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Abstract

A so-called space of homogeneous type is a set equipped with a quasi-metric and a doubling

measure. We give a survey of results spanning the last few decades concerning the geometric

properties of such spaces, culminating in the description of a system of dyadic cubes in

this setting whose properties mirror the more familiar dyadic lattices in Rn. We then use

these cubes to prove a result pertaining to weighted inequality theory over such spaces. We

develop a general method for extending Bellman function type arguments from the real line

to spaces of homogeneous type. Finally, we uses this method to extend some recent results

in the theory of weighted dyadic operators.
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Chapter 1

Introduction

The tendency to try to extend knowledge from familiar settings to more abstract and ex-

otic ones is ubiquitous in mathematics. Mathematicians have since time immemorial been

concerned with generalizing favorite concepts and ideas beyond their original scope. Natu-

ral numbers generalize to integers, classical algebra generalizes to abstract algebra, and the

geometry of antiquity generalizes to modern topological spaces and beyond. In this way,

provided the generalizations are done appropriately, we can gain insight into the goings-on

of more abstract settings without necessarily reinventing the wheel.

This dissertation is concerned with continuing in that tradition. Our aim here is to take

a close look at recent developments in the field of abstract harmonic analysis, specifically of

dyadic weighted inequalities. We will look at how over the last two decades many results

have been generalized beyond the comfortable world of Rn and similarly well structured

vector spaces. We then build on these results.

1



Chapter 1. Introduction

1.1 Spaces of Homogeneous Type

For the purposes of analysis, two concepts are necessary for any generalization of Euclidean

space: distance and volume. Without a working version of each of these concepts, not much

meaningful analysis is possible. One would be hard pressed to define a theory of integration

without first defining measure, for instance. While normal Rn has extra structure besides –

most notably, that of a vector space – these structures are not necessary for definitions to

remain meaningful. In this way we keep what is necessary and dispose of the fluff.

A space of homogeneous type is one such flavor of generalization. They were first intro-

duced in [13], by Coifman and Weiss. Spaces of homogeneous type, or SHTs as we will often

call them, are characterized by quasi-metrics and doubling measures.

A quasi-metric is a generalization of a metric. Quasi-metrics satisfy all the axioms of

a metric excluding the triangle inequality. Instead, they satisfy a weaker inequality which

includes a multiplicative constant, κ0 ≥ 1:

ρ(x, z) ≤ κ0(ρ(x, y) + ρ(y, z)). (1.1)

A measure µ is said to be doubling when it satisfies that for some constant κ1 ≥ 1,

µ(B(x, 2r)) ≤ κ1 · µ(B(x, r)), (1.2)

where by B(x, r) we mean the open ball with respect to the quasi-metric ρ centred at x ∈ X
with radius r > 0

Spaces of Homogeneous type appear to be very good generalizations of Euclidean space

for the purposes of extending many results of analysis, in particular the theory of Calderón-

Zygmund singular operators.

We briefly note that spaces of homogeneous type as we have defined them are not “max-

imally general” with respect to the the distance/volume paradigm. For example, in [1] the

2



Chapter 1. Introduction

authors consider quasi-metrics to lack not only the triangle inequality axiom, but the axiom

of reflexivity as well. Also, the assumption of doubling on the measure seems to be very

specialized. Further generalizations are natural to consider and there is indeed some interest

in investigating them, however this is beyond the scope of this dissertation. We point the

interested reader to the paper by Martell et. al. [35] or the new paper by Volberg and

Zorin-Kranich [49] for weighted inequality theory results concerning non-doubling measures.

Also, the paper [41] by Nazarov, Treil, and Volberg.

1.1.1 Dyadic Systems and Haar Bases

The use of dyadic collections has proven to be fruitful for harmonic analysis techniques.

At its most fundamental, a dyadic system is a highly organized hierarchy of partitions of

Euclidean space which satisfies certain properties. The collection of dyadic intervals in R

serves as the most basic example and the example from which dyadic systems derive their

name.

Intimately tied to the notion of dyadic systems is the Haar basis of functions. There is

a natural extension of the basics of Dyadic theory, and thus the Haar functions, to spaces

of homogeneous type. As with the traditional settings, these constructs can be very helpful

when seeking proofs of results of both the dyadic and continuous variety.

1.1.2 Weights

A weight is a locally integrable function which is positively-valued almost everywhere. Weight

theory has a rich history indeed. We will, over the course of this document, give the nec-

essary ideas and point the reader to the excellent textbooks [17] and [18] by Grafakos, or

Duoandikoetxea’s textbook [14] for a more serious overview.

3



Chapter 1. Introduction

1.2 Chapter Summaries

Here we give a brief summary of each of the proceeding chapters.

In Chapter 2 we will look at the basic properties of spaces of homogeneous types. Much

of the content of this chapter could be considered the low hanging fruit of the theory and

has been covered elsewhere. Nevertheless, we attempt to provide a broader, more extensive

look than what has been written by others. We also include several examples of SHTs, as

well as some things which one might expect to be SHTs but are not (failures). This chapter

will serve as necessary background information.

In Chapter 3 we give a generalization of dyadic systems from R to SHTs. We start with

an overview of the main result of [25] which guarantees the existence of a dyadic system. In

this chapter we will introduce the concept of a dyadic quadrant. We close the chapter with

a utility definition, that of “honest” dyadic systems, and give a constructive proof for their

existence.

In Chapter 4, we collect some basic results about weight theory which are used in several

other chapters. This chapter is very short, and is intended to be more of a quick reference.

In Chapter 5 we prove our first weighted dyadic inequality, Gehring’s inequality. This is

an example of a “open” property or “self-improvement” property. In [5] it was shown that

this inequality cannot be extended to SHTs in general, however in this chapter we show that,

surprisingly, a dyadic version does hold.

In Chapter 6 we work with the Haar bases for SHTs. We first give a good idea of what

a proper “Haar-like” basis would look like, and then show that we can in fact construct

one. The ending of the chapter deals with proving that our proposed Haar basis satisfies the

requirements we would have for it.

In Chapter 7 we give a method for extending Bellman function style proofs from R to

SHTs. This is a particular proof technique which has become popular with some mathemati-
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cians. There has been some interest in extending the Bellman technique to SHTs, but there

are some subtle difficulties in doing so. Here we address these difficulties and show how the

technique can be extended. The so-called “Good Bellman Lemma” is the main result of the

chapter and can be used to accomplish this in general.

In Chapter 8 we give some applications of the previous chapters. Our aim here is to extend

previous R-centric results to the setting of SHTs. We prove bounds for the paraproduct and

t-Haar multipliers in spaces of homogeneous type. This serves as a useful template for future

applications of the work in this dissertation.

In the appendix we will stash away some of the interesting proofs that the above chapters

rely on, but which would have interrupted the flow of the text if included within them.
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Chapter 2

Introduction to Spaces of

Homogeneous Type

In this chapter we will introduce the idea of spaces of homogeneous type. We begin with

the required definitions of a quasi-metric and a doubling measure. We will then move on to

build up a foundation of theorems which will come in handy in the later chapters.

2.1 Basics and Definitions

This section introduces the main definitions needed for any discussion pertaining to spaces

of homogeneous type; that of quasi-metrics and doubling measures.

2.1.1 Quasi-metric Spaces

For any set X, we can consider a metric on X as an abstraction of the narXiv:1606.03461

otion of distances between the elements of X. Metrics satisfy three axioms: positive-definite,

reflexive, and the triangle inequality. Generalizations of metrics can be considered where one

6
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of these axioms is relaxed. For our purposes, we consider instead quasi-metrics : functions

which satisfy all axioms of a metric except that the triangle inequality is weaker.

Definition 2.1.1 (Quasi-metric). Let X be any set. A quasi-metric on X is a function

ρ : X ×X → R with the following properties:

• (Positive-Definite) For every x, y ∈ X, ρ(x, y) ≥ 0. Furthermore, ρ(x, y) = 0 if and

only if x = y.

• (Reflexive) For every x, y ∈ X, ρ(x, y) = ρ(y, x).

• (Quasi-Triangle Inequality) There exists a constant κ0 ≥ 1 so that for every x, y, z ∈ X,

ρ(x, y) ≤ κ0 · (ρ(x, z) + ρ(z, y)). (2.1)

We call the constant κ0 the quasi-triangle constant. Notice that if κ0 = 1 then ρ is actually

a metric.1

If X is a set and ρ is a quasi-metric on X, then we call the pair (X, ρ) a quasi-metric

space.

Remark 2.1.2. Another well studied generalization of a metric is the pseudo-metric, where

the axiom of positive-definiteness has been relaxed. For a pseudo-metric p, p(x, y) = 0 does

not necessarily imply that x = y.

Example 2.1.3 (A Finite Quasi-Metric Space). Let X := {♥,♣,♠} . Define the function

d : X ×X → R as

d(♥,♥) = d(♣,♣) = d(♠,♠) := 0 (2.2)

d(♥,♣) = d(♣,♥) := 5 (2.3)

d(♣,♠) = d(♠,♣) := 3 (2.4)

d(♥,♠) = d(♠,♥) := 4. (2.5)

1Some authors insist that κ0 > 1 be strict, but we will not.

7



Chapter 2. Introduction to Spaces of Homogeneous Type

It is not difficult to verify that d defined in this way is a metric on X, making (X, d) a metric

space. However, consider the similar function ρ : X ×X → R defined as

ρ(♥,♥) = ρ(♣,♣) = ρ(♠,♠) := 0 (2.6)

ρ(♥,♣) = ρ(♣,♥) := 10 (2.7)

ρ(♣,♠) = ρ(♠,♣) := 3 (2.8)

ρ(♥,♠) = ρ(♠,♥) := 4. (2.9)

Clearly, ρ fails to be a metric since

ρ(♥,♣) = 10 > 7 = ρ(♥,♠) + ρ(♠,♣) (2.10)

which violates the triangle inequality. However, ρ is a quasi-metric on X, with κ0 ≥ 10/7.

5 3

4♥

♣

♠

10 3

4♥

♣

♠

Figure 2.1: Here we see the space from Example 2.1.3 with distances represented as the
sides of a triangle. On the left we have the ♥♠♣ metric space, and on the right is the ♥♠♣
quasi-metric space.

We define open balls in the obvious way.

Definition 2.1.4 (Open Balls). Let (X, ρ) be a quasi-metric space. For all x ∈ X and r ∈ R

with r > 0 define the set Bρ(x, r) = {y ∈ X | ρ(x, y) < r} the open ρ-ball centred at x with

radius r.

We will usually write B instead of Bρ when the quasi-metric under consideration is well

understood.

Näıvely, this definition seems entirely benign. In the next section, we will look at some

of the issues that this definition introduces.
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2.1.2 Topological Concerns

Recall that given a metric space (X, d), d induces a topology τd on X.

Definition 2.1.5 (Topology Induced by a Metric, v1). Let (X, d) be a metric space. Then

the topology τd induced by d is defined as the topology such that all open sets in τd can be

realized as arbitrary unions of open d-balls.

Definition 2.1.6 (Topology Induced by a Metric, v2). Let (X, d) be a metric space. Then

the topology τd induced by d is defined as the topology such that all open sets in τd have the

open property. That is, O ∈ τd if and only if for all x ∈ O, there exists rx > 0 such that

B(x, rx) ⊆ O.

This induced topology is T2, or Hausdorff, in the sence of topological classification (see

the book [15] for an introduction to this topic). In the case of standard metrics these two

definitions are equivalent.

When generalizing to quasi-metric spaces, a complication arises. Consider this example,

presented in [25, Section 2.1]:

Example 2.1.7. Let X = {−1} ∪ [0,∞) and ρ be defined as

ρ(x, y) :=


1/2 if (x, y) = (0,−1)

1/2 if (x, y) = (−1, 0)

|x− y| otherwise

(2.11)

Then (X, ρ) is a quasi-metric space, with quasi-triangle constant κ = 2.

Indeed, looking at the open ball B(−1, 3/4) we see that this ball contains only two points,

0 and −1. However, there is no r > 0 so that B(0, r) is in the ball. In other words, the open

ball fails to have the open property!

Care needs to be taken when saying things like “topology induced by a quasi-metric”

since the two definitions are not equivalent when replacing d with ρ. If we generalize using

9
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Definition 2.1.5, then open balls are of course open sets. If we instead generalize using

Definition 2.1.6, then they may not be. In this document, we will enforce that the topology

of open sets induced by ρ will have the open property:

Definition 2.1.8 (Topology Induced by a Quasi-Metric). Let (X, ρ) be a quasi-metric space.

Then the topology τρ induced by ρ is defined as the topology such that all nonempty, open

sets in τρ have the open property. That is, for O ∈ τρ if and only if for for all x ∈ O, there

exists rx > 0 such that Bρ(x, rx) ⊆ O.

It is clear that this collection is indeed a topology, i.e., ∅, X ∈ τρ and τρ is closed under

arbitrary unions and finite intersections.

2.1.3 Doubling Measures

We now discuss doubling measures and spaces of homogeneous type.

Definition 2.1.9 (Doubling Measure). Let (X, ρ) be a quasi-metric space and let µ be a

Borel measure defined on X such that the collection of all open balls with respect to ρ are

µ-measurable sets. Then µ over X is a doubling measure if there exists a constant κ1 ≥ 1 so

that for every x ∈ X and every r > 0

µ(B(x, 2r)) ≤ κ1 · µ(B(x, r)). (2.12)

We will refer to κ1 as the doubling measure constant for µ.

Recall that a measure is a Borel measure if the σ-algebra of measurable sets has the

topology of open sets as a basis. The σ-algebra for our doubling measures must therefore

be at least as large as the Borel σ-algebra for the topology induced by the quasi-metric ρ.

This issue is discussed in detail in [24], an addendum to [23]. There the authors note that

the meaning of “Borel measure” can be ambigious, given the open ball problem. For our

10
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purposes, it is enough to stipulate that both open balls, as well as open sets (in the sense of

Definition 2.1.8) be µ-measurable.

We can now give the major definition of this document:

Definition 2.1.10 (Space of Homogeneous Type). A Space of Homogeneous Type (abbr.

“SHT”) is a tuple (X, ρ, µ) where X is a set, ρ is a quasi-metric on X, and µ is a measure

such that

• the σ-algebra of µ-measurable sets is the smallest one that contains both the Borel

measurable sets and all open ρ-balls,

• µ is doubling with respect to the ρ-balls.

We will often use the letter X to mean both the set of elements, as well as the tuple

(X, ρ, µ), depending on the context. In this way, we can write something such as “let X be

a SHT” without needing to refer to the measure and quasi-metric directly.

We’ll close with a lemma.

Lemma 2.1.11 (Generalized Doubling). Let x ∈ X and let R > r > 0. Then there exists

a constant C ≥ 1 which depends only on the quasi-triangle constant for ρ and the ratio R/r

such that

µ(B(x,R)) ≤ C · µ(B(x, r)). (2.13)

Moreover, C = κ
log2(dR/re)
1 is sufficient.

Proof. Follows from an iterated application of inequality 2.12. More details can be found in

Appendix 3.

Remark 2.1.12. Some authors use the constant κ
log2(1+R/r)
1 .
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2.1.4 More Definitions

We will now build upon the definitions in the previous section.

Definition 2.1.13. Let X be a set, and ρ, ρ′ be two quasi-metrics on X. We say that ρ and

ρ′ are equivalent as quasi-metrics, or just equivalent, if there exists constants 0 < a < A <∞
such that

a · ρ(x, y) ≤ ρ′(x, y) ≤ A · ρ(x, y) (2.14)

for all x, y ∈ X.

Finally, throughout this document we will often use the following convenience definition:

Definition 2.1.14 (Geometric Constant). Let (X, ρ, µ) be a space of homogeneous type

with quasi-triangle constant κ0 and doubling measure constant κ1. Any constant which

depends solely on κ0 and κ1 is referred to as a geometric constant.

Example 2.1.15 (Geometric Constants). Let X be an SHT. The following are all geometric

constants:

• 3 · κ0

• κ1/κ0

• κα1 for fixed α

2.1.5 A Discussion of Alternative Definitions

We note here a definition that is usually important when discussing SHTs:

In the new book by Alvarado and Mitrea [1] the authors give a slight variation on the

definition of a space of homogeneous type. Unlike here, they consider quasi-metrics to be

12
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equivalence classes where the equivalence relation is as in Definition 2.1.13. In their formula-

tion, rather than representing a single quasi-metric, ρ instead represents an equivalence class

of quasi-metrics under the equivalence relation 2.1.13. In their framework, the quasi-triangle

inequality is

ρ(x, y) ≤ κ0 ·max{ρ(x, z), ρ(z, y)},

i.e. the “quasi ultra-metric” condition. Moreover, they also weaken the requirement of

reflexivity on quasi-metrics, i.e., they have that there exists a constant C ≥ 1 such that for

all x, y ∈ X,

ρ(x, y) ≤ C · ρ(y, x).

For these authors, this decision has the primary advantage of eliminating some of the messy

details which need to be considered when working in SHTs. In particular, it allows them

to easily circumvent the “open ball problem” which we mentioned previously. However, the

price paid is one of a lack of arbitrariness. In this document, we try to as much as possible

avoid putting restrictions on geometric properties, following T. Hytönen’s school. We do

this to allow for applications in which the SHT is provided ahead of time.

We will address this more later on when we want to use a theorem from [1] in our context.

2.2 The Quasi-Metric Zoo

In this section we give several examples of quasi-metric spaces, spaces of homogeneous type,

as well as examples of things which fail to be either. We will use these examples as insight,

which we will then formulate into lemmas in the next section. For more examples, see [13]

and Section 1.3 of [1].
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2.2.1 SHTs and Quasi-Metric Spaces

First, some examples of SHTs and quasi-metric spaces.

Example 2.2.1. The set Rn with the usual metric and measure is an SHT.

Definition 2.2.2 (Trivial Measure). If (X,µ) is a measure space such that µ(X) ≡ 0 or

µ(X) ≡ ∞ we say that µ is a trivial measure.

Example 2.2.3. Let (X, ρ) be any quasi-metric space. Define the measures µ and µ′ as

µ(S) := 0, µ′(S) :=∞ ∀S measurable. (2.15)

Then (X, ρ, µ) and (X, ρ, µ′) are both SHTs.

Trivial measures are inherently uninteresting, but we point this detail out because they

provide a counterexample to many of the results we present pertaining to properties of

SHTs.2 We will need to be careful to refer to measures as non-trivial for theorems later on.

Example 2.2.4. One interesting example in [1] is the Cantor carpet in Rd equipped with

the usual Rd distance and d-dimensional Hausdorff measure.

2.2.2 Examples of Failures

Now let us consider a few spaces which are not SHTs, in order to get a sense of what types

of situations do not arise.

Example 2.2.5. If X is an infinite set, ρ is the discrete metric, and µ is a non-trivial

measure, then (X, ρ, µ) is not an SHT. To see this, observe that for any point x ∈ X

B(x, 3/4) = {x}

B(x, 3/2) = X.

2In fact, some authors will stipulate that the measure be nontrivial in the definition of SHT.
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Figure 2.2: The first four iterations of the sets which converge to the R2 Cantor carpet.

This and the doubling condition together imply that µ(X) ≤ κ1 ·µ({x}) for all x ∈ X. Since

µ is nontrivial, µ(X) > 0 so

µ({x}) > µ(X)

κ1

> 0

for every point in X. But X was infinite, so actually µ(X) = ∞. The doubling inequality

thus forces that µ({x}) =∞ for all x which means µ was trivial anyway.

Example 2.2.6. Let (X, ρ, µ) be defined as X := Z, ρ(x, y) := |x−y|, and µ({x1, ..., xn}) :=∑n
i=1 e

|xi|. Then (X, ρ) is a quasi-metric space (actually a metric space) but µ fails to be a

doubling measure. Let us prove this. Let x, r ∈ Z with 2x > r > 0. Then

µ(B(x, r)) =
x+r−1∑
i=x−r+1

ei < (2r − 1)ex+r−1 < 2rex+r (2.16)

and

µ(B(x, 2r)) =
x+2r−1∑
i=x−2r+1

ei > ex+2r−1 > ex+2r. (2.17)
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However,

µ(B(x, 2r))

µ(B(x, r))
>
er

2r
(2.18)

which is unbounded in r.

Example 2.2.7. Let X be the real numbers with the usual metric, and the Gaussian mea-

sure:

µ(S) :=
1√
2π

∫
S

e−x
2

dx. (2.19)

This measure also fails to be doubling. While it is not difficult to prove this directly, with a

little more theory we can get this result quite easily without needing to do any calculations.

The previous examples illustrate something important. Generally exponential behavior

destroys any hope of doubling.

Example 2.2.8 (The Bullseye Space). Let x ∈ R2 and for R ≥ 2 define the open bullseye

centred at x of radius R ≥ 2 as

Y (x,R) := {y ∈ R2 : ||y − x|| < 1 or R− 1 < ||y − x|| < R}. (2.20)

where || · || is the Euclidean norm.

Observe that the area of any bullseye is equal to πR2 − π(R− 1)2 + π = 2πR

Now, define X to be a set made up of bullseyes:

X :=
∞⋃
n=1

Y (xn, n+ 1) (2.21)

where the points xn are chosen so that no two bullseyes overlap:

Y (xn, n+ 1) ∪ Y (xm,m+ 1) = ∅ ∀m 6= n. (2.22)
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1

R

R− 1x

Figure 2.3: A Bullseye

If we consider the metric-measure space (X, || · ||,m) where m is the usual Lebesgue

measure on R2 restricted to measurable subsets of X, then this space is not an SHT. This

is because for any bullseye centered at xn,

m(B(xn, (n+ 1)/2)) = π

m(B(xn, n+ 1)) = 2π(n+ 1)

and the ratio of these measures grows to infinity as n → ∞, prohibiting the existence of a

doubling measure constant. This is in spite of the fact that X ⊂ R2 and (R2, || · ||,m) is not

only an SHT, but a metric space with doubling measure.
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Figure 2.4: The set X, a set made up of tightly packed bullseyes of ever growing radius.

2.3 Geometrically Doubling Quasi-Metric Spaces

In this section we will introduce the concept of geometrically doubling quasi-metric spaces.

This definition will be used later on in Chapter 3.

Definition 2.3.1 (Geometrically Doubling Quasi-Metric Spaces). Let (X, ρ) be a quasi-

metric space. If there exists a constant γ0 ∈ N such that for all x ∈ X and all r > 0, the

ball B(x, r) can be covered by at most γ0 many balls of radius r/2, then we say the space

X is geometrically doubling. In other words, there exists a finite set {x1, x2, ...xγ0} ⊆ B(x, r)
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such that

B(x, r) ⊆
γ0⋃
n=1

B(xn, r/2) ∀x,∈ X, ∀r > 0 (2.23)

In [20] (pg. 20), this following is stated:

Theorem 2.3.2 (Geometric Doubling passes to subsets). Let (X, ρ) be a geometrically

doubling quasi-metric space with geometric doubling constant γ0. Then for any E ⊆ X,

(E, ρ|E) is also a geometrically doubling quasi-metric space with geometric doubling constant

γ
log2 κ0
0 · γ0.

There is no formal proof in [20].

2.3.1 Doubling Measure vs. Geometrically Doubling

It is important to observe the subtle difference between this definition and the idea of a

doubling measure, defined in Section 2.1. “Doubling” here is a property of a measure and thus

requires a measure space equipped with a quasi-metric. In contrast, “geometric doubling”

is a property of a quasi-metric and does not require a measure to be meaningful. In spite of

this (and perhaps confounding the confusion), we have the following useful theorem:

Theorem 2.3.3 (Doubling Measure Implies Geometric Doubling). Let X = (X, ρ, µ) be an

SHT with non-trivial measure. Then ρ is geometrically doubling. Moreover, the geometric

doubling bound γ0 is a geometric constant in the sense of Definition 2.1.14.

We will withhold the proof of this until the end of the chapter when we have more tools

at our disposal. However, referring back to Examples 2.2.6 and 2.2.7, we can see that the

converse of Theorem 2.3.3 is false. That is, a space with non-doubling measure can still be

geometrically doubling.
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Remark 2.3.4. The constant γ0 depends on both κ0 and κ1. This means that if we are

only considering a quasi-metric space, and not thinking about a measure, γ0 is not strictly

a geometric constant. In fact, it is easy to find examples of metrics which have the same

quasi-triangle constant but whatever geometric doubling constant you like, for example, Rn.

2.3.2 Disperse Points

We close the section with one more definition which we will need later on.

Definition 2.3.5 (R-disperse points). Let R > 0. A set of points {xa}a∈A ⊆ X, where A is

an index set, is R-disperse if inf
a,b∈A;a6=b

ρ(xa, xb) > R.

It is not impossible for A to be uncountable when we only consider only a quasi-metric

space. For example, when X = R with the discrete metric then all of X is a 2-disperse set

in X. However, A must be countable once when X is an SHT. This is a consequence of a

theorem in the next section.

2.4 Theorems, Lemmas, and Properties

In this section we will list some useful lemmas pertaining to spaces of homogeneous type.

In the book [1] by R. Alvarado and M. Mitrea, the authors dedicate their first chapter to

the geometric properties of spaces of homogeneous type. Many of the results in this section

are also found in this book, however the proofs are different and exploit the use of these

equivalence classes.
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2.4.1 Trivial Measure Lemma

Consider R with the usual metric and the measure

µ(S) :=

∫
S

dx

|x| . (2.24)

where S is any Lebesgue measurable set. This measure has one pretty ugly feature: a bad

singularity at zero. In general, we might be worried about measures such as this when

thinking about edge cases. However, the next lemma rescues us from this problem.

Lemma 2.4.1 (Trivial Measure Lemma). Suppose that (X, ρ, µ) is a SHT, then the following

are true:

(a) If there exists a ball B0 ⊆ X such that µ(B0) = 0 then µ ≡ 0.

(b) If there exists a ball B∞ ⊆ X such that µ(B∞) =∞ then µ(B) =∞ for every ball B.

Proof. For (a), let B(x, r) be a ball with µ(B(x, r)) = 0, and let U ⊆ X be a bounded

measurable set. Then there must exists R ≥ r such that [B(x, r) ∪ U ] ⊆ B(x,R). By

Lemma 2.1.11,

µ(B(x,R)) ≤ C · µ(B(x, r)) = 0 (2.25)

where C is a geometric constant. This implies that µ(U) = 0, showing that all bonded,

measurable sets have a µ measure of zero. However X can be covered by such sets (e.g.

X =
⋃∞
n=1 B(x, n) for any x ∈ X). Thus, µ ≡ 0.

For (b), let B(x, r) be a ball with µ(B(x, r)) = ∞ and let B(y, r′) be another ball. We

can choose R ≥ r′ such that B(x, r) ⊆ B(y,R). Then by basic properties of measure,

µ(B(y,R)) =∞. However, by Lemma 2.1.11, we have that

∞ = µ(B(y,R)) ≤ C · µ(B(y, r′)) (2.26)

for some constant C that depends on κ0, κ1, r, and R. This means that µ(B(y, r′)) =∞.
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An immediate consequence of this is that balls always have positive, finite measure.

Measures such as the example above cannot be doubling. In fact, returning to the measure

defined in (2.24), we notice that

µ(B(3/2, 1)) = µ((1/2, 5/2)) = ln 5

whereas

µ(B(3/2, 2)) = µ((−1/2, 7/2)) =∞

since 0 ∈ (−1/2, 7/2).

2.4.2 Finite Measure Lemma

Here we give a proof of a somewhat major result.

Lemma 2.4.2 (Finite Measure Lemma). Suppose that (X, ρ, µ) is a SHT with non-trivial

measure , i.e. µ 6≡ 0,∞. Then the following are equivalent:

• µ(X) <∞

• X ⊆ B(x, r) for some x ∈ X and r > 0.

Using this lemma, it is obvious that the Gaussian measure from Example 2.2.7 cannot

be doubling. We will defer the proof of Lemma 2.4.2 for a moment. In order to prove it, we

first require two auxiliary lemmas.

Lemma 2.1.11 is well known and can also be found in [25] for example.

Corollary 2.4.3 (Spaces With Equivalent Metrics). Let (X, ρ, µ) be a SHT, and let ρ be

equivalent to another quasi-metric ρ′, i.e. that for every x, y ∈ X,

1

C
· ρ′(x, y) ≤ ρ(x, y) ≤ C · ρ′(x, y) (2.27)
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for some constant C ≥ 1. Then (X, ρ′, µ) is also an SHT with doubling measure constant

κ′1 ≤ κ
1+log2(d2C2e)
1 . Moreover, there is a constant A ≥ 1 such that

1

A
· µ(B′(x, r)) ≤ µ(B(x, r)) ≤ A · µ(B′(x, r)) (2.28)

where B denotes open balls with respect to ρ and B′ denotes the open balls with respect to ρ′.

Proof. First observe that for any x, y ∈ X and r > 0, we have that if ρ(x, y) < r then

ρ′(x, y) < Cr. Thus, B(x, r) ⊂ B′(x,Cr). Similarly, B′(x, r) ⊆ B(x,Cr). In particular, the

topologies induced by ρ and ρ′ are the same.

We now fix x ∈ X and r > 0. Then by Lemma 2.1.11,

µ(B′(x, 2r)) ≤ µ(B(x, 2Cr)) ≤ κ
1+log2(d2C2e)
1 · µ(B(x, r/C)) ≤ κ

1+log2(d2C2e)
1 · µ(B′(x, r)).

This shows that the proposed κ′1 is sufficient as a doubling measure constant for (X, ρ′, µ).

Next, we calculate that

µ(B′(x, r)) ≤ µ(B(x,Cr)) ≤ κ
log2(dCe)
1 · µ(B(x, r))

and

µ(B(x, r)) ≤ µ(B′(x,Cr)) ≤ (κ′1)log2(dCe) · µ(B′(x, r))

Since κ′1 ≥ κ1, setting A := (κ′1)log2(dCe) is sufficient to satisfy both inequalities in (2.28).

Lemma 2.4.4 (Distant Balls Lemma). Let x, y ∈ X, let r > 0 and set R := ρ(x, y). There

exists C ≥ 1 depending only on geometric constants and on the ratio R/r such that

µ(B(y, r)) ≤ C · µ(B(x, r)). (2.29)

Moreover, C := κ
log2dκ0 Rr +κ0e
1 is sufficient.
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Proof. Let x, y ∈ X and r > 0. We wish to cover the ball B(y, r) with a ball centred at x.

It will suffice to consider a ball of radius κ0(R+ r) (see Figure 2.4.2). Indeed, suppose that

z ∈ B(y, r), then

ρ(x, z) ≤ κ0(ρ(x, y) + ρ(y, z)) (2.30)

≤ κ0(R + r) (2.31)

implying that z ∈ B(x, κ0(R + r)). Thus, B(y, r) ⊆ B(x, κ0(R + r)) meaning that

µ(B(y, r)) ≤ µ(B(x, κ0(R + r)) (2.32)

≤ κ
log2

⌈
κ0(R+r)

r

⌉
1 µ(B(x, r)) (2.33)

where the last line follows from generalized doubling.

κ0(R+ r)

r

R

r

x

y

z

B(y, r)

B(x, r)

B(x, κ0(R+ r))

Figure 2.5: Distant balls

We are now ready to do the big proof:
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Proof of Finite Measure Lemma. As always, start with the easy direction:

(Bounded ⇒ Finite Measure) This is an immediate consequence of Lemma 2.4.1, that balls

always have finite measure.

(Finite Measure ⇒ Bounded) Let µ(X) < ∞ and suppose X is not bounded. That is,

suppose that for all x ∈ X and all r > 0 there exists y ∈ X such that ρ(x, y) > r. In other

words, X cannot be contained completely inside a ball.

Fix some point x ∈ X and consider the collection of measurable, pairwise disjoint sets

(henceforth called “coronas”) Cn defined by

C0 := B(x, κ0) (2.34)

Cn := B(x, κ02n) \B(x, κ02n−1), n ≥ 1. (2.35)

x

. . .

Figure 2.6: The first four coronas
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Since X is equal to the disjoint union of all the coronas, and µ is a measure,

µ(X) = µ

(
∞⋃
n=0

Cn

)
=
∞∑
n=0

µ (Cn) . (2.36)

By assumption this sum is finite so the terms must go to zero as n → ∞, namely, that

lim
n→∞

µ(Cn) = 0.

Next we define a sequence {yn}∞n=0 ⊆ X by

yn =

 y ∈ Cn+2 if Cn+2 6= ∅
x otherwise

(2.37)

Then look at the subsequence {ynj}∞j=0 where ynj 6= x for all j > 0. This subsequence must

exists and be infinite by our supposition that X is unbounded. Since each ynj belongs to a

corona, we are guaranteed that

κ02nj+1 ≤ ρ(x, ynj) < κ02nj+2 ∀j ∈ N. (2.38)

Without loss of generality, we suppose that nj = j, that is Cn is non-empty for all n. Had

this not been the case, we could proceed by the same argument, but writing nj instead of n

(this is purely for ease of reading).

Now look at the sequence of balls {B(yn, 2
n)}∞n=1. We claim that

B(yn, 2
n) ⊆

K1⋃
k=−min{K0,n}

Cn+k, (2.39)

a finite union of no more than K0 + K1 + 1 coronas, the number of which depends only on

the quasi-triangle constant κ0 (the exact nature of these constants to be determined later).

Fix n and let z ∈ B(yn, 2
n). Then

ρ(x, z) ≤ κ0(ρ(x, yn) + ρ(yn, z)) ≤ κ0(κ02n+2 + 2n) ≤ κ2
0 · 2n+3 = κ0 · 2n+3+log2(κ0).

This means that z cannot belong to a corona numbering higher than n+3+log2(κ0). Setting

K1 := 3 + dlog2(κ0)e is sufficient. We now break into cases, according to whether or not
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n > K0 where K0 := dlog2(κ0)e. The reason for this choice will become clear when analyzing

the second case.

Case 1. (n ≤ K0) In this case, the union on line (2.39) is actually equal toB(x, κ02n+K1).

So z belongs to the union by the calculation above.

Case 2. (n > K0) We need to show that ρ(x, z) ≥ κ02n−K0−1. Suppose that ρ(x, z) <

κ02n−K0−1. Then

ρ(x, yn) ≤ κ0(ρ(x, z) + ρ(z, yn) < κ0(κ02n−K0−1 + 2n)

= κ0(2n+log2(κ0)−K0−1 + 2n) < κ02n+1,

since K0 > log2(κ0). Therefore we have reached a contradiction with the fact that

y ∈ Cn+2.

Now, since lim
n→∞

µ(Cn) = 0, the limit of the union (2.39) also goes to zero. This implies

by the work above that limn→∞ µ(B(yn, 2
n)) = 0. However, by the distant balls lemma

(2.4.4) we have that

µ(B(x, 2n)) ≤ κ
log2(κ0·

ρ(x,yn)
2n

+κ0)
1 · µ(B(yn, 2

n))

≤ κ
log2

(
κ0· 2

n+2

2n
+κ0

)
1 · µ(B(yn, 2

n))

≤ κ
log2(5κ0)
1 · µ(B(yn, 2

n)).

This goes to zero as n → ∞ which contradicts our original supposition of X having

non-trivial measure.

The Finite Measure Lemma is a very useful characterization of what kinds of measures

are permitted when we wish to have doubling. With it, we can exclude spaces such as

Example 2.2.7 without resorting to explicit calculation. In Chapter 3, we will expand on

this lemma.
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yn

x

2n

Figure 2.7: The ball B(yn, 2
n) is contained in K = K0 + K1 + 1 coronas. We do not draw

the circles “to scale” in this figure because they double in radius as they grow and would
grow to large to represent in the figure.

2.4.3 The Geometric Doubling Theorem

In this section we prove Theorem 2.3.3. This theorem and proof are due to Coifman and

Weiss, found in [13] (pg. 69), but was also proved in [48]. Here we have updated the

terminology to be in line with ours, but the logic remains the same.

We use this helper theorem.

Theorem 2.4.5 (Geometric Doubling is Equivalent to Global Maximum on Disperse Points).

Suppose (X, ρ) is a quasi-metric space with quasi-triangle constant κ0. Then the following

are equivalent:
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(a) ρ is geometrically doubling with constant γ0.

(b) There exists a constant γ1 ∈ N such that any ball B(x, r) can contain at most γ1 many

r
2
-disperse points.

We prefer to prove the easy direction first.

Proof that (b) ⇒ (a). Let B := B(x, r) be a ball and let {x1, ..., xN} ⊆ B be a collection

of r
2
-disperse points which does not permit any more points. That is, for all y ∈ B(x, r),

ρ(y, xi) < r/2 for at least one xi. We note that N ≤ γ1. Then the collection {B(xi, r/2)}Ni=1

is a (perhaps redundant) cover for B(x, r) with no more than γ0 := γ1 elements in the

collection.

Proof that (a) ⇒ (b). Suppose the desired result is false. That is, we suppose that ρ has the

geometric doubling property, but not a bound on disperse points. Then for any C ∈ N we

can find a ball B(x, r) containing at least C many r/2-disperse points.

Begin by fixing C > γa0 where a ≥ 2 is an integer exponent to be determined. By

supposition, find a ball B1 := B(x, r) which satisfies that there are C many r/2 disperse

points contained in B1 and label these points {xi}Ci=1. Since ρ is geometrically doubling, we

can find balls of radius r/2 and centers {yn,1}γ0n=1 such that

B1 ⊆
γ0⋃
n=1

B(yn,1, r/2),

that is that these balls cover B1. By the pigeon-hole principle, one of these balls must contain

more than γa−1
0 of the points xi. We label this ball B2, and continue in the fashion finding

centers {yn,2}γ0n=1 so that

B2 ⊆
γ0⋃
n=1

B(yn,2, r/4),
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and so on, stopping after a steps when we find a ball Ba with radius r · 2−a which contains

exactly two of the xi. Refer to these two points as x1 and x2, and the center of Ba as y.

Then,

ρ(x1, y) < r · 2−a and ρ(x2, y) < r · 2−a.

However,

r

2
< ρ(x1, x2) ≤ κ0(ρ(x1, y) + ρ(x2, y)) < κ0r · 2−a+1

which implies that

2a−2 < κ0.

We can thus choose a large enough to force a contradiction. This means that C ≤ γ1 :=

γa0 .

Iterating, we will get the following result.

Corollary 2.4.6. Let (X, ρ) be a quasi-metric space with quasi-triangle constant κ0. Suppose

also that X is geometrically doubling with doubling constant γ0. Then for any pair of radii,

r1 and r2, there exists a natural number N depending only on γ0 and the ratio r1/r2 such

that any ball B(x, r1) contains at most N many r2-disperse points.

Proof. If r2 ≥ r1 set N := 1. Otherwise set N := γ0 · dlog2(r1/r2)e and apply the theorem

above repeatedly. Recall that γ0 depends only on κ0.

We are now ready to prove the earlier deferred theorem.

Proof of Theorem 2.3.3. We proved above that geometric doubling is equivalent to bounded

dispersiveness, therefore it is enough to show that (X, ρ) has bounded dispersiveness.

30



Chapter 2. Introduction to Spaces of Homogeneous Type

Let B := B(x, r) be an arbitrary ball in X. Set R := r(κ0 + 1/4). Suppose x1, x2, ..., xN

are some points in B which satisfy that ρ(xi, xj) > r/2 for i 6= j. We will prove that N can

be in fact bounded uniformly by γ0 with respect to x and r.

We first claim that the balls B(xi,
r

4κ0
) are all disjoint and contained in the larger ball

B(x,R), for R := r
(
κ0 + 1

4

)
To see this, first observe that if there existed y ∈ B(xi,

r
4κ0

) ∩
B(xj,

r
4κ0

) then

ρ(xi, xj) ≤ κ0(ρ(xi, y) + ρ(xj, y)) < κ0

(
r

4κ0

+
r

4κ0

)
=
r

2

implying that xi = xj since these points are r
2
-disperse. On the other hand, if y ∈ B(xi,

r
4κ0

),

then

ρ(x, y) ≤ κ0(ρ(x, xi) + ρ(xi, y)) < κ0

(
r +

r

4κ0

)
= r

(
κ0 +

1

4

)
= R.

Thus, since the balls are disjoint,

N⋃
i=1

B

(
xi,

r

4κ0

)
⊆ B(x,R)

implying that

N∑
i=1

µ

(
B

(
xi,

r

4κ0

))
≤ µ(B(x,R))

by the basic properties of measure.

Next we claim that the ball B(x,R) is contained in a collection of larger balls B(xi, R
′)

where R′ := κ0(κ0 + 5
4
)r. To prove this claim, see that if y ∈ B(x,R) then for all i = 1, ..., N

ρ(xi, y) ≤ κ0(ρ(xi, x) + ρ(x, y)) < κ0(r +R)

= κ0

(
r + r

(
κ0 +

1

4

))
= κ0r

(
κ0 +

5

4

)
=: R′.

Select k so that

µ

(
B

(
xk,

r

4κ0

))
= min

j=1,...,N
µ

(
B

(
xj,

r

4κ0

))
,
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that is, k is the index of the center whose ball has the least measure. Then we have that

N · µ
(
B

(
xk,

r

4κ0

))
≤

N∑
i=1

µ

(
B

(
xi,

r

4κ0

))

= µ

(
N⋃
i=1

B

(
xi,

r

4κ0

))
≤ µ(B(x,R))

≤ µ(B(xk, R
′))

≤ γ0 · µ
(
B

(
xk,

r

4κ0

))
where the constant γ0 is given by Lemma 2.1.11. Explicitly,

γ0 = κ
log2(d4κ0R′/re)
1 = κ

log2(d4κ20(κ0+ 5
4)e)

1 .

Thus γ0 depends only on κ0 and κ1 and is independent of r (and x for that matter). The

above calculation therefore gives that

N · µ
(
B

(
xk,

r

4κ0

))
≤ γ0 · µ

(
B

(
xk,

r

4κ0

))
implying N ≤ γ0 since µ is assumed to be non-zero for all balls. This completes the proof.

2.5 Concerning Atoms

Next we consider properties of point masses or atoms. Atoms turn out to be somewhat tricky

in the theory of SHTs as they often pose annoying problems. We will be able to better define

the troubles with atoms in later chapters. For now we will give their definition and some

simple results.

Definition 2.5.1 (Atom). For (X,µ) a measure space, let x ∈ X be a point with non-zero

measure, i.e., µ({x}) > 0. Such a point is called an atom. Some authors use the name point

mass, but we will refrain from doing so here.
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We will denote by A the set of all atoms of X.

The following theorem is due to Maćıas and Segovia, found in [34].

Theorem 2.5.2 (Atoms are Isolated). Let (X, ρ, µ) be an SHT whose measure is non-trivial.

Then the following are true:

(a) For all x ∈ A, x is an isolated point, i.e., there exists a radius rx > 0 such that

B(x, rx) = {x}.

(b) The set A is at most countable.

The proof is a simple proof by contradiction. We give the details in Appendix 1.

Corollary 2.5.3. Let X be an SHT with nontrivial measure. Then x ∈ X is an atom if and

only if x is an isolated point.

Proof. Follows from Theorem 2.5.2 and the converse of part (1) of Lemma 2.4.1.

Corollary 2.5.3 will be important in Chapters 3 and 5 when we develop the dyadic theory

and Haar theory respectively.

2.6 Subspaces of Homogeneous Type

We will close out the chapter with a short section describing subspaces.

2.6.1 Definition and Simple Examples

We will define subspaces in the logical way
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Definition 2.6.1. Let (X, ρ, µ) be a space of homogeneous type. Let Σ be the σ-algebra

of µ-measurable sets. Suppose that Y ⊆ X is a measurable subset, and define ρY := ρ|Y×Y
and µY := µ|ΣY where ΣY := {S ∈ Σ | S ⊆ Y }. If (Y, ρY , µY ) is in its own right a space of

homogeneous type, then Y is a subspace of homogeneous type of X (abbr. subSHT).

We do not require that Y has the same geometric constants as X. Since any subset of

a quasi-metric space is also a quasi-metric space, the same quasi-triangle constant can be

used for subSHTs, however it may be possible to find a smaller one. With regards to the

doubling measure constant, it could be either larger or smaller, depending on the subspace.

Example 2.6.2 (Trivial Atomic Singleton). Let X be an SHT with at least one atom

a ∈ X. The singleton set {a} is a subSHT of X with both geometric constants equal to one,

no matter what they were for X.

Example 2.6.3 (Area Below a Parabola). Consider the SHT R2 equipped with the 1-norm

(i.e. taxicab distance) and the usual Lebesgue measure. This space has doubling measure

constant κ1 = 4. The area beneath the curve y = x2 is a subSHT (see Figure 2.8). However,

it requires a larger doubling constant. To see this, observe that for balls centred at zero with

radius less than one,

µ(B(0, 2r)) =

∫ 2r

−2r

x2 dx =
16r3

3
= 8 · 2r3

3
= 8 ·

∫ r

−r
x2 dx = 8 · µ(B(0, r)). (2.40)

This shows that a doubling constant of at least 8 is required.

As we develop more technology in the proceeding chapters, we will further revisit the

idea of subspaces of homogeneous type. For now, we should think back to the examples of

the bullseye space from earlier in this chapter, which clearly shows that not every subset

is a subspace of homogeneous type. Full classification of exactly what can and can’t be a

subSHT is beyond the scope of this document, however we will partially tackle this question

in Chapter 3 with the first and second dyadic subspace theorems.
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Figure 2.8: The subSHT example of the area beneath a parabola, with a “ball” around the
origin.

The Bullseye space example illustrates that not every subset of an SHT is a subspace.

A natural question would be, “what kinds of subsets are subspaces?” For example, one

might be lead to ask about the open balls. In [1], it is shown that this will be true given

an additional assumption on the measure. At this time, the author does not know if this is

true in general.

In the next chapter, we will be interested in the question of whether or not dyadic cubes

are SHTs.
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Chapter 3

A Tour of Dyadic Theory in Spaces of

Homogeneous Type

In this chapter we will begin the process of developing a dyadic theory in spaces of homo-

geneous type. Most of this chapter will deal with quasi-metric spaces with the geometric

doubling property, and will not require a measure. However, because of Theorem 2.3.3,

everything will be applicable to SHTs.

We first review the basics of classical dyadic theory in order to give ourselves a starting

ground before moving to the generalized SHT dyadic theory. We then move on to discussing

some of the properties of so called “quadrants,” which are essentially generalizations of

the four familiar quadrants of the plane of R2. We close the chapter with a construction

of a “honest” dyadic system- so called because each cube has exactly two children. This

construction will prove to be quite useful in later chapters.
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3.1 A Review of Dyadic Theory in Rn

We will open this chapter with an overview of dyadic systems in Rn. This material is all

very standard and should be review for most readers. See [43] or [22], for a more extensive

introduction to dyadic harmonic analysis.

3.1.1 Dyadic Intervals and Cubes

Definition 3.1.1 (Dyadic Interval). An interval I ∈ R is a dyadic interval if

I = [j · 2−k, (j + 1) · 2−k) (3.1)

for integers j and k.

Dyadic intervals are the building blocks which our dyadic cubes will be made up of.

Definition 3.1.2 (Dyadic Cube). A set Q ⊂ Rn is a dyadic cube if Q is the Cartesian

product of dyadic intervals of the same length. We call this length Q’s side length, and

denote it by `(Q).

We will denote the collection1 of all dyadic cubes2 as D(Rn) or simply D if the underlying

space is understood.

3.1.2 Basic Observations About Dyadic Systems

Let us now make some observations about dyadic intervals/squares/cubes:

1We will try to stick with the convention of referring to sets of sets, such as the dyadic intervals,
as collections.

2In the special case of R2 it might make more sense to refer dyadic squares instead of cubes.
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• Cubes are organized into generations. For any integer k, the collection Dk :=

{Q ∈ D | `(Q) = 2−k} forms a partition of Rn.

• Cubes are mutually nested. For any two cubes Q and Q′, exactly one of the

following is true: Q ⊆ Q′, Q′ ( Q, or Q ∩Q′ = ∅.

• Cubes have unique parents. For every cube Q ∈ Dk, there exists a unique cube

Q̂ ∈ Dk−1 such that Q ⊆ Q′. We refer to Q̂ as Q’s parent.

• Cubes have a set number of children. For any cube Q ∈ Dk there are exactly

2n cubes belonging to Dk+1 which are subsets of Q. We refer to these cubes as Q’s

children, and denote by ch(Q) the set of all Q’s children. We may sometimes refer to

two cubes which have the same parent as siblings. In the particular case where n = 1

and cubes are intervals, we call the children of I the left and right children and denote

them as I` and Ir respectively.

Also note that for any cube Q, `(Q) = `(Q̂)/2.

Remark 3.1.3. As a matter of convention, we include a minus sign in the definition of the

collection of the generations Dk. This ensures that cubes shrink as the generation increases,

which more closely aligns with our intuition about the words “child” and “parent.”

The usefulness of dyadic cubes in harmonic analysis cannot be understated. These cubes

have been instrumental in the proving of many important theorems such as the Calderón-

Zygmund Decomposition, itself central to the study of singular integral operators (see [17],

[18], and [14]). It is for this reason that developing a dyadic theory for SHTs was desired.

We will introduce a little more notation here. For Q ∈ D , by D(Q) we mean the set of

all cubes which are subsets of Q, i.e. Q’s descendants. Furthermore, for j ∈ Z, by Dj(Q) we

mean the cubes in D(Q) which are exactly j generations below Q. For example, if Q ∈ D10

then D6(Q) would be equal to {Q′ ∈ D16 | Q′ ⊆ Q}.
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3.2 Dyadic Theory in Quasi-metric Spaces

Because of the usefulness of dyadic cubes to the field of harmonic analysis over R and Rn,

it was natural to ask if a similar type of structure could exist within the realm of SHTs. In

this section we will be citing the relevant theorems which allow us to make use of dyadic

grids.

3.2.1 Historical Perspective

M. Christ is widely credited as being the first to fully formalize a construction of a dyadic

lattice on spaces of homogeneous type in the 1990 paper [10]. While earlier partial construc-

tions exist, such as in [46] by Sawyer and Wheeden, it was the so called “Christ cubes” which

first had the nice properties outlined in Section 3.1.2. However, Christ’s construction had

a few drawbacks. First, Christ’s construction was not over the entirety of X and omitted

infinitely many points, although the set of all points omitted had µ-measure zero. Secondly,

the proof relied on the use of the axiom of choice to locate the dyadic centers. Lastly, the

theorem requires a space of homogeneous type, and not simply a quasi-metric space. Nev-

ertheless, Christ’s theorem is still widely cited, and is for example the basis for the dyadic

theory presented in [1] and [20]

We will be basing our theory on the cubes of T. Hytönen and A. Kairema, which is

the main result of [25] (see also [29]). This construction has the benefit that every point

of X belongs to exactly one cube in each generation, an advantage over the Christ cubes.

Furthermore, this theorem is totally independent of measure. All that is required to construct

the dyadic lattice is that (X, ρ) be a quasi-metric space which is geometrically doubling.3

3Recall the result of Chapter 2 that any SHT is also a geometrically doubling measure space.
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3.2.2 Hytönen-Kairema Cubes

We now present the modern theorem for dyadic cubes over SHTs. As stated above, this

construction has several advantages over the original Christ cubes which we will soon see.

The construction follows by first proving the existence of a set of points called dyadic

centers, which forms the skeleton of the system of dyadic cubes.

Proposition 3.2.1 (Dyadic Centres Exist [25]). Let (X, ρ) be a quasi-metric space which is

geometrically doubling. Let 0 < c0 < C0 and δ ∈ (0, 1) be constants. For every k ∈ Z there

exists a set of points {zkα}α∈Ik , Ik being an index set at most countable, which satisfies that

ρ(zkα, z
k
β) ≥ c0δ

k; ∀α 6= β ∈ Ik (3.2)

inf
α∈Ik

ρ(x, zkα) < C0δ
k ∀x ∈ X (3.3)

i.e., that every x ∈ X is no further than C0δ
k from some zkα, but the set is c0δ

k-disperse. We

will call the collection of all such sets dyadic points or dyadic centers.

That the dyadic centers exist is consequence of maximality. For details, see [25, Subsec-

tion 2.21]. We give Proposition 3.2.1 because the next theorem depends on it. This is the

major result which tells us that there exists at least one dyadic lattice. The proof can be

found in [25, Section 2, pg. 4-9].

Theorem 3.2.2 (Dyadic Cube Existence). Suppose that constants 0 < c0 < C0 and δ ∈ (0, 1)

satisfy that

12κ3
0C0δ ≤ c0. (3.4)

Given a collection of dyadic points, we can construct families of sets {Q̃k
α}α∈Ik , {Qk

α}α∈Ik ,

and {Qk

α}α∈Ik – called open, half-open, and closed dyadic cubes respectively – such that:

(a) Q̃k
α and Q

k

α are respectively the interior and closure of Qk
α;
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(b) If ` ≥ k then either Qk
α ⊆ Q`

β or Qk
α ∩Q`

β = ∅;

(c) X =
⊔
αQ

k
α (the disjoint union) for all k ∈ Z;

(d) B(zkα, c1δ
k) ⊆ Qk

α ⊆ B(zkα, C1δ
k) =: B(Qk

α) where c1 := (3κ2
0)−1c0 and C1 := 2κ0C0;

(e) If k ≤ ` and Q`
β ⊆ Qk

α then B(Q`
β) ⊆ B(Qk

α).

Let us dissect this theorem a little. Property (a) gives us that the open, closed, and

half-open cubes are named appropriately. Property (b) is the familiar pairwise nestedness.

Property (c) tells us that for every k the collection {Qk
α}α∈Ik forms a true partition of X.

So far, these are the same types of properties that we would come to expect, given our

understanding of dyadic systems in Rn. Properties (d) and (e) are particular to SHTs.

These properties define an interior and exterior ball associated to each cube, and give that

exterior balls have similar nesting to cubes.

The point zkα ∈ Qk
α is called the center of Qk

α. Likewise ,we can generalize the notion of

side length by declaring that `(Qk
α) = C1δ

k, i.e. the radius of Qk
α’s exterior ball.

From the above properties, we can deduce this familiar result:

Proposition 3.2.3. Let k ∈ Z and α ∈ Ik. Then there exists a unique β ∈ Ik−1 such that

Qk
α ⊆ Qk−1

β .

Definition 3.2.4 (Dyadic Systems). The collection of dyadic cubes from Theorem 3.2.2 is

called a dyadic system (also lattice, structure, grid) on X. We denote by D(X) (or just

D) the set of all such cubes. For each k ∈ Z the family Dk := {Qk
α}α∈Ik is called the kth

generation. For any cube Q belonging to generation Dk we call the unique cube belonging

to generation Dk−1 given by Proposition 3.2.3 Q’s parent, and denote it by Q̂. If two cubes

have the same parent, we refer to them as siblings.

We will reuse the notation of D(Q) and Dj(Q) to mean the same here as they did in Rn.
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zkα

C1δ
k

c1δ
k

Qkα

Figure 3.1: A typical cubeQk
α ∈ D , with its inner and outer ballsB(zkα, c1δ

k) andB(zkα, C1δ
k).

Remark 3.2.5. The constants c0, C0, and δ are parameters which are restrained by κ0 via

inequality (3.4). For this reason, we consider them geometric constants. Likewise, c1 and C1

are also geometric constants since they are defined in part (d) of Theorem 3.2.2.

Remark 3.2.6 (Cube Equivalence). We consider cubes to be more than just subsets of X.

They also carry with them their generation. With this in mind, it is totally possible for two

cubes to be equal as sets but not as cubes. For example, if Q is a cube with no siblings, then

Q̂ ⊆ Q and Q ⊆ Q̂ but Q 6= Q̂ because they belong to different generations. This distinction

will matter more later on and we will be careful to say precisely what we mean when talking

about cube equivalence.

As remarked above, dyadic structures are defined entirely with respect to a quasi-metric

space. There is no dependence on the measure, or even a requirement that one be defined.

However, we do have this final result to close out this section:

Corollary 3.2.7 (Dyadic Cubes in SHTs). Let (X, ρ, µ) be an SHT with non-trivial measure,

and let constants 0 < c0 < C0 and δ ∈ (0, 1) satisfy (3.4). Then a system of dyadic cubes

such as in Theorem 3.2.2 can be constructed for X.
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Proof. By Theorem 2.3.3, (X, ρ) is a quasi-metric space with the geometric doubling prop-

erty. Therefore, the dyadic centers exist by Proposition 3.2.1, which fulfills the hypothesis

for Theorem 3.2.2.

Corollary 3.2.8 (Parent Cubes). Let X be an SHT with at least two points. Let D be a

dyadic lattice for X an SHT. There exists a constant Dbl(D) ≥ 2 so that

µ(Q̂) ≤ Dbl(D) · µ(Q). (3.5)

for all Q ∈ D .

This result is a corollary of Lemma 2.1.11. See Appendix 3 for the details of the proof.

We call the constant from (3.5) the dyadic doubling constant for D . The reason Dbl(D) ≥ 2

is clear enough: There must be a cube Q with more than one child cube. If Q+ and Q−

are two of Q’s children, then µ(Q+) + µ(Q−) ≥ µ(Q) implies either µ(Q)/µ(Q+) ≥ 2 or

µ(Q)/µ(Q−) ≥ 2.

3.2.3 Boundedness on the Number of Children

For each Q ∈ D , denote by ch(Q) the set of all children of Q and denote by N(Q) := # ch(Q)

the number of children of Q.

Theorem 3.2.9. There exists Nch ∈ N such that N(Q) ≤ Nch for all Q ∈ D .

This theorem can be found in several places, including [1], [20], and [25]. We will give a

proof here as well.

Proof. It is sufficient to show that N(Qk
α) can be uniformly bounded by some constant not

depending on α or k. Let Qk
α ∈ Dk be a cube and let B(zkα, C1δ

k) be its outer ball. For each

child Qk+1
β ∈ ch(Qk

α) there exists an inner ball B(zk+1
β , c1δ

k+1). Since each child is disjoint

and the inner balls are subsets of the children, the set of points zk+1
β are c1δ

k+1-disperse. By
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Corollary 2.4.6, the number of such points is bounded by γ1, a constant depending only on

the quasi-triangle constant and the ratio of the radii. This ratio is equal to c1δ
−1, which

does not depend on k (or α for that matter) at all. Thus γ1 is uniform across all generations.

Since the number of centers is equal to the number of children, we are done.

3.2.4 An Example

Example 3.2.10. Consider the set X ⊂ R2 defined by

X =
∞⋃
n=0

(
[n, n+ 2−n)× [0, 2−n)

)
. (3.6)

If we look at X with the usual measure and metric on R2, then the usual dyadic structure on

1

1 2 3 4

· · ·

Figure 3.2: The set X in Example 3.2.10.

R2 can function as a dyadic structure on X as well. That the cubes exist is obvious, however

there is a detail to consider with regards to the inner and outer balls. For any isolated square,

say [m,m + 2−m) × [0, 2−m), with m > 0 fixed, the entire square will be a cube for every

generation 0 ≤ k < m. Thus, we can use as a center the point z := (m+ 2−m−1,m+ 2−m−1).

It appears that we have a problem with our inner ball B(z, 2−k−1), since it looks like it lies

outside the cube. However, the ball is actually just the entire contents of the cube, since

nothing lies outside it as far as X is concerned. With this in mind, we can continue to use
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the same center point until the inner ball actually lies inside the square in generation k = m,

at which point the normal subcubes and centers kick in for all subsequent generations.

An interesting property of this example is that given any generation Dk, there are in-

finitely many cubes which have only one child. Moreover, for any natural number m, we can

find a cube belonging to generation zero with the property that this cube will have only one

descendant for m number of generations.

This shows us that there need not be a bound on the number of generations for a cube

to finally split.

3.3 Dyadic Cubes in SHTs

One of the advantages of the dyadic cubes of Hytönen and Kairema is that the construction

lives entirely within the realm of quasi-metric spaces. This allows us to have a dyadic

lattice on any quasi-metric measure space without issue. Of course, in this document we

are primarily interested in spaces of homogeneous type, although we will briefly look at a

non-doubling result of sorts in the Chapter 5.

We will now look at a few additional properties of dyadic cubes when there is an under-

lying doubling measure.

3.3.1 Thin Boundaries

Christ’s construction of dyadic cubes, having a dependence on the measure, have an extra

useful property:

Property 3.3.1 (Christ Cubes Have Thin Boundaries). Let D be a system of dyadic cubes

constructed via the method found in [10]. Then there exist constants C, η > 0 such that for
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all cubes Q in generation Dk,

µ({x ∈ Q | ρ(x,X \Q) < tδk}) < Ctηµ(Q) (3.7)

for every t > 0.

Christ cubes are automatically also Hytönen-Kairema cubes. Yet, a priori there is no

obvious reason that the newer Hytönen-Kairema cubes would have the same property. In

[28], Hytönen and Kairema get around this by introducing the notion of adjacent systems

of cubes. The details of this are not important to this document. We will instead, when

necessary, include the assumption that the cubes have thin boundaries.

3.3.2 The First Dyadic Subspace Theorem

We know that in general subsets of SHTs are not themselves subSHTs. However, we know

that dyadic cubes are a special type of subset.

Theorem 3.3.2 (First Dyadic Subspace Theorem). Let X be an SHT and let D be a dyadic

lattice on X such that cubes have thin boundaries as in 3.3.1. Then for every cube Q ∈ D ,

Q is a subSHT of X. Moreover, the geometric constants are independent of choice of cube.

This theorem can be found in [1] (Proposition 3.24) and [20] as part of the list of

properties of dyadic systems. At the time of this writing, it is not clear if the property

of thin-boundaries will automatically exist for any collection of Hytönen-Kairema cubes, or

if it needs to be assumed when needed. It would be interesting to try to prove that the

assumption is redundant, or to find a counter-example.
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3.4 Concerning Quadrants

In the usual dyadic intervals on R, the number zero uniquely has the property that it is not

contained in the interior of any dyadic intervals. This effectively splits the real numbers into

two “non-interacting” halves: the positive and negative numbers. This generalizes in the

expected way where in R2 every point on the x and y axes has this property, and so on in

higher dimensions.

The moral of the situation is that, from the perspective of the dyadic systems, these

non-interacting subsets might as well be totally separate spaces on their own. In this section

we will look at how this idea generalizes further to SHTs.

3.4.1 A Motivating Conundrum

Let us take a look at an example of a measure which might make us feel worried.

Example 3.4.1 (A Half-Bad Measure Space). Let X = R with the usual metric. For the

measure µ, we will use a half-bad measure

µ(S) :=

∫
S

m(x), dx ; m(x) :=

 1 if x ≥ 0

ex if x < 0

Figure 3.3: Graph of y = m(x).

This measure space is not doubling, but at this point we need to show this by direct

calculation. It is clear that µ(X) = ∞, so the Finite Measure Lemma does not apply.
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However, this space is half-bad, in sense that it has a bad subspace, namely the negative

real numbers. Isolated on their own, the negative reals with µ restricted to them is not an

SHT.

The idea here is that if a subset of a measure space is bad in some way, then it potentially

takes the whole space down with it. However, we know from the Bullseye space example

(Example 2.2.8), that it isn’t enough to just have a subset which fails to be a subSHT.

We would like to say that things like the half-bad measure space can’t be spaces of

homogeneous type. We will try now to zoom in on what exactly we mean by this.

3.4.2 Quadrant Definition

We will get the the meat of this section now.

Definition 3.4.2 (Quadrants). Let X be an SHT and let D be a dyadic lattice on X. For

every x ∈ X, define the set

QuadD(x) :=
⋃

Q∈D | Q3x

Q

as the quadrant in D which contains x. Furthermore, define the collection of quadrants

QuadD(X) := {Quad(x) | x ∈ X}/ ∼

with ∼ an equivalence relation defined on quadrants where QuadD(x) ∼ QuadD(y) if and

only if QuadD(x) = QuadD(y), where the equality holds as sets. Equivalently, QuadD(x) ∼
QuadD(y) if and only if there exists a cube Q ∈ D which contains both x and y.

When the dyadic lattice is clear (i.e. there is only one in consideration) then we will omit

the subscript and just write Quad(x) and Quad(X).

Remark 3.4.3. We will use the script letter Q to refer to quadrants, to differentiate from

the regular Q typically used for cubes.
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3.4.3 Examples of Quadrants

At first, it is tempting to tie the number of quadrants to some notion of “dimension” of a

space. After all, in Rn there are the usual 2n quadrants which we are very familiar with,

so we may decide to define dim(X) := log2(Nq) where Nq is the number of quadrants. The

following examples show why this is not such a great plan.

Example 3.4.4 (Finitely Many Quadrants). In Figure 3.4, we see a few different dyadic

lattices on R2. We have divided R2 into Nq “slices” where each slice is the set {(r, θ) | r >
0, 2πj/Nq ≤ θ < 2π(j + 1)/Nq}, 0 ≤ j < Nq, with (r, θ) the polar form. We can then

partition the slices into a collection of congruent isosceles triangles. At every generation,

we can always divide each triangle into four similar triangles with sides half as long. These

triangles are of course our cubes and the slices are the quadrants. Dyadic centers are the

midpoints along the line of reflection symmetry. For inner and outer balls δ = 1/2 and the

values of c1 and C1 depend on the angle.

In this manner, we could easily impose as many or as few quadrants as we like: simply

by shrinking the angle and squeezing in more slices. All this, in spite of the fact that R2

has dimension 2. However, we can not use this particular style to generate countably many

quadrants. For that, something with slightly more fineness is needed.

Example 3.4.5 (A Space With Infinitely Quadrants). Let X ⊂ R3 be the set {(x, y, z) ∈
R3 | x = t · cos(2πz), y = t · sin(2πz), t ≥ 1}, an infinite spiral. Set ρ(x,y) to be length of

the shortest path within X from x to y and set µ to be the surface area measure. Then

(X, ρ, µ) forms a space of homogeneous type.

For each integer n, the section of X where n ≤ z < n+ 1 is in bijection with R2 \B(0, 1).

Thus for each of these slices, the usual dyadic lattice for R2 excluding the unit disk forms

a dyadic lattice for the slice. (In this example we exclude the unit disk because it causes

too much warping near the z-axis and destroys cube uniformity for this lattice). As each
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Nq = 3 Nq = 6

Nq = 7 Nq = 13

Figure 3.4: Example showing different dyadic structures imposed on R2, each with a different
number of quadrants, (here called Nq). One quadrant is highlighted in each example, for
emphasis.

individual slice has four quadrants, and there are infinitely many slices, X with this dyadic

lattice has infinitely many quadrants.

3.4.4 A Bounded Subset Theorem

The following theorem is highly intuitive.

Theorem 3.4.6. Let Q be a quadrant in a dyadic system D over an SHT X. For every

bounded subset S ⊆ Q, there is a cube Q ∈ D such that S ⊆ Q.

Proof. We observe that Quad(x) = Quad(y) if and only if there exists some dyadic cube Q

which contains both x and y. Moreover, if there is a cube Q that contains two points x and
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y, then every predecessor cube of Q (cubes belonging to previous generations) also contains

x and y.

Let S ⊆ Q be bounded. For any k ∈ Z, we can cover S by finitely many cubes belonging

to generation Dk. Fix k arbitrarily and let {Qn}Nn=1 ( Dk be the finite number of cubes

which cover S. If N = 1 we are done. Otherwise, if N > 1, then choose two cubes Q1 and Q2

and let x ∈ Q1 and y ∈ Q2 with x, y ∈ S. Since the two cubes are disjoint, x 6= y. However,

Quad(x) = Quad(y) = Q, since S ⊆ Q, so there must be a cube Q′ which is a predecessor

to both Q1 and Q2 which contains both x and y. If Q′ ∈ Dj then j < k. Moreover, it must

take fewer than N unique cubes from Dj to cover S since x and y now belong to a single

cube. We can repeat this process until the number of cubes to cover S equals one.

3.4.5 Properties of Quadrants

Let us run down some basic properties of quadrants:

Theorem 3.4.7 (Dyadic Quadrant Properties). Let X be an SHT and let D be a dyadic

structure on X. Let Q be a quadrant of D . We have that

(a) all quadrants are pairwise disjoint.

(b) if X is a bounded space, then X has only one quadrant.

(c) if X is unbounded, then every quadrant is unbounded.

Proof of (a). The proof is a trivial application of the definition of quadrant.

Proof of (b). Let X be a bounded SHT. Since X is bounded, there must be r > 0 so that

B(x, r) = X for all x ∈ X (choose, for example r larger than the diameter of X). Let k ∈ Z

be small enough so that c1δ
k > r, where here c1 and δ are as in Theorem 3.2.2. Then for all
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α ∈ Ik, the ball B(zkα, c1δ
k), which is the inner ball corresponding to the cube Qk

α, is a super

set of X. Fix α and let Q be the quadrant that Qk
α is a member of. Then

Q ⊇ Qk
α ⊇ B(zkα, c1δ

k) ⊇ X.

But Q ⊆ X, so they are equal. Any other quadrant must be a subset of X \Q = ∅, so there

aren’t any.

Proof of (c). Let X be an unbounded SHT and suppose for the sake of a contradiction that

Q is a bounded quadrant of X. Fix r > 0 larger than the diameter of Q. Find k such that

c1δ
k > r, and let Qk

α be a cube in generation Dk which is also in Q. Then for any x ∈ Q,

ρ(x, zkα) < r < c1δ
k, meaning that x belongs to the inner ball of Qk

α and thus x ∈ Qk
α. This

actually implies that at the kth generation, and for that matter any previous generation, Q

contains only one cube.

Now, since X is unbounded, we can find y ∈ X such that ρ(y, zkα) > C1δ
k. This means

that y 6∈ Qk
α because it lies outside of Qk

α’s outer ball. Moreover, since Qk
α = Q as sets,

y 6∈ Q as well. Find ` < k small enough so that ρ(y, z`β) < c1δ
` where z`β is the center of the

single cube in generation ` belonging to Q. Then y ∈ Q`
β since it is an element of the inner

ball of Q`
β. However, this implies that Quad(y) = Q by definition of quadrant, which is a

contradiction.

3.4.6 Second Dyadic Subspace Theorem

As we saw in the bullseye space example (Example 2.2.8), just because a space is a subset

of an SHT does not mean that it is itself an SHT. This applies to quadrants as well, at

least a priori. If we want quadrants to be SHTs, we need to show that they cannot become

sufficiently sparse in the way that the bullseye space can.

Theorem 3.4.8 (Second Dyadic Subspace Theorem). Let X be an SHT and D a dyadic
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lattice on X such that every cube has a thin boundary. Then for every Q ∈ Quad(X), Q is

a subSHT of X.

Proof. For x ∈ Q and r > 0 we will denote by B̃(x, r) := B(x, r) ∩Q the open balls in Q.

Once again, the fact that ρ|Q×Q is a quasi-metric is trivial, so we only need to verify that µ

restricted to the subsets of Q has the doubling property.

Let x ∈ Q and r > 0. The set B̃(x, 2r) is therefore a bounded set in Q. By Theorem

3.4.6, there is a cube Q ⊆ Q such that B̃(x, 2r) ⊆ Q. Thus

µ(B̃(x, 2r)) = µ(B(x, 2r) ∩Q) ≤ κ̃1 · µ(B(x, r) ∩Q) = κ̃1 · µ(B̃(x, r))

where κ̃1 is the doubling constant for Q as a subSHT of X given by Theorem 3.3.2. However

κ̃1 is independent of Q, so Q can inherit the same doubling measure constant.

The Second Dyadic Subspace Theorem is deceptively powerful. With it now firmly in

our grasp we can dispose of the half-bad measure example, and anything else like it. This

gives a very nice test for determining if some measure space is an SHT or not.

Corollary 3.4.9 (No Half-Bad Measures). Let (X, ρ) be a quasi-metric space which is geo-

metrically doubling and unbounded. Let µ be a non-trivial measure on X. If there exists a

dyadic lattice D on X such that for one of the quadrants Q of D , µ(Q) <∞, then (X, ρ, µ)

is not an SHT.

Proof. Suppose the corollary is false and (X, ρ, µ) is an SHT. By the Second Dyadic Subspace

Theorem, Q is a subSHT of X. Moreover, by Theorem 3.4.7 part (c), Q is also unbounded.

But by the Finite Measure Lemma (Lemma 2.4.2), µ(Q) =∞, which is a contradiction since

it has finite measure by hypothesis.

53



Chapter 3. A Tour of Dyadic Theory in Spaces of Homogeneous Type

3.4.7 What is a Quadrant?

A natural question might be that given a subset S ⊆ X, can we find a dyadic system D

which has S as one of its quadrants? This question is interesting and, given that we now

have Corollary 3.4.9, could be relevant when determining if certain examples with a little

misbehavior are SHTs or not. While contrived example such as the half-bad Example 3.4.1

are easy to discredit, more nefarious examples could be difficult.

In her paper What is a Cube? ([26]) A. Kairema tackles a similar question for cubes.

The main result of the paper is a list of necessary and sufficient conditions for a subset S to

be a dyadic cube in some system on X. It is the authors expectation that essentially similar

conditions apply for quadrants, and we remark here that it could be interesting to explore

this in the future.

3.4.8 A Final Remark on the Usefulness of Quadrants

With all this talk about quadrants, we should note that this theorem is known:

Theorem 3.4.10 (A. Kairema [29]). It is possible to impose of the construction of D that

there is only one quadrant.

The existence of this theorem perhaps raises the question, “what exactly is the use of

talking about quadrants?”

Our aim in this document is to, as much as possible, remain general with respect to dyadic

grids and their underlying spaces. While it is true that Theorem 3.2.2 has a constructive

proof, the construction given is not necessarily unique. We would like to be able to say as

much as we can without a priori special knowledge about the grid we are using. For this

reason, we are shying away from the use of results which require us to put extra restrictions

on the grid. We do not, therefore, know that there will be only one quadrant.
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In Chapter 5 we will begin to look at Haar bases in spaces of homogeneous type and the

framework built up here will be very useful in eliminating some otherwise pesky case. For

now, we will mention that the potential for some quadrants to be finite in measure while

others are infinite in measure would have caused some difficulties in defining the basis. That

we have eliminated this possibility is very useful indeed.

3.5 “Honest” Systems of Dyadic Cubes

One of the major hurtles when dealing with dyadic analysis over spaces of homogeneous

type is the thorny issue of the varying number of children in each cube. In Rn, we always

know that each cube has the same number of children, and furthermore that this number

is a power of 2. In SHTs, as we have seen, this nice property falls by the wayside. The

practical cost of this is an unfortunate increase in the amount of bookkeeping when dealing

with dyadic focused proofs. To help ease the burden, we have developed a work-around of

sorts, which we are calling “honest” dyadic systems. The word “honest” here refers to the

prefix “dy-” in that the cubes really do have two children4. While the honest systems are

not strictly necessary to derive any results, they nevertheless allow for a nice simplification

and remove the potential for overly cumbersome notation.

Definition 3.5.1 (Overlapping Grids). Let X be an SHT and let D and D ′ be two dyadic

grids on X. If for every Q ∈ D , it is also true that Q ∈ D ′ then we say that D ′ overlaps D .

The main lemma looks like this:

Lemma 3.5.2 (Honest Dyadic Cube Existence). Let X = (X, ρ) denote a quasi-metric

which is geometrically doubling and let D be a dyadic grid over X. There exists a dyadic

structure D̃ on X which overlaps D and is honest, that is, that each cube in D̃ has no more

than two children cubes.
4We do not mean to imply that dyadic systems with more than two children per cube are

“dishonest,” and apologize in advance to any offended lattices.
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What makes honest systems nice to work in is that we always know the number of

children each cube has. As we will see in Chapters 5-7, this is very helpful when dealing

with generalizing some basic concepts from Rn to X. For example, in R we have the familiar

operator

∆If :=
1

|I|

(∫
I`

f(x) dx−
∫
Ir

f(x) dx

)
; I ∈ Dk

Generalizing ∆I to Rn is already a pain. The pain is exacerbated even more in the world of

SHTs. The existence of honest systems makes things of this nature trivial.

Proof of Lemma 3.5.2. By the definition of dyadic grids, we have that there exists constants

0 < c1 < C1, δ ∈ (0, 1), and Nch ∈ N so that

1. For any cube Q ∈ Dk with center zQ, B(zQ, c1δ
k) ⊆ Q ⊆ B(zQ, C1δ

k),

2. For any cube Q ∈ D , 1 ≤ N(Q) ≤ Nch.

Fix a cube Q ∈ D , and suppose that N(Q) 6= 1, that is, that Q has more than one

child. We will consider this case later. Let uQ be an enumeration of Q’s children, that is,

uQ : {1, 2, ..., N(Q)} → ch(Q) a bijection. As there are N(Q) children, there are exactly

N(Q)! such enumerations. For the time being, we choose any of these without caring about

which one. Next we fix p : ZN(Q)−1 → ZN(Q)−1 a permutation (also a bijection). Define the

sets Ei,0
Q , and Ei,1

Q for i = 1, ..., N(Q)− 1 as

Ei,0
Q :=

p(i)⋃
j=1

u(j),

Ei,1
Q :=

N(Q)⋃
j=p(i)+1

u(j) = Q \ Ei,0
Q .

From these sets, we can define set F i,j
Q for i = 1, ..., N(Q)− 1 and j = 0, ..., 2i − 1 as

F i,j
Q =

i⋂
`=1

E
`,a`(j)
Q
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where a`(j) is the `th digit of j in binary. Alternatively, we could have defined F i,j
Q recursively:

F i,j
Q = Ei,j

Q for i = 1; j = 0, 1

F i+1,j
Q = F i,j′

Q ∩ Ei+1,`
Q for i > 1; j = 0, ..., 2i − 1

where

(j′, `) =

 (j, 0) if j < 2i − 1

(j − 2i, 1) if 2i ≤ j < 2i+1 − 1

Example 3.5.3. If it exists, the subset F 5,11
Q = E5,0

Q ∩E4,1
Q ∩E3,0

Q ∩E2,1
Q ∩E1,1

Q = E5,0
Q ∩F 4,11

Q

because 11 has the binary representation of 010112 to five digits.

We now claim that for each i = 1, ..., N(Q)− 1,

#{F i,j
Q | j = 0, ..., 2i − 1 and F i,j

Q 6= ∅} = i+ 1 (3.8)

First, observe that F 1,0
Q = E1,0

Q and F 1,0
Q = E1,0

Q , so (3.8) is true when i = 1. Second, if (3.8)

holds for a particular i, then it holds for i+1 because at every step, for only one j does both

F i,j
Q ∩ Ei+1,0

Q 6= ∅ and F i,j
Q ∩ Ei+1,0

Q 6= ∅. Inducting on i proves the claim.

With equation (3.8) verified, we can now say that there are exactly N(Q) non-empty F i,j
Q

sets when i = N(Q)− 1. Clearly, these sets are precisely Q’s children.

It is possible that, for some cubes N(Q) < Nch. In this case, we define the sets F i,j
Q =

F i−1,j
Q for i > N(Q)− 1.

We now construct the dyadic structure D̃ . First, set generation D̃(Nch−1)k := Dk. We

next construct the intermediate generations. For every i = 1, ..., Nch − 2, set

D̃(Nch−1)k+i :=
{
F i,j
Q | Q ∈ Dk}; j = 0, ..., 2i − 1;F i,j

Q 6= ∅
}
.

This gives us the sets which make up the generations of D̃ . See figure 3.6 for an example

of this process.
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Q 1 2 3 4 5

E1,0
Q E1,1

Q

E2,0
Q E2,1

Q

E3,0
Q E3,1

Q

E4,0
Q E4,1

Q

F 1,0
Q F 1,1

Q

F 2,0
Q F 2,1

Q F 2,3
Q

F 3,0
Q F 3,1

Q F 3,5
Q F 3,7

Q

F 4,0
Q F 4,8

Q F 4,9
Q F 4,13

Q F 4,15
Q

Figure 3.5: In this figure we consider a cube with five children. At the top we have the cube
Q with its children labeled by the enumeration uQ. We then generate the E

i,0/1
Q sets via the

permutation p = (2, 4, 3, 1) which is shown on the left. On the right, we show how these give
rise to the F i,j

Q sets. Notice how at each level we only introduce one more subset by only

splitting one previous set. Also note that F i,j
Q = ∅ for any F i,j

Q not pictured.

We must now find parameters δ̃ ∈ (0, 1), 0 < c̃1 < C̃1, and the centers z̃Q so that

B(z̃Q, c̃1δ̃
k) ⊆ Q ⊆ B(z̃Q, C̃1δ̃

k). (3.9)

For every Q ∈ D̃k, Q is a finite union of cubes Q′ ∈ Dj for some j. Set z̃Q = zQ′ any of the

such Q′. Set δ̃ := δ1/(Nch−1), c̃1 = c1 · δ and C̃1 := 2κ0 · C1/δ. We will now prove that these

choices of centers and constants are sufficient.

Let Q ∈ D̃k with center z̃Q. Then Q is equal to the union of cubes belonging to Dj where

j(Nch− 1) ≥ k > (Nch− 1)(j− 1). Moreover, these cubes are all siblings, i.e., have the same

parent in Dj−1.

We need to show that (3.9) is satisfied. Let Q′ ∈ Dj be the cube such that z̃Q = zQ′ .
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Then

B(z̃Q, c̃1δ̃
k) = B(zQ′ , c1δ

k/(Nch−1)+1) ⊆ B(zQ′ , c1δ
j) ⊆ Q′ ⊆ Q.

Now let x ∈ Q. Then

ρ(x, z̃Q) ≤ κ0(ρ(x, z
Q̂′) + ρ(z

Q̂′ , z̃Q)) < 2κ0C1δ
j−1 ≤ 2κ0C1δ

k/(Nch−1)−1 = C̃1δ̃
k.

This verifies (3.9).

Remark 3.5.4. The proof above constructs an honest system which has mostly null genera-

tions. It is not difficult to see that this isn’t the only way to do this construction. One could,

if so desired, reorganize the way the cubes are split to give fewer intermediate generations.

However, unless Nch is a power of 2 and all cubes have Nch children, some null generations

must be generated. This isn’t really a problem for most practical situations and can be

handled quite easily, as we will see in Chapters 6 and 7.

Notation 1. If a dyadic system is honest, we will refer to the two child cubes of Q as Q+

and Q−, or together as Q±.

3.6 Dyadic Lebesgue Differentiation Theorem

We make a note here about the Lebesgue Differentiation Theorem. For (X, ρ, µ) a space of

homogeneous type and f : X → R, we would like to be able to say that

lim
r→0

1

µ(B(x, r))

∫
B(x,r)

f(y) dµ(y) = f(x) a.e. x ∈ X with respect to µ.

However, it is known that in general this unfortunately fails without making extra assump-

tions about the measure µ beyond just doubling. This was pointed out to me in an e-mail

from David Cruz-Uribe. Surprisingly then we do have a version of the Lebesgue Differenti-

ation Theorem for dyadic cubes!
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Theorem 3.6.1 (Lebesgue Differentiation Theorem for Dyadic Cubes). Let X be an SHT

and D be a dyadic lattice for X. For x ∈ X denote by Qk(x) the unique cube in generation

Dk which contains x. Let f : X → R be an integrable function. Then for every x ∈ X,

except possibly on a set with µ-measure zero, we have that

lim
k→∞

1

µ(Qk(x))

∫
Qk(x)

f(y) dµ(y) = f(x).

A proof of this theorem can be found in [1], however it relies on the thin boundary

property. Another proof can be found in Hytönen’s lecture notes, Martengales and Harmonic

Analysis, [21], Corollary 2.6.
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Q Q′

Dk = D̃(Nch−1)k

D̃(Nch−1)k+1

D̃(Nch−1)k+2

D̃(Nch−1)k+3

Dk+1 = D̃(Nch−1)(k+1)

Figure 3.6: On the left are two cubes Q and Q′, belonging to the same generation. On the
right we see the process by which the honest generations are to be inserted, by splitting
exactly one honest cube at a time. Notice that Q′ has one null generation where no new
cubes are inserted, because it started with four children cubes instead of five.
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Chapter 4

The Greats of Weights

Now that we have a solid footing, we can begin to look at weight theory. In this short chapter

we will collect the basic definitions and “great” theorems which we will make use of in the

later chapters. For a more thorough introduction to weighted theory, see textbooks [17] and

[14].

This chapter introduces the first use of the following notation, which will be used exten-

sively through the rest of this document:

Notation 2. For an integrable function f and a µ-measurable set S ⊆ X with 0 < µ(S) <

∞, we will use the notation1 〈f〉S to denote the µ-average of f in S:

〈f〉S :=
1

µ(S)

∫
S

f(x) dµ(x).

It may be more proper to include a “µ” in the notation for the average, but we will omit

it to avoid cumbersome subscripts and hope the measure is clear from context.

1While we are using the notation of Volberg et. all, other authors, such as Pereyra, prefer
“mSf” for the mean.
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4.1 Introduction

We will begin with a straightforward definition.

Definition 4.1.1. Let (X,µ) be a measure space. A weight is a function w ∈ L1
loc(X) which

is positive almost everywhere with respect to µ.

Notation 3. Let w be a weight defined over a measure space (X,µ). For any measurable

set S ⊆ X, we mean by w(S) :=
∫
S
w(x) dµ(x).

Obviously, we are interested primarily in weights defined over SHTs. In this section we

will introduce the basic definitions and propositions in weight theory.

4.1.1 Weighted Lp

As usual, when (X,µ) is a measure space we can define the Lebesgue Lp-norm, 1 ≤ p < ∞
for real-valued measurable functions as

||f ||Lp :=

(∫
X

|f(x)|p dµ(x)

) 1
p

.

If ||f ||Lp <∞ then f ∈ Lp.

For w a weight, we can also define weighted Lp-norm:

||f ||Lp(w) :=

(∫
X

|f(x)|pw(x) dµ(x)

) 1
p

.

Remark 4.1.2. As in other places, we note that it might be more appropriate to say

“Lp(X,µ)” instead of Lp, but we are trying to be terse when a fixed context permits.

Proposition 4.1.3. Let w be a weight. A function f ∈ Lp(w) if and only if fw
1
p ∈ Lp.

Moreover ||f ||Lp(w) = ||fw 1
p ||Lp.

We can likewise define a weighted and unweighted inner product.
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Definition 4.1.4. Let f and g be real-valued square integrable functions. The L2 inner

product of f and g is

〈f, g〉 :=

∫
X

f(x)g(x) dµ(x).

For w a weight, the weighted inner product defined for L2(w) functions is

〈f, g〉w :=

∫
X

f(x)g(x)w(x) dµ(x).

4.1.2 The Classes Ap, RHq, and Ct

We will now introduce three main classes of weights which are of interest to us.

For each of these definitions, we let (X,µ) be a measure space and w be a weight on X.

Furthermore, we let S be a family of µ-measurable subsets of X, each with positive measure.

Definition 4.1.5 (Mukenhoupt Class). Let 1 < p < ∞. Suppose there exists a constant

C > 0 such that for all S ∈ S

〈w〉S〈w
1

1−p 〉p−1
S ≤ C. (4.1)

We then say that w belongs to the Mukenhoupt Ap class, or simply Ap class, with respect

to S, written w ∈ Ap(S) and we denote the smallest such C as [w]Ap(S), called the Ap

characteristic of w.

Definition 4.1.6 (Reverse Hölder Class). Let 1 < q <∞. Suppose there exists a constant

C > 0 such that for all S ∈ S

〈wq〉1/qS ≤ C · 〈w〉S. (4.2)

We then say that w belongs to the Reverse Hölder q class with respect to S, written w ∈
RHq(S) and we denote the infimum of all such C as [w]RHq(S), called the Reverse Hölder q

characteristic of w.
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Definition 4.1.7 (Ct Class). Let t ∈ R. Suppose there exists a constant C > 0 such that

for all S ∈ S

〈wt〉S〈w〉−tS ≤ C. (4.3)

We then say that w belongs to the Ct class with respect to S, written w ∈ Ct(S) and we

denote the infimum of all such C as [w]Ct(S), called the Ct characteristic w.

The reverse of inequalities (4.1), (4.2), and (4.3) are always true with C = 1 by Hölder’s

inequality.

Notice that for p > 1, w ∈ Ap(S) if and only if w ∈ C1/(1−p)(S) with [w]p−1
Ap(S) =

[w]C1/(1−p)(S). Also for q > 1, w ∈ RHq(S) if and only if w ∈ Cq(S) with [w]qRHq(S) = [w]Cq(S).

The Ap class will be used in several chapters of this dissertation. In Chapter 5 we will look

at an important theorem pertaining to Reverse Hölder weights. In Chapter 7, Ct weights

will play an important role for bounding the operators we want to study in that chapter.

4.1.3 Continuous and Dyadic Classes

In particular, if (X, ρ, µ) is a space of homogeneous type and S is the collection of open

ρ-balls, then we say that the classes are continuous classes and we simply write Ap, RHq,

and Ct. If S instead denotes a collection of dyadic cubes D over X then we say that the

classes are dyadic classes and write AD
p , RHD

q , and CD
t .

4.1.4 Dyadic Doubling Weights

The last class of weights we define will be dependent on a particular dyadic grid.

Definition 4.1.8. Let X be an SHT, and D a dyadic lattice over X. Then a weight w is
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dyadic doubling if there exists a constant C > 0 such that

w(Q) ≤ C · w(Q̂)

for every Q ∈ D . Recall that by Q̂ we mean Q’s parent.

4.2 Theorems

Here we will list some important facts, propositions, and theorems regarding weights which

are interesting and which we will use in several proofs later on. For a concise list of some

basic results, see Chapter 1 of D. Panek’s Ph.D. dissertation, [42].

4.2.1 Simple Propositions

There are several simple results relating Ap weights and RHq weights, of which we give a

selection here.

Proposition 4.2.1. For a weight w, w ∈ Ap(S) if and only if w
1

1−p ∈ Ap′(S).

This proposition is easily verified by manipulating exponents in Definition 4.1.5.

Proposition 4.2.2. For a weight w, if w ∈ Ap(S) then w ∈ Ap+ε for all ε > 0.

Proposition 4.2.3. For a weight w, if w ∈ RHq(S) then w ∈ RHq−ε for all 0 < ε < q − 1.

Propositions 4.2.2 and 4.2.3 are simple consequences of Hölder’s inequality.2

Lastly, we have this basic result:

Proposition 4.2.4. For a weight w, there exists p > 1 such that w ∈ Ap if and only if there

exists q > 1 such that w ∈ RHq. This also holds for AD
p and RHD

q .

2In the next chapter we will look at a theorem related to Proposition 4.2.3.
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4.2.2 A Suite of Maximal Functions

The Ap class was first introduced in [38] by B. Mukenhoupt, as a way to characterize the

maximal function.

Definition 4.2.5 (Maximal Functions). Let (X, ρ, µ) an SHT and w a weight over X. For

f ∈ L1
loc(X) define

Mf(x) := sup
r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)| dµ(y)

the Hardy-Littlewood maximal function, or centered maximal function, and

Mwf(x) := sup
r>0

1

w(B(x, r))

∫
B(x,r)

|f(y)|w(y)dµ(y)

the weighted, centered maximal function.

If D is a dyadic lattice over X, we can define dyadic versions:

MDf(x) := sup
Q3x

1

µ(Q)

∫
Q

|f(y)| dµ(y)

the dyadic maximal function, and

MD
w f(x) := sup

Q3x

1

w(Q)

∫
Q

|f(y)|w(y)dµ(y)

the weighted dyadic maximal function. Here the supremum is taken over all cubes Q ∈ D

which contain the point x.

There are other variations of this operator as well, e.g. the uncentered maximal function.

In this document, we will focus primarily on the two dyadic versions of the maximal function

given above.

In [38], the Ap class was defined for Rd, and shown to be exactly a characterization of

the weights w for which the maximal function is bounded in Lp(w):
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Theorem 4.2.6 (Mukenhoupt’s Ap Weight Characterization (R)). A weight w ∈ Ap, 1 <

p <∞, if and only if the Hardy-Littlewood maximal function is bounded in Lp(w), i.e., there

exists a constant C > 0 such that(∫
R
|Mf(x)|p dx

) 1
p

< C

(∫
R
|f(x)|p dx

) 1
p

for all functions f .

We stated here the original R version of this theorem.

4.2.3 Bound on the Dyadic Maximal Function, SHT Version

We have very nice weighted Lp bounds on the weighted and unweighted dyadic maximal

function:

Theorem 4.2.7. Let X be an SHT, D a dyadic lattice over X. Let 1 < p <∞ and w be a

weight defined on X. Then for every f ∈ Lp(wdµ),

||MD
w f ||Lp(w) ≤ p′||f ||Lp(w)

and

||MDf ||Lp(w) ≤ C[w]
p′
p

AD
p
||f ||Lp(w) (4.4)

where the constant C depends only on p, and geometric constants and p′ denotes the Hölder

conjugate of p, that is 1/p+ 1/p′ = 1.

The R version of (4.4) is the celebrated Buckley inequality, first demonstrated by S.

Buckley in [9]. For proofs of these inequalities in the SHT setting, [25] or [29].
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Chapter 5

A First Weighted Inequality: Dyadic

Gehring

With all the groundwork laid in the previous three chapters, we are now ready to tackle our

first weighted inequality. The content of this chapter can also be found in the paper by the

auther and T. Anderson [6].

Gehring’s Theorem is an example of a classical so-called “self-improvement” result in the

theory of weights. We let w be a Reverse Hölder p weight. It is a trivial consequence of

Hölder’s inequality that if w satisfies the reverse Hölder p condition, inequality (4.2), for

some p, then it likewise satisfies reverse Hölder q for any 1 < q < p. Surprisingly though,

one can show that there exists ε > 0 so that w satisfies (4.2) for p + ε as well. This is the

well known Gehring Theorem, first proved in the [16], and we say it is a self improvement

result because we have slightly improved the exponent.
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5.1 Background

We will start by giving a brief rundown of recent results which are related to this chapter’s

main theorem, before stating the theorem formally.

5.1.1 Notable Related Results

Recent work has gone into proving an analogue to Gehring’s Theorem in the more abstract

setting of spaces of homogeneous type. In [33], Maasalo showed that the theorem is true in

metric spaces with doubling measures provided the measure satisfies a radial decay property.

Then in [5], Anderson, Hytönen, and Tapiola showed that the theorem is true for weak

Reverse Hölder classes in general spaces of homogeneous type. What characterizes these

classes as weak is that the domain of integration is enlarged on the right hand side of the

inequality. One would hope that the “strong” result would soon follow, however in the same

paper the authors constructed an explicit counterexample: a weight over a specific space

which satisfies a inequality analogous to (4.2) for p ≤ p0 but not for p > p0.

Incidentally, in [27], Pérez, Hytönen , and Rela found sharp bounds for this weak RHq

class and used this result to show a bound for the related weak maximal function.

In [31], Katz and Pereyra used a decaying stopping time argument to prove Gehring’s

Theorem for weights over the real line. In this chapter we adapt this method to show that, in

spite of the aforementioned counterexample, a dyadic version of the strong Gehring Theorem

does indeed hold.

5.1.2 Statement of Gehring’s Theorem

The main theorem of this chapter is that Gehring’s Theorem holds in the dyadic setting for

spaces of homogeneous type.
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Theorem 5.1.1 (Main Result). Let (X, ρ, µ) be a space of homogeneous type with dyadic

lattice D . Let 1 < p < ∞ and let w ∈ RHD
p . Then there exists ε depending only on p, w,

and geometric constants such that w ∈ RHD
p+ε.

5.2 Decaying Stopping Time

The proof of Theorem 5.1.1, which can be found in Section 5.4, relies on a decaying stopping

time argument. We introduce the idea here. Throughout this section (X, ρ, µ) is assumed

to be a space of homogeneous type, with dyadic structure D .

5.2.1 Dyadic Properties

Let P denote some property about cubes, i.e., for any given dyadic cube the statement “Q

has P” is meaningful. This property may depend on any number of parameters including

other cubes.

Primarily, for the purposes of stopping times, we are interested in properties which relate

one cube to another. For two dyadic cubes Q and Q′ we would say that Q′ has P with

respect to Q.

Example 5.2.1. Let X be the real numbers with the usual metric and measure. For two

cubes Q,Q′ ∈ D , suppose that Q′ has P with respect to Q if and only if Q′ ( Q. Then

[0, 2) and [2, 4) have P with respect to [0, 4) and are the two maximal intervals with that

property.

Definition 5.2.2 (Admissible Property). Suppose that P is a property about cubes with

respect to another cube. Then we say P is admissible if for all Q ∈ D , Q does not have P
with respect to itself.

Remark 5.2.3. The property from Example 5.2.1 is admissible.
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5.2.2 Stopping Time Definition

For a fixed cube Q ∈ D , we denote by J (Q) ( D(Q) a sub-collection of cubes which

are maximal with respect to P . By maximality, we mean that if Q′ ⊆ Q has P , then no

descendant of Q′ will be included in J (Q), regardless of whether it has P or not. Formally,

J (Q) := {Q′ ∈ D(Q) | Q′ has P but Q′′ does not have P∀Q′′ ∈ D with Q′′ ) Q′}

For an admissible property set J0(Q) := {Q}. We now define the collections Jn(Q)

inductively. Let n > 0. Define

Jn(Q) :=
⋃

Q′∈Jn−1(Q)

J (Q′).

Note that J1(Q) = J (Q). The family of collections {Jn(Q)}n≥0 is called the stopping time

J for Q.

Definition 5.2.4 (Decaying Stopping Time). Let (X, ρ, µ) be a quasi-metric space equipped

with a measure which has dyadic structure D and let J be a stopping time. We say that J
is a decaying stopping time if and only if there exists 0 < c < 1 such that for every Q ∈ D ,∑

Q′∈J1(Q)

µ(Q′) ≤ cµ(Q). (5.1)

Remark 5.2.5. Iterating 5.1 gives that∑
Q′∈Jn(Q)

µ(Q′) ≤ cnµ(Q)

provided J is decaying. Furthermore,∑
Q′∈∪n>0Jn(Q)

µ(Q′) ≤ µ(Q)

1− c

Remark 5.2.6. For the time described in Example 5.2.1, J ([0, 4))={[0, 2), [2, 4)}. This,

however, is not decaying, since c = 1.
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Remark 5.2.7. What we call in this dissertation stopping times is equivalent to the idea of

sparse families of cubes. In the short book [32] we are given these definitions:

A family of cubes S ⊆ D that has the property that for all Q ∈ D∑
Q′∈S,Q′⊂Q

µ(Q′) ≤ Λ · µ(Q) (5.2)

is called Λ-Carleson.

For 0 < η < 1, a family of cubes S ⊆ D is η-sparse if one can choose pariwise disjoint

measurable sets EQ ⊂ Q with µ(Q) ≤ η · µ(EQ), for all Q ∈ D .

According to LEmma 6.3 in [32], a family is Λ-Carleson if and only if it is Λ−1-sparse.

5.2.3 The Stopping time J w

Let us now describe a particular stopping time. Suppose that w ∈ RHD
p for some 1 < p <∞.

If Q is a cube, we say that another cube Q′ ⊂ D(Q) has property Pw with respect to Q

if either 〈w〉Q′ ≥ λ〈w〉Q or 〈w〉Q′ ≤ λ−1〈w〉Q where λ > 1 is a fixed parameter. While this

property depends on a weight w, a parameter λ and a cube Q, we only write Pw (as opposed

to, say, Pw,λQ , in order to avoid over-cluttered notation.

Clearly the following lemma is true.

Lemma 5.2.8. Property Pw is admissible.

Proof. For any cube Q, since λ > 1, 〈w〉Q < λ〈w〉Q and 〈w〉Q > λ−1〈w〉Q. Thus no cube will

ever have property Pw with respect to itself, which implies admissibility.

We define the stopping time J w for Q as the stopping time generated by Pw with respect

to Q. That is,

J w
Q =

⊔
n≥0

J w
n (Q) =

{
J w
Q | n ≥ 0

}
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5.3 Auxilary Lemmas

To prove Theorem 5.1.1 we show the following two lemmas:

Lemma 5.3.1. If the stopping time J w described above is decaying then Theorem 5.1.1

holds.

Lemma 5.3.2. The stopping time J w is decaying provided the parameter λ is chosen large

enough.

It is thus sufficient to prove Lemmas 5.3.2 and 5.3.1.

5.3.1 Some Useful Facts

The following fact will be useful for both proofs.

Lemma 5.3.3. Let Q′ ∈ J w(Q). Then 〈w〉Q′ ≤ Dλ〈w〉Q where D = Dbl(D) is the dyadic

doubling constant from Corollary 3.2.8.

Proof. By the maximality condition for stopping times, since Q′ ∈ J w(Q), its parent Q̂′ 6∈
J w(Q). This means that λ−1〈w〉Q < 〈w〉Q̂′ < λ〈w〉Q. Thus,

〈w〉Q′ =
1

µ(Q′)

∫
Q′
w dµ ≤ 1

µ(Q′)

∫
Q̂′
w dµ ≤ D

µ(Q̂′)

∫
Q̂′
w dµ = D〈w〉

Q̂′ < Dλ〈w〉Q.

Corollary 5.3.4. Suppose Q′ ∈ J w
n (Q). Then 〈w〉Q′ ≤ (Dλ)n〈w〉Q.

Proof. Let Q0 := Q′ ∈ J w
n (Q). By definition, there exists Q1 ∈ J w

n−1 so that Q0 ∈ J w(Q1).

Continuing on in this fashion, for all 1 ≤ i ≤ n there exists Qi ∈ J w
n−i so that Qi−1 ∈ J w(Qi).

With this notation, Qn = Q. Iterating n times the result of Lemma 5.3.3 gives that

〈w〉Q′ = 〈w〉Q0 ≤ Dλ〈w〉Q1 ≤ (Dλ)2〈w〉Q2 ≤ · · · ≤ (Dλ)n〈w〉Qn = (Dλ)n〈w〉Q.
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The following will also be useful.

Lemma 5.3.5. For almost every x ∈ X (with respect to the measure µ), λ−1〈w〉Q ≤ w(x) ≤
λ〈w〉Q for x 6∈ ∪Q′∈Jw(Q)Q

′.

Proof. Let x ∈ Q such that x 6∈ Q′ for all Q′ ∈ J w(Q). Let k0 be Q’s generation, i.e.

Q ∈ Dk0 and define Qk
x as the cube belonging to generation Dk with x ∈ Qk

x for k ≥ k0. So

Qk
x 6∈ J w(Q) for all k ≥ k0, thus by definition of property Pw,

λ−1〈w〉Q ≤ 〈w〉Qkx ≤ λ〈w〉Q.

By the Lebesgue Differentiation Theorem for dyadic cubes, the limit as k →∞ of the center

expression goes to w(x) a.e. with respect to the measure µ.

5.4 Proofs

In this section we present the proofs of Lemmas 5.3.2 and 5.3.1, thus establishing Theorem

5.1.1. This proof is in spirit the same as the one first shown in [31], but with care given to

the peculiarities of the SHT setting.

Proof of Lemma 5.3.1. Let Q ∈ D be any cube. We define the nth “good” and “bad” sets

as

Bn(Q) :=
⊔

Q′∈Jwn (Q)

Q′ ; n ≥ 0,

Gn(Q) := Bn−1(Q) \Bn(Q) ; n > 0.

Notice that B0(Q) = Q = tnGn>0(Q), up to a set of measure zero. By the Lemma 5.3.2, we

can choose λ > 1 sufficiently large to ensure that J w is decaying. So there exists 0 < c < 1
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so that

µ(Bn(Q)) ≤ cnµ(Q) ; ∀Q ∈ D .

Our first goal will be to establish that∫
Gn(Q)

wp dµ ≤ an−1

∫
Q

wp dµ (5.3)

for a constant 0 < a < 1 depending only on p, c, [w]RHD
p

, and geometric constants. First,

we consider some properties of G1(Q). We know by Lemma 5.3.5 that

λ−1〈w〉Q ≤ w(x) a.e. x ∈ G1(Q),

and that since B1(Q) tG1(Q) = B0(Q) = Q and B1(Q) ∩G1(Q) = ∅,

µ(G1(Q)) ≥ (1− c)µ(Q).

Using these two facts, we conclude that∫
G1(Q)

wp dµ ≥
∫
G1(Q)

1

λp
〈w〉pQ dµ =

µ(G1(Q))

λp
〈w〉pQ ≥

(1− c)µ(Q)

λp
〈w〉pQ

≥ (1− c)µ(Q)

λp[w]p
RHd

p

〈wp〉Q =
(1− c)
λp[w]p

RHd
p

∫
Q

wp dµ (5.4)

Notice that the domain of integration for the far left hand side of inequality (5.4) is a subset

of the domain of integration of the far right hand side. In fact, µ(G1(Q)) < µ(Q). Set

(1− a) :=
(1− c)
λp[w]p

RHD
p

∈ (0, 1).

We observe that this constant a depends only on p, c, [w]RHD
p

, and geometric constants.

In particular, we observe that a is independent of Q. We now extrapolate this result. We

observe (in order to abuse) that

Gn(Q) =
⊔

Q′∈Jwn−1(Q)

G1(Q′).
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This allows us to easily see that∫
Gn(Q)

wp dµ =
∑

Q′∈Jwn−1(Q)

∫
G1(Q′)

wp dµ ≥
∑

Q′∈Jwn−1(Q)

(1− a)

∫
Q′
wp dµ

= (1− a)

∫
Bn−1(Q)

wp dµ.

With this, we now have that∫
Bn(Q)

wp dµ =

∫
Bn−1(Q)

wp dµ−
∫
Gn(Q)

wp dµ

≤
∫
Bn−1(Q)

wp dµ− (1− a)

∫
Bn−1(Q)

wp dµ

= a

∫
Bn−1(Q)

wp dµ. (5.5)

Since Gn(Q) ⊆ Bn−1(Q), iterating (5.5) n− 1 times gives (5.3).

Fix ε > 0 (determined later). Using that for almost every x ∈ Gn(Q), w(x)ε ≤ λε〈w〉εQ,

we can apply Lemma 5.3.3 and Corollary 5.3.4 to get that

w(x)ε ≤ λε
[
(Dλ)n−1〈w〉Q

]ε
≤ (Dλ)nε〈w〉εQ.

From this, we can then show that∫
Q

wp+ε dµ =
∞∑
n=1

∫
Gn(Q)

wp+ε dµ ≤ 〈w〉εQ
∞∑
n=1

(Dλ)nε
∫
Gn(Q)

wp dµ (5.6)

≤ 〈w〉εQ
∞∑
n=1

(Dλ)nεan−1

∫
Q

wp dµ. (5.7)

From here, we choose ε small enough so that (Dλ)ε < a−1, which is possible since 0 < a < 1.

Then the sum
∞∑
n=1

(Dλ)nεan−1 =: A <∞.

Therefore, dividing both sides by µ(Q) gives that

〈wp+ε〉Q ≤ A〈w〉εQ〈wp〉Q ≤ A[w]p
RHD

p
〈w〉p+εQ .
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Since the constant A depended only on p, w, and geometric constants we can conclude that

w ∈ RHD
p+ε. Moreover,

[w]p+ε
RHD

p+ε
≤ A[w]p

RHD
p
.

Proof of Lemma 5.3.2. Fix λ large, precisely how large to be determined later. For now it

suffices to enforce that λ > 3. For a cube Q ∈ D let J w be the stopping time for Q. Since

the property Pw with respect to Q has two mutually exclusive stopping conditions, we can

split J w(Q) into two disjoint parts:

J w(Q) = {Q′ ∈ D(Q) : 〈w〉Q′ ≥ λ〈w〉Q} t {Q′ ∈ D(Q) : 〈w〉Q′ ≤ λ−1〈w〉Q}

where by t we mean the disjoint union, i.e., the union of two disjoint sets. We let {Qλ
i }i

be an enumeration of the subcubes in the first part and {Q1/λ
i }i be an enumeration of the

subcubes in the second part. We then write Q as the disjoint union of the three subsets

Q = Bλ tB1/λ tG (5.8)

with “bad parts” Bλ := tiQλ
i and B1/λ := tiQ1/λ

i (so called since the mean is either too

large or too small on these parts) and “good part” G := Q \ (Bλ ∪ B1/λ). It follows from

Lemma 5.3.5 that

λ−1〈w〉Q ≤ w(x) ≤ λ〈w〉Q a.e. x ∈ G with respect to µ.

Suppose that the desired lemma is false, that is, suppose that J w is not decaying. This

would imply that for each 0 < c < 1 we can find a cube Q ∈ D such that∑
Q′∈Jw(Q)

µ(Q′) = µ(Q \G) > c · µ(Q)

implying that

(1− c) > µ(G)

µ(Q)
.
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In other words, the ratio of the measure of the good part to the measure of the whole cube

can be made arbitrarily small by selecting the appropriate offending cube.

Choose Q ∈ D such that µ(G) ≤ µ(Q)/(3λ). Then

∫
G

w dµ ≤
∫
G

λ〈w〉Q dµ = µ(G) · λ〈w〉Q

= µ(G) · λ

µ(Q)

∫
Q

w dµ ≤ 1

3

∫
Q

w dµ (5.9)

and

∫
B1/λ

w dµ ≤ µ(B1/λ) · λ−1〈w〉Q ≤ λ−1µ(B1/λ)

µ(Q)

∫
Q

w dµ

≤ λ−1

∫
Q

w dµ <
1

3

∫
Q

w dµ. (5.10)

Inequalities (5.9) and (5.10) together imply that

∫
Bλ
w dµ =

∫
Q\(G∪B1/λ)

w dµ =

∫
Q

w dµ−
∫
G

w dµ−
∫
B1/λ

w dµ

>

∫
Q

w dµ− 1

3

∫
Q

w dµ− 1

3

∫
Q

w dµ =
1

3

∫
Q

w dµ. (5.11)

We can also see that

〈w〉Bλ =
1

µ(Bλ)

∑
i

∫
Qλi

w dµ =
1

µ(Bλ)

∑
i

µ(Qλ
i )〈w〉Qλi

≤ 1

µ(Bλ)

∑
i

µ(Qλ
i )Dλ〈w〉Q = Dλ〈w〉Q (5.12)

where in (5.12) we used Lemma 5.3.3. We use (5.12) and (5.11) to get a lower bound on the

measure of Bλ:

µ(Bλ) =
1

〈w〉Bλ

∫
Bλ
w dµ ≥ 1

3〈w〉Bλ

∫
Q

w dµ ≥ 1

3Dλ〈w〉Q

∫
Q

w dµ =
1

3Dλ
µ(Q) (5.13)
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We will now use this lower bound to establish a contradiction. Observe that∫
Q

wp dµ ≥
∫
Bλ
wp dµ =

∑
i

∫
Qλi

wp dµ

≥
∑
i

1

µ(Qλ
i )
p−1

(∫
Qλi

w dµ

)p

(5.14)

=
∑
i

µ(Qλ
i )〈w〉pQλi ≥ λp

∑
i

µ(Qλ
i )〈w〉pQ (5.15)

= λpµ(Bλ)〈w〉pQ ≥
1

3D
λp−1µ(Q)〈w〉pQ (5.16)

where in (5.14) follows from the Hölder inequality, (5.15) by the definition of Bλ, and (5.16)

from (5.13). Dividing both sides by µ(Q) and taking the 1/p power gives that

〈wp〉1/pQ ≥
(

1

3D
λp−1

)1/p

〈w〉Q. (5.17)

We thus contradict that w ∈ RHD
p , provided that λ is chosen large enough so that λ >

(3D[w]p
RHD

p
)1/(p−1).

Remark 5.4.1. The preceding proof was a proof by contradiction. While we demonstrated

that the decaying constant c does exists, we have no guarantee on the size of this constant.

5.5 Corollaries

It is worth noting that the only time the doubling condition on the weight µ was used was in

Lemma 5.3.3. With this in mind we can state the following corollary, replacing the doubling

condition on the weight µ with a doubling condition on the weight w.

Corollary 5.5.1 (Gehring for Doubling Weights). Let (X, ρ, µ) be a quasi-metric measure

space with µ a measure which may or may not be doubling and some dyadic structure D . Let

1 < p <∞ and let w ∈ RHD
p be a weight which is dyadic doubling. Then there exists ε > 0

such that w ∈ RHD
p+ε.

80



Chapter 5. A First Weighted Inequality: Dyadic Gehring

We do need to be careful here. In Corollary 5.5.1, we supposed that we have a dyadic

lattice available. Remember that ρ being geometrically doubling was a sufficient condition for

the existence of a dyadic grid. However, it has not been shown to be a necessary condition.

For this reason, we did not add the assumption that ρ be geometrically doubling and instead

supposed the existence of D directly.

We are motivated to give the following definition.

Definition 5.5.2 (Continuous Doubling weights). We say that the set Db of continuous

doubling weights is the set of all weights such that there exists a constant C so that

w(B) ≤ C · w(2B) (5.18)

where B = B(x, r) and 2B = B(x, 2r) for x ∈ X and r > 0.

In Chapter 7, we will revisit the idea of a doubling weight.

Remark 5.5.3. It is easy to confuse a doubling weight with a doubling measure. However,

these are not the same thing. In fact, as the corollary below implies, there is no causal

relationship between these two, i.e., there exist weights which are not doubling over measures

which are, and non-doubling measures can support doubling weights. In light of this, it is

important to take care when using this terminology.

We will briefly describe another useful corollary. In [30], the authors describe a finite

collection of adjacent dyadic systems for X, {D (j)}J0j=1 which satisfy certain properties. In

particular, they have that

Db ∩RHp =

J0⋂
j=1

(
RHp(D

(j)) ∩Db(D (j))
)
. (5.19)

In other words, the continuous reverse Hölder class is equal to the intersection of finitely

many dyadic reverse Hölder classes, at least for doubling weights. We can use this result to

give the following nice sufficient condition for continuous Gehring:
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Corollary 5.5.4 (“Almost Strong” Continuous Gehring for Spaces of Homogeneous Type).

Let w be a continuous doubling weight so that w ∈ RHp. There exists ε > 0 such that

w ∈ RHp+ε.

Proof. Assume that w is continuous doubling and in RHp. Then by (5.19), w ∈ RHp(D j)∩
Db(D j) for each j = 1, ..., J0. By Corollary 5.5.1, for each j there exists εj > 0 such that

w ∈ RHp+εj(D
(j)). Set ε := min{ej : 1 ≤ j ≤ J0} > 0. Then w ∈ RHp+ε(D j) ∩Db(D j) for

all j = 1, ..., J0, that is w belongs to their intersection. Again by (5.19) we conclude that

w ∈ RHp+ε ∩Db. In particular w is in RHp+ε.

Remark 5.5.5. In light of Corollary 5.5.4, we can conclude that the counterexample to

strong Gehring provided in [5] must fail to be a doubling weight.
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Chapter 6

A Haar Basis of Functions in Spaces

of Homogeneous Type

The notion of a dyadic structure on any measure space will be intimately tied to the idea

of building a basis of functions utilizing the nice properties of dyadic cubes. In this chapter

we present one generalization of the notion of a Haar basis of functions to the SHT setting.

Dyadic structures are central to the idea of a Haar basis. In order to properly motivate this

generalization, we will first briefly recall the definition of a Haar basis in R. We then look

at ways of generalizing this to Rn in order to gain some insight into how we might go about

generalizing to SHTs.

This chapter makes heavy use of the characteristic or indicator function of a set:

Definition 6.0.1 (Characteristic Function). For X a set and S ⊆ X, define the function

1S : X → R as

1S(x) :=

 1 if x ∈ S
0 if x 6∈ S

(6.1)

called the characteristic function of S.

83



Chapter 6. A Haar Basis of Functions in Spaces of Homogeneous Type

Remark 6.0.2. Some authors (in fact, most likely a majority) use the Greek letter χ for the

characteristic function. We will prefer the use of 1, however, since χ renders a little below

the baseline in the typeface used and this tends to clash somewhat with more complicated

subscripts. Compare “χQkα” with “1Qkα ,” for example.

We let D be the standard set of dyadic intervals on R. Since we will be momentarily

dealing in the specific case of R we will call dyadic sets intervals instead of cubes. For any

interval I, we will denote by |I| the length of I.

Definition 6.0.3 (Haar Function Associated to an Interval). Let I ∈ D and define the Haar

function associated to I as

hI(x) :=
1√
|I|

(1Ir(x)− 1I`(x)) . (6.2)

Remark 6.0.4. Notice that the function hI is always positive valued on the right child of

I and negative valued on the left child. This was a purely arbitrary choice and the opposite

choice could have been made without effecting our analysis.

These functions (which are also called “Haar Wavelets”) were first defined by A. Haar

in 1910 in the paper [19]. In the same paper, he showed that these functions form a basis

for square integrable functions.

Theorem 6.0.5 (Haar functions form a basis). The collection {hI}I∈D forms an orthornor-

mal basis for L2(R).

The aim of this Chapter is thus to generalize this result to the setting of spaces of

homogeneous type. We will first discuss the difficulties of generalizing by considering a Haar

basis in Rn in order to gain some insight. We then move on to SHTs and give a proof of an

analog to Theorem 6.0.5.

The theorems and proofs in this section are heavily based on the book [43] and the paper

[30].
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Figure 6.1: A graph of the function h[0,1). Here we use green to denote the positive part,
blue to denote the negative part, and red to denote the zero part. In other figures we will
continue to use this color scheme for higher dimensional domains.

6.1 A First Look at Generalizing: Haar in Rn

In generalizing the Haar Basis to Rn, we would like to have some basic properties that a

“Haar-Like” basis ought to have.

Definition 6.1.1 (“Haar-Like” Basis). Let {ϕα}α∈A be a complete, orthonormal basis for

L2(Rn). We will call {ϕα}α∈A “Haar-Like” if each of the following conditions hold:

(a)
∫
Rn ϕα = 0 for all α ∈ A.

(b) For each α ∈ A, Support(ϕα) = Q where Q is some dyadic cube on Rn.

(c) If ϕα is supported on Q, then ϕα is constant on each of Q’s children.

(d) If ϕα is supported on Q, then ϕα is positive valued on exactly half of Q’s children, and

negatively valued on the other half.

A “Haar-like” basis will have the nice properties of single variable Haar functions. Let
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Q be a dyadic cube in Rn. We can write

Q =
n∏
j=1

Ij (6.3)

where each Ij is a dyadic interval in R. Define

hiQ(x) :=
n∏
j=1

(√
|I|
)a(i)j

hIj(x)a
(i)
j ; i = 1, ..., 2n − 1 (6.4)

where {a(i)
j }nj=1 is the unique sequence consisting of 1s and 0s so that

i =
n∑
j=1

a
(i)
j · 2j−1 (6.5)

and hIj is the Haar function on the interval Ij defined above. (I.e. a
(i)
j is the jth digit in the

binary representation of i.) Here the factor
(√
|I|
)a(i)j

is to ensure correct normalization of

hiQ.

It is not difficult to prove that the collection {hiQ}1≤i≤2n−1
Q∈D is an orthonormal basis for Rn,

given that {hI}D(R) is. The insight that we gleam from this generalization is that we require

more than one Haar function per cube when we are in a higher dimension (see Figures 6.1

and 6.1). In fact, we require N(Q)−1 Haar functions (where N(Q) is the number of children

that Q has.

6.2 Constructing Haar Functions in Spaces

of Homogeneous Type

We now turn our attention to the construction of Haar functions in SHTs. In this section

we will make heavy use of the honest cubes described in Section 3.5.
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Figure 6.2: The three Haar function associated to a square in R2.

6.2.1 Defining the Haar Function for an Honest Cube

Let (X, ρ, µ) be an SHT, with dyadic structure D . For the time being we will assume that

(a) X has no atoms,

(b) µ(X) =∞.

(c) The dyadic structure D has only one quadrant.

We will deal with erasing these assumptions at the conclusion of the chapter.
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Figure 6.3: The seven Haar functions for a cube in R3, with the axes for reference.

Let D̃ be the honest dyadic structure which overlaps with D .

For any honest cube Q ∈ D̃ we define the function

hQ(x) :=

 λ+
Q · 1Q+(x)− λ−Q · 1Q−(x) if N(Q) = 2

0 if N(Q) = 1

where the λ±Q are normalization constants defined by the following relationships:∫
X

hQ = 0 and

∫
X

|hQ|2 = 1. (6.6)
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6.2.2 Calculating the λ Coefficients

The relationships in (6.6) imply that

λ+
Q · µ(Q+) = λ−Q · µ(Q−),

(λ+
Q)2 · µ(Q−) + (λ−Q)2 · µ(Q+) = 1.

We solve this system of equations to give expressions for the λs:

λ+
Q =

(
µ(Q−)

µ(Q+) · µ(Q)

)1/2

λ−Q =

(
µ(Q+)

µ(Q−) · µ(Q)

)1/2

. (6.7)

Remark 6.2.1. Recall that a “cube” is more than just a set – it also belongs to a generation.

In the definition for hQ we say that hQ ≡ 0 if Q has only one child. It is entirely possible

that a cube has only one child for many generations before finally splitting. In this situation,

there would be many Haar functions associated to the cube as a set. However, only the last

one (before it splits) would be non-zero.

6.2.3 The Haar Basis

We can now define the set of Haar functions:

Definition 6.2.2 (Haar basis). Let X be an SHT with any dyadic structure D and let D̃

be an honest dyadic structure which overlaps D . For any cube Q ∈ D we can define the set

{hiQ | 1 ≤ i ≤ N(Q)− 1} (6.8)

as the collection of non-zero, honest Haar functions supported on more than one of Q’s

honest descendants. Define the set

{hiQ | Q ∈ D , 1 ≤ i ≤ N(Q)− 1} (6.9)

as the Haar basis associated to Q with respect to D .
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uQ(1)

uQ(2)

uQ(3)

uQ(4)

uQ(5)

Q

+

−

Q

+

−

Q

+

−

Q

+

−

Q

Figure 6.4: Above: A non-honest cube Q with its children and a denumeration uQ which
can generate an honest structure. Below : The four Haar functions associated to the cube
Q with respect to the honest system. Recall that Haar functions take on λ+ in the green
region, λ− in the blue region, and zero in the red region.
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6.3 Different Honest Structures

The definition of a Haar basis given in the previous section has some obvious concerns. In

this section we will address the fact that the choice of Haar basis is dependent on the choice

of honest dyadic structure.

For Q ∈ D denote by S0
Q the space of all functions f : Q → R constant on the children

of Q with mean zero.

Lemma 6.3.1. Let Q ∈ D and let hiQ, 1 ≤ i ≤ N(Q)− 1. Then span({hiQ}) = S0
Q.

Proof. Consider the larger space of functions SQ ) S0
Q which are the functions constant on

the children of Q. There exists a canonical vector space homomorphism, ψ, between the set

SQ and RN(Q). We can send g ∈ SQ to ~v ∈ RN(Q) by way of ψ:

g =

N(Q)∑
i=1

bi1uQ(i)

µ(uQ(i))

ψ7→ ~v =


b1

b2

...

bN(Q)


Recall that uQ was defined in Section 3.5 as an enumeration of Q’s children. This shows

that SQ has the structure of a N(Q)-dimensional vector space.

Now suppose furthermore that g ∈ S0
Q. Then

0 =

∫
X

g(y) dµ(y) =

∫
X

N(Q)∑
i=1

bi1uQ(i)(y)

µ(uQ(i))
dµ(y) =

N(Q)∑
i=1

bi
µ(uQ(i))

∫
uQ(i)

dµ(y) =

N(Q)∑
i=1

bi.

This restricts the element ~v = ψ(g) to a N(Q)− 1 dimensional subspace of RN(Q). Thus S0
Q,

by way of ψ|S0
Q

, must also have the structure of a N(Q)− 1 dimensional vector space. As in

any vector space, a set of N(Q)− 1 orthonormal elements constitute a basis. It has already

been shown that the Haar functions hiQ are such a set. This completes the proof.
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Corollary 6.3.2 (Haar Basis is independent of honest structure). Let X be an SHT with

dyadic structure D . Suppose that D̃0 and D̃1 are two (perhaps different) honest dyadic

structures which overlap D . Set H and G to the Haar basis with respect to D̃0 and D̃1,

respectively. Then span(H) = span(G).

By span(H), we mean the closure in L2(X) of H. However, in the proof, we will only

need to consider finite linear combinations of functions.

Proof. Set H = {hiQ}1≤i≤N(Q)−1
Q∈D and G = {giQ}1≤i≤N(Q)−1

Q∈D . Without loss of generality, it is

enough to show that span(H) ⊆ span(G). Let f ∈ span(H). This means that there exists

constants {aiQ}, 1 ≤ i ≤ N(Q)− 1 so that

f =
∑
Q∈D

N(Q)−1∑
i=1

aiQ · hiQ


where quality here is in L2-sense. For each cube Q define fQ :=

∑N(Q)−1
i=1 aiQ · hiQ. Then

fQ ∈ S0
Q for all Q ∈ D since it is a linear combination of functions in S0

Q. Moreover, by the

previous lemma there exist constants {biQ}, 1 ≤ i ≤ N(Q)− 1, so that

fQ =

N(Q)−1∑
i=1

biQ · giQ (6.10)

since each side of the equation is an element of S0
Q. Thus,

f =
∑
Q∈D

fQ =
∑
Q∈D

N(Q)−1∑
i=1

biQ · giQ

 (6.11)

which is a function in the span of G.

The previous corollary establishes that, in some sense, all Haar bases are equivalent.

From this point on we will drop the use of “with respect to D̃” when referring to the Haar

basis.
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6.4 Main Result

Our goal is to verify that this is a Haar-like basis, i.e. to prove the following theorem:

Theorem 6.4.1 (Haar Like For Honest Cubes). Let X be an SHT with honest dyadic struc-

ture D̃ . The set {hQ}Q∈D̃

(a) forms a complete orthonormal basis for L2(X)

(b) is Haar-like.

Once we prove Theorem 6.4.1 we will get this corollary for free:

Corollary 6.4.2. Let X be an SHT with dyadic structure D . The set {hiQ}1≤i≤N(Q)−1
Q∈D is a

Haar-like basis.

6.4.1 Proof of Orthonormality and Haar-like

As always, we start with the easy part.

Proof of Orthonormality. Let Q,Q′ ∈ D be two cubes. By the properties of the cubes, we

are in one of three cases:

(Case 1: Q ∩Q′ = ∅) In this case hQ and hQ′ have disjoint support, thus

〈hQ, hQ′〉 = 0.

(Case 2: Q′ ( Q) In this case, Q′ is one of Q’s descendants and is thus supported entirely

on one of Q’s . Since hQ is constant on the children, 〈hQ, hQ′〉 is equal to some multiple of

the average of hQ′ . But each of these averages was cooked to be zero, so

〈hQ, hQ′〉 = 0.
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(Case 3: Q′ = Q) In this case, we are just taking the inner product of hQ with itself, which

was cooked to be equal to one.

Proof of Haar-like. This follows immediately from how the λ±Qs were defined.

That takes care of the easy part!

6.4.2 Proof of Completeness

The proof of completeness is the difficult part.

Notation 4. For k ∈ Z and x ∈ Q, let Qk
x be the unique cube in Dk which contains x.

Lemma 6.4.3. Let f ∈ L2(X) and Q ∈ D̃k. Then,

ProjS0
Q

(f)(x) =
1

µ (Qk+1
x )

∫
Qk+1
x

f dµ− 1

µ(Q)

∫
Q

f dµ ∀x ∈ Q (6.12)

Proof. Let f ∈ L2(X). Since we are dealing with honest cubes, we can break into two cases:

(Case 1: N(Q) = 1) Then Qk+1
x = Q so equation (6.12) becomes

1

µ (Q)

∫
Q

f dµ− 1

µ(Q)

∫
Q

f dµ = 0.

But S0
Q is a zero dimensional vector space since the only function it contains is the zero

function. Therefore ProjS0
Q

(f) = 0 as well, verifying this case.

(Case 2: N(Q) = 2)

Let x ∈ Q and let f ∈ L2(X). By definition,

ProjS0
Q

(f)(x) =

N(Q)−1∑
i=1

〈f, ϕi〉ϕi(x)
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where {ϕi}N(Q)−1
i=1 is an orthonormal basis for S0

Q. In particular, we could choose the non-

trivial, honest Haar functions which satisfy that x ∈ Q+, i.e. that

hQ(x) = λ+
Q.

This gives that

ProjS0
Q

(f)(x) = 〈f, hQ〉 · λ+
Q = λ+

Q

∫
X

f(y)hQ(y) dµ(y)

= λ+
Q

∫
X

f(y)
(
λ+
Q1Q+(y)− λ−Q1Q−(y)

)
dµ(y)

= (λ+
Q)2

(∫
Q+

f dµ

)
− λ+

Q · λ−Q
(∫

Q−

f dµ

)
.

Now, looking at the coefficients for these integrals we see that

(λ+)2 =
µ(Q−)

µ(Q+) · µ(Q)

and

λ+
Q · λ−Q =

(
µ(Q−)

µ(Q+) · µ(Q)

)1/2(
µ(Q+)

µ(Q−) · µ(Q)

)1/2

=
1

µ(Q)
.

Thus,

ProjS0
Q

(f)(x) =
µ(Q−)

µ(Q+) · µ(Q)

∫
Q+

f dµ − 1

µ(Q)

∫
Q−

f dµ

=
µ(Q−)

µ(Q+) · µ(Q)

∫
Q+

f dµ − 1

µ(Q)

∫
Q−

f dµ +
1

µ(Q)

∫
Q+

f dµ

− 1

µ(Q)

∫
Q+

f dµ

=
1

µ(Q+)

∫
Q+

f dµ − 1

µ(Q)

∫
Q

f dµ. (6.13)

It will be convenient for us to note that the equation in line (6.13) could be rewritten as

ProjS0
Q

(f)(x) =
1

µ(Q)

∫
Q

f dµ − 1

µ(Q̂)

∫
Q̂

f dµ for x ∈ Q (6.14)
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when projecting onto the space S0
Q̂

. Here Q̂ denotes a cube’s parent.

Now we turn our attention to the following sum:∑
Q∈D

〈f, hQ〉hQ(x) (6.15)

We would like to say this is equal to f in L2(µ) sense.

Theorem 6.4.4. The sum in equation (6.15) converges to f point-wise almost everywhere.

Proof. Fix x ∈ X. By Lemma 6.4.3,∑
Q∈D

〈f, hQ〉hQ(x) =
∑
Q∈D

ProjS0
Q

(f)(x)

=
∑

Q∈D(x)

[
1

µ(Q)

∫
Q

f dµ − 1

µ(Q̂)

∫
Q̂

f dµ

]

= lim
N,M→∞

N∑
k=−M

[
1

µ(Qk+1
x )

∫
Qk+1
x

f dµ − 1

µ(Qk
x)

∫
Qkx

f dµ

]
= lim

N,M→∞

[
1

µ(QN+1
x )

∫
QN+1
x

f dµ − 1

µ(Q−Mx )

∫
Q−Mx

f dµ

]
where the final line follows from the fact that this is a telescoping sum. It is enough to show

that

lim
N→∞

1

µ(QN+1
x )

∫
QN+1
x

f dµ = f(x) (6.16)

and

lim
M→∞

1

µ(Q−Mx )

∫
Q−Mx

f dµ = 0. (6.17)

Line (6.16) follows from the Lebesgue Differentiation Theorem on dyadic cubes, where the

limits are in the L2-sense. For line (6.17), we see that by Cauchy-Schwarz,∣∣∣∣∫
Q−Mx

f

µ(Q−Mx )
dµ

∣∣∣∣ ≤ (∫
Q−Mx

|f |2 dµ
) 1

2
(∫

Q−Mx

1

µ(Q−Mx )2
dµ

) 1
2

=
||f ||L2(Qx)

µ(Q)
1
2

.
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Recall that we are under the assumption that there is only a single quadrant in D , and that

µ(X) = ∞. Since f ∈ L2(X) and limk→−∞Q
k
x = Quad(x) = X, this goes to zero in the

limit. This completes the proof.

6.5 Removing the Simplifications

Earlier in this chapter we made some simplifications. We will now briefly address each of

these and show how they either do not complicate our situation, or can be dealt with via a

simple addendum.

6.5.1 Finite Spaces

What happens when µ(X) <∞. From the finite measure lemma of Chapter 2, we know this

imples that X is bounded, i.e. that there exists R > 0 and x0 ∈ X such that X ⊆ B(x0, R).

Moreover, we know that whatever our dyadic grid, there is a generation Dk for which there

is only one large cube which entirely contains X and all higher generations are similarly just

this one cube. This complicates the proof of Theorem 6.4.4 in that equation (6.17) no longer

holds. Instead we have that

lim
M→∞

1

µ(Q−Mx )

∫
Q−Mx

f dµ = 〈f〉X .

The fix for this is slightly ad hoc, but it does the trick. We simply add into our Haar basis

the function 1X/
√
µ(X). Then for any L2(X) function f , we can write

f = f0 +
〈f〉X1X√
µ(Q)

where 〈f0〉X = 0. We then do the proof of Theorem 6.4.4 for f0, and line (6.17) still holds.
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6.5.2 Multiple Quadrants

If our dyadic lattice has more than one quadrant, then we have a few things to consider.

First, it goes worth mentioning again that multiple quadrants can only exists when our space

is unbounded, so we are definitely not also in the situation of the previous section. Recall

from our discussion in Chapter 2 that quadrants are themselves subSHTs of X when the

dyadic lattice has the thin boundary property. In this case we can just run the argument on

each quadrant, of which there are at most countably many.

In the case that D lacks the thin boundaries property, it may be that some quadrants

fail to be subSHTs. In particular, it may be that some quadrants while being unbounded are

nevertheless finite in measure. This situation forces that we must also include in our basis

the characteristic functions for each such quadrant. We can then proceed similarly as in the

previous section.

6.5.3 Atoms

Our last consideration is the case when the space X has atoms. It might first seem as though

atoms are in some sense the inverse problem of the previous two sections; they introduce an

issue for tiny cubes while above we had a problem with large cubes. We may be tempted

to segregate atoms into a subset A and do our construction on X \ A, then throw the

characteristic function of each atom into our Haar basis. Surprisingly however, this is not

actually required and our proof above is still valid – even in a space with atoms.

Recall that atoms are necessarily isolated points in SHTs. This forces that for each atom

a ∈ A, there is a generation k such that the cube Qk
a = {a} and that this is also true for

all subsequent generations. As we note in the proof, ProjS0
Q

(f)(x) = 0 when Q has only one

child. This has the effect of the causing the telescoping sum to stop telescoping for small
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cubes when x happens to be an atom. Thus, line (6.16) simply becomes

lim
N→∞

1

µ(QN+1
x )

∫
QN+1
x

f dµ =
1

µ(Qk
a)

∫
Qka

f dµ = f(a).

We do not need to invoke the Lebesgue differentiation theorem here. The rest of the proof

has no consideration for atoms, so nothing needs to be done.
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Chapter 7

Bellman Functions for Spaces of

Homogeneous Type

In this chapter, we will begin to explore the Bellman function proof technique. We will not

be providing any new Bellman function arguments exactly. Rather our purpose is to attempt

to build machinery which will allow us to easily extend Bellman-type results on functions

defined over R to functions defined over spaces of homogeneous type.

We will begin by proving a very useful convexity lemma. We then turn our attention to

the main result of the chapter, the so-called Good Bellman Function lemma. This lemma

is an adaptation of a Lemma of D. Chung, in which he was able to generalize Bellman

arguments from R to Rn without difficulty. There are two main complication in extending

this to spaces of homogeneous type. First of all, there is the issue that cubes in SHTs do not

generally have 2 children. This however can be dealt with by passing first to honest cubes.

The second, and more interesting, complication is the issue with convexity. Bellman type

arguments rely at their center on proving a “main inequality” which is usually a convexity

condition. However, since children intervals in R always have half the length of their parent,

it is enough to consider only midpoint-convexity. For SHTs, even when dealing with honest
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cubes, this luxury is no longer present. We must therefore first develop the tools to overcome

this complication.

Remark 7.0.1. In this chapter we will make use of the following notation convention without

repeating its explanation. For a point x ∈ Rd1+d2 we will write x = (u, v) where u ∈ Rd1

and v ∈ Rd2 . Similarly if the point has a special subscript or superscript symbol, e.g.

x◦ = (u◦, v◦).

7.1 A Generalized Convexity Lemma

In this section we will state and prove a very useful lemma related to function convexity. It

is a well known result that a continuous function f : R→ R is midpoint-convex if and only

if it is convex.

Theorem 7.1.1 (Midpoint Convexity Theorem). Let f : R→ R be continuous.

f

(
x+ y

2

)
≥ f(x) + f(y)

2
(7.1)

for all x, y ∈ R if and only if

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) (7.2)

for every t ∈ [0, 1].

The proof of this theorem is not very hard and is sometimes given as an exercise in

introduction to analysis courses. (See for example [45] Ch. 4 ex. 24, pg. 101).

Our goal in this section is to generalize this result to higher dimensions. In the process,

we will be forced to deal with the difficulty of non-convex domains. We will begin with some

definitions.
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Definition 7.1.2 (Prism). Let P ⊆ Rd1+d2 be a Lebesgue measurable set so that

P = PB × PR ; PB ⊆ Rd1 , PR ⊆ Rd2 . (7.3)

Moreover, PB is any measurable set, and PR is a d2-dimensional rectangle, i.e.

PR =

d2∏
i=1

Ii (7.4)

with each Ii ⊆ R an interval. We will refer to such a set as a (d1 + d2)-dimensional prism

with d1-dimensional base B, or more concisely, a d1-prism.

Example 7.1.3. In the colloquial sense, a prism is a polyhedra with rectangular sides and

triangular bases. In our terminology this would be a 3-dimensional 2-prism.

Figure 7.1: A prism

Definition 7.1.4 (Weakly Convex Set). Let S ⊆ Rd be a (not necessarily convex) set which

contains the origin. Suppose there exists a family of matrices {At}t∈(0,1/2] ⊂ Rd×d with the

following properties:

• At is non-singular for 0 < t < t.

• At is symmetric about the point t = 1/2, i.e. At = A1−t for all 0 < t < 1

• The function ax(t) = Atx is continuous for every x ∈ S
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• If u+, u−, and u◦ are three distinct, collinear points contained in S with u◦ = tu+ +

(1− t)u− for t ∈ (0, 1/2), then the line segment Atu+Atu− is completely contained in

S.

We say that the set S is weakly convex under the matrices {At}.

x

y

Atx

Aty

−R R

Figure 7.2: This square of side-length 2R with a triangular wedge taken out is a weakly
convex set.

In Figure 7.2, we have a simple weakly convex set which is itself not convex. Here the

family of matrices {At} can be defined as

At =

 1 0

0 1/2

 (7.5)

for every 0 < t < 1. For more complicated sets, a dependence on t should be expected.

Remark 7.1.5. If S was a convex set, then At = I the identity matrix for every t. Thus,

convex implies weakly convex.
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In the next section we will give some more complicated examples of weakly convex sets.

For now, it is enough to note that often the domains of Bellman functions are prisms whose

bases are weakly convex sets.

We will use the convention that R+ := {x ∈ R | s ≥ 0}, that is, that R+ is the non-

negative real numbers.

Lemma 7.1.6 (Generalized Midpoint Convexity Lemma). Let Ω ⊂ Rd1+d2 be a d1-prism

with base ΩB and rectangle ΩR. Suppose also that ΩB is a weakly convex set under the family

of matrices {At}t∈(0,1/2] ⊂ Rd1×d1. For each t ∈ (0, 1/2], define the block matrices

Ãt :=

 At 0

0 Id2

 Bt :=


Ãt 0 0

0 Ãt 0

0 0 Ãt


where Id2 is the d2 × d2 identity matrix. Let F : Ω → R+ be a continuous function which

satisfies a midpoint convexity inequality:

F (x◦) ≥ 1

2

[
F (x+) + F (x−)

]
+ f(x◦,x+,x−)

for all x◦,x+,x− ∈ Ω with u◦ = 1
2
(u+ + u−) and where f : Ω × Ω × Ω → R is a positively

valued function satisfying

f(x◦,x+,x−) = f(x◦,x−,x+). (7.6)

Then for each t ∈ (0, 1), F ◦ Ãt satisfies a convexity inequality

(F ◦ Ãt′)(x◦) ≥ t(F ◦ Ãt)(x+) + (1− t)(F ◦ Ãt)(x−) + 2t(f ◦Bt)(x
◦,x+,x−)

where u◦ = tu+ + (1− t)u−.

Note that the expression Ãtx is meaningful since

Ãtx =

 At 0

0 Id2

 u

v

 =

 Atu

v

 .
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x+

x◦

x−

u+

u◦

u−

v+

v◦

v−

v-axis

u-plane

Figure 7.3: A visualization of the points x◦ = (u◦, v◦),x± = (u±, v±). The points u◦, u+ and
u+ are co-linear and lie in the u-plane. The length of the red dashed segment is equal to the
distance between x◦ and the true linear interpolation from x+ and x−.

Proof. Without loss of generality t ∈ (0, 1/2]. Suppose for the sake of a contradiction that

the desired lemma is false. That is, suppose that there exists t ∈ (0, 1/2] and x◦,x+,x− ∈ Ω

so that u◦ = tu+ + (1− t)u− but

(F ◦ Ãt)(x◦) < t(F ◦ Ãt)(x+) + (1− t)(F ◦ Ãt)(x−) + 2t(f ◦Bt)(x
◦,x+,x−). (7.7)

For convenience, set K := (f ◦Bt)(x
◦,x+,x−).

Let Γ be the union of the two line segments x+x◦ and x◦x−. Note that the projection

of Γ onto the subspace Rd1 is actually a line, since u◦, u+, and u− are collinear. Notice also

that Ãt(Γ) is a line segment completely contained within Ω by the weak convexity of ΩB.
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Parameterize Γ by the function γ = (γ1, γ2) : [0, 1]→ Γ so that

γ(0) = x− γ(t) = x◦ γ(1) = x+,

γ1 is linear and γ2 is piecewise linear. Explicitly,

γ1(s) := su+ + (1− s)u−

γ2(s) :=

 t−s
t
v− + s

t
v◦ if 0 ≤ s ≤ t

1−s
1−tv

◦ + s−t
1−tv

− if t ≤ s ≤ 1

We next set L1 := (F ◦ Ãt)(x+), L2 := (F ◦ Ãt)(x−), and define a function ϕt : [0, 1]→ R

as

ϕt(s) := (F ◦ Ãt ◦ γ)(s)−
(
sL1 + (1− s)L2 −

s(1− s)2K
1− t

)
.

Notice that ϕt(0) = ϕt(1) = 0. Furthermore notice that ϕt is continuous in s, since it is the

composition of continuous functions.

We now claim that ϕt satisfies a midpoint convexity inequality (with the same function

f as F ). Let 0 ≤ s1 < s2 ≤ 1 be arbitrary and set s := 1
2
(s1 + s2) the midpoint. By the

linearity of γ1 and At,

Atγ1(s) =
Atγ1(s1) + Atγ1(s2)

2
.

By the fact that F satisfies a midpoint convexity inequality,

(F ◦ Ãt ◦ γ)(s) = F (Atγ1(s), γ2(s))

= F

(
Atγ1(s1) + Atγ1(s2)

2
, γ2(s)

)
≥ (F ◦ Ãt ◦ γ)(s1) + (F ◦ Ãt ◦ γ)(s2)

2
+ (f ◦Bt)(γ(s), γ(s1), γ(s2)).

Moreover, the function

p(x) := −
(
sL1 + (1− s)L2 +

s(1− s)2K
1− t

)
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is a downward opening parabola, so it also satisfies the midpoint convexity inequality

p(s) ≥ p(s1) + p(s2)

2
.

Therefore,

ϕt(s) = (F ◦ Ãt ◦ γ)(s) + p(s)

≥ (F ◦ Ãt ◦ γ)(s1) + (F ◦ Ãt ◦ γ)(s2)

2
+
p(s1) + p(s2)

2

+ (f ◦Bt)(γ(s), γ(s1), γ(s2))

=
ϕt(s1) + ϕt(s2)

2
+ (f ◦Bt)(γ(s), γ(s1), γ(s2)).

We proceed by plugging t into ϕt and see that

ϕt(t) = (F ◦ Ãt ◦ γ)(t)− (tL1 + (1− t)L2)− 2tK

= (F ◦ Ãt)(x◦)− t(F ◦ Ãt)(x+)− (1− t)(F ◦ Ãt)(x−)− 2tK

< 2tK − 2tK = 0

by our original supposition, (7.7). Since ϕt is a continuous function of s defined on a closed

interval, it attains a minimum on that interval. Moreover, this minimum must be negative,

since ϕt(t) < 0. Define c := inf{s ∈ [0, 1] | ϕt(s) = min{ϕt}}. Since ϕt(0) = ϕ(1) = 0,

0 < c < 0. Choose δ small enough so that (c− δ, c+ δ) ⊂ [0, 1]. Then

ϕ(c) < ϕt(c− δ) and ϕt(c) ≤ ϕt(c+ δ).

Then, by the fact that ϕt satisfies a midpoint convexity inequality,

ϕt(c) <
ϕt(c− δ) + ϕt(c+ δ)

2
≤ ϕt(c)− (f ◦Bt)(γ(c), γ(c− δ), γ(c+ δ)).

This is a contradiction, since f is a positively valued function. Thus, our original supposition

is false, and the lemma is proved.
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Corollary 7.1.7. Suppose that F satisfies the midpoint convexity condition from Lemma

7.1.6. Suppose further that there exists three functions c1, C1, c2 : (0, 1) → (0,∞) such that

for all t ∈ (0, 1)

c1(t) = c1(1− t); C1(t) = C1(1− t); c2(t) = c2(1− t)

and

c1(t)F (x) ≤ F (Atu, v) ≤ C1(t)F (x)

c2(t)f(x◦,x+,x−) ≤ f(Atu
◦, v◦, Atu

+, v+, Atu
−, v−)

x,x◦,x+,x− ∈ Ω, and u◦ = tu+ + (1− t)u−). Then

F (x◦) ≥ tc1(t)

C1(t)
F (x+) +

(1− t)c1(t)

C1(t)
F (x−) +

t′c2(t)

C1(t)
f(x◦,x+,x−). (7.8)

where t′ = min{t, 1− t}. Moreover, if ΩB is a convex set, then

F (x◦) ≥ tF (x+) + (1− t)F (x−) + t′f(x◦,x+,x−). (7.9)

Proof. Because of symmetry, we can without loss of generality assume that t ∈ (0, 1/2].

Then

C1(t)F (x◦) ≥ F (Atu
◦, v◦)

≥ tF (Atu
+, v+) + (1− t)F (Atu

−, v−) + 2tf(Atu
◦, v◦, Atu

+, v+, Atu
−, v−)

≥ tc1(t)F (x+) + (1− t)c1(t)F (x−) + 2tc2(t)f(x◦,x+,x−).

Divide both sides by C1(t) completes the proof of (7.8). To prove (7.9), it is enough to

observe that for convex ΩB, the matrix At can be chosen to be the identity matrix for all

t. This allows use to choose c1, C1 and c2 to be identically equal to 1, which proves the

inequality.
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7.2 Bellman Function Primer

We will now devote some time to discussing the Bellman function proof technique for in-

equalities in harmonic analysis. For a more complete overview, we recommend reading the

excellent introduction by Nazarov, Treil, and Volberg, [39].

Since we are describing a proof technique, it would be difficult to give a complete formal

definition. Nevertheless, Bellman function style proofs all follow a similar flavor which is

easy to spot once you get used to it. To offer a famous quote from Supreme Court Justice

Potter Stewart, “I know it when I see it.”

In this spirit, we will build up enough of a framework to state the main result of this

chapter, Theorem 7.3.1 The Good Bellman function theorem.

7.2.1 Dyadic Inequalities

We now turn our attention to the types of inequalities we will be proving.

Definition 7.2.1 (Dyadic Inequality (Special Case)). Let (X, ρ, µ) be a space of homoge-

neous type with no atoms. Let D be a dyadic lattice over X. A special dyadic inequality is

any inequality of the form

∑
R∈D(Q)

g(R) ≤ µ(Q) ·G(Q) ∀Q ∈ D (7.10)

where g and G are positively valued functions which take as their inputs dyadic cubes.

We first give the definition without allowing for atoms. This is because atoms present a

somewhat tricky problem that, while it won’t stop us in our tracks, does require considera-

tion. Consider, for example, a space X with a single atom a. We know from Theorem 2.5.2

that a is an isolated point, which means at some generation the set containing only a must
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be a cube. Furthermore, the cube {a} has only itself as a child, grandchild, great-grandchild,

and so on. Thus, the dyadic inequality becomes

µ({a}) ·G({a}) ≥
∑

R∈D({a})

g(R) =
∞∑
i=0

g({a}) =

 0 if g({a}) = 0

∞ if g({a}) > 0
,

implying that g({a}) = 0 (G 6= ∞ for any cube, atom or no). However, for many cases

(including the ones we will see later) there is no reason to think that g should be zero for

atoms.

There is a second consideration as well, but it is less significant. Remember that in the

definition of honest dyadic cubes we said that it is sometimes convenient to consider the

empty set as the second child of cubes with only one child. The functions g and G, however,

may not have meaningful definitions when taking the empty set as an input.

With these issues in mind, we give a more general definition of a dyadic inequality.

Definition 7.2.2. Dyadic Inequality (General Case) Let (X, ρ, µ) be a space of homogeneous

type and let A be the set of atoms of X. Let D be a dyadic lattice over X \ A. A general

dyadic inequality is any inequality of the form∑
R∈D(Q)

g(R) +
∑

a∈Q∩A

g(a) ≤ µ(Q) ·G(Q) ∀Q ∈ D (7.11)

where g,G : (D∪A∪{∅})→ [0,∞) are positively valued functions, such that G(∅) = g(∅) =

0.

Recall that when X has atoms, any dyadic structure over X will eventually have those

atoms as cubes. From now on, we will write dyadic inequalities as (7.10), and mean them

to be of the form (7.11), that is, cubes which happen to be atoms are only represented once

in the sum, even though they are in infinitely many generations.

Remark 7.2.3. Notice that sums such as (7.10) and (7.11) sum over cubes in D . Remember,

since D was defined as the union of collections of generations, we do consider cubes which
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are the same set but belong to different generations to be different cubes. For this reason,

it is possible that terms are repeated in the sums.

If X is a space and D1 and D2 are two dyadic structures over X so that for every cube

Q ∈ D1, Q ∈ D2, then any dyadic inequality which holds for sums over D2 also holds for

sums over D1. In particular, this means that it is sufficient to prove a dyadic inequality for

an honest structure if we desired the inequality for a general structure since every dyadic

lattice supports an overlapping honest lattice.

7.2.2 Bellman Functions Are Here!

We now introduce the idea of what a Bellman function actually is. For simplicity, we will

stick with Bellman function over R for the moment and move back into the SHT setting

once the ideas are established.

Recall that a weight w is a real valued function X → R which is positive almost ev-

erywhere with respect to µ and locally integrable. We let W (x) be a collection of weights

parameterized by a real vector x. An element of W (x) could be either a single weight or a

tuple of weights, depending on our needs.

Example 7.2.4. The following might be examples of typical weight collections:

• W (x) = {w a weight over R : 〈w〉I ≤ x ∀I = [a, b) ⊂ R}

• W (x) = {(w, u) a pair of weights over X : 〈w〉I ≤ µ(I)x1, 〈log u〉I ≤ x2 ∀I ∈ D}

In the first example W is parameterized by a single value, and elements of W are single

weights. In the second example, elements of W are pairs of weights which are parameterized

by the vector x ∈ R2.

A Bellman function will be a function satisfying some properties:
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• (Domain) B’s domain is a well defined set Ω. For our purposes, we will also impose

that Ω be a prism with a weakly convex base, although this requirement may not be

strictly necessary in all cases.

• (Main Inequality) B satisfies a midpoint convexity condition such as in Lemma 7.1.6.

That is

B(x◦) ≥ 1

2

[
B(x+) + B(x−)

]
+ b(x◦,x+,x−) (7.12)

for x◦,x± ∈ Ω satisfying a relationship such as in the previous section. Here the

function b : Ω×Ω×Ω→ R+ is a positively valued function which satisfies a symmetry

condition b(x◦,x+,x−) = b(x◦,x−,x+).

• (Range Bound) 0 ≤ B(x) ≤ B(x) for a real valued function B defined over the same

domain Ω.

In this setting, the functions B and b will be serving the role of F and f from the previous

section.

It is worth nothing that many Bellman proofs (see for example [47]) are interested in

finding the sharpest possible constant for a particular inequality. In in this situation, we

additionally impose that B is a function which is defined as a supremum taken over a weight

collection W of the form

B(x) = sup
W∈W (x)

1

|I|
∑

J∈D(I)

gW (J). (7.13)

Here the weight collection depends on x, W is either a single weight or a tuple of weights

and gW : D → R+ is a non-negative, real valued function that takes as its input a dyadic

interval and is parameterized by W .

We will not spend any more time on this flavor of Bellman function proof, and only

mention it here in passing.
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7.2.3 Providing Inequalities via Reduction on Scales

The final ingredient to the Bellman recipe is some form of mapping of dyadic intervals to

points in B’s domain Ω which we denote by xI . This mapping could be anything, but in

practice it will be required that uI , uIr and uI` be collinear points in ΩB, Ω’s base, and that

uI be the midpoint of the line segment uIruI` (recall the x = (u, v) convention). It is not

in general necessary that the line segment itself be entirely contained in ΩB, but it may be

needed in some cases.

A Bellman function B will provide a dyadic inequality over R if B(xI) = G(I) and

b(xI ,xI` ,xIr) = |I|−1 · g(I), where G and g satisfy (7.11). The proof generally follows what

is known as a “reduction on scales” argument. For a particular interval I ∈ D ,

G(I) = B(xI) ≥ B(xI) ≥
1

2
[B(xI`) + B(xIr)] + b(xI ,xI` ,xIr)

≥ 1

4

[
B(x(I`)`) + B(x(I`)r) + B(x(Ir)`) + B(x(Ir)r)

]
+

1

2

[
b(xI` ,x(I`)` ,x(I`)r) + b(xIr ,x(Ir)` ,x(Ir)r)

]
+ b(xI ,xI` ,xIr)

≥ · · ·

≥ 2−N−1
∑

R∈DN (I)

B(xR) +
N∑
j=0

2−j
∑

R∈Dj(I)

b(xR,xR` ,xRr).

All terms in both the single and the double sums are non-negative, so sending N →∞ will

give that

G(I) ≥
∞∑
j=0

2−j
∑

R∈Dj(I)

b(xR,xR` ,xRr) (7.14)

since we can just throw out the first sum involving the Bs. We can rewrite (7.14) to get that

G(I) ≥
∞∑
j=0

2−j
∑

R∈Dj(I)

|R|−1g(R) = |I|−1
∑

R∈D(I)

g(R)

which proves a dyadic inequality.
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7.3 The Good Bellman Function Theorem

In this section we use the previously developed “honest dyadic cubes” to prove a meta-

theorem about Bellman function type proofs.

We start with a short warning. In this theorem we will make use of a slight abuse

of notation. In the previous section, we used the notation xI to mean a point inside a

domain Ω which depends somehow on an interval. We will now make the somewhat sneaky

substitution xQ for a SHT dyadic cube instead of I, and assume that this makes sense in the

most obvious way. For example, if xI := 〈w〉I the mean of a weight w : R → R, we intend

xQ to be equal to 〈w′〉Q the mean of some other weight w′ : X → R with respect to the

measure µ. Since both these quantities make sense in their respective contexts, the notation

used is not inappropriate and in the spirit of remaining terse we will use it. Nevertheless,

we note that it would probably be more explicit write something such at x(Q, µ) or similar.

One final point. In the R case, the points uI , uI` , and uIr were necessarily collinear with

uI the midpoint. The reason for this almost always follows from the fact that the length of

any dyadic interval is exactly half that of its parent. It was not strictly necessary that this

be the cause of the midpoint relationship, however, just that it be the case. As we extend

to the SHT setting, we will be more explicit. It will no longer be the case that uQ be the

midpoint of the line segment uQ+uQ− . Instead, we will have that uq = α+uQ+ +α−uQ− where

α± := µ(Q±)/µ(Q). This enforces that α+ + α− = 1.

7.3.1 Statement and Proof

We are ready to state the main result of the chapter. The idea here is that given dyadic

inequality over R whose proof relies on a Bellman style argument which satisfies certain

conditions, we can extend this result to SHTs without needing to jump through the hoops

of reproving the theorerm. More formally:

114



Chapter 7. Bellman Functions for Spaces of Homogeneous Type

Theorem 7.3.1 (Good Bellman Function Theorem). Let DR be the standard dyadic lattice

on R. Let B be a Bellman function defined over a domain Ω which satisfies the main

inequality (7.12). Suppose that Ω is a prism whose base is weakly convex under the family

of matrices {At}t∈(0,1/2]. Suppose that B provides the dyadic inequality over R∑
J∈DR(I)

g(J) ≤ |I| ·G(I)

for all I ∈ DR. In other words,

• there is mapping of dyadic intervals to points in Ω which respects the midpoint require-

ment,

• we have that G(I) = B(xI), g(I) = |I| · b(xI ,xI` ,xIr),

• the function b satisfies the symmetry condition b(x◦,x+,x−) = b(x◦,x−,x+),

• the desired inequality follows from a reduction on scales argument.

Suppose further that there exists continuous functions c1, C1, c2 : (0, 1)→ (0,∞) such that

c1(t) = c1(1− t); C1(t) = C1(1− t); c2(t) = c2(1− t)

and

c1(t)B(x) ≤ B(Atu, v) ≤ C1(t)B(x)

c2(t)b(x◦,x+,x−) ≤ b(Atu
◦, v◦, Atu

+, v+, Atu
−, v−)

for every x,x◦,x+,x− ∈ Ω, with u◦ = tu+ + (1− t)u−).

Let X be a space of homogeneous type with honest dyadic structure DX . If the points

xQ ∈ Ω for all Q ∈ DX and uQ, uQ+ , uQ− are collinear in ΩB with

uQ =
µ(Q+)

µ(Q)
uQ+ +

µ(Q−)

µ(Q)
uQ−
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then there exists constants D ≥ 1, 0 < δ ≤ 1 not depending on Q such that B provides an

extension to an analogue dyadic inequality

∞∑
k=0

δk
∑

R∈DX
k (Q)

g̃(R) ≤ D · µ(Q) · G̃(Q)m (7.15)

where g̃ = g, G̃ = G when X = R.

Recall that G and g were functions which mapped dyadic cubes to positive real numbers.

By saying G̃ = G and g̃ = g when X = R, we mean that G̃ and g̃ are extensions of G and g

which are independent of the underlying space X. For example, if we defined g(I) =
∫
I

2 dx,

then it would have the extension g̃(Q) =
∫
Q

2 dµ(x). Clearly, in the case where X = R, this

would indeed give that g̃ = g as functions.

Proof. By assumption, the Bellman function B satisfies the hypotheses of Corollary 7.1.7,

thus it also satisfies its conclusion. Fix Q ∈ DX and set α±Q := µ(Q±)/µ(Q). Note that

α+
Q + α−Q = 1 and that ε ≤ α±Q ≤ 1 − ε where ε := infQ∈DX µ(Q)/µ(Q̂) = Dbl(D)−1 Set the

constants

δ := inf
t∈[ε,1/2]

c1(t)

C1(t)
, (7.16)

β := inf
t∈[ε,1/2]

c2(t)

C1(t)
(7.17)

where ε := infQ∈DX µ(Q)/µ(Q̂) = Dbl(D)−1. Then 0 < δ, β ≤ 1 necessarily. We have that

G̃(Q)µ(Q) ≥ µ(Q)B(xQ)

≥
c1(α+

Q)

C1(α+
Q)

(α+
Qµ(Q)B(xQ+) + α−Qµ(Q)B(xQ−))

+
c2(α+

Q)

C1(α+
Q)
µ(Q)b(xQ,xQ+ ,xQ−).

Recall that since c1, C1 and c2 are symmetric about the point t = 1/2, all three functions

agree at α+
Q and α−Q. It therefore did not matter which of α±Q we choose to plug into these
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functions, so we used α+
Q. Continuing on,

G̃(Q)µ(Q) ≥ δ(µ(Q+)B(xQ+) + µ(Q−)B(xQ−)) + βµ(Q)b(xQ,xQ+ ,xQ−)

≥ δ2(µ((Q+)+)B(x(Q+)+) + µ((Q+)−)B(x(Q+)−)

+ µ((Q−)+)B(x(Q−)+) + µ((Q−)−)B(x(Q−)−))

+ βδµ(Q+)b(xQ+ ,x(Q+)+ ,x(Q+)−) + βδµ(Q−)b(xQ− ,x(Q−)+ ,x(Q−)−)

+ βµ(Q)b(xQ,xQ+ ,xQ−)

= δ2
∑

R∈DX
2 (Q)

µ(R)B(xR) + β
1∑

k=0

δk
∑

R∈DX
k (Q)

b(xR,xR+ ,xR−)µ(R)

where we used here that B satisfies the corollary to the Generalized Convexity Lemma.

Iterating this inequality N times gives that

G̃(Q)µ(Q) ≥ δN
∑

R∈DX
N (Q)

µ(R)B(xR) + β
N−1∑
k=0

δk
∑

R∈DX
k (Q)

b(xR,xR+ ,xR−)µ(R)

≥ β
N−1∑
k=0

δk
∑

R∈DX
k (Q)

g̃(R).

Setting D := 1/β and sending N →∞ gives the desired inequality.

Corollary 7.3.2. Theorem 7.3.1 still holds if we remove the requirement of DX to be honest,

as long as xQ ∈ Ω for every honest cube Q contained in an overlapping honest structure.

Proof. We let D̃X be an honest dyadic structure for X which overlaps DX . Then the

inequality (7.15) holds for D̃X . Since each cube in DX is also a cube in D̃X and g̃ is always

non-negative, (7.15) also holds for DX .

The constants D and δ will not depend on Q, but they do depend on the dyadic doubling

constant of the honest structure for X and on the particular Bellman function used in the

proof. This leaves the door open to potentially finding a better constant, if desired, by

choosing a different Bellman function or honest structure.
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Finally, we state a nice special case of the Good Bellman Function Lemma, where the

domain Ω happens to be convex (and not just weakly convex).

Corollary 7.3.3 (Convex Domain Special Case). Let DR be the standard dyadic lattice on

R. Let B be a Bellman function defined over a domain Ω which satisfies the main inequality

(7.12). Suppose that Ω is a prism with a convex base ΩB. Suppose that B provides the dyadic

inequality over R∑
J∈DR(I)

g(J) ≤ |I| ·G(I)

for all I ∈ DR. (See the statement of Theorem 7.3.1.)

Let X be a space of homogeneous type with dyadic structure DX . If the points xQ ∈ Ω

for all Q ∈ DX and uQ, uQ+ , uQ− are collinear in ΩB with

uQ =
µ(Q+)

µ(Q)
uQ+ +

µ(Q−)

µ(Q)
uQ− (7.18)

then B provides an extension to an analogue dyadic inequality∑
R∈DX(Q)

g̃(R) ≤ µ(Q) · G̃(R) (7.19)

where g̃ = g, G̃ = G when X = R.

Proof. Since the domain Ω has a convex base, it is also weakly convex. Thus, the functions

c1, c2, and C1 from the original proof can all be set identically to one. This forces that δ and

D also equal one. Plugging into (7.15) yields (7.19).

7.4 A Two Weight Application

We close the chapter by giving a relatively simple application of the Good Bellman Function

Lemma. The Bellman function here is a function of two varaibles. We will stick to the
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original notation found in [39] and use x and y as our varaiables, in contrast to the more

cumbersome notation we needed for arbitrary dimensions. Also in this paper, u and v were

weights, so they will play that role here as well.

7.4.1 A result for weights over R.

We recall an example of a two-weight theorem for weights over R:

Theorem 7.4.1. Let u, v be two positive functions such that for any interval I ∈ D ,

〈u〉I · 〈v〉I ≤ 1 (7.20)

Then for any I ∈ D ,

1

|I|
∑

J∈D(I)

|〈u〉J` − 〈u〉Jr | · |〈v〉J` − 〈v〉Jr | · |J | ≤ 16
√
〈u〉I〈v〉I . (7.21)

For a complete proof, see [39]. Here, we will cover details of the proof which are pertinent

to this discussion. This dyadic property is provided by the Bellman function

B(x, y) = 4 · (4√xy − xy) . (7.22)

over the domain

Ω = {(x, y) ∈ R2 | x, y ≥ 0 and xy < 1} (7.23)

with the range

0 ≤ B(x, y) ≤ 16
√
xy =: B(x, y) (7.24)

and main inequality

B(x, y) ≥ 1

2

(
B(x+, y+) + B(x−, y−)

)
+ |x+ − x−| · |y+ − y−|. (7.25)

In this proof, b(x◦,x+,x−) := |x+− x−| · |y+− y−|, a function which is clearly symmetric in

the second and third variables (and incidentally does not depend on the first at all). As this

is a Bellman function proof, the details follow from a reduction on scales argument.
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7.4.2 Extending to SHTs

We will now prove an analogue theorem for weights over spaces of homogeneous type.

Theorem 7.4.2. Let X be a SHT with honest dyadic structure D . Let u, v : X → R be two

positive functions such that for any Q ∈ D ,

〈u〉Q · 〈v〉Q ≤ 1 (7.26)

Then for any Q ∈ D ,

1

µ(Q)

∞∑
k=0

δk
∑

R∈Dk(Q)

|〈u〉R+ − 〈u〉R− | · |〈v〉R+ − 〈v〉R−| · µ(R) ≤ 16 ·D
√
〈u〉Q〈v〉Q.

where D = (16/3) ·Dbl(D)2 and δ = 45/(64 ·Dbl(D)).

In order to apply our Good Bellman Function Lemma, we have a few things that we need

to demonstrate. We will state the lemmas here, and give proofs in the final section of the

chapter.

Lemma 7.4.3. The domain Ω = {(x, y) ∈ R2 | 0 < x, 0 < y, xy < 1} is weakly convex under

the family of matrices

At :=

 t/4 0

0 t/4


Note that actually Ω is a 2-dimensional 2-prism, since any set in Rd is a d-dimensional

d-prism. Thus, in this case, Ãt = At, so we will drop the tilde.

Lemma 7.4.4. The function B(x, y) = 4(4
√
xy − xy) satisfies the pair of inequalities

c1(t)B(x, y) ≤ (B ◦ At)(x, y) ≤ C1(t)B(x, y)

for At as in Lemma 7.4.3 and

c1(t) = 15t/64

C1(t) ≡ 1/3.
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Normally, we would need a similar inequality for the function b as well, but in this case it

will be trivial so we will not state this as a lemma. Indeed, we do not even need an inequality

since

b(Atx1, Atx2) = b

(
t

4
x1,

t

4
y1,

t

4
x2,

t

4
y2

)
=

∣∣∣∣ t4x1 −
t

4
y1

∣∣∣∣ · ∣∣∣∣ t4x2 −
t

4
y2

∣∣∣∣
=
t2

16
|x1 − y1| · |x2 − y2| =

t2

16
· b(x1,x2)

so the function c2(t) := t2/16 suffices.

Lemma 7.4.5. The extension of the mapping {xI}I∈DR to {xQ}Q∈DX is completely contained

within the domain Ω. Moreover, For an honest cube Q with children Q+ and Q−, the points

xQ, xQ+ and xQ− are collinear with

xQ = txQ+ + (1− t)xQ− (7.27)

where t = µ(Q+)/µ(Q).

7.4.3 Proof of the Extended Result

We will prove Lemma 7.4.3 in the appendix, and prove Lemmas 7.4.4 and 7.4.5 here.

Proof of Lemma 7.4.4. We let B(x, y) = 4(4
√
xy− xy) implying (B ◦At)(x, y) = 4(t

√
xy−

16−1t2xy). We have by Lemma 7.4.3 that Ω is weakly-convex under the family {At}, which

among other things guarantees that At : Ω → Ω. We can therefore say that Ω’s definition

forces that B and (B ◦ At) are always positive.

The desired result is equivalent to showing that

c1(t) ≤ (B ◦ At)(x, y)

B(x, y)
=
t− 16−1t2

√
xy

4−√xy ≤ C1(t).

The left-hand inequality follows from

t− 16−1t2
√
xy

4−√xy ≥ t
1− 16−1√xy

4−√xy ≥ 15t

64
=: c1(t).
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The right-hand inequality follows from

t− 16−1t2
√
xy

4−√xy ≤ 1

3
≡: C1(t).

Proof of Lemma 7.4.5. In the original proof in [39], xI was defined as (〈u〉Q, 〈v〉Q) for the two

weights u and v. Thus, when extending the theorem to SHTs, we define xQ := (〈u〉Q, 〈v〉Q).

We need to verify that xQ ∈ Ω for a Q ∈ DX . This clear from the fact that u and v are

weights, and that 〈u〉Q〈v〉Q < 1 by assumption.

Next, we need that xQ and xQ± are three collinear points which satisfy (7.27) with

t = µ(Q+)/µ(Q). This is clear from m

txQ+ + (1− t)xQ− =
µ(Q+)

µ(Q)
xQ+ +

(
1− µ(Q+)

µ(Q)

)
xQ−

=
µ(Q+)

µ(Q)

(
〈u〉Q+ , 〈v〉Q+

)
+
µ(Q−)

µ(Q)

(
〈u〉Q− , 〈v〉Q−

)
=

1

µ(Q)

(∫
Q+

u dµ+

∫
Q−

u dµ,

∫
Q+

v dµ+

∫
Q−

v dµ

)
= (〈u〉Q, 〈v〉Q) = xQ.

With all lemmas established, we conclude the chapter with the proof of Theorem 7.4.2.

Proof of 7.4.2. The original proof over R follows from a Bellman-function argument, so we

need only confirm the additional hypotheses. These were verified in Lemmas 7.4.3, 7.4.4,

and 7.4.5. Thus, by the Good Bellman Function Lemma, we have the desired inequality.

Moreover,

D =

[
inf

t∈[Dbl(D)−1,1/2]

c2(t)

C1(t)

]−1

=

[
inf

t∈[Dbl(D)−1,1/2]

3t2

16

]−1

=
16 ·Dbl(D)2

3
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and

δ = inf
t∈[Dbl(D)−1,1/2]

c1(t)

C1(t)
= inf

t∈[Dbl(D)−1,1/2]

45

64t
=

45

64 ·Dbl(D)

as required.

As we can see from this example, The Good Bellman Function Lemma is indeed very

powerful.
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Chapter 8

Fun With Paraproducts and t-Haar

Multipliers

In this chapter we will apply the results of the preceding chapters. Our main application will

be to prove bounds for particular dyadic operators: the t-Haar multiplier and the dyadic

paraproduct. These bounds were shown first for t = −1/2, 1/2, 1 in [31], then for more

gereral t in [8] and [11], respectively.

We will proceed by, via our Good Bellman Function Lemma, extend several Bellman

function type arguments originally from O. Beznosova [8] so that we can use their results in

our setting of SHTs.

8.1 Preliminaries

Here we give some preliminary tools necessary for this chapter.
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8.1.1 The A2 Theorem

The A2 Conjecture gives generic bounds for Calderón-Zygmund operators on weighted L2

and claims that this bound depends linearly on the A2 characteristic of the weight. This

celebrated result is now a Theorem, having been proved in 2012 by T. Hytönen.

Theorem 8.1.1 (A2 Theorem [21]1). Let T be a Calderón-Zygmund Operator for functions

on Rn. Then for any w ∈ A2,

||T ||L2(w) ≤ C(n, T )[w]A2 . (8.1)

where the constant C(n, T ) depends on the dimension and the operator.

The particular bounds demonstrated here for the paraproduct and t-Haar multiplier are

examples of this result.

8.1.2 Carleson Sequences in Spaces of Homogeneous Type

In this chapter several lemmas make use of the idea of a Carleson sequence. We give the

definition now.

Definition 8.1.2 (v-Carleson Sequence (R)). Let v : R → R be a weight. A sequence of

non-negative real numbers {λI}I∈D is called a v-Carleson sequence if and only if there exists

a constant B such that for every I ∈ D ,∑
J∈D(J)

λJ ≤ B ·
∫
J

v(x) dx.

Here B is called {λQ}I∈D ’s intensity. In the case where v ≡ 1 we call {λI} a Carleson

sequence.

We extend this notion to SHTs in the obvious way:

1Extended to SHTs in [7] by T. Anderson and A. Vagharshakyan.
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Definition 8.1.3 (v-Carleson Sequence (X)). Let X be a space of homogeneous type with

dyadic structure D , and let v : X → R be a weight. A sequence of non-negative real

numbers {λQ}Q∈D is called a v-Carleson sequence with intensity B if and only if there exists

a constant B such that for every Q ∈ D ,∑
Q′∈D(Q)

λQ′ ≤ B ·
∫
Q

v(x) dµ(x). (8.2)

In the case where v ≡ 1 we call {λI}I inD a Carleson sequence.

It is worth reminding the reader that this definition is with respect to the measure µ.

Since in oiur context the underlying measure µ is always understood to be present, we will

keep with the notation and defnintions as they are here.

Theorem 8.1.4. If {λQ}Q∈D is a v-Carleson sequence, and X has non-atomic isolated

points, then λQ = 0 for any cube Q which is a finite union of such points.

Proof. Let R be such a cube. Then any descendant of R is also such a cube, and µ(R) = 0.

Since {λQ} is v-Carleson, (8.2) holds. But the right hand side of (8.2) equals zero since∫
R

v(x) dµ(x) =
∑
x∈R

v(x)µ({x})

and the right hand side is a finite sum of terms which are all zero. So, each term of the left

hand side of (8.2) must be zero, in particular, the term λR.

We note, therefore, that without loss of generality we can ignore non-atomic isolated

points.

No such consideration needs to be made for atoms, since their measure is non-zero. For

this reason we do not at this point need to assume that sums such as (8.2) include terms

corresponding to cubes which are atoms only once, as was the case in the definition of a

dyadic inequality we developed in Chapter 6. However, we may still wish to do so, if the

situation requires it.
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Finally, we will state the follwing useful Lemma.

Lemma 8.1.5. If {αQ}Q∈D and {βQ}Q∈D are Carelson sequences with respect to µ with

intensities A and B respectively, then {
√
αQβQ}Q∈D is a Carleson sequence with respect to

µ with intensity
√
AB.

The proof is a straightforward application of the Cauchy-Schwarz inequality.

8.1.3 Dyadic BMO

We will now give a brief overview of the class BMOd.

Notation 5. For f, g ∈ L2(X), we write 〈f, g〉 to mean the L2(X) inner product, i.e,

〈f, g〉 :=

∫
X

f(x)g(x) dµ(x).

For a weight w, we also write 〈f, g〉w to be the L2(w) inner product:

〈f, g〉w :=

∫
X

f(x)g(x)w(x) dµ(x).

Definition 8.1.6 (Dyadic Bounded Mean Oscillation). Let X be a SHT without non-atomic

isolated points, and let D be an honest dyadic system on X. A function b : X → R is in the

class dyadic bounded mean oscillation, written b ∈ BMOD , if

||b||BMOD := sup
Q∈D

1

µ(Q)

∫
Q

|b(x)− 〈b〉Q| dµ(x) <∞. (8.3)

Alternatively we could define

||b||BMOD :=

sup
Q∈D

1

µ(Q)

∑
R∈D̃(Q)

|〈b, hR〉|2
 1

2

<∞. (8.4)

The alternatives (8.3) and (8.4) are not equal, but are equivalent in the sense of semi-

norms. See D. Chung’s PhD Dissertation [11] for why this is so. The proof is for Rn but

translates to the setting of SHTs nicely.
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Remark 8.1.7. While the quantity in the previous definition is often called the BMO-norm

of b, it is actually not strictly a norm because it equals zero for functions which are constant

on the quadrants of X.

Remark 8.1.8. In light of (8.4), we actually know that {|〈b, hQ〉|2}Q∈D is a Carleson se-

quence with intensity ||b||2
BMOd

.

8.2 Operator Definitions

In this section, we formally define the operators πb and T tw. Later in this chapter, we

demonstrate that these operators are bounded on weighted L2(w) for an A2 weight w. This

bound will be linear [w]A2 , exactly as predicted by the A2 theroem.

8.2.1 Paraproduct

Definition 8.2.1 (Dyadic Paraproduct). Let X be a space of homogeneous type, and let D

be an honest dyadic system of cubes. Let b ∈ BMOD . Define the operator πb : L2(X) →
L2(X) as

πbf(x) :=
∑
Q∈D

〈b, hQ〉〈f〉QhQ(x)

where {hQ}Q∈D are the Haar functions constructed in Chapter 6.

The other operators we will look at in this chapter are the t-Haar multiplier.

8.2.2 t-Haar Multiplier

Definition 8.2.2 (t-Haar Multiplier). Let X be a space of homogeneous type, and let D be

an honest dyadic system of cubes. Given a function f ∈ L2(X) and a weight w : X → R,
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formally define the operator T tw as

T fwt(x) :=
∑
Q∈D

(
w(x)

〈w〉Q

)t
〈f, hQ〉hQ(x)

In [37], J. Moreas looks at bounds for t-Haar multipliers with complexity, defined over

R. These would generalize to SHTs in the following way:

Definition 8.2.3 (t-Haar Multiplier With Complexity (a, b)). Let X be an SHT with honest

dyadic structure D . Given a weight w : X → R and a, b ∈ N, define the operator T tw : Lp →
Lp as

Tm,nt,w f(x) :=
∑
Q∈D

∑
R∈Dn(Q)
S∈Dm(Q)

cQR,S

(
w(x)

〈w〉Q

)t
〈f, hR〉hS(x)

where |cQR,S| ≤
√
µ(R)µ(S)/µ(Q).

It is clear that Definition 8.2.2 is a specific case of Definition 8.2.3, when m = n = 0

and cQR,S ≡ 1. In this document, we will not be looking at the complexity case. However, J.

Moreas and the author are presently working together on this generalization in a forthcoming

paper.

8.3 Lemmas

In this section we will first state the needed lemmas in their original form for R, and then

give the extended versions applicable to SHTs.

8.3.1 R Versions

We now state some lemmas for the setting of R. We will provide restatements for SHTs and

proofs in subsequent sections.
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Lemma 8.3.1 (Weighted Carleson Lemma [37]). Let v be a dyadic doubling weight. Then

{λI}I∈D is a v-Carleson sequence with intensity B if and only if for all non-negative v-

measurable functions F on the line∑
I∈D

λI inf
x∈I

F (x) ≤ B

∫
R
F (x)v(x) dx.

Lemma 8.3.2 (Little Lemma [8]). Let v be a weight such that v−1 is a weight as well. Let

{λI}I∈D be a Carleson sequence with intensity B. Then {λI/〈v−1〉I}I∈D is a v-Carleson with

intensity 4B.

In the next lemma, for a weight w and dyadic interval I, we define ∆Iw := |〈w〉I` − 〈w〉Ir |.

Lemma 8.3.3 (αβ-Lemma [36]). Let u, v be weights then for any I ∈ D and any α, β ∈ (0, 1
2
)

1

|I|
∑

J∈D(I)

( |∆Ju|2
〈u〉2J

+
|∆Jv|2
〈v〉2J

)
|J |〈u〉αJ〈v〉βJ ≤ Cα,β〈u〉αI 〈v〉βI

with Cα,β = 36 ·min{α− 2α2, β − 2β2}−1.

For any weight w over R we define the weighted Haar function on the dyadic interval I

as

hwI (x) :=
1

w(I)

(√
w(I`)

w(Ir)
1Ir(x)−

√
w(Ir)

w(I`)
1I`(x)

)

Finally, we have this result of R, which we will later extend to SHTs.

Proposition 8.3.4 (Weighted/Unweighted Haar Identity). For any weight w and any dyadic

interval I, there exists αwI and βwI such that

hI := αwI · hwI (x) +
βwI√
|I|
· 1I(x)

where

|αwI | ≤
√
〈w〉I and |βwI | ≤

|∆Iw|√
〈w〉I

.
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8.3.2 SHT Versions

We now state and prove SHT versions of the lemmas. In this section, we will continue to

ssume that D is honest.

Recall that a weight w is dyadic doubling if there existsts a constant D ≥ 1 such that

for all cubes Q, w(Q̂) ≤ Dw(Q).

Lemma 8.3.5 (Weighted Carleson Lemma for SHTs). Let v : X → R+ be a dyadic doubling

weight with respect to D . Then {λQ}Q∈D is a v-Carleson sequence with intensity B if and

only if for all non-negative σ-measurable functions F∑
Q∈D

λQ inf
x∈Q

F (x) ≤ B

∫
X

F (x)v(x) dµ(x). (8.5)

where the measure σ is defined as

σ(E) :=

∫
E

v dµ.

The logic of the proof is identical to what is found in [37], with minor change accounting

for the SHT setting. We reproduce it more or less verbatim here with only a few typographical

changes to match our previous notations.

Proof. (⇒) We assume that F ∈ L1(v) otherwise the statement is automatically true. For a

cube Q we define the value γQ := infx∈Q F (x) and the function χ : D × R→ {0, 1} as

χ(Q, t) :=

 1 if t < γQ

0 otherwise

Note that χ(Q, t) ≤ F (x) for all x ∈ Q and∫ ∞
0

χ(Q, t) dt =

∫ γQ

0

1 dt = γQ.

We can now write∑
Q∈D

λQγQ =
∑
Q∈D

∫ ∞
0

χ(Q, t) dt λQ =

∫ ∞
0

(∑
Q∈D

χ(Q, t)λQ

)
dt (8.6)
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where (8.6) follows from the Lebesgue Monotone Convergence Theorem. Define the set

Et := {x ∈ X | F (x) > t}. Since F is a sigma-measurable function, Et is a σ-measurable

set for all t. Moreover, by Chebychev’s Inequality, σ(Et) < ∞ for all t. If for some cube

χ(Q, t) = 1 then Q ⊂ Et. By properties of dyadic cubes, there exists a maximal collection

of disjoint dyadic cubes which are contained in Et. Call this collection Pt. Then for any t,∑
Q∈D

χ(Q, t)λQ ≤
∑
Q⊂Et

λQ =
∑
Q∈Pt

∑
R∈D(Q)

λR ≤ B
∑
Q∈Pt

σ(Q) ≤ Bσ(Et) (8.7)

where we used in (8.7) that {λQ} is a v-Carleson sequence with intensity B. Therefore,∑
Q∈D

γQλQ ≤ B

∫ ∞
0

σ(Et) dt = B

∫
X

F (x)v(x) dµ(x).

To see why this is so, recall that for any measurable function f and measure η,

f(x) =

∫ ∞
0

1Et(f) dη(t).

Applying this fact to the function F with measure σ gives the desired result.

(⇐) Assume that (8.5) is true. In particular then, it holds for F (x) = 1Q(x)/µ(Q). Since

infx∈R F (x) = 0 if R ∩Q = ∅ and 1/µ(Q) otherwise,

1

µ(Q)

∑
R∈D(Q)

λR ≤
∑

R∈D(Q)

λR inf
x∈R

F (x) ≤
∫
X

F (x)v(x) dµ(x) = 〈v〉Q.

which implies that∑
R∈D(Q)

λR ≤
∫
Q

v dµ = σ(Q).

The little lemma and the αβ-lemma, being proved via the Bellman technique, can be

extended to the SHT setting by our Good Bellman Theorem.

Lemma 8.3.6 (Little Lemma SHT). Let v be a weight such that v−1 is a weight as well. Let

{λQ}Q∈D be a Carleson sequence with intensity B. Then {λQ/〈v−1〉Q}Q∈D is a v-Carleson

with intensity 4B〈m〉Qv.
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Proof. In the original proof found in [8], the Bellman function

B(u, v, l) = u− 1

v(1 + l)

was used to provide the inequality, defined on the domain Ω = {(u, v, l) ∈ R3 | uv ≥
1 and 0 ≤ l ≤ 1}. This domain is a 3-dimensional 2-prism where ΩB = {(u, v) ∈ R2 | uv ≥
1} and ΩR = [0, 1] ⊂ R. Clearly, ΩB is a convex set.

Since we have the special case of the Good Bellman Function Lemma, Corollary 7.3.3,

we need only check the remaining hypotheses to apply it. Namely, we need to show that

the points xQ lie in the domian Ω and that the points uQ, uQ+ , and uQ− are colinear in ΩB.

(Recall Q± are either the two children of Q if D is honest, or the two children of Q in an

overlapping honest structure D̃ if D is not honest.) We also much check that the function b

in the the main inequality satisfies the required symmerty condition.

We tackle the symmetry condition first. In [8], the main inequality given is that

B(x◦) ≥ 1

2

(
B(x+) + B(x−)

)
+

1

4v
α

where v is the second component of x◦ (i.e. x◦ = (u, v, l)) and α is such that

x◦ − x+ + x−

2
= (0, 0, α).

Thus, the function b := α/(4v) is symmetric in the variables x+ and x−.

We see in the proof of Lemma 7.1 in [8] that for a dyadic interval I ∈ DR,

xI :=

〈w〉I , 〈w−1〉I , (|I|B)−1
∑

J∈D(I)

λI

 ∈ Ω.

(Note that here we have translated the original’s notation into that used by this document,

but the meaning is the same.) It is clear that extending this definition of xI to xQ is

133



Chapter 8. Fun With Paraproducts and t-Haar Multipliers

permittable, and that xQ ∈ Ω. Moreover,

uQ = (〈w〉Q, 〈w−1〉Q)

=
µ(Q+)

µ(Q)
(〈w〉Q+ , 〈w−1〉Q+) +

µ(Q−)

µ(Q)
(〈w〉Q− , 〈w−1〉Q−)

=
µ(Q+)

µ(Q)
uQ+ +

µ(Q−)

µ(Q)
uQ−

which checks the linearity requirement. By the Convex Domain Special Case of Good Bell-

man Function Theorem, we have the inequality∑
Q∈D

λQ
〈v−1〉Q

≤ 4B〈v〉Q ·
(

1

2
sup
Q∈D

µ(Q̂)/µ(Q)

)
(8.8)

which is what we wished to show.

Lemma 8.3.7 (αβ-Lemma SHT). Let u, v be weights then for any Q ∈ D and any α, β ∈
(0, 1

2
)

1

µ(Q)

∑
R∈D(Q)

( |∆Ru|2
〈u〉2R

+
|∆Rv|2
〈v〉2R

)
µ(R)〈u〉αR〈v〉βR ≤ Cα,β〈u〉αQ〈v〉βQ (8.9)

with Cα,β = 36 min{α− 2α2, β − 2β2}−1 where D is the same as the previous lemma.

It is worth pointing out that the operator ∆Q is taken to mean the obvious thing:

∆Qw :=

 〈w〉Q+ − 〈w〉Q− if N(Q) = 2

0 if N(Q) = 1.

Recall that we already assumed that D was an honest structure, so the ∆Q defined here is

not ambiguous.

Proof. In the proof of the R version of this lemma, found in [37], the Bellman function

B(x, y) := xαyβ

is used over the domain Ω := {(x, y) ∈ R2 | x > 0, y > 0} to provide the required inequality.

This domain is a convex set, thus it is a 2 dimensional 2 prism with a convex base. We
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proceed similarly as in the previous proof, needing only to check that the the ponts xQ ∈ Ω

and that the linearity condition is held.

In the proof of Lemma 3.7 in [37] the mapping xI := (〈u〉I , 〈v〉I) is used. It is clear that

extending this mapping to xQ will be permitted and that xQ ∈ Ω. Moreover,

xQ = (〈u〉Q, 〈v〉Q)

=
µ(Q+)

µ(Q)
(〈u〉Q+ , 〈v〉Q+) +

µ(Q−)

µ(Q)
(〈u〉Q− , 〈v〉Q−)

=
µ(Q+)

µ(Q)
xQ+ +

µ(Q−)

µ(Q)
xQ−

which proves the linearity condition. By the Good Bellman Function Theorem, the R version

of the αβ-Lemma is extendable to SHTs to give the desired result.

8.3.3 Weighted Haar Functions

Lastly, we define the idea of a weighted Haar function over an SHT in the obvious way:

Definition 8.3.8 (Weighted Haar Function). The weighted Haar function hwQ with honest

dyadic grid D is defined as

hwQ := κ+
Q1Q+ − κ−Q1Q− (8.10)

where

κ±Q :=

√
w(Q∓)

w(Q) · w(Q±)

Notice that when w ≡ 1 that κ±Q =
√
µ(Q∓)/(µ(Q)µ(Q±)) = λ±Q from (6.7).

Proposition 8.3.9 (Weighted/unweighted Haar Identity SHT). For any weight w and any

honest dyadic cube Q, there exists αwQ and βwQ such that

hQ := αwQ · hwQ(x) +
βwQ√
µ(Q)

· 1Q(x) (8.11)
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where

|αwQ| ≤
√
〈w〉Q and |βwQ| ≤

|∆Qw|
〈w〉Q

.

Proof. Fix Q and w. To simplify notation we will write α := αwQ, β := βwQ, h := hQ and

hw := hwQ.

Solve (8.11) for hw to get that

hw(x) =
h(x)

α
− β · 1Q(x)

α
√
µ(Q)

.

Using the axioms for Haar functions, we know that∫
X

hw(x)w(x) dµ(x) = 0 and 〈hw, hw〉w = 1 (8.12)

Starting with the first part of (8.12), we substitute to get that

0 =

∫
X

[
h(x)

α
− β · 1Q(x)

α
√
µ(Q)

]
w(x) dµ(x)

β · w(Q)√
µ(Q)

=

∫
X

h(x)w(x) dµ(x) =

∫
X

[
λ+1Q+(x)− λ−1Q−(x)

]
w(x) dµ(x)

= λ+w(Q+)− λ−w(Q−)

implying that

β =
1

w(Q)

[√
µ(Q−)

µ(Q+)
w(Q+)−

√
µ(Q+)

µ(Q−)
w(Q−)

]
=

√
µ(Q+)µ(Q−)

w(Q)
∆Qw (8.13)

|β| ≤ µ(Q+) + µ(Q−)

2w(Q)
|∆Qw| =

|∆Qw|
2〈w〉Q

(8.14)

where in the last line we used that the geometric mean is bounded by the arithmetic mean.

Notice also that |β| < 1.

For the bound on α, we use the seccond part of (8.12) to get that

1 =

∫
X

[
h(x)

α
− β · 1Q(x)

α
√
µ(Q)

]2

w(x) dµ(x)
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implying that

α2 =

∫
X

[
h(x)− β · 1Q(x)√

µ(Q)

]2

w(x) dµ(x)

=

∫
Q

h(x)2w(x) dµ(x)− 2β√
µ(Q)

∫
Q

h(x)w(x) dµ(x) +
β2

µ(Q)

∫
Q

w(x) dµ(x)

= (λ+)2w(Q+) + (λ−)2w(Q−)− 2β√
µ(Q)

(
λ+w(Q+)− λ−w(Q−)

)
+ β2〈w〉Q

=
µ(Q−)

µ(Q)
〈w〉Q+ +

µ(Q+)

µ(Q)
〈w〉Q− −

2β
√
µ(Q+)µ(Q−)

µ(Q)
(〈w〉Q+ − 〈w〉Q−) + β2〈w〉Q

=
µ(Q−)

µ(Q)
〈w〉Q+ +

µ(Q+)

µ(Q)
〈w〉Q− − β2〈w〉Q

≤ (1− β2)〈w〉Q < 〈w〉Q

where in the last line we used (8.13).

8.4 Bound on the Paraproduct

We now use the above Lemmas to prove the desired bound for the SHT paraproduct.

Theorem 8.4.1. Let (X, ρ, µ) be an SHT. There exists a constant C > 0 such that for any

b ∈ BMOd, and πb be the dyadic paraproduct as defined in 8.2.1. Then for w ∈ Ad2,

||πbf ||L2(w) ≤ CD[w]Ad2 ||b||BMOd ||f ||L2(w)

with D, as above, equal to the reciprocal of the dyadic doubling constant. By ||f ||L2(w) we

mean
(∫

X
f(x)2w(x) dµ(x)

)1/2
.

To prove this theorem, we will essentially need to check that the proof for the R version

of the bound transfers over to SHTs.

Proof. If ||f ||L2(w) =∞ then the inequality is trivially true.
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Fix f ∈ L2(w) and g ∈ L2(w−1). By duality, it is enough to show that∣∣〈πb(fw), gw−1〉
∣∣ ≤ C[w]Ad2 ||b||BMOd||f ||L2(w)||g||L2(w−1) (8.15)

for some constant C. Expanding the left hand side of (8.15) gives

∣∣〈πb(fw), gw−1〉
∣∣ =

∣∣∣∣∣
〈∑
Q∈D

bQ〈fw〉QhQ, gw−1

〉∣∣∣∣∣
where here we write bQ := 〈b, hQ〉. Using the weighted/unweighted Haar identity, we write

hQ = αw
−1

Q hw
−1

Q + βw
−1

Q 1Q/
√
µ(Q). Then∣∣〈πb(fw), gw−1〉

∣∣ =
∑
Q∈D

bQ〈|f |w〉Q
∣∣∣〈αw−1

Q hw
−1

Q + βw
−1

Q 1Q/
√
µ(Q), gw−1

〉∣∣∣
≤ Σ1 + Σ2

where

Σ1 :=
∑
Q∈D

|bQ|〈|f |w〉Q|〈hw
−1

Q , gw−1〉|
√
〈w−1〉Q

Σ2 :=
∑
Q∈D

|bQ|〈|f |w〉Q|〈1Q, gw−1〉| |∆Qw
−1|

〈w−1〉Q
√
µ(Q)

using the bounds for αw
−1

Q and βw
−1

Q . We will now estimate Σ1 and Σ2 separately.

(Estimating Σ1) We use the fact that MD
w f(x) ≥ 〈|f |w〉Q/〈w〉Q for every x ∈ Q and that

〈hw−1

Q , gw−1〉 = 〈hw−1

Q , g〉w−1 to write that

Σ1 ≤
∑
Q∈D

|bQ|
(

inf
x∈Q

(MD
w f)(x)

) ∣∣∣〈hw−1

Q , g〉w−1

∣∣∣ 〈w〉Q√〈w−1〉Q

≤
∑
Q∈D

|bQ|
(

inf
x∈Q

(MD
w f)(x)

) ∣∣∣〈hw−1

Q , g〉w−1

∣∣∣ [w]A2√
〈w−1〉Q

where in the second line we used that 〈w〉Q〈w−1〉Q ≤ [w]A2 . Applying Cauchy-Schwarz gives

that

Σ1 ≤ [w]A2

(∑
Q∈D

b2
Q

infx∈Q(MD
w f)(x)2

〈w−1〉Q

)1/2(∑
Q∈D

〈hw−1

Q , g〉2w−1

)1/2
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Since {hw−1

Q }Q∈D forms an orthonormal family for L2(w−1),(∑
Q∈D

〈hw−1

Q , g〉2w−1

)1/2

≤ ||g||L2(w−1).

Now, since b ∈ BMOd, {b2
Q}Q∈D is a Carleson sequence with intensity ||b||2

BMOd
. By the

Little Lemma for SHTs, we therefore get that {b2
Q/〈w−1〉Q}Q∈D is a w-Carleson sequence

with intensity ||b||2
BMOd

. We apply the weighted Carleson Lemma for SHTs to thus say that(∑
Q∈D

b2
Q

infx∈Q(MD
w f)(x)2

〈w−1〉Q

)1/2

≤ 2D||b||BMOd

(∫
X

(MD
w f)(x)2w(x) dµ(x)

)1/2

Since MD
w is bounded in L2(w) with bound not dependent on w,

Σ1 ≤ 2D · [w]A2 · ||b||BMOd · ||MD
w ||L2(w) · ||g||L2(w−1).

(Estimating Σ2) We start with

Σ2 =
∑
Q∈D

|bQ|〈|f |w〉Q|〈1Q, gw−1〉 |∆Qw
−1|

〈w−1〉Q
√
µ(Q)

=
∑
Q∈D

|bQ|〈|f |〉wQ〈g〉w
−1

Q

√
µ(Q)〈w〉2Q (∆Qw−1)2

=
∑
Q∈D

|bQ|
√
µ(Q)〈w〉2Q (∆Qw−1)2 · inf

x∈Q
MD

w f(x)MD
w−1g(x).

In the last line we used the fact that for all x ∈ Q, 〈|f |〉wQ ≤ MD
w f(w). We now claim that

{µ(Q)〈w〉2Q (∆Qw
−1)

2}Q∈D is a Carleson sequence with intensity [w]2A2
, with C a positive

constant. The proof of this can be found in [37]

By Lemma 8.1.5, {|bQ|2} is also a Carleson sequence with intensity 2D||b||2BMO. Thus,

we have that
{
|b|
√
µ(Q)〈w〉2Q (∆Qw−1)2

}
Q∈D

is a Carleson sequence wiuth respect to µ with

intensity C||b||BMOd [w]A2 . Therefore, by the weighted Carleson Lemma

Σ2 ≤ ||b||BMOd [w]A2

∫
X

(MD
w f)(x)(MD

w−1g)(x) dµ(x)
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implying that∫
X

(MD
w f)(x)(MD

w−1g)(x) dµ(x) =

∫
X

(MD
w f)(x)(MD

w−1g)(x)

√
w(x)

w(x)
dµ(x)

≤ ||MD
w f ||L2(w)||MD

w g||L2(w−1)

where in the last line we used Cauchy-Schwarz. Therefore,

Σ2 ≤ [w]A2 ||b||BMOd ||MD
w || · ||MD

w−1 || · ||f ||L2(w)||g||L2(w−1)

The estimates for Σ1 and Σ2 together complete the proof.

8.5 Bound on the t-Haar Multiplier

Here we will prove the L2 bound for the t-Haar Multiplier without complexity:

Theorem 8.5.1. Let X be an SHT with honest dyadic lattice D . Let t ∈ R and w be a

weight over X with w ∈ CD
2t and w2t ∈ AD

2 . Then the weighted t-Haar multiplier, T tw is

bounded from L2(X)→ L2(X), with

||T twf ||2 ≤ C[w]
1
2

CD
2t

[w2t]
1
2

AD
2
||f ||2

for all f ∈ L2(X).

Here the Haar functions used in T tw are those associated with D .

Proof. By duality, it is enough to show that

|〈T twf, g〉| ≤ C[w]
1
2

Cd2t
[w2t]

1
2

Ad2
||f ||2||g||2

for f, g ∈ L2(X). Bound the inner product on the left-hand side

|〈T twf, g〉| ≤
∑
Q∈D

|〈f, hQ〉||〈gwt, hQ〉|
〈w〉tQ

. (8.16)
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Decompose hQ as in (8.11) with respect to w2t instead of w, hQ = αw
2t

Q hw
2t

Q +βw
2t

Q 1Q/
√
µ(Q).

Here |αw2t

Q | ≤
√
〈w2t〉Q and |βw2t

Q | ≤ |∆Qw
2t|

〈w2t〉Q
. We now can write (8.16) as two sums:

|〈T twf, g〉| ≤ Σ1 + Σ2 where

Σ1 :=
∑
Q∈D

√
〈w2t〉Q
〈w〉tQ

|〈f, hQ〉| · |〈gwt, hw
2t

Q 〉| (8.17)

Σ2 :=
∑
Q∈D

√
µ(Q)

〈w〉tQ
· ∆Q(w2t)

〈w2t〉Q
|〈f, hQ〉| · 〈|g|wt〉Q (8.18)

(Bounding Σ1) We first observe that√
〈w2t〉Q
〈w〉tQ

≤ [w]
1
2
C2t
.

Seccond, that

|〈gwt, hw2t

Q 〉| = |〈g, w−thw
2t

Q 〉w2t|.

We use these facts and apply Cauchy-Schwarz to (8.17) to get that

Σ1 ≤ [w]
1
2
C2t

(∑
Q∈D

|〈f, hQ〉|
) 1

2
(∑
Q∈D

|〈gw−1, hw
2t

Q 〉w2t |
) 1

2

= [w]
1
2
C2t
||f ||L2||gw−t||L2(w2t) = [w]

1
2
C2t
||f ||L2||g||L2 .

(Bounding Σ2)

To bound Σ2 we start by seeing that

Σ2 ≤
∑
Q∈D

〈w〉−tQ
[
µ(Q)

(
∆Q(w2t)2

〈w2t〉Q
+

∆Q(w−2t)2

〈w−2t〉Q

)] 1
2

· |〈f, hQ〉| ·
〈|gw−t|w2t〉Q
〈w2t〉Q

=
∑
Q∈D

〈w〉−t
[
µ(Q)〈w2t〉Q〈w−2t〉Q

(
∆Q(w2t)2

〈w2t〉2Q
+

∆Q(w−2t)2

〈w−2t〉2Q

)] 1
2

· |〈f, hQ〉|

· 〈|gw
−t|w2t〉Q
〈w2t〉Q

〈w2t〉
1
2
Q〈w−2t〉−

1
2

Q .
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Set λQ := µ(Q)〈w2t〉Q〈w−2t〉Q
(

∆Q(w2t)2

〈w2t〉2Q
+

∆Q(w−2t)2

〈w−2t〉2Q

)
and F (x) := MD

w2t(|g|w−t)(x)

where Md
w2t denotes the weighted dyadic maximal function. Using the fact that for all

Q ∈ D , infx∈Q F (x) ≥ 〈|gw−t|w2t〉Q/〈w2t〉Q gives

Σ2 ≤
∑
Q∈D

〈w〉−tQ λ
1
2
Q · |〈f, hQ〉| · inf

x∈Q
F (x) · 〈w2t〉

1
2
Q〈w−2t〉−

1
2

Q .

We now apply Cauchy-Schwarz inequality

Σ2 ≤
(∑
Q∈D

〈w〉−2t
Q 〈w2t〉Q

λQ
〈w−2t〉Q

inf
x∈Q

F (x)

) 1
2
(∑
Q∈D

|〈f, hQ〉|2
) 1

2

‖eq[w]CD
w2t

(∑
Q∈D

λQ
〈w−2t〉Q

inf
x∈Q

F (x)

) 1
2

||f ||L2(dµ).

It is known that λQ is a Carleson sequence with intensity C[w2t]AD
2

. We apply the Little

Lemma to get that λQ/〈w−2t〉Q is a w−2t-Carleson sequence with intensity 4C[w2t]AD
2

. By

the weighted Carleson Lemma,

Σ2 ≤ 2C[w]
1
2

CDw2t
[w2t]

1
2

AD
2

(∫
X

F (x) · w2t(x) dµ(x)

) 1
2

· ||f ||L2(dµ)

≤ 2C[w]
1
2

CD
w2t

[w2t]
1
2

AD
2
· ||gw−t||L2(w2tdµ) · ||f ||L2(dµ)

=≤ 2C[w]
1
2

CD
w2t

[w2t]
1
2

AD
2
· ||g||L2(dµ) · ||f ||L2(dµ).

Here the constants on each line could be changing, but are independent of f , g, w and t.

The given bounds for Σ1 and Σ2 together prove the desired theorem.
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Other Proofs

Here we will give a few extra proofs for things which were claimed in the main text but

which did not need to be proved there.

A.1 Proof of Theorem 2.5.2

In this section we give the proof that atoms are isolated points of SHTs and that there can

only be countably many atoms. This is a reproduction of the proof given in [33]. See that

paper for the details.

Proof that Atoms are Isolated. Let X be an SHT with an atom a, that is, µ({a}) > 0.

Suppose for the sake of a contradiction that a is not an isolated point, that is, for every

r > 0 the ρ-ball B(a, r) contains a point x such that x 6= a. It is possible to construct a

sequence of points {xn} and associeated radaii {rn} such that

• B(xn, rn) ∩B(xm, rm) = ∅ for n 6= m

• a ∈ B(xn, Rrn) for all n
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where R > 0 is a fixed geometric constant. The details of this construction are in [33]. These

two facts together give that for some geometric constant C,

µ(B(a, 2κ)) ≥
∞∑
n=1

µ(B(xn, rn)) ≥ C
∞∑
n=1

µ(B(xn, Rrn)) ≥ C
∞∑
n=1

µ({a}) =∞.

This is a contradiction since no ball can have infinite measure.

Proof of Countable Many Atoms. LetX be an SHT and denote byA the set of all atoms. Fix

any point x0 ∈ X. For every natural number n define the the set An := B(x0, n)∩A. Clearly

µ(An) < µ(B(x0, n)) ≤ ∞. This implies that for each n, An is no more than countable,

since an uncountable collection of atoms would have infinite measure. But A = ∪∞n=1An, so

A is also countable.

A.2 Alternate Proof for Theorem 3.4.6

Here we present a proof by a different route for The Bounded Subset Theorem from Chapter

3.

Proof. Let S ⊆ X be a bounded set, and fix r0 greater than the diameter of S1. We will

prove the contrapositive of what we want to show. Suppose that there is no such cube Q

which completely contains S. Then for all generations Dk, we can find xk, yk ∈ S such that

xk ∈ Qk
α and yk ∈ Qk

β with α 6= β. We claim that in fact, there is a pair x, y ∈ S which will

satisfy this for all generations. We prove this claim via induction.

First, observe that for a fixed generation Dk, if x and y satisfy that their containing cubes

are not equal, then it follows that this must also be so for their respective cubes in the Dk+1

generation. This is because the cubes in the (k + 1)th generation are children of the cubes

in the kth generation and thus could not possibly be equal to each other.

1By diameter we mean the standard definition for metric spaces: the supremum of ρ(x, y) for
all x, y ∈ S.
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Second, for any generation Dk there are finitely many cubes belonging to Dk which cover

S. This number of required cubes is dependent on κ0, r0, k and γ0 the geometric doubling

constant for ρ. Let us say that Nk is the number of cubes from Dk required to cover S.

Then Nk−1 ≤ Nk for all k, since some of the cubes from the kth generation may be siblings.

Because Nk must always be positive (in fact we have supposed that Nk ≥ 2), by the monotone

convergence theorem, Nk → N as k → −∞. Moreover, {Nk}∞k=−∞ is actually a sequence

of integers, implying that eventually it is a constant sequence as k → −∞. In other words,

there is a k0 such that if k ≤ k0 then the same number of cubes from Dk0 and Dk are

required to cover S. Because of this, if k < k0 and Q and Q′ are two distinct cubes in the

kth generation which are part of the cover of S then they cannot be siblings, for if they were,

Nk−1 < N . This implies that Q̂ and Q̂′ must therefore be distinct.

Setting x := xk0 and y := yk0 and inducting in both directions on k proves the claim.

With x and y found, we can see that Quad(x) 6= Quad(y) since their containing cubes

are distinct at all generations. This means that S is not completely contained in a single

quadrant, which is what we wished to show.

A.3 Generalized Doubling Lemmas

For interested readers we give the proof of Corollary 2.1.11. These are not new lemmas, but

as far as we know they have not been formally proven until now.

Lemma A.3.1 (Doubling for General Radii). Let (X, ρ, µ) be a space of homogeneous type.

If x ∈ X and R > r > 0 then

µ(B(x,R)) ≤ κ
log2dR/re
1 · µ(B(x, r)), (A.1)
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Proof. By the doubling property,

µ((B(x,R)) ≤ κ1 · µ(B(x,R/2))

≤ κ2
1 · µ(B(x,R/4))

≤ · · ·

≤ κn1 · µ(B(x,R · 2−n)) (A.2)

Choose n so that R · 2−n < r.

We next give the proof of the existence of the constant Dbl(D), the dyadic doubling

constant.

Proof of Corollary 3.2.8. Let Q ∈ Dk be a cube, with parent cube Q̂ ∈ Dk−1 Then there

exists balls B1 := B(z1, r0δ
k) ⊆ Q and B2 = B(z2, R0δ

k−1) ⊇ Q̂. Therefore,

µ(Q̂) ≤ µ(B2)

≤ κ1 log2

⌈
κ0(R0δ

k−1 + r0δ
k)

r0δk

⌉
· µ(B(z1, R0δ

k−1)) (A.3)

≤ κ1 log2

⌈
κ0(R0δ

k−1 + r0δ
k)

r0δk

⌉
· κlog2(R0δk−1/(r0δk))

1 · µ(B1) (A.4)

≤ κ1 log2

⌈
κ0(R0δ

k−1 + r0δ
k)

r0δk

⌉
· κlog2(R0δk−1/(r0δk))

1 · µ(Q)

= κ
log2dR0/(δr0)e+1
1 · log2

(
κ0(R0 + r0δ)

r0δ

⌉
· µ(Q) (A.5)

where (A.3) follows from the Distant Balls Lemma, and (A.4) follows from doubling for

general radii. The constant is a geometric constant since it is dependent entirely on other

geometric constants.

146



Appendix A. Other Proofs

A.4 Proof of Lemma 7.4.3

In the proof of the two weight theorem which closed Chapter 7, we claimed that the Bellman

function B’s domain Ω was weakly convex. Moreover, we claimed that the family of matrices

{At}t∈(0,1/2] was equal to

At :=

 t/4 0

0 t/4


Here, we present the proof of that claim.

Let Ω := {(x, y) ∈ R2 : x > 0, y > 0, xy < 1}. Let x,x+,x− ∈ Ω such that

x = α+x+ + α−x−

1 = α+ + α−

ε < α± < 1− ε

0 < ε < 1/2

so that x, x+, and x− are collinear. Finally, choose A > 1 so that the enlarged domain

ΩA := {(x, y) ∈ R2 : x > 0, y > 0, xy < A} (A.6)

contains the entire line segment x+x−. (See Figure ).

We observe that the desired result is equivalent to A being no larger than 4/ε.

We first find an expression for A in terms of x and x±. Let x = (x◦, y◦) and x± :=

(x±, y±). The line passing through them has the equation

y = y′ +m(x− x′) (A.7)

m :=
y+ − y−
x+ − x− =

y◦ − y−
x◦ − x− =

y+ − y◦
x+ − x◦ (A.8)

where (x′, y′) is any point on the line (we already have three such points) and we are free to

use whatever expression for m is most convenient for us.
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We wish find the smallest A such that sup(x,y)∈Ω xy < A. Consider the curve

y <
A

x
. (A.9)

This curve has a positive second derivative at all points. Any line which passes though the

curve twice, necessarily lies above the curve on some interval. In the situation at hand, this

means that if there exists x,x+,x− ∈ Ω so that the line (A.7) passes through the curve

(A.9), twice, then the choice of A was too small. Moreover, if the curve never touches any

such line, then A was too large. We therefore need to find A such that there exist some lines

like (A.7) which are tangent to (A.9), but no lines which interesect it twice.

Setting (A.7) equal to (A.9) gives that

mx2 + (y′ −mx′)x− A = 0 (A.10)

We want this quadratic equation to have exactly one solution, so the discriminant must be

zero:

(y′ −mx′)2 + 4mA = 0 (A.11)

=⇒ A = sup
x,x+,x−

−4m

(y′ −mx′)2
. (A.12)

At this point we take the time to make an observation. The line segment x+x− can at

most intersect the curve xy = 1 twice. This means that if the line segment exits Ω, then

one of the points x± is separated from x while the other is not. Without loss of generality

we can make some assumptions. First, due to the symmetry of the domain, we can assume

that x lies to the left of the line x = 1. Second, we can assume that the point which is

separated from x is also the point which is a further distance away from it. This is not

strictly necessary but cases where this is not true will not be able to be maximizers. Third,

we will assume that α+ > α−. With these restrictions in mind, it is clear that m the slope

of the line (A.7), must be negative, implying that

x+ < x◦ < x− (A.13)

y+ > y◦ > y−. (A.14)
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x+

x

x−

Ω ΩA

Figure A.1: The domain Ω is shown in red. The three points x, x+ and x− are collinear, but
the line segment which connects them goes outside Ω. The enlarged domain ΩA (the union
of the red and blue regions) completely contains the entire line segment.

We now claim the following:

Claim A.4.1. Fix α+ and α−. Suppose that we found a maximizer for A. Then the following

must be true:

• x+ lies on the y-axis.

• x and x− both lie on the curve xy = 1

Claim A.4.2. A is maximized when α+ = 1− ε and α− = ε.
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To see why Claim A.4.1 is true, notice that if we have a supposed maximizer which does

not satisfy the claimed constraints then we could increase A by slightly perturbing two of

the points. The exact way in which this perturbation occurs requires breaking into a large

number of cases, but the result is always that we can increase A by moving a point so that

it meets the constraint.

The argument for Claim A.4.2 is similar. Notice that we can always increase A by forcing

the constants α± to be nearer to 1− ε and ε. This is because it allows us to slide x+ and x

further away from the x-axis and x− further away from the y-axis, which necessarily increases

A.

We now find a bound for A in terms of ε.

Lemma A.4.3. The constant A < 4/ε.

Proof. Recall that we have several equivalent expressions for A. We will look at

A =
−4m

(y◦ −mx◦)2
, m =

y◦ − y−
x◦ − x− (A.15)

By Claims A.4.1 and A.4.2, we can write that

x+ = (0, y+), x = (x◦, 1/x◦), and x− = (x−, 1/x−). (A.16)

Furthermore,

x◦ = (1− ε)x+ + εx− = (1− ε) · 0 + εx− = εx−. (A.17)

Thus,

m =
1
x◦
− 1

x−

x◦ − x− =
−1

x◦x−
.

Plugging into the expression for A, we have that

A =
4

x◦x−(y◦ + (x−)−1)2
=

4

x◦x−

(
1

x◦
+

1

x−

)−2

=
4

x◦x−

(
x◦x−

x◦ + x−

)2

=
4x◦x−

(x◦ + x−)2
.
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Using that x◦ = εx−, we now see that

A =
4ε(x−)2

((ε+ 1)x−)2
=

4ε

(ε+ 1)2
<

4

ε
.
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weights, St. Petersburg Math. J. 15 no. 1 (2004), 49–79.

[48] A. Volberg and Konyagin S., On measures with the doubling condition, Mathematics of
the USSR-Izvestiya 30 no. 3 (1988), 629–638.

[49] A. Volberg and P. Zorin-Kranich, Sparse domination on non-homogeneous spaces with
an application to Ap weights, 2017.

155


	Weighted Inequalities for Dyadic Operators Over Spaces of Homogeneous Type
	Recommended Citation

	tmp.1513800186.pdf.aZbGp

