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Abstract 

When designing experiments for full-scale reactor systems, MCNP®* and Whisper can be used 

to create neutronic models and compare the similarity of two nuclear systems via correlation 

coefficients for 𝑘𝑒𝑓𝑓 , effective multiplication factor. This thesis applies this framework to a 

conceptual heat-pipe, yttrium-hydride moderated microreactor system and experiments. The 

framework is intended as a supplement to other neutronics/thermal/multiphysics analyses and 

provides a concrete method to measure the neutronic similarity of two systems. By analyzing the 

shared nuclear data uncertainty, as well as sensitivity to nuclear data over all neutron energies, 

highly informative experiments can be designed to aid in the development of microreactor and 

other advanced reactor technologies and systems.  

 

Keywords: Microreactors, experiment design, sensitivity and correlation coefficients, 

neutronics, neutron transport, MCNP, Whisper  

______________________________________________________________________________ 

*MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National 

Security, LLC, manager and operator of Los Alamos National Laboratory. Any third party use of 

such registered marks should be properly attributed to Triad National Security, LLC, including 

the use of the designation as appropriate. 
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Chapter 1 - Introduction 

With the increasing need for electricity while facing the challenge (and threat) of climate 

change, there is currently one power source that can scale up according to global need while 

remaining stable, safe, clean, and scalable. Nuclear energy relies on the generation of heat during 

nuclear fission within appropriate materials, such as uranium, to produce electricity. Most 

commonly, commercial nuclear reactors are light water reactors that boil water to spin steam 

turbines that connect to a generator. Historically, light water reactors have done their job well 

and are currently producing about 10% of global electricity (28% of all low-carbon power) [1], 

while remaining one of the safest sources of energy with regards to deaths per terawatt-hour [2].  

Nuclear energy is unique in its position of being a stable, scalable power source while 

remaining safe and clean. Solar energy is safe, clean, and scalable but at the cost of large 

amounts of land and materials such as rare earths and critical metals needed for photovoltaics. 

Wind is also safe, clean, and scalable at the cost of large amounts of land. What solar and wind 

energy truly lack at the moment is stability as a power source; solar and wind are an intermittent 

power source that need the sun to be shining or the wind to be blowing. Until an efficient energy 

storage solution is implemented years from now, wind and solar energy can only serve a small 

percentage of our energy needs. Hydro power is stable, safe, and clean, but is not scalable; only 

certain locations are suitable to dam up, with the most promising locations already producing 

electricity. Any other power source either produces higher orders of magnitude more deaths per 

terawatt-hour or higher orders of magnitude more tons of greenhouse emissions. At the given 

moment, nuclear energy has the unique value proposition of being the only power source that is 

stable, safe, clean, and scalable. 



 2 

Regardless, nuclear energy continues to innovate and advance. Light water reactors have 

a stellar track record, as mentioned in the previous paragraphs. However, light water reactors 

cannot meet all of the evolving needs of advanced fuel cycles. Light water reactors tend to 

operate below 600 Kelvin (620 Fahrenheit) and require large amounts of water. This means 

light water reactors cannot generate process heat that requires higher temperatures in the 

manufacturing industry; light water reactors will not be operating in remote areas where there is 

no water supply; light water reactors will not take us to Mars, the outer reaches of our solar 

system, or beyond. We have just scratched at the potential of nuclear energy and much work 

remains to be done.  

Advanced reactor technologies and designs seek to meet the needs that light water 

reactors cannot meet. One such advanced reactor is the microreactor, a small nuclear reactor that 

can generate up to 20 megawatts of thermal power. Microreactors are intended to be small 

enough to be hauled by a semi-trailer truck, flown via plane, or shipped via boat to allow for 

deployment in remote regions as shown in Figure 1. Since microreactors are intended to be 

integral units, i.e., the microreactor will contain the fuel, heat transfer mechanism, and electricity 

conversion systems all encapsulated in the reactor module/modules, microreactors can serve as 

the sole source of heat/electricity, power a microgrid, or connect to a large-scale electric grid. 
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Figure 1. Microreactor shipping options [3] 

 

Microreactors can serve many needs both on Earth and in space. Terrestrial applications 

for microreactors include electricity or heat generation in remote regions such as locations 

approaching the Arctic circle where electricity infrastructure is less developed due to harsh 

terrain and conditions. Microreactors, because of their smaller size, can also be designed to be 

mobile; such applications include power generation for oil exploration or military operations in 

remote regions that may move around. Rapid deployment of electricity due to the integral design 

can also be tremendously helpful in disaster relief; a region that is struck by a hurricane may 

have had their electric infrastructure destroyed. Electricity saves lives, especially after natural 

disasters strike; a microreactor on a ship that can be deployed after the storm passes can save 

many people. In space, microreactors can also play a large role. A microreactor can be designed 

to produce electricity for ion propulsion; nuclear electric propulsion, in conjunction with 

traditional space propulsion methods, can allow humans to go deeper in space due to the high 



 4 

energy density of nuclear materials. A microreactor can also be designed to provide surface 

power on the Moon, Mars, or some other human outpost in space due to their small size, which 

would allow the microreactor to be stowed away on a space ship.  

Regardless of the many needs microreactors can meet, novel nuclear designs will always 

require rigorous modeling/simulation, analysis, and experimentation in order to prove feasibility, 

ensure safety, and meet budgets. Nuclear experiments in particular are essential for 

demonstrating that a system performs as expected. These experiments range from large-scale 

system testing to smaller representative measurements for purposes such as code validation; 

accurate modeling and simulation of an experiment will increase our confidence in the predictive 

capabilities of the code. Furthermore, small, yet representative critical experiments of a reactor 

design can provide reactivity and multi-physics behavior validation opportunities at a fraction of 

the cost of building a full-scale prototype.  Facilities such as the National Critical Experiments 

Research Center (NCERC) offer opportunities to perform these small-scale measurements. 
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Section 1.1. Research Objective   

Now that the need for nuclear experiments is established, a few questions arise. How do 

we design an experiment for a microreactor? Intuition says to use the same materials as the full-

scale microreactor design. In what quantities should the materials be used? Experiments will be 

built at a smaller scale than the full-scale microreactor. How do we ensure sufficient reactivity? 

Higher enriched fuels can provide this reactivity but will lead to different material composition 

compared to the full-scale microreactor. How do we ensure that both systems are neutronically 

similar if higher enriched fuel is used and the experiment is a much smaller size than the full-

scale microreactor?  

The goal of this research is to provide a framework with existing physics codes (MCNP 

and Whisper) to generate an objective metric for neutronic similarity when comparing a 

microreactor system and an experiment. The framework is intended to be general enough to also 

be applied to other advanced reactor concepts.  
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Section 1.2. Methodology  

MCNP is a 3D Monte Carlo particle transport code that is used in this research to 

calculate effective multiplication factors, neutron flux, sensitivity coefficients, and more. MCNP 

has had decades of development, and results have been validated with a variety of nuclear 

experiments [3]. Whisper is statistical analysis code that can take MCNP sensitivity coefficients 

and nuclear covariance data to generate correlation coefficients between a desired system and 

existing benchmarks from nuclear experiments. By entering the full-scale microreactor system as 

a benchmark in Whisper, experiment designs can be input into MCNP and Whisper to generate a 

correlation coefficient for the effective multiplication factor of the systems [4]. Correlation 

coefficients convolve both nuclear data uncertainty and the systems’ sensitivity coefficients, i.e., 

how sensitive a system is to a perturbation to a nuclear data parameter with regards to the 

effective multiplication factor. Because correlation coefficients statistically analyze both 

systems’ sensitivity coefficients and nuclear data uncertainties for every neutron-nucleus 

interaction available at all relevant neutron energies, correlation coefficients are a robust, 

objective method to measure the neutronic similarity of two nuclear systems. 

While this neutronic framework can analyze any two nuclear systems with correlation 

coefficients, this research will focus on the design of critical experiments in support of 

microreactors that are cooled with heat pipe technology. “Snowflake” is one such conceptual 

heat-pipe microreactor design being studied at Los Alamos National Laboratory [5]. As the 

primary heat transfer mechanism, heat pipes are passive, reliable, and fully contain the working 

fluid. This research will design several experiments that could demonstrate Snowflake-type 

systems; their neutronic similarity via the correlation coefficient will be calculated with the 

neutronic framework established with MCNP and Whisper. In addition to generating a 
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correlation coefficient, other metrics, such as the normalized flux per unit lethargy, the 

sensitivity coefficients plotted with respect to neutron energy, the percentage of neutrons causing 

fission, and more will be studied in greater detail to investigate any patterns that may arise.  

The experiments will contain a Snowflake microreactor unit cell in the center of the 

experiment surrounded by high-enriched uranium fuel. The use of the unit cell provides a 

representative sample of the full-scale microreactor while reducing the amount of fuel that needs 

to be fabricated. However, there is insufficient reactivity with just a single unit cell for the 

experiment to go critical; hence the high-enriched uranium fuel will act as a driver fuel and 

provide sufficient reactivity. The high-enriched uranium nitride fuel was identified as leftover 

fuel from SP-100 program that could reduce the fuel fabrication cost and burden for the 

experiment. The logistics and for obtaining the high-enriched uranium fuel, however, needs to be 

further explored and other options for driving criticality will be examined in the future as well.  
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Chapter 2 – Background and Description of Snowflake Design 

Section 2.1. History of Microreactors 

 Microreactors, if considering the “up to 20 megawatts of thermal power” definition, can 

be said to have their roots in the United States Navy’s nuclear submarine program (1950s), with 

the first nuclear submarine producing about 10 megawatts of power [6]. Microreactors are also 

intended to be compact enough to be hauled by a semi-trailer truck, flown by plane, or shipped 

by boat to allow for deployment in remote regions as shown in Figure 2.1.  

 

 

Figure 2.1. Conceptual microreactor hauled by semi-trailer truck [7] 
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Due to these constraints, space reactor development can also be seen as a significant 

contributor to future designs of present day microreactor systems. One such space reactor is the 

Systems for Nuclear Auxiliary Power (SNAP-10A), a compact nuclear reactor that output about 

30 kilowatts of power and weighed less than 300 kilograms [8]. SNAP-10A was launched into 

space in 1965 by the National Aeronautics and Space Administration (NASA) in conjunction 

with several other organizations. The development of the capillary heat pipe at Los Alamos 

National Laboratory in 1963 was intended for use in space reactor systems since capillary heat 

pipes are not adversely affected by zero-gravity environments [9].  

 More recent experiments have further increased the feasibility of heat-pipe microreactor 

systems. The Demonstration Using Flattop Fissions (DUFF) experiment was conducted by Los 

Alamos National Laboratory at the National Criticality Experiments Research Center in 2012. 

The DUFF experiment was the first Stirling engine (heat engine that operates with the cyclic 

compression of gases) powered by fission energy via heat pipe [10]. In 2017, the Kilowatt 

Reactor Using Stirling TechnologY (KRUSTY) experiment was also conducted by Los Alamos 

National Laboratory. KRUSTY was a prototype fission reactor that utilized heat pipes to transfer 

heat to a Stirling engine and output about 5-kilowatt thermal power. KRUSTY employed high-

enriched uranium molybdenum fuel with a beryllium oxide reflector as shown in Figure 2.2 [11]. 

KRUSTY was a prototype for a space reactor intended to provide surface power for a variety of 

missions, such as a Moon or Mars base. Figure 2.2 shows the vacuum tube being lowered over 

the experiment to simulate a space environment.  
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Figure 2.2. KRUSTY experiment with vacuum chamber [12] 

 

Next, the Hypatia experiment that took place at the National Criticality Experiments 

Research Center in 2021 measured temperature reactivity coefficients for the high-temperature 

candidate moderator material yttrium hydride in two different configurations and compared the 

experimental results with predicted MCNP results [13]. The Hypatia experiments consist of 

several stacks of yttrium hydride, high-enriched uranium, graphite, spacers, and heaters as shown 

in Figure 2.3. The purpose of a moderating material, for example a metal hydride, in a 

microreactor is to help thermalize neutrons and decrease the required resulting fuel mass 

required to achieve criticality. In particular, results from the Hypatia experiment helped increase 
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the technology readiness level of yttrium hydride such that it could be used more easily in 

microreactor designs/systems such as the heat-pipe microreactor Snowflake design.  

 

 

Figure 2.3. Hypatia configuration, yttrium hydride experiment [14] 

 

While much work has been and is currently being performed to support microreactor 

development, additional work remains to be done to manifest these microreactor designs into 

reality.   
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Section 2.2. Heat-pipe Microreactor Snowflake 

 The Snowflake conceptual design comprises multiple units of 19.9% enriched uranium 

TRISO fuel, moderating material, and heat pipes combined in a modular fashion; the design is 

flexible enough to meet mission needs and can be scaled up or down depending on the power, 

size, or weight needed. The reactor has a higher share of epithermal neutrons causing fission than 

traditional light water reactors because it consists of hydride moderating material. Understanding 

how these epithermal neutrons interact with the reactor materials is essential for feasibility and 

safety of the design. As a result, there is a need to design a representative nuclear experiment for 

the Snowflake microreactor concept. The term unit cell in this paper is referred to as a 

combination of 12 fuel cylinders, 9 heat pipes (7 whole heat pipes and 6 one-third heatpipes), 

and 3 ovals of moderating material (6 half ovals) as shown in Figure 2.4 for the Snowflake 

conceptual design. These unit cells can be put together to form a full-scale reactor of different 

sizes to meet mission-specific needs as seen in Figure 2.5. Individual materials are described in 

more detail in Section 2. Instead of using partial components for the microreactor experiments, 

as would be the case if using only a single Snowflake design unit cell, the whole component is 

included as shown in the dashed line in Figure 2.4 below. This means the experiments will 

include 12 fuel cylinders, 13 heat pipes, and 6 ovals of moderating material. 
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Figure 2.4. Snowflake unit cell 

 

The full-scale microreactor Snowflake concept can also be fitted with shutdown regions 

near the center of the core that can allow shutdown rods filled with boron carbide to enter in case 

of emergency or while the microreactor is in transport. 
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Figure 2.5. Conceptual full-scale Snowflake microreactor with control drums and shielding 
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Section 2.3. Heat pipes 

Heat-pipe microreactors rely on heat pipes as the primary heat transfer mechanism from 

the core to the heat sink. Heat pipes are self-contained rods with condenser and evaporator 

regions that take advantage of the large amounts of energy needed to conduct a fluid phase 

transition to gas. A schematic of a heat pipe can be seen in Figure 2.6 below.  

 

 

Figure 2.6. Capillary heat pipe design [15] 
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The first capillary heat pipes were developed at Los Alamos National Laboratory during 

the 1960s with the intention of using them in space reactors. Capillary heat pipes utilize a wick to 

separate the two-phase fluids (liquid and gas). Heat pipe microreactors can be designed to 

operate at higher temperatures (500C to 1800C) than traditional light water reactors since heat 

pipes can handle high temperatures as long as the appropriate working fluid inside the heat pipe 

is chosen. The Snowflake design uses sodium heat pipes as the primary heat transfer mechanism.  

Limitations of heat pipes include the operating region shown in Figure 2.7 below. As 

long as the design allows for sufficient safety margin to remain within the operating region, heat 

pipes are highly reliable. Heat pipes are also a passive device, relying on the physics of phase 

transition, thermal conduction, and flow to operate. A heat-pipe microreactor can contain 

hundreds of heat pipes. To ensure sufficient safety margin, three adjacent heat pipes in the most 

vulnerable region of the reactor (i.e., the hottest region) are simulated to fail (will no longer draw 

heat from the core); if the remaining operating heat pipes can continue to output sufficient heat 

without failing, then sufficient safety margin is built into the system.  
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Figure 2.7. Operating region for a heatpipe [15] 

 

 Gas cooling provides an alternative heat transfer mechanism commonly proposed for 

microreactors. Gas-cooled microreactors take a cooled gas, such as helium, and flow the gas 

through channels with a pump. Potential challenges associated with gas cooling include, but are 

not limited to, gas leaks and pump failures which both lead to a loss in cooling ability of the 

system. While gas-cooled systems have exemplary cooling capabilities and favorable neutronic 

properties, heat pipes are chosen as the preferable heat transfer mechanism for the Snowflake 

microreactor design due to their passive cooling abilities and reliability over time. These heat 

pipe properties are best suited for microreactor systems that plan on being in remote regions 

where repairs will be more difficult to conduct.   
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Section 2.4. Moderators 

For neutron moderation, the Snowflake design utilizes yttrium-hydride. Yttrium-hydride 

is a metal hydride that is a promising moderator candidate for microreactors due to its high 

hydrogen retention at temperatures up to 1000C as seen in Figure 2.8 below [17]. The use of 

yttrium hydride allows for reactor operation at higher temperatures, which allows for additional 

thermodynamic efficiencies when converting thermal energy into electrical energy. Furthermore, 

the use of a moderator allows for microreactors to retain their small size while only using high-

assay, low-enriched uranium fuels instead of high-enriched uranium by slowing neutrons down 

and increasing the probability of fission. 

 

 

Figure 2.8. Hydrogen density with increasing temperatures of various materials [17] 
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A limitation to yttrium hydride is its positive temperature reactivity coefficient by itself 

in uranium systems due to changes in the neutron energy spectrum and competing effects of the 

cross sections present [17]. As yttrium hydride increases in temperature, its temperature 

reactivity coefficient remains positive, which means increasing the temperature of yttrium 

hydride will increase its reactivity worth [18]. This positive temperature reactivity coefficient 

(TRC) limitation of yttrium hydride is crucial to take into consideration since the overall reactor 

needs to have a negative temperature reactivity coefficient in order to implement negative 

feedback; as temperature increases, reactivity should decrease. The alternative is positive 

feedback (i.e., increasing reactivity with increasing temperature) which is a safety problem 

because increasing reactivity will increase temperature due to additional fission heating that will 

continue until the system overheats. Therefore, the fuel and other reactor materials must have 

sufficient negative temperature reactivity coefficients to cancel out the yttrium hydride effects. 

Further research must be conducted to assess if yttrium hydride would create localized regions 

that have a positive TRC and what effect, if any, this would have on the stability and 

controllability of the reactor system. 

The primary moderating component of the yttrium hydride is the hydrogen. Since a 

hydrogen nucleus (a proton) is nearly the same size/mass as a neutron, a single neutron scatter 

off of the hydrogen nucleus may thermalize the neutron significantly as a result of fundamental 

kinematics and momentum transfer [13]. When studying the hydrogen cross section as seen in 

Figure 2.9, the hydrogen elastic scattering cross section follows the total cross section fairly 

closely, i.e., the neutron mostly interacts with hydrogen via scatter. Also plotted are the yttrium 

cross sections which are lower than the hydrogen cross sections except for some capture cross 

section resonances in the epithermal neutron energy ranges and some (n, 2n) and inelastic 
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scattering interactions at fast neutron energies. All cross sections are plotted with uncertainty, if 

the data is available. 

 

 

Figure 2.9. Hydrogen and yttrium cross sections [18] 

 

Snowflake also employs a graphite monolith for both structure and neutron moderation 

ability. Graphite has a high melting temperature of 3600C, making it a suitable material for 

high-temperature microreactors. Graphite is also a well understood reactor material than can be 

manufactured at large scales and cheap costs. Figure 2.10 plots the primary graphite cross 

sections; the most dominant cross section is the elastic neutron scattering cross section at lower 

neutron energies up to a little over 100 [MeV] neutron energies, which are quite rare. The 

parasitic absorption (gamma capture) cross section is so low, it does not appear with the given 
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cross section scale. The low parasitic absorption cross section and the high elastic scattering 

cross section makes graphite a good moderating material. 

 

 

Figure 2.10. Graphite cross sections [18] 
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Section 2.5. Fuel 

Snowflake can employ any fuel type to meet the design need; for this research, 

Snowflake is fitted with High-Assay, Low-Enriched Uranium (HALEU) Oxycarbide (UCO) 

TRi-structural ISOtropic (TRISO) fuel. HALEU fuel is low-enriched uranium which, by 

regulation, must contain less than 20% uranium-235 in the uranium by mass percentage. 

Additionally, HALEU is high-assay, which means that HALEU is typically enriched between 

19.0%-19.9% uranium-235 mass percentage, a fraction that is much higher than traditional low-

enriched uranium used in light water reactors (typically between 3%-5% uranium-235). HALEU 

fuel is typically proposed for microreactors in order to achieve a longer reactor lifetime without 

the need to refuel. Furthermore, HALEU fuel has a lower proliferation risk compared to highly-

enriched fuel. The fuel used for this particular Snowflake design is also TRISO fuel. TRISO fuel 

is composed of several TRISO kernels that are tiny; about the size of a poppy seed [20]. These 

TRISO kernels are compacted together with graphite to form a cylindrical fuel pellet.  

One computational challenge is modeling these TRISO kernels explicitly in MCNP. 

Since MCNP utilizes surface tracking for neutron transport, there is a significant computation 

slowdown when tracking neutrons in TRISO regions. One way to reduce the computational 

burden is to homogenize the TRISO fuel via the Reactivity equivalent Physical Transformation 

(RPT) method. The RPT method creates an inner, homogenized TRISO fuel region surrounded 

by a graphite ring as shown in Figure 2.11. The dimensions of the two regions are varied to 

match reactivity while keeping masses constant; many studies have been conducted to show that 

reaction rates and depletion with the RPT homogenization method match the explicit modeling 

of TRISO kernels [21]. Another method to speed up the simulation would be to employ delta 

tracking in MCNP; at the writing of this thesis, however, delta tracking has not been developed 
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for MCNP as of the latest release of MCNP6.2. As a result, the RPT method is employed to 

allow for rapid modeling and simulation.  

 

 

Figure 2.11. TRISO fuel homogenized via RPT method 

 

 The primary fissile nuclide of interest here is uranium-235; Figures 2.12 and 2.13 plot the 

uranium-235 cross sections with at different neutron energies. In moderated systems, the goal is 

to thermalize the neutrons as much as possible in order to take advantage of the higher fission 

cross section at lower neutron energy levels. The most significant competing cross section in the 

uranium-235 is the parasitic absorption (gamma capture) cross section. This cross section is 

lower than the fission cross section except for the occasional resonance in the epithermal neutron 

energies.  
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Figure 2.12. Uranium-235 cross sections, most neutron energies [18] 

 

 

Figure 2.13. Uranium-235 cross sections, epithermal neutron energies [18] 
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Section 2.6. Beryllium Oxide Reflector, Control Drums, and Shielding 

 Beryllium oxide (BeO) is ceramic compound with attractive neutronic and thermal 

properties. The beryllium in the compound can act as a neutron moderator or reflector; the elastic 

scatter and the (n, 2n) nuclear reaction, where a neutron absorbed will release two neutrons, both 

play a significant role in the neutronics of the system. The cross sections for beryllium-9 are 

plotted in Figure 2.9 below.  

 

 

Figure 2.14. Beryllium-9 cross sections [18] 

 

Additionally, beryllium oxide has a high thermal conductivity relative to non-metals, 

only beaten by diamond [21]. For the Snowflake design, beryllium oxide acts as a neutron 

reflector, both radially and axially.  
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 Traditionally, light water reactors utilize control rods that are inserted into the core 

axially from the top or bottom and contain boron carbide (B4C). Microreactors designs tend to 

utilize control drums which are placed along the circumference of the core and rotate boron 

carbide slices for reactivity control. The Snowflake design utilizes control drums for reactivity 

control as shown in Figure 2.5. The portion of the control drums that do not contain boron 

carbide have beryllium oxide. Control drums are rotated with engines; when the boron carbide 

slices are pointed outward in the maximum reactivity position, the slices also act as a neutron 

shield. Some microreactor designs may include regions for shutdown rods that contain boron 

carbide and may be inserted in case of needed negative reactivity in accident scenarios. A 

common accident scenario is a fully flooded reactor; to pass safety checks, the fully flooded 

reactor must be sufficiently subcritical when all of the shutdown mechanism are in place. 

 Microreactor designs typically have to consider the environment they will be operating in 

with regards to shielding. For space applications, weight plays an important role in determining 

shield materials. For terrestrial applications, cost may play a larger role for shield materials. For 

the Snowflake design, shielding material is flexible depending on the mission need. For this 

design, boron carbide is used as a neutron shield and tungsten is used as a gamma shield. 
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Chapter 3 – Physics Codes and Theory 

Section 3.1. MCNP  

 MCNP (Monte Carlo N Particle) code is a stochastic radiation-transport code developed 

and maintained by Los Alamos National Laboratory. The Monte Carlo method simulates 

particles (neutrons, for this application) in a geometry specified by the user. The neutrons have a 

velocity and travel surface to surface during which a collision with the materials’ nuclei may 

occur. The probability of a collision will depend on the nuclei cross section, a property that 

represents the cross-sectional area of the nucleus. Each possible reaction between the neutron 

and the nucleus can be represented as a cross section, with the sum of all possible cross sections 

represented as the total cross section (𝜎𝑡) of the nucleus. The Monte Carlo method takes multiple 

neutrons in a geometry and randomly selects numbers; the chosen numbers determine if a 

collision occurs which is similar to the randomness found in a casino in Monte Carlo, Monaco. 

Some common cross sections include the scatter (𝜎𝑠), fission (𝜎𝑓), and capture (𝜎𝛾) cross 

sections. Neutrons can also “leak,” i.e., escape from the geometry.  

Cross sections are strongly dependent on the energy of the incident neutron. The cross 

sections for significant materials that will affect the system’s neutronics are present in Chapter 2. 

Note that the cross section is reported in units of [b] or [barns] which is equivalent to 1E-24 

[cm2]; barns are useful for small nuclei cross sectional areas. Neutron energy is reported in units 

of [MeV] or 106 [eV]; electron volts is the measure of the kinetic energy gained when 

acceleration one electron through a 1 [V] or [Volt] potential. Electron volts are useful units of 

energy for particles and is equivalent to about 1.6022E−19 [J] or [Joules]. MCNP samples cross 

sections from nuclear data libraries, such as the Evaluated Nuclear Data File (ENDF) by the 

National Nuclear Data Center.  
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Cross sections are also material temperature dependent; commonly, cross sections 

experience Doppler broadening as temperatures increase. An example of Doppler broadening can 

be seen in Figure 3.1 where the cross-section resonance is flattened with increasing temperature. 

In MCNP, the effects of temperature on cross sections are factored in by specifying material 

temperatures in the input deck. 

 

 
 

Figure 3.1. Doppler broadening of a cross section with increasing temperature [22] 

 

 As neutrons interact with the specified geometry and materials, several histories are taken 

and averaged to generate the most likely answer based on statistics. The central limit theorem in 

statistics states that in many situations with a variety of independent random variables will tend 

toward a normal distribution even if the independent variables themselves are not normally 

distributed. This means that every output from MCNP is the average result of the several 

hundreds of simulations and typically come with a standard deviation to denote the spread of the 

result. One commonly generated result is the effective multiplication factor (𝑘𝑒𝑓𝑓). Conceptually, 
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the effective multiplication factor is the ratio of the current fission neutron population to the 

previous generation of fission neutron population. So, a 𝑘𝑒𝑓𝑓  = 1 would be a critical system, 

where the fission neutrons are stable and able to replace themselves with each generation over 

time. A 𝑘𝑒𝑓𝑓  > 1 represent a supercritical system where the neutron population continues 

growing with each generation by that factor and a  𝑘𝑒𝑓𝑓  < 1 is a subcritical system where the 

neutron population decreases each generation by that factor. MCNP computes three 𝑘𝑒𝑓𝑓  values 

via different methods: the collision estimate, the absorption estimate, and the track length 

estimate. MCNP computes the final 𝑘𝑒𝑓𝑓  based on the combined 𝑘𝑒𝑓𝑓  values [3]. The steady-

state, i.e., time-independent 𝑘𝑒𝑓𝑓  value is computed in MCNP with the KCODE input line.  
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Section 3.2. The Neutron Transport Equation  

 The neutron transport equation describes the motion and interaction of neutrons in a 

system, such as a nuclear reactor. The equation is a form of the Boltzmann transport equation 

that uses the probability distribution of various neutron-nuclei interactions and neutron behaviors 

to describe the system. The time-dependent neutron transport equation can be seen as a balance 

equation, where the gains and losses of neutrons are accounted for with each term as seen in 

equation (1) below [23].  

 

(
1

𝑣(𝐸)

𝜕

𝜕𝑡
+ Ω̂ ∙ ∇ +  Σ𝑡(𝑟, 𝐸, 𝑡))  𝜓(𝑟, 𝐸, Ω̂, 𝑡)

=
𝜒𝑝(𝐸)

4𝜋
∫ 𝑑Ω′

4𝜋

∫ 𝑑𝐸′
∞

0

 𝜐𝑝(𝐸′) Σ𝑓(𝑟, 𝐸′, 𝑡) 𝜓(𝑟, 𝐸′, Ω̂′, 𝑡)

+ ∑
𝜒𝑑𝑖(𝐸)

4𝜋
𝜆𝑖𝐶𝑖(𝑟, 𝑡)

𝑁

𝑖=1

+ ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0

 Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂, 𝑡) 𝜓(𝑟, 𝐸′, Ω̂′, 𝑡)

+ 𝑠(𝑟, 𝐸, Ω̂, 𝑡)  

( 1 ) 

Where: 

• 
1

𝑣(𝐸)

𝜕𝜓(𝑟,𝐸,Ω̂,𝑡)

𝜕𝑡
 = neutron flux density with respect to time 

o 𝑣(𝐸) = neutron velocity with respect to neutron energy 𝐸 

o 𝜓(𝑟, 𝐸, Ω̂, 𝑡) = angular neutron flux with respect to volume 𝑟, neutron energies 𝐸, 

solid angle Ω̂, and time 𝑡 

• Ω̂ ∙ ∇𝜓(𝑟, 𝐸, Ω̂, 𝑡) = neutron leakage rate 

o ∇ = divergence = (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
)   
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• Σ𝑡(𝑟, 𝐸, 𝑡) 𝜓(𝑟, 𝐸, Ω̂, 𝑡) = total neutron collision rate 

o Σ𝑡(𝑟, 𝐸, 𝑡) = macroscopic total cross section =  𝒩(𝑟, 𝑡) σ𝑡(𝑟, 𝐸, 𝑡) 

▪ 𝒩(𝑟, 𝑡) = atom density of the material = 
𝑁𝐴 𝜌(𝑟,𝑡)

𝑀
 

▪ 𝑁𝐴 = Avogadro’s constant 

▪ 𝜌(𝑟, 𝑡) = material density 

▪ 𝑀 = material molar mass 

• 
𝜒𝑝(𝐸)

4𝜋
∫ 𝑑Ω′

4𝜋
∫ 𝑑𝐸′

∞

0
 𝜐𝑝(𝐸′) Σ𝑓(𝑟, 𝐸′, 𝑡) 𝜓(𝑟, 𝐸′, Ω̂′, 𝑡) = prompt fission neutron 

generation rate 

o 𝜒𝑝(𝐸) = prompt fission neutron energy distribution 

o 𝐸′ = incident neutron energy 

o 𝜐𝑝(𝐸′) = average number of neutrons per fission 

o Σ𝑓(𝑟, 𝐸′, 𝑡) = fission macroscopic cross section 

• ∑
𝜒𝑑𝑖(𝐸)

4𝜋
𝜆𝑖𝐶𝑖(𝑟, 𝑡)𝑁

𝑖=1  = delayed neutron generation rate 

o 𝜒𝑑𝑖(𝐸) = delayed neutron energy distribution 

o 𝜆𝑖 = decay constant for precursor 𝑖 

o 𝐶𝑖(𝑟, 𝑡) = total number of precursor 𝑖 

• ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0
 Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂, 𝑡) 𝜓(𝑟, 𝐸′, Ω̂′, 𝑡) = scattering neutron rate 

o Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂, 𝑡) = macroscopic scattering cross section for neutrons with 

respect to volume 𝑟, for neutrons scattering from incident energy 𝐸′ to energy 𝐸, 

in incident solid angle Ω′̂ to solid angle Ω̂, time 𝑡 

• 𝑠(𝑟, 𝐸, Ω̂, 𝑡) = source neutron generation rate; external source 
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There are neutron transport equation introduces several new variables that are important 

for understanding nuclear systems. First is the angular neutron flux, 𝜓(𝑟, 𝐸, Ω̂, 𝑡). To 

conceptually understand this term, it is useful to visualize a differential volume 𝑑𝑟 = 

𝑑𝑥 ×  𝑑𝑦 ×  𝑑𝑧 in the cartesian coordinate system. The angular neutron flux, 𝜓(𝑟, 𝐸, Ω̂, 𝑡), in 

this differential volume, is the sum of the neutron track lengths of differential neutron energies 

𝑑𝐸, in a differential time span 𝑑𝑡, heading in the direction of differential solid angle 𝑑Ω.  

Another important variable that is introduced in the neutron transport equation is the 

prompt fission neutron energy distribution, 𝜒𝑝(𝐸), which describes the at what energy fission 

neutrons tend to be born. This distribution can be approximated by the Watt distribution, which 

is plotted in Figures 3.2 and 3.3 below and visualized with Python’s Matplotlib [24, 25].  

 

 

Figure 3.2. Watt fission neutron spectrum on a logarithm-linear axis 
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Figure 3.3. Watt fission neutron spectrum on a logarithm-logarithm axis 

 

 The fission neutron spectra, for both prompt and delayed neutrons, reveal that most 

neutrons are born fast (greater than 100 keV). This fact is essential in understanding nuclear 

systems; it takes additional work to design a nuclear system that efficiently thermalizes neutrons. 

The neutron transport equation can be simplified to a time-independent (steady-state), no 

source equation as seen in Equation (2): 
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Ω̂ ∙ ∇𝜓(𝑟, 𝐸, Ω̂) + Σ𝑡(𝑟, 𝐸) 𝜓(𝑟, 𝐸, Ω̂)  

=
1

𝑘

𝜒(𝐸)

4𝜋
∫ 𝑑Ω′

4𝜋

∫ 𝑑𝐸′
∞

0

 𝜈(𝐸′) Σ𝑓(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω′̂)

+  ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0

 Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂) 𝜓(𝑟, 𝐸′, Ω̂′) 

( 2 ) 

Note that a new term, 𝑘, has been introduced. The term 𝑘 is the multiplication factor and 

is meant to balance the two sides of the equation. This will conceptually make sense when the 

equation is rearranged by subtracting the neutron scattering rate from both sides as shown in 

Equation (3). Since Σ𝑡 = Σ𝑎 + Σ𝑠, we can extract the neutron absorption rate by subtracting the 

scattering rate from the total collision rate term.  

 

Ω̂ ∙ ∇𝜓(𝑟, 𝐸, Ω̂) +  ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0

Σ𝑎(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω̂′)  

=
1

𝑘

𝜒(𝐸)

4𝜋
∫ 𝑑Ω′

4𝜋

∫ 𝑑𝐸′
∞

0

 𝜈(𝐸′) Σ𝑓(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω̂′) 

( 3 ) 

Where: 

• ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0
 Σ𝑎(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω̂′) = absorption neutron rate 

o Σ𝑎(𝑟, 𝐸′) = macroscopic absorption cross section for neutrons with respect to 

volume 𝑟, for neutrons of incident energy 𝐸′ 

 

The left side of this form of the equation represents the neutron losses in the system i.e. 

the neutron leakage rate term plus the neutron absorption rate term. The right side of the equation 



 35 

represents the neutron gains in the system i.e. the neutron fission rate term. The losses and gains 

of a system will not always be equivalent; a nuclear reactor can be subcritical (neutron losses 

greater than neutron gains) or supercritical (neutron gains greater than neutron losses). Hence, a 

balancing term, such as the multiplication factor 𝑘, is required. Note that if the system is 

subcritical (𝑘 < 1), then the right side of the equation is increased to balance the equation. The 

same is true when the system is supercritical (𝑘 > 1); the right side of the equation is decreased to 

match the left side. If the system is perfectly critical (𝑘 = 1), then the losses equal the gains; the 

equations are balanced.  

The equation can be rearranged to solve for the multiplication factor, 𝑘, as shown in 

Equation (4). 

 

 𝑘 =

𝜒(𝐸)
4𝜋 ∫ 𝑑Ω′

4𝜋
∫ 𝑑𝐸′

∞

0
 𝜈(𝐸′) Σ𝑓(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω̂′)

Ω̂ ∙ ∇𝜓(𝑟, 𝐸, Ω̂) + ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0
Σ𝑎(𝑟, 𝐸′) 𝜓(𝑟, 𝐸′, Ω̂′) 

  

( 4 ) 

 Conceptually, this tells us the multiplication factor is the ratio of the neutron fission rate 

(gains) and the neutron loss rate (losses). Equation Y can also be conveyed in operator notation 

as shown in Equation (5). 

 

𝑴𝜓 = 𝑘−1𝑭𝜓 

( 5 ) 

Where 𝑴 represents the neutron loss operator and 𝑭 represents the integral fission 

operator or neutron gain operator. This operator notation will be useful when delving into first-

order perturbation theory and deriving the adjoint-based sensitivity coefficient.   
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Section 3.3. Sensitivity Coefficients and First-Order Perturbation Theory 

 Sensitivity coefficients, 𝑆𝑘,𝑥, describe the sensitivity of a system’s effective 

multiplication factor, 𝑘𝑒𝑓𝑓 , to a perturbation of nuclear data, 𝑥, at all incident neutron energies, 

𝐸′. Sensitivity coefficients are defined via equation (6). 

 

𝑆𝑘,𝑥 =
𝑥

𝑘

𝜕𝑘

𝜕𝑥
 

( 6 ) 

 Conceptually, the stochastic sensitivity coefficient can be understood by example and by 

inserting a nuclear data parameter in place of 𝑥, such as the fission cross section 𝜎𝑓. For example, 

a small change in 𝜎𝑓 due to a small reactivity insertion that leads to a large change in the 

multiplication factor, 𝑘, would lead to a large sensitivity coefficient, i.e., the system is sensitive 

and strongly affected by a change in the fission cross section. The inverse is also true; a large 

change in 𝜎𝑓 with a small change in 𝑘 would lead to a small sensitivity coefficient i.e. the system 

is insensitive to changes to the material property. 

 The stochastic sensitivity coefficient is, in theory, a robust method to generate sensitivity 

coefficients. However, the stochastic method is computationally expensive since a simulation 

would need to be conducted for every nuclear data parameter. An alternative way to accurately 

estimate the sensitivity coefficient is possible via first-order perturbation theory.  

 The following derivation will demonstrate how first-order perturbation theory can 

estimate the sensitivity coefficient. First-order perturbation theory in neutronics studies the first-

order effects of small changes to a system. When taking a look at the variables from the neutron 

transport equation in operator form, this translates to the set of equation (7) below: 
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𝜓 = 𝜓0 + ∆𝜓 + (∆𝜓)2 + ⋯ 

 

𝑴 = 𝑴𝟎 + ∆𝑴 +(∆𝑴)2 + ⋯ 

 

𝑘−1 = 𝑘0
−1 + ∆𝑘−1 +(∆𝑘)2 + ⋯   

 

𝑭 = 𝑭𝟎 + ∆𝑭 +(∆𝑭)2 + ⋯ 

( 7 ) 

 Where 𝜓 is the perturbed neutron flux, 𝜓0 is the unperturbed neutron flux, ∆𝜓 is the first-

order change in neutron flux, ∆𝜓2 is the second-order change in neutron flux, 𝑴 is the perturbed 

neutron loss operator, 𝑴𝟎 is the unperturbed neutron loss operator, ∆𝑴 is the first-order change 

in neutron loss operator, ∆𝑴𝟐 is the second-order change in neutron loss operator, 𝒌 is the 

perturbed multiplication factor, 𝑘0 is the unperturbed multiplication factor, ∆𝑘 is the first-order 

change in the multiplication factor, ∆𝑘2 is the second-order change multiplication factor, 𝐹 is the 

perturbed neutron gain operator, 𝑭𝟎 is the unperturbed neutron gain operator, ∆𝑭 is the first-

order change in neutron gain operator, and ∆𝑭𝟐 is the second-order change in neutron gain 

operator. Note that the second-order and higher effects of each definition are neglected due to the 

first-order approximation.  

 Now that we have the definitions for the perturbed terms, we can define the perturbed and 

unperturbed forms of the neutron transport equation in operator notation in equation (8). 

 

𝑴𝜓 = 𝑘−1𝑭𝜓 
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𝑴𝟎𝜓0 = 𝑘0
−1𝑭𝟎𝜓0 

( 8 ) 

By expanding the perturbed neutron transport equation in operator notation, we get 

equation (9): 

 

(𝑴𝟎 + ∆𝑴)(𝜓0 + ∆𝜓) = (𝑘0
−1 + ∆𝑘−1)(𝑭𝟎 + ∆𝑭)(𝜓0 + ∆𝜓) 

( 9 ) 

Further expanding the equation leads to second-order terms that are able to be eliminated 

due to the first-order approximation as seen in the equations (10) below. 

 

𝑴𝟎𝜓0 + 𝑴𝟎∆𝜓 + ∆𝑴𝜓0 + ∆𝑴∆𝜓 = (𝑘0
−1𝑭𝟎 + 𝑘0

−1∆𝑭 + ∆𝑘−1𝑭𝟎 + ∆𝑘−1∆𝑭) (𝜓0 +

∆𝜓) 

 

𝑴𝟎𝜓0 + 𝑴𝟎∆𝜓 + ∆𝑴𝜓0 = 𝑘0
−1𝑭𝟎𝜓0 + 𝑘0

−1∆𝑭𝜓0 + ∆𝑘−1𝑭𝟎𝜓0 + 𝑘0
−1𝑭𝟎∆𝜓 + 𝑘0

−1∆𝑭∆𝜓 +

∆𝑘−1𝑭𝟎∆𝜓 

( 10 ) 

 By taking the definition of the unperturbed neutron transport equation, the equation can 

be further reduced to equation (11) below: 

 

𝑴𝟎𝜓0+ 𝑴𝟎∆𝜓 + ∆𝑴𝜓0 = 𝑘0
−1𝑭𝟎𝜓0 + 𝑘0

−1∆𝑭𝜓0 + ∆𝑘−1𝑭𝟎𝜓0 + 𝑘0
−1𝑭𝟎∆𝜓 

( 11 ) 

 Shifting the terms leads to equation (12). 
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−∆𝑘−1𝑭𝟎𝜓0 = (𝑘0
−1∆𝑭 − ∆𝑴)𝜓0 + (𝑘0

−1𝑭𝟎−𝑴𝟎)∆𝜓  

( 12 ) 

 In order to further manipulate the equations, the property of adjoints will be utilized as 

shown in equation (13) below. The properties of adjoints will play an important role in 

eliminating the change in perturbed flux term, ∆𝜓, which is typically an expensive computation.  

 

〈𝜓†, 𝑭𝜓〉 = 〈𝜓, 𝑭†𝜓†〉 

( 13 ) 

 Where 𝜓† is the adjoint neutron flux, 𝑭† is the adjoint neutron gain operator, and 〈∗,∗〉 

denotes an inner product. Mathematical operators have adjoints that must satisfy this property; 

adjoints can be the term itself (self-adjoint), a negative of a derivative term, a transpose of a real 

matrix, etc. as long as the definition in equation 13 is satisfied. This leads to the adjoint neutron 

transport equation as shown in equation (14) [26]: 

 

𝑴†𝜓† = 𝑘−1𝑭†𝜓† 

( 14 ) 

Note that the multiplication factor is self-adjoint as shown in equation (15). 

 

1

𝑘

†

=  
1

𝑘
 

( 15 ) 

A conceptual interpretation of the adjoint flux in neutronics is that the adjoint flux 

represents the neutron “importance,” i.e., how consequential the neutron is to the overall system. 

The conceptual interpretation is often paired with the interpretation of the adjoint neutron 
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transport simulation as a “backward simulation.” This interpretation makes more sense when 

understanding how MCNP calculates the adjoint flux via the Iterated Fission Probability method 

[27].  

The iterated fission probability method tracks neutrons and their “generations” i.e. 

neutrons born from the “parent” neutron. After several generations and the fundamental mode of 

the neutron flux is converged, the fraction of current generation neutrons that arose due to the 

first-generation neutron dictates the “importance” of that neutron. Neutrons that led to a large 

percentage of present generation neutrons are more important than neutrons that leaked entirely 

after a generation or two. MCNP uses this method to calculate the adjoint flux. Since MCNP is 

already generating the data of neutron histories, the biggest computational cost to the method is 

storing the information of several neutron generations in memory. MCNP employs the iterated 

fission probability method via the KSEN input line.  

The adjoint can further be explained by taking a look at the explicit definitions of the 

neutron leakage terms as seen in equations (16). 

 

𝑴𝒍𝒆𝒂𝒌 𝜓 = Ω̂ ∙ ∇𝜓(𝑟, 𝐸, Ω̂) 

 

𝑴𝒍𝒆𝒂𝒌
†  𝜓† = −Ω̂ ∙ ∇𝜓†(𝑟, 𝐸, Ω̂) 

( 16 ) 

 The standard definition for neutron leakage conceptually represents the neutrons 

diffusing away from regions of high neutron concentration and will, accordingly, leak out of the 

boundaries per the positive divergence term. The lack of neutrons leads to neutrons being added 

to the region. The adjoint definition is the opposite; the lack of neutrons in the region will lead to 
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neutron importance dropping in the region as denoted by the negative sign. Conceptually, this 

makes sense; neutrons in high concentration regions tend to be in the center of the reactor system 

and will most likely have several generations contributing to the present neutron flux; neutrons 

close to the boundary, i.e., lower importance regions, have a higher chance of leaking and hence 

contributing less to the present neutron flux.  

The adjoint for the leakage term was a simple negative term, but as stated earlier, an 

adjoint can be the transpose of a matrix, as shown in equations (17) for the neutron scattering 

term. 

 

𝑴𝒔𝒄𝒂𝒕𝒕𝒆𝒓 𝜓 = ∫ 𝑑Ω′
4𝜋

∫ 𝑑𝐸′
∞

0
 Σ𝑠(𝑟, 𝐸′ → 𝐸, Ω̂′ → Ω̂) 𝜓(𝑟, 𝐸′, Ω̂′) 

 

𝑴𝒔𝒄𝒂𝒕𝒕𝒆𝒓
†  𝜓† = ∫ 𝑑Ω′

4𝜋
∫ 𝑑𝐸′

∞

0
 Σ𝑠(𝑟, 𝐸 → 𝐸′, Ω̂ → Ω̂′) 𝜓†(𝑟, 𝐸′, Ω̂′) 

( 17 ) 

 Normally, the scattering term cares about the incident neutron energy 𝐸′ which affects 

the macroscopic scattering cross section, Σ𝑠 and the likelihood of scattering into final energy 𝐸. 

The adjoint scattering term is backwards; the adjoint term is interested in the final neutron 

energy, 𝐸, and the likelihood that it was scattered from some incident neutron energy, 𝐸′. The 

same applies to the incident solid angle variable.  

 Returning to the first-order perturbation neutron transport equations, we can take 

advantage of the properties of adjoints via equation (18) by multiplying equation (12) with the 

unperturbed adjoint neutron flux and taking the inner product. 
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−∆𝑘−1⟨𝜓0
†, 𝑭𝟎𝜓0⟩ = ⟨𝜓0

†,  (𝑘0
−1∆𝑭 − ∆𝑴)𝜓0⟩ + ⟨𝜓0

†,  (𝑘0
−1𝑭𝟎 − 𝑴𝟎)∆𝜓⟩ 

( 18 ) 

By utilizing the properties of adjoints, we find that the highlighted portion of the previous 

equation is equivalent to equation (19): 

 

⟨𝜓0
†,  (𝑘0

−1𝑭𝟎 − 𝑴𝟎)∆𝜓⟩ = ⟨∆𝜓,  (𝑘0
−1𝑭𝟎

† − 𝑴𝟎
†)𝜓0

†⟩ 

( 19 ) 

 Per the definition of the unperturbed adjoint neutron transport equation, the highlighted 

portion is equivalent to zero as seen in equation (20) which leads to equation (21).  

 

𝑴𝟎
†𝜓0

† = 𝑘0
−1𝑭𝟎

†𝜓0
†
 

( 20 ) 

−∆𝑘−1⟨𝜓0
†, 𝑭𝟎𝜓0⟩ = ⟨𝜓0

†,  (𝑘0
−1∆𝑭 − ∆𝑴)𝜓0⟩ 

( 21 ) 

 Solving −∆𝑘−1 yields equations (22) [27]: 

 

−∆𝑘−1 = 
⟨𝜓0

† , (𝑘0
−1∆𝑭−∆𝑴)𝜓0⟩

⟨𝜓0
†,𝑭𝟎𝜓0⟩

 

 

∆𝑘 = −
⟨𝜓0

†, (∆𝑴 − 𝑘0
−1∆𝑭)𝜓0⟩

⟨𝜓0
† , 𝒌𝟎

−𝟐𝑭𝟎𝜓0⟩
 

( 22 ) 

We can take the differential with respect to the change in material property, Σ𝑥 , of the 

change in reactivity to get equation (23): 
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𝜕𝑘

𝜕𝑥
= −

⟨𝜓0
†, (

𝜕𝑴

𝜕Σ𝑥
 − 𝑘0

−1 𝜕𝑭

𝒅Σ𝑥
)𝜓0⟩

⟨𝜓0
†, 𝒌𝟎

−𝟐𝑭𝟎𝜓0⟩
 

( 23 ) 

 Multiplying by the ratio of the material property and the multiplication factor yields 

equation (24): 

 

  𝑆𝑘,𝑥 =
𝑥

𝑘

𝜕𝑘

𝜕𝑥
≅ −

Σ𝑥 ⟨𝜓0
†, (

𝜕𝑴

𝜕Σ𝑥
 − 𝑘0

−1 𝜕𝑭

𝒅Σ𝑥
)𝜓0⟩

⟨𝜓0
†, 𝒌𝟎

−𝟏𝑭𝟎𝜓0⟩
 

( 24 ) 

 This derived definition of the sensitivity coefficient from first-order perturbation theory is 

can be further manipulated to match the MCNP estimation of the sensitivity coefficient as shown 

in equation (25) which uses the iterated fission probability method [28].   

 

𝑆𝑘,𝑥 ≅ −
〈𝜓†, (Σ𝑥 − 𝒦𝑥 − 𝑘−1ℱ𝑥) 𝜓〉

〈𝜓†,   ℱ𝜓〉
 

( 25 ) 

Where 𝜓† is the adjoint flux, ℱ is the fission operator of the whole system, 𝜓 is the flux, 

〈∗,∗〉 denotes an inner product, Σ𝑥 is the macroscopic interaction, 𝒦𝑥 is the scattering operator, 

and ℱ𝑥 is the fission operator of nuclear data 𝑥. This definition is how MCNP calculates the 

sensitivity coefficient via the KSEN input line. The adjoint-based sensitivity coefficient is an 

accurate approximation when uncertainty in nuclear data is low and the perturbation made on the 

data is small.  
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Section 3.4. Correlation Coefficients and Whisper 

When comparing the neutronic similarity between two systems, sensitivity coefficients 

are essential, since they will provide the sensitivity to nuclear data over all incident neutron 

energies. Another important characteristic when comparing to nuclear systems is the amount of 

shared nuclear data uncertainty. A method of folding together both the sensitivity coefficients 

and the nuclear data uncertainty is the correlation coefficient for the effective multiplication 

factor as defined in equation (26) with the covariance with respect to multiplication factor 

defined in equation (27). 

 

𝑐𝑘(𝐴, 𝐵) =
𝐶𝑜𝑣𝑘(𝐴, 𝐵)

√𝑉𝑎𝑟𝑘(𝐴) √𝑉𝑎𝑟𝑘(𝐵)
 

( 26 ) 

𝐶𝑜𝑣𝑘(𝐴, 𝐵) = 𝑆𝐴𝐶𝑥𝑥𝑆𝐵
𝑇 

( 27 ) 

Where 𝐶𝑜𝑣𝑘(𝐴, 𝐵) is the covariance in the multiplication factor, 𝑘, for some two systems 

𝐴 and 𝐵, 𝑆𝐴 and 𝑆𝐵
𝑇 are the sensitivity row vectors of systems 𝐴 and 𝐵 respectively, 𝐶𝑥𝑥 is the 

nuclear data relative covariance matrix, 𝑇 is the transpose operator, 𝑐𝑘(𝐴, 𝐵) is the correlation 

coefficient for some two systems 𝐴 and 𝐵, and 𝑉𝑎𝑟𝑘(𝐴) and 𝑉𝑎𝑟𝑘(𝐵) are the variance in the 

multiplication factor, 𝑘, for systems 𝐴 and 𝐵 respectively.  

Whisper generates the correlation coefficients for a system with sensitivity coefficients 

generated from MCNP and existing benchmark experiments. Whisper sets negative correlations 

to zero, meaning 𝑐𝑘 can range from zero to one. A correlation of one, or 100%, is a perfect 

correlation and systems 𝐴 and 𝐵 would have identical sources of bias. As a rule of thumb, the 
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two systems should have a correlation coefficient of at least 0.80 to be considered neutronically 

similar with regards to their sources of biases [29]. 

By folding both the sensitivity coefficients and the nuclear data uncertainty, correlation 

coefficients are a robust method of comparing the neutronics of two systems. Conceptually, the 

correlation coefficient is the ratio of shared uncertainty in the multiplication factor between two 

nuclear systems. The correlation coefficient is particularly useful for guiding the design of an 

experiment. This can be done in Whisper by adding the full-scale nuclear reactor as a custom 

benchmark; any experiment design run through Whisper will get a correlation coefficient 

generated against the full-scale nuclear reactor. If an experiment for a microreactor is designed to 

maximize the correlation coefficient, then this means that any discrepancy between the modeling 

and simulation of the experiment and the experiment data will give insights on any potential 

discrepancy when modeling and simulating the full-scale microreactor system.  
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Chapter 4 - Methodology 

Section 4.1. Experimental Facility  

 To conduct a nuclear experiment, a facility that has existing safety basis authorization, 

procedures, and critical assemblies with trained personnel in place will be necessary. In order to 

create a model that takes experimental limitations into account, the National Criticality 

Experiments Research Center is chosen as the potential site to conduct these conceptual 

experiments. Taking into account realistic experimental conditions is necessary to ground 

conceptual models to reality and increase the likeliness of the model becoming a reality.  

 At the National Criticality Experiments Research Center, a precise vertical lift machine 

known as Comet is particularly well suited for microreactor experiments. Comet has a static 

structure with a platen in the center that moves up and down at precise intervals sensitive enough 

to slowly insert reactivity into a nuclear system as seen in Figure 4.1 [30]. 

 

 

Figure 4.1. Comet machine at the National Criticality Experiments Research Center [30] 
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 As with any facilities, there are limitations that the MCNP models will have to take into 

account. These limitations include but are not limited to: 

 

• Machine weight limitations for the platen (<2,000 pounds) and the structure (<20,000 

pounds) 

• Machine size limitations 

• Room size/dimensions 

• Maximum effective multiplication factor when the experiment is in the subcritical 

configuration 

• Activation of the structure and the room 

 

As a result of these limitations, nuclear experiments will have a much smaller space to 

operate in compared to their full-scale reactor counterparts. The smaller volume may necessitate 

the use of higher-enriched fuel to ensure sufficient reactivity is present.  

The smaller space and the use of higher-enriched fuel poses an important question: how 

do we know if the two systems are neutronically similar? After all, the higher-enriched fuel will 

interact differently with the neutrons of the system; a smaller volume will be more prone to 

neutron leakage. Correlation coefficients are one objective way to assess the neutronic similarity 

at all incident neutron energies between two systems and should be included in conjunction with 

other neutronic analyses. 
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Section 4.2. Proposed Microreactor Experiments 

 Several microreactor experiment designs are constructed in MCNP with two main 

intentions. First, to maximize the correlation coefficient generated with Whisper. Second, to 

study the effects of different configurations/materials on the correlation coefficient and study any 

patterns with regards to other neutronics characteristics. A single unit cell from the Snowflake 

core lattice is placed in the center region of the Comet assembly. The Snowflake unit cell is first 

surrounded by a hexagonal ring of moderator and then by an outer region containing moderator, 

heat pipes, and highly-enriched fuel in a graphite solid block. The entire experiment is 

surrounded by beryllium oxide that acts as a neutron reflector; this reflector will be raised up and 

down with the Comet platen to control reactivity since the experiment will be highly reliant on 

the neutron reflector as shown in Figure 4.2. 

 

 

Figure 4.2. Axial view of experiment, reactivity control via movement of reflector [3] 
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 The beryllium oxide removal can serve as a precise reactivity control tool since the platen 

can move vertically at precise intervals. The reactivity curve for the beryllium oxide reflector can 

be seen in Figure 4.3. with the reactivity of the system dropping the further the beryllium oxide 

reflector is withdrawn axially.  

 

 

Figure 4.3. Potential effective multiplication factor curve with respect to BeO removed [3, 31] 

 

 The goal of placing the Snowflake unit cell in the center region is to ensure the unit cell 

sees a sizeable share of the neutron flux. Conducting an experiment with the exact unit cell that 

would be placed in the full-size microreactor may also aid in the licensing process. A limitation 

to using the exact unit cell in the full-scale microreactor is the lack of flexibility; if the 

microreactor design is set in stone, this inner region of the experiment also has to stay constant. 
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Another limitation is that a single Snowflake unit cell does not have sufficient reactivity to go 

critical by itself. Hence, the outer region could be supplied with highly-enriched uranium nitride 

to ensure the experiment has sufficient reactivity.  

Since the outer region is not particular to any design, the outer region configuration and 

materials can be varied to maximize the correlation coefficient. The outer region provides a great 

set-up to study patterns that arise in the neutronics as a result of trying to maximize the 

correlation coefficient as is explored in this research. Experiment configurations, without the use 

of highly-enriched fuels, are also being investigated at Los Alamos National Laboratory but they 

are less flexible in their design due to the lower reactivity that comes from low-enriched uranium 

fuel and will therefore not be covered in this research. 

 Experiment v0, as shown in Figure 4.2 below, is the first microreactor experiment design 

and introduces the yttrium hydride pins in the exterior regions. Since yttrium hydride is the 

moderator material used in Snowflake, it is also used as a ring around the unit cell and within the 

outer region to thermalize neutrons from the driver fuel outside the unit cell. The critical 

experiment could be performed solely at zero power and room temperature; if necessary, facility 

and safety approvals are obtained, higher temperatures and/or power could be achieved.  

However, operating even at low power levels involves significant fission events and generation 

of fission products that lead to radiation doses in the surrounding room.  It can take weeks and/or 

months for radiation doses to decay to levels such that other experiments can be performed in the 

room, which is not preferable from an experimental standpoint.  Thus, heat pipes are present 

primary for neutronic contribution purposes but could also be used for heat removal, depending 

on the experiment.  Each microreactor experiment is also designed to be a sixth symmetric at the 
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hexagon faces in case a smaller, reflected model has to be created to reduce computational 

burden. 

 

 

Figure 4.4. Microreactor Experiment v0, MCNP render 

 

 Experiment v1, as shown in Figure 4.4, increases the size of the hexagonal ring of yttrium 

hydride surrounding the unit cell. Additionally, the yttrium hydride pins in the exterior region are 

also larger in diameter to try to increase the experiment’s sensitivity to the yttrium hydride cross 

sections. Notice that the heat pipes in the outer region were also removed; if low power and/or 

high temperature experiments are performed, a heat transfer mechanism may be required to cool 

this outer region. For now, it is assumed that the design is flexible and we are only trying to 

maximize the correlation coefficient. 
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Figure 4.5. Microreactor Experiment v1, MCNP render 

 

 Experiment v2, as shown in Figure 4.5, introduces zirconium hydride to the experiment 

design. Zirconium hydride, for equivalent volume, has a higher reactivity worth than yttrium 

hydride, but struggles to retain hydrogen past about 500C - 600C and thus is not as appealing 

for efficient microreactor performance. Additionally, zirconium hydride is used in place of the 

yttrium hydride in the hexagonal ring. The primary reason for using zirconium hydride in place 

of yttrium hydride in this latest experiment iteration is to increase the number of thermal 

neutrons causing fission, since the experiments have a lower percentage compared to the full-

scale Snowflake microreactor. A gap between the unit cell and the outer region is also 

introduced; this gap can be used for additional experiment flexibility with regards to thermal heat 
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transfer considerations. For example, the gap can be used to insert electrical heaters if the 

experiment wants to measure reactivity impacts of the system at higher temperatures without the 

need for fission power to heat up the system. 

 

 

Figure 4.6. Microreactor Experiment v2, MCNP render 

 

 The final experiment design, microreactor experiment v3 as shown in Figure 4.5, 

introduces a second hexagonal ring in the outer region that contains yttrium hydride. The 

purpose of this hexagonal ring is two-fold. First, the outer hexagonal yttrium hydride ring 

thermalizes additional neutrons in the outer region and second, it increases the system’s 

sensitivity to yttrium hydride.  
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Figure 4.7. Microreactor Experiment v3, MCNP render 
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Section 4.3. Proposed Analyses 

 Now that the microreactor experiments have been presented, the question arises: which 

experiment design is best suited to neutronically represent the full-scale Snowflake 

microreactor? There are several neutronic characteristics that can be analyzed to make this 

assessment. The neutronics characteristics that will be analyzed in this research are the 

percentage of neutron energies (thermal, epithermal, and fast) causing fission, the normalized 

flux per unit lethargy, the sensitivity coefficients with respect to neutron energy for select 

materials, and the correlation coefficients.  

 MCNP will be used to generate the effective multiplication factor and the percentage of 

neutron energies (thermal, epithermal, and fast) causing fission with the KCODE input line. 

Understanding the percentage of neutron energies causing fission is essential in understanding 

how the systems will react to certain materials. For example, under-moderated systems will react 

differently to the introduction of additional moderator, which will result in an increase in 

reactivity due to the thermalization of additional neutrons that leads to higher cross sections in 

fuels, compared to over-moderated systems which will see a drop in reactivity due to additional 

parasitic absorption from the extra moderator. Furthermore, understanding the neutron energies 

causing fission will help the analyst understand where the nuclear data uncertainties will play a 

larger role.  

MCNP will calculate the normalized flux per unit lethargy via the F4 tally which will be 

plotted with Python’s Matplotlib library [25, 33]. The normalized flux per unit lethargy will 

report the share of neutron energies in the nuclear system. The sensitivity coefficients with 

respect to neutron energy for select materials will also be generated with MCNP via the KSEN 

input line and will be plotted with Python’s Matplotlib. The sensitivity coefficients will provide 
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valuable information regarding how sensitive the system is to a change in the nuclear data 

plotted at all incident neutron energy ranges.  

Whisper will generate the correlation coefficients for the two systems; this will be done 

by adding the full-scale Snowflake microreactor as a custom benchmark. Every experiment input 

into Whisper will then have a correlation coefficient generated for the full-scale Snowflake 

microreactor. The correlation coefficient will provide the ratio of shared nuclear data uncertainty 

between the two systems by folding together the two systems’ sensitivity coefficients and the 

nuclear data covariance matrix.  

 

The overall process can be summarized in the following manner: 

1. Generate the MCNP input deck for full-scale nuclear system 

2. Run the MCNP criticality (KCODE) input deck with 𝑘𝑒𝑓𝑓  sensitivity tallies option 

(KSEN card) 

3. Add full-scale system to Whisper as a Custom Benchmark; see Whisper Manual [5] 

4. Test addition of custom benchmark by running the full-scale system as a Whisper input  

a. This should yield a 𝑐𝑘 = 1.0, perfect correlation since it is the same system 

5. Generate an MCNP input deck for an experiment design 

6. Run the MCNP criticality (KCODE) input deck with 𝑘𝑒𝑓𝑓  sensitivity tallies option 

(KSEN card) 

7. Run experiment as Whisper input to generate 𝑐𝑘 for experiment and full-scale system 

 

  



 57 

Chapter 5 - Results 

Section 5.1. Neutron flux and percentage of neutrons causing fissions analyses  

 Table I compares the effective multiplication factor, correlation coefficient for 𝑘𝑒𝑓𝑓 , and 

the percentages of neutron energies causing fission for the Snowflake full-scale microreactor and 

the four candidate experiment designs. To generate this data, MCNP6.1.4 along with ENDF/B-

VIII.0 cross sections with ENDF80SaB2 thermal scattering data. For the correlation coefficients, 

Whisper1.1 was utilized; it is important to note that Whisper at this time does not have the 

covariance data for yttrium-hydride. 

 

Table I. Effective multiplication factors, correlation coefficients, and percentages of neutron 

energies causing fission from MCNP and Whisper 

System 

Effective 

Mult. 

Factor, 

keff 

Corr. 

Coeff. 

%, ck 

% of neutrons 

causing fission  

(E < 0.625 eV) 

% of neutrons 

causing fission  

(0.625 eV < E < 

100 keV) 

% of neutrons 

causing fission  

(100 keV < E) 

Experiment 

v0 
1.02312 65.91% 39.20% 43.81% 16.99% 

Experiment 

v1 
1.01485 75.90% 48.20% 37.21% 14.60% 

Experiment 

v2 
1.00567 86.55% 60.07% 29.09% 10.84% 

Experiment 

v3 
1.00338 90.31% 66.66% 25.45% 7.89% 

Unit-Level 

Microreactor 
1.07946 - 83.37% 14.98% 1.64% 
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Table II compares the average neutron energy causing fission and the energy 

corresponding to average neutron lethargy causing fission, both metrics useful for characterizing 

spectrum hardness. The lower these values are, the more thermal the spectrum.  

 

Table II. Effective multiplication factors, correlation coefficients, average neutron energy 

causing fission and energy corresponding to average neutron lethargy causing fission 

System 

Effective 

Mult. 

Factor, keff 

Corr. 

Coeff. 

%, ck 

Average Neutron 

Energy Causing 

Fission [MeV] 

Energy corresponding 

to the Average 

neutron Lethargy 

causing Fission [MeV] 

Experiment v0 1.02312 65.91% 2.4750E-01 4.3319E-05 

Experiment v1 1.01485 75.90% 2.2479E-01 1.6680E-05 

Experiment v2 1.00567 86.55% 1.7412E-01 4.7322E-06 

Experiment v3 1.00338 90.31% 1.2888E-01 2.1966E-06 

Unit-Level 

Microreactor 
1.07946 - 3.2317E-02 2.8491E-07 

 

 When studying Table I, an interesting trend arises; with increasing correlation coefficient 

for the microreactor experiments, the percentage of neutrons causing fission in each energy 

group is converging to the results of the unit-level (full-scale) Snowflake microreactor concept. 

Intuitively, this makes sense since neutrons causing fission will play a large role in the overall 

neutronics of a system; these neutrons are particularly affected by any uncertainty present in the 

uranium cross section data, which is factored into the correlation coefficient along with the 
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sensitivity coefficients. Table II further supports this trend; both the average neutron energy 

causing fission and the average neutron lethargy causing fission are converging towards the full-

scale microreactor values with increasing correlation coefficient. 

 Figure 5.1 plots the normalized flux per unit lethargy with respect to the neutron energy 

for the microreactor experiments and the unit-level Snowflake microreactor [34].   

 

 

Figure 5.1. Normalized flux per unit lethargy with respect to neutron energy 

 

 As shown in Figure 5.1, with increasing correlation coefficients for the microreactor 

experiments, the share of thermal neutrons also increases, even past the share of thermal neutrons 

present in the Snowflake microreactor. This is interesting because the percentage of thermal 

neutrons causing fission is highest in the Snowflake microreactor concept, but the thermal 

neutron hill in the plot is the second lowest. On the right side, the fast neutron hill shows the 

opposite trend as the thermal neutron hill; with increasing correlation coefficients, the 
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microreactor experiments fast neutron share decreases and converges towards the Snowflake 

microreactor fast neutron share. This makes sense, since the percentage of fast neutrons causing 

fission consistently drops with increasing correlation coefficient per Table I.  

There are two potential factors that explain the increase in share of thermal neutrons and 

the decrease in share of fast neutrons with increasing correlation coefficients for the microreactor 

experiments. These factors are first, the smaller size of the experiment compared to the 

Snowflake microreactor and second, the use of high-enriched uranium fuel in the experiments 

versus the use of only high-assay low-enriched uranium fuel in the Snowflake microreactor 

concept. In order to study the effect of these factors, it is useful to plot the normalized flux on a 

2D mesh of an XY cross section of the experiment, as shown in Figures 5.2 to 5.4 below. Also 

included in Figure 5.5 is the energy deposition on an XY mesh. 

 

 

Figure 5.2. Thermal neutron (E < 0.625 eV) normalized flux of experiment v2 [32] 
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Figure 5.3 Epithermal neutron (0.625 eV < E < 100 keV) normalized flux of experiment v2 

 

 

Figure 5.4. Fast neutron (E > 100 keV) normalized flux of experiment v2  
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Figure 5.5. Fast neutron (E > 100 keV) normalized flux of experiment v2  

 

 The first factor, the size of the experiments versus the full-scale Snowflake microreactor, 

plays a significant role in the systems. A smaller system is much more likely to leak neutrons due 

to the volume to surface area ratio compared to a larger system. This means that fission neutrons, 

which are more likely to be born fast per the Watt distribution, have less distance to scatter and 

thermalize before either undergoing fission or leaking out of the system in the smaller 

experiments. As a result, the microreactor experiments all have a higher percentage of fast 

neutrons causing fission and a lower percentage of thermal neutrons causing fission compared to 

the Snowflake microreactor. This effect can be noticed visually; the thermal neutron flux (Figure 

5.2) is large and round because the neutrons are thermalizing in the outer periphery. The higher 

leakage fraction of the experiments relative to the full-scale microreactor would explain why the 

experiments with higher correlation coefficients tend to have a higher mass of metal hydrides; 
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the hydrides are able to efficiently thermalize neutrons in the small space, better matching the 

full-scale Snowflake microreactor percentage of thermal neutrons causing fission.   

 The second factor, the use of high-enriched uranium fuel in the microreactor experiments 

versus the use of only high-assay low-enriched uranium fuel in the Snowflake microreactor 

concept is also visually represented in Figures 5.2 and 5.4. Fairly prominently, it can be seen that 

the highly-enriched fuel in the outer region in thermal neutron flux plot (Figure 5.2) is not seeing 

much of the thermal flux. This is due to the high absorption of thermal neutrons, causing a 

depression in the thermal neutron flux. The opposite is true for the fast neutron flux (Figure 5.4); 

the largest share of fast neutrons originates from the highly-enriched fuel due to the large number 

of fissions in the fuel. The fast neutron flux looks the most similar to the energy deposition plot 

(Figure 5.5) which makes sense; the origin of fast fission neutrons will deposit large amounts of 

energy meaning the fuel will have the largest percentage of energy deposition in the system from 

primary neutron particles.  

 The normalized neutron flux per unit lethargy for the inner and outer regions of the 

experiments is also studied in Figures 5.6 and 5.7 respectively. By taking a look at the different 

experiment spatial regions, Figures 5.6 and 5.7 are adding additional neutron energy detail to 

Figures 5.2 to 5.4 which plot the spatial neutron flux on the XY plane. As anticipated, the outer 

region contains a larger fraction of fast neutrons, due to the large amount of fission neutrons 

produced by the highly-enriched uranium fuel. The opposite is true for the inner region, which 

contains a larger fraction of thermal neutrons likely due to the large quantities of moderator 

between the outer and inner region. Figure 5.1, which plots the normalized neutron flux per unit 

lethargy for the whole experiment system, is the spatial-weighted average of Figures 5.6 and 5.7.  
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Figure 5.6. Normalized flux per unit lethargy with respect to neutron energy for inner region 

 

 

Figure 5.7. Normalized flux per unit lethargy with respect to neutron energy for outer region 
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The analysis for Figures 5.6 and 5.7 shows how two regions can have competing factors 

that affect the entire system’s reactivity and correlation coefficient. In a small experiment, there 

is strong interplay with all regions of an experiment; the different impacts of the effective 

multiplication factor can be captured with a correlation and sensitivity coefficient analysis.  

 When analyzing the normalized flux per unit lethargy, it is important to understand the 

difficulty in balancing the many competing factors. For example, a thermal flux will have a 

different effect on the system’s reactivity if there is significantly more uranium-238 present 

instead of uranium-235. In the same way, the full-scale microreactor (more uranium-238 than 

uranium-235) will react differently to the same neutron flux than the experiments (more 

uranium-235 than uranium-238). This concept also applies to the size of the system; a neutron 

flux will have a different effect on a large system (microreactor) versus a smaller system 

(experiments) which tends to leak a larger fraction of neutrons.  

The neutron flux in a system represents all neutrons that exist including the fraction of 

neutrons that leak, scatter, fission, etc. If the neutrons in this flux leak, they will have less of an 

impact on the system’s effective multiplication factor. Hence sensitivity coefficients, which 

quantify the impact on the system’s effective multiplication factor for all nuclear data parameters 

at all neutron energies, are better suited to assess neutronic similarity. Alternatively, a better 

“rule-of-thumb” to assess neutronic similarity that would be better than the flux, but not as robust 

as correlation/sensitivity coefficients, would be looking at the percentage of neutrons causing 

fission as shown in Table I. By looking at the percentage of neutrons causing fission, you are 

limiting yourself to only fission interactions, but these play a significant role in the effective 

multiplication factor of the system and hence serve as a better measure of neutronic similarity 

than the neutron flux.  
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 To further explore the feasibility of utilizing the percentage of neutron energies causing 

fission, the power deposition of the Snowflake microreactor concept and the experiments is 

plotted with respect to neutron energy in Figure 5.8. 

 

 

Figure 5.8. Normalized power deposition per unit lethargy with respect to neutron energy  

 

 Qualitatively looking at Figure 5.8 shows experiments v2 and v3 are most similar to the 

full-scale Snowflake microreactor in the thermal region, between 10-7 to 10-6 [MeV] incident 

neutron energy. This makes sense since the two experiments have the highest correlation 

coefficients and power deposition occurs as a result of neutrons undergoing fission, a process 

that strongly affects the effective multiplication factor. In the fast region (>10-1 [MeV] neutron 

energy), experiment v3 is most similar to the full-scale Snowflake microreactor. Both the fast 

and the epithermal regions, which combined span 10-6 to 101 neutron energies, show the 
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experiments converging towards the full-scale microreactor power deposition data with 

increasing correlation coefficient.  

 To further investigate this trend, the power deposition of the inner and outer regions of 

the experiments are plotted in Figures 5.9 and 5.10.  

 

 

Figure 5.9. Power deposition with respect to neutron energy for experiment inner region 

 

 As anticipated from past plots, the inner region of the experiments tends to see a higher 

fraction of power deposition at thermal neutron energies. Qualitatively inspecting the thermal 

and epithermal energy regions of Figure 5.9 show experiment v0 data is more similar to the full-

scale Snowflake microreactor concept. At high neutron energies, experiment v3 is most similar 

to the power deposition distribution of the full-scale microreactor concept.  
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Figure 5.10. Power deposition with respect to neutron energy for experiment outer region 

 

 The outer region shown in Figure 5.10 is quite similar to Figure 5.8 upon qualitative 

inspection; this implies the outer region dominates the power deposition distribution of the whole 

experiment. This is most likely due to the large amounts of fissions occurring as a result of the 

high-enriched uranium fuel in the outer region. The same trends appear here; experiment v3 is 

most similar to the full-scale microreactor concept at all neutron energies. Figure 5.10 represents 

the challenge of utilizing high-enriched uranium; the experiment requires sufficient reactivity in 

a small space, but the inner region is what contains the microreactor concept unit cell.  

Would this experiment, which the outer region dominates with regards to a higher 

fraction of power deposition, still be useful to conduct? The answer is yes and this experiment 

can be justified via correlation coefficients. Even though the outer region provides the majority 

of fissions and fission neutrons, a 90% correlation coefficient means 90% of the nuclear data 

uncertainty with regards to effective multiplication factor, is shared between experiment v3 and 

microreactor concept. Therefore, any discrepancies between the model/simulation and the 
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experiment that arise due to nuclear data uncertainties will inform the reactor analysts. This 

benefits the microreactor model as well since analysts will know to anticipate these uncertainties 

and their effects on the effective multiplication factor. Furthermore, reactivity worth of the inner 

region and individual components of the microreactor can still be measured and validated.  

Power deposition is an important metric to consider and these results show it is a better 

indicator of neutronic similarity than the flux for these particular configurations. However, to be 

able to quantify the competing effects of all nuclei-neutron interactions at all energy levels, at all 

material temperatures, and at all spatial configurations by qualitatively looking at a plot is too 

challenging. Correlation coefficients, which handle these numerous parameters with sensitivity 

coefficients, are able to robustly take into consideration all of these competing factors in order to 

provide an objective metric of neutronic similarity.  
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Section 5.2. Sensitivity coefficient analyses 

To gain further insight into the results, a sensitivity coefficient comparison is conducted 

for the microreactor experiments and the full-scale Snowflake microreactor concept as shown in 

Figures 5.9 to 5.12, plotted with Python’s Matplotlib [25]. By looking at the specific sensitivity 

coefficients, we can ensure that there is sufficient coverage for specific nuclides, i.e., the 

experiment is sensitive to nuclides of interest in the same manner as the full-scale system. 

Nuclides of interest tend to be the nuclides that are present in large quantities, have the most 

nuclear data uncertainty, and have the least amount of experimental data/experience in nuclear 

systems. By designing an experiment that is sensitive to these nuclides of interest in the same 

manner as the full-scale Snowflake microreactor concept, any discrepancies in the model versus 

the experiment will inform the analysts and designers of gaps in either the simulations or the 

nuclear data. This effectively reduces programmatic risk at a fraction of the cost of building a 

full-scale prototype reactor. 

For these experiments, the chosen nuclides and reactions of interest are the uranium-235 

fission, carbon-12 elastic scatter, beryllium-9 (n, 2n), and hydrogen-1 elastic scatter sensitivity 

coefficients. 

The uranium-235 sensitivity coefficients (Figure 5.9) provide a clear example of how the 

experiments, with increasing correlation coefficients, converge towards the sensitivity 

coefficients of the full-scale Snowflake microreactor system. Since uranium-235 plays a large 

role in the neutronics of this system, the sensitivity to its fission cross section will have a 

significant impact on the correlation coefficient by definition. The magnitude of the sensitivity 

coefficient is significant; the higher the sensitivity coefficient, the more sensitive the system is to 
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the nuclide cross section at that neutron energy. As expected, uranium-235 has the highest 

sensitivity coefficient peak at thermal neutron energy levels [35]. 

 

 

Figure 5.9. Uranium-235 fission sensitivity coefficients 

 

It is interesting to note how the thermal region of the uranium-235 fission sensitivity 

coefficients are converging to the full-scale microreactor system from a lower sensitivity. In the 

fast region, the opposite is true; the sensitivity coefficients are converging to the full-scale 

microreactor system from a higher sensitivity. This is due to the larger role fast fission play in 

the experiments compared to the full-scale microreactor system; increase importance in the fast 

neutron region will mean the system is more sensitive to the fast region of the uranium-235 

fission cross section.  
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This behavior, where the fast neutrons add sensitivity to the nuclear data, can also be seen 

in the hydrogen-1 elastic scattering sensitivities (Figure 5.10). The fast region of the experiments 

is higher than then thermal region. The opposite is true for the full-scale Snowflake microreactor 

hydrogen-1 sensitivities; the full-scale microreactor is more sensitive at thermal neutron energy 

levels. 

 

 

Figure 5.10. Hydrogen-1 elastic scatter sensitivity coefficients 

 

 The graphite elastic scattering sensitivities as show in Figure 5.11 are interesting; the 

experiment with the lowest correlation coefficient appears to have the most similar sensitivity 

coefficient here, particularly at the higher neutron energies. An error analysis shown in Figure H 

supports this finding. The reason for the similar sensitivity to graphite lies in the fact that 
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experiment v0 has the most graphite of the experiments. The higher importance of the uranium-

235 fission sensitivity masks the effects of the graphite sensitivity on the correlation coefficient. 

This competing effect is also shown in Figure 5.13. If an analyst is more interested in studying 

graphite, it may be more beneficial to select experiment v0 since the sensitivity matches more 

closely. This case highlights the importance of conducting a sensitivity coefficient analysis for 

materials of interest. 

 

 

Figure 5.11. Carbon-12 elastic scatter sensitivity coefficients 

 

 The final sensitivity studied is the beryllium-9 (n,2n) sensitivity as shown in Figure 5.12. 

As shown in the beryllium-9 cross section plot back in Chapter 2, Section 5, the (n,2n) reaction 

only appears at fast neutron energies. This explains why the sensitivity coefficient is zero at 
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thermal and epithermal neutron energies; they have no effect on the multiplication factor of the 

system. This sensitivity coefficient highlights how reliant the experiments are on the beryllium 

reflector. Compared to the full-scale Snowflake microreactor, the experiments are nearly five 

times more sensitive to the beryllium (n,2n) sensitivity. The experiments, due to their smaller 

size, are much more affected by neutron leakage than the full-scale Snowflake microreactor. 

 

 

Figure 5.12. Be-9 (n, 2n) sensitivity coefficients 

 

When analyzing the sensitivity coefficients for beryllium, carbon, and hydrogen, it is 

difficult to determine which sensitivities are most similar to the full-scale microreactor. One way 

to compare these sensitivities would be with an L2 error analysis as seen in Figure 5.13 and 

described by |𝐬| =  √∑  |𝑠0,𝑖 − 𝑠1,𝑖|
2𝐸

𝑖=0   where |𝐬| is the L2 error of the sensitivity coefficient, 
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∑ |𝐸
𝑖=0 is the summation over all energies, 𝑠0,𝑖 are the sensitivity coefficients of the full-scale 

Snowflake microreactor, and 𝑠1,𝑖 are the sensitivity coefficients of the microreactor experiments. 

An L2 error analysis measures the least squares error; conceptually, this analysis measures the 

spread of the data. The closer the microreactor experiments’ sensitivity coefficients are to the 

full-scale Snowflake microreactor sensitivity coefficients at each neutron energy, the lower the 

L2 error. It is important to note that this L2 error analysis does not weigh the error with respect 

to neutron energy which may need to be done for a more robust analysis. 

 

 

Figure 5.13. L2 error of sensitivity coefficients with respect to correlation coefficient 
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 The most dominant sensitivity, after being weighed with the nuclear data covariance 

matrix, will be prioritized when folding all of the data into the correlation coefficient. This is 

evident when studying Figure 5.13; the uranium-235 fission sensitivity coefficient error most 

closely follows the cumulative L2 error, both of which decrease steadily with increasing 

correlation coefficient. This analysis highlights why it is important to conduct a sensitivity 

coefficient study. If a specific cross section or material is of higher interest than the uranium-235 

fission sensitivity for this particular configuration, then it should be prioritized. However, for this 

scope, the overall system is of interest and a single cross section or material is not prioritized in 

this analysis.  

The patterns and behaviors shown in this research may oftentimes not be intuitive, which 

highlights the importance of conducting a sensitivity and correlation coefficient analysis. These 

analyses provide further evidence of neutronic similarity between two systems and serve to 

increase the robustness with regards to how we design nuclear experiments for advanced reactor 

concepts. 
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Chapter 6 – Conclusion 

The goal of this research is to study correlation coefficients as an objective way to design 

the neutronic aspects of microreactor experiments which will aide in microreactor design, 

validation, and the eventual construction of a full-scale microreactor system. Nuclear 

experiments are needed to validate existing physics codes and serve as an intermediate to a full-

scale prototype microreactor. The mathematics and physics of this research are also general 

enough to be applied to other advanced reactor concepts; microreactors were simply the focus for 

this particular research. 

Both the use of high-enriched uranium fuel and the size differences for this particular 

experiment and full-scale microreactor design pose a burden; how do we know if the two 

systems are neutronically similar? Correlation coefficients are one objective way to assess the 

neutronic similarity between two systems and should be included in conjunction with other 

neutronic analyses. This research shows that smaller-scale nuclear experiments can be useful in 

validating simulations of a full-scale microreactor system because we can tailor the neutronics to 

be representative of the system of interest via correlation coefficients. Additionally, this analysis 

gauges how sensitive the experiments and full-scale microreactor concepts are with regards to 

reactivity and all available neutron-nuclei interactions. 

Furthermore, this research demonstrates that the percentage of fissions caused by thermal 

neutrons can be used to roughly guide new designs to a higher correlation coefficient as long as 

similar materials are being used since the fission sensitivity plays a large role in nuclear systems. 

When looking at the sensitivity coefficients, this study demonstrates the neutronic importance of 

uranium-235 for these two systems in particular. It is important to conduct a sensitivity and 

correlation coefficient analysis to reveal additional, sometimes non-intuitive, information about 
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the systems being analyzed. A sensitivity and correlation coefficient analysis comprehensively 

includes a plethora of neutron-nuclei interactions and their related uncertainties, making this 

method a robust way to compare the neutronics of two systems.  

Limitations to this work include the fact that correlation and sensitivity coefficient 

analyses at the moment are steady-state. Conducting these analyses at different temperatures, 

different depletion levels, and different reactor configurations, such as varied control drum 

positions for microreactors, will provide a more robust analysis. Additionally, correlation and 

sensitivity coefficient analyses consider only the neutronics with regards to the impact of 

effective multiplication factor. Reaction rate sensitivities, for example, look at how particular 

reaction rates in a system react to perturbations; this type of analysis would be useful to conduct 

if an analyst is interested in a particular material or region of the experiment (such as the inner 

region) and wishes to further characterize and quantify uncertainties related to the material [37]. 

A reaction rate sensitivity analysis would also be useful to study the inner regions of these 

various experiments. Matching reaction rate sensitivities of the inner region of the experiment 

with a unit cell at a particular spatial point in the conceptual microreactor would serve as a 

beneficial additional experiment to conduct in order to accurately measure reactivity worth of 

various reactor components. Furthermore, reactor designs may have equally important physics, 

such as thermal hydraulics or thermal mechanics physics, that need to be characterized and 

considered in conjunction with a correlation and sensitivity coefficient analysis.  

The neutronics framework outlined in this research serves as a starting point for 

experiment neutronic design; additional work must be conducted with other physics codes 

(thermal mechanics, heat transfer, etc.) in order to design a successful experiment. Future work 

includes developing a framework to assess the similarity between the transient behavior of an 
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experiment and a full-scale microreactor; this will necessitate transient neutronics and heat 

transfer physics codes, as well as building on existing steady-state similarity/correlation 

coefficients. Additionally, further consideration to manufacturing, budget, and other realistic 

limitations should be analyzed and factored into the experiment design early in the overall 

process.  
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