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Abstract

Ductile structural components subjected to explosive loadings exhibit a large range

of behaviors. The response of beams, walls, and blast doors is estimated using two

methods. The engineering level approaches are highly simplified and neglect much

of the relevant physics while the use of finite element or shock-code simulation is

expensive and not suited to rapid problem solving and parameter studies. In this

dissertation, a medium fidelity reduced order modeling approach has been derived to

capture the most relevant physics governing rupture of ductile bodies dynamically

deforming in tension.

Solution of the inertially stretching jet is used to reveal the deformation ar-

rest mechanics with large plastic strains and high strain-rates. This phenomenon

is exemplified by applying a moving boundary technique to a rigid-plastic interface
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associated with tensile flow-stress release (Mott-Lee wave). A system of differential-

algebraic-equations for the axisymmetric jet is formulated for mass, momentum, and

energy balances as well as constraints for kinematic compatibility. Dimensional anal-

ysis uncovers distinctive dimensionless numbers and the relationship to the plastic

velocity increment found in the stability analysis for plastic jet particulation. The

closed form solution process reveals underlying mechanics not realized prior. Pre-

dictive theoretical rupture conditions, plastic zone size, mass and velocity of the

detached particle if rupture occurs, the time for motion to cease as well as the rup-

ture strain are obtained. The numerical solution is in excellent agreement with both

shock-code and finite-element simulations. The solution also illustrates the velocity

pullback phenomena observed in prior experiments and parametric representation

results for the body shape at any instant during deformation.

It is shown that isotropic homogeneous constitutive equations for plastic flow-

stress can be included in the governing system of equations for deformation arrest.

This is exemplified using the Johnson-Cook viscoplastic relation [37] with the ad-

dition of a plastic work to temperature rise equation. The influence of thermal

softening, strain-rate stiffening, and work hardening is discussed on the behavior of

the inertially stretching jet.

External and coupling loads are applied to the mathematical treatment proposed.

Closed form solution is obtained to the application of a tensile step loading on the

jet tip. Analysis results in the rectangular-hyperbolic relationship between loading

and its impulse on the rupture threshold. The asymptote for minimum impulse at

maximum loading is found to be dependent on both the jet slender ratio and kinetic

energy density to yield strength ratio. The asymptote for the minimum pressure

at maximum loading is found to only depend on the kinetic energy density to yield

strength ratio. Drag resistance has been applied to the jet tip with little influence

on jet motion unless the density of the surrounding fluid is comparable to the jet

v



material. Coupling the deformation arrest process for linearly stretching ductile

material to a single-mode beam undergoing late-time motion with angular deflection

has been accomplished. Solution results show complicated features including rupture

and full arrest.
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Chapter 1

Introduction

Traditionally, the vulnerability of structural components such as beams, walls, and

blast doors to intense explosive and impulsive loadings is estimated using highly

simplified methods, neglecting much of the physics. However, the principal physi-

cal mechanisms governing the mechanics has been well studied over the last seven

decades. Although there is a wealth of literature on large-strain dynamic plasticity,

plastic bucking, fragmentation, particulation, and rupture as well as the underlying

material science, a general mathematical theory has yet to be developed.

The governing equations at the continuum scale are non-linear partial-differential

equations (PDE’s) which require expensive shock-codes or finite element software

with intricate numerical techniques to solve. Practical problems are often multi-

material and involve composite structures such as steel-concrete-steel sandwiches

(SCS) for which solutions require greater computational power than available in a

typical desktop computer. The large amounts of computational power required to

solve even relatively simple problems is often not available or too costly for repeated

calculations used to perform parametric design or assessment studies. Furthermore,

internal structure details may not be known, or are yet to be determined for which

1



Chapter 1. Introduction

the cost of using high-fidelity software is not justified. These limitations create a

need for an engineering-level mathematical model that captures the most relevant

physics and matches the shock-code or finite element solutions within reasonable

allowances and with limited computational cost.

An incident blast wave transfers momentum into a structure element by a physi-

cally complex series of shock-rarefaction interactions upon partial reflection and par-

tial transmission from each internal and external surface. This induces movement

and generates deformation gradients within the structure. Shock-codes are typically

designed and optimized to capture these transient details which are unnecessary for

calculations with low-fidelity structure detail as well as low fidelity initial and load-

ing conditions. Generally, better suited are finite element algorithms however when

material distortion becomes significant and rupture approaches, these codes often

fail due to mesh entanglement or numerical instability. Physically, the deforma-

tion arrest process caused by strength induced dissipative action occurs over large

timescales relative to material sound speeds. Therefore, explicit numerical solutions

become costly to compute the intermediate and end structure configurations.

1.1 Objectives

The objective of this work is to formulate and validate an engineering-level mathe-

matical theory for deformation arrest to obtain final configurations for ductile bodies

subjected to impulse or blast loadings. The final state of a SCS structure or any other

ductile body subjected to blast, shock, or impact loadings for which there are large

distorting plastic strains is directly dependent on the initial configurations, boundary

conditions, loading histories, and deformation arrest mechanics. Assuming known

initial configurations, boundary conditions, and externally applied loading histories,

the deformation arrest mechanics that most influences tensile rupture at the attach-

2



Chapter 1. Introduction

ment points is explored and a mathematical treatment developed.

The most simplistic scenario for which the deformation arrest mechanisms and

tensile rupture can be identified and a mathematical treatment developed is for that

of an inertially stretching jet. The inertially stretching jet, of interest in shaped

charge design, explosively formed projectiles, micro-jetting, surface ejecta, dynamic

extrusion, particulation, and plastic instability has been studied for many decades.

Nevertheless, the deformation arrest process and resulting material dynamics has

yet to be fully developed even with foundational concepts having been proposed in

dated publications. The general deformation arrest process applied to tensile release

also applies to compressive release. The classical Taylor-anvil impact problem for

solid slugs and tubes quantitatively need not be addressed in this here. However,

the modeling approach may be proposed. Likewise, jet particulation may not be

quantitatively addressed, but the modeling approach may be described for future

work.

When transverse loadings are applied, bending and shearing stresses are intro-

duced. Regions of both compression and tension form in early time as plastic hinges.

As deflections increase, compressive regions become tensile in nature and the same

deformation arrest mechanisms are observed as those in inertially stretching jets and

Taylor-anvil impact studies. Analogously with the inertial jet, the tensile rupture

process ensues as plastic hinges are stretched. The analysis method formulated for

the jet can be coupled with appropriate modification to include attached bodies

in bending and shearing. This mathematical treatment may unify traditional ap-

proaches for structural dynamic plasticity and crashworthiness with co-linear plastic

instability, particulation, and the higher strain-rate phenomena. When structures

become multi-material sandwiches, the deformation and deformation arrest process

becomes much more complex.

3



Chapter 1. Introduction

1.2 Literature Review

To formulate a physics based engineering approach to analyze multiplex deformable

structure-blast vulnerability and design scenarios, problems of ordinary geometric

bodies with simplistic loadings are examined. Dynamic problems in large strain

dynamic plasticity where tensile plastic release and plastic compressive loading waves

are the dominant effect as well as plastic hinges where transverse deformation governs

the structural response are reviewed. These problems share important underlying

physical mechanisms which are highlighted in this section.

After the conclusion of World War II, N.F. Mott proposed the foundational con-

cepts for the deformation arrest mechanism [63]. This was done in support of a

statistical distribution developed for fragment size in exploding bomb shells and cas-

ings. It was expressed that a tensile stress release-wave propagates into plastically

elongating metal separating a no-longer deforming region from the rest of the de-

forming body. The no-longer deforming region is postulated to behave in an elastic

manner, treated as a rigid body with respect to the total strain. This rigid zone is

where the effective stress state has dropped below the plastic flow stress. The release-

wave would originate from a point of instantaneous fracture where defects occur. For

the scenario of a rapidly expanding shell, it was assumed that the stress release to

fracture process occurs at a time scale much smaller than the bulk motion of the

metal. Therefore, it was assumed that the metal thickness, strain-rate, and flow

stress can be treated as constants. A momentum balance applied across the release-

wave/interface lead to a straightforward analytical solution for the plastic boundary

location relative to an originating crack and the tangential motion of the release

zone as a function of time. A wealth of publications has resulted from this report to

estimate fracture initiation and the statistics for example, see the textbook by Grady

[25]. However relatively limited development into an engineering formulation for the

deformation arrest process has ensued. Lee [50] solved for the elastic-plastic solution
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Chapter 1. Introduction

using characteristic methods to Mott’s propagating tensile release-wave with equiv-

alent results. This report will use the term Mott-Lee wave to be consistent with the

academic literature. Many authors have also studied the elastic-plastic release wave

for various material and other geometric bodies [5, 14, 15, 19, 28, 70, 72, 77, 78, 89].

It was noted by Grady [25] that the tensile release process was wave-like initially

but then behaved in a diffusive manner, therefore solved the same problem with

a diffusion solution also with equivalent results. Grady et. al. [26] and Kipp and

Grady [48] proposed that energy dissipated at the moment of the initiating fracture

had an ensuing effect which was assumed to be negligible prior. The dissipated en-

ergy at fracture was treated as occurring from a linear elastic resistance function

applied to the free end of the fracture. Noteworthy experimental work was per-

formed by Zhang and Chandar [107, 108] who observed the formation of complete

and incomplete (local necking) fracture sites. The observations made matched that

predicted by Grady [25] including the tangential motion of the release zone. The

fracture of rapidly expanding shells has been studied by [21, 24] and others.

The idea of the Mott-Lee release wave has also been linked to necking and par-

ticulation phenomena in ductile materials. Walsh [91] recognized that for shaped

charge jets, the Mott-Lee wave propagates from an adjacent region within the jet

from where variation in the cross-sectional area was large enough for flow stress re-

lief. For the conditions where the cross-section area changes as the release wave

propagates, it was elucidated that the shape of jet particulate could therefore be cal-

culated. However, the shape calculation was not developed and was not performed.

The release wave was postulated to propagate quickly over short distances but slowly

over long distances, thereby limiting the range of influence in very high strain-rate

shaped charge jets. The velocity increment between particulate after jet breakup was

found to be intimately related to the flow-stress release process by Hirsch [33] and

expressed through the evolution of microscopic adiabatic shear bands and kinetic

energy dissipation. The formation of microscopic adiabatic shear bands in dynamic
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Chapter 1. Introduction

stretching is well studied topic on its own within the material science perspective of

dynamic plasticity [90] as well as martensitic transformation [105]. Jet particulation

has been well analyzed with respect to perturbation stability [8, 9, 69, 73, 83, 99, 109]

and many other authors.

Due to the high velocities and sensitivity to random perturbation in shaped charge

jets, the arresting mechanics are hard to observe in experiment. Therefore, dynamic

extrusion experiments where a ductile projectile is shot into a converging nozzle-

like dye and exiting as an elongating jet, provide more direct insight. Trujillo et

al. [88] observed a velocity pullback phenomenon while conducting photonic Doppler

velocimetry experiments to measure the jet speed. As the projectile enters the dye,

the projectile material accelerates as it deforms. As the material leaves the die, the

formed jet decelerates until necking and particulation occurs, finally traveling at a

constant velocity when the deformation has ceased. While almost all the dynamic

tensile extrusion literature regards the texturing and crystal material science, Cao et

al. [11] reported that the projectile material arrested within the die had its crystals

increasingly elongated from the dye entrance to the exit where necking had ensued.

Numerical simulation by Bonora et al. [10] and Gray et al. [27] showed total plastic

strain profiles that were non-uniform with larger plastic strains where necking had

occurred prior to arrest.

Rigid-Plastic boundary propagation is also fundamental in the analysis and mod-

eling of dynamic plasticity problems where the dominant stresses are compressive.

The problem of a metallic slug impacted onto a rigid boundary was first reported

by G. I. Taylor [81]. Taylor expressed that upon impact, an elastic-plastic wave

boundary propagates into the un-deformed slug tail from the impact surface. A

force-acceleration balance was applied across the rigid-plastic boundary, roughly ap-

proximating the motion of the un-deformed slug tail as well as the final shape near the

impacted surface. Wiffin [95] then used Taylor’s work to compute the dynamic yield

6



Chapter 1. Introduction

stress of several materials from experiment. Lee and Tupper [51] performed the anal-

ogous elastic-plastic momentum balance which resulted in an improvement only at

very small impact speeds and Phillips et al. [70] analyzed this elastic-plastic problem

with a variably changing cross section. Motivated to develop and refine flow-stress

archetypes, numerous efforts to capture the motions and deformed slug shape have

been made to Taylor’s original work with varying amounts of success. Hawkyard [30]

and Hawkyard et al. [31] applied an energy balance across the plastic wave front

which resulted in a slightly improved approximation and capturing a more realistic

final slug shape near the impact surface. Jones et al. [42] proposed the need to use a

mass accretion-like momentum balance across the rigid-plastic boundary to account

for mass transfer from the rigid to the plastic zone while Jones and Gillis [43] derived

scaling rules for the boundary propagation. A series of publications from Jones and

collaborators [44, 45, 46, 41] undertook thorough development for an engineering for-

mulation, termed the αβ model. The mass-accretion momentum balance was applied

with different rule sets based on three distinct phases of plastic boundary motion and

assumptions about the material velocity jump across this boundary. House et al. [35]

applied an approximation to the αβ model to reduce the difficulty of solution and

was modified by Eakins and Thadhani [20] for the reverse case of an anvil impacting

a stationary slug while suggesting limitations on the accuracy of the three-phase ap-

proach. The need to include additional kinetic dissipating terms, as opposed to only

the compressive work-energy previously considered was proposed by Woodward et

al. [97]. Foster et al. [23] applied a traditional shock discontinuity treatment for the

plastic wave propagation resulting in a solution consistent with the αβ model. In the

past few years, an attempt to formulate a closed-form solution in terms of elementary

functions while improving experimental correlation was performed by Wlodarczyk

et al. [96]. Once again, an energy based approach was attempted by Dastjerdi et

al. [18] to more correctly match the deformed slug profile. Most recently, simulations

performed by Chakraborty et al. [13] exhibited a non-zero, non-uniform material ve-

7



Chapter 1. Introduction

locity profile in the plastic zone. Therefore, a mathematical formulation to include

this behavior was presented with much improvement upon the un-deformed segment

motion and the plastic zone dimensions.

Dynamic plastic buckling where both characteristics of the Taylor-anvil impact

and that of buckling are observed simultaneously also provides insight. Experimen-

tal and finite element simulations performed by Wang and Lu [93] demonstrate a

transition from the Taylor-anvil-like “mushrooming” shape profile to that of plastic

buckling-like “wrinkling” and then to that of progressive buckling “folding”. It was

shown that as the tube wall increases in thickness and the impact speed increases,

the mushrooming effect has a reduced ability to stabilize the wrinkling and folding

behaviors. Thin tubes with lower impact speeds resulted in more progressive folding

that gradually transitions to mushrooming with wrinkling for medium sized tube

walls and intermediate impact speeds and then to Taylor-anvil-like shaping with the

thickest tubing and the highest speeds.

Permanent beam deflection due to impulse and impact loadings is a well-developed

topic [40, 102] however, a complete description for the rupture conditions is yet to be

realized. The complexity of the problem was highlighted by Menkes and Opat [62]

who experimentally applied pulse loads of increasing intensities to clamped beams.

Three failure modes were identified: Mode 1 - large permanent deformation with-

out rupture, Mode II - large permanent deformation with tensile rupture, and Mode

III - shearing rupture at the supports with little center-point deflection. Several

approaches have been proposed to predict the mode I - II and mode II - III transi-

tion criterion. The founding approach defines a strain-to-rupture condition [39]. In

this scheme, rupture is said to occur when the plastic strains induced at the plastic

hinges reaches a material specific nominal rupture strain. However, the plastic strains

within the hinge are directly affected by the poorly characterized plastic zone volume

at the hinge. Shen and Jones [74] sought to generalize the strain-to-fail approach

by proposing that rupture occurs instead when the structures initial kinetic energy
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exceeds a maximum capacity of dissipated energy via plastic work. Even though

work hardening and strain-rate stiffening can be included, a strain-to-failure prop-

erty is still needed and the ill-defined plastic zone volume required. Li [53] related

this condition to other classical fracture processes through a continuum mechanics

analysis. Zhao [110] proposed using critical values of Johnson’s damage number [38],

D ≡ ρu20/σy where ρ is the density, u0 the initial structure velocity calculated from the

applied impulse, and σy the yield strength to predict shear rupture like the Reynolds

number for turbulent flow transition. These theories have been reviewed in multiple

reports and texts, for example [101]. Plastic hinge formation has been well studied

for the development of segmented deflection calculations, standardizing a three-phase

analysis. The interaction of bending, tensile, and shearing yield surfaces in the form-

ing of plastic hinges has been subsequently analyzed [6, 32, 34, 47, 52, 64, 65, 66, 80]

and is reviewed in several textbooks as well [40, 58, 79].

Analogous response characterization, Mode I, II, and III are observed in impul-

sively loaded plates and shells [67, 68, 71, 84]. Shen and Jones [75] reported good

agreement using the maximum plastic work condition for deflection in Mode I, but

poor agreement for predicting Mode II and Mode III rupture conditions on circular

plates. Smith and Nurick [84] observed an inward radial motion during deformation

causing stretch at the boundary. Zaera et al. [104] included inertia terms not previ-

ously applied to the yield condition and reported improved results while Zajkani et

al. [106] analyzed multiple hinges within the plate. The strain-to-rupture condition

was also obtained by Wen [94] considering work hardening for circular plates and

reported that rectangular plates can be reasonably approximated as circular plates.

Higher resolution experiments by Nurick and Shave [67] however found a more com-

plex combination of Mode I and Mode II conditions at different edge boundaries

as well as inward tensile pulling and local necking prior to rupture for rectangular

plates. Langdon and Schleyer [49] devised an approach to treat the plastic line-

hinges at the boundaries with the strain-to-rupture condition. The size of the plastic

9
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hinge used in their analytical calculation however was measured a-priori from their

experiments. A dimensionless response number was derived by Zhao [111] defined as

R ≡ D(l0/δ0)
2 where D is the Johnson damage number, l0 and δ0 are characteristic

in-plane and transverse length measurements respectively. Hu [36] recast circular

and rectangular plate deflections from various authors into functional forms of R

while Li and Jones [54] suggested additional numbers need to be included in the

dimensional analysis when transverse shear, work hardening, strain-rate stiffening,

and thermal softening is included. Shi and Gao [76] recognized that Zhao’s response

number can be generalized to characterize the effects on other geometric bodies. The

generalized number is defined as Rn ≡ D(l0/δ0)
n where n is a positive real number.

It was also suggested that the dynamic elastic behavior as well as plastic and elastic

buckling can be represented with the appropriate replacement for D. Yao et al. [100]

recast Rn into a form using the experimentally measured quantities, explosive mass

and standoff distance. It is important to recognize that all the mentioned theoretical

analysis consider only application of an ideal impulse. The analysis methods treat

the structures as deforming inertially with prescribe initial velocity profiles calculated

from elementary impulse-momentum relationships. Early time acceleration phase of

the structures is neglected.

Sandwich structures with compressible cores such as foams or honeycombs have

received generous attention due to their blast and impact mitigation properties.

These structures have large energy absorption capacity [3, 103, 112] but with rupture

conditions still not well predicted. The deflection and rupture behavior of sandwich

structures with incompressible cores is not as well characterized. Several numerical

and experimental studies have been performed [7, 86, 87] showing tensile fractur-

ing of the concrete with bending and localized buckling on some cases for the steel

in compressive zones. Wang et al. [92] developed a single degree-of-freedom ap-

proach to estimate the center deflection of a blast loaded SCS wall. Other work

experimentally tests shear connectors to prevent separation of the steel from the

10
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concrete [57]. Concrete filled steel tubes (CFST) have been well studied for static

loadings but dynamic transverse loadings have limited publications [16, 58]. Rein-

forced concrete however behaves differently than confined concrete largely due to

spalling phenomenon [12, 16, 85, 98] and brittle characteristics.
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Chapter 2

Methods of Computational

Analysis

In this chapter, a summary of the computational tools used to validate the proposed

reduced-order approach is provided. Each of the computational tools are highly

complex with decades of development. This chapter is intended to provide a brief

background to the simulation programs and how they are used in this study. This

is not a comprehensive description or examination of the software and their full

capabilities.

2.1 CTH

The finite volume shock-code chosen in this study to validate the proposed mathe-

matical theory is CTH [17]. CTH is a Sandia National Laboratory produced and

distributed software packaged optimized to simulate multi-material, compressible,

large-strain, high strain-rate mechanics often because of high speed impact or explo-

sive loadings. The materials are inserted into an Eulerian grid with user assigned
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equation of state and constitutive models. During simulation, material flows through

the grid with each cell accounting for the material volume fractions and state (den-

sity, pressure, temperature, stress tensor, flow stress, velocity vector, etc.). When

the volume fraction drops below a cutoff threshold, the material has flowed out of

that cells’ region in space.

Many constitutive model options are available, many with progressive damage

and empirical fracture conditions. In this study, rupture conditions are sought based

only on conservation laws restricting the constitutive model implemented to only

perfectly plastic and viscoplastic treatments. A tabular equation of state is chosen

from the SESAME database to best represent real material. During deformation

arrest, pressure variations from ambient are small, the materials have low compress-

ibility and therefore largely insensitive to the equation of state details. Grid spacing

is chosen small enough that the quantities of interest extracted from the simulation

results are converged.

Since CTH is optimally designed for impact and explosive loading simulations, it

is not well suited for the user to have high initial condition control with deforming

material at zero-time. To obtain the desired initial conditions, several unique features

of the software packaged are implemented. A user option for an initial linear velocity

gradient is applied along the jet axis. At zero-time however, this causes an impulsive

collapse in the radial direction producing a compressive wave that interferes with

the deformation arrest process. Since CTH is designed to simulate shock waves and

compressible flow phenomena in solids, this compressive wave dissipates after some

time. Once the transient effects have decayed, a material discard feature is used to

remove the jet tip material and create a sudden stress free condition on a new jet

tip on an unperturbed portion of the jet. Since strains and temperature rise are

non-zero at time of discard, viscoplastic effects are difficult to isolate.

There is also limited user control over boundary conditions. Since the behavior
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of the jet tip to the sudden stress free condition is desired, the root of the jet meets a

reflective boundary to create a zero material velocity condition in the axial direction

without addition stress release. If the radial motion of the jet at the boundary is

restricted, additional points of stress release occur that influence the behavior of the

jet tip. As the stress release from the jet tip approach the boundary, the simulations

are terminated due to boundary interference. An example input file is given in

Appendix A.

At prescribed time intervals, the material state in each cell in the computational

domain is written to disk. A custom script then reads these files and extracts the

quantities of interest by looping through and searching for cells with certain material

states. When the desired states are found, maximums, minimums, and averages are

obtained over the body and then output for analysis. An example script for data

extraction is given in Appendix B.

2.2 Abaqus

In addition to the shock-code, the commercial finite-element software package Abaqus

[1] is used for validation. Time integration is done in Abaqus-Explicit over a La-

grangian mesh attached to an incompressible material body. Material properties

(density, temperature, yield stress, etc.) are assigned with an axial velocity gradient

and uniform initial temperature. Mesh size is chosen small enough that the extracted

quantities are converged.

An initial radial velocity is internally computed to conserve element volume. In

the finite element formulation, material cannot rupture due to conservation laws

alone. Empirical damage and fracture conditions with element removal must be im-

plemented otherwise distortions become very large and numerical failure occurs. This

tool can be used however for early time approaching rupture but not for determining
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rupture itself.

Greater control over boundary conditions allow arbitrary functions for pressure be

applied to the material surface and viscoplastic analysis can have zero initial strains

and temperature rise. Boundary at the root is restricted by direct specification to

have a zero axial velocity. An example of an input keyword set used in given in

Appendix C. The material state in each element is saved at selected time intervals

and read by a custom script to extract the quantities of interest in the same manner

done with CTH and output of analysis. An example of this script is given in Appendix

D.

2.3 Mathematica DAE Solver

To solve systems of Differential Algebraic Equations (DAE’s), the NDSolve function

in the commercial analysis tool Mathematica [61] is utilized. When NDSolve is called,

the function converts the input into an explicit form, checks the system for consistent

initial conditions and algebraically solves for any unspecified values. The Implicit

Differential-Algebraic (IDA) algorithm is then evoked, employing a combination of

backward differentiation formula. The equations are numerically integrated using

Newtonian forward-time integration approaches. Further details are available in the

Mathematica documentation with a wealth of references to the numerical theory. An

example of the DAE input and solver code is given in Appendix E.
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Chapter 3

The Reduced Order Modeling

Approach for Deformation Arrest

in the Inertially Stretching Ductile

Jet

3.1 Abstract

A reduced order modeling approach has been applied to the inertially stretching duc-

tile jet revealing the deformation arrest mechanics in dynamically deforming ductile

bodies with large plastic strains. This phenomenon is exemplified by applying a mov-

ing boundary technique to a rigid-plastic interface associated with tensile flow-stress

release (Mott-Lee wave). A system of differential-algebraic-equations for the axisym-

metric problem is formulated for mass, momentum, and energy balances as well as

constraints for kinematic compatibility. Dimensional analysis uncovers distinctive

number groupings and the relationship to the plastic velocity increment found in
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the stability analysis for plastic jet particulation. The closed form solution pro-

cess reveals underlying mechanics not realized prior. Predictive theoretical rupture

conditions, plastic zone size, mass and velocity of the detached particle if rupture

occurs, the time for motion to cease as well as the rupture strain is obtained. The

numerical solution is in excellent agreement with both shock-code and finite-element

simulations. The solution also illustrates the velocity pullback phenomena observed

in prior experiments and parametric representation results for the body shape at any

instant during deformation.

3.2 Introduction

Deformation arrest leading to ductile rupture of structural components subjected to

explosive loadings has proven to be a challenging problem. Solutions require com-

plex finite-element or finite-difference methods to numerically integrate the Cauchy

momentum equation simultaneously with the continuity and thermodynamics equa-

tions as well as constitutive and state models. The principal physical mechanisms

have been discussed over the last seven decades but a predictive reduced order model

(ROM) approach has yet to be developed. In this paper, such an approach is illus-

trated for the simplest of geometries, the co-linear stretching ductile jet subjected to

tensile release.

The inertially stretching ductile jet has been studied since the 1940’s due to its

inherent penetrability into dense materials as a coherent stream. Consequently, the

conditions for jet breakup into a cascade of small particulate has also been analyzed

as it relates to perturbations leading to plastic instability. Walsh [91] recognized

that for shaped charge jets undergoing breakup, a flow stress release process occurs

at late time. The flow stress release process is associated with plastic deformation

arrest and is known as the Mott-Lee wave [25]. The Mott-Lee wave propagates from
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an adjacent region within the jet from where variation in the cross-sectional area

was large enough for stress reduction. For the conditions where the cross-sectional

area changes on the same time scale as the release wave propagation, Walsh [91]

elucidated that the shape of the jet particulate could be predicted. It was noted

that the release wave propagates quickly over short distances but slowly over long

distances, thereby limiting the range of influence in the extreme strain-rate regime

under discussion. The shape calculation was therefore not developed. However, the

velocity increment between particulate after jet breakup was found to be intimately

related to the flow-stress release process by Hirsch [33] and expressed through the

evolution of microscopic adiabatic shear bands and mechanical energy dissipation

via internal plastic work.

The Mott-Lee wave propagation has been foundational in developing statistical

distributions for fragment size in exploding bomb shells and casings [63]. It was

expressed by Mott [63] that a tensile stress release-wave propagates into plastically

elongating metal separating an elastic region from the plastically deforming body.

In the elastic region, the stress state has decreased below that required for continued

plastic flow. The elastic strains are neglected due to dominating plastic strains,

therefore rigid body motion is assumed in the elastic regions. The release-wave

would originate from a point of instantaneous fracture where metallurgical defects

exist. For the scenario of a rapidly expanding shell, it was assumed that the stress

release to fracture process occurs at a time scale much smaller than the bulk motion

of the metal. Thus, it was assumed that the metal thickness, strain-rate, and flow

stress can be treated as constants. A momentum balanced applied across the release-

wave lead to a straightforward analytical solution for the plastic boundary location

relative to an originating crack and the tangential motion of the release zone as a

function of time. It was noted by Grady [25] that the tensile release process was wave-

like initially but then behaved in a diffusive manner and solved the same problem

with a diffusion solution with equivalent results. Lee [50] solved for the elastic-plastic
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solution using characteristic methods to Mott’s propagating tensile release-wave also

with equivalent results.

Grady [25] presents various statistical models for fragment sizes based on Mott’s

original analysis. Additional analytic work aided improvements to the statistical

fragment size models by analyzing fracture initiation [26, 48]. Experiments by Zhang

and Chandar [107, 108] observed the formation of complete and incomplete (local

necking) fracture sites. These observations matched those predicted by Grady [25]

and Mott [63] including the tangential motion of the release zone.

Dynamic extrusion experiments in which ductile projectiles are shot via gas gun

into a converging nozzle-like dye and exiting as an elongating jet, provides insight

into deformation arrest mechanics. Trujillo et al. [88] observed a velocity pullback

phenomenon while conducting experiments to measure the jet speed. As the projec-

tile enters the dye, the projectile material accelerates as it deforms and flows through

the dye. As the material leaves the dye, the formed jet decelerates until necking and

particulation occurs. While almost all the dynamic tensile extrusion literature re-

gards the texturing and crystal material science, Cao et al. [11] reported that the

projectile material arrested within the die had its crystals increasingly elongated

from the dye entrance to the exit where necking had ensued. Numerical simulation

by Bonora et al. [10] and Gray et al. [27] showed total plastic strain profiles that were

non-uniform with larger plastic strains where necking had occurred prior to arrest.

These reports establish a physical basis for the ensuing mathematical formulation.

3.3 ROM Formulation

A reduced order model (ROM) for the deformation arrest process is hereby formu-

lated for an inertially stretching ductile jet.
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3.3.1 Derivation

Consider the jet of a ductile material in Figure 4.1 with constant uniform density

ρ. The perfectly plastic flow stress is σY . At time t = 0, the jet has cross section

δ0, strain rate ε′0 and length l0 that evolve in time as δ(t), ε′(t) and l(t) + ξ(t),

respectively. At this instant, the jet tip moving with velocity u0 is released, allowing

propagation of the Mott-Lee wave. The region in which the internal stress has

released will have a length ξ(t) as measured from the jet tip for which the material

moves with velocity u(t). This divides the jet into a plastic region and elastic region

separated by an interface located at a distance l(t) from the root. The interface is

assumed to be planer as well as perpendicular to the axis of symmetry. The plastic

region maintains a uniform cross section. Our simulations show that for moderate ε′0

up to shortly after that required for first rupture, these assumptions are reasonable.

Our simulations suggest that curvature of this interface causes a small axial velocity

disparity. Either voids must form or the radial velocities in the plastic zone adjacent

to the interface must be accelerated to maintain continuity. The latter of which is

illustrated in Figure 3.2 by CTH simulation. For larger ε′0, the interface curvature is

significant and propagation of which causes a local reduced radius. Convexity in radii

profile induces additional release zones to form. Interaction of multiple release zones

then leads to particulation as the jet axial velocity profile undergoes discretization.

An analogy will be drawn with moving boundary approaches in solidification

processes. As the rigid-plastic interface propagates into the plastic region during

unloading, the material crossing this boundary is no longer allowed to deform as

that material binds with the rest of the rigid region. The shape of the rigid region

can therefore be obtained by parametric representation. The mass accretion rule for

the rigid region as shown in Figure 4.1 is

dm

dt
= ρδ

dξ

dt
(3.1)
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Figure 3.1: Inertially stretching jet illustration with representative flow stress and
velocity profiles

The Rate of mass gained by the rigid region must equal the rate mass lost by the

plastic region. The mass balance is given by

dm

dt
+ ρδ

dl

dt
+ ρl

dδ

dt
= 0 (3.2)

The velocity of the material in the plastic region at the boundary has a velocity,

u = ε′l (3.3)

For the body to be continuous, the velocity on the plastic side of the boundary must

match that of the velocity of the rigid region and the velocity of the rigid region is

that of the jet tip. Therefore,

u =
dl

dt
+

dξ

dt
(3.4)

Equations 3.3 and 3.4 are the constrains for kinematic compatibility and are analo-

gous to the Stefan condition [4]. Solutions become ill-behaved when these conditions

cannot be met when either rupture occurs or the jet becomes fully arrested.
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Figure 3.2: CTH simulation of the deformation arrest process with the radial velocity
irregularity highlighted on the right. The left is the corresponding the von Misses
effective stress profile.

Applying a momentum balance across the rigid-plastic interface results in New-

ton’s second law for the variable mass rigid region as

−σY δ = m
du

dt
+

dm

dt
∆u

where ∆u is the relative velocity between binding cross section segments. Due to the

kinematic constraints, ∆u = 0 resulting in equation 3.5.

−σY δ = m
du

dt
(3.5)
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The rate of mechanical energy dissipated by thermoplastic heating is

dq

dt
= δlσY ε

′

Thermoelastic heating is negligible. The rate form of the energy balance for the

system is

l3ε′2
dδ

dt
+ 2δl3ε′

dε′

dt
+ 3δl2ε′2

dl

dt
+ 3u2

dm

dt
+ 6mu

du

dt
+ 6

dq

dt
= 0 (3.6)

The result is six equations for the six state variables, δ, l, ξ, ε′, u, and m.

3.3.2 Dimensional Analysis

Dimensional analysis reveals self-similar behavior with behavior representing dimen-

sionless groupings. To recast in dimensionless form, let

ξ ≡ u0
ε′0
Z

l ≡ u0
ε′0
L

δ ≡ δ20D

u ≡ u0U

ε′ ≡ ε′0E
′

m ≡ ρδ20
u0
ε′0
M

t ≡ δ0
u0
τ

(3.7)

and for time derivatives, over-dot notation will be adopted, d•
dτ
≡ •̇ Substituting 3.7

into equations 1-6 reveals the dimensionless systems and two independent dimen-
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sionless numbers and a third dimensionless combination.

Ṁ = DŻ (3.8a)

Ṁ = −DL̇− LḊ (3.8b)

U = ĖL (3.8c)

U = N2(L̇+ Ż) (3.8d)

−N1

N2

D = MU̇ (3.8e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ + 6MUU̇ + 6
N1

N2

DLĖ

(3.8f)

The dimensionless numbers N1 and N2 are

N1 =
σ0
ρu20

N2 =
u0
δ0ε′0

The square root of N1 commonly appears in ductile jet stability analysis as the num-

ber of plastic velocity increment,
vpl
u0

. When the geometric quantity N2 is included, N1

N2

is then a measure of the capacity to dissipate bulk internal kinetic energy gradients.

3.4 Analysis and Discussion

Approximate closed form solution to equations 3.8 results in theoretical rupture con-

ditions, illustration of the velocity pullback phenomena as well as calculation of the

instantaneous shape and position of the deformed body. By recognizing recurrence

attributes in this system of DAE’s, an asymptotic closed form solution can be ob-

tained by an iterative substitution approach. Induction arguments are applied to

guess the form of some of the system variables to obtain approximate solutions to

other system variables. These solutions can then be inserted back into the system to
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improve upon prior guesses or intermediate solutions. A direct numerical solution to

the coupled system is obtained using the commercial solver Mathematica [61] that

employs various differencing methods determined upon internal recognition of equa-

tion behaviors and numerical stability criterion. Intermediate closed form solutions

and the numerical solution are compared to both CTH [17] and Abaqus [1] simula-

tions until artificial boundary influences become significant to the overall behavior.

The following initial conditions are applied during the solution process to equations

3.8,

M = 0

Z = 0

D = 1

L = 1

Ė = 1

U = 1

3.4.1 Rupture Conditions

At early time, assume the rigid-plastic boundary propagates quickly relative to the

change in jet dimensions or change in plastic strain-rate as noted by Walsh [91]. If

D and Ė are taken to behave like constants D = 1 and Ė = 1, equations 3.8a,

3.8b, 3.8c, and 3.8e combined reduce to N1

N2
= ZŻ with solution 3.9 which is that of

Kipp and Grady. Figure 3.3 compares equation 3.9 with the numerical solutions to

equations 3.8 as well as the CTH and Abaqus simulation results for several different

N1 and N2 before and after rupture.

Z =

√
2
N1

N2

τ (3.9)

Excellent agreement is obtained between FEA, finite-volume simulations, direct

numerical and the closed form solutions 3.9. This illustrates that Z is relatively
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Figure 3.3: Dimensionless release zone length

insensitive to changes D and Ė. Very close to the rupture condition shown on the

bottom left of Figure 3.3, small deviation at late time suggests slightly more sensitiv-

ity to changes in D and Ė on Z. With an explicit relation for Z, the thermodynamic

equations in 3.8 are decoupled and an estimation for the plastic zone length can be

obtained. By subtracting equation 3.8c from 3.8d and still allowing Ė = 1 leads to

the first order ODE for L,

L̇ =
1

N2

L− Ż (3.10)

Using 3.9 to obtain Ż, the solution to 3.10 is

L = e
τ
N2

[
1−
√

2πN1

2
erf

(√
τ

N2

)]
(3.11)

It is noted that N2 acts as a process time constant by only appearing with τ . An

improvement for D is now obtained. By eliminating Ṁ between equation 3.8a and
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3.8b results in the ODE to replace the initial assumption for D,

LḊ = −(L̇+ Ż)D (3.12)

By using both 3.9 and 3.11 to attain Ż and L̇ respectively, the solution for 3.12 is

D = e
− τ
N2 (3.13)

Further improvement for D will be made in the next section. Using equation 3.9 for

Ż and substituting 3.11 into 3.8a or using 3.11 and 3.13 for L, L̇, D, and Ḋ into 3.8b

results by integration for the release zone mass, given by

M =

√
2πN1

2
erf

(√
τ

N2

)
(3.14)

The rupture-number will be defined as NR ≡
√
2πN1

2
which defines the rupture con-

dition. For large τ , erf
(√

τ
N2

)
asymptotes to 1. If NR < 1, the rupture number

estimates the mass of the detached portion of the jet. If
√
2πN1

2
> 1, the jet becomes

fully arrested without rupture. Equation 3.14 is shown with the numerical solution

to equations 3.8 as well as the CTH and Abaqus simulation results in Figure 3.4

for several NR before and after rupture. Although the closed form approximation

slightly under-predicts at late time, the asymptotic behavior is in excellent agree-

ment. Since the plastic velocity increment is an important measure for jet stability

[33], the rupture condition is equivalently given by
√

π
2

Vpl
u0

< 1. Note that this con-

dition is directly the result of mass and momentum conservation with kinematic

compatibly and rupture is only dependent on the yield strength and density for

material properties and the initial conditions.

3.4.2 Velocity Pullback Phenomena

The system of equations 3.8 captures the velocity pullback phenomena and is exem-

plified by finding a solution for U . Since M looks like Z, using M ≈ Z in equation
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Figure 3.4: Dimensionless release zone mass

3.8e results in an ODE for U which is

−N1

N2

D = ZU̇ (3.15)

Taking D from 3.13 and Z from 3.9, a closed form solution of the resulting approxi-

mating ODE for U is

U = 1−
√

2πN1

2
erf

(√
τ

N2

)
(3.16)

and is compared with the numerical solution, CTH and Abaqus simulations in

Figure 3.5. Since slower moving material is joining the release zone that moves

at a uniform velocity, the release zone velocity must decrease to conserve linear

momentum. Deformation arrest happens gradually and non-uniformly within the

body. As examined in the prior section, deviation at late time is a result of taking

M = Z which is a better assumption at early time when D ≈ 1 however asymptotic
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Figure 3.5: Velocity of the jet tip illustrating the velocity pullback phenomenon

behavior is in excellent agreement. If rupture occurs, the residual particle velocity is

U = 1−NR. The strain rate is obtained in a straight forward manner from equation

3.8c and is given by

Ė = e
− τ
N2 (3.17)

An improvement for D is achieved by eliminating Ṁ between equations 3.8a and

3.8b and U between equations 3.8c and 3.8d. Then eliminating Ż between the

combinations and recognizing that the solutions 3.17 and 3.13 are identical, the

following ODE is obtained for D,

Ḋ =
1

N2

D2 (3.18)

The solution is

D =
N2

N2 + τ
(3.19)
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Both the strain-rate and plastic region cross-section is found to be independent of

material properties and varies only on time and the initial effective geometric ratio

of the jet length to cross-section. Comparison of equation 3.17 and 3.19 with the

numerical solutions to equations 3.8 as well as the CTH and Abaqus simulation

results for several different N1 and N2 before and after rupture are shown in Figure

3.6 and Figure 3.7 respectively. Agreement is good for Ė and excellent for D. The

improvements for the closed form of D is necessary since D is sensitive to changes

in Ė. By observation, equation 3.19 is in excellent agreement with Ė if NR ≤ 1.

Figure 3.6: Dimensionless plastic zone strain rate
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Figure 3.7: Dimensionless jet cross section

3.4.3 Rupture Strain

A better solution for the time profile in M can be obtained by recognizing from 3.16

that U = 1−M . Therefore, from equation 3.8e, the ODE is

−N1

N2

D = −MṀ (3.20)

using 3.19 for D, solution to 3.20 is

M =
√

2N1(ln (N2 + τ)− ln (N2)) (3.21)

If rupture does not occur, the time for deformation to cease is when equation 3.21

equals one or if rupture occurs M = NR. Integrating equation 3.17 from τ = 0 to

the time in which deformation ceases gives the total plastic strain. The equation is

E = 1− e
(
1−e

1
2N1

)
(3.22)
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If rupture occurs, integrating equation 3.19 and using M = NR, the rupture strain

is found to be

ER =
π

4
(3.23)

This result illustrates that the tensile rupture strain for a perfectly ductile material

is approximately constant. An improvement for L is found by using 3.19 for D and

Ḋ and 3.21 for Ṁ in equation 3.8b. The solution is

L =
N2 + τ

N2

(
1−

√
2N1 (ln (N2 + τ)− ln (N2))

)
(3.24)

Figure 3.8 compares equation 3.24 with the direct numerical solution of equations

3.8 as well as the CTH and Abaqus simulation results for several different N1 and

N2 before and after rupture.

Figure 3.8: Dimensionless plastic zone length

32



Chapter 3. Reduced Order Modeling for Deformation Arrest

3.4.4 Deformed Shape

The shape and position of the rigid region at any instant during deformation can

be obtained by parametric representation. Using equations 4.14, 4.15 and 3.19, the

outline of the jet tip at time τ is given by

R =
1

2

√
N2

N2 + s
(3.25a)

Z =
N2 + τ

N2

(
1−

√
2N1 (ln (N2 + τ)− ln (N2))

)
+

√
2
N1

N2

τ −
√

2
N1

N2

s

(3.25b)

where the parameter s draws the contour for 0 <= s <= τ . The quantities R and Z

are the dimensionless radial and axial coordinates respectively. Figure 3.9 shows the

shape and position of an example jet tip that becomes fully arrested without rupture

at several instances. The analytical and numerical solutions are shown together with

CTH simulation results. Figure 3.10 is the same illustration instead for a jet that

ruptures. Since the closed form for L overestimates at late time, the jet tip appears

to travel slightly further. The body shape matches very closely in both figures.

3.5 Conclusions

An approach has been developed to predictively model the deformation arrest process

for the inertially deforming ductile jet where strains can be very large and the body

shape changes considerably. The solutions are shown to be in excellent agreement

with FEA and shock-code simulation. The method employs continuum conservation

laws with the propagation of a Mott-Lee release wave over a length where strain-rate

and jet cross-section decreases drastically. Moving boundary analysis like those in

Stefan-like problems is used to impose compatibility requirements for a continuous

body through kinematic constraints. A finite jet body dissipates kinetic energy non-

uniformly by internal plastic work. The time-varying plastic zone size is captured
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Figure 3.9: Release Zone contour during deformation arrest for a non-rupturing jet

with the strain-rate and cross-section shown to be independent of material properties.

The velocity pullback phenomenon is demonstrated in solution.

The resulting system of differential-algebraic equations reveals key physical char-

acteristics not yet before realized. Dimensional analysis uncovers two dimensionless

numbers, one related to the plastic velocity increment common in plastic stability

analysis and the other with the process time. The closed form solution process leads

to theoretical rupture conditions, mass and velocity of the detached particle if rup-

ture occurs, the time for motion to cease as well as the rupture strain. The shape

and position of the body at any instant during deformation is obtained from the

solution.

Solution of this system of equations is not limited to the initial and boundary

conditions used here to illustrate the various phenomena discussed. Consideration of
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Figure 3.10: Release Zone contour during deformation arrest for a rupturing jet

this modeling approach may be to adopted with appropriate modification to other

problems in large-strain dynamic plasticity. Planned work consists of including vis-

coplastic material response to obtain a more material-general solution. Application

of externally applied forces to the jet tip is to be included to show the relationship

between loading and its impulse on rupture. Tensile rupture conditions may be ob-

tained to the stretching of plastic hinges formed from transverse blast or impact

loadings. This model can therefore be inserted into a multi-component structural

model where necking and rupture is postulated to occur.
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Chapter 4

Viscoplastic Effects on the

Deformation Arrest Process

4.1 Abstract

It is shown that isotropic homogeneous constitutive equations for plastic flow-stress

can be included in the governing system of equations for deformation arrest. This is

exemplified using the Johnson-Cook viscoplastic relation [37] with the addition of a

plastic work to temperature equation. The influence of thermal softening, strain-rate

stiffening, and work hardening is discussed on the behavior of the inertially stretching

jet.

4.2 Introduction

A mathematical theory for the deformation arrest process in large-strain dynamic

plasticity has been proposed and exemplified in an inertially stretching jet. The
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mathematical theory assumes idealized perfectly plastic material behavior. Real

material effects important in the regime of strains and strain-rates where the theory

is applied have been neglected in the development. These real material affects in-

clude thermal softening due to plastic-work heating, strain-rate stiffening, and work

hardening.

Phenomenological and empirical viscoplastic constitutive relationships have been

implemented in shock-codes and finite-element simulation tools for several decades

with success in capturing these and other real material effects. One of the most

common viscoplastic models for ductile materials is the Johnson-Cook flow stress

equation [37]. It is given by

σy = (A+Bεn)

(
1 + C ln

[
ε′

ε′r

])(
1−

[
T − T0
Tm − T0

]m)
(4.1)

where von-Mises yield stress is σy. The material specific constants A, B, C, n, and m

are measured at the reference strain-rate ε′r and temperature T0. The nominal yield

stress is σ0 = A. Plastic strain, strain-rate, temperature, and melting temperature

are ε, ε′, T , and Tm respectively.

Viscoplastic influences are included in the deformation arrest theory by straight-

forward insertion of equation 4.1 and the addition of a plastic-work to tempera-

ture relationship. Some key consequences of these material effects on the inertially

stretching jet illustrated in Figure 4.1 are highlighted.

The deformation arrest process for an inertially stretching jet with perfectly plas-

tic flow stress is given by the system of differential algebraic equations (DAE’s) in
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Figure 4.1: Inertially stretching jet illustration with representative flow stress and
velocity profiles

4.2a through 4.2f.

Ṁ = DŻ (4.2a)

Ṁ = −DL̇− LḊ (4.2b)

U = ĖL (4.2c)

U = N2(L̇+ Ż) (4.2d)

−N1

N2

D = MU̇ (4.2e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ + 6MUU̇ + 6
N1

N2

DLĖ

(4.2f)

The dimensionless constants are defined by N1 ≡ σy
ρu20

and N2 ≡ u0
δ0ε′0

. The quantities

σy, u0, δ0 and ε′0 are the nominal perfectly plastic yield stress, initial jet tip velocity,

initial jet cross-section and the initial strain-rate respectively. The dimensionless

variables in 4.2 are given to be ξ ≡ u0
ε′0
Z, l ≡ u0

ε′0
L, δ ≡ δ20D, u ≡ u0U , ε′ ≡ ε′0E

′,

m ≡ ρδ20
u0
ε′0
M , and t ≡ δ0

u0
τ which are the release zone length, plastic zone length,

plastic zone cross-section, jet tip velocity, plastic strain-rate, release zone mass, and

38



Chapter 4. Viscoplastic Effects on the Deformation Arrest Process

time respectively. The over-dot is used for the dimensionless time derivative. The

closed-form solution process to equations 4.2 by an iterative substitution approach

yield

Z =

√
2
N1

N2

τ (4.3a)

L = e
τ
N2

[
1−
√

2πN1

2
erf

(√
τ

N2

)]
(4.3b)

M ≈
√

2πN1

2
erf

(√
τ

N2

)
(4.3c)

U = 1−
√

2πN1

2
erf

(√
τ

N2

)
(4.3d)

D =
N2

N2 + τ
(4.3e)

Ė =

e
− τ
N2 if

√
2πN1

2
> 1

N2

N2+τ
if
√
2πN1

2
≤ 1

(4.3f)

M =
√

2N2 (ln (N1 + τ)− ln (N1)) (4.3g)

τmax = N2

(
e
N2
R

2N1 − 1

)
(4.3h)

Emax =

1− e
(
1−e

1
2N1

)
if
√
2πN1

2
> 1

π
4

if
√
2πN1

2
≤ 1

(4.3i)

The rupture number NR is defined as

NR ≡

1 if
√
2πN1

2
> 1

√
2πN1

2
if
√
2πN1

2
≤ 1

4.3 Thermal Softening

Plastic zone heating due to internal plastic work reduces the flow stress acting on

the release zone. Time scales are short enough (∼ 10−3 sec) that heat conduction
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is neglected and adiabatic conditions are presumed. Thermal softening behavior

is isolated by zeroing the coefficients for strain-rate and strain hardening effects in

simulation. Results show that thermal softening retards propagation of the rigid-

plastic interface, decreasing the rate of mass gain in the no longer deforming portion

of jet. The jet tip maintains a faster velocity, decreased cross section and longer

plastic zone. Materials that readily soften reach reduced temperatures for the same

strains. This is the result of decreasing material strength with increasing plastic

work by means of temperature rise. As the material softens, the rate of temperature

rise in the material is thereby reduced. In our simulations, the temperature rise in

common engineering metals are of the order of tens of degrees C. This has negligible

effect on the material strength, however perturbations in the plastic flow field grow

more rapidly. Bulk thermal softening effects are apparent if the melt temperature is

reduced to those of common plastics.

A temperature dependent functional form for the flow stress is added to the

governing system of DAE’s 4.2. The Johnson-Cook viscoplastic flow stress with only

the thermal softening terms are used for illustration. The equation for flow stress is

σy = σ0

(
1−

[
T − T0
Tm − T0

]m)
(4.4)

where σ0 is the nominal quasi-static yield strength, T is the material temperature,

Tm is the melting temperature, T0 is the nominal reference temperature, and m is

a fitted softening exponent that typically ranges between 0.3 and 1.8. For many

common engineering metals, m ≈ 1. Since the temperature rise is of the order of 100

to 101 degrees Kelvin, constant specific heat capacity cT is assumed. The material

temperature in the plastic zone is computed using

ρcT
dT

dt
= βσyε̇ (4.5)

The right side of equation 4.5 is the rate of mechanical energy dissipated by plastic

work per unit volume times the inelastic heat fraction β [22]. By scaling the flow
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stress to the nominal yield strength and by means of distinguishing the homologous

temperature while adopting the previously defined dimensionless scaling, equations

4.6 are added to the system 4.2.

Y = 1−Θm (4.6a)

Θ̇ =
NT

N2

Y Ė (4.6b)

A third dimensionless number, NT ≡ βσ0
ρcT (Tm−T0)

appears in combination withN2. The

quantity NT is the fraction of temperature-available capacity for mechanical energy

dissipation to that of the thermal energy gain required for melt. The quantity N2 is

a measure of arresting time scale. Generalization of equations 4.2e and 4.2f is needed

to couple the variable yield strength. They become

−N1

N2

Y D = MU̇ (4.7a)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ + 6MUU̇ + 6
N1

N2

Y ĖDL

(4.7b)

Eliminating Y between equations 4.6a and 4.6b yields

Θ̇ =
NT

N2

(1−Θm) Ė (4.8)

Substituting 4.3f for when
√
2πN1

2
≤ 1 and solving the resulting ODE for Θ, the con-

sequences of NT and m can be investigated. Closed-form solutions can be obtained

for select m. If m = 1, the closed form solution for the temperature rise is

Θ = 1−
(

N2

N2 + τ

)NT
(4.9)

Equation 5.9 is in excellent agreement with CTH [17] simulation. The functional

form illustrates that the temperature rises less rapidly with larger NT . The influence

of m is shown in Figure 4.2 by numerical integration. The quantity NT is chosen for

several common engineering metals. Smallerm decreases the rate of temperature rise.
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Figure 4.2: Influence of NT and m on the homologous temperature as a function of
time

Further illustrating that greater thermal softening decreases the rate of heating. In

the same manner as demonstrated in chapter one for the body shape, the temperature

profile along the jet can be obtained at any instant. This is shown in Figure 4.3.

The temperature of the plastic zone increases in time with increased strain. In

the non-deforming zone, the jet tip is that of ambient temperature and rises along the

jet axis towards the plastic zone. As the plastic interface propagates into the plastic

zone, increasingly strained and heated material binds with the release zone creating

what represents the history of the plastic zone thermal state. The approximate closed

form for the temperature profile along the axis Z coordinate at any instant τ is given

by equations 4.10.
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Figure 4.3: Homologous temperature profile along the jet length at several instances
in time

Θ = 1−
(

N2

N2 + s

)NT
(4.10a)

Z = e
τ
N2

[
1−
√

2πN1

2
erf

(√
τ

N2

)]
+

√
2
N1

N2

τ −
√

2
N1

N2

s (4.10b)

The parameter s draws the contour for 0 <= s <= τ .

The late time oscillations in the plastic zone temperature during the CTH sim-

ulations are domain-boundary numerical artifacts enhanced by numerical instability

induced from softening. When the oscillation front approaches the plastic boundary,

these boundary influences begin to influence the bulk behavior of the jet and the

simulations are then terminated. Figure 4.3 demonstrates that inclusion of equa-

tion 4.6 and 4.7 while using 4.3, thermal softening behavior on deformation arrest is

incorporated without the inherent numerical challenges of shock-code simulation.
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4.4 Strain-Rate Stiffening

Figure 4.4: Inertially stretching jet illustration with representative flow stress and
velocity profiles with strain-rate stiffening

During rapid loading, engineering metals can stiffen beyond nominal yield stress.

If strain-rates increase during deformation, the material hardens while if strain-rates

decrease, softening occurs instead. By isolating strain-rate dependence in simulation,

it is observed that the distance from the root to the release boundary is no longer the

plastic zone length. Instead, the release boundary leads the yielding interface in the

plastic zone and is located where the inflections in yield state and material velocity

correspond. This is illustrated schematically in Figure 4.4. Although the material

between the release boundary and the elastic-plastic interface has a non-zero plastic

strain-rate, the axial velocity is uniform with the entire release zone. The rigid-

plastic boundary in equations 4.2 is placed at the yield state inflection coordinate
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as opposed to the elastic-plastic interface. Equations 4.7 and 4.11 allow strain-rate

effects to be captured. Isolating strain-rate stiffening, the Johnson-Cook flow stress

is given by

Figure 4.5: Comparison of Abaqus simulation with the numerical DAE solutions
for strain-rate stiffening shown with the strain-rate shift and the perfectly plastic
reference case where Y = 1

σy = σ0

(
1 + C ln

[√
3

2

ε′

ε′r

])
(4.11)

The material constant C typically ranges between 6 × 10−3 to 6 × 10−2 and
√

3
2
ε′

is the equivalent von-Mises deviatoric plastic strain-rate with ε′r as the reference

strain-rate. In non-dimensional form, equation 4.12 becomes

Y = 1 + C ln
[
Ė
]

+ C ln

[√
3

2

ε′0
ε′r

]
(4.12)
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The third term on the right-hand side is a time independent strain-rate shift in yield

stress. Inserting equation 4.12 into the system 4.2 again with 4.7 closes the system.

Solutions are in excellent agreement with Abaqus [1] simulation and is illustrated in

Figure 4.5. For reference, the solutions for the perfectly plastic cases, Y = 1 and

for Y = 1 + C ln
[√

3
2

ε′0
ε′r

]
are shown. For typical values of C, the perfectly plastic

solution with the time independent strain-rate shift is nearly indistinguishable from

the full solution. The quantity N∗R is defined as the rupture number using the strain-

rate shifted yield stress. The offset between the numerical and Abaqus solutions for

the mass is due to uncertainty in extracting the yielding stress inflection coordinate

from simulation output. Using the same technique used to determine the temperature

distribution, the total plastic strain distribution can be obtained.

4.5 Work Hardening

In simulation, total plastic strains reach order 10−1 to 100. Since the strains are large,

work hardening is significant and increases the flow stress by several times during

deformation. Work hardening can significantly increase the initial jet tip velocity

required for jet rupture. To illustrate this effect, the yield stress is given by Ludwik’s

equation[60]. Let

σy = σ0 +Bεn (4.13)

be the flow stress where B is the hardening coefficient, m is the hardening exponent

and ε the total plastic strain. To include in the system 4.2, the dimensionless form

of equation 4.13 is

Y = 1 +
B

σ0
En (4.14)

The relationship between E and Ė is

E =
1

N2

∫ τ

0

Ėdτ (4.15)
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Figure 4.6: Comparison of Abaqus simulation with the numerical DAE solutions for
work hardening shown with the perfectly plastic reference case where Y = 1
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Figure 4.6 compares the solutions ofE, Y , M and U with and without work hardening

to Abaqus solutions for example N1 and N2 near rupture. During the deformation

process, the yield strength increases by a factor of 4. This accelerates the growth of

the release zone and enhances the velocity pullback. Greater mechanical energy is

absorbed as plastic work and the time for motion to cease reduces. Note that the

plastic strain, strain-rate, and plastic zone-cross section is independent of material

properties. The systematic offset is a result of estimating the location of the plastic

interface within the simulation due to the slight curvature in the interface. The

strain-rate deviation at late time is due to large sensitivity in U and L as L becomes

small.

4.6 Combined Effects

The three viscoplastic effects discussed are combined using the Johnson-Cook prod-

uct description given by equation 4.1 [37]. In dimensionless form, the system of
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Figure 4.7: Comparison of Abaqus simulation with the numerical DAE solutions with
combined viscoplastic effects shown with the perfectly plastic reference case where
Y = 1
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DAE’s including the temperature equation and full Johnson-Cook equation is

Ṁ = DŻ (4.16a)

Ṁ = −DL̇− LḊ (4.16b)

U = ĖL (4.16c)

U = N2(L̇+ Ż) (4.16d)

−N1

N2

Y D = MU̇ (4.16e)

Θ̇ =
NT

N2

Y Ė (4.16f)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ + 6MUU̇ + 6
N1

N2

Y DLĖ

(4.16g)

Y =

(
1 +

B

σ0
En

)(
1 + C ln

[
Ė
]

+ C ln

[√
3

2

ε′0
ε′r

])
(1−Θm) (4.16h)

Numerical solution to equation 4.16 match Abaqus simulations. Comparison is

shown in Figure 4.7. For reference, the solution for Y = 1 is also shown. In this

example, work hardening dominates early time by the quick rise in yield stress.

Thermal softening becomes influential at late time due to the increased flow stress.

Plastic strain increases monotonically and independent of material properties. Also,

note that the jet cross-section is independent of material properties. The net effect

due to viscoplasticity is a more rapid deformation arrest process.

4.7 Conclusions

Using the Johnson-Cook flow stress equation, viscoplastic effects on the deforma-

tion arrest process in an inertially stretching jet have been obtained. A temperature

equation that relates internal plastic work to the homologous temperature is added

to the governing system of differential algebraic equations. A dimensionless num-
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ber, NT that relates the conversion of mechanical energy to a temperature-available

internal energy gain for melt appears representing the influence of thermal soften-

ing. It is shown that increased thermal softening reduces the rate of temperature

rise and the temperature profile at any instant in time can be obtained. Strain-rate

stiffening is shown to cause an upward shift in yield stress. Due to the logarithmic

nature of the strain-rate in the Johnson-Cook equation, the flow-stress drop is minor

during deformation. The uniform axial-velocity segment at the jet tip was found

to extend into the plastic region. Since the strains are large and increase rapidly,

work hardening has the most significant effect. A sharp rise in flow stress occurs

followed by a significantly increased velocity pullback effect. When all the effects are

combined, work-hardening is dominant and thermal softening effects may become

apparent depending on NT at late time.

Although this analysis implemented only the Johnson-Cook relationship, the ap-

proach illustrated is not restricted to this constrictive model. Other relationships that

more accurately represent other isotropic homogeneous materials can be inserted in-

stead. This study demonstrates general and robust attributes to the deformation

arrest theory proposed prior.
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Chapter 5

The Application of External and

Coupling Loads on Deformation

Arrest in Tensile Ductile

Stretching

5.1 Abstract

External and coupling loads have been applied to the mathematical treatment pro-

posed for deformation arrest in ductile stretching. Closed form solutions are obtained

for the application of a tensile step loading on the jet tip. Analysis results in the

rectangular-hyperbolic relationship between the loading and its impulse on the rup-

ture threshold. The asymptote for minimum impulse at maximum loading is found

to be dependent on both the jet slender ratio and the kinetic energy density to yield

strength ratio. The asymptote for the minimum pressure at maximum loading is

found to only depend on the kinetic energy density to yield strength ratio. Drag
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resistance has been applied to the jet tip with little influence on jet motion unless

the density of the surrounding fluid is comparable to the jet material.

Coupling the deformation arrest process for the linearly stretching ductile jet to a

single-mode beam in phase 3 motion with angular deflection has been accomplished.

The Zhao response number [111] appears in the dimensional analysis. Solution results

show complicated features including rupture and full arrest. Other solutions show

behaviors warranting further study.

5.2 Introduction

A method has been proposed to mathematically represent the deformation arrest

process in an inertially stretching jet. In the problem formulation, the jet tip is

stress-free and released suddenly to initiate the arrest process. However, problems

of engineering interest require loadings to be applied to the jet tip. Generalizing

the inertial jet deformation arrest problem to include external loads can lead to

solution methods to current unsolved problems in engineering. In this chapter, such

generalization is illustrated.

Loading-impulse relationships have been essential in the study of structural re-

sponse to dynamic loadings and their engineering applications. Traditionally, the

task is to reduce complexity by applying simplifying assumptions to a structure

model for the deflections [29, 55, 56]. The results are mass-spring-damper like single

degree-of-freedom (SDOF) systems. A time dependent loading is then applied and

estimates on the final deflections are obtained as a function of loading magnitude and

impulse. Defining deflection based damage criterion for SDOF systems representing

structure failure is not well subscribed. However, it is recognized that load-impulse

diagrams for a given deflection are of the rectangular-hyperbolic form with minimum

load and minimum impulse asymptotes [2].
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Practical calculations in structural dynamic plasticity are either performed as

quasi-static or dynamic with impulsive-velocity initial conditions [39, 40, 79]. Spatial

deflection profiles for elementary beams can be represented as a series of linked

segments referred to as deformation modes. The motion of the segments upon loading

occurs in 3 phases. The first phase is during the loading application where plastic

hinges that resist rotational motion via the plastic moment Mp form at the root. If

the boundary conditions are appropriate, plastic hinges also form at interior points

and travel along the beam length as deflection progresses. In phase 2, the loading

is removed and the motion of the interior hinges can change direction. In the final

phase, the hinges become stationary and the beam segments rotate and translate as

rigid bodies until motion ceases.

Figure 5.1: Inertially stretching jet illustration with representative flow stress and
velocity profiles

When tensile stretching occurs as opposed to rotation about plastic hinges, the

deformation arrest process in the viscoplastic inertially stretching jet shown in Figure

5.1 is applied. The mathematical representation is given by the system of differential
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algebraic equations (DAE’s) given by 5.1a through 5.1f

Ṁ = DŻ (5.1a)

Ṁ = −DL̇− LḊ (5.1b)

U = ĖL (5.1c)

U = N2(L̇+ Ż) (5.1d)

−N1

N2

Y D = MU̇ (5.1e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ + 6MUU̇ + 6
N1

N2

Y DLĖ

(5.1f)

The variable Y represents the viscoplastic relationship. The dimensionless constants

are defined by N1 ≡ σ0
ρu20

and N2 ≡ u0
δ0ε′0

. The quantities σo, u0, δ0 and ε′0 are the

nominal yield stress, initial jet tip velocity, initial jet cross-section and the initial

strain-rate respectively. The dimensionless variables in 4.2 are given to be ξ ≡ u0
ε′0
Z,

l ≡ u0
ε′0
L, δ ≡ δ20D, u ≡ u0U , ε′ ≡ ε′0E

′, m ≡ ρδ20
u0
ε′0
M , and t ≡ δ0

u0
τ which are the

release zone length, plastic zone length, plastic zone cross-section, jet tip velocity,

plastic strain-rate, release zone mass, and time respectively. The over-dot is used

for the dimensionless time derivative. For a perfectly-plastic Y = 1 material, the

closed-form solution process to equations 5.1 by an iterative substitution approach
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yield

Z =

√
2
N1

N2

τ (5.2a)

L = e
τ
N2

[
1−
√

2πN1

2
erf

(√
τ

N2

)]
(5.2b)

M ≈
√

2πN1

2
erf

(√
τ

N2

)
(5.2c)

U = 1−
√

2πN1

2
erf

(√
τ

N2

)
(5.2d)

D =
N2

N2 + τ
(5.2e)

Ė =

e
− τ
N2 if

√
2πN1

2
> 1

N2

N2+τ
if
√
2πN1

2
≤ 1

(5.2f)

M =
√

2N2 (ln (N1 + τ)− ln (N1)) (5.2g)

τmax = N2

(
e
N2
R

2N1 − 1

)
(5.2h)

Emax =

1− e
(
1−e

1
2N1

)
if
√
2πN1

2
> 1

π
4

if
√
2πN1

2
≤ 1

(5.2i)

The rupture number NR is defined as

NR ≡

1 if
√
2πN1

2
> 1

√
2πN1

2
if
√
2πN1

2
≤ 1

5.3 Loading of the Tensile Jet

The influence of an externally applied loading on the deformation arrest process

is investigated by applying a force to the jet tip as illustrated in Figure 5.2. The

force can be an explicit function of time, a function of any of the system variables

or a coupling action to some-other mechanical system. An example of each will be

illustrated.
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Figure 5.2: Inertially stretching jet illustration with representative flow stress and
velocity profiles with a tensile load

To formulate the most general case, let p be the applied force at the jet tip. The

force-momentum balance is

p− σyδ = m
du

dt
(5.3)

The loading p adds or removes energy by mechanical work. The rate of mechanical

work is pu. The energy conservation equation therefore becomes

l3ε′2
dδ

dt
+ 2δl3ε′

dε′

dt
+ 3δl2ε′2

dl

dt
+ 3u2

dm

dt
+ 6mu

du

dt
+ 6δlσY ε

′ − 6pu = 0 (5.4)

By defining p ≡ σ0δ0P , the dimensionless form of equation 5.3 is

N1

N2

(P − Y D) = MU̇ (5.5)

and for 5.4,

Ė2L3Ḋ+2DĖL3Ë+3DĖ2L2L̇+3U2Ṁ+6MUU̇+6
N1

N2

(Y ĖDL−PU) = 0 (5.6)
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For positive P , the jet tip is being pulled and for negative P , pushing resistance is

applied instead. In the next section, a step-loading pulling force is applied. The

following section considers a pushing force by fluid drag. Lastly, a rigid beam with

plastic hinges at the mid-point and root is coupled such that stretching at the beam

attachment points can be represented.

5.3.1 Step Impulse and the P-I Diagram

Application of a pulling action on the jet tip is examined. Suppose the force p is

p = p0(1−H(t− t1) where H(t− t1) is the unit step function and t1 is the length of

time for which p is applied. The impulse of p is ιp = p0t1. The dimensionless form

for p is

P = P1(1−H(τ − τ1)) (5.7)

The constant P1 is defined by P1 ≡ p0
σ0δ0

. The dimensionless impulse is I1 = P1τ1.

For simplicity, perfectly plastic material representation will be used. The resulting

system of DAE’s become

Ṁ = DŻ (5.8a)

Ṁ = −DL̇− LḊ (5.8b)

U = ĖL (5.8c)

U = N2(L̇+ Ż) (5.8d)

MU̇ =
N1

N2

(P − Y D) (5.8e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ

+ 6MUU̇ + 6
N1

N2

(Y ĖDL− PU)
(5.8f)

P = P1(1−H(τ − τ1)) (5.8g)

Solution is now realized.
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5.3.2 Closed Form Solution

The iterative substitution approach is used to find a closed form piecewise solution.

First the solution for τ ≤ τ1 is obtained and then the solutions at τ1 are used as

initial conditions. The system is solved again for τ > τ1.

Step Loading for When τ ≤ τ1

At early time, D = 1 and Ė = 1 is assumed. The system of equations 5.8 then

reduces to an ODE for Z. The solution is

Z =

√
2
N1

N2

(1− P1)τ (5.9)

Maintaining the assertion that Ė = 1 and with the solution for Z, algebraic reduction

results in an ODE for L for which

L = e
τ
N2

[
1−

√
2πN1(1− P1)

2
erf

(√
τ

N2

)]
(5.10)

The loading has no effect on the jet cross-section. Therefore, for the first iteration

D is taken to be

D = e
− τ
N2 (5.11)

With equation 5.15 and 5.9, integration of equation 5.8a yields the release zone mass,

M =

√
2πN1(1− P1)

2
erf

(√
τ

N2

)
(5.12)

By assuming M ≈ Z in equation 5.8e, the jet tip velocity is

U = 1 +
P1

√
2N1(1−P1)τ

N2

1− P1

−
√

2πN1(1− P1)

2(1− P1)
erf

(√
τ

N2

)
(5.13)

A better solution for D is

D =
N2

N2 + τ
(5.14)

59



Chapter 5. External & Coupling Loads on Deformation Arrest in Ductile Stretching

and Ė is also independent of the loading. Therefore

Ė =
N2

N2 + τ
(5.15)

Step Loading for When τ > τ1

When the loading is release at τ = τ1, in terms of P1 and N1 the system state is

Z1 =

√
2
N1

N2

(
I1
P1

− I1) (5.16a)

L1 = e
I1

P1N2

[
1−

√
2πN1(1− P1)

2
erf

(√
I1

P1N2

)]
(5.16b)

D1 = e
− I1
P1N2 (5.16c)

M1 =

√
2πN1(1− P1)

2
erf

(√
I1

P1N2

)
(5.16d)

U1 = 1 +
P1

√
2N1I1(1−P1)

P1N2

1− P1

−
√

2πN1(1− P1)

2(1− P1)
erf

(√
I1

P1N2

)
(5.16e)

Equation 5.8 is solved again using equations 4.15 for initial conditions and integrating

in time with respects to the shifted time ζ ≡ τ − τ1 = τ − I1
P1

. The solutions are
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found to be

Z =

√
2
N1

N2

(τ − I1) (5.17a)

L = e
τ
N2

[
1−

√
2πN1(1− P1)

2
erf

(√
I1

P1N2

)]

+ e
τ−I1
N2

√
2πN1

2

[
erf

(√
I1

P1N2

− I1
N2

)
− erf

(√
τ − I1
N2

)] (5.17b)

M =

√
2πN1(1− P1)

2
erf

(√
I1

P1N2

)

− e
−I1
N2

√
2πN1

2

[
erf

(√
I1

P1N2

− I1
N2

)
− erf

(√
τ − I1
N2

)] (5.17c)

U = 1 +

√
2

N1P1I1
N2(1− P1)

− 1

2

√
2πN1

1− P1

erf

(√
I1

P1N2

)

+ e
−I1
N2

√
2πN1

2

[
erf

(√
I1

P1N2

− I1
N2

)
− erf

(√
τ − I1
N2

)] (5.17d)

D =
N2

N2 + τ
(5.17e)

Ė =
N2

N2 + τ
(5.17f)

The numerical solution to equation 5.8 is shown with the closed form solution and

Abaqus simulation in Figure 5.3. For reference, a no-loading solution for the same

N1 and N2 is also shown. The loading is applied from τ = 0 to τ = 0.5. The growth

of the release zone is reduced while the plastic zone length and jet tip velocity do

not decrease significantly. When the load is released, a sudden change is seen in the

jet behavior. The release zone grows rapidly and the jet velocity drops quickly.

The relationship between the loading magnitude P1 and its impulse I1 on the

rupture threshold is obtained by finding P1 corresponding to an I1 in equation 5.17c

at rupture. Deformation ceases when U = 0 giving τ = τmax which is substituted into

equation 5.17c. The minimum P1 for a value of I1 for which M < 1 is then obtained

by numerical inversion. The P-I diagram for several N1 is shown in Figure 5.4 for
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Figure 5.3: Solution comparison of the ductile jet with a tensile step loading

select values of N2. The rectangular-hyperbolic shape familiar to P-I diagrams for

transverse beam loads is also shown to be case for the stretching jet. The asymptotic

behaviors for minimum I1 and P1 are also observed. The minimum impulse required

to cause rupture is the intersection of the P-I contour with the P1 = 1 horizontal.

The minimum impulse is found to be

I1,min = −N2 ln

(
2√

2πN1

)
(5.18)
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Figure 5.4: P-I relationship for a step impulse on the rupture threshold

The minimum P1 required for rupture is the I1 asymptote and is given by

P1,min = 1− 2

N1π
(5.19)

Note that the minimum impulse depends on both N1 and N2 while the minimum

loading only depends on N1. For N1 near the zero-load rupture condition N1 = 2
π
,

little loading is required regardless of impulse. For large N1, both the minimum

impulse and the minimum loading must be larger.

5.4 Drag Resistance During Jet Motion

Consider drag resistance applied to the jet tip with perfectly plastic material. For

simplicity, assume the drag force is given by p = −1
2
ρfluidδ0u

2. In dimensionless
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Figure 5.5: Solution of the inertial jet with drag resistance

form,

P = −P0U
2 (5.20)
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where P0 =
ρfluidu

2
0

2σy
. The governing system of equations are now

Ṁ = DŻ (5.21a)

Ṁ = −DL̇− LḊ (5.21b)

U = ĖL (5.21c)

U = N2(L̇+ Ż) (5.21d)

MU̇ =
N1

N2

(P − Y D) (5.21e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ

+ 6MUU̇ + 6
N1

N2

(Y ĖDL− PU)
(5.21f)

P = −P0U
2 (5.21g)

(5.21h)

The numerical solution is shown in Figure 5.5 for several P0. It is found that unless

the density of the surrounding fluid is comparable to that of the jet material, drag

has little effect of the jet motion or arrest process. The solution for P0 corresponding

to air is indistinguishable from that in vacuum. As P0 increases to about ρfluid ≈ ρ,

the drag resistance slowly aids in deformation arrest by removing energy from the

jet flow. For rupture to occur, smaller N1 is required to compensate for drag losses.

5.5 Stretching of the Root in Transverse Beam

Deflection

To represent the inertial stretching of a transversely loaded beam at the attachment

points, the external loading in equations 5.5 and 5.6 is used to couple reaction forces.

To exemplify the coupling behavior, the beam of perfectly plastic material is taken

to be represented by an elementary single mode with deflection angle θ. This is
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Figure 5.6: Illustration of an single mode beam in phase 3 with tensile stretching at
the root

Figure 5.7: Kinetic free-body diagram of an single mode beam with coupling action
applied to the root

illustrated in Figure 5.6 with a plastic hinge at the root and at the midpoint symmetry

plane. The beam has a constant length h and midpoint deflection w. The horizontal

distance between the hinges is x. Suppose stretching of the root starts during phase

3. Time is set, t = 0 when the beam has deflected by θ0 and has an angular velocity

dθ
dt

. The angular velocity of the beam segment is related to u by

x = h cos(θ) (5.22)

66



Chapter 5. External & Coupling Loads on Deformation Arrest in Ductile Stretching

and

dx

dt
= −u (5.23)

The midpoint deflection is simply

w = h sin(θ) (5.24)

The kinetic free-body diagram is shown in Figure 5.7. The center of mass lies at the

beam segment center, therefore the angular momentum balance about the midpoint

hinge is given by

−pw − 2 sgn

(
dθ

dt

)
Mp = Io

d2θ

dt2
− ρδ0h

x

2

d2w

dt2
(5.25)

where Mp is the plastic moment, Mp =
δ20
4
σy that resists rotational motion and

I0 = 1
12

(4h2 + δ0) is the moment of inertia about an end. The function sgn() is the

sign function which is defined as 1 for a positive argument and −1 for a negative

argument. Both x and w scale with h. In dimensionless form,

X = cos(θ) (5.26)

and

W = sin(θ) (5.27)

. The relationship between dx
dt

and u becomes

Ẋ = − 1

N3

U (5.28)

where N3 = h
δ0

. The angular momentum balance scales with Mp. Therefore

−4PW − 2 sgn
(
θ̇
)

=
4N2

3 + 1

3N1

θ̈ − 2
N2

3

N1

XẄ (5.29)

The dimensionless number Rn =
N2

3

N1
has been identified by Zhao [111] as the response

number essential for characterizing rigid-plastic beam behavior to dynamic loads.
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Numerical solution to the system of equations 5.30 results in the coupled action.

Ṁ = DŻ (5.30a)

Ṁ = −DL̇− LḊ (5.30b)

U = ĖL (5.30c)

U = N2(L̇+ Ż) (5.30d)

MU̇ =
N1

N2

(P − Y D) (5.30e)

0 = Ė2L3Ḋ + 2DĖL3Ë + 3DĖ2L2L̇+ 3U2Ṁ

+ 6MUU̇ + 6
N1

N2

(Y ĖDL− PU)
(5.30f)

X = cos (θ) (5.30g)

Ẋ = − 1

N3

U (5.30h)

W = sin (θ) (5.30i)

θ̈ =
3N1

4N2
3 + 1

(
2
N2

3

N1

XẄ − 4PW − 2 sgn
(
θ̇
))

(5.30j)

Figure 5.8 shows a numerical solution that arrests without rupture. The deflection

angle monotonically increases by about 2 degrees until motion ceases. The coupling

force, positive for pulling on the plastic zone gradually decreases along with the

plastic-strain rate. The cross section reduces to about 0.35.

When rupture occurs, there is residual rotation motion. This is illustrated in

Figure 5.9. The coupling force decreases to zero at rupture. The plastic strain-rate

increases in an exponential form and tends to infinity and the plastic zone cross

section has a sharp drop just prior to rupture.
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Figure 5.8: Solution of deflecting beam motion fully arresting

5.6 Conclusions

External forces have been applied to the jet tip in the inertially stretching jet under-

going deformation arrest. Closed form solution to a tensile step loading illustrates
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Figure 5.9: Solution of deflecting beam with rupture at the root

the rectangular-hyperbolic relationship between the loading and its impulse on the

rupture threshold. The asymptotic limits for minimum impulse at maximum loading

and minimum loading at infinite impulse have been derived from first principals.
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The asymptote for minimum impulse at maximum loading is found to be dependent

on both the jet slender ratio and kinetic energy density to yield strength ratio. The

asymptote for the minimum pressure at maximum loading is found to only depend

on the kinetic energy density to yield strength ratio. Application of resisting drag

forces show little influence on the motion of the jet unless the surrounding fluid

density is comparable to that of the jet material. The deformation arrest process

realized for the inertial jet has been applied to the tensile stretching of the root with

an elementary single mode beam with transverse deflection. Solutions resulting in

rupture and full arrest have been shown. Since the solutions display complicated in-

teractions with bifurcations and release-loading cycles, further analysis is warranted.

Multi-mode formulations for the transverse beam motions will provide a more ac-

curate representation of real beam behavior. Furthermore, proper initial conditions

for the beginning of stretching in phase 3 motion may reduce the complications with

choosing valid N1, N2, N3 and θ0.
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Conclusions

A mathematical theory for deformation arrest in large-strain dynamic plasticity has

been proposed. The solutions of the reduced order model provide insight to the

physical process governing the vulnerability of ductile structural components such

as beams, walls, and blast doors to explosive loadings. Prior analysis required either

the use of highly-simplified methods that neglect much of the relevant physics or

the use of expensive finite element or shock-code simulation not suited to rapid

problem solving and parameter studies. Powerful computers are required to solve

the full set of Cauchy momentum equations with strength and state relationships,

examples of which are summarized in chapter 2. Yet, predictive rupture conditions

were not distinguished in prior publication although decades of research have been

performed to obtain these conditions. This dissertation addresses this gap in current

understanding and mathematical modeling technique.
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6.1 Summary

In chapter 3, an approach has been developed to predictively model the deformation

arrest process for the inertially deforming ductile jet where strains can be very large

and body shape changes considerably. The solutions are shown to be in excellent

agreement with FEA and shock-code simulation. The method employs continuum

conservation laws with the propagation of a Mott-Lee release wave over a length

where strain-rate and jet cross-section decreases drastically. Moving boundary anal-

ysis like those in Stefan-like problems is used to impose compatibility requirements

for a continuous body through kinematic constraints. A finite jet body dissipates

kinetic energy non-uniformly by internal plastic work. The time-varying plastic zone

size is captured with the strain-rate and cross-section shown to be independent of

material properties. The velocity pullback phenomenon is demonstrated in solution.

The resulting system of differential-algebraic equations reveals key physical char-

acteristics not yet distinguished. Dimensional analysis uncovers two dimensionless

numbers, one related to the plastic velocity increment common in plastic stability

analysis and the other with the process time. The closed form solution process leads

to theoretical rupture conditions, mass and velocity of the detached particle if rup-

ture occurs, the time for motion to cease as well as the rupture strain. The shape

and position of the body at any instant during deformation is obtained from the

solution.

In Chapter 4, the Johnson-Cook flow stress equation was used to demonstrate

viscoplastic effects on the deformation arrest process. A temperature equation that

relates internal plastic work to the homologous temperature is added to the governing

system of differential algebraic equations proposed in Chapter 3. A dimensionless

number, NT that relates the conversion of mechanical energy to a temperature-

available internal energy gain for melt appears representing the influence of thermal
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softening. It is shown that increased thermal softening reduces the rate of temper-

ature rise. The temperature profile at any instant in time can be obtained from

the solution. Strain-rate stiffening is shown to cause an upward shift in yield stress.

Due to the logarithmic nature of the strain-rate in the Johnson-Cook equation, the

flow-stress drop is minor during deformation. The uniform axial-velocity segment at

the jet tip was found to extend into the plastic region. Since the strains are large and

increase rapidly, work hardening has the most significant effect. A sharp rise in flow

stress occurs followed by a significantly increased velocity pullback effect. When all

the effects are combined, work-hardening is dominant and thermal softening effects

may become apparent depending on NT at late time.

Finally, in Chapter 5 external forces have been applied to the release zone in the

inertially stretching jet undergoing deformation arrest. Closed form solution to a

tensile step loading illustrates the rectangular-hyperbolic relationship between the

loading and its impulse on the rupture threshold. Typically, this relationship shape

is observed in simplified SDOF systems derived for general structure deformation

response. The asymptotic limits for minimum impulse at maximum loading and

minimum loading at infinite impulse have been derived from first principals. The

asymptote for minimum impulse at maximum loading is found to be dependent

on both the jet slender ratio and kinetic energy density to yield strength ratio.

The asymptote for the minimum pressure at maximum loading is found to only

depend on the kinetic energy density to yield strength ratio. Application of resisting

drag forces show little influence on the motion of the jet unless the surrounding

fluid density is comparable to that of the jet material. The deformation arrest

process realized for the inertial jet has been applied to the tensile stretching of the

root of a beam with an elementary single mode in transverse deflection. Solutions

resulting in rupture and full arrest have been shown. Multi-mode formulations for

the transverse beam motions will provide a more accurate representation of real beam

behavior. Furthermore, proper initial conditions for the beginning of stretching in
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phase 3 motion may reduce the complications with choosing valid dimensionless

system constants.

6.2 Future Work

Due to the general and foundational nature of deformation arrest in dynamically

deforming bodies, there are many areas of research that can be influenced by this

approach. The solution for the inertial stretching jet leads to particulation phenom-

ena when multiple release zones form and interact with each other. Including the

flow stress release from the root of the jet and coupling with the jet tip region may

provide a more accurate rupture threshold condition for specific problem scenarios.

Allowing a mass in-flow at the root or out-flow at the jet tip may allow for specific

solutions to the dynamic extrusion, micro jetting, or wire-drawing problems. The

deformation arrest theory can aid in characterizing material behavior in anisotropic

plastic flow by applying a flow stress force-vector to the plastic boundary. Further-

more, additional flow stress relationships can be inserted into the governing system

that can include other material properties such as brittle rupture strain. Multi-

material systems can be incorporated as well. Two and three-dimensional flow stress

release can be addressed. Coupling the external loading to reaction forces in general

mechanical systems could allow solution to a very large family of unsolved problems

in engineering where ductile stretching and dynamic neck retardation occurs. Lastly,

reversibility in the arrest process can be studied to aid fundamental understanding

of rapid loading resulting in dynamic plastic motions.
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Appendix A

Example CTH Input File

The following code is an example CTH input file used in the analysis. For more

details, see the CTH reference manual [17].

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ eor ∗ c th in

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

∗ cth input f o r I n e r t i a l l y S t r ea t ch ing Jet With Free Fast End

I n e r t i a l Jet : Copper , EVPPM model

∗

c on t r o l

t s top = 1000.0 e−6

endcont ro l

∗

mesh

block 1 geom=2dc type=e

x0=0.0

x1 n=50 w=1.00 r a t i o =1.0

endx

y0=0.0

y1 n=1250 w=25.00 r a t i o =1.0

endy

endb

endmesh
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∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

spy

Save (”VOLM,VX,VY, J2P ,YLD,DENS,M+1,KE,MVOL,PSR,CS”) ;

SaveTime (0 , 1e−5) ;

PlotTime (0 , 1e−5) ;

d e f i n e main ( )

{

pp r i n t f (” PLOT: Cycle=%d , Time=%e\n” ,CYCLE,TIME) ;

XBMirror (ON) ;

XLimits ( −0 .8 ,0 .8 ) ;

YLimits (0 , 15 ) ;

ImageFormat (1028 , 1028) ;

DataOut ( s p r i n t f (” data %0.6 f . dat ” ,TIME) ,”YLD” , ”J2P” , ”M+1”, ”VY” , ”KE” , ”

MVOL” ,”PSR” ,”CS” , ”DENS”) ;

Image (” Misses and Pressure Map” ,WHITE) ;

Window( 0 . 0 5 , 0 , 0 . 8 , 1 ) ;

MatColors (DIM GRAY) ;

Plot2DMats ;

ColorMapRange (0 ,100 ,LIN MAP) ;

ColorMapClipping (ON,OFF) ;

DrawColorMap(”VX (cm/ s ) ” , 0 . 8 5 , 0 . 4 , 0 . 9 9 , 0 . 8 ) ;

Label ( s p r i n t f (”Time=%5.1 f ˜m˜ s ” ,TIME∗1E6) ) ;

Right2D ;

Plot2D (”P”) ;

ColorMapRange (0 ,7E8 ,LIN MAP) ;

ColorMapClipping (ON,OFF) ;

DrawColorMap(”J2P ” , 0 . 0 5 , 0 . 4 , 0 . 1 9 , 0 . 8 ) ;

Left2D ;

Plot2D (”J2P”) ;

ResetMirrors ;

XBMirror (ON) ;

Draw2DTracers (3 ) ;

Draw2DMatContour ;

EndImage ;

Image (”YVELOCITY”) ;

Fix1D (0 , 0 , 0 , 20 ) ;

VLimits (0 , 100 . 00 e2 ,LIN MAP) ;

ULabel (” Jet Length Distance (cm) ”) ;

Label ( s p r i n t f (” Jet Ve loc i ty P r o f i l e at %6.2e s . ” ,TIME) ) ;
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Plot1D (”VY”) ;

EndImage ;

}

SaveHis (”GLOBAL”) ;

HisCycle ( 0 , 1 ) ;

endspy

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

diatoms

package ’ cy l i nde r ’

mate r i a l 1

i t e r a t i o n s 6

agraded p1=0,0 p2=0,15

mvel 0 , t1

i n s e r t box

p1 0 . 0 .

p2 0 .5 15 .

end in s e r t

endpackage

enddiatoms

∗

de f t ab l e=1

0 .0 0 .00

15 .0 150 .00 e2

endde f tab l e

∗

d i s ca rd

mate r i a l 1

dens l 0 . 0

dens i ty 1 e99

ton 99 .9 e−6

t o f f 100 .8 e−6

dtime 1 .0 e−6

y s t a r t 10 .0

enddiscard

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

eos

mat1 s e s COPPER

endeos

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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∗

epdata

vpsave

matep 1

eppvm=user y i e l d=7E8 tmelt=1E99 po i s son =0.3

ende

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

Convct

i n t e r f a c e=h i g h r e s o l u t i o n

endc

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

∗

ed i t

sho r t t

time = 00 , dt = 1 .0

ends

∗

l ongt

time = 00 , dt = 1 .0

endl

∗

ende

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

f r a c t s

p f rac1=−1e30

pfmix=−1.0e30

p fvo id=−1.0e30

endf

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

boundary

bhydro

block 1

bxbot = 0 , bxtop = 0

bybot = 0 , bxtop = 0

endb
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endh

endb

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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Example CTH Output Data

Analysis Code

The following Mathematica code extracts the solutions of M , Z, L, D, Ė, and U from

the CTH simulation data dumps. Other diagnostic quantities are also extracted. For

more detail, see the Mathematica reference manual [61].

t = 0 . 0001 ;

tmin=t ; (∗ Simulat ion time minimum ∗)

dt = 0 .000010 ; (∗ Simulat ion output time step ∗)

tmax = 0 .001000 ; (∗ Simulat ion time maximum ∗)

mtotal=0;

u=0;

c0=0;

r ={{0 ,0}} ; (∗ Length o f e l a s t i c zone ∗)

Z={{0 ,0}} ; (∗ Length o f e l a s t i c zone ∗)

Q={{0 ,0}} ; (∗ P l a s t i c Work with time ∗)

A={{0 ,0}} ; (∗ Jet Cross Sec t i on with time ∗)

M={{0 ,0}} ; (∗ Mass with time ∗)

U={{0 ,0}} ; (∗ Pa r t i c l e speed with time ∗)

L={{0 ,0}} ; (∗ Distance to e l a s t i c / p l a s t i c boundary with time ∗)
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Y={{0 ,0}} ; (∗ Distance to e l a s t i c / p l a s t i c boundary with time ∗)

L1={{0 ,0}} ; (∗ Distance to e l a s t i c / p l a s t i c boundary with time ∗)

U1={{0 ,0}} ; (∗ Pa r t i c l e speed with time ∗)

M1={{0 ,0}} ; (∗ Lead Pa r t i c l e Mass with time ∗)

LZ={{0 ,0}} ; (∗ Distance to Pa r t i c l e Tip ∗)

Z1={{0 ,0}} ; (∗ Length o f e l a s t i c zone ∗)

D1={{0 ,0}} ; (∗ Neck Diameter with time ∗)

R1={{{0 ,0}}} ; (∗ Neck Diameter with time ∗)

KE={{0 ,0}} ; (∗ Kinet i c Energy with time ∗)

KEy={{0 ,0}} ; (∗ Kinet i c Energy with time ∗)

LDOT={{0 ,0}} ; (∗ Change o f Distance to e l a s t i c / p l a s t i c boundary with r e sp e c t to time

∗)

MToT={{0 ,0}} ; (∗ Total Mass with time ∗)

KEToT={{0 ,0}} ; (∗ Kinet i c Energy with time ∗)

Delta ={{0 ,0}} ; (∗ Jet Diameter with time ∗)

While [ t<=tmax ,

r = {{0 ,0}} ;

f i l ename=”INPUTFILE” ;

Pr int [ ” Reading ”<>f i l ename ] ;

Data=Import [ f i l ename , ” Table ” ] ;

{ j , n}=Dimensions [ Data ] ; j=j −1; (∗ Get the dimensions o f the s imu la t i on output t ab l e

∗)

I f [ t <= tmin ,

For [ i =2, i < j ,

CellMass = Data [ [ i ] ] [ [ 7 ] ] ;

mtotal= mtotal+CellMass ;

umax = Max[ umax , Data [ [ i ] ] [ [ 8 ] ] ] ;

i++;

] ;

Yld= Data [ [ 2 ] ] [ [ 5 ] ] ;

c0= Data [ [ 2 ] ] [ [ 1 2 ] ] ;

] ;

For [ k=2,Data [ [ k ] ] [ [ 2 ] ] == Data [ [ k + 1 ] ] [ [ 2 ] ] , k++]; k=k−1; (∗ Get number o f c e l l s in the

s imu la t i on x−d i r e c t i o n ∗)

For [ o=( j +1)/k−1,Data [ [ o∗k+2] ] [ [ 10 ] ]==0 , o−−];

o1 = ( o+1)∗k+2;

CellWidthY = 2∗Data [ [ o∗k + 2 ] ] [ [ 4 ] ] ;

Cel lCoordinateY=Data [ [ o∗k + 2 ] ] [ [ 2 ] ] ;

Ce l lMassFract ion = Data [ [ o∗k + 2 ] ] [ [ 1 0 ] ] ;
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l z=Cel lCoordinateY+CellWidthY∗Cel lMassFract ion ;

For [ o=o , Data [ [ o∗k+2 ] ] [ [ 6 ] ] <Data [ [ o∗k + 2 ] ] [ [ 5 ] ] , o−−];

o2=o∗k+2;

l=Data [ [ o∗k + 2 ] ] [ [ 2 ] ] ;

d=0;

For [ i=o2−k , Data [ [ i ] ] [ [ 2 ] ] == Data [ [ i + 1 ] ] [ [ 2 ] ] ,

CellWidthX =2∗Data [ [ i ] ] [ [ 3 ] ] ;

Ce l lMassFract ion = Data [ [ i ] ] [ [ 1 0 ] ] ;

d=d+2∗CellWidthX∗Cel lMassFract ion ;

i ++];

m=0;

u=0;

ke=0;

cntr = 0 ;

For [ i=o2 , i<=o1 ,

YLD = Data [ [ i ] ] [ [ 5 ] ] ;

J2P = Data [ [ i ] ] [ [ 6 ] ] ;

CellYPos = Data [ [ i ] ] [ [ 2 ] ] ;

CellXPos = Data [ [ i ] ] [ [ 1 ] ] ;

CellMass = Data [ [ i ] ] [ [ 7 ] ] ;

CellMatSpeed = Data [ [ i ] ] [ [ 8 ] ] ;

CellKE = CellMass∗Data [ [ i ] ] [ [ 9 ] ] ;

I f [YLD>J2P ,

cntr++;

ke=ke+CellKE ;

m=m+CellMass ;

u=u+CellMatSpeed ;

I f [ Data [ [ i +1 ] ] [ [ 10 ] ]==0 ,

Cel lMassFract ion = Data [ [ i ] ] [ [ 1 0 ] ] − 0 . 5 ;

I f [ r == {{0 ,0}} , r = {{2∗( CellXPos+CellWidthX∗Cel lMassFract ion ) , CellYPos }} ,AppendTo [

r , {2∗( CellXPos+CellWidthX∗Cel lMassFract ion ) , CellYPos } ] ]

] ;

] ;

i++;

] ;

I f [ cnt r == 0 ,

u = umax ;

cntr =1;

m = 0 ;

] ;
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AppendTo [ r , {0 , CellYPos } ] ;

AppendTo [R1 , r ] ;

AppendTo [D1,{ t−tmin , d } ] ;

AppendTo [U1,{ t−tmin , u/ cntr } ] ;

AppendTo [M1,{ t−tmin ,m} ] ;

AppendTo [ L1 ,{ t−tmin , l } ] ;

AppendTo [ Z1 ,{ t−tmin , l z−l } ] ;

d=0;

For [ p=2,Data [ [ p ] ] [ [ 2 ] ] == Data [ [ p + 1 ] ] [ [ 2 ] ] ,

CellWidthX = 2∗Data [ [ p ] ] [ [ 3 ] ] ;

Ce l lMassFract ion = Data [ [ p ] ] [ [ 1 0 ] ] ;

d=d+2∗CellWidthX∗Cel lMassFract ion ;

p++]; p=p−1;

AppendTo [ Delta ,{ t−tmin , d } ] ;

Pr int [ ” Writing CONTOURFILE” ] ;

Export [ ”CONTOURFILE” , r , ” Table ” ] ;

t=t+dt ]

l 0=L1 [ [ 2 ] ] [ [ 2 ] ] ;

u0=U1 [ [ 2 ] ] [ [ 2 ] ] ;

d0=Delta [ [ 2 ] ] [ [ 2 ] ] ;

L1=Table [{ u0/d0 L1 [ [ i ] ] [ [ 1 ] ] , L1 [ [ i ] ] [ [ 2 ] ] / l 0 } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt ] } ] ;

Z1=Table [{ u0/d0 Z1 [ [ i ] ] [ [ 1 ] ] , Z1 [ [ i ] ] [ [ 2 ] ] / l 0 } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt ] } ] ;

M1=Table [{ u0/d0 M1 [ [ i ] ] [ [ 1 ] ] ,M1 [ [ i ] ] [ [ 2 ] ] / mtotal } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt ] } ] ;

U1=Table [{ u0/d0 U1 [ [ i ] ] [ [ 1 ] ] , U1 [ [ i ] ] [ [ 2 ] ] / u0 } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt ] } ] ;

D1=Table [{ u0/d0 D1 [ [ i ] ] [ [ 1 ] ] , D1 [ [ i ] ] [ [ 2 ] ] / d0 } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt ] } ] ;

Delta=Table [{ u0/d0 Delta [ [ i ] ] [ [ 1 ] ] , Delta [ [ i ] ] [ [ 2 ] ] / d0 } ,{ i , 2 , Floor [ ( tmax −tmin ) /dt

] } ] ;

Pr int [ ” Writing OUTPUTFILE” ] ;

Export [ ”OUTPUTFILE” , Table [{ d0/u0∗M1[ [ i ] ] [ [ 1 ] ] , mtotal ∗M1[ [ i ] ] [ [ 2 ] ] , l 0 ∗L1 [ [ i

] ] [ [ 2 ] ] , l 0 ∗Z1 [ [ i ] ] [ [ 2 ] ] , u0∗U1 [ [ i ] ] [ [ 2 ] ] , /4 ( d0 Delta [ [ i ] ] [ [ 2 ] ] ) ˆ2 (∗ a0∗A[ [ i

] ] [ [ 2 ] ] ∗ ) , c0 (∗ ketot0 ∗KE[ [ i ] ] [ [ 2 ] ] ∗ ) , d0∗Delta [ [ i ] ] [ [ 2 ] ] , mtotal , Yld , tmin , tmax} ,{ i

, 1 , Floor [ ( tmax −tmin ) /dt ]−1} ] ,” Table ” ] ;
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Example Abaqus Keyword Input

The following code is an abbreviated example Abaqus CAE keyword input set used

in the analysis. For more detail, see the Abaqus reference manual [1].

∗∗

∗∗ PARTS

∗∗

∗Part , name=Part−1

∗End Part

∗∗

∗∗

∗∗ ASSEMBLY

∗∗

∗Assembly , name=Assembly

∗∗

∗ Instance , name=Part−1−1, part=Part−1

∗Element , type=CAX4R

∗Nset , nset=Set−1, generate

∗Elset , e l s e t=Set−1, generate

∗∗ Sect i on : Jet Mater ia l

∗ So l i d Sect ion , e l s e t=Set−1, mate r i a l=Copper ,

∗End Ins tance

∗∗
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∗Nset , nset=Set−9, i n s t ance=Part−1−1, generate

∗Elset , e l s e t=Set−9, i n s t ance=Part−1−1, generate

∗Nset , nset=Set−10, i n s t anc e=Part−1−1, generate

∗Elset , e l s e t=Set−10, i n s t anc e=Part−1−1, generate

∗Nset , nset=Set−11, i n s t anc e=Part−1−1, generate

∗Elset , e l s e t=Set−11, i n s t anc e=Part−1−1, generate

∗Nset , nset=Set−12, i n s t anc e=Part−1−1, generate

∗Elset , e l s e t=Set−12, i n s t anc e=Part−1−1, generate

∗Nset , nset=Set−13, i n s t anc e=Part−1−1, generate

∗Elset , e l s e t=Set−13, i n s t anc e=Part−1−1, generate

∗Nset , nset=Set−14, i n s t anc e=Part−1−1, generate

∗Elset , e l s e t=Set−14, i n s t anc e=Part−1−1, generate

∗End Assembly

∗∗

∗∗ MATERIALS

∗∗

∗Mater ia l , name=Copper

∗Density

8 .94623 ,

∗ E l a s t i c

1 .37014 e+12, 0 . 3

∗ P l a s t i c

7e+08 ,0.

∗∗

∗∗ BOUNDARY CONDITIONS

∗∗

∗∗ Name : BC−1 Type : Symmetry/Antisymmetry/Encastre

∗Boundary

Set−9, XSYMM

∗∗ Name : BC−2 Type : Displacement /Rotation

∗Boundary

Set−10, 2 , 2

∗∗

∗∗ PREDEFINED FIELDS

∗∗

∗∗ Name : Prede f ined Fie ld−1 Type : Ve loc i ty Using F i e ld : Y

Part−1−1.1 , 1 , 0 .

Part−1−1.1 , 2 , 0 .

Part−1−1.2 , 1 , 0 .

Part−1−1.2 , 2 , 0 .

Part−1−1.3 , 1 , 0 .

Part−1−1.3 , 2 , 0 .

Part−1−1.4 , 1 , 0 .
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Part−1−1.4 , 2 , 0 .

Part−1−1.5 , 1 , 0 .

Part−1−1.5 , 2 , 0 .

Part−1−1.6 , 1 , 0 .

Part−1−1.6 , 2 , 0 .

Part−1−1.7 , 1 , 0 .

Part−1−1.7 , 2 , 0 .

Part−1−1.8 , 1 , 0 .

Part−1−1.8 , 2 , 0 .

Part−1−1.9 , 1 , 0 .

Part−1−1.9 , 2 , 0 .

Part−1−1.10 , 1 , 0 .

Part−1−1.10 , 2 , 0 .

Part−1−1.11 , 1 , 0 .

Part−1−1.11 , 2 , 0 .

Part−1−1.12 , 1 , 0 .

Part−1−1.12 , 2 , 0 .

Part−1−1.13 , 1 , 0 .

Part−1−1.13 , 2 , 0 .

Part−1−1.14 , 1 , 0 .

Part−1−1.14 , 2 , 0 .

Part−1−1.15 , 1 , 0 .

Part−1−1.15 , 2 , 0 .

Part−1−1.16 , 1 , 0 .

Part−1−1.16 , 2 , 0 .

Part−1−1.17 , 1 , 0 .

Part−1−1.17 , 2 , 0 .

Part−1−1.18 , 1 , 0 .

Part−1−1.18 , 2 , 0 .

Part−1−1.19 , 1 , 0 .

Part−1−1.19 , 2 , 0 .

Part−1−1.20 , 1 , 0 .

Part−1−1.20 , 2 , 0 .

Part−1−1.21 , 1 , 0 .

Part−1−1.21 , 2 , 0 .

Part−1−1.22 , 1 , 0 .

Part−1−1.22 , 2 , 0 .

Part−1−1.23 , 1 , 0 .

Part−1−1.23 , 2 , 0 .

Part−1−1.24 , 1 , 0 .

Part−1−1.24 , 2 , 0 .

Part−1−1.25 , 1 , 0 .

Part−1−1.25 , 2 , 0 .
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Part−1−1.26 , 1 , 0 .

Part−1−1.26 , 2 , 0 .

Part−1−1.27 , 1 , 0 .

Part−1−1.27 , 2 , 0 .

Part−1−1.28 , 1 , 0 .

Part−1−1.28 , 2 , 0 .

Part−1−1.29 , 1 , 0 .

Part−1−1.29 , 2 , 0 .

Part−1−1.30 , 1 , 0 .

Part−1−1.30 , 2 , 0 .

Part−1−1.31 , 1 , 0 .

Part−1−1.31 , 2 , 0 .

Part−1−1.32 , 1 , 0 .

Part−1−1.32 , 2 , 0 .

Part−1−1.33 , 1 , 0 .

Part−1−1.33 , 2 , 0 .

Part−1−1.34 , 1 , 0 .

Part−1−1.34 , 2 , 0 .

Part−1−1.35 , 1 , 0 .

Part−1−1.35 , 2 , 0 .

Part−1−1.36 , 1 , 0 .

Part−1−1.36 , 2 , 0 .

Part−1−1.37 , 1 , 0 .

Part−1−1.37 , 2 , 0 .

Part−1−1.38 , 1 , 0 .

Part−1−1.38 , 2 , 0 .

Part−1−1.39 , 1 , 0 .

Part−1−1.39 , 2 , 0 .

Part−1−1.40 , 1 , 0 .

Part−1−1.40 , 2 , 0 .

Part−1−1.41 , 1 , 0 .

Part−1−1.41 , 2 , 0 .

Part−1−1.42 , 1 , 0 .

Part−1−1.42 , 2 , 0 .

Part−1−1.43 , 1 , 0 .

Part−1−1.43 , 2 , 0 .

Part−1−1.44 , 1 , 0 .

Part−1−1.44 , 2 , 0 .

Part−1−1.45 , 1 , 0 .

Part−1−1.45 , 2 , 0 .

Part−1−1.46 , 1 , 0 .

Part−1−1.46 , 2 , 0 .

Part−1−1.47 , 1 , 0 .
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•

•

•

Part−1−1.22771 , 1 , 0 .

Part−1−1.22771 , 2 , 9312.48

Part−1−1.22772 , 1 , 0 .

Part−1−1.22772 , 2 , 9312.48

Part−1−1.22773 , 1 , 0 .

Part−1−1.22773 , 2 , 9312.48

Part−1−1.22774 , 1 , 0 .

Part−1−1.22774 , 2 , 9312.48

Part−1−1.22775 , 1 , 0 .

Part−1−1.22775 , 2 , 9312.48

Part−1−1.22776 , 1 , 0 .

Part−1−1.22776 , 2 , 9312.48

Part−1−1.22777 , 1 , 0 .

Part−1−1.22777 , 2 , 9312.48

Part−1−1.22778 , 1 , 0 .

Part−1−1.22778 , 2 , 9312.48

Part−1−1.22779 , 1 , 0 .

Part−1−1.22779 , 2 , 9312.48

Part−1−1.22780 , 1 , 0 .

Part−1−1.22780 , 2 , 9312.48

Part−1−1.22781 , 1 , 0 .

Part−1−1.22781 , 2 , 9312.48

Part−1−1.22782 , 1 , 0 .

Part−1−1.22782 , 2 , 9312.48

Part−1−1.22783 , 1 , 0 .

Part−1−1.22783 , 2 , 9312.48

Part−1−1.22784 , 1 , 0 .

Part−1−1.22784 , 2 , 9312.48

Part−1−1.22785 , 1 , 0 .

Part−1−1.22785 , 2 , 9312.48

Part−1−1.22786 , 1 , 0 .

Part−1−1.22786 , 2 , 9312.48

Part−1−1.22787 , 1 , 0 .

Part−1−1.22787 , 2 , 9312.48

Part−1−1.22788 , 1 , 0 .

Part−1−1.22788 , 2 , 9312.48
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Part−1−1.22789 , 1 , 0 .

Part−1−1.22789 , 2 , 9312.48

Part−1−1.22790 , 1 , 0 .

Part−1−1.22790 , 2 , 9312.48

Part−1−1.22791 , 1 , 0 .

Part−1−1.22791 , 2 , 9312.48

Part−1−1.22792 , 1 , 0 .

Part−1−1.22792 , 2 , 9312.48

Part−1−1.22793 , 1 , 0 .

Part−1−1.22793 , 2 , 9312.48

Part−1−1.22794 , 1 , 0 .

Part−1−1.22794 , 2 , 9312.48

Part−1−1.22795 , 1 , 0 .

Part−1−1.22795 , 2 , 9312.48

Part−1−1.22796 , 1 , 0 .

Part−1−1.22796 , 2 , 9312.48

Part−1−1.22797 , 1 , 0 .

Part−1−1.22797 , 2 , 9312.48

Part−1−1.22798 , 1 , 0 .

Part−1−1.22798 , 2 , 9312.48

Part−1−1.22799 , 1 , 0 .

Part−1−1.22799 , 2 , 9312.48

Part−1−1.22800 , 1 , 0 .

Part−1−1.22800 , 2 , 9312.48

Part−1−1.22801 , 1 , 0 .

Part−1−1.22801 , 2 , 9312.48

Part−1−1.22802 , 1 , 0 .

Part−1−1.22802 , 2 , 9312.48

Part−1−1.22803 , 1 , 0 .

Part−1−1.22803 , 2 , 9312.48

Part−1−1.22804 , 1 , 0 .

Part−1−1.22804 , 2 , 9312.48

Part−1−1.22805 , 1 , 0 .

Part−1−1.22805 , 2 , 9312.48

Part−1−1.22806 , 1 , 0 .

Part−1−1.22806 , 2 , 9312.48

Part−1−1.22807 , 1 , 0 .

Part−1−1.22807 , 2 , 9312.48

Part−1−1.22808 , 1 , 0 .

Part−1−1.22808 , 2 , 9312.48

Part−1−1.22809 , 1 , 0 .

Part−1−1.22809 , 2 , 9312.48

Part−1−1.22810 , 1 , 0 .
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Part−1−1.22810 , 2 , 9312.48

Part−1−1.22811 , 1 , 0 .

Part−1−1.22811 , 2 , 9312.48

Part−1−1.22812 , 1 , 0 .

Part−1−1.22812 , 2 , 9312.48

Part−1−1.22813 , 1 , 0 .

Part−1−1.22813 , 2 , 9312.48

Part−1−1.22814 , 1 , 0 .

Part−1−1.22814 , 2 , 9312.48

Part−1−1.22815 , 1 , 0 .

Part−1−1.22815 , 2 , 9312.48

Part−1−1.22816 , 1 , 0 .

Part−1−1.22816 , 2 , 9312.48

∗∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∗∗

∗∗ STEP: Deformation Arrest

∗∗

∗Step , name=”Deformation Arrest ” , nlgeom=YES

∗Dynamic , Exp l i c i t

, 0 .001

∗Bulk V i s c o s i t y

0 . 06 , 1 . 2

∗∗

∗∗ OUTPUT REQUESTS

∗∗

∗Restart , write , number i n t e r v a l =1, time marks=NO

∗∗

∗∗ FIELD OUTPUT: F−Output−1

∗∗

∗Output , f i e l d , v a r i ab l e=ALL, number i n t e r v a l =100

∗∗

∗∗ HISTORY OUTPUT: H−Output−1

∗∗

∗Output , h i s to ry , v a r i a b l e=ALL

∗End Step
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Example Abaqus-Python Output

Analysis Code

The following python code extracts the solutions of M , Z, L, D, Ė, and U from the

Abaqus simulation output file. For more detail, see the Abaqus reference manual [1].

from odbAccess import ∗

InputSt r ing = input ( ”Case Number : ” )

CaseNo = int ( InputSt r ing )

odb = openOdb( path=’JOBNAME’ + ’ . odb ’ )

outputF i l e = open( ’FILENAME’ )

numberofframes = len ( odb . s t ep s [ ’ Deformation Arrest ’ ] . f rames )

numberofelements = len ( odb . s t ep s [ ’ Deformation Arrest ’ ] . f rames [ −1 ] . f i e l dOutput s [ ’S ’ ] .

va lue s )

tmin = odb . s t ep s [ ’ Deformation Arrest ’ ] . f rames [ 0 ] . frameValue

tmax = odb . s t ep s [ ’ Deformation Arrest ’ ] . f rames [ −1 ] . frameValue
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mtot = 0

for j in range (0 , numberofframes ) :

l = 9999999

d = 0

l z = 0

u = 0

cntr = 0

mass = 0

f1 = odb . s t ep s [ ’ Deformation Arrest ’ ] . f rames [ j ]

time = f1 . frameValue

for i in range (0 , numberofelements ) :

vonMises = f1 . f i e l dOutput s [ ’S ’ ] . va lue s [ i ] . mises

elementvolume = f1 . f i e l dOutput s [ ’EVOL’ ] . va lue s [ i ] . data

e l ementdens i ty = f1 . f i e l dOutput s [ ’DENSITY ’ ] . va lue s [ i ] . data

yld = f1 . f i e l dOutput s [ ’YIELDS ’ ] . va lue s [ i ] . data

ve l = f1 . f i e l dOutput s [ ’V ’ ] . va lue s [ i ] . dataDouble [ 1 ]

Ypos = f1 . f i e l dOutput s [ ’COORD’ ] . va lue s [ i ] . dataDouble [ 1 ]

Xpos = f1 . f i e l dOutput s [ ’COORD’ ] . va lue s [ i ] . dataDouble [ 0 ]

i f j == 0 :

mtot = mtot + elementvolume∗ e l ementdens i ty

i f vonMises < 0 .999∗ yld :

cnt r = cntr + 1

u = u + ve l

l = min( l , Ypos )

l z = max( l z , Ypos )

mass = mass + elementvolume∗ e l ementdens i ty

else :

d = max(d , Xpos )

i f cntr == 0 :

cntr = 1

u = u/ cntr

r = d

d = 2∗d

z = lz−l

a = 3.141592654∗ r ∗ r

print ’ time = %f ’%(time )

print ’mass = %f ’ %(mass )

print ’ u = %f ’ %(u)

print ’ l = %f ’ %( l )

print ’ z = %f ’ %(z )

print ’ d = %f ’ %(d)
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Appendix D. Example Abaqus-Python Output Analysis Code

outputF i l e . wr i t e ( ’%f %f %f %f %f %f %f %f %f %f %f %f \n ’ %(time , mass , l , z ,

u , a , 0 . 0 , d , mtot , yld , tmin , tmax) )

print ’ tmin = %f ’ %(tmin )

print ’ tmax = %f ’ %(tmax)

print ’mtot = %f ’ %(mtot )

outputF i l e . c l o s e ( )
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Appendix E

Example Mathematica DAE Solver

The following Mathematica code solves the system of DAE’s with the solutions stored

in the variables M , Z, L, DD, EE, and U where DD is the jet cross-section and

EE the strain-rate. For more detail, see the Mathematica reference manual [61].

eqns = {

M[0]==M0,

DD[0]==1 ,

U[0]==1 ,

L[0]==1−Z0 ,

Z[0]==Z0 ,

DD’ [ t ]EE[ t ] ˆ2 L [ t ] ˆ3 +2DD[ t ]EE[ t ] L [ t ] ˆ3 EE’ [ t ]+3DD[ t ]EE[ t ] ˆ2 L [ t ] ˆ2 L ’ [ t ]+ 3M’ [ t ]U[ t

]ˆ2+6M[ t ]U[ t ]U’ [ t ]+6 N1/N2 EE[ t ]DD[ t ] L [ t ]==0, (∗ Energy Equation ∗)

0== M’ [ t ]+L ’ [ t ]DD[ t ]+L [ t ]DD’ [ t ] , (∗ Mass Balance ∗)

M’ [ t]== DD[ t ] Z ’ [ t ] , (∗ Accret ion Rate Rule ∗)

U[ t]== EE[ t ] L [ t ] ,

1/N2 U[ t]== L ’ [ t ]+Z ’ [ t ] ,

−(N1/N2) DD[ t]==M[ t ]U’ [ t ] (∗ Momentem Balance ∗)

} ;

vars={

M[ t ] ,

Z [ t ] ,

L [ t ] ,
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Appendix E. Example Mathematica DAE Solver

DD[ t ] ,

EE[ t ] ,

U[ t ]

} ;

s=NDSolve [ eqns , vars , { t , 0 , tmax } , Prec i s ionGoal −>8,AccuracyGoal−>8];

M=M[ t ] / . s ;

Z=Z [ t ] / . s ;

L=L [ t ] / . s ;

DD=DD[ t ] / . s ;

EE=EE[ t ] / . s ;

U=U[ t ] / . s ;
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