistic regression model in which Treatment (Z) as the primary outcome and 

cholesterol, LDL, hsCRP, and baseline PAM score as IVs. The results of this model are presented in 

Table 3.1 (and Figure 3.1) and indeed showed the existing imbalance between the two groups with respect 

to these IVs via unweighted odds ratio and their corresponding 95% confidence intervals. In particular, a 

10 units increase in Cholesterol level was associated with 26.77% (1.024^10=1.2677) higher odds of 

being in the intervention group (OR=1.024, 95% C.I. 1.004-1.064; P=0.0102) which is an indication of 

imbalance. Furthermore, a one units increase in hsCRP level was associated with 13.8% higher odds of 

being in the intervention group (OR=1.138, 95% C.I. 1.038-1.315; P=0.0024) which is another indication 

of imbalance.   
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To demonstrate that SIPTWs were able to balance baseline characteristics between Treatment 

groups, we have employed multiple weighted logistic regression model, using the SIPTWs weights, in 

which Treatment (Z) as the primary outcome and cholesterol, LDL, hsCRP, and baseline PAM score as 

IVs.  The results of this model are presented in Table 3.9 (and Figure 3.12) and indeed showed the 

existing imbalance between the two groups with respect to these IVs was diminished. In particular, none 

of PAM score at baseline, Cholesterol, LDL, or hsCRP had a significant association with higher odds of 

being in the intervention group (p=0.8201, p=0.3195, p=0.7314, and p=0.3098 respectively) which is an 

indication of balance. 

 Estimate 95% Confidence 

Intervals 

p-value 

Pam Score at Baseline 0.964 0.913 to 1.009 0.1163 

Cholesterol 1.024 1.004 to 1.064 0.0102 

LDL 0.992 0.946 to 1.021 0.6582 

hsCRP 1.138 1.038 to 1.315 0.0024 

Table 3.9 Unweighted OR Estimates for being in the intervention group with 95% C.I. 

 

Figure 3.12 Unweighted ORs for being in the intervention group with 95% C.I. 
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Table 3.10 Weighted OR Estimates of being in the Treatment group with 95% C.I. 

 

Figure 3.13 Weighted ORs of being in the Treatment group with 95% C.I. 

2. Checking Assumptions 

 Before using the estimated propensity score, we checked model assumptions. First, the 

conditional independence assumption was met because the outcome of one participant did not affect that 

of another participant. This was assumed by random selection of the sample participants. Then, we 

checked the common support or the overlap condition assumption. Each participant must have a non-zero 

probability of receiving either of the Treatment options in a randomized controlled trial.  

 Estimate 95% Confidence Intervals p-value 

PAM Score at Baseline 0.995 0.952 to 1.039 0.8201 

Cholesterol 1.009 0.992 to 1.039 0.3195 

LDL 0.995 0.957 to 1.022 0.7314 

hsCRP 1.041 0.964 to 1.149 0.3098 
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Figure 3.14 Common Support Assumption  

 As Figure 3.14 shows, there was a partial overlap in the distribution of PSs for the control and 

intervention groups. No overlap would suggest that there are too many pre-existing differences between 

groups for causal inference. Because of the partial overlap in the distribution of PSs, we proceeded to 

calculate the inverse probability of treatment weight using PSs. 

Calculating the Stabilized Inverse Probability of Treatment Weights 

 To calculate the stabilized inverse probability of treatment weighting, we first calculated the 

marginal probability of Treatment Z = 1. Using the HBRC data, we found that θ was 0.4259. In other 

words, the probability of being assigned to the home-based renal care group was 42.9%. In turn, the 

probability of being assigned to the standard clinical care group was 57.1%. Then, we calculated SWs 

using equation [10]. Figure 3.15 showed that the distribution of the SIPTWs between groups were similar, 

which is an indication of balance.  
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Figure 3.15 Distribution of stabilized inverse probability of treatment weight 

 Before using the SIPTWs to estimate the parameters again, we checked the odds ratio estimates to 

ensure that we have corrected the imbalance of the treatment assignment. Table 3.10 showed the 

estimated odds ratio and the corresponding 95% confidence intervals. The testing hypotheses were H0: 

odds ratio = 1 vs. H1: odds ratio ≠ 1 at 95% confidence. Each of the 95% confidence intervals for the 

baseline PAM score, cholesterol, LDL and hsCRP included 1. We failed to reject the null hypotheses and 

concluded that the treatment assignment was independent from the outcomes of interest.  

Applying the SIPTWs to reduce treatment selection bias 

 Using SIPTWs, we estimated the parameters of the original regression models again to correct the 

treatment selection bias. Table 3.11 showed a side-by-side comparison of estimated parameters given by 

regression models with and without the SIPTWs.  
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Table 3.11 Estimated treatment effect of intervention compared control with and without SW 

 

 

  Without SIPTW With  SIPTW 

 Characteristic Treatment Effect  

�̂� (95% C.I.)  
p-value Treatment Effect  

�̂� (95% C.I.)  
p-value 

L
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Primary outcome 

measures 

  
  

 Patient activation total score 16 (8.8 to 23.1) <.0001 15.6 (8.3 to 22.9) <.0001 

Secondary outcome 

measures 

    

   Body mass index, kg/m2 -1.2 (-2.2 to -0.2) 0.0212 -0.7 (-1.7 to 0.3) 0.1446 

   BP, mm HG     

      Systolic -3.7 (-11.2 to 3.7) 0.3237 -2.5 (-9.7 to 4.7) 0.4980 

      Diastolic -1.9 (-7.4 to 3.6) 0.4954 -1.1 (-6.2 to 3.9) 0.6635 

HbA1c, % -0.8 (-1.9 to 0.4) 0.1896 -0.2 (-1.2 to 0.9) 0.7425 

Glucose, mg/dl -3 (-47.5 to 41.6) 0.8957 11.7 (-34.2 to 57.6) 0.6177 

Serum total protein, mg/dl -0.1 (-0.3 to 0.1) 0.3495 -0.1 (-0.4 to 0.1) 0.2398 

Serum cholesterol, mg/dl 4.8 (-15.9 to 25.5) 0.6513 4.6 (-16 to 25.1) 0.6633 

Serum triglycerides, mg/dla -0.1 (-0.3 to 0.2) 0.5573 0.04 (-0.2 to 0.3) 0.7785 

Serum HDL cholesterol, 

mg/dl 

-0.1 (-7.9 to 7.7) 0.9706 -1.7 (-9.7 to 6.3) 0.6782 

Serum LDL cholesterol, 

mg/dl 

4.9 (-11.2 to 21) 0.5529 3.1 (-12.1 to 18.4) 0.6886 

eGFR, ml/min per 1.73 m2  9.1 (-12.6 to 30.9) 0.4110 7.8 (-13.4 to 29.0) 0.4724 

Urine ACR, mg/ga -0.5 (-1.2 to 0.3) 0.2631 -0.08 (-1.0 to 0.8) 0.8600 

hsCRP, mg/La -0.7 (-1 to -0.3) <.0001 -0.6 (-0.9 to -0.3) 0.0001 

Morisky scoreb -0.2 (-1.1 to 0.8) 0.6903 -0.6 (-1.6 to 0.3) 0.2107 

KDQDL measures     

   SF-12 physical score 2 (-3.2 to 7.1) 0.4531 1.9 (-3.3 to 7.0) 0.4765 

   SF-12 mental score 1.2 (-3.3 to 5.8) 0.5975 2.6 (-1.1 to 6.2) 0.1635 
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Primary outcome 

measures 

OR (95% C.I.) P-value OR (95% C.I.) P-value 

   Patient activation level ≥ 3 9.7 (1.7 to 54.3) 0.0097 8.4 (1.9 to 37) 0.0049 

Secondary outcome 

measures 

    

KDQDL measures     

   Symptom/ problem list 0.8 (0.2 to 2.9) 0.7209 0.9 (0.2 to 3.2) 0.8572 

   Effects of kidney disease 2.5 (0.7 to 8.7) 0.1519 3.0 (0.9 to 10.3) 0.0810 

   Burden of kidney disease 2.7 (0.9 to 8.3)  0.0862 2.7 (0.8 to 8.9) 0.1105 
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Chapter 5 

Discussion 

In conclusion, after using SIPTW to adjust for the imbalanced variable at baseline, the estimated 

average change in the difference in PAM scores is 15.6 points higher in the treatment group compared to 

the control group while holding the baseline PAM scores constant. When PAM score is categorized into 

PAM level, we observe that participants in the treatment group are 8.4 times more likely to be activated at 

12 months compared to the control group while holding the baseline PAM scores constant. SIPTWs could 

be used to reduce treatment selection bias by 2.5% for the continuous outcome variable and 13.4% for the 

binary outcome variable. The impact of SIPTWs in reducing treatment selection bias could be more 

pronounced in observational studies. The selection of participants with diabetes mellitus in the beginning 

of the study may have contributed to the observed bias in the parameter estimation.  

As previously mentioned, the HBRC data were collected through a randomized controlled trial. 

Because of the randomization, the implementation of propensity score may not have been substantially 

impactful given that among 21 baseline covariates 18 of them were balanced to start with. The subject 

matter expert was interested in analyzing the data only for the diabetic subgroup from the collected data. 

We did not perform another round of randomization for the selection of this subset participants with 

diabetes. Though it was likely that a subset selected from the randomized groups was still random, it was 

not guaranteed. This was supported by the three variables that showed statistically significant difference 

at baseline.  

Additionally, there were 56 total participants of which 24 participants were in the intervention 

group. This was a small sample size for implementation of propensity score. There might be insufficient 

data to reach meaningful results. The small sample size also limited the number of covariates used to 

generate the propensity scores. Vittinghoff and McCulloch (2007) found that it is acceptable to relax the 
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rule of thumb of 10 or more Event Per Variable (EPV) to 5-9 EPV in using a logistic regression model.53 

They defined the acceptable threshold as confidence interval coverage of greater than 93 percent, type 1 

error rate of lower than 7 percent or relative bias less than 15 percent. By this finding, we were limited to 

having a parsimonious model with 2 to 4 covariates in the logistic regression model that was used to 

generate the propensity scores. To avoid overfitting, we only adjusted for 4 covariates to stay within this 

acceptable range of EPVs. 

Another limitation brought on by the small sample size in regard to the propensity score is that it 

was not appropriate to trim the dataset. The restriction of treatment comparisons to subjects with a 

common range of covariates can improve the validity of estimated treatment effects.54 With large sample 

size, propensity score trimming can increase the validity of the treatment effect estimates.55 However, any 

analysis done using the trimming method will not be causal in the sense that they do not apply to any 

clearly defined population because of the range restriction.55 Again, this technique did not apply well to 

this data because of its small sample size.  

Thirdly, another limitation of the analysis of this study is the potentially inflated Treatment 

estimates. This is because we estimated the Treatment effect on the difference between baseline to 12 

months measures while adjusting for the baseline measurements. Glymour (2005) reported that even 

though the baseline adjustments improve efficiency and eliminates confounding, adjusting for baseline 

measures could introduce bias to the estimated parameters in situations where the primary exposure 

predicts baseline level of the outcome.56 In particular, it gives two common situations where this could 

occur—(1) when the measurement reliability is imperfect or the latent variable is instable and (2) when 

the change has already occurred prior to the baseline measurement, the rate of change experienced in the 

past predicts that of the future, and exposure is unaffected by baseline function. When either of these 

situation holds true, the baseline adjusted model induces a spurious correlation between the exposure and 

the change score because the exposure is likely to be a predictor on the outcome even under the null 

assumption of no causal effect.  
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Finally, in using the ROC analysis to arrive at the optimal cut-off point, we opted to use the 

Euclidean distance D rather than the Youden Index J in situations where the two values were not in 

agreement. While both methods are very practical in dichotomizing a continuous variable, there are 

advantages to using the Youden Index J over the Euclidean distance D. According to Perkins and 

Schisterman (2005), the Youden Index J is more robust against measurement error compared to the 

Euclidean distance D given by an approximate confidence interval generated using the delta method.57 

This may be of concern in our study because the data collection was not done by a laboratory machine. 

Also, J has easier clinical interpretation because it does not involve a quadratic term in its calculation. 

However, another study by Unal (2017) shows that the Euclidean distance D consistently reduced the 

relative bias and MSE compared to the Youden Index J.35 For this reason, we used the Euclidean distance 

D. It would be interesting to compare the treatment estimates given by the two different methods. 

For a future study, it would be beneficial to conduct the randomized controlled trial on the 

diabetic patients rather than the CKD patients with diabetes to have a better interpretation of the treatment 

effect on the participants. It would provide better insight into the direct effect that the home-based renal 

care has on diabetic patients rather than the effect that it has on CKD patients with diabetes. Also, a 

concern that a local Zuni chief had was that people with compromised health did not get the treatment. 

This community would benefit from conducting a delayed randomized trial rather than the traditional 

randomized controlled trial because all participants in the study would be able to get an intervention at 

some point in the trial. 
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