Nov 7th, 3:00 PM - 4:00 PM

Autonomous Vehicle Traffic Impact Scenario Analysis: Central New Mexico Case Study

Razieh Nadafianshahamabadi

University of New Mexico, rnadafianshahamabadi@unm.edu

Follow this and additional works at: https://digitalrepository.unm.edu/skc

Part of the Transportation Engineering Commons


This Event is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Shared Knowledge Conference by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Autonomous Vehicle Traffic Impact Scenario Analysis: Central New Mexico Case Study

Razieh Nadafianshahamabadi
University of New Mexico
Department of Civil, Construction and Environmental Engineering

Alexis Corning Padilla
University of New Mexico
Department of Civil, Construction and Environmental Engineering

Mohammad Tayarani
Cornell University
School of Civil & Environmental Engineering

Gregory Rowangould
University of New Mexico
Department of Civil, Construction and Environmental Engineering

Abstract
Autonomous Vehicles (AVs) are on their way to becoming a significant part of our transportation systems and cities. Previous studies have mainly focused on how much AVs could improve traffic flow and reduce congestion or improve safety. Reducing congestion and the cost of travel time is also expected to increase travel demand, but by how much is not well understood. This study, located in Albuquerque, New Mexico, uses an integrated travel demand and land-use modeling system to evaluate how AVs may affect congestion, travel demand and land use. Our modeling system considers how traffic patterns, travel demand and land use evolve year-over-year, providing a more comprehensive picture of how AVs may affect the growth of a region and traffic. Considering scenarios with 100% market share of AVs, we find, as others have, large reductions in congestion but we also find a moderate increase in vehicle miles traveled and average trip length. We also find that AVs may shift population and employment growth to suburban and fringe areas, and along previously congested highway corridors, further decentralizing the Albuquerque region. The increase in VMT raises air quality and climate change concerns as vehicle air pollutant emissions may also increase. Our results demonstrate that AVs are likely to have an important effect on land use and that integrated land-use and travel demand models should be used to more fully understand the potential traffic impacts of AVs.