
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Nuclear Engineering ETDs Engineering ETDs 

Summer 8-1-2023 

A Comparison of Fixed Versus Moving Eulerian Meshes for 1-D A Comparison of Fixed Versus Moving Eulerian Meshes for 1-D 

Radiative Shock Problems Radiative Shock Problems 

Dylan Weatherred 

Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds 

 Part of the Nuclear Engineering Commons 

Recommended Citation Recommended Citation 
Weatherred, Dylan. "A Comparison of Fixed Versus Moving Eulerian Meshes for 1-D Radiative Shock 
Problems." (2023). https://digitalrepository.unm.edu/ne_etds/117 

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has 
been accepted for inclusion in Nuclear Engineering ETDs by an authorized administrator of UNM Digital Repository. 
For more information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/ne_etds
https://digitalrepository.unm.edu/eng_etds
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/314?utm_source=digitalrepository.unm.edu%2Fne_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/117?utm_source=digitalrepository.unm.edu%2Fne_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Dylan Weatherred

Candidate

Nuclear Engineering

Department

This thesis is approved, and it is acceptable in quality 
and form for publication:

Approved by the Thesis Committee:

i

Cassiano Endres De Oliveira

Eric Lang

HyeongKae Park



A Comparison of Fixed Versus Moving Eulerian Meshes for
1-D Radiative Shock Problems

BY

Dylan Weatherred
B.S., Nuclear Engineering, University of New Mexico, 2021

THESIS

Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

Nuclear Engineering
The University of New Mexico
Albuquerque, New Mexico

August, 2023

ii



DEDICATION

I would first like to thank my parents for their constant support. It is their love and
support that kept me motivated. Thank you for always believing in me. I would also
like to thank my partner Alexandria. Thank you for always pushing me to be the best
that I can be. I can’t wait to see what the future holds for us.

iii



ACKNOWLEDGMENTS

I would like to thank my mentor Dr. HyeongKae Park. Through all of my questions
and times where I was stuck you were always able to answer or point me in the right
direction. I appreciate your guidance and patients. I would also like to thank my re-
search advisor Professor Cassiano Endres De Oliveira. Thank you for always answering
my questions, providing direction when I was confused, and all of the books and re-
sources you provided. Your support was instrumental in my success.

iv



A Comparison of Fixed Versus Moving Eulerian Meshes for
1-D Radiative Shock Problems

by

Dylan Weatherred

B.S., Nuclear Engineering, University of New Mexico, 2021

M.S., Nuclear Engineering, University of New Mexico, 2023

Abstract

Testing codes used to solve the radiation-hydrodynamics equations requires the use of

radiative shock problems. These problems contain stiff shocks and test the coupling of

the material motion and the energy exchange between the radiation and material.

However, these problems are difficult to solve due to large differences in time scale

between radiation and material equations, resolving shocks, and modeling radiation

and material interactions. This thesis will look to solve radiative shock problems in

1-D using the Eulerian formulation on fixed and moving meshes. The moving mesh

method proposed takes advantage of the more simple Eulerian formulation of the

radiation hydrodynamics equations and the ability to handle large deformations, while

also benefiting from the Lagrangian frame regarding shock resolution and material

interfaces. The methods are compared using a Sod shock tube problem to test the

hydrodynamics, Marshak wave to test the radiative solver, and 3 radiative shock

problems. The radiative shock problems will be two stationary shocks with Mach

numbers of 1.2 and 3.0, and one moving shock with a Mach number of 1.2.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 High Energy Density Physics . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inertial Confinement Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Radiative Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Radiation Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Fixed Versus Moving Eulerian Meshes . . . . . . . . . . . . . . . . . . . 9

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Fixed Mesh Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Moving Mesh Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Fixed Mesh Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Moving Mesh Eulerian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Second Order Hydrodynamics Solutions . . . . . . . . . . . . . . . . . . . 26

3.3.1 Predictor Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 MUSCL Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Radiation Energy Density and Material Temperature Solver . . . . . . . 29

vi



3.4.1 Material Temperature . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Radiation Energy Density . . . . . . . . . . . . . . . . . . . . . . 30

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Sod Shock Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Marshak Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Fixed Radiative Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Moving Radiative Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Diffusion Approximation on Non-Uniform Grids . . . . . . . . . . . . 76

B Fixed Mesh Eulerian Code . . . . . . . . . . . . . . . . . . . . . . . . . 78

C Moving Mesh Eulerian Code . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



1 Introduction

1.1 High Energy Density Physics

High-energy-density physics is a branch of physics that studies how matter behaves un-

der extreme temperatures and pressures. These pressures range from 1 Mbar to 1000

Gbar and temperatures in excess of 100 eV. Experimentally, scientists use high-power

lasers, particle accelerators, and other advanced experimental tools to create extremely

high temperatures and pressures. By understanding the behavior of materials and mat-

ter under these conditions, scientists are able to gain insights into the fundamental

physics of the universe. Applications of high-energy-density physics are wide-ranging

and include nuclear fusion, astrophysics, plasma physics, and materials science. High-

energy-density physics is a rapidly evolving field that has the potential to transform

the understanding of the universe and the ability to develop new technologies.

1.2 Inertial Confinement Fusion

For energy production, fusion is usually achieved by utilizing either magnetic or iner-

tial confinement. Magnetic confinement relies on magnets to control the shape of the

plasma in which fusion takes place. In inertial confinement, the plasma is controlled

by the inertial force of the collapsing fuel. The focus of this work will primarily be re-

lated to inertial confinement fusion. Inertial confinement fusion uses lasers to deposit

energy into the fuel targets in order of fusion to occur. This is done by two main meth-

ods which are referred to as direct or indirect drive. In direct drive ICF, the laser is set

directly incident on the fuel target. However, with this method, uniform heating of the

fuel target is difficult which constrains the beam energy and fuel capsule size. For ex-

ample, if a beam energy of 1 mJ is being used, the fuel capsule is limited to just 2mm

in diameter to ensure uniform heating. When using indirect drive, the fuel target is

placed inside a container called a hohlraum. The hohlraum lined with a heavy metal
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such as gold and the laser are then set incident on the lined wall of the hohlraum heat-

ing the heavy metals. Once heated, the heavy metals will emit x-rays which, in turn,

begin to heat the fuel capsule. However, this method is not without its disadvantages.

To heat the hohlraum to a high enough temperature to produce x-rays requires a sig-

nificant amount of energy. If the system is trying to be used for energy production, a

higher amount of input energy will make it harder to get to full break even and energy

production. Figure 1 shows a comparison of the indirect and direct drive methods.

Figure 1: Direct vs Indirect ICF target examples [1].

While the energy transfer mechanism differ between the two methods, the actual fusion

process is the same. Once enough energy has been deposited into the outer layer of

the fuel capsule it will explode. As a result of this explosion, shock waves will transfer

throughout the fuel compressing it. There needs to be enough compression such that

the electrostatic force, which keeps the atoms separated, can be overcome by the nu-

clear force. The energy required for fusion is known as the Coulomb Fusion Barrier. It

is directly related to the electrical charge of the nuclei being used. Due to its low elec-

trical charge, hydrogen is the easiest to fuse, so the fuel targets generally contain deu-

terium (H2) and tritium (H3) which fuse at a distance of just 1 Femtometer [2]. This

compression of the fuel from the resulting shock means it is critical to ensure that the
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capsule is being heated evenly from all sides. Any asymmetrical heating of the capsule

can lead to instabilities in the plasma such as the Rayleigh–Taylor instability [10].

Lawrence Livermore National Laboratory (LLNL) started some of the early research

into ICF in the late 1950’s. Starting with computer simulations, by the early 1960’s,

they were able to perform a full simulation using 1 mg of D-T fuel inside of a dense

shell [16]. However, this was before the invention of the laser so other driving mech-

anism had to be researched. These methods include pulsed power machines, charged

particle accelerators, plasma guns, and hypervelocity pellet guns. After the invention

of the laser, there was a significant growth in research surrounding ICF. Following its

invention, one of the earliest, large-scale ICF attempts was done at LLNL with the

Shiva laser. This was a 20-beam neodymium doped glass laser that started operation

in 1978. It was designed as a proof of concept to demonstrate compression of fusion

capsules to densities much greater than that of the liquid density of Hydrogen. While

fusion yields were low, Shiva was able to reach 100x the liquid density of Hydrogen [9].

As technology advances so does the research surrounding ICF. The National Ignition

Facility (NIF) at LLNL, with its 192 beam design, was able to achieve break-even igni-

tion on December 5, 2022 [5].

1.3 Hydrodynamics

Hydrodynamics is one of the many subdisciplines which is specifically interested in

studying fluid in motion. The founding principles of hydrodynamics are the conser-

vation equations, specifically, conservation of mass, conservation of linear momentum,

and conservation of energy. The conservation of mass states that the mass rate of change

inside a control volume V , must be equal to the net rate of fluid flow into that control

volume [3]. Simply put, this means that mass cannot be created or destroyed within

the control volume. This can be shown with the integral form of the continuity equa-
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tion as shown by equation 1.3.1

∂

∂t

˚

V

ρdV = −
‹

S

ρu · dS (1.3.1)

where S denotes the surface of control volume V , the fluid density is denoted by ρ, the

fluid velocity vector is u, and t represents time.

The conservation of momentum states that any net rate of change in the momentum

of the fluid is due to the net flow of momentum into the volume and external forces

acting on the fluid within the volume. As was done with the conservation of mass, the

conservation of momentum will be expressed using the integral form of the continuity

equation.

∂

∂t

˚

V

ρudV = −
‹

S

(ρu · dS)u−
‹

S

PdS +

˚

V

ρfbodydV + Fsurf (1.3.2)

The first term on the right-hand side of equation 1.3.2 represents the net rate of mo-

mentum convected into the volume, the second term force due to pressure of the sur-

face of the volume where P is the material pressure, the third term is the net accelera-

tion of the mass due to any body forces which is denoted by fbody, and the fourth term

accounts for any surface forces such as viscous forces which is denoted by Fsurf .

Lastly, the conservation of energy states that while energy can be converted within the

control volume, the total energy must remain the same. One example of this is viscous

dissipation in which the mechanical energy of the fluid is converted to heat. The inte-

gral form of the conservation of total energy can be seen in equation 1.3.3

˚

V

∂E

∂t
dV = −

‹

S

Eu · dS +

‹

S

Pu · dS −
‹

S

q · dS (1.3.3)

where E is the total energy and q is the rate at which some external source of energy is

added to the system, generally through heating the surface S.
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One way to numerically model hydrodynamics through the use of the Eulerian form

of the conservation equations also known as the conservation form. These equations,

named after Leonhard Euler, are a set of quasilinear partial differential equations which

govern adiabatic and inviscid flow. They are related to the Navier-Stokes equations

with zero viscosity and thermal conductivity. Historically, the conservation of mass and

momentum equations were derived by Euler, but the full set of balance equations, in-

cluding conservation of energy, are often credited to Euler in literature. In conservation

form, the Euler equations can be expressed as follows

∂U

∂t
+∇ · F = 0 (1.3.4)

where

U =


ρ

ρu

ρE

 & F =


ρu

ρuu+ P

ρEu+ Pu

 (1.3.5)

1.4 Radiative Transport

Radiative transport is the study of the energy transfer of electromagnetic radiation as

it propagates through a medium. As radiation propagates through a material, absorp-

tion, scattering, and emission processes will affect the radiation flux, its energy, and its

direction of travel. This is expressed mathematically using the radiative transfer equa-

tion, which shows as a beam of radiation travels, it looses energy due to absorption,

gains energy from emission, and redistributes energy via scattering [6]. From the ra-

diative transport equation, there are a number of methods that can be used to numeri-

cally solve the equation. The fundamental quantity of radiative transport is the specific

intensity which is denoted as Iν . The specific intensity is a function of position r, time

t, direction Ω, and frequency ν and can be expressed as Iν(r, t,Ω, ν). The amount of

energy which is transported across a surface element dS, by radiation with frequencies
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(ν → ν ′), where ν ′ = ν + dν is given by equation 1.4.1.

dEν = Iν(r,Ω, t) cosθ dS dΩ∆ν∆t (1.4.1)

where θ is the angle between the the direction of travel Ω and the normal to the sur-

face of dS. The intensity uses power units, which is energy per unit time, but also

takes into account changes per solid angle and frequency bandwidth. In centimeter,

gram, and second (cgs) units, this is expressed as erg cm−2 s−1Hz−1 sr−1.

To derive the transport equation, it can be useful to start by looking at a bundle of ra-

diation. If the radiation does not interact with the matter it passes through, the bun-

dle of radiation with total energy Iν cosθ dS dΩ∆ν∆t will have the same total energy

at time t+∆t, occupy the same frequency bandwidth ∆ν, and the same solid angle dΩ

while being in a different position r. Since photons move at the speed of light, it can

shown that the intensity at time t+∆t equals the initial intensity of radiation packet.

Iν(r + Ωc∆t,Ω, t+∆t) = Iν(r,Ω, t) (1.4.2)

It is then possible to perform a Taylor expansion of the left hand side of the equation

about the point r and time t. After performing the expansion, any terms which are on

the order of ∆t2 or higher can be canceled out, the Iν(r, n, t) term can be subtracted

out, and then divide by c∆t. This gives the radiation transport equation, without any

sources or sinks, as shown in equation 1.4.3.

1

c

∂Iν
∂t

+ Ω · ∇Iν = 0 (1.4.3)

Now that the most simple form of the radiative transport equation has been defined,

it is now important to discuss the scattering, absorption, and emission processes which

affect the radiation as it moves through the material. It is often easiest to start by con-
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sidering the absorption term and then the emission term. To understand the absorp-

tion term, it can be useful to think of a beam of radiation which is set incident on a

slab with a thickness of L. As the radiation passes through the slab, some of the ra-

diation is attenuated. Figure 2 below roughly shows this by showing a decrease in the

intensity of the radiation after it has passed through the slab.

Figure 2: Example of radiation attenuation through a slab.

If none of the absorbed energy is replaced, the change in the radiation intensity can be

calculated using equation 1.4.4.

∆Iν = −σa,νc∆tIν (1.4.4)

In this equation, σa,ν is the absorption coefficient for photons with a frequency of ν,

and has units of inverse length. If this is applied to a thick slab L >> c∆t the radia-

tion intensity is calculated by equation 1.4.5.

Iν = I0νexp(−σa,νL) (1.4.5)

For slabs that are thin (L ≤ c∆t), there is a σa,νc∆t probability of interaction, and

a 1 − σa,νc∆t probability of no interaction with the slab. In this case, the change in

intensity is σa,νc∆tIν as defined above.

The emissivity of the radiation determines how much energy is deposited into the slab

7



as the radiation passes through it. It is a function of the slab thickness L, but does

not depend on the beam intensity similar to absorption. The change in the radiation

intensity due to emission using equation is given 1.4.6.

∆Iν = jνc∆t (1.4.6)

The emissivity or emission coefficient is represented using jν . However, unlike the ab-

sorption coefficient which has units of inverse length, the emission coefficient has units

of Iν per unit length which becomes energy per unit volume, per unit frequency band-

width, per solid angle, per time. If the absorption and emission terms are included in

equation 1.4.2, the Taylor expansion can be done again, canceling out terms with ∆t2

or higher, and divide out c∆t to get the next form of the radiative transport equation.

1

c

∂Iν
∂t

+ Ω · ∇Iν = jν − σa,νIν (1.4.7)

Now that the effects of absorption and emission on the transport equation have been

accounted for, the effect of scattering can now be included. For simplicity, it is as-

sumed isotropic and coherent scattering and resulting equation is:

1

c

∂Iν
∂t

+ Ω · ∇Iν = jν +
σs,ν

4π

ˆ
IνdΩ

′ − (σa,ν + σs,ν)Iν (1.4.8)

1.5 Radiation Hydrodynamics

To couple the hydrodynamics and radiative transport physics described above requires

the equations of radiation hydrodynamics. These equations describe the propagation

of thermal-radiation through the fluid, the hydrodynamics which describe the fluid

motion, the effect of the radiation on the hydrodynamics, and the momentum of the

fluid on the radiation. This work is specifically interested in thermal-radiation as this

is electromagnetic radiation of atomic origin rather than nuclear. The importance of

8



the thermal radiation on the problem is directly proportional to increasing tempera-

ture. This is due to the Planck distribution of the radiation energy density varying as

the temperature to the fourth power. For example, at room temperature, radiation ef-

fect can be ignored. However, at temperatures around a million degrees, the radiation

field can become comparable to or dominate the fluid energy and momentum densities

[17]. There are situations in which the radiation can be ignored even if the tempera-

ture suggests strong radiation effects should be present. One example is deep within

stars or other celestial bodies. In these regions, the mean free path of the photon is

negligible when compared with the size of the system. This is due to the distance the

fluid must travel in order for any change to occur being much larger than the distance

the radiation travels [6].

When proper coupling is required, solving the radiation hydrodynamics equations is

challenging for a number of reasons. The timescales required to solve the radiation and

hydrodynamics equations are separated by many orders of magnitude. This can lead to

instability when solving the radiation equations and often requires the radiation terms

to be implicitly solved for. Another challenge when solving the radiation hydrodynam-

ics equations is properly resolving shocks. This often requires high order schemes which

have been extensively explored for the Euler equations and radiative transport/diffu-

sion equations. However, coupling these schemes together presents its own challenges.

Lastly, handling material interfaces for multi-material problems is very important due

to the interaction of the radiation with the material.

1.6 Fixed Versus Moving Eulerian Meshes

When formulating the equations for radiation hydrodynamics there are two traditional

reference frames which are used: the Eulerian frame and the Lagrangian frame. In the

Eulerian frame, a static mesh is placed over the problem domain. The time derivative

is then taken in a fixed point in inertial space. The formulation in the Eulerian frame

9



is somewhat more simple; however, it does require a flux term for the conserved values

across the fixed cell boundaries. One of the benefits to the Eulerian frame is its abil-

ity to handle large deformations without the risk of mesh tangling. However, it can

struggle to resolve shocks, especially when using first order methods. In the Lagrangian

frame, rather than placing a fixed mesh over the problem domain, the mesh moves and

deforms with the fluid. This allows for better shock resolution and the ability to ad-

equately handle material interfaces. However, the formulation requires slightly more

effort and large deformations or complex fluid flow can cause mesh tangling [6].

This work proposes a different frame to the Eulerian and Lagrangian frames which will

be referred to as moving mesh Eulerian. The moving mesh Eulerian frame utilizes the

more simple Eulerian formulation of the radiation hydrodynamics equations, while uti-

lizing the moving mesh from the Lagrangian frame. However, unlike the Lagrangian

frame where the mesh moves at the same velocity of the fluid, the mesh velocity is ar-

bitrary in the moving mesh Eulerian frame. The arbitrary mesh speed can allow better

shock resolution, prevent mesh tangling, and handle large deformations in the material.

A simple example of how the fixed and moving meshes work can be seen in Figure 3

below. This figure shows a block of fluid which is initially stationary in the grid. Some

arbitrary fluid flow is applied moving from the left to the right. In the fixed mesh case,

it is shown that the flow causes the fluid to move within the grid but the grid itself

does not change. However, in the moving mesh case, as the fluid moves within the

mesh, the mesh moves as well as some function of the fluid velocity.

10



Figure 3: Example of fixed versus moving Eulerian meshes. The top shows the fluid
and mesh at t = 0, and the bottom shows the fluid and mesh at some final time t = tf .

Some work has been done with radiation hydrodynamics on moving meshes by Kan-

nan et al. [12], Springel [20], and Chang et al. [7]. However, these works are primarily

focused on astrophysics rather than inertial confinement fusion. In astrophysics, the

size and timescale of the problems are significantly larger. This can reduce some of

the difficulty and computational cost of modeling the radiative transport as it can al-

low for larger time steps and for the use of explicit methods. These works also use a

Voronoi tessellation to define their meshes. While this allows them to deal with mesh

tangling, the setup cost compared to an Eulerian mesh is large. There are also complex

physics that occur in astrophysics that do not need to account for in ICF. Some exam-

ples of these include infrared dust–gas coupling, self-gravity and, in some cases, the use

of magnetohydrodynamics equations.

11



2 Methodology

2.1 Fixed Mesh Eulerian

In the Eulerian frame on a fixed mesh, the following four equations are what need to

be solved.

∂ρ

∂t
= −∇ · (ρu) (2.1.1)

∂uρ

∂t
= −∇ · (ρu2 + P ) (2.1.2)

∂E

∂t
= ∇ ·D∇Er −∇ · [(E + P )u] (2.1.3)

∂Er

∂t
= ∇ ·D∇ · Er + σacT 4 − σcEr −∇(Eru)− pr∇ · u (2.1.4)

In these equations, ρ, u, E, and P are the density, velocity, total energy, and total pres-

sure. The total energy can be found by E = ρ(ei + u2/2) + Er where ei denotes the

specific internal energy and the total pressure can be found by P = ph + pr. Hydro-

dynamics properties are denotes with the subscript h and radiation properties with

subscript r. The hydro specific total energy is found by Eh = ei + u2/2. This allows

the total energy to be expressed as E = ρEh + Er. Substituting this expression into

equation 2.1.3 and subtracting equation 2.1.4 yields the following total hydro energy

equation.

∂ρEh

∂t
= σcEr − σacT 4 −∇ · [(ρEh + P )u] + pr∇ · u (2.1.5)

2.2 Moving Mesh Eulerian

Although the moving mesh method utilizes the Eulerian form of the radiation-hydrodynamics

equations, the equations need to be transformed to account for a non-uniform mesh.

To do this, the rate of change integrals of a function over a moving volume that is oc-

cupied by a fluid must be considered. First, consider a “material volume” that perma-
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nently contains the same particles Vt, that is bound by a smooth surface St, and moves

with a velocity of u(r, t). The material time derivative of the integral of a scalar func-

tion f(r, t), over the time-varying material volume Vt, is expressed by Reynolds trans-

port theorem.

d

dt

ˆ
Vt

f(r, t)dV =

ˆ
Vc≡Vt

∂f(r, t)

∂t
dV +

ˆ
Sc≡St

f(r, t)u · ndS (2.2.1)

This theorem states that the total rate of change in a function f , is due to the local

rate of change in the control volume Vc, and the flux in/out of the surface Sc. For ex-

ample, the conservation of mass which states that the total rate of change is equal to

zero. e.g.,

d

dt

ˆ
Vt

ρ(r, t)dV = 0 (2.2.2)

which leads to the Eulerian description:

ˆ
Vc≡Vt

∂ρ(r, t)

∂t
dV +

ˆ
Sc≡St

ρ(r, t)u · ndS = 0 (2.2.3)

ˆ
Vc≡Vt

(
∂ρ(r, t)

∂t
+∇ · ρ(r, t)u

)
dV = 0 (2.2.4)

To do this for an Arbitrary Lagrangian-Eulerian (ALE) reference frame (e.g. moving

mesh Eulerian), a new volume is considered which has an arbitrary volume Va, moves

with velocity w(r, t), and is bound by the surface Sa. It is important to note that the

mesh speed w(r, t) is measured with respect to the fixed Eulerian reference frame. The

Reynolds transport theorem for this new volume now states:

∂

∂t

ˆ
Va

f(r, t)dV =

ˆ
Vc≡Va

∂f(r, t)

∂t
dV +

ˆ
Sc≡Sa

f(r, t)w · ndS (2.2.5)

The equation above states that at some time t, the arbitrary volume Va coincides with

the control volume Vc. The rate of change of f in the arbitrary volume is the same as
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the rate of change in the Eulerian frame, and due to the flux in/out of f due to the

mesh velocity w. Substituting ρ for f in equation 2.2.5, and using equation 2.2.3, gives

the integral equation for conservation of mass on a moving mesh.

∂

∂t

ˆ
Va

ρ(r, t)dV = −
ˆ
Sa

ρ(r, t)u · ndS +

ˆ
Sa

ρ(r, t)w · ndS (2.2.6)

∂

∂t

ˆ
Va

ρ(r, t)dV +

ˆ
Sa

ρ(r, t)(u− w) · ndS = 0 (2.2.7)

Similarly, this process can be used to find the conservation of momentum and energy

equation on a moving mesh. In the Eulerian frame, the conservation of momentum is

written as ˆ
Vc

∂ρu

∂t
+

ˆ
Sc

ρu⊗ u · ndS +

ˆ
Sc

P ndS = 0 (2.2.8)

Applying Reynolds transport theorem where f = ρu:

∂

∂t

ˆ
Va

ρudV =

ˆ
Vc≡Va

∂ρu

∂t
dV +

ˆ
Sc≡Sa

ρu⊗ w · ndS (2.2.9)

Lastly, substituting 2.2.9 into 2.2.8 gives:

∂

∂t

ˆ
Va

ρudV = −
ˆ
Sa

ρu⊗ u · ndS −
ˆ
Sa

P ndS +

ˆ
Sa

ρu⊗ w · ndS (2.2.10)

∂

∂t

ˆ
Va

ρudV +

ˆ
Sa

ρu⊗ (u− w) · ndS +

ˆ
Sa

P ndS = 0 (2.2.11)

The conservation of energy in the Eulerian frame can be expressed as:

ˆ
Vc

∂ρE

∂t
dV +

ˆ
Sc

(ρE + p)u · ndS = 0 (2.2.12)

Applying the Reynolds transport theorem

∂

∂t

ˆ
Va

ρEdV =

ˆ
Vc≡Va

∂ρE

∂t
dV +

ˆ
sc≡Sa

ρEw · ndS (2.2.13)
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Substituting the Eulerian conservation law into the Reynolds transport theorem for the

conservation of Energy gives:

∂

∂t

ˆ
Va

ρEdV = −
ˆ
Sa

(ρE + P )u · ndS +

ˆ
Sa

ρEw · ndS (2.2.14)

∂

∂t

ˆ
Va

ρEdV +

ˆ
Sa

[ρE(u− w) + Pu] · ndS = 0 (2.2.15)

After applying divergence theorem to the surface integrals and performing the integra-

tion, the general form of the conservation equation on a moving mesh can be expressed

in the following form.

1

V

∂V U

∂t
= −∂F

∂x
(2.2.16)

where

U =


ρ

ρu

ρE

 & F =


ρ(u− w)

ρu(u− w) + P

ρE(u− w) + Pu

 (2.2.17)

After performing the operator splitting procedure that will be explained later, this

form can be applied to the hydrodynamics equations to solve for the conserved values

on a moving mesh. The non-uniformity of the mesh for the radiative transport is ac-

counted for in the calculation of the radiative flux. A description of this can be found

in appendix A.

2.3 The Diffusion Approximation

In section 1.4 the radiative transfer equations in differential form was shown to be:

1

c

∂Iν
∂t

+ Ω · ∇Iν = jν +
σs,ν

4π

ˆ
IνdΩ

′ − (σa,ν + σs,ν)Iν (2.3.1)

Methods of solving the radiative transfer equations are covered extensively in litera-

ture. Castor [6] covers many methods in a way that is easily understood, and Mihalas

15



& Mihalas [15] provide detailed descriptions of these methods as well. There are two

general approaches to numerically solving these equations: probabilistic methods and

deterministic methods. Probabilistic methods, also known as Monte Carlo methods,

use random sampling to determine the values of intensity, temperature, etc at some

time t. To do this, each photon is “walked” through the problem using random num-

bers at each step to determine events take place. At t = 0 particles are “born” at a

random position and given a random direction of travel. Given the particles position

and direction of travel, it is then determined if the particles’ first interaction will be

a collision with another particle, the particle will cross the boundary of its region in

space, or if it will loose all of its energy along its direction of travel within the time

step ∆t. If the particle will collide, it is then determined if the particle is absorbed, de-

positing its energy into the material, or scattered traveling in a different direction de-

termined by a random number. At the end of the time step, the results are tallied and

the intensity, temperature, radiation energy density, etc. are determined. Monte Carlo

solutions have the ability to generate accurate results; however, this ability is depen-

dent on the number of particles N that are used. As the number of particles increases,

the error in the solution decreases by a factor of 1/
√
N , but the computational expense

increases [6].

Deterministic methods directly solve the equations given a set of parameters and ini-

tial values for the problem. A few of the most common methods include the discrete

ordinates method also known as SN methods, the method of characteristics, and the

finite element method. The discrete ordinates method is among the most widely used

methods for solving the radiative transport equation. It start by discretizing the ra-

diative transport equation in both space and direction by approximating the intensity

of the radiation at discrete points and directions in space and angle. For each angle,

the RTE is solved separately. This method is highly accurate, especially when used

for problems that are highly anisotropic. However, the computational cost can become
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high in problems that are 3 dimensional or have many discrete directions. Like the dis-

crete ordinates method, the method of characteristics follows the path of individual

packets of radiation or rays. As these packets travel through the medium, the RTE

is transformed into sets of ordinary differential equations along the the characteris-

tic curve drawn by the particles. The ODEs are then solved along this characteristic

curve giving the solution to the RTE. Characteristic methods perform well with prob-

lems that have complex geometries or anisotropic scattering. However, they struggle

with problems that have strong absorption, where the radiation field is quickly atten-

uated and individual rays or packets may not be representative of the overall radiative

behavior. Lastly, there is the finite element method. As the name suggests, the finite

element method works by dividing the medium into some number of finite elements.

Inside each of these elements, the radiative intensity is approximated using a piecewise

polynomial function. Finite element methods are able to handle problems with multi-

ple scattering, anisotropic scattering, and absorption, as well as problems with complex

geometries. However, it is key that the proper mesh and polynomial order are used to

achieve an accurate solution. While finer meshes and higher order polynomial functions

can lead to more accurate solutions, they will also be more expensive computationally.

To avoid solving the full transport equation, one of the most common approximations

used is the diffusion approximation. The diffusion approximation assumes that the

scattering of light is highly isotropic and that the mean free path of photons is much

smaller than the characteristic length scale of the medium. The diffusion approxima-

tion is useful in situations where the medium is optically thick, meaning that the ab-

sorption coefficient is much larger than the scattering coefficient. In such cases, the ra-

diative intensity varies slowly with position, and the diffusion equation provides a good

approximation to the true transport equation. To derive the diffusion equation, the

first step is to integrate the radiative transport equation over all angles and frequen-
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cies.

∂Er

∂t
+∇ · Fr + σacEr =

ˆ
ν

ˆ
4π

jνdΩdν (2.3.2)

In the equation above, Er is the radiation energy density. It is related to the specific

intensity when the specific intensity is integrated over all angles and frequencies. The

Fr term is the radiative flux which is related to the Ω · ∇Iν term when integrated over

all angles and frequencies. The transport of radiation can be described by Fick’s law,

which is a well-known equation in physics that describes the diffusion of particles from

areas of high concentrations to areas of low concentration. In the context of radiative

transport, Fick’s law states that the radiative flux is proportional to the gradient of the

radiation energy density:

Fr = −D∇Er (2.3.3)

where Fr is the radiative flux, Er is the radiation energy density, and D is the diffusion

coefficient which is found by D = c/3σa where σa is the material absorptivity. The

radiative flux in equation 2.3.2 can be expressed using Fick’s law, the emission in terms

of the material temperature, and assume Local Thermal Equilibrium (LTE) to get the

final form of the diffusion equation.

∂Er

∂t
= ∇ · (D∇Er) + acσT 4

m − σcEr (2.3.4)

For an initial implementation, this work will use the diffusion approximation as shown

in equation 2.3.4 to solve for the radiation energy density. The problems explored later

will be optically thick problems where the diffusion approximation will be accurate.

2.4 Boundary Conditions

Boundary conditions are used to constraint or impose requirements on a mathemati-

cal or physical system at its boundaries. An easy example of boundary conditions is to

think of a vibrating string with length L. This system will require two boundary con-
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ditions at the points x = 0 and x = L. At these points, boundary conditions can be

prescribed such that the velocity of the string at the boundaries must be zero, an ex-

ternal force is applied to the string at one boundary, etc. The idea is the same when

solving the hydrodynamics equations and the radiative transport equations. At the

edges of the computational domain (x = 0 and x = L), two sets of boundary condi-

tions will be needed. The first set prescribe what happens to the fluid at the boundary,

and the second set prescribe what happens to the radiation at the boundary. There are

a number of different boundary conditions that can be used when solving these equa-

tions. For the hydrodynamics solution, the boundary conditions are important because

they can greatly effect the flow of the fluid within the domain. There are three com-

mon boundary conditions: the Dirichlet, Neumann, and mixed boundary conditions.

The Dirichlet boundary condition, or first type boundary condition, is named after Pe-

ter Gustav Lejeune Dirichlet. This boundary condition works by specifying the values

of the fluid variables at the boundary of the fluid domain. For example, when a fluid

flows past a solid surface boundary, the velocity of the fluid at the surface might be

set to be zero. The Neumann boundary condition, or second type boundary condition,

is named after Carl Neumann. Neumann boundary specifies the rate of change of the

fluid variables at the boundary. One example is heat transfer from a fluid to a solid

surface at the boundary. This can be set proportionally to the temperature gradient

at the surface. Lastly, there are mixed boundary conditions. As the name suggests,

mixed boundary conditions combine the Neumann and Dirichlet boundary conditions.

These are used in cases in which the velocity of a fluid may be specified at the bound-

ary while the pressure may be allowed to vary with time or position. Hydrodynamics

boundary conditions and computational fluid dynamics are explained in great detail by

Versteeg and Malalasekera [22].

There are also specialized boundary conditions which can be applied to specific prob-

lems and scenarios. For example, boundary conditions that define the position and
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shape of the fluid surface for free surface problems. There are also boundary condi-

tions that define turbulence at boundaries when studying the affect of turbulence on

flow. The values of the fluid flowing into and out of the boundaries can also be speci-

fied. This method is referred to as inflow and outflow boundary conditions, and is the

method used in the solution of the hydrodynamics equations in this report. When con-

sidering a flow which is moving from left to right, at the left boundary the conserved

variable equal is set to some “far” upstream value. At the right boundary, the con-

served variable is set equal to some “far” downstream value. For the problems used to

test these methods, the hydrodynamics’ conserved values return to equilibrium before

they reach the boundary. This allows the inflow and outflow boundary values to be set

equal to the cell immediately to the right and left of their respective boundaries.

The radiative transfer equations require a different set of boundary conditions in order

to be numerically solved. Like computational fluid dynamics, numerical solutions and

their boundary conditions have been studied and documented extensively in literature.

A few of the most common boundary conditions include vacuum boundaries, reflective

boundaries, and external source boundaries. The vacuum boundary condition assumes

that no radiation enters the problem from outside of the computational domain. This

boundary condition works due to the mean free path of photons, neutrons, and other

forms of radiation in air is much larger than of the material that they are interacting.

Since this mean free path is so large, it can be said that the probability of radiation

scattering back into the system is essentially zero and, as such, no radiation enters the

problem from outside of the computational domain. Another function of the vacuum

boundary condition is the extrapolation length which is denoted with d. This is the

point outside the boundary of the problem that the flux goes to zero, and is calculated

by d = 2/3λtr. This can be expressed mathematically as shown by equation 2.4.1.

∂ϕ

∂x

∣∣∣∣
d

= 0 (2.4.1)
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The reflective boundary condition is essentially the opposite of the vacuum boundary

condition. When radiation reaches the boundaries of the problem it is reflected back

into the material so it can, in the case of photons, deposit more energy in the mate-

rial. This is the boundary condition used for the radiative shock problems. Since these

problems are steady state at the boundary, the reflective boundary condition can be

used without causing any increase in energy deposited into the material. Lastly, there

are external source boundaries. These are used when there are external sources of ra-

diation which are being set incident on one or more of the boundaries. Like the hydro-

dynamics boundary conditions, boundary conditions can be combined to make mixed

boundary conditions. This is common when doing external source boundaries where

one surface may have some external source, and the other surfaces may be reflected or

vacuum boundaries.

2.5 Operator Splitting

Operator splitting is a popular method for solving initial value problems that contain

multiple physics, or problems in which some of the physics must be treated in an im-

plicit fashion. When solving the radiation hydrodynamics equations, operator splitting

is a popular procedure due to the characteristic differences in the time scales of the

problems [6]. This is due to the photons moving at the speed of light, which is orders

of magnitude faster than that of the fluid, and generally requires an implicit method

to solve the radiative transport equation. The idea of operator splitting is simple and

straightforward. The method starts by splitting the problem into two parts, referenced

as A and B. When solving the radiation hydrodynamics equations, the hydrodynam-

ics solution is often process A, and radiative transport solutions B. For each time step

taken, the physical process A is progressed as if it was the only event taking place dur-

ing that time step. After solving for process A, that solution is used as the starting

place for process B. Process B is then progressed as if it was the only event taking
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place during the time step [6]. This can be shown using a system of equations in which

some vector of conserved quantities are solved for which is referred to as X.

dX

dt
= A[X] +B[X] (2.5.1)

The normal solution to an equation of this form is to discretize it either explicitly as

shown by equation 2.5.2 or implicitly which is shown by equation 2.5.3.

Xn+1 −Xn

∆t
= A[Xn] +B[Xn] (2.5.2)

Xn+1 −Xn

∆t
= A[Xn+1] +B[Xn+1] (2.5.3)

When discretized explicitly, the equations are straightforward to solve due since no

information later than time tn is needed. The known values at tn can be substituted

into the equation and solved for directly. However, the implicit method is much harder

and computationally more expensive to solve. One method for solving these non-linear

functions is as follows:

1. Set up a system of nonlinear equations for all of the unknowns Xn+1.

2. Apply the Newton-Raphson method for multi-variables to the equations, and

take the initial guesses of Xn+1 to be Xn.

3. For each time step, the Jacobian matrix elements are calculated, and the next set

of corrections for Xn+1 is solved by direct elimination.

However, Jacobian matrix elements come at a large computational cost. Due to this

cost, it is preferred to not use the implicit method for physics that is not stiff and does

not require it, such as the hydrodynamics solution. This is the point at which the oper-

ator splitting procedure takes place. The time derivative of the conserved value X can

be split into k pieces, such that there will be k number of partial time steps from time
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tn to T n+1. For two processes where one processes is solved explicitly and the other im-

plicitly, it takes the following form.

Xn+1/k −Xn

∆t
= A[Xn]

Xn+2/k −Xn+1/k

∆t
= B[Xn+2/k]

(2.5.4)

Summing processes A and B, and given that process B is k = 2, the final equation for

the conserved quantity using implicit-explicit operator splitting is given by:

Xn+1 −Xn

∆t
= A[Xn] +B[Xn+1] (2.5.5)

While this method allows the stiff radiative transfer to be solved implicitly and the

non-stiff hydrodynamics equations explicitly, a large disadvantage of this approach

is that it is only first order accurate as presented. If there are only two operators (A

and B) the accuracy can be improved by the Strang splitting method [6]. This form of

splitting alternates the order in which the operators are executed with each time step.

Other high order methods for IMEX operator splitting, such as self-consistent implicit-

explicit (IMEX) methods and IMEX Runge-Kutta methods, have been developed by

Samet et. al [11] and Ascher et. al [4].

3 Numerical Implementation

As discussed in Section 2.5, an operating splitting procedure to solve the hydrodynam-

ics equations explicitly while solving the radiation part implicitly. This is necessary

due to the stiff radiation diffusion equation caused by the absorption and emission

terms σcEr and σacT 4 respectively. The operator splitting procedure goes as follows:

1. Hydrodynamics Solve Step

2. Radiation Material Motion Correction (MMC)
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3. Radiation Solve Step

4. Energy Deposition Step

where the hydrodynamics solve step and radiation material motion correction are solved

explicitly, and the radiation solve step and energy deposition step are solved implicitly.

3.1 Fixed Mesh Eulerian

In the Eulerian frame, the operator split equations take the following form

1. Hydrodynamics Solve Step

ρn+1
i − ρni
∆t

= −
(ρu)ni+1/2 − (ρu)ni−1/2

∆x
(3.1.1)

ρn+1
i un+1

i − ρni u
n
i

∆t
= −

(ρuu+ P )ni+1/2 − (ρuu+ P )ni−1/2

∆x
(3.1.2)

ρn+1
i En+1

h,i − ρni E
n
h,i

∆t
= −

(ρEhu+ Pu)ni+1/2 − (ρEhu+ Pu)ni−1/2

∆x

+P n
r

(
un
i+1/2 − un

i−1/2

∆x

) (3.1.3)

en+1
h,i = En+1

h,i − (0.5un+1
i )2 (3.1.4)

T h
i =

en+1
h,i

cv,i
(3.1.5)

2. Radiation MMC Step

E∗
r,i − En

r,i

∆t
= −

(Eru)
n
i+1/2 − (Eru)

n
i−1/2

∆x
− P n

r

(
un
i+1/2 − un

i−1/2

∆x

)
(3.1.6)

3. Radiation Solve Step

En+1
r,i − E∗

r,i

∆t
= −

F n+1
r,i+1/2 − F n+1

r,i−1/2

∆x
− σcEn+1

r,i + acσ(T 4
i )

n+1 (3.1.7)

F n+1
r,i−1/2 ≈ −Di−1/2

En+1
i − En+1

i−1

∆x
F n+1
r,i+1/2 ≈ −Di+1/2

En+1
i+1 − En+1

i

∆x
(3.1.8)
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T n+1 − T h

∆t
=

σcEn+1
r − acσ(T 4)n+1

ρCv

(3.1.9)

4. Energy Deposition Step

En+1
i = En+1

h,i + cv(T
n+1 − T h) (3.1.10)

In the above equations, values with the subscript h denote the hydrodynamics quan-

tities, and values with the subscript r denote the radiation quantities. The term eh

represents the internal hydrodynamics energy, and T h represents the hydrodynamics

temperature.

3.2 Moving Mesh Eulerian

Using operator splitting and applying the formula for the moving mesh gives the fol-

lowing equations. However, there is now an extra step of calculating the mesh velocity,

new node positions, and the new cell volumes. This step takes place in three location

when using the moving mesh method. The first is during the problem initialization.

Next is after the predictor step of the predictor corrector method where the predicted

mesh velocity, location, and cell volumes are calculated. Lastly, at the end of the time

step when the conserved values are re-assigned, the mesh velocity, location, and cell

volumes are also re-assigned. These values can be calculated using equations 3.2.1,

3.2.2, and 3.2.3.

wn+1
i−1/2 =

zni−1u
n
i−1 + zni u

n
i − (P n

i − P n
i−1)

zni + zni−1

(3.2.1)

xn+1
i−1/2 = xn

i−1/2 +∆twn+1
i−1/2 (3.2.2)

V n+1
i = xn+1

i+1 − xn+1
i (3.2.3)

1. Hydro Solve Step

1

V n
i

(ρV )n+1 − (ρV )n

∆t
= −

(ρ(u− w))ni+1/2 − (ρ(u− w))ni−1/2

V n
i

(3.2.4)
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1

V n
i

(ρuV )n+1 − (ρuV )n

∆t
= −

(ρu(u− w) + P )ni+1/2 − (ρu(u− w) + P )ni−1/2

V n
i

(3.2.5)

1

V n

(ρEhV )n+1 − (ρEhV )n

∆t
= −∇ · [(ρnEn

h (u− w)n + P nun)] + pnr∇ · un (3.2.6)

en+1
h,i = En+1

h,i − (0.5un+1
i )2 (3.2.7)

T h
i =

en+1
h,i

cv,i
(3.2.8)

2. Radiation MMC Step

1

V n
i

E∗
rV

n+1 − En
r V

n

∆t
= −

(Er(u− w))ni+1/2 − (Er(u− w))ni−1/2

V n
i

−P n
r

(
un
i+1/2 − un

i−1/2

V n
i

) (3.2.9)

3. Radiation Solve Step

En+1
r,i − E∗

r,i

∆t
= −

F n+1
i+1/2 − F n+1

i−1/2

∆xi

− σcEn+1
i + acσ(T 4

i )
n+1 (3.2.10)

F n+1
i−1/2 ≈ −Di−1/2

En+1
i − En+1

i−1

∆xi−1/2

F n+1
i+1/2 ≈ −Di+1/2

En+1
i+1 − En+1

i

∆xi+1/2

(3.2.11)

T n+1 − T h

∆t
=

σcEn+1
r − acσ(T 4)n+1

ρCv

(3.2.12)

4. Energy Deposition Step

En+1
i = En+1

h,i + cv(T
n+1 − T h) (3.2.13)

3.3 Second Order Hydrodynamics Solutions

Although the IMEX method used is not second order preserving, the hydrodynamics

solutions are solved for using second order methods in time and space. This allows for

better shock resolution and stability in the presence of discontinuities or large gradi-

ents. This is done using a predictor-corrector method for the second order in time solu-
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tion, and a MUSCL scheme for the second order in space solution.

3.3.1 Predictor Corrector

In order to achieve second order accuracy in time for the hydrodynamic solution, the

predictor corrector method was used. As has been discussed, the overall radiation-

hydrodynamics solution is not second order due to the IMEX splitting. However, sec-

ond order methods are used for the hydrodynamics solutions. The predictor corrector

method works in two steps. The first, or “predictor” step, works by extrapolating a

polynomial fit to the derivative from the previous points to a new point. Given this

value, the second, or “corrector” step, interpolates the derivative to get the value at

the new point [23]. This is shown by equations 3.3.1 and 3.3.2.

Predictor

yn+1/2 = yn +
∆t

2
f(yn) (3.3.1)

Corrector

yn+1 = yn +∆tf(yn+1/2) (3.3.2)

3.3.2 MUSCL Scheme

The MUSCL scheme is used to calculate the hydrodynamics flux, Fi+1/2 and Fi−1/2, in

equation 3.3.3.

Un+1
i = Un

i +∆t

(
Fi+1/2 − Fi−1/2

∆x

)
(3.3.3)

The term MUSCL stands for Monotone Upstream-centered Schemes for Conservation

Laws [21]. It was developed to provide high accuracy numerical solutions to partial dif-

ferential equations which can involve solutions that exhibit shocks, discontinuities, or

large gradients. The method works by replacing the piecewise constant approximations

in the Gudonov scheme. This is done by using reconstructive states which are derived

from cell-averaged states obtained from the previous time-step. The reconstructed left
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and right states, which are flux limited, are obtained and used to calculate the fluxes

at the cell boundaries. These fluxes are then used as an input for the Reimann solver

from which the solutions are averaged and used to advance the solution in time [13].

The first step of the MUSCL scheme is to find the extrapolated cell edge variables

ui±1/2.

UL
i+1/2 = Ui + 0.5ϕ(ri)(Ui+1 − Ui) UR

i+1/2 = Ui+1 − 0.5ϕ(ri+1)(Ui+2 − Ui+1)

UL
i−1/2 = Ui−1 + 0.5ϕ(ri−1)(Ui − Ui−1) UR

i−1/2 = Ui − 0.5ϕ(ri)(Ui+1 − Ui)

(3.3.4)

When solving this numerically, the cell edges, or nodes, are looped over, allowing for

just the first and third terms in equation 3.3.4 to be solved.

UL
i+1/2 = Ui + 0.5ϕ(ri)(Ui+1 − Ui) U

L
i−1/2 = Ui−1 + 0.5ϕ(ri−1)(Ui − Ui−1) (3.3.5)

In these equations ϕ(ri) represents the flux limiter. The flux limiter helps to prevent

oscillations that might occur due to shocks or discontinuities. There are many choices

for flux limiters; however, this report will look at the Van Leer limiter.

ϕ(ri) =
r + |r|
1 + |r|

(3.3.6)

where

ri =
ui − ui−1

ui+1 − ui

(3.3.7)

The flux values can be calculated once the reconstructed left and right quantities have

been obtained. This process again loops over the nodes to get the values of FL,R
i−1/2.

FL = F (uL) FR = F (uR) (3.3.8)

After finding the left and right flux values, the Rusanov approximate Riemann solver is
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used to get the numerical fluxes at the cell boundaries.

FRusanov = 0.5(FL + FR)− 0.5S∗(UR − UL) (3.3.9)

S∗ is the interface signal velocity can be found by

S∗ = max(|qL|+ aL, |qR|+ aR) (3.3.10)

where q is the face normal component of the velocity. e.g.,

q = u⃗ · n̂ (3.3.11)

Once the Rusanov flux has been found for the left and right faces i ± 1/2 they can be

substituted into equation 3.3.3.

3.4 Radiation Energy Density and Material Temperature Solver

When solved explicitly, the radiation energy density and material temperature equa-

tions can be very unstable if a sufficiently small time step is not taken. However, this

time step for stability is often prohibitively small as the computation time becomes

impractically large. To overcome this, the radiation energy density and material tem-

perature are solved implicitly. This allows the use of larger time steps without sacrific-

ing stability of the numerical solutions. The implicit solve does requires two iterative

loops, the inner loop solves for the material temperature using the Newton iterative

method, and the outer loop will solve for the radiation energy using a tri-diagonal ma-

trix.
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3.4.1 Material Temperature

The inner loop to solve for the material temperature starts by guessing a value that

approximates the values of En+1 and T n+1 which will be denoted as Ek and T k. With

these guesses, the residual function can be calculated for the material temperature.

RT (E
k
i , T

k
i ) = ρCv

T k
i − T n

i

∆t
− σicE

k
i + σac(T k

i )
4 (3.4.1)

Over this inner loop the value of Ek is treated as a constant allowing for only the change

in material temperature δT k
i to be determined.

∂RT

∂T k
i

δT k
i = −RT (E

k
i , T

k
i ) (3.4.2)

The first step is to take the derivative of the material residual function with respect to

T k
i .

∂RT

δT k
i

=
ρCv

∆t
+ 4acσi(T

k
i )

3 (3.4.3)

After taking the derivative, the change in material temperature δT k
i can be solved for.

This change in material temperature is then added to the initial guess T k which gives

the initial guess for the next iteration.

T k+1
i = T k

i + δT k
i (3.4.4)

This iteration is performed until the value of δT k
i ≤ 10−3. At this value the change in

the temperature at k + 1 is insignificant.

3.4.2 Radiation Energy Density

This discussion of solving for the radiation energy density will use the fixed mesh Eu-

lerian method as an example. The fixed mesh method will always have a uniform mesh
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which allows the diffusion terms to have a simplified form when compared to a non-

uniform mesh. The equations on a non-uniform mesh can be found in appendix A. The

solution starts by substituting equation 3.2.11 into equation 3.2.10, and grouping the

radiation energy density terms based on cell index.

(
1

∆t
+

Di+1/2

∆x2
+

Di−1/2

∆x2
+ σic

)
En+1

i −
Di+1/2

∆x2
En+1

i+1 −
Di−1/2

∆x2
En+1

i−1

= acσ(T 4
i )

n+1 +
En

i

∆t

(3.4.5)

To keep from storing the whole matrix, which would be mostly zeros, only the three

matrix diagonals from the Ei−1 , Ei , and Ei+1 terms, as well as the right hand side

of the equation are stored. The lower (Ei−1), middle (Ei), and upper (Ei+1) rows of

the matrix ared denoted using a, b, and c respectively, and the right hand side of the

equation with d.

ai = −
Di−1/2

∆x2
(3.4.6)

bi =

(
1

∆t
+

Di+1/2

∆x2
+

Di−1/2

∆x2
+ σic

)
(3.4.7)

ci = −
Di+1/2

∆x2
(3.4.8)

di = σac(T k
i )

4 +
En

i

∆t
(3.4.9)

Once the diagonals and the right hand side of the equation have been stored, the ra-

diation energy density terms are solved for using a Tridiagonal matrix algorithm also

known as a Thomas Algorithm. This method is based on LU decomposition and allows

the matrix MX = r to be expressed in terms of the lower and upper triangle matrices

such that MX = r becomes LUx = r. This system can be solved for by setting Ux = ρ

and solving Lρ = r for ρ and then Ux = ρ for x which is done in two steps. Step one

decomposes the matrix into M = LU and solves Lρ = r in a single downwards sweep.

This converts from Mx = r to Ux = ρ. The second step solves the equation Ux = ρ

31



for x in a single upward sweep. A detailed explanation of solving tridiagonal and band

diagonal systems of equations can be found in section 2.4 of Numerical Recipes in C by

Press [18]. An example Thomas Algorithm implementation in c++ can be seen below.

void Thomas Algorithm ( vector<double> &a , vector<double> &b ,

vector<double> &c , vector<double> &r ,

vector<double> &so l ){

\\Number o f Ce l l s

int nx = a . s i z e ( ) ;

\\Temporary ve c t o r s forward e l im ina t i on

std : : vector<double> tmp(nx , 0 ) ;

s td : : vector<double> tmp2(nx , 0 ) ;

\\Forward e l im ina t i on

tmp [ 0 ] = c [ 0 ] / b [ 0 ] ;

for ( int i =1; i<nx−1; i++){

tmp [ i ] = c [ i ] / ( b [ i ]−a [ i ]∗ tmp [ i −1 ] ) ;

}

tmp2 [ 0 ] = r [ 0 ] / b [ 0 ] ;

for ( int i =1; i<nx ; i++)

{

tmp2 [ i ] = ( r [ i ]−a [ i ]∗ tmp2 [ i −1])/(b [ i ]−a [ i ]∗ tmp [ i −1 ] ) ;

}

\\Backward Subs t i tu t i on

s o l [ nx−1] = tmp2 [ nx−1] ;

for ( int i=nx−2; i>=0; i−−){

s o l [ i ] = tmp2 [ i ]−tmp [ i ]∗ s o l [ i +1] ;

}

}

Listing 1: c++ Thomas Algorithm Implementation

This iteration is performed until the |En−1
i − En

i | is less than 1.0E − 3 at which point

the change in energy is small enough to be insignificant.
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4 Results

Four test problems were used to compare and verify the physics of the two methods.

The first comparison is a pure test of the hydrodynamics using the Sod shock tube

problem. This problem both verifies the physics of the hydrodynamics and allows for

a comparison of the methods. The physics of the radiation solve step is then verified

using a Marshak Wave problem. Lastly, the methods are compared with three radia-

tive shock problems. The first two are a Mach 1.2 and Mach 3 shock where the shock

is stationary, and the third is a Mach 1.2 shock with a moving shock.

4.1 Sod Shock Tube

The Sod shock tube problem is named after Gary A. Sod who largely researched the

problem in 1978. Since the problem has an analytical solution which can be found us-

ing a Riemann Solver, it is a popular test problem for numerical hydrodynamic codes.

The problem consists of a tube that is separated at the middle by a diaphragm. This

tube is filled with an ideal gas at different pressures and densities on the left and right

hand side of the diaphragm. A diagram of the problem can be seen in Figure 4. When

Figure 4: Sod shock tube at t=0s. Left hand side shows region of high density, pres-
sure, and temperature.

the diaphragm bursts or is removed, the time evolution change of the problem can be

modeled. From this, the propagation speed of the rarefraction wave, contact disconti-

nuity, and shock discontinuity can be found. Since the analytical solution can be found

using the Riemann Solver, the numerical implementations’ ability to resolve the shocks

and contact discontinuities and reproduce the correct density profile of the rarefaction
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wave can be directly compared. The initial conditions for the problem can be seen be-

low [19]. 
ρL

PL

uL

 =


1.0

1.0

0




ρR

PR

uR

 =


0.125

0.1

0


A computational domain of 1.0 cm is used and the problem is run to a final time of 0.2

seconds. The fixed and moving mesh methods will be compared to the Riemann solu-

tion which is computed with the same values. The regions of the Sod Shock problem

can be seen in Figure 5 below. Regions I and V show the initial condition of the prob-

lem, region II is the expansion region, region III is the contact discontinuity, and region

IV is the shock.

Figure 5: Regions of Sod Shock Problem at t = 0.2 seconds.
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The two methods will be compared on their ability to match the analytical solution

using 250, 500, 1000, and 5000 cells. By doing this, the convergence of the numerical to

the analytical solution can be tracked as the mesh refines. It will also determine if the

moving mesh method is able to better resolve the shock and contact discontinuity with

a coarser mesh as expected.

Figure 6: Sod shock tube density profile w/ 250 cells.
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Figure 7: Sod shock tube density profile w/ 500 cells.
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Figure 8: Sod shock tube density profile w/ 1000 cells.
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Figure 9: Sod shock tube density profile w/ 5000 cells.

In Figures 6 to 9 it can be seen that both the fixed and moving mesh methods are able

to match the analytical results. However, looking at the contact discontinuity ≈ 0.7

cm and shock location ≈ 0.85 cm of the 250 and 500 cells solutions (Figures 6 and 7),

the moving mesh is able to resolve the contact discontinuity and shock better than the

fixed mesh. Although the difference may be small, this is expected due to the physics

of this problem being very simple. As problems with steeper or non-stationary shocks

are tested, the ability of the moving mesh to resolve the shock with a coarser mesh will

have a larger impact on the solution.
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4.2 Marshak Wave

Radiative heat waves, also known as Marshak Waves, play an important part in high

energy density physics. During his time working in Los Alamos, New Mexico, Robert

Marshak developed the explanation for how radiative heat waves propagate and inter-

act with materials in extreme temperatures. This development resulted in them be-

ing called Markshak Waves. These are self-similar waves which can be treated with

the thermal diffusion approximation. The material is classified with a constant spe-

cific heat capacity, and a mean opacity which varies as a power of the temperature.

These waves have sharp fronts caused by the non-linear behavior between the mate-

rial opacity and specific heat capacity [14]. The waves propagate through the mate-

rial with time, but the shape of the front remains constant. The hydrodynamic motion

when running this problem is ignored, and the material properties of density and spe-

cific heat capacity are set to constant values. Although this assumption is technically

inaccurate, it allows for testing of just the radiative transport physics. For the moving

mesh method the mesh is static, so the moving mesh method essentially just becomes

a fixed mesh method. However, since there are differences in the formulation of the ra-

diative transfer equations, it is useful to test both methods to verify the physics.

The problem geometry is a slab which is located at x = 0, with a width of 2 cm, and

is set with an initial temperature of 0.025 eV . At t = 0, a 150 eV radiation source is

applied at x = 0 cm. The problem is assumed to be under Local Thermal Equilibrium

(LTE), characterized by the radiation energy density being equal to the radiation con-

stant times the material temperature to the fourth power (Er = aT 4
m) [8]. The solution

is checked at t = 5.0 × 10−8 seconds to see how the front has propagated through the

material. The expected solution is a material and radiation temperature just less than

140 eV at the left boundary, with the material temperature being slightly lower than

the radiation temperature. The temperature should then decrease through the domain

reaching equilibrium again at a distance of 1.5 cm.
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Parameter Value Units
tf 5.0× 10−8 s
∆t 1× 10−12 s
xi 0 cm
xf 2 cm
∆x .025 cm
ρ 1 g/cc
Cv 1.3874× 1011 erg eV −1 g−1

σ 106/T 3
m cm−1

T0,r 0.025 eV
T0,m 0.025 eV
TB.C. 150 eV

Table 1: Marshak Wave Input Parameters

Figure 10: Marshak Wave using the fixed mesh implementation. Results match the
expected physics for peak temperature and distance at which problem returns to equi-
librium.
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Figure 11: Marshak Wave Using the Moving Mesh Implementation. Results match the
expected physics for peak temperature and distance at which problem returns to equi-
librium. Gap in the left hand side of the problem is due to averaging node locations to
get cell center.

4.3 Fixed Radiative Shocks

Due to the complexity of the coupled hydrodynamics and radiation flow, there are

fewer test problems, especially those with analytical solutions, compared to hydrody-

namics tests. However, radiative shock problems are one of the most studied and used

for testing radiation hydrodynamics codes. These problems define strong shocks in

which the material is heated to a sufficiently high temperature for the radiation and ki-

netic energy flux to be comparable. The shock is treated as a discontinuity and define

jump relations which are used to find the equilibrium states of the far upstream and

downstream material. These conditions are known as Rankine-Hugoniot jump condi-

tions, given their name from the work done by Scottish engineer and physicist William
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John Macquorn Rankine, and French engineer Pierre Henri Hugoniot. For flow moving

left to right, these problems will assume that all conditions post-shock, also referred to

as upstream, are known and will be referred to as region 1. The values pre-shock, also

referred to as downstream, need to be determined by the jump conditions. Figure 12

shows the upstream and downstream regions of a problem with fluid flow from left to

right.

Figure 12: Upstream and downstream locations using shock as the reference point.

There is no heat added or removed from the flow as it traverses the shock waves, thus

making the shock adiabatic [11]. The jump conditions can be expressed in four equa-

tions which are shown by equations 4.4.1, 4.4.2, 4.4.3, and 4.4.4.

S(ρ2 − ρ1) = ρ2u2 − ρ1u1 (4.3.1)

S(ρ2u2 − ρ1u1) = (ρ2u
2
2 + P2)− (ρ1u

2
1 + P1) (4.3.2)

S(ρ2Eh,2 − ρ1Eh,1) = (ρ2Eh,2u2 + P2u2)− (ρ1Eh,1u1 + P1u1) (4.3.3)

S(ρ2Er,2 − ρ1Er,1) = (ρ2Er,2u2)− (ρ1Er,1u1) (4.3.4)
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Assuming a calorically perfect gas allows the use of thermodynamic relationships to

solve for the material pressure

P1 = ρ1RT1 (4.3.5)

where R denotes the gas constant, ρ1 is the density in region 1, and T1 is the tempera-

ture in region 1. The gas constant can be expressed in many units but the value used

in this report is R = 9.6492284 × 1011 erg eV −1 mol−1. The fluid velocity is found as

a function of the Mach number of the shock and the sound speed in the material using

equation 4.3.6.

u1 =
M1

as1
(4.3.6)

This equation comes from the definition of the Mach speed, the ratio of the velocity of

the fluid to the sound speed of the fluid (M = u
as
). The Mach number is used to char-

acterize how fast an object is moving relative to the speed of sound ahead of the shock

wave. When the Mach number is less than one (M < 1), the fluid is traveling slower

than the speed of sound and the shock is considered to be weak. When the opposite is

true, with a Mach number greater than one (M > 1), the fluid is moving faster than

the speed of sound and the shock is considered to be strong. Once the density, pres-

sure, and velocity in region 1 have been determined, the total hydro energy can then

be found.

Eh = cvρT + 0.5ρu2 (4.3.7)

In the jump condition equations 4.4.1, 4.4.2, 4.4.3, and 4.4.4, the term S is used to de-

note the shock propagation speed. For a standing shock, the shock propagation speed

is set to be zero (S = 0). For a stationary shock, the pressure and density jump condi-

tion equations take the form as shown in equations 4.3.8 and 4.3.9. A detailed deriva-

tion of these equations can be found in [3].

P2

P1

= 1 +
2γ

γ + 1
(M2

1 − 1) (4.3.8)
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ρ2
ρ1

=
u2

u1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

(4.3.9)

Two standing shock problems will be used to compare the methods. The first test has

a Mach number of 1.2, and the second test is a stronger shock with a Mach number of

3. For both problems the shock will be located at the center of the problem domain.

When plotting the material temperatures, there are three regions of the plots that are

of interest. The first is the precursor region in which the temperature will increase

from the equilibrium value towards the shock. The second region is the shock itself.

The last region is the relaxation region in which the values return to their post-shock

equilibrium values. The relaxation region will be more prevalent in the Mach 3.0 prob-

lem that contains a Zel’dovich spike. The Zel’dovich spike is a phenomenon caused by

the maximum temperature being greater than the equilibrium temperature of region

1. This occurs due to sudden cooling of the gas behind the shock front. As the radia-

tive shock wave moves through a medium, it heats the gas to very high temperatures

causing it to emit intense radiation. However, as the gas behind the shock wave cools,

the radiation it emits becomes less intense. This, as a result, causes a rapid drop in

the radiation temperature, which results in a sharp increase in the radiation pressure.

The spike forms because the shock front slows down as it encounters the high radia-

tion pressure, creating a region of high pressure and density immediately behind the

shock front. The precursor, shock, Zel’dovich spike, and relaxation regions can be seen

in Figure 13.

44



Figure 13: Precursor, shock, relaxation, and Zel’dovich spike regions of radiative shock
problems with fixed shocks.

Both problems use γ = 5/3, cv = 1.4467 × 1012 erg ev−1 g−1, and σa = σt = 577.35

cm−1. The problems run to a final time of 5 ns at which point the problem reaches

steady state using a time step of 1.0 × 10−12s. The upstream and downstream values

for both problems can be seen in Tables 2 and 3.

Parameter upstream downstream Units

ρ 1.0000000 1.29731782 g/cc

u 1.52172533× 107 1.17297805× 107 cm/s

T 100 119.475741 eV

E 2.60510396× 1014 3.13573034× 1014 erg/cc

Table 2: upstream and downstream initial values for the Mach 1.2 radiative shock
problem.
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Parameter upstream downstream Units

ρ 1.0000000 3.00185103 g/cc

u 3.80431331× 107 1.26732249× 107 cm/s

T 100 366.260705 eV

E 8.68367987× 1014 1.83229115× 1015 erg/cc

Table 3: Upstream and downstream initial values for the Mach 3.0 radiative shock
problem.

Since there is a not an analytical solution for the Mach 1.2 and Mach 3 problems, a

very fine mesh composed of 15,000 cells is used as a reference solution. The ability of

the methods to resolve the shock and, in the case of the Mach 3 problem, the Zel’dovich

spike with 500, 1000, 2000, and 4000 cells will be tracked. To make the results easier to

read, the material and radiation temperatures will be presented separately. The first

results presented will be for the Mach 1.2 problem.
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Figure 14: Radiation temperature for Mach 1.2 shock w/ 500 cells.
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Figure 15: Radiation temperature for Mach 1.2 shock w/ 1000 cells.
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Figure 16: Radiation temperature for Mach 1.2 shock w/ 2000 cells.
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Figure 17: Radiation temperature for Mach 1.2 shock w/ 4000 cells.

On fine meshes of 2000 and 4000 cells both methods are able to match the reference

solution for the radiation temperature very well. However, with just 500 cells, the mov-

ing mesh solution is able to match the reference solution with much higher accuracy

than the fixed mesh solution. The difference in the methods is most visible in the re-

gion spanning from 0.094 cm to 0.10 cm. In this region, the fixed mesh solution is

slightly diffused to the left from the reference solution, but the moving mesh case is

able to almost perfectly match the reference solution. This is repeated with the 1000

cells solution. However, the fixed mesh case is much closer to the reference solution of

the radiation temperature.
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Figure 18: Material temperature for Mach 1.2 shock w/ 500 cells.
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Figure 19: Material temperature for Mach 1.2 shock w/ 1000 cells.
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Figure 20: Material temperature for Mach 1.2 shock w/ 2000 cells.
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Figure 21: Material temperature for Mach 1.2 shock w/ 4000 cells.

Due to the presence of the shock in the material temperature, getting accurate re-

sults that match the reference solution with coarse grids, such as the 500 and 1000 cell

cases, is difficult for both the fixed and moving mesh implementations. However, in

looking at the results of the 500 cell case, specifically at the precursor region leading

into the shock, it can still be seen that the moving mesh case is able to better match

the reference solution in this region. As with the radiation temperature, as the mesh is

refined, both methods are able to match the reference solution with more accuracy.
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Figure 22: Radiation temperature for Mach 3.0 shock w/ 500 cells.
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Figure 23: Radiation temperature for Mach 3.0 shock w/ 1000 cells.
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Figure 24: Radiation temperature for Mach 3.0 shock w/ 2000 cells.
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Figure 25: Radiation temperature for Mach 3.0 shock w/ 4000 cells.

As with the Mach 1.2 problem, the moving mesh case is again able to achieve better

agreement with the reference solution utilizing a coarser mesh for the radiation tem-

perature. The fixed mesh case also requires more cells in order to match the conver-

gence to the reference solution when compared to the Mach 1.2 problem. For the Mach

3 problem, the fixed mesh solution doesn’t match the moving mesh solution of 500 cells

until the finest mesh of 4000 cells. The scale of this difference is more noticeable when

compared to the Mach 1.2 problem. In the Mach 1.2 problem, agreement in the results

of the fixed and moving mesh case could be seen with just 1000 cells.
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Figure 26: Material temperature for Mach 3.0 shock w/ 500 cells.
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Figure 27: Material temperature for Mach 3.0 shock w/ 1000 cells.
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Figure 28: Material temperature for Mach 3.0 shock w/ 2000 cells.
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Figure 29: Material temperature for Mach 3.0 shock w/ 4000 cells.

The Material temperature for the Mach 3.0 problem demonstrates the ability of the

moving mesh method to have significantly better resolution of the resolution vs. the

fixed mesh method. In the coarse, 500 cell case, the moving mesh method is able to

match the reference solution with much more accuracy in the precursor and shock re-

gions. There is also some formation of a Zel’dovich spike which is not present at all in

the fixed mesh solution. In fact, there is no formation of a Zel’dovich spike in the fixed

mesh case until the 2000 cell case. However, with this much finer grid, the method still

does not match the precursor and shock regions as well as the moving mesh case with

500 cells, and only has slightly better resolution of the Zel’dovich spike over the mov-

ing mesh with only 500 cells.
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4.4 Moving Radiative Shocks

In the previous section the equations for the Rankine-Hugoniot jump condition for a

moving shock were presented.

S(ρ2 − ρ1) = ρ2u2 − ρ1u1 (4.4.1)

S(ρ2u2 − ρ1u1) = (ρ2u
2
2 + P2)− (ρ1u

2
1 + P1) (4.4.2)

S(ρ2Eh,2 − ρ1Eh,1) = (ρ2Eh,2u2 + P2u2)− (ρ1Eh,1u1 + P1u1) (4.4.3)

S(ρ2Er,2 − ρ1Er,1) = (ρ2Er,2u2)− (ρ1Er,1u1) (4.4.4)

The shock speed to zero S = 0 and it was shown how to find the values in region 2

using these equations and the values in region 1. This process is the same for the mov-

ing shock; however, the shock speed can now be set to some value less than the speed

of the fluid. In this report the shock speed to be set as a percentage of the fluid veloc-

ity. The jump conditions, with non-zero shock speed, can be calculated using equations

4.4.5, 4.4.6, and 4.4.7. A detailed derivation of these equations is done by Anderson in

section 7.2 of Modern Compressible Flow: With Historical Perspective [3].

P2

P1

= 1 +
2γ

γ + 1

[(
S − u1

as1

)2

− 1

]
(4.4.5)

u2 = u1 +
P2 − P1

ρ1(S − u1)
(4.4.6)

ρ2
ρ1

=
S − u1

S − u2

(4.4.7)

The moving shock test problem will be a Mach 1.2 shock wave where the shock has a

velocity of S. This can be set arbitrarily, but should be less than the fluid velocity of

the problem. Like the stationary shock problem, γ = 5/3, cv = 1.4467E + 12 erg ev−1
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g−1, σa = σt = 577.35 cm−1. The density and temperature in region 1 will be ρ1 =

1g/cc and T1 = 100 eV. In region 2 the temperature will be T2 = 120.5 eV. The time

step is 1.0E − 12 seconds and the problem runs to a final time of 1.0E − 7 seconds.

The problem domain is 0.2 cm with the shock initially set at the center of the domain.

A convergence study will also be performed as done with the stationary shock using

500, 1000, 2000, and 4000 cells. There is no full analytical solution to this problem, so

for the convergence study the reference solution will be the fixed mesh case which was

run with 15000 cells. This is a fine enough mesh for accurate results and full resolution

of the shock. For the moving mesh solution, the mesh velocity will be set equal to the

velocity of the shock. As discussed, this is a key advantage to the moving mesh case.

Rather than having a fixed mesh or a mesh that moves with the velocity of the fluid,

by setting the mesh velocity equal to that of the shock there should be an improvement

in the shock resolution.
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Figure 30: Radiation temperature for Moving Mach 1.2 shock w/ 500 cells.
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Figure 31: Radiation temperature for Moving Mach 1.2 shock w/ 1000 cells.
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Figure 32: Radiation temperature for Moving Mach 1.2 shock w/ 2000 cells.
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Figure 33: Radiation temperature for Moving Mach 1.2 shock w/ 4000 cells.
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Figure 34: Material temperature for Moving Mach 1.2 shock w/ 500 cells.
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Figure 35: Material temperature for Moving Mach 1.2 shock w/ 1000 cells.
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Figure 36: Material temperature for Moving Mach 1.2 shock w/ 2000 cells.
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Figure 37: Material temperature for Moving Mach 1.2 shock w/ 4000 cells.

Before discussing convergence of the methods to the reference solution, the location of

the shock needs to be discussed. The speed of the shock was chosen to be S = −140109

cm/s. This speed was chosen since it was slower than the speed of the fluid, but fast

enough that the shock should move a significant distance by the end of the problem.

The problem was ran to a final time of 1.0E− 7 seconds, and the shock was initially lo-

cated at the center line of the problem which is located at 0.1 cm. From this informa-

tion, it is possible to calculate that at the end the problem, which was calculated to be

0.859 cm. Looking at the plots of the material temperature, both the fixed and mov-

ing mesh methods are moving the shock to the correct location. Looking at the plots of

the radiation temperature, the results are similar to that of the stationary shock Mach

1.2 problem. On the very coarse mesh containing just 500 cells, there is good resolu-
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tion of the reference solution using the moving mesh method. As the mesh is further

refined, both the methods are able to match the reference solution as expected. There

are also similar trends in the results of the material temperature when compared to the

stationary Mach 1.2 shock. On the coarse mesh solution, the moving mesh solution has

better resolution in the precursor region leading up to the shock; however, both meth-

ods struggle to resolve the shock on the very coarse mesh. As the mesh is refined, both

methods are able to converge to the analytical solution, with both methods producing

very similar solutions with fine mesh 2000 cell and 4000 cell meshes.

5 Conclusions

This research aimed to develop a method that is able to more accurately model radia-

tive shock problems than the standard fixed Eulerian mesh on coarser computational

grids. The method proposed is called moving mesh Eulerian and aims to benefit from

both the Eulerian and Lagrangian methods which are traditionally used. These bene-

fits include better shock resolution, ability to handle large deformations, and the abil-

ity to handle material interfaces well. Radiative shock problems were focused on due

to the presence of strong shocks in which the material is heated to a sufficiently high

temperature for the radiation and kinetic energy flux to be comparable. This tests

the coupling of the hydrodynamics and radiation equations, particularly the material

motion correction and radiation energy deposition physics. Convergence studies were

performed to see how the fixed and moving mesh methods were able to converge to a

reference solution.

The initial comparison of the methods was qualitative where trends in the solutions

were analyzed to see how the methods match the reference solution. From this com-

parison, better convergence to the reference solution was seen when using the moving

mesh method over the fixed mesh method. In the slower Mach 1.2 problems, much bet-
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ter convergence was achieved on the coarse grids using the moving mesh method when

looking at the radiation temperatures. For the material temperature, on the coarse

grid, the moving mesh method had better resolution of the precursor region, but was

not able to resolve the shock. As the mesh was refined, both methods were able to con-

verge well to the analytical solution. For the faster Mach 3.0 problem, there was a sig-

nificant improvement in the solution on the coarse grid when using the moving mesh

method for both the material and radiation temperature. The moving mesh solution

was able to resolve the precursor, shock, and relaxation regions of the material temper-

ature. The method also had a some resolution of the Zel’dovich spike which the fixed

mesh method was unable to resolve on the coarse computational grid.

This comparison shows initially promising results for the use of the moving mesh method

over the traditional fixed mesh. However, further testing should be done to determine

the robustness of the method, potential time savings, and the inclusion of more com-

plex physics within the solution of these problems. This will give more conclusive re-

sults on the abilities of the method and its potential benefits. The next section will

cover this future work in detail and explain its importance to comparing the methods.

6 Future Work

Compared to the fixed mesh method, the moving mesh method results in better resolu-

tions of problems containing shocks and other phenomenon that are difficult for numer-

ical solutions to resolve. However, the current implementations of the fixed and moving

mesh methods use relatively simple physics and approximations that make the prob-

lems easier to solve. To further test the benefits of accuracy and potential speed up of

the moving mesh to the fixed mesh methods, the implemented physics and numerical

techniques used need to be expanded. Not only will this increase the accuracy of both

methods, but it will also increase the computational expense. As problems get more
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computationally expensive, it will be easier to perform further studies to compare the

methods.

The first step will expanding from 1-D to 2-D, and then planar to spherical geome-

tries. The current 1-D planar geometry allowed for easier implementation and quick

comparison of the methods; however, it is not physically representative of the types of

problems to which these methods are applicable. By increasing to two dimensions and

spherical geometry, the test problems will be physically more representative of what

occurs in ICF tests. The ability to handle multiple materials problems rather than only

solving single material problems will also be implemented. I also will look into sec-

ond order preserving methods for the IMEX splitting of the hydrodynamics and radia-

tive transport solutions. Lastly, I want to look into solving the full radiative transport

equation rather than using diffusion theory. This will allow the use of test problems

that might not be optically thick, causing the diffusion theory approximation to be in-

accurate. Along with this, I will implement frequency dependence in the opacity values

to account for variations in the materials optical properties over different parts of the

spectrum.

Once I have expanded these methods, the process by which I compare them will be

similar to the methods previously presented. I will choose a number of test problems

that contain physics in which these methods should be able to accurately model. The

solution gathered from the methods will then be compared to an analytical or reference

solution. However, due to the additional computational complexity, I will now be able

to perform speed comparisons of the methods. This will likely be done by finding some

acceptable percent error to the reference or analytical solution, and then finding the

number of cells that each method requires to fall within that percent error. I can then

test to see potential time savings of the methods. Overall, there is still work to be done

in order to further develop the moving mesh method. However, the initial results are

promising.
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Appendices

A Diffusion Approximation on Non-Uniform Grids

In section 3.4.2 the method for solving the radiation energy density on a uniform grid

was presented. However, as the mesh moves, the mesh grid will deform due to differ-

ences in velocity of the fluid. The radiation solve step needs to be edited to account for

these deformation in the mesh. This begins with the radiation energy density equation,

∂Er

∂t
= −∇ ·D∇Er − σcEr + σaT 4 (A.0.1)

The diffusion term is then re-written in terms of the spatial dependence dx.

∂Er

∂t
=

d

dx
−D

d

dx
Er − σcEr + σaT 4 (A.0.2)

This equation is discretized using a backwards Euler’s method taking the form shown

in equation A.0.3.

En+1
r,1 − En

r,i

∆t
=

1

∆xi

(
Di−1/2

(
En

i − En
i−1

∆xi−1/2

)
−Di+1/2

(
En

i+1 − En
i

∆xi+1/2

))

−σcEn+1
i + σac(T 4

i )
n+1

(A.0.3)

where

∆xi−1/2 =
xi + xi−1

2
∆xi+1/2 =

xi+1 + xi

2
(A.0.4)

From here is is easy to see that when the grid is uniform that ∆xi−1/2 and ∆xi+1/2

are just equal to ∆xi which gives the ∆x2
i term on the uniform mesh. The process of
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grouping terms based on their cell index is now repeated.

(
1

∆t
+

Di+1/2

∆xi∆xi+1/2

+
Di−1/2

∆xi∆xi−1/2

)
En+1

i −
(

Di+1/2

∆xi∆xi+1/2

)
En+1

i+1 −(
Di−1/2

∆xi∆xi−1/2

)
En+1

i−1 = σac(T 4
i )

n+1 +
En

i

∆t

(A.0.5)

This gives the new equations for the diagonals of the tri-diagonal matrix a, b, c, and

d. The radiation energy density can now be solved for using the Thomas Algorithm

presented earlier.

ai = −
Di−1/2

∆x∆xi−1/2

(A.0.6)

bi =
1

∆t
+

Di+1/2

∆xi∆xi+1/2

+
Di−1/2

∆xi∆xi−1/2

(A.0.7)

ci = −
Di−1/2

∆xi∆xi−1/2

(A.0.8)

di = σac(T k
i )

4 +
En

i

∆t
(A.0.9)
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B Fixed Mesh Eulerian Code

The code for the fixed mesh Eulerian method can be found at https://github.com/

dweatherred/Rad-Hydro. Please reach out with any question or concerns regarding

running the code.

C Moving Mesh Eulerian Code

The code for the moving mesh Eulerian method can be found at https://github.

com/dweatherred/MM_Rad_Hydro. Please reach out with any question or concerns re-

garding running the code.
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