








 

 

Original Image Kriging, from 9.64% of Magnitude Samples

  

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

 

Figure 4.14: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling 

the SLP sampling geometry on a full sized image of the rural class. 
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Original Image Kriging, from 9.64% of Magnitude Samples

 
 

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

 

Figure 4.15: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling the 

SLP sampling geometry on a full sized image of the urban class. 
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Original Image Kriging, from 9.64% of Magnitude Samples

 

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

Figure 4.16: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling 

the SLP sampling geometry on a full sized image of the rural class. 

 

Figure 4.16 contains the results of the full natural image comparison.  The 

Kriging result for this image showed the most improvement over the competitive 
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methods of any of the three full satellite image comparisons.  PSNR increases 

ranged from 9dB to 14 dB.  The unique features of the urban and rural image 

types are representative in this natural image sample, and the Kriging 

reconstruction, from a visual assessment perspective, is acceptable at even the 

greatest downsampling rates. 

 

 These results are encouraging; as they begin to show the effectiveness of a 

relatively straight forward spatial statistical model can achieve amazing image 

reconstruction by interpolating discrete Fourier blocks independently of each 

other.  This work not only reveals the potential of image reconstruction from 

uniformly sampled magnitude spectra, but it is also based on a general framework 

that allows for ease of scalability for use on a wide variety of images.   

 

4.4 Magnitude Spectrum Extrapolation  
Successful magnitude Kriging led us to explore the effectiveness of extrapolating 

the magnitude spectra in both dimensions.  We selected an initial low pass mask 

size 4
1

4
1 × in each dimension, resulting in a reduced set of the center 6.25% 

magnitude samples.  In this experiment, we followed the following steps to 

identify how much, if any, improvement in image reconstruction PSNR and SSIM 

can be achieved through iteratively expanding the square low pass sampling mask 

on each of the ten sub images.   
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We were able to expand each to a certain extent, all the while increasing 

the reconstructed SSIM and PSNR values.  For each image type, an effective 

region could be identified that provided the maximum PSNR that can be obtained 

by this extrapolation method.  The plots in Figure 4.17 show the PSNR values of 

the extrapolation magnitude spectra for each image type.  The vertical lines 

denote the region of maximum performance in terms of increased PSNR for each 

image class.  One result, though, did not exhibit the consistent behavior exhibited 

by the other images, as it never reached a maximum extrapolation bound, after 

which additional magnitude estimation began reducing the reconstructed image 

PSNR and mean SSIM values.  This image, shown in Figure 4.1(i), does not 

reveal any unique trait that would set it apart from the other natural images.  

Figure 4.17(e) and 4.17(f) show two of the reconstructions from this 

extrapolation, revealing that image quality is significantly improved at an 

extrapolation of 40 samples compared to just ten FFT samples.  Finally, a good 

measure of the impact of the phase extrapolation is by calculating the ratio of the 

percentage of additional samples and the percentage of original samples for which 

an increase in PSNR is obtained.    For the rural image class, the ratio of 

extrapolated samples is 150%.  For the urban class, the ratio of extrapolated 

samples to original samples is 192.34%.   For the natural class, the ratio of 

extrapolated samples to original samples is 245.83%.  These results reveal that 

super resolution techniques may benefit greatly from Kriging extrapolation 

techniques of the magnitude spectra. 

189 
 



 

 

 
 (a) 

(b) 

  
(d) (c) 

  
(e) (f) 

  
  

Figure 4.17: The magnitude spectra extrapolation.  (a) Rural sub image extrapolation PSNR  (b) Urban sub 

image extrapolation PSNR.   (c) Natural sub image extrapolation PSNR.  (d) Brain image extrapolation 

PSNR. (e) Example sub image with an additional 16 samples extrapolated.  (f ) Example sub image with an 

additional 41 samples extrapolated. 
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4.5 Comparison of Computational Complexity  
The difference in computational complexity between the compressive sensing and 

Kriging methods we have developed is worth noting.    If there was an 

opportunity to improve upon the compressive sensing methods (e.g. exploring 

additional sampling geometry classes, including a wider variety of image types, or 

modification to the objective function) to an extent that a new compressive 

sensing algorithm consistently outperforms the magnitude Kriging method, the 

computational complexity of compressive sensing would be something that needs 

to be taken into consideration.  The question now becomes: What is the cost, 

resource wise, for a hypothetical increase in image quality?  Our experience 

shows that within our current CS paradigm, the computational burden is too great 

to consider it as a viable solution in any practical application.  We support this 

argument by comparing computational times. 

 

 Throughout the image quality comparison experiments above, we 

measured the collective processing time of the CS and Kriging methods to show 

that the Kriging solution, while producing reconstructed images of lesser quality 

in terms of PSNR and structural similarity, may be a more attractive solution.  

Table 4.15 contains the average total reconstruction times for each compression 

rate applied to the sub image data set of Section 4.2.1.  Note that the search for 

optimal CS reconstruction parameters is included in the time for reconstructing an 

image using compressive sensing.  The Kriging duration includes the variogram 
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estimation, variogram optimal model fitting, and Kriging steps for each 

compression rate.  Some calculations of both methods are obtained by remote 

procedure calls (RPCs) to complied C-code (either in the form of Matlab mex-

functions in Matlab or in the form of an Active-X server call to the R Software 

Package).   The experiments were performed on a 32-bit Windows XP 

workstation with 2.50 GHz Intel Xeon processor and 3.00 GB of RAM.  The 

results presented in Table 4.4 reveal an average time savings on the order of .     410

 

 The difference in computing time when an entire image is being 

processed, as in the comparisons described in section 4.2.2, is even more 

pronounced.  The upsampling requirement imposed by the CS reconstruction 

method places an even greater computational burden on the CS optimization 

procedures.  The time required to simply reconstruct the urban and natural images 

given that the optimal parameters were already known was 344.08 and 283.37 

seconds, respectively.  Thirty-seven simplex search steps were required to find the 

optimal reconstruction parameters for the urban image resulted in a total search 

time of 189.2 minutes, or 11,532 seconds.  Total search time for the natural image 

reconstruction was 277.81 minutes or 16,668 seconds.  The total time required for 

the Kriging reconstruction of the urban and natural images was 15.678 seconds 

and 23.542 seconds, respectively. 
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TABLE 4.15 
COMPUTATIONAL COST, IN SECONDS, OF RECONSTRUCTION METHODS IN THE 

ABOVE COMPARISONS 
Data Sample Rate Mean CS Reconstruction Mean Kriging Reconstruction 

A primary cause for the extreme difference in computational times is that 

the spatial statistical operations (variogram estimation and Kriging) were 

performed in a compiled programming environment called from Matlab.  

Similarly, the Kriging times measured did not include the time required for the 

two-dimensional phase unwrapping steps.  Therefore, an analysis of relative 

computational cost by examining the number of high-cost computational steps in 

each algorithm is also required.  

 

 Kriging estimates are obtained from a single system of equations that are 

combined using a Lagrange multiplier, resulting in a single matrix inversion per 

Time (s) 1 Time (s) 

18.75% 234.08 1.9543 

17.26% 329.06 2.0048 

15.57%  308.72 3.5371 

15.12% 289.75 3.4866 

11.97% 303.27 3.5071 

10.17% 289.64 4.2488 

9.91% 265.82 4.2282 

7.68% 348.05 4.2787 

7.23% 403.07 4.2745 

5.99% 460.85 4.2540 

5.54% 349.84 4.3045 
The average reconstruction times of both the CS and Kriging methods on the 10 sub 
images employed in the comparison experiments in Section 4.2.1. 

 
1 Using software described in [3] and [5] 
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spectral block.  The variogram estimate requires NM × multiplications, where M  

is the number of lags being considered, and N is the number of pairs of points 

defined by the lag.  When using P  samples to estimate the variogram, we have 

that , due to inherent symmetry in computing the lags (positive and 

negative lag vectors correspond to the same lag due to stationarity).  Thus, 

variogram estimation requires  additions and multiplications, for an input 

of sample of size 

MPN ×= )2/(

2/2P M×

P .  Following variogram estimation, we need to fit the 

variogram model.  This step is clearly not a function of the number of input 

points, and will thus not be considered in what follows. 

 

 Next, we consider the additional cost of computing the Kriging 

interpolation estimate.  Here, we note that for all internal samples, we have the 

same system of linear equations to solve, at every point.  Thus, we only need to 

invert the variogram matrix once.  For boundary points, we would have to invert 

slightly different matrices at different samples.  However, the number of 

boundary points grow linearly with the dimension of the spectral block, as 

opposed to the quadratic (area) growth associated with the number of internal 

points.  Thus, the effective computational cost is only due to the linear vector 

multiplication of the spectral samples ( )iSZ  by the coefficients iλ .  Thus, the 

overall Kriging cost is of the order of ( )PMO ×  for considering M  lags at P  points. 
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 Similar comments apply when we consider all spectral blocks.  After 

dropping the constant terms associating with sparse sampling, the overall growth 

of the algorithm is of the order of ( )2MPO ×  in terms of the number of lags and the 

number of points. Here, it is important to note that we only have linear growth. 

 

 In our experiments, M in the medium and high frequency blocks is equal 

to 20 and 25, respectively.   As an approximation, we consider the medium 

frequency blocks to contain ~64 samples (based on the sub image size of 

).  If we assumed a sample rate of keeping one out of every four samples 

in each dimension, the number of estimates becomes 

128128×

≈N 144.  Thus, we can 

approximate a requirement of 59,968 multiplications and additions per medium 

spectral block.  Similarly, for the high frequency blocks, we can assume ≈N 900 

sample estimates are required based on a sample rate of keeping one out of every 

8 samples in each dimension. The approximate number of multiplications and 

additions per high frequency block becomes 562,500. We can approximate the 

number of required multiplications and additions for an entire image 

reconstruction as the combination of 6 magnitude spectra medium frequency 

blocks, 6 magnitude spectra high frequency blocks, 6 phase spectra medium 

frequency blocks, and 6 phase spectra high frequency blocks.  The total 

computational cost can be approximated as requiring 7,469,616 multiplications 

and additions for an image size 128128× . 

 

195 
 



 

 The compressive sensing method we utilize has a significant number of 

additional functional evaluations, including the calculation of the Wavelet 

transform, the TV-Norm transform, and the Fourier transform at each conjugate 

gradient iteration [4,5].  Each of these are non-trivial calculations, and since we 

optimize two cost parameters using the simplex search method, the conjugate 

gradient objective function must be solved at each simplex step.  In our 

experiments, the number of simplex iterations was typically around thirty, 

although stopping the simplex search after the first 10 iterations is justifiable 

based on the search surfaces discussed in Chapter 2.  In the paper on which this 

software was originally applied, it is reported that approximately 80 to 200 

conjugate gradient iterations are required based the data sets of ranging in size 

from  to 100100× 480480×  [5].   The total number of conjugate gradient 

iterations required for the reconstruction of a sample 128128×  sub image from 

our data set using arbitrary reconstruction parameters was equal to 928.   This 

value is subjective, as we chose to run ten iterative reconstructions, using the 

result of the N-1st iteration on the Nth iteration.    

 

The Big-O complexity of each conjugate gradient iteration is based on the 

three functionals that constitute the CS reconstruction algorithm we utilized.  In 

terms of the number of points being considered, a 4-coefficient Wavelet transform 

has complexity [6], while the 1-D FFT is shown to have complexity of 

 [7], which becomes 

)(PO

)log( 2 PPO )log()log( 22 PPOPPO = for square images.  Finally, 

the total variation functional is represented as having complexity .  Since the )(PO
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FFT functional is the largest, the complexity of the constraint becomes , 

which is the largest growth rate for the CS reconstruction algorithm.  Based on the 

required number of iterations, we are led to require 

)log( PPO

P  conjugate gradient steps 

for convergence.  This gives a total complexity of   without accounting 

for parameter optimization. 

)log( 5.1 PPO

 

 For a sub image at the Kriging rate provided in the above 

example (a 4x sample rate for medium frequency blocks and an 8x sample rate for 

high frequency blocks), P becomes 12,528 unknown samples.  The computational 

complexity at each conjugate gradient step is 5,746,217.  When all conjugate 

gradient steps are taken into account, this value becomes 5,171,595,489 

multiplications and additions.  When comparing this value to the 7,469,616 

multiplications and additions required for an image of the same size, the 

computational benefit of using Kriging on small, spectral blocks is clear. 

128128×

 

4.6 Conclusion 
The comparisons provided above reveal to the reader the strengths that are evident 

in the Spectral Statistical modeling approach to Fourier sample estimation.   First, 

we note that on the sub image data set, when estimating magnitude samples only, 

the Kriging results consistently outperformed the optimal Compressive Sensing 

reconstruction using the same number of overall complex spectral data samples.  

On full size images, the Kriging reconstructions were significantly better than the 
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best optimized CS reconstruction using the spiral sampling geometry class.  In 

test images where there is considerable variation in the scene, such as the urban 

images we explored, the inclusion of high-frequency samples in the spectral 

sampling geometry has a considerable impact on reconstruction quality. 

 

We noted, however, that for specific scene types, when phase interpolation 

was included in the Spectral Statistical reconstruction, the detrimental effects of 

high-frequency reconstruction inaccuracies (where we sample at a much lower 

rate) result in lower SSIM values than the CS reconstructions. Here, optimal CS 

reconstructions performed better when scenes contained large regions that can be 

well approximated by piecewise constant models, such as for the rural sub images 

in our sub image data set.  This leads us to recommend Spectral Statistical 

modeling and reconstruction of the magnitude spectra only.   

 

We also observed that the CS reconstructions often failed to achieve any 

improvement over the initial guess during the reconstruction parameter 

optimization procedure.   In many of the satellite image reconstructions optimal 

parameters included a Wavelet transform penalty value that was negative.  As was 

mentioned in Chapter 2, a negative transform penalty will result in a 

reconstruction that is over-smoothed in small, well defined regions of the spatial 

image due to an over-emphasis on the total variation minimization term in the 

objective function.   This is clearly evident in the CS reconstruction in Figure 

4.15.  In such instances it is clear that the optimization algorithms employed by 
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our method failed in providing any improvement over the initial value (e.g. the 

zero-filled spatial image reconstruction). 

 

Finally, the computational complexity of most CS image reconstruction 

algorithms do not lend themselves to some practical applications due to the 

considerable amount of computational cost associated with solving the nested 

optimization paradigm required for general use.  In the case of the fMRI study in 

Chapter 2, we were able to calculate well-defined bounds on the reconstruction 

parameters that provide a general solution to the specific image type we were 

exploring.  Applying our optimal CS methods to any image requires the 

calculation of unique parameters for each image being processed, assuming that 

the images are significantly different from one another. 
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discrete Frequency space regions and use them to allow for much more 

complex spectral statistical models. 

• The Spectral Statistical model approach lends itself to applications in 

compression using quantization and entropy encoding.  For example, the 

sampled spectral data of a given image can be stored along with the 

optimal covariance model parameters.  This would reduce the amount of 

data required to be stored and/or transmitted and Kriging could then 

reconstruct the image for display or representation in the spatial domain. 

• Spectral data reconstruction using Kriging also lends itself to the field of  

super-resolution image processing.  The few experiments on magnitude 

spectra extrapolation attempted to simulate such a scenario. For super-

resolution applications, we would need to simply first upsample the 

original data and then apply a low-pass filter to eliminate any higher 

frequency components introduced by the upsampling. Then, to produce 

high-frequency information from the low-frequency filtered data, we 

would need the critical extrapolation step that was demonstrated in this 

dissertation.  Phase spectra would have to be considered for completeness. 

 

 


