
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Optical Science and Engineering ETDs Engineering ETDs 

Summer 7-13-2024 

OPTICAL RESPONSES OF HYBRID ELECTROMAGNETIC OPTICAL RESPONSES OF HYBRID ELECTROMAGNETIC 

NANOSTRUCTURES NANOSTRUCTURES 

Dominic Bosomtwi 
University of New Mexico - Main Campus 

Follow this and additional works at: https://digitalrepository.unm.edu/ose_etds 

 Part of the Other Engineering Commons, and the Semiconductor and Optical Materials Commons 

Recommended Citation Recommended Citation 
Bosomtwi, Dominic. "OPTICAL RESPONSES OF HYBRID ELECTROMAGNETIC NANOSTRUCTURES." 
(2024). https://digitalrepository.unm.edu/ose_etds/103 

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It 
has been accepted for inclusion in Optical Science and Engineering ETDs by an authorized administrator of UNM 
Digital Repository. For more information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/ose_etds
https://digitalrepository.unm.edu/eng_etds
https://digitalrepository.unm.edu/ose_etds?utm_source=digitalrepository.unm.edu%2Fose_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/315?utm_source=digitalrepository.unm.edu%2Fose_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/290?utm_source=digitalrepository.unm.edu%2Fose_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ose_etds/103?utm_source=digitalrepository.unm.edu%2Fose_etds%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     

  

       Dominic Bosomtwi    
       Candidate  

      

       Electrical & Computer Engineering    

     Department 

      

 

     This dissertation is approved, and it is acceptable in quality and form for publication: 

 

     Approved by the Dissertation Committee: 

 

               

     Dr. Viktoriia E. Babicheva       , Chairperson 

  

 

       Dr.  Christos Christodoulou   

 

 

       Dr. Emil Enache-Pommer   

 

 

        Dr.  Terefe Habteyes  

 

 

           

 

 

           

 

 

            

 

 

            

 

 

            

 

 

  

i



     

  

  

  

  

  

 

OPTICAL RESPONSES OF HYBRID ELECTROMAGNETIC  

NANOSTRUCTURES 

     

      

 

 

by 

 

 

DOMINIC BOSOMTWI 

 

B.S., Physics, University of Cape Coast, 2002 

 

M.S., Electrical & Computer Engineering,  

New Mexico State University, 2009 

 

M.S., Optical Science & Engineering, 

University of New Mexico, 2020 

 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

 

Doctor of Philosophy 

Optical Science & Engineering 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

 

July, 2024 

ii



 

 

 

 

 

 

 

 

 

 

 

Dedicated to Nana Bosomtwi and Priscilla Bosomtwi. 

iii



Acknowledgements 

I would like to express my sincere gratitude to my dissertation supervisor, Professor Viktoriia E. 

Babicheva, for her unwavering guidance, patience, and support throughout my doctoral journey. 

Her expertise, encouragement, and invaluable feedback were instrumental in shaping this 

dissertation into its final form. 

I am deeply grateful to the members of my dissertation committee: Distinguished Professor 

Christos Christodoulou, Professor Terefe Habteyes, and Dr. Emil Enache-Pommer of Intel 

Corporation. Their insightful comments, constructive criticism, and scholarly suggestions 

significantly enriched and improved the quality of my work. 

I am also indebted to the Optical & Engineering (OSE) program at UNM for providing me with 

the resources, facilities, and opportunities necessary to complete this dissertation. I am 

particularly grateful to Professor Daniel Feezel, OSE program chair, for his invaluable support 

and guidance during challenging times. I would also like to express my appreciation to Ms. Doris 

Williams, the OSE senior academic advisor, for her administrative support and assistance. 

My deepest gratitude extends to my son, Nana, and daughter, Priscilla. They have been a 

constant source of encouragement throughout this journey, my pillars of strength during both the 

highs and lows of my doctoral program. 

Last but not least, I am grateful to all my friends, especially Ms. Shruti I. Gharde. Their 

unwavering support, encouragement, and presence throughout this challenging yet rewarding 

endeavor have meant the world to me. 

This dissertation would not have been possible without the support and encouragement of each 

and every individual mentioned above. I thank you all from the bottom of my heart. 

iv



Optical Responses of Hybrid Electromagnetic Nanostructures 

                                                          by  

                                        DOMINIC BOSOMTWI  

                        B.S., Physics, University of Cape Coast, 2002  

              M.S., Electrical & Computer Engineering, New Mexico State University, 2009 

         M.S., Optical Science & Engineering, University of New Mexico, 2020  

   Ph.D., Optical Science & Engineering, University of New Mexico, 2024 

 

                                                          Abstract 

Fano resonances result from the interference between a broad background and a narrow state, 

producing asymmetric scattering profiles. Under specific conditions, destructive interference 

collapses the Fano resonance width, leading to bound states in the continuum (BICs) that 

localize light within a nanostructure while maintaining an infinitely high-quality factor (Q-

factor). 

This dissertation explores the design of nanostructures with multilayer hybrid plasmonic-

dielectric metasurfaces using full-wave numerical simulations, facilitating multiple Fano 

resonances and BICs. By adjusting nanoantenna dimensions, multiple modes are excited at 

plasmonic-dielectric interfaces, leading to strong interactions and hybridization of energy 

levels, manifested as Rabi splitting. 

These findings enable advancements in photonics, including tunable devices, high-Q-factor 

resonators, and optical filters. Additionally, the study designs nanostructures to enhance 

plasmonic hot electron generation from gold nanoelectrodes, optimizing lattice periods for 

maximum field enhancement and electron injection into water, offering guidelines for 

designing plasmonic nanostructures for hot electron applications. 
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1.0 Introduction 

Electromagnetic nanostructures, characterized by their layered configurations of alternating 

materials with distinct refractive indices, arranged in periodic or quasi-periodic formations, 

have emerged as a powerful tool for manipulating light at the nanoscale. These structures 

exhibit unique optical properties due to the interference, coupling, and confinement of 

electromagnetic waves within them. This has driven extensive research and development 

efforts in recent years [1-3]. 

Several well-established examples of layered nanostructures include photonic crystals, 

negative-index metamaterials (NIMs), plasmonic nanostructures, and optical and hybrid 

metasurfaces. Each type offers distinct advantages and finds application in a specific set of 

areas. 
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Photonic crystals excel at controlling light propagation within periodic dielectric structures 

[3]. 

Negative-index metamaterials (NIMs) derive their unusual properties from carefully 

designed sub-wavelength inclusions [4]. 

Plasmonic nanostructures exploit the collective oscillations of free electrons at metal-

dielectric interfaces [5]. 

In contrast to their three-dimensional counterparts, optical metasurfaces offer several 

advantages: reduced losses, easier fabrication, and enhanced ability to manipulate light 

propagation. These features have revolutionized the field of optics, enabling functionalities 

like aberration-free lensing, wavefront shaping, and polarization control that surpass the 

limitations of conventional optical components [6]. 

The ability of optical metasurfaces to manipulate the phase, amplitude, and polarization of 

light locally stems from the careful design of individual scatterers. By engineering the 

geometry, size, orientation, and material composition of these scatterers, one can encode 

specific optical responses that achieve the desired functionalities. This design flexibility allows 

for a high degree of control over light, facilitating applications in diverse areas ranging from 

advanced imaging systems and sensors to optical communications and energy harvesting [6, 

7]. 

Hybrid metasurfaces are essentially two-dimensional structures composed of subwavelength 

elements that can manipulate and alter electromagnetic waves. However, their unique 

characteristic lies in their composition. They combine different materials and structures, each 

with distinct properties, into a unified platform. 
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The concept of "hybrid" originates from an innovative strategy to merge the strengths of 

different components, such as plasmonic, dielectric, and even active materials, into a single 

metasurface. This approach not only leverages the advantages of individual elements but also 

minimizes their respective drawbacks, creating a versatile and robust system for manipulating 

light at the nanoscale [7, 8]. 

The benefits of hybrid metasurfaces are multifaceted. Firstly, they offer increased design 

flexibility, enabling the creation of multifunctional and tunable optical elements. By harnessing 

the advantageous properties of diverse components, they achieve a broader spectrum of light 

manipulation capabilities, exceeding the limitations of traditional optical elements [8, 9]. 

Secondly, hybrid metasurfaces can potentially exhibit enhanced performance in terms of 

efficiency and bandwidth. This is achieved by strategically integrating materials with 

complementary characteristics, which is particularly valuable in applications demanding high 

performance, such as holography, imaging, and sensing [8, 9]. 

Thirdly, by incorporating active materials, hybrid metasurfaces can achieve dynamic 

tunability, a highly sought-after feature that allows real-time control of optical responses. This 

tunability can be triggered by various stimuli, including electric fields, temperature changes, 

or light itself [10-12]. 

1.1 Overview 

This dissertation investigates layered electromagnetic nanostructures, a rapidly evolving 

field with transformative potential for photonics, sensing, quantum information processing, 

and telecommunication systems. These nanostructures possess a unique ability to manipulate 
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light at the nanoscale, paving the way for next-generation optical devices with superior 

performance. 

Understanding these structures requires a foundation in the fundamental principles of 

electromagnetic wave propagation in layered media and the application of Maxwell's equations 

at the nanoscale. This theoretical framework, explored in detail throughout the dissertation, 

empowers the analysis of light-matter interactions within the structures. These interactions lead 

to fascinating phenomena like surface plasmon polaritons and enhanced light-matter 

interaction, holding promise for high-quality optical devices and efficient hot electron 

generation [13-17]. 

Following this foundation, the dissertation delves deeper by focusing on specific optical 

phenomena crucial for nanostructure design: 

Surface plasmon theory: Explores the collective oscillation of electrons at the metal-

dielectric interface, enabling light confinement and manipulation. 

Fano resonances: Analyzes the interplay of constructive and destructive interference, leading 

to sharp spectral features with potential applications in ultrasensitive sensing. 

Bound states in the continuum (BICs): Investigates localized light states within the 

continuum, offering opportunities for high-Q microcavities and sensors. 

Rabi splitting: Examines the splitting of energy levels due to strong light-matter interaction, 

holding promise for quantum information processing. 

Hot electron generation in plasmonic nanoelectrodes: Analyzes the generation of energetic 

electrons upon light absorption in plasmonic nanostructures, with applications in 

photocatalysis and photodetection. 



 

5 
 

 

This dissertation explores the mechanisms, applications, and ongoing research associated with 

various phenomena exhibited by layered electromagnetic nanostructures. These nanostructures 

hold immense potential for applications across diverse scientific and technological fields: 

Sensing: Fano resonances enable the development of highly sensitive optical sensors due to 

their sharp spectral features. 

Optical Communication and Lasers: Bound states in the continuum (BICs) offer exciting 

opportunities for the design of high-Q devices, critical for efficient light manipulation in 

optical communication and lasers. 

Quantum Information Processing: Rabi splitting, a phenomenon arising from strong light-

matter interaction, holds promise for the development of novel quantum technologies. 

Photodetection and Photocatalysis: Hot electron generation in plasmonic nanoelectrodes 

finds applications in photodetection and photocatalysis. 

The analysis leverages the Finite Element Method (FEM) with the frequency-domain solver 

within CST Studio Suite software. This powerful technique enables full-wave simulations for 

meticulous analysis of intricate optical responses in complex structures. 

In conclusion, this dissertation presents a comprehensive exploration of the optical responses 

of layered electromagnetic nanostructures. By weaving together fundamental principles, 

advanced simulations, and in-depth analysis of key phenomena, it offers a valuable 

contribution to this exciting and rapidly evolving field. 

1.2. Aims and objectives of the study 

This dissertation presents a comprehensive investigation of the optical responses exhibited by 

layered electromagnetic nanostructures. These structures have garnered significant interest due 
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to their remarkable properties, which have revolutionized the fields of photonics and optics 

and led to numerous applications across diverse scientific and technological disciplines. 

The primary objective of this research is to deepen our understanding of the light-matter 

interaction within layered electromagnetic nanostructures. This will be achieved by 

meticulously examining the intricate processes governing how these structures interact with 

light and the resulting effects. Phenomena such as reflection, transmission, and absorption of 

light by the nanostructures will be rigorously studied. Mathematical modeling and 

computational simulations will be employed to generate accurate predictions of these 

interactions. 

The dissertation pursues several specific objectives. The initial step involves a comprehensive 

review of the existing literature related to the optical properties of layered electromagnetic 

nanostructures. This review will be instrumental in identifying potential areas for further 

exploration and knowledge gaps, ultimately enriching our understanding of the current 

research landscape in this field. 

Building upon the foundation established by the literature review, a robust theoretical 

framework will be developed to explain the optical responses of these nanostructures. This 

framework will be anchored in Maxwell's equations and their corresponding boundary 

conditions, which form the bedrock of our understanding of electromagnetic wave behavior. 

Next, the dissertation will develop mathematical models for accurately predicting the optical 

behavior of these nanostructures. These models will specifically focus on the reflection, 

transmission, and absorption properties of the structures. They will be designed with a degree 
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of generality to allow for their application to a broad range of layered structures and varying 

characteristics of incident light. 

The developed mathematical models will be validated through computational simulations. 

These simulations will not only verify the models' accuracy but also provide valuable 

visualizations of the complex light-matter interactions taking place within the layered 

structures. These visualizations will be instrumental in understanding and interpreting these 

interactions. 

The research will explore potential practical applications arising from the findings. A particular 

area of interest lies in the field of sensor development. Ultimately, the goal is to leverage the 

insights gained from this research to design novel devices or systems that capitalize on the 

unique optical properties of layered electromagnetic nanostructures. 

Finally, the research findings will be disseminated to the wider scientific community through 

publication in peer-reviewed scientific journals and presentations at relevant conferences. This 

objective is rooted in the belief that scientific progress thrives on collaboration. It is hoped that 

this research will contribute to the collective understanding in this domain. 

This dissertation extends beyond a purely academic exercise. It represents an ambitious effort 

to push the boundaries of knowledge in the realm of nano-optics and photonics. By shedding 

light on the fascinating world of layered electromagnetic nanostructures and their interaction 

with light, this research aspires to inspire and facilitate further technological innovation. 

Consequently, it aims to enrich our understanding of nano-optics and expand our capacity to 

harness its potential. 
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In conclusion, this dissertation presents a comprehensive investigation designed to enhance 

our understanding of the optical responses exhibited by layered electromagnetic 

nanostructures. The research objectives, encompassing a literature review, theoretical 

foundation, development of mathematical models, computational simulations, exploration of 

practical applications, and dissemination of results, all contribute to achieving this goal. The 

outcomes of this research are expected to contribute to the development of novel devices and 

systems that exploit the unique optical properties of these nanostructures. 
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2.0 Introduction 

This chapter delves into the intricate interplay of light and layered nanostructures, a 

phenomenon critical for advancements in imaging, sensing, telecommunications, solar energy 

conversion, and numerous other fields. Unveiling these interactions is paramount for the 

development of next-generation technologies [1,2]. 

Section 2.1 lays the foundation by providing a historical overview of electromagnetic theory, 

with a particular focus on Maxwell's equations. These fundamental equations govern the 

behavior of electric and magnetic fields, forming the cornerstone of our understanding of the 

optical properties exhibited by layered nanostructures. This section highlights how Maxwell's 

equations, by unifying the laws of electricity and magnetism, revolutionized the exploration of 

light-matter interactions at the nanoscale. 

Building upon this foundation, Section 2.2 explores the importance of the optical responses of 

layered nanostructures and introduces the Transfer Matrix Method (TMM). Derived from 

applying Maxwell's equations with appropriate boundary conditions, TMM serves as a 

testament to the power of these equations in analyzing and predicting light's behavior as it 

interacts with layered nanostructures [3,4]. This section emphasizes how TMM offers valuable 

insights into the complex optical phenomena displayed by these structures. 

Section 2.3 leverages TMM to analyze the transmission and reflection of light through layered 

structures. This understanding empowers us to manipulate light effectively at the nanoscale, 

enabling the optimization of structures for specific applications. For instance, it can be used to 

enhance light absorption in solar cells or improve sensitivity in sensors [5,6,7]. 
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Finally, Section 2.4 shifts our focus to surface plasmons, a phenomenon where light interacts 

with free electrons at the metal-dielectric interfaces within nanostructures. This interaction 

confines light to subwavelength dimensions, significantly enhancing light-matter interactions 

and opening exciting possibilities for nanophotonic device development [8,9]. 

This chapter embarks on a journey, traversing from the fundamental insights provided by 

Maxwell's equations and the historical evolution of electromagnetic theory to the cutting-edge 

applications in nanophotonics. By skillfully combining theoretical principles with advanced 

computational methods, we unlock innovative strategies to harness the potential of layered 

nanostructures, paving the way for groundbreaking technological advancements. 

2.1 Historical background of electromagnetic waves and Maxwell’s 

equations 

Unraveling the mysteries of electromagnetic fields, a cornerstone of physics, has been a 

centuries-long pursuit. The journey began with simple observations and experiments, 

culminating in a more comprehensive understanding of the universe thanks to the pioneering 

work of scientists like James Clerk Maxwell. This development has had a profound impact on 

modern optics, the science of light, granting us the ability to manipulate and utilize light in 

various technologies [10]. 

The earliest documented understanding of electricity and magnetism can be traced back to 

ancient civilizations. The Greeks observed that rubbed amber attracted certain objects, while 

Chinese scholars documented the magnetic properties of lodestone, a naturally magnetized 
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mineral [11]. These fundamental observations laid the groundwork for the future development 

of electromagnetic field theory. 

By the 17th century, scientists began a more rigorous investigation of these phenomena. 

William Gilbert's treatise, "De Magnete," detailed extensive experiments with magnetism, 

establishing a foundational understanding of the subject [12]. Building upon this work, 

Benjamin Franklin's mid-18th century experiments with electricity expanded our knowledge 

of this enigmatic force, contributing to the definition of key concepts like the conservation of 

electrical charge [13]. 

The 19th century witnessed significant progress in unifying the understanding of these forces. 

Michael Faraday discovered a profound connection between electricity and magnetism, paving 

the way for their eventual unification [14]. Andre-Marie Ampère's work further elaborated on 

this relationship, shedding light on the intricate interplay between electricity and magnetism 

[15]. 

James Clerk Maxwell's groundbreaking work in the 1860s marked a pivotal moment in the 

narrative. He formulated a set of equations, now known as Maxwell's equations, that elegantly 

unified the laws of electricity and magnetism into a single framework [16]. Notably, Maxwell 

further theorized that light itself was an electromagnetic wave. This groundbreaking discovery 

not only hinted at the existence of other types of electromagnetic waves but also revolutionized 

our understanding of light, ushering in the era of modern optics [16]. 

Maxwell's revelation that light is an electromagnetic wave laid the foundation for our 

understanding of its behavior and interaction with matter. This knowledge has been essential 

for the development of diverse optical technologies, ranging from simple lenses and mirrors to 
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sophisticated instruments like microscopes and telescopes, and even fiber optics for 

telecommunication. 

Further advancements in the 20th century, particularly quantum mechanics and Einstein's 

theory of relativity, further refined our comprehension of light. Quantum mechanics introduced 

the concept of photons, the fundamental units of light, which led to revolutionary technologies 

like lasers and light-emitting diodes (LEDs) [16]. Einstein's theory of relativity expanded our 

understanding of light's motion and interaction with space and time, leading to a deeper grasp 

of phenomena like gravitational lensing, where light bends around massive objects [17]. 

 

  James Clerk Maxwell, 1831-1879 

 Figure. 2.1: First to propose that light is an electromagnetic wave. 

Maxwell's equations play a fundamental role in classical electrodynamics, optics, and the study of 

electric circuits. These equations represent an elegant unification of what were previously considered 

separate principles. They encompass Gauss's law for both electric and magnetic fields, Faraday's law 

of electromagnetic induction, and Ampère's law (incorporating Maxwell's insightful modifications). 
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The importance of these equations cannot be overstated, as they provide the foundation for 

comprehending a vast array of electromagnetic phenomena. 

While Maxwell's equations originally describe the evolution of electric and magnetic fields 

over time, certain applications in optics and radio frequency engineering deal with fields 

exhibiting sinusoidal variations. These variations are termed time-harmonic or phasor fields, 

and working with the time-harmonic formulation of Maxwell's equations can be more efficient 

in such cases [18, 19]. 

Therefore, the time-harmonic form of Maxwell's equations is presented as follows: 

1. Gauss's Law for Electricity:   𝛻 · 𝐸⃗ =
𝜌
𝜀0⁄              (2.1), 

2. Gauss's Law for Magnetism:  𝛻 · 𝐻⃗⃗ = 0                 (2.2), 

3. Faraday's Law:  𝛻 × 𝐸 ⃗⃗  ⃗ = −𝑖𝜔𝐵⃗                              (2.3), 

4. Ampère-Maxwell's Law:  𝛻 × 𝐻⃗⃗ = 𝐽 + 𝑖𝜔𝐷⃗⃗           (2.4). 

In these equations: ∇ (nabla) symbolizes a vector differential operator, 𝐸⃗    is the electric field 

vector, 𝐻⃗⃗    stands for the magnetic field vector, 𝐵⃗   signifies the magnetic flux density vector,  

𝐷⃗⃗  represents the electric displacement field vector, 𝜌 denotes the free electric charge density, 

𝐽  refers to the free current density vector, 𝜀0 corresponds to the permittivity of free space, 

 𝜔  = 2πf is the angular frequency (f being the frequency of the electromagnetic wave), and 'i' 

is the imaginary unit. 

 The operators "•" and "×" signify the dot product and cross product, respectively. 
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In the context of Maxwell's equations, the electric field (𝐸⃗ ) and the electric displacement field 

(𝐷⃗⃗ ), as well as the magnetic field (𝐻⃗⃗ ) and the magnetic flux density (𝐵⃗  ), are related through 

the properties of the materials in which these fields exist.  

The relationship between 𝐸⃗  and 𝐷⃗⃗  is given by:   𝐷⃗⃗ =  𝜀𝐸⃗                 (2.5). 

Here, ε is the permittivity of the material. It is the measure of a material's ability to store 

electrical energy in an electric field. For vacuum, 𝜀 is denoted by 𝜀0 (the permittivity of free 

space), but for other materials, ε is given by 𝜀 = 𝜀𝑟𝜀0, where εr is the relative permittivity or 

dielectric constant of the material. 

The relationship between 𝐻⃗⃗  and 𝐵⃗   is given by: 𝐵⃗  = 𝜇𝐻⃗⃗                    (2.6). 

Here, μ is the permeability of the material. It measures the ability of a material to establish an 

internal magnetic field in response to an applied magnetic field. For vacuum, μ is denoted by 

μ₀ (the permeability of free space), but for other materials, μ is given by 𝜇 = 𝜇𝑟𝜇0, where μr is 

the relative permeability of the material. 

It is important to emphasize that for materials, both permittivity (ε) and permeability (μ) are 

usually complex quantities. This means they are expressed as ε = ε' - iε", and μ = μ' - iμ", where 

ε' and μ' are the real parts, and ε" and μ" are the imaginary parts of permittivity and 

permeability, respectively. 

Also, in both cases, these relations assume that the material is linear, isotropic, and 

homogeneous, meaning that the permittivity and permeability are constant throughout the 

material and the same in all directions.  
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If these conditions are not met, ε and μ can become tensors, and the relationship between 𝐸⃗  

and 𝐷⃗⃗  or 𝐻⃗⃗  and 𝐵⃗  can become more complex. Thus, in anisotropic materials, the relationship 

between the electric field vector (𝐸⃗ ), electric displacement field vector (𝐷⃗⃗ ), and permittivity 

(ε) is of fundamental importance. Anisotropic materials are those whose properties vary with 

direction due to the underlying crystal structure, molecular alignment, or microstructural 

organization. In such materials, the permittivity ( 𝜀)̿ becomes a tensor (3x3 matrix) instead of 

a scalar as in isotropic materials. The permittivity tensor, ( 𝜀)̿ is represented as: 

                                              𝜀̿ = (

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

)     

The relationship between  𝐸⃗  and  𝐷⃗⃗  in anisotropic materials is given by the equation 𝐷⃗⃗ = 𝜀𝐸⃗̿ . 

Here, 𝐷⃗⃗  is a column vector representing the electric displacement field, 𝐸⃗  is a column vector 

representing the electric field. In component form, this equation can be expressed as: 

(

𝐷𝑥
𝐷𝑦
𝐷𝑧

) = (

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧
𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧
𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

) · (

𝐸𝑥
𝐸𝑦
𝐸𝑧

) 

Where: 

Dx, Dy, Dz are the components of the electric displacement field vector 𝐷⃗⃗  along the x, y, and z 

directions, respectively. 

Ex, Ey, Ez are the components of the electric field vector 𝐸⃗  along the x, y, and z- directions, 

respectively. 
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The permittivity tensor is symmetric, meaning εij = εji, and accounts for the material's 

anisotropic behavior. The diagonal elements (εxx, εyy, εzz) represent the permittivity along the 

principal axes (x, y, z), while the off-diagonal elements (εxy, εxz, εyx, εyz, εzx, εzy) represent the 

coupling between different directions. 

An anisotropic permittivity tensor characterizes materials that exhibit distinct electrical 

properties along different axes. This anisotropy leads to a directional dependence in the 

material's response to an electric field. To fully capture this behavior, the permittivity tensor 

can take on different values depending on the direction within the material [21, 22]. 

Anisotropic materials play a crucial role in various applications, including the design of optical 

devices, anisotropic metamaterials, and electronic components. Photonic crystals, negative-

index metamaterials (NIMs), plasmonic nanostructures, optical metasurfaces, and hybrid 

metasurfaces are all examples where anisotropic materials contribute to achieving unique and 

tailored functionalities [23-25]. 

In conclusion, the historical journey from simple ancient observations to our current 

sophisticated understanding of electromagnetism exemplifies the power of human curiosity 

and scientific exploration. This journey has been instrumental in revolutionizing optics, 

deepening our knowledge of light, and enabling a multitude of technologies that shape our 

world. As the field of electromagnetism continues to evolve, it holds the promise of further 

illuminating the universe and opening new avenues for technological progress. 
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2.2. Overview and significance of optical responses of layered 

electromagnetic nanostructures 

The discovery of surface plasmon polaritons (SPPs) in the mid-20th century, collective 

oscillations of free electrons at a metal surface, laid the groundwork for the field of plasmonics 

and, by extension, layered nanostructures. This discovery fueled deeper exploration into how 

light interacts with metals, particularly at interfaces between different media [26]. 

By the late 20th century, advancements in nanotechnology and the ability to fabricate layered 

structures with nanoscale precision opened doors to new research avenues. Layered 

electromagnetic nanostructures are typically constructed by stacking materials with varying 

refractive indices or electromagnetic properties. By harnessing interference effects between 

these layers, structures can be meticulously designed to exhibit a desired response to incident 

light. Furthermore, by tailoring the thickness, material properties of each layer, and the total 

number of layers, the optical response can be optimized for specific applications, ranging from 

highly reflective mirrors and antireflective coatings to efficient light-emitting devices [27, 28]. 

The field of nanotechnology has witnessed a surge of interest in the optical responses of layered 

electromagnetic nanostructures due to their potential for transformative applications in 

photonics, biomedical imaging, and beyond. This profound interest stems from their unique 

ability to manipulate light-matter interactions at subwavelength scales, leading to novel optical 

phenomena and unparalleled device functionalities [29-31]. 

The optical response of a material essentially describes its interaction with incident light. It is 

typically characterized by processes such as reflection, transmission, absorption, and 
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scattering. Nanostructures stand out because their optical responses can be precisely controlled 

by manipulating their size, shape, composition, and arrangement. Layered structures like thin 

films, quantum wells, metamaterials, and photonic crystals are prime examples of layered 

electromagnetic nanostructures, exhibiting resonant behaviors such as localized surface 

plasmon resonance (LSPR) and Fabry-Pérot resonances. These phenomena enable strong light 

confinement and enhanced light-matter interactions [32, 33]. 

One of the most captivating aspects of layered nanostructures is the ability to manipulate light 

at scales smaller than its wavelength. By meticulously engineering these structures, it becomes 

possible to control the phase, amplitude, and polarization of light in ways that bulk materials 

cannot achieve. For instance, metasurfaces, essentially two-dimensional metamaterials, can be 

spatially engineered to manipulate an incident light wave almost arbitrarily. This opens 

exciting possibilities for the development of flat optics, holography, and highly integrated 

photonic devices [34-36]. 

The unique optical properties of layered nanostructures have yielded diverse and impactful 

applications across various fields. 

Energy Sector: Multilayered nanostructures have been implemented to enhance light 

absorption in solar cells, leading to improved energy conversion efficiencies. 

Electronics: The design of high-speed transistors and lasers has been significantly influenced 

by quantum wells, a type of layered nanostructure. 

Data Storage: Layered nanostructures play a role in the development of high-density optical 

storage media, such as Blu-ray discs. 
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Biomedicine: Nanostructured materials are increasingly employed for in vivo imaging, 

biosensing, and therapeutic applications. For instance, plasmonic nanoparticles can enhance 

the signal of Raman scattering (Surface-Enhanced Raman Scattering, SERS), offering a 

powerful tool for the detection and identification of molecules in biomedical diagnostics [37-

40]. 

2.3 Theoretical foundations of the transfer-matrix method (TMM) 

Consider a system as illustrated in Fig. 2.2, consisting of a single layer film of thickness t and 

refractive index n1, sandwiched between a covering layer with refractive index n0 and a 

substrate with refractive index ns. Light is incident from one side of the system. While the 

system exhibits homogeneity along the x and y-directions, it has variations along the z-

direction, perpendicular to the layers. 

 

Figure.2.2. Single layer film of thickness t and index refraction n1 on a substrate of index ns placed in a medium 

with refractive index of n0. 

Understanding the optical responses generated by such a system is facilitated by methods 

grounded in theoretical principles. Maxwell's equations, along with their corresponding 
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boundary conditions, can be applied to analyze the fields within these layers. According to 

Maxwell's equations, the electric field is continuous across the boundary between two media. 

Therefore, if the electric field is known at the beginning of a layer, the field at the end can be 

derived using a well-defined mathematical operation. 

Several theoretical approaches have been developed to gain a comprehensive understanding of 

the optical responses arising from these systems. The Transfer-Matrix Method (TMM) stands 

out for its exceptional efficacy. The TMM has been specifically adapted to calculate the 

transmittance (T) and reflectance (R) associated with layered structures like the one depicted 

in Fig. 2.2. As we progress through this chapter, we will delve into the application of TMM to 

compute these transmittances and reflectances for our system structure. The system matrix is 

essentially the product of individual layer matrices.  

Therefore, the TMM proves to be a powerful tool for designing structures like anti-reflective 

coatings and dielectric mirrors. The conceptual analysis and subsequent theory of the TMM 

follow the approach outlined by Pedrotti, and Born & Wolf [36, 37]. 

Figure 2.2 illustrates a one-layer film, along with the components of the associated electric and 

magnetic fields of the incident, reflected, and transmitted waves. 

We assume a homogeneous, isotropic film with refractive index n deposited on a substrate with 

refractive index ns. The structure is then placed in a medium with an index of refraction no. A 

beam of light is incident on the first interface (a), where it undergoes partial reflection. Part of 

the beam may also experience total internal reflection within the film, while another portion is 

transmitted at the second interface (b). 
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According to Maxwell's equations, and by applying boundary conditions at the interfaces, the 

tangential components of the resultant electric and magnetic fields are continuous across the 

interface as shown below in equations (2.7) and (2.8). 

                                                   
1 1 1

2 2 2

a o r t i

b i r t

E E E E E

E E E E

= + = +

= + =
                                (2.7) 

                                        
1 1 1 1 1

2 1 2 1 2 2

cos cos cos cos

cos cos cos

a o o r o t t i t

b i t r t t t

B B B B B

B B B B

   

  

= − = −

= − =
     (2.8) 

In this context, the magnetic and electric fields are interconnected through the equation:          

                                                         𝐵⃗ = 𝑛√𝜀0𝜇0𝐸⃗                                                 (2.9).  

with the magnetic field possessing both tangential and perpendicular components. As such, 

utilizing equation (2.9) allows us to recast equation (2.8) in the following form: 

 

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 1 2 2 2

cos cos

cos cos

a o o o o o r o o t t i o o r t i

b o o t i r s o o t t i r s t

B n E E n E E E E E E

B n E E n E E E E

       

       

= − = − = − = −

= − = = − =

(2.10) 

Here, we denote, coso o o o on    , 1 1 1coso o tn     and 2coss s o o tn     . The 

phase difference  between  2iE  and 1tE  is given by  ( ) 1 22 coso o tk n t   =  = .This enables 

us to express the electric fields as  2 1

i

i tE E e −= and  1 2

i

i rE E e −= respectively. Thus, given the 

boundary conditions, we can formulate the following: 
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( )
1 1 2

1 1 1 2

i i

b t i t

i i

b t i s t

E E e E e E

B E e E e E

 

  

−

−

= + =

= − =
                     (2.11). 

By determining 1tE   and 1iE   in relation to bE   and bB , we consequently obtain the following 

expression: 

1
1

1

1
1

1

2

2

ib b
t

ib b
i

E B
E e

E B
E e













−

 +
=  
 

 −
=  
 

                                     (2.12). 

Next, we incorporate equation (2.12) into equations (2.7) and (2.8), yielding the subsequent 

result: 

                                              

( )

1

1

sin
cos

sin cos

a b b

a b b

i
E E B

B E i B






  

 
= +  

 

= +

                  (2.13). 

We can transpose equation (2.14) into a matrix form, connecting the field components at the 

initial boundary to those at the subsequent one. Here, 1E  and 1B  represent the electric and 

magnetic fields within the film respectively, as depicted in Equation (8) that follows. 

                                      
1 1

1 1

1 1

1

sin
cos

cos

a

a

i
E E E

M
B B B

i






 

 
      

= =      
      

 

             (2.14), 

The matrix 1M   represents the transfer matrix specific to the film. In a multi-layer structure 

system, each layer boasts its unique transfer matrix. Thus, in a system composed of N layers, 

each layer, denoted as j, possesses a transfer matrix Mj, with j increasing in the direction of 
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propagation. In this context, the stack layers align perpendicularly to the propagation direction. 

This allows us to express the entire system's transfer matrix as follows: 

                                                      1 2s NM M M M=           (2.15). 

2.4 Transfer matrix method (TMM) analysis of multilayer Structures 

 Figure 2.3 depicts a schematic representation of the Transfer Matrix Method (TMM) applied 

to a multilayer structure. Each layer (represented by distinct colors) is characterized by a 

unique transmission matrix (T0, T1, and Ts), encapsulating its optical properties and 

propagation characteristics along the z-direction (assumed to be homogeneous in the x and y 

directions). Light incident from region I interacts with each layer as it propagates, and these 

interactions are mathematically described by the corresponding transmission matrices. The 

total transmission through the entire structure to region II is efficiently calculated by the 

product Ttotal = Ts · T1 · T0, accounting for the cumulative effect of all layers. 

TMM provides a powerful tool for analyzing light propagation through complex multilayer 

structures. It allows researchers to systematically and efficiently assess various optical 

phenomena, facilitating the design and optimization of diverse photonic devices and systems. 

By utilizing TMM, researchers can gain crucial insights into the intricate interplay between 

light and individual layers within a multilayer structure. This understanding underpins 

advancements in nanophononics research and unlocks the potential of layered electromagnetic 

nanostructures for applications such as imaging, sensing, quantum information processing, 

directional scattering, and enhanced solar energy conversion. 
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Figure.2.3 Concept of transfer matrices method (TMM) for a multilayered structure.  

We can represent equation (2.15) in a more compact manner as: 

1

N

s i

i

M M
=

=                 (2.16). 

By enforcing the boundary conditions at the interfaces within the multi-layer system, we can 

also write the transfer matrix in the following manner: 

                                              
( )

1 211 12

1 221 22

o r t

o o r s t

E E Em m

E E Em m 

+    
=    

−    

    (2.17). 

Drawing from equation (2.18), we can derive the reflection and transmission coefficients as  

𝑟 =
𝐸𝑟1

𝐸0
⁄   and 𝑡 =

𝐸𝑡2
𝐸0
⁄    respectively. These two parameters can also be described in 

relation to the transfer matrix elements and other variables associated with the transfer matrix 

as follows: 
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11 12 21 22

11 12 21 22

o o s s

o o s s

m m m m
r

m m m m

   
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+ − −
=

+ + +
          (2.18), 

                                         
11 12 21 22

2 o

o o s s

t
m m m m



   
=

+ + +
              (2.19). 

Equations (2.18) and (2.19) provide a universally applicable method for calculating reflection 

and transmission coefficients across any multi-layered structures. In addition, these equations 

also enable us to ascertain the reflectance and transmittance values from 
2

R r= and 
2

T t= , 

correspondingly. Therefore, when designing N alternating layers featuring low (nL) and high 

(nL) refractive indices, we can derive the transfer matrix as follows: 

( )
( )

( )

( ) ( )

( )
( )

( ) ( )

sin sin
cos cos

sin cos sin cos

N

N

H Ls H L

H L

i H i L
H L

M M M

i H H i L L

 
 

 

     

   
   

= =    
   
   

 (2.20). 

 

2.5 Modeling multilayer structures with the transfer matrix method (TMM) 

This section leverages the transfer matrix derived in Section 2.2 (Equation 2.20) to calculate 

the transmittance and reflectance of various multilayer nanostructures. For simplicity, we will 

focus on an N-periodic stack system, as depicted in Fig. 2.4. To facilitate calculations, we 

define the we define the optical thickness as one quarter of the wavelength, which is typically 

denoted as 𝑛𝐻𝐿𝐻 = 𝑛𝐿𝐿𝐿=𝜆0 4⁄  , where 𝜆0 represents the chosen reference operating 

wavelength. 

Additionally, we assume the system is composed of non-magnetic materials, resulting in a 

layered stack with alternating refractive indices,𝑛1 = √ɛ1𝜇1 =√ɛ1 and 𝑛2 = √ɛ2𝜇2 =√ɛ2, 
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forming layers with thicknesses a and b, respectively. The refractive indices of the incident 

and transmitted media are denoted as n0 and ns, respectively. 

 

 

 

 

 

Figure.2.4. N-period stack consisting of two layers with thicknesses a and b and constant real indices of refraction 

n1 and n2,  

A quarter-wave stack is characterized by the equation 𝑛1𝑎 = 𝑛2𝑏 = 𝜆0 4 = 𝜋𝑐 2𝜔0⁄⁄ , where 

𝜔0 is the frequency at the middle of the band gap, and c is the speed of light in vacuum. 

The Transfer Matrix Method (TMM) was employed to simulate a multilayer structure 

composed of alternating high and low refractive index materials. Silicon nitride ( 𝑛1 =1.9) and 

silicon dioxide (𝑛2 = 1.46) were chosen for the high and low index layers, respectively. Air 

(𝑛0 = 1) served as the incident medium, and the substrate was silicon (Si) with a refractive 

index of 𝑛𝑠 = 3.48. The design wavelength (𝜆0 = 1.55𝜇𝑚) was defined, and the transmittance 

and reflectance were calculated for structures with N = 1, 2, 6, 8, and 10 bilayers. Figures 2.5, 

2.6, and 2.7 depict the reflectance and transmittance spectra as functions of frequency (ω), 

normalized by the variable 𝜔 𝜔0⁄ , for all N values. 
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(a)                                                                   (b)                                                                                         

 

                                                                                                                       

 

 

 

Figure. 2.5 Reflectance and transmittance for the multi-layer structure.  (a) displays the scenario for N=1, while 

panel (b) illustrates the case for N=2. 

(a)                                                                                         (b) 

 

 

 

 

 

Fig. 2.6. Reflectance and transmittance for the multi-layer structure. (a) displays the scenario for N = 4, (b) 

illustrates the case for N = 6.    
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(a)                                                                           (b) 

 

 

 

 

 

 

Figure. 2.7. Reflectance and transmittance for the multi-layer structure. (a) displays the scenario for N = 8, (b) 

illustrates the case for N = 10. 

To investigate the influence of structural defects, we further analyzed the reflection and 

transmission responses by introducing a controlled imperfection. Specifically, the thickness of 

one silicon nitride layer was extended to a half-wavelength, while maintaining the silicon 

dioxide layer thickness at a quarter-wavelength. The resulting spectral calculations for 

reflectance and transmittance are presented in Figs. 2.8, 2.9, and 2.10. 

(a)                                                                                      (b) 
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Figure 2.8. Reflectance and transmittance responses characteristic to the multilayered structure. (a)  condition 

when N =1, (b) demonstrates the scenario for N = 2. 

(a)                                                                                                      (b) 

 

 

 

 

 

 

Figure 2.9. Reflectance and transmittance responses characteristic of the multilayered structure. (a)  condition 

when N = 4, (b) demonstrates the scenario for N = 6 

(a)                                                                                       (b) 

 

 

 

 

 

 

Figure 2.10. Reflectance and transmittance responses characteristic to the multilayered structure. (a)  condition 

when N = 8, (b) demonstrates the scenario for N = 10. 
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To explore the effect of a frequency-dependent permittivity, we further analyze the system's 

transmittance after replacing a single layer with a material exhibiting such behavior. For the 

case of simple metals lacking a damping rate, the metal permittivity can be simplified using 

Drude's model, expressed by the equation: 

                ɛ(𝜔) = 1 − 𝜔𝑝
2 𝜔2⁄ . 

Where ε(ω) is the frequency-dependent permittivity, ωp is the plasma frequency ω is the 

angular frequency. This substitution allows us to investigate how the system's optical response 

changes when a layer exhibits a permittivity that varies with frequency. 

Figure 2.11 illustrates the calculated transmittance spectrum after substituting the second layer 

of the structure with gold. The simulations were performed for terahertz (THz) frequencies, 

with specific values of  𝜔𝑝 = 4350𝜋THz, 𝜆0 = 1.55 𝜇𝑚, and N =5. The refractive indices of 

the substrate (ns = 3.48), incident medium (n0 = 1), and remaining dielectric layers 𝑛1= 1, 

and 𝑛2 = √ɛ(𝜔). This analysis demonstrates how incorporating a metallic layer with a 

frequency-dependent permittivity (as modeled by Drude's model for gold) affects the overall 

optical response of the multilayer structure. 
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Figure. 2.11. Transmittance plot for the multilayered structure with N=5 layers, 𝑛1 = 1, 𝑛2 = √ɛ(𝜔). 

The Transfer Matrix Method (TMM) is a powerful and versatile computational tool for 

analyzing the optical responses of multilayered nanostructures. It can handle systems with any 

number of layers, enabling accurate predictions of light-matter interactions. Understanding 

these interactions is critical for designing nanostructures with tailored optical properties. 

TMM facilitates the prediction and manipulation of resonant modes crucial in nanophotonics, 

such as surface plasmons and Fabry-Pérot resonances. These resonances in layered 

nanostructures can lead to fascinating phenomena like Fano resonances, bound states in the 

continuum, and strong coupling. By adjusting structural parameters, scientists can modulate 

these resonances, opening doors for applications in sensing, optical switching, filtering, and 

diverse photonic devices. 

The study of optical responses in layered nanostructures holds growing importance within 

photonics. Initially, scientists developed and refined mathematical models and theories to 
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comprehend these complex interactions, laying a strong foundation. As these tools became 

more sophisticated, our understanding deepened, propelling the field forward. 

Understanding these optical responses has vast and diverse practical applications. Their 

potential impact spans telecommunications, data storage, medical imaging, quantum 

information processing, and solar energy capture. This breadth ensures the field remains a 

research focal point, driving continuous innovation. 

The study and comprehension of optical responses in layered electromagnetic nanostructures 

are of paramount importance. The Transfer Matrix Method serves as a critical tool for 

accurately calculating these responses and predicting light-matter interactions. This knowledge 

unlocks a treasure trove of possibilities for technological advancements across various fields, 

pushing the boundaries of information technology, energy production, healthcare, and beyond. 

As our ability to design and control layered nanostructures evolves, their applications will 

continue to expand, further fueling progress and innovation. 

2.6 Surface plasmons 

The early 20th century witnessed the first experimental discovery of surface plasmons, 

attributed to R. W. Wood. In 1902, Wood observed anomalies in his measurements of 

wavelength and angular dependence of polychromatic light reflectivities from metallic 

diffraction gratings. One anomaly involved a rapid change in light intensity at specific narrow 

wavelength ranges depending on the grating periodicity or wavelengths at certain fixed angles 

of incidence, rather than the metal properties themselves [38]. 
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Lord Rayleigh proposed an explanation for this anomaly, suggesting it occurred at wavelengths 

where a diffracted wave appeared or vanished, giving rise to the term "Rayleigh anomaly" [39]. 

Wood observed another anomaly: a decrease in light intensity by the gratings, marked by a 

dark minimum and a bright maximum in the diffracted light spectrum. The spectral positions 

of these bands depended on the dielectric functions of the metals used in the gratings. This 

phenomenon was later attributed by Fano (1941) to the excitation of electromagnetic surface 

waves on the surface of the periodic metallic diffraction grating [40]. 

Numerous researchers have made significant contributions to the development of surface 

plasmon research. For instance, Ritchie's 1957 work on collective excitations of surface 

oscillations at metallic film boundaries led to the theoretical derivation of the dispersion 

relations of surface plasmon polaritons (SPPs) in thin metallic films. These findings were later 

confirmed experimentally by Powell and Swan [41, 42]. 

In 1958, Thurbadar observed a substantial decrease in the reflection spectrum while measuring 

light reflectivity from thin metallic films on a substrate. However, he did not attribute this 

effect to surface plasmon excitation. Ten years later, Otto explained Thurbadar's results, 

revealing that the significant reduction in reflectivity stemmed from the excitation of surface 

plasmons using a method known as attenuated total reflection (ATR) [43]. 

Around the same time, Kretschmann and Raether independently reported the excitation of 

surface plasmons using the ATR method in a different configuration. The ATR method has 

since become a vital tool for optically exciting surface plasmons at the interface between metals 

and dielectrics [44, 45]. 
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Surface plasmons are collective oscillations of free electrons confined at the interface between 

a metal and a dielectric nanostructure. These confined electron oscillations can trigger 

corresponding electromagnetic field oscillations at the interface. This intricate interplay 

between electromagnetic wave oscillations and the motion of charges is referred to as surface 

plasmon polaritons (SPPs). A localized surface plasmon (LSP) is a specific type of surface 

plasmon that arises when the collective electron oscillations are confined within a metallic 

nanoparticle, particularly when the particle size is comparable to or smaller than the 

wavelength of light used for excitation. This confinement effect leads to unique properties of 

LSPs, distinct from those of propagating surface plasmons at a metal-dielectric interface 

[46,47]. 

This subsection explores the theory of bulk and surface plasmon-polaritons. We will first 

derive the dielectric function for bulk plasmon-polaritons using the Drude model's assumptions 

to understand their dispersion relation. Then, we will examine the conditions necessary for the 

existence of surface plasmon-polaritons at the metal-dielectric interface and derive their 

dispersion relation. Finally, we will demonstrate how to utilize the derived dispersion relation 

equations to calculate the frequency and wavelength of surface plasmon-polaritons, providing 

insights into their fundamental properties and behaviors. 
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2.6.1Theoretical analysis of surface plasmons 

Our investigation will delve into the metal's dielectric response, which is intimately linked to 

its electron density (n).  

We start our discussion by considering the effects of free electrons (no interband transitions) 

and formulate the equation of motion for an oscillating external field as: 

                                        𝑬(𝑡) = 𝑬𝟎exp(−𝑖𝜔𝑡)                 (2.21).  

In its time-varying form, this equation becomes: 

                                      𝑚
𝑑2𝑟

𝑑𝑡2
+𝑚𝛾

𝑑𝑟

𝑑𝑡
= −𝑒𝑬𝟎exp(−𝑖𝜔𝑡)                                  (2.22). 

   

Assuming a specific solution to equation (2.22), we can write 

                                          𝒓(𝑡) =
𝑬𝟎exp(−𝜔𝑡)

𝑚(𝜔2 + 𝑖𝛾𝜔)⁄                                        (2.23). 

Here, the complex amplitude accounts for any phase shift between the driving field and the 

medium's response. 

The polarization P resulting from electron displacement can then be computed using: 

                                  𝑷 = −𝑛𝑒𝒓                                                                                       (2.24). 

Substituting Equation 2.1.3 into Equation 2.1.4, the polarization transforms to: 

                   𝑷 = −𝑛𝑒
2𝑬

𝑚(𝜔2 + 𝑖𝛾𝜔)⁄                                                                             (2.25). 
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In the case of a linear, isotropic, and nonmagnetic medium, we define the constitutive relation 

as: 

                                        𝑫 = 𝜀0𝜀𝑬                                                    (2.26). 

In this context, D denotes the electric displacement, E represents the electric field, ε₀ refers to 

the permittivity of free space (valued at 8.854 x 10⁻¹² F/m), and ε indicates the dielectric 

constant or relative permittivity. Meanwhile, we can relate the electric displacement D to the 

electric field E and medium polarization via: 

                                      𝑫 = 𝜀0𝑬 + 𝑷                                                 (2.27). 

By combining equations (2.26), (2.27), and (2.28), we can derive an expression for the electric 

displacement: 

                                    𝑫 = 𝜀0 (
𝜔𝑝
2

(𝜔2 + 𝑖𝛾𝜔)
⁄ )𝑬                           (2.28) 

The term 𝜔𝑝
2 = 𝑛𝑒

2

𝜀0⁄ 𝑚 is recognized as the plasma frequency, where m denotes the electron 

mass, e stands for the electronic charge, and γ represents the damping constant, which is 

expressed as ne/mσ, with σ referring to the metal's conductivity. By comparing Equations 

(2.1.6) and (2.1.8), we can derive an expression for the dielectric function of the free electron 

gas, as: 

                                𝜀(𝜔) = 1 −
𝜔𝑝
2

(𝜔2 − 𝑖𝛾𝜔)
⁄                              (2.29). 

The given equation can be conveniently expressed in terms of its real and imaginary 

components, where 𝜀(𝜔) is represented as 𝜀1(𝜔) + 𝑖𝜀2(𝜔). To be more explicit, we can define 

𝜀1(𝜔)and 𝜀2(𝜔) as follows: 
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𝜀1(𝜔) = 1 −
𝜔𝑝
2

(𝜔2 + 𝛾2)
⁄    and 𝜀2(𝜔) = 1 −

𝛾𝜔𝑝
2

𝜔(𝜔2+𝛾2)
. 

Thus, the equation takes the form: 

                       𝜀(𝜔) = 1 −
𝜔𝑝
2

𝜔2+𝛾2
+

𝑖𝛾𝜔𝑝
2

𝜔(𝜔2+𝛾2)
             (2.30).        

Please note that this separation into real and imaginary parts allows for a clearer understanding 

of the physical implications of the equation. The real part, ε₁(ω), corresponds to the dispersive 

behavior of the material, while the imaginary part, ε₂(ω), accounts for its absorptive or 

dissipative characteristics. 

For a medium that is both isotropic and lossless, where ω is significantly large (𝜔 >> 𝛾), the 

dielectric function is primarily real. As such, the dielectric function, 𝜀1(𝜔) simplifies to: 

                               𝜀(𝜔) = 1 −
𝜔𝑝
2

𝜔2
⁄                                     (2.31). 

As an illustration, Fig.2.12 presents a plot of both real and imaginary components of the 

dielectric constant based on Equation (2.29). This plot pertains to a free electron gas with a 

plasma frequency 𝜔𝑝 = 13.8 × 10
15𝑆−1 and a damping constant 𝛾 = 1.075 × 1014𝑆−1, as 

extrapolated from the Drude model for a free electron gas. 
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    Figure.2.12. Real ε₁(ω) and imaginary ε₂(ω) parts of the dielectric function of an electron gas. 

In light of equation (2.32), we can discern that for frequencies below the plasma frequency, 

the dielectric function is real and negative, leading to a purely imaginary wavenumber k, due 

to the strong imaginary part of the refractive index 𝑛 = √𝜀 . Consequently, incident 

electromagnetic wave cannot penetrate the metal but is totally reflected, making them shiny in 

the visible range. The fields do, however, exhibit slight penetration into the metal, resulting in 

an exponential attenuation. Beyond the plasma frequency, the dielectric function turns positive. 

The field oscillations then outpace the free electrons, leading to a real-valued wavenumber, 

and the metal loses its reflective property. 

In pursuit of the dispersion relation of bulk plasmons, Maxwell’s curl equations can be united 

to form the wave equation: 

                                        (𝜀 𝑐2⁄ )
𝜕2𝐸

𝜕𝑡2
=▽2 𝐸                                                 (2.32) 

We can explore a solution for Equation (2.33) using E = exp (i (k.r - ωt)), which results in: 

                                      (
𝜀𝜇

𝑐2⁄ )𝜔2 = 𝑘2   ⇒ 𝑘 = (𝜔 𝑐⁄ )√𝜀𝜇                         (2.33). 
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Implementing Equations (2.31) and (2.33) alongside μ = 1 for nonmagnetic media, we obtain: 

                              𝑘 = (𝜔 𝑐⁄ )√1 −
𝜔𝑝
2

𝜔2
⁄                                                     (2.34), 

which leads to the dispersion equation: 

                                   𝜔2 − 𝜔𝑝
2 = 𝑘2𝑐2 ⇒ 𝜔2 = 𝜔𝑝

2 + 𝑘2𝑐2                                 (2.35). 

The dispersion relation of bulk plasmon polaritons, as per equation (2.35), is graphically 

represented in Fig.2.13, which shows that metals allow propagation of electromagnetic waves 

above the plasma frequency. Thus, metals become transparent. 

 

 

Figure.2.13. Dispersion relation of bulk plasmon polariton of free electron gas. Propagation of electromagnetic 

wave is not allowed below ωp since the wavenumber k is imaginary. The plasma wavenumber, kp = ωp/c. 

As can be observed in Fig.2.13, the bulk plasmon modes lie close to the light line at high 

frequencies, while they move away from it at low frequencies. Solving the dispersion relation 

of equation (2.35) shows that solutions lie above the light line where ω ˃ ωp, allowing for 

transverse electromagnetic (TEM) waves to propagate with group velocity Vg = dω/dk < c 



 

43 
 

 

(which is lower than the speed of light). Conversely, where ω ˂ ωp, electromagnetic wave 

propagation is not permitted, thus creating a forbidden region for the bulk plasmon. 

2.6.2 Surface plasmon polaritons at a planar interface 

This section establishes the dispersion relation for surface plasmon polaritons (SPPs) arising 

at the interface between a dielectric and a metal (Figure 2.14). SPPs are collective electron 

density waves that propagate along the interface. They exploit the free movement of loosely 

bound electrons in metals in response to an external electric field. 

Here, we focus on a single planar interface and determine the dispersion relation for the SPP 

modes supported at this interface using Maxwell's equations and appropriate boundary 

conditions for the fields in each medium. We consider solutions for propagating waves guided 

along the flat interface (z = 0 in the Cartesian coordinate system) that exhibit exponential decay 

in both positive and negative z-directions away from the interface (Figure 2.14). This indicates 

modes propagating along the x-direction. 

The dielectric medium is characterized by a positive real and frequency-independent dielectric 

constant (ε₁). The metal medium, on the other hand, is described by a complex, frequency-

dependent dielectric function (ε₂(ω)) following the Drude model. 
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Figure.2.14. Schematic of SPP modes at the interface between metal and dielectric. 

Our objective is to find solutions for possible guided modes localized at the interface by solving 

Maxwell's equations in both half-spaces (z > 0 and z < 0). These modes correspond to 

transversemagnetic (TM) or p-polarized waves. We assume a time-harmonic field of the form                                              

E = E0exp [i (kxx + kzz)] exp(-iωt)                   ( 2.36),     

that excites these localized plasmon waves. 

Now let’s consider the interface between air (medium 2) and metal (medium 1).  

For z > 0, we denote the electric and magnetic fields as: 

                                                

{
 
 

 
 𝐸2 = (

𝐸𝑥2
0
𝐸𝑧2

) 𝑒𝑗(𝑘𝑥2𝑥+𝑘𝑧2𝑧−𝜔𝑡)

𝐻2 = (
0
𝐻𝑦2
0

) 𝑒𝑗(𝑘𝑥2𝑥+𝑘𝑧2𝑧−𝜔𝑡)

                          

 Similarly, for z < 0, these fields are expressed as: 

                                                 

{
 
 

 
 𝐸1 = (

𝐸𝑥1
0
𝐸𝑧1

) 𝑒𝑗(𝑘𝑥1𝑥−𝑘𝑧1𝑧−𝜔𝑡)

𝐻1 = (
0
𝐻𝑦1
0

) 𝑒𝑗(𝑘𝑥1𝑥−𝑘𝑧1𝑧−𝜔𝑡)

 

Applying boundary conditions at the interface where z = 0, we equate the components of the 

electric and magnetic fields as: 

                                                              𝐸𝑥1 = 𝐸𝑥2                                                                                   

                                                             𝐻𝑦1 = 𝐻𝑦2                                                                              
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                                                            𝜀1𝐸𝑧1 = 𝜀2𝐸𝑧2,  

and under these conditions, no transverse- electric (TE) modes can exist, instead transverse-

magnetic (TM) modes propagate at the interface between the dielectric-metal interface along 

the x-direction [53].                                                                     

                                                      ⇒𝑘𝑥1 = 𝑘𝑥2 = 𝑘𝑥                                                                  Again, 

from Maxwell’s equations,  ∇ × 𝐻𝑖 = 𝜀𝑖
𝜕𝐸𝑖

𝜕𝑡
  ,  (𝑖 = 1,2)                            (2.37).     

 By applying the curl operator to the magnetic field H, we can decompose it into various field 

components using:                              

                           ∇ × 𝐻 = |

â𝑥 â𝑦 â𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

0 𝐻𝑦𝑖 0

| = −â𝑥
𝜕𝐻𝑦𝑖

𝜕𝑧
+ â𝑧

𝜕𝐻𝑦𝑖

𝜕𝑥
                           (2.38). 

From here, it follows that: 

                                                 𝑗𝑘𝑧1𝐻𝑦1 = −𝑗𝜔𝜀1𝐸𝑥1                                                 (2.39) 

 and, 

                                          −𝑗𝑘𝑧2𝐻𝑦2 = −𝑗𝜔𝜀2𝐸𝑥2                                          (2.40). 

Given that 𝐸𝑥1 = 𝐸𝑥2, (from the boundary conditions), it can be inferred from equations (2.40) 

and (2.39) that: 

                                      
𝑘𝑧1𝐻𝑦1

𝜔𝜀1
+
𝑘𝑧2𝐻𝑦2

𝜔𝜀2
= 0             (2.41) 

With the understanding that Hy1 = Hy2, hence,  
𝑘𝑧1

𝜀1
+
𝑘𝑧2

𝜀2
= 0                                  (2.42). 
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By applying the wave-vector relation, we obtain the following equations: 

 

                                                  𝑘𝑥
2 = 𝜀1(

𝜔
𝑐⁄ )
2 − 𝑘𝑧1

2                                                        (2.43), 

                               

                                               𝑘𝑥
2 = 𝜀2(

𝜔
𝑐⁄ )
2 − 𝑘𝑧2

2                                                        (2.44). 

From equation (2.43), we can reformulate equation (2.44) into: 

 

                       𝑘𝑥
2 = 𝜀2(

𝜔
𝑐⁄ )
2 − (

𝜀2𝑘𝑧1
𝜀1
⁄ )

2

                                                                   (2.45), 

Consequently, equation (2.44) can be rewritten as:  

                                         𝑘𝑧1
2 = 𝜀1(

𝜔
𝑐⁄ )
2 − 𝑘𝑥

2                                                                (2.46), 

Upon substituting equation (2.47) into equation (2.46), we arrive at the following expressions: 

𝑘𝑥
2 = (𝜔 𝑐⁄ )

2 (
𝜀1𝜀2

𝜀1+𝜀2
)=  𝑘𝑥 = (

𝜔
𝑐⁄ )√

𝜀1𝜀2

𝜀1+𝜀2
     or   𝑘𝑥 = (

𝜔
𝑐⁄ )√

𝜀𝑚𝜀𝑑

𝜀𝑚+𝜀𝑑
                  (2.47). 

Equation (2.48) provides a valuable insight into the dispersion relation governing the behavior 

of surface plasmon polariton (SPP) waves propagating across the interface of a metal and a 

dielectric material. In this particular context, the symbols εm and εd represent the dielectric 

constants for the metal and dielectric mediums, respectively, with εm = ε1 and εd = ε2. 

Additionally, kx = ksp serves as the mode propagation constant. 
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To visualize these relationships and the dispersion behavior of plasma modes and SPPs at the 

boundaries between metal/dielectric and metal/air, refer to the graph depicted in Fig. 2.15. 

 We assume that, the dielectric constant in the metal is given by 𝜀(𝜔) = 1 −
𝜔𝑝
2

(𝜔2 − 𝑖𝛾𝜔)
⁄ , 

and for the dielectric medium, εd = 4. We assume the dielectric constant for air to be 1. The 

parameters 𝜔𝑝 = 5 × 10
15𝑆−1 and 𝛾 = 1.075 × 1014𝑆−1, while represents the surface 

plasmon frequency. 

The plot illustrates an intriguing relationship: a dielectric medium with a higher dielectric 

constant lead to a lower 𝜔𝑆𝑃 . Furthermore, it vividly demonstrates that the entire SPP 

dispersion relation lies below the light cones. 

In summary, these observations shed light on the impact of dielectric constants on surface 

plasmon behavior and highlight the confinement of SPP dispersion within the boundaries 

defined by the light line (cones). 

 

Figure.2.15. Surface plasmon polariton plots at the interface between a metal and dielectric (blue dashed lines), 

and metal and air (red solid line). 
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A surface mode refers to charges accumulating at the boundary between the metal and the 

dielectric. This accumulation gives rise to an electric field that originates from positive charges 

and terminates at negative charges, existing in both the dielectric and metal mediums as 

depicted in Fig. 2.16. Consequently, in the presence of surface charges, the electric field 

components normal to the surface must exhibit opposite charges. 

 

 

Figure.2.16. Schematic representation of an electromagnetic wave and surface charges residing at the metal-

dielectric interface, which shows the strength and components of a surface plasmon polariton, accompanied by 

an enhancement of the local electric field component near the surface that exponentially decays with distance in 

a direction normal to the interface. 

The electric field of the excited SPP wave decays exponentially with distance normal to the 

interface. The penetration depths, 𝛿𝑑 =
1
𝑘𝑧2
⁄  and 𝛿𝑚 = 1 𝑘𝑧1

⁄  in the dielectric and metal at 

which the electric fields fall to 1/e.  

By referencing the dispersion relation equation (2.48), for surface plasmon polariton (SPP) 

waves and the wave-vector equation, we can determine the penetration depth (δd) of the surface 

plasmon polariton (SPP) wave into the dielectric as: 



 

49 
 

 

                                             𝛿𝑑 =
1

𝑘
|
𝜀𝑑+𝜀𝑚

−𝜀𝑑
2 |

1 2⁄

               (2.48). 

Similarly, utilizing equation (2.48), the penetration depth (δm) of the SPP wave into the metal 

can be expressed as: 

                                          𝛿𝑚 =
1

𝑘
|
𝜀𝑑+𝜀𝑚

−𝜀𝑚
2 |

1 2⁄

          (2.49), 

where 𝑘 = 2𝜋 𝜆⁄  is the free space wavenumber. 

Surface charges can instigate a collective oscillation, leading to the excitation of Surface 

Plasmon Polaritons (SPPs). The dielectric constant of the metal, denoted as εm, adopts the form 

of a free electron, is expressed as: 

𝜀1(𝜔) = 1 −
𝜔𝑝

2

𝜔2
  .          

For most metals, ωp (bulk plasma frequency) resides in the ultraviolet wavelength regime. 

Beyond this frequency, the metal loses its metallic properties.  

The dispersion relation uncovers an intriguing behavior of the surface mode. At low 

frequencies, the surface mode closely tracks the light line, exhibiting light-like characteristics. 

However, as the frequency increases, the mode gradually deviates from the light line and 

eventually reaches an asymptotic limit. This phenomenon occurs when the permittivities of 

both mediums possess the same magnitude but opposite signs, resulting in a pole in the 

dispersion equation (2.47). This relationship leads to 𝜀𝑚 = −𝜀𝑑, allowing us to express the 

dielectric constant of the metal as: 
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                                                      1 −
𝜔𝑝
2

𝜔2
= −𝜀2                                      (2.50). 

With this, we can calculate the SPP frequency as: 

 

                                             𝜔𝑆𝑃𝑃 =
𝜔𝑝

√1+𝜀2
                                  (2.51). 

Equation (2.51) represents the upper cutoff frequency for the surface mode, and in vacuum, 

when 𝜀2 = 1, it simplifies to: 

 

                                                       𝜔𝑆𝑃𝑃 =
𝜔𝑝
√2

                                               (2.52). 

Notably, the SPP frequency is found to be lower than the bulk plasma frequency. As previously 

mentioned, the excitation of SPPs heavily relies on this fundamental premise. 

We can then employ equations (2.51) and (2.52) to calculate the SPP wavelength 𝜆𝑆𝑃𝑃. 

In summary, this exploration of the unique optical characteristics of the electron gas in metals 

offers valuable insights into the behavior of plasmon polaritons, both in bulk and at interfaces. 

The derived expressions and dispersion relations pave the way for designing and engineering 

nanostructures with tailored optical properties, promising a myriad of applications in fields 

such as photonics, sensing, and optoelectronics.  
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3.0 Fano resonances 

The interaction of light with nanostructured materials is a cornerstone of modern photonics 

research. This chapter explores a fascinating phenomenon called Fano resonances, which 

significantly impacts light-matter interactions at the nanoscale. 

Fano resonances arise from the interplay between two distinct light states within a material: 

discrete and continuum states. Discrete states are localized light resonances confined within a 

small region, analogous to a "dark room" within the material. Continuum states, on the other 

hand, represent a vast sea of light waves constantly propagating through the material. The 

interaction between these states, where light bounces between the localized state and the 

surrounding continuum, manifests as a unique fingerprint in the light's behavior. 

Fano resonances were initially discovered in the context of interacting quantum systems [1]. 

However, their fundamental principles extend to classical wave phenomena as well. A classic 

example is their observation in the absorption spectra of atomic gases, where the interaction of 

a continuum of propagating light waves with a localized atomic energy level creates a Fano 

resonance. These resonances are distinguished by their characteristically asymmetric spectral 

line shapes, deviating from the typical symmetric profiles of isolated resonances [2]. 

Additionally, Fano resonances are often accompanied by a significant shift in the phase 

response around the resonant frequency [3]. 

To gain a deeper understanding of Fano resonances, Section 3.1 employs a visual exploration 

using diagrams (Fig. 3.3). These diagrams illustrate the superposition of a Lorentzian line 

shape (characteristic of a discrete state) with a flat continuous background (representing the 

continuum), resulting in the asymmetric lineshape profile that defines a Fano resonance. The 
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Fano parameter (q) plays a crucial role in quantifying the degree of asymmetry. By analyzing 

the Fano resonance line-shape profile for various values of q (Fig. 3.3), we can gain insights 

into the interplay between the trapped and continuous light states. 

Section 3.2 delves into the theoretical foundation of Fano resonances from a quantum 

mechanics perspective. Understanding bound (discrete) and continuum states, which are 

fundamental concepts for realizing Fano resonances in quantum systems, is paramount for this 

analysis. The example of a one-dimensional finite potential square well serves as a helpful 

illustration of these concepts. 

Section 3.3 explores the fascinating realm of photonic nanostructures, where Fano resonances 

emerge when light interacts with metallic or dielectric objects at the nanoscale. This section 

highlights the versatility of Fano resonances and bridges the gap between classical and 

quantum mechanics, providing a holistic picture of light's behavior in these miniature 

structures. 

Researchers have extensively studied Fano resonances in various nanostructures [4-7]. These 

resonances can occur due to the interaction between different types of light waves (broad and 

narrow) within the structure, ultimately affecting how light scatters. Plasmonic nanostructures, 

meticulously designed using metallic nanoparticles, are a prime example [8]. Within a metallic 

nanoparticle array, broad (bright) and narrow (dark) optical modes can interact, generating 

asymmetric line shapes in the scattering spectrum. The strong field enhancement observed in 

Fano structures holds promise for applications in molecular sensors and other optical devices 

[9, 10]. However, inherent metal losses in plasmonic nanostructures can limit their overall 
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effectiveness in certain photonic applications, particularly those requiring high sensitivity, 

such as optical sensors. 

Recent advancements have led to the exploration of Fano resonances in non-metallic 

(dielectric) materials, which overcome the light absorption issue of metals [11-15]. These 

structures can produce extremely sharp Fano resonances, offering significant advantages for 

sensors and switching devices. They achieve this by utilizing a special type of light resonance 

called a Mie resonance [11-15]. 

As a final exploration, Section 3.3.1 ventures beyond purely metallic or purely dielectric 

nanostructures by examining the potential of hybrid plasmonic-dielectric metamaterials. By 

strategically combining these two material classes, we can unlock a multitude of intriguing 

optical processes, including Fano resonances, Rabi splitting, and bound states in the continuum 

(BICs). These processes can significantly enhance quality-factors (Q-factors), a crucial 

parameter for high-performance photonic applications such as sensors, lasers, and optical 

switches [16,17]. 

3.1 Theory of Fano resonances 

Fano resonances are a captivating phenomenon in physics where a localized, discrete state 

interferes with a continuous background, leading to an asymmetric response in the observed 

spectrum. This insightful concept was first introduced by Italian-American physicist Ugo Fano 

during his studies on electron scattering by helium atoms. 
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Figure.3.1. Ugo Fano (July 28, 1912 – February 13, 2001): An Italian-American physicist. 

The essence of Fano resonances lies in the interplay between a discrete state and a continuum 

of states within a wave system. When an external field excites the discrete state, it can interfere 

constructively or destructively with the background continuum. This intricate interference 

manifests as an asymmetric spectral response, characterized by the distinctive Fano lineshape. 

 

Figure. 3.2: Schematic representation of Fano resonance in a two-level quantum mechanical system. The 

interaction between a discrete state (|d⟩) and a continuum state |c⟩ (represented by the blue horizontal lines) leads 

to the asymmetric lineshape characteristic of a Fano resonance. 

To illustrate this concept, consider a simplified two-level system (Fig.3.2). One level 

represents a localized discrete state |d⟩  , while the other embodies a continuum of states|c⟩  . 

An incident wave interacting with this system can either be directly scattered or absorbed and 
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subsequently re-emitted. The interplay between these two pathways leads to the characteristic 

asymmetric lineshape known as the Fano profile. 

 

 

 

 

Figure. 3.3. Schematic of Fano resonance as a superposition of the Lorentzian lineshape of the discrete level with 

a flat continuous background. 

Consider a simplified quantum mechanical system consisting of a discrete state, denoted as 

|ψd⟩, and a continuum of states represented by |ψc⟩. The system's total wavefunction can be 

expressed as:                               

 

                                |Ψ⟩ = a |ψd⟩ + ∫ b(E) |ψc(E)⟩ dE 

In this equation, the coefficient a represents the amplitude of the discrete state, while b(E) 

denotes the amplitude of the continuum state at a specific energy E [18]. 

When an external field excites the discrete state, it can interfere with the continuum states. This 

interaction leads to an asymmetric spectral response profile, typically characterized by the 

Fano lineshape (Fig. 3.3). This phenomenon can be mathematically described using the Fano 

formula: 

Discrete state Continuum  Fano resonance 
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                                               𝜎 =
(𝜖+𝑞)2

𝜖2+1
                  (3.1) 

This equation, also known as the Fano formula, calculates the scattering cross-section. Here, ϵ 

represents the normalized energy detuning defined as 𝜖 =
2(𝐸−𝐸𝑅)

𝛾
 where E is the energy of the 

incoming particle or wave, ER is the resonance energy (energy of the discrete state), γ is the 

resonance width (characterizing the state's decay rate), and q is the Fano asymmetry parameter 

that determines the line shape's asymmetry [3]. 

Equation 3.1 effectively captures the resonance condition established by Fano and highlights 

the intricate interplay between discrete and continuous scattering states. 

Figure 3.4 depicts the normalized scattering cross-section for Fano resonances with various 

asymmetry parameter (q) values. These plots represent the graphical solutions of Eq. 3.1 for 

different q values. When the excitation of the discrete state is minimal (|q| approaches zero, 

e.g., q = 0.1), the profile exhibits a nearly symmetric window-type resonance (black curve in 

Fig. 3.4). 

Conversely, when the excitation of the continuum background is negligible (|q| is large, e.g., q 

= 10000), the profile appears as a near-perfect symmetric positive peak (magenta curve in Fig. 

3.4). In this scenario, the Fano resonance can be envisioned as a quasi-bound state in the 

continuum (BIC). 

For intermediate q values (e.g., q = -2 and q = 2), the curves display distinct asymmetric peak 

profiles, with the minimum dipping to zero at ϵ = -q. It's important to note that when a state 
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couples to multiple continua, the spectrum might not necessarily reach zero, as discussed in 

more detail in section 4 of Fano's 1961 paper [1]. 

 

Figure.3.4. The Fano resonance line-shape profile with different values of the Fano parameter q. 

 

3.2 Finite potential square well 

The study of discrete and continuum states in quantum mechanics benefits from exploring a 

fundamental model: the one-dimensional finite potential square well (Fig. 3.4). In this system, 

a particle with energy E is confined within a region where the potential energy (V) is lower 

than a constant value (V₀). This confinement creates a valuable model system that embodies 

the characteristics of both bound and scattering states [18]. The simplicity of the finite square 

well makes it a ubiquitous tool for understanding various quantum systems, including atomic 

and molecular systems, as well as quantum dots in semiconductor devices [19, 20]. 
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For our analysis, we focus on a one-dimensional scenario with a finite potential well defined 

by walls at x = -L/2 and x = L/2. The potential energy within the well is denoted by V₀ (well 

depth). 

 

 

 Figure.3.5. Finite potential square well with depth V0, and width L. 

Applying the time-independent Schrödinger's equation, we will dissect the behavior of a 

particle in a finite potential well, scrutinizing the different regions separately.  

For region I, where     𝑥 ≤ −
𝐿

2
, 𝑉(𝑥) = 𝑉0, we engage the time-independent Schrödinger’s 

equation, which presents as follows:  

−
ћ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑉0𝜓 = 𝐸𝜓 ⇒             

𝑑2𝜓

𝑑𝑥2
=
2𝑚

ћ2
(𝑉0 − 𝐸)𝜓 

Here, x is the position variable in the one-dimensional space that the particle is moving in, L is 

the width of the potential well. The potential well is assumed to extend from -L/2 to L/2, V(x) 

is the potential energy function, which is dependent on the position x, V0 is the potential energy 
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inside the potential well, E is the energy of the particle, when E < V0, the particle is in a bound 

state and confined within the potential well. 

𝜓 is the wave function of the particle, which contains all the information about the state of the 

particle, h is the Planck's constant, and ħ = h/2π is the reduced Planck’s constant. 

 m is the mass of the particle, k is a constant derived from the parameters of the problem related 

to the wave number of the wave function., B and D are the constants of integration, which will 

be determined by the boundary conditions of the problem. 

Thus, we derive the equation    
𝑑2𝜓

𝑑𝑥2
= 𝜅2𝜓, where 𝜅2 =

2𝑚

ћ2
(𝑉0 − 𝐸), and importantly, 

this is greater than zero since E < V0. This confirms 𝜅 as a real number, as 𝜅 = √
2𝑚

ћ2
(𝑉0 − 𝐸)  

> 0. 

The resulting solutions to this differential equation can be written as: 

𝜓 = 𝐵𝑒𝜅𝑥 + 𝐷𝑒−𝜅𝑥 

However, considering the limit as  𝑥 → −∞, and  𝜓 → 0  , we deduce that D = 0. Thus, our 

derived solution in region 1 simplifies to  𝜓 = 𝐵𝑒𝜅𝑥. 

In region III, 𝑥 ≥
𝐿

2
, 𝑉(𝑥) = 𝑉0,  the mathematical treatment aligns closely with that of region 

1. By solving the differential equation in this region, we can represent the solutions as: 

𝜓 = 𝐴𝑒−𝜅𝑥 + 𝐶𝑒𝜅𝑥 

However, given that the wave function 𝜓 → 0   as 𝑥 → +∞, the constant  𝐶 = 0. This 

simplification results in the solution for region 3 becoming: 
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𝜓 = 𝐴𝑒−𝜅𝑥 

This means the wave function in region III decays exponentially as we move away from the 

well, which is indicative of the particle's confinement within the potential well. 

To analyze the scenario within region II, defined as -L/2 ≤ x ≤ L/2 where V(x) = 0, we employ 

the time-independent Schrödinger equation as follows: 

−
ћ2

2𝑚

𝑑2𝜓

𝑑𝑥2
= 𝐸𝜓, 

which can be simplified to   
𝑑2𝜓

𝑑𝑥2
= −

2𝑚

ћ2
𝐸𝜓 

This eventually leads us to: 

 
𝑑2𝜓

𝑑𝑥2
= −𝑘2𝜓, where 𝑘 = √

2𝑚

ћ2
𝐸 .  

The parameter k is real, resulting in two types of solutions based on the parity, i.e., even and 

odd.  

For even parity, indicating symmetry about the well's center, the solution is 

                                                                 𝜓 = 𝐶cos(𝑘𝑥).  

Conversely, for odd parity, indicative of antisymmetric about the well's center, the solution is        

𝜓 = 𝐷sin(𝑘𝑥) . 

These solutions aptly illustrate the behavior of a particle in a symmetric potential well. These 

solutions represent the wave functions inside the potential well, oscillating between positive 

and negative values, a typical behavior of quantum particles in bounded states. 
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We now proceed to equate both the wave function, 𝜓(𝑥), and its derivative, 
𝑑𝜓(𝑥)

𝑑𝑥
 , at the 

boundaries of the well, specified at 𝑥 = ±
𝐿

2
. This process must be performed twice since we 

have solutions for both even and odd parities. 

At 𝑥 =
𝐿

2
  for even parity, we equate 𝜓:  

                                                                      𝐴𝑒−𝜅
𝐿

2 = 𝐶cos (𝑘
𝐿

2
)                         (3.2) 

And we equate 
𝑑𝜓

𝑑𝑥
 :  

                                                          𝐴𝑘𝑒−𝜅
𝐿

2 = −𝐶𝑘sin (𝑘
𝐿

2
)                            (3.3) 

By dividing equation (3.3) by equation (3.2) to eliminate A and C, we get: 

                                                            tan (
𝑘𝐿

2
) =

𝜅

𝑘
                                         (3.4) 

A similar analysis can be performed for odd parity solutions, leading to: 

                                                    cot (
𝑘𝐿

2
) = −

𝜅

𝑘
                                         (3.5a) 

                                                    tan (
𝑘𝐿

2
+
𝜋

2
) =

𝜅

𝑘
                                       (3.5b) 

 

Given that: 

𝜅 = √
2𝑚

ћ2
(𝑉0 − 𝐸)         and                𝑘 = √

2𝑚

ћ2
𝐸 
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Equations (3.4) and (3.5) only contain a single unknown variable: the energy, E. Both of these 

equations are transcendental in nature, implying that they do not have straightforward 

analytical solutions. However, they can be tackled using numerical methods. 

For simplification, we'll express these equations using dimensionless parameters 𝜂 and 𝜁0. The 

parameter 𝜂, given by: 

𝜂 =
𝑘𝐿

2
=
𝐿

2
√
2𝑚

ћ2
𝐸 

is of particular interest as it encapsulates the energy we're aiming to solve for. Meanwhile, 𝜁0 

is defined as: 

 𝜁0 =
𝐿

2
√
2𝑚

ћ2
𝑉0 

This parameter, known as the potential strength parameter, conveys information about the 

depth (given by V0) and the width (given by L) of the potential well. 

Given our earlier relations: 

                                     𝜅 = √
2𝑚

ћ2
(𝑉0 − 𝐸)   and,  𝑘 = √

2𝑚

ћ2
𝐸. 

We can deduce: 

𝜅2 =
2𝑚

ħ2
(𝑉0 − 𝐸) =

2𝑚

ħ2
𝑉0 − 𝑘

2 

 

From which it follows: 
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𝜅2 = 𝑘2 {𝜁0
2 (
2

𝐿
)
2 1

𝑘2
− 1} 

or equivalently:            

𝜅

𝑘
= √

𝜁0
2

𝜂2
− 1 

Thus, our transcendental equations (3.4) and (3.5) can be rephrased as: 

𝑡𝑎𝑛(𝜂) = √(
𝜁0

𝜂
)
2
− 1          (3.6)      for even parity, and,    

−𝑐𝑜𝑡(𝜂) = √(
𝜁0

𝜂
)
2
− 1       (3.7)   for odd parity. It's important to note that  −𝑐𝑜𝑡(𝜃) =

𝑡𝑎𝑛 (𝜃 +
𝜋

2
) . 

In summary, since 𝜂 =
𝑘𝐿

2
=

𝐿

2
√
2𝑚

ħ2
𝐸 by determining 𝜂, we can subsequently obtain the energy 

eigenvalues En for our finite potential well. 

In Fig.3.5, we illustrate the plot of the function √(
𝜁0

𝜂
)
2
− 1 as a function of 𝜂 . This is 

represented for 𝜁0  values of 2, 5, and 8. 
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 Figure.3.6. √(
𝜁0

𝜂
)
2

− 1    vs 𝜂  for 𝜁0= 2, 5, and 8 plots 

In Fig3.6, we present the plots depicting the solutions for even and odd parity. In particular, 

we examine the relationship between tan(η) and η for even parity solutions. For odd parity 

solutions, we utilize the equivalent representation, -cot(η) = tan(η+π/2). These plots are 

provided for ζ0 values of 2, 5, and 8. 
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(a)                                                                   (b) 

 

                                    (c) 

 

Figure. 3.7. Graphs of tan(η) for even parity solutions (shown in red) and tan (η +
𝜋

2
 )  for odd parity solutions 

(shown in blue), plotted against η. The plots correspond to ζ0 values of (a) 2, (b) 5& (c) 8. 

In order to graphically solve the two given equations, we can overlay a plot of  

√(
𝜁0

𝜂
)
2
− 1 onto plots of 𝑡𝑎𝑛(𝜂) and 𝑡𝑎𝑛 (𝜂 +

𝜋

2
) (the latter representing the negative 

cotangent function). As an illustrative example, consider an electron confined in a potential 

well with a width of 0.4 nm and a depth of 14eV. For these parameters,  𝜁0 is computed to be  
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approximately 3.83. Fig.3.8 depicts the plot of√(
𝜁0

𝜂
)
2
− 1 for  𝜁0 = 3.83 in conjunction with 

the aforementioned trigonometric functions. The points where the curves intersect, highlighted 

with red circles, represent the energy levels of the three bound states. 

 

 

 

 

 

          

           

Figure.3.8. Graphical solutions of the transcendental equations for a finite potential well. 
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The parameter values for η are calculated based on the quantum numbers and their associated 

parities. The fundamental state, n = 1, exhibits even parity, resulting in η = 1.23. The first 

excited state, n = 2, exhibits odd parity and corresponds to η = 2.45. Lastly, the second excited 

state, n = 3, has even parity with η = 3.55. These η values directly correspond to specific energy 

eigenvalues of the quantum system. The energy eigenvalue for the fundamental state is E1 = 

1.46 eV, the first excited state has an energy eigenvalue of E2 = 5.70 eV, and the energy 

eigenvalue for the second excited state is E3 = 11.85 eV. 

For a visual representation of these energy levels and their relation to the potential well, please 

refer to Fig.3.9. 

 

Figure.3.9. Depiction of three bound states inside a 1-dimensional finite potential well with a width of 0.4 nm and 

a depth of 14 eV. The wavefunctions are schematically represented in black. 

An interesting feature to note is that the wavefunctions extend entirely into the regions of the 

potential well that are usually considered forbidden, thereby implying a non-zero probability 

of finding the particle even in these regions. This phenomenon is a consequence of quantum 

tunneling. 
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3.2.1 Discrete and continuum states 

In quantum mechanics, particles can exist in two fundamental energy states: discrete and 

continuum. 

Discrete states (bound states, energy eigenstates, or localized states): These states occur 

when a particle is confined within a potential well (e.g., an electron in an atom). The particle's 

energy is quantized, meaning it can only have specific allowed values. These states are 

represented by wave functions, which are finite sums of sine waves, with each wave 

corresponding to a distinct energy level. Visually, discrete state wave functions resemble 

standing waves with nodes and antinodes indicating the particle's probability distribution. Due 

to their quantized nature, discrete states play a crucial role in various fields like atomic physics 

(determining electron behavior) and quantum computing (manipulating qubit energy levels) 

[19,20,21]. 

Continuum states: These states are associated with unbound particles or systems with infinite 

energy levels. Unlike discrete states, the energy of a particle in a continuum state can take on 

any value within a continuous range. This is often the case for free particles (e.g., photons) that 

are not confined. In a finite potential well system, continuum states correspond to energies 

above the potential barrier where the particle is free to move. Continuum states are represented 

by wave functions as integrals of sine waves over all possible energies, reflecting the wide 

range of possible particle energies. They are often associated with unstable systems due to the 

potential for energy absorption or emission [19,20,21]. 

Fig. 3.10 illustrates the first three discrete states (n = 1, 2, 3) and the continuum in a one-

dimensional potential well. 
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Figure.3.10. Depiction of a 1-dimensional potential well, highlighting the first three discrete states with their 

respective energy levels. Continuum states, represented by a continuous spectrum, are displayed above the 

potential well. 

Understanding the distinction between discrete and continuum states is fundamental in 

quantum mechanics, as it underpins the behavior of particles across various physics fields. 

3.3 Fano resonances of electromagnetic scattering on dielectrics or metallic 

objects 

This section explores Fano resonances arising from the interaction of electromagnetic waves 

with nanostructures, contrasting them with those originating from purely quantum mechanical 

phenomena. We focus on deriving the scattering cross-section and examining how the Fano 

asymmetry parameter modulates the lineshape. In the realm of electromagnetic scattering, an 

object (metallic or dielectric) embedded within a dielectric medium exhibits an intriguing 

duality. The optical response of a material is determined by its dielectric constant. Such an 

object inherently possesses a non-radiative "dark mode" (discrete state) and a radiative "bright 
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mode" (continuum state). The theoretical framework for this investigation is based upon the 

methodology established by Gallinet & Martin [22]. 

Building upon a harmonic time dependency for the electric fields, we can express the 

frequency-dependent electric field E via the wave equation: 

                               𝜀−1(𝑟, 𝜔)𝛻 × 𝛻 × 𝐸(𝑟, 𝜔) −
𝜔2

𝑐2
𝐸(𝑟, 𝜔)                           (3.8) 

The Drude model furnishes pivotal insights into the scatterer's permittivity. Leveraging 

Maxwell's scaling law, a salient frequency-dependent differential operator, ℳ𝜔,can be defined:  

                                           ℳ𝜔𝐸(𝑟) =
𝑐2

𝜀(𝑟,𝜔)
𝛻 × 𝛻 × 𝐸(𝑟)                (3.9)         

Within this framework, the wave function of E is divided into essential bright and dark 

components. This division necessitates a pair of closely related equations: 

                                                (𝑄ℳ𝜔𝑄 − 𝜔
2𝐼)𝑄|𝐸 = −𝑄ℳ𝜔𝑃|𝐸                   (3.10) 

                                                 (𝑃ℳ𝜔𝑃 − 𝜔
2𝐼)𝑃|𝐸 = −𝑃ℳ𝜔𝑄|𝐸                    (3.11) 

From this separation, a nonradiative mode, denoted |𝐸𝑑 >, is discerned, oscillating at a 

resonance frequency ωd and endowed with an intrinsic damping, 𝛾𝑑. Augmenting our 

understanding, the dyadic Green’s function 𝐺𝑏 renders a modified wave equation containing 

an embedded source term: 

                                        𝑃|𝐸̃⟩ = 𝑃|𝐸𝑏⟩ +
⟨𝐸𝑑+ℳ𝜔𝑃|𝐸̃⟩

𝑧𝑑
2−𝜔2

𝐺𝑏𝑃ℳ𝜔|𝐸𝑑⟩             (3.12) 

From an asymptotic perspective, the behavior of |𝐸 > in remote fields corresponds seamlessly with 

𝑃|𝐸𝑏⟩. Through a continuum, the Green’s function is expanded as: 
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                               𝐺𝑏 =
1

2𝜋
∫ 𝑑3𝜔′

|𝑃𝐸𝑏(𝜔
′)⟩ ⟨𝑃𝐸𝑏(𝜔

′)|

𝜔′2−𝜔2
                              (3.14) 

Focusing on resonance parameters, the intrinsic damping is encapsulated by: 

 

                                                        𝛾𝑖 =
|⟨𝐸𝑑|ℳ𝜔|𝑃𝐸𝑏|

2𝛾𝑑𝜔𝑑

𝜔(𝜔𝑑
2−𝜔2+𝜔𝑑△)

2                    (3.15) 

The resonance width is subsequently characterized as: 

 

                                        𝛾 =
|⟨𝐸𝑑|ℳ𝜔|𝑃𝐸𝑏|

2

2𝜔(1−𝛾𝑖)
                                                   (3.16) 

Significantly, the optical response is modulated by the interplay between bright and dark 

modes, encapsulated by: 

                                                  𝜎 =
|⟨𝑔|𝑇|𝐸⟩|2

|⟨𝑔|𝑇|𝑃𝐸𝑏⟩|
2 =  𝑎

(𝜅+𝑞)2+𝑏

𝜅2+1
                     (3.17)  

Figure 3.11 illustrates the scattering cross-section (defined by Equation (3.17)) for various 

values of the Fano asymmetry parameter (q) and the intrinsic loss parameter (b) that influences 

Fano resonances. These parameters shape spectral broadening and dampen the asymmetry. 

Analogous to quantum mechanical interference, the scattering profile exhibits a symmetric 

resonance when the excitation of the discrete state (dark mode) is minimal (e.g., q = 0), as 

shown in Fig. 3.11(a). Conversely, a dominant continuous background excitation (bright mode) 

(e.g., q = 10000) leads to an almost perfectly symmetric peak, as depicted in Figure 3.11(c). In 

such cases, the Fano resonance can be interpreted as resembling a quasi-bound state in the 
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continuum (BIC). Notably, the screening parameter (b) has minimal influence on the scattering 

cross-section profile shape at high q values. 

For intermediate values of q, such as q = 0.5, asymmetric peak profiles emerge, with the 

minimum reaching zero at ϵ = -q, as demonstrated in Figure 3.11(b). 

(a)                                                                                       (b)            

 

 

 

 

 

 

                                   (c)  

 

 

 

 

Figure.3.11. Resonance shape for the function σ/a as a function of the reduced frequency κ for different values of 

the asymmetry parameter q and the screening parameter b. 

In the realm of plasmonic structures, intrinsic losses influence the resonance characteristics, whether in 

terms of width or contrast. These losses, combined with the overlap of the bright and dark modes, 
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govern the transparency and width of Fano resonances. Additionally, the transition operator, T, sheds 

light on the optical response to external excitation, providing insights into various physical processes, 

ranging from the local density of states to the reflectance of arrays. 

3.3.1 Bright and dark modes in hybrid metasurfaces 

Within the hybrid metasurface (Fig.3.12), nanopillars with mismatched radii lead to distinct 

resonant frequencies. Through hybridization, these collective lattice modes result in 

resonances that are either in-phase or out-of-phase with respect to each other or the incident 

wave [23, 24, 25]. The out-of-phase field configuration forms a subradiant (dark) mode, while 

the in-phase configuration leads to a superradiant (bright) mode.  

 

 

Figure.3.12. Schematic of the proposed hybrid metasurface under consideration, where the unit cell consists of 

two elements (nanopillars). Each element has four nanodisks: two plasmonic made of silver and two made of 

high-refractive-index material, silicon. The nanodisks are of height H = 120 nm and radii R1 = 50 nm (fixed) and 

R2, varied from 30 to 70 nm. The pairs are arranged in periodic array with periods Px = Py = P = 550 nm 
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In the dark mode, electric fields in the two elements oscillate in opposite directions, resulting 

in a null net dipole moment (cancellation) and an extended lifetime. This configuration leads 

to destructive interference of radiated fields in the far-field zone, preventing coupling to free 

space radiation. Consequently, the dark mode becomes a "trapped" mode within the 

metasurface locality. 

Conversely, the in-phase collective mode features oscillations in the same or opposite direction 

as the incident light wave for both elements. This leads to constructive interference in the far-

field zone, forming a superradiant (bright) mode [25, 26]. 

The overlap of these out-of-phase and in-phase collective modes creates the sharp asymmetric 

Fano lineshapes observed in the wavelength-dependent characteristics of the array lattice 

scattering parameters, particularly near Rayleigh anomalies [24, 27]. 

To understand Fano resonance formation, we identify the subradiant and superradiant modes 

associated with Fano resonances in the absorption spectrum shown in Figure 4a for the binary 

array with radii R1 = 50 nm and R2 = 46 nm. Figures 3.13(b)–(g) illustrate the electromagnetic 

field distributions within the nanodisk cross-sections, providing insights into the Fano-

resonance features. We plot the x-component of the electric field (Ex) distribution across the 

centers of the nanoantennas (z = 240 nm) for the unit cell containing two particles in the array 

(Figure 3.13). 

First, we examine the electric field distributions at wavelengths of 900 nm and 883 nm around 

the nanoantennas of radii R2 = 46 nm and R1 = 50 nm. Figures 3.13(b), (c) show bright 

(superradiant) modes arising from constructive interference of the radiated fields from the two 

nanoantennas in the far field. Figure 3.13(d) illustrates the electric field distribution at a 
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wavelength of 889 nm, corresponding to the excitation of the out-of-phase field configuration, 

where the particles oscillate in opposite directions. Here, destructive interference of radiated 

fields in the far field leads to dark (subradiant) mode formation and a significant reduction in 

absorption. 

As discussed, the overlap of superradiant and subradiant modes results in the formation of a 

sharp asymmetric Fano lineshape in the spectral absorption of the nanoantenna array. Figures 

3.13(e)–(g) demonstrate the distributions of the y-components of the magnetic field at 

wavelengths of 889 nm, 900 nm, and 883 nm. We observe that the field remains unperturbed 

in this binary array, which agrees with the weak magnetic response typically associated with 

these nanostructures [23] 

                    (a)                                                                                                      

  

         (b)                                                               (c) 
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        (d)                                                                        (e) 

 

(f) 

 

(g) 

Figure.3.13. Electric (Ex) and magnetic (Hy) field distributions outside the nanodisks with radii R1 = 50 nm and 

R2 = 46 nm. (a) Absorption spectra of nanoantenna with radius R2 = 46 nm. (b) Ex ≅ at λ = 900 nm, z = 240 nm, 

in element #2. (c) Ex at λ = 883 nm, z = 240 nm, in element #1. (d) Ex at λ = 889 nm, z = 240 nm, in element #1. 

(e) Hy at λ = 889 nm, z = 240 nm, in element #2. (f) Hy at λ = 900 nm, z = 240 nm, in element #2. (g) Hy at λ = 

883 nm, z = 240 nm, in element #2. 
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3.3.2 Mode coupling and Rabi splitting in hybrid metasurfaces  

 The unique properties of the metal interfaces with nanoscale light confinement enable new 

and exciting opportunities for fundamental studies and practical applications. High field 

localization and strong enhancement in plasmonic nanostructures can enhance light-matter 

interaction and their nonlinear response. The interaction of light with metals in nanostructures 

generates plasmonic excitations, which can be used in various nanophotonic applications, 

including more efficient sensing [28], nonlinear response [29], as well as photovoltaic and 

photocatalytic devices [30,31]. 

Two-dimensional optical nanostructures (metasurfaces) with subwavelength characteristic 

dimensions in both in- and out-of-plane directions have been shown to provide an exceptional 

ability to manipulate light and produce unique scattering features in spectral profiles. These 

properties have been employed as new platforms to control, confine, and enhance light-matter 

interactions in the nanostructures at the subwavelength level. 

Metamaterial nanostructures that display Fano resonances have generated a considerable 

amount of growing interest by researchers in recent years [32-34]. Examples of such 

nanostructures include the ultrathin direct and Babinet-inverted metasurfaces made up of 

asymmetric split-ring nanoantennas or apertures fabricated in a metal plate, which produces 

high quality factor (high-Q) Fano resonances. The ability of Fano resonances to exhibit strong 

sensitivity to the local environment and their sharp asymmetric spectral profile play a very 

important role in designing and realizing photonic applications such as filters, sensors, 

modulators, lasers, optical switches, broadband reflectors, and various other devices [35,36].  
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Plasmonic metasurfaces, which are two-dimensional (2D), optically thin arrays of nanoantennas 

with subwavelength sizes distributed on a substrate, have shown to have an exceptional ability 

to manipulate light and produce unique scattering features in spectral profiles. The recent 

growing interest in plasmonic metasurfaces has been mainly driven by their small size, 

compared to their three-dimensional (3D) metamaterials counterparts, and their ability to 

control, confine, and enhance processes of light-matter interactions at the nanoscale. 

 

Figure 3.14. The geometry of structures under consideration, where the unit cell contains two nanoantennas, each 

consisting of four segments composed of alternating metal (silver) and semiconductor (silicon). The segment 

thickness is fixed at 120 nm. The array period in both x and y in-plane directions (unit cell size) is Px = Py = 550 

nm. The dark grey shading on the sketch represents silicon, and the light grey represents silver. The nanoantennas 

have different radii R1 and R2, which allows for separate control of modes excited in each nanoantenna. 

Figure 3.14 illustrates the transdimensional photonic lattice considered in this paper. Each 

nanopillar in the photonic lattice is engineered to support required resonances, including electric 

and magnetic dipoles, quadrupoles, and higher orders. It has been shown that the periodic 

arrangement of nanoantennas in the lattice results in significant changes in the array resonances 

compared to ones in a single nanopillar and is often associated with the excitation of additional 
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resonances, known as lattice resonances [37-39]. The resonances are mainly controlled by the 

nanopillar size, shape, inter-pillar distance, and material which requires three-dimensional 

engineering aiming at efficient excitation of nanopillar multipole resonances (Fig. 2). 

 

Figure 3.15 Top view of ultra-thin optical elements engineered based on transdimensional photonic lattices that 

include 3D-designed nanoantennas supporting multipole resonances and arranged in 2D arrays to enhance 

collective effects in the nanostructure. 

Similar to the transdimensional lattices considered earlier [40,41], the nanoantennas 

investigated in this paper are arranged periodically on a common substrate. The metal and 

semiconductor elements are made of silver and silicon, and the nanoantenna array is placed over 

a silica substrate, with a silica superstrate cover. We use data from [15] to obtain the complex 

refractive indices of silver, silicon, and silica. The dimensions of the unit cell along the x- and 

y-directions are chosen to be Px = Py = 550 nm. Each segment of the considered nanostructures 

has the same thickness H = 120 nm, but with different nanopillar radii R1 and R2. Parameters of 

the structure and array can be scaled, and the effects of interest can be observed in another 

spectral range. However, the magnitude of the real part of metal permittivity should be 

comparable to the value of semiconductor permittivity, which is a common requirement for 

observation of plasmonic resonances. For this reason, we operate at the wavelength range λ ≈ 
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800 – 900 nm, where Re[εAg] ≈ -40 ... -30 and εSi ≈ 13.5. That imposes limitations on the lattice 

period P ≤ λ/nsur ≈ 550 nm. Numerical optimization of array parameters has shown that 

nanoantennas with radii R = 30 – 80 nm and segment thickness of 120 nm exhibit plasmonic 

resonances in the spectral range of 800 – 900 nm, and we choose these geometrical parameters 

for further analysis of the metasurfaces. 

Full-wave numerical simulations have been carried out using the CST Microwave Studio 

software package with periodic boundary conditions set in the x- and y-directions. The multi-

segment silver- and silicon- hybrid metasurface structure is illuminated by a plane wave 

polarized in the y-direction (electric field E along the y-axis), as shown in Fig. 3.14. Analysis 

of mode excitations in the multi-segment nanostructure shows that the transdimensional 

photonic lattices consisting of resonant nanoantennas in the engineered arrays have great 

potential to serve as functional elements in ultra-thin optical components and photonic devices, 

because of the strong coupling of modes facilitated by the lattice. 

We design the transdimensional photonic lattice and study the different mode excitations in the 

multi-segment silver-silicon nanoantenna metasurfaces (Fig. 3.16). Plasmonic metasurfaces of 

various designs have been extensively studied both experimentally and theoretically, as these 

ultra-thin designs can support strong excitations of various multipole resonances at the 

nanoscale. For instance, Fano resonances in binary nanoparticle arrays (with two nanoantennas 

in the unit cell) have attracted a lot of attention and have been experimentally realized in the 

visible region. The nanostructures of complex shapes, such as dolmens and oligomers of 

nanoparticles as well as plasmonic clusters, have shown to exhibit Fano resonances in the 

optical spectral range, and therefore we choose the design of multi-segment nanoantennas 
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arranged into the periodic array and resonances excited at the wavelength comparable to lattice 

period. 

 

Figure 3.16. Modes in the nanostructure: absorption in the entire structure is analyzed to track mode positions and 

their strength upon changes of the nanoantenna coupling. The radius of one nanoantenna is fixed to R1 = 50 nm, 

and the radius of the second nanoantenna is varied as shown in the plot. The color map indicates absorption in 

the structure. Solid and dashed lines indicate modes excited in the array without and with nanoantenna coupling 

through the lattice, respectively. 

Rabi splitting occurs upon strong interaction between nanostructure modes. In particular, the 

coupling strength between two nanoresonators needs to exceed the system dissipation with the 

coherent energy exchange between coupled elements. Comparing solid and dashed lines in 

Fig. 3.16, one can see that in the case of interacting nanoantennas coupled through the lattice, 

modes do not cross but rather are split by about 0.05 eV. We also notice the destructive 

interference of the modes when the radii of the nanoantennas are the same and kept at 50 nm. 

Outside of this range (when R1 is fixed at 50 nm, while R2 is varied), resonant excitations are 

observed due to the constructive coupling between resonant dark and bright modes. 
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Fano resonances observed in the nanostructures under consideration arise from the 

interaction of resonant dark modes and the corresponding bright modes of the multiple metal-

dielectric interfaces in the nanostructures (Fig. 3.16). We observe the resonant response of 

plasmonic-semiconductor hybrid metasurface using full-wave modeling of mode coupling 

facilitated by the interaction of nanoantennas in the array and their coherent lattice scattering. We 

analyze field enhancement inside each segment in the nanostructure to identify the origin of the 

modes and their energy change with variations of the nanoantenna radius. From Fig. 3.17, one can 

see that the field enhancement in silver is several times larger than in silicon. Furthermore, 

comparing changes of mode energy in different nanoantennas (radius R1 or R2, Fig. 3.19), we see 

that field enhancement in the nanoantenna with R2 is larger and mode shifts to lower energy with 

the increase of the radius R2. 
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Figure 3.17. Excitation of different nanostructure modes with respect to power loss in each segment: (left 

row) segments in the nanoantennas with radius R1, (right row) segments in the nanoantennas with radius R2. 

We analyze the nanostructure modes, resonances, and field enhancement in the photonic lattice with Px = Py 

= 550 nm, H = 120 nm, R1 = 50 nm, and R2 varied from 30 to 84 nm. The color map indicates the magnitude 

of power loss in each structure element. The dashed lines indicate modes excited in the array with 

nanoantenna coupling through the lattice. The energy of maximum power loss in the segments corresponding 

to R1 remains approximately the same (green oval on the left-hand side). In contrast, as R2 changes, the 

excitations in the nanoantenna with radius R2 also shift (green oval on the right-hand side). 
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In summary, we have considered plasmonic-semiconductor hybrid metasurfaces with a tunable 

resonant response. We designed scattering elements out of multi-segment metal-semiconductor 

nanostructures, and we studied periodic arrays of such scatterers. We aimed at designing 

efficient directional scatterers and their arrays for ultra-thin optical components, such as 

metasurfaces and transdimensional photonic lattices. The Fano resonances in our metasurfaces 

originate from the interaction of bright modes and dark modes that give rise to asymmetric 

linewidth profiles in the scattering characteristics, such as absorption or reflection spectra. We 

show that a slight mismatch in the resonance positions controlled by the scatterers’ size results 

in Rabi splitting, observed as changes in peak positions and characteristic asymmetric spectral 

profiles. Our structure will enable the excitation of multi-resonances in the visible and near-

infrared regimes, with tunable resonances originating from plasmonic nanopillars and their 

periodic structuring. 

(a) 
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(b) 

 

Figure 3.18 Field enhancement in (a) silicon 1A and (b) silver 1B segments of the nanopillar with radius R1. The 

radius of one nanoantenna is fixed at R1 = 50 nm, and the radius of the second nanoantenna is varied, as shown 

in the plot. The E-field probes are positioned in the bottom segment. Color map indicates field enhancement at 

the central point of each element in the structure. Dashed lines indicate modes excited in the array, with 

nanoantenna coupling through the lattice. 

 

 

 

 

Figure 3.19. Field enhancement in the silver segment 2B of the nanopillar with radius R2. The radius of one 

nanoantenna is fixed at R1 = 50 nm, and the radius of the second nanoantenna is varied, as shown in the plot. The 

E-field probe is positioned in the bottom segment 2B. One can see a strong excitation of modes at the lower 

energy and their shift corresponding to varying R2. 
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4.0 Bound states in the continuum (BICs) 

The confinement and propagation of waves, from electrons orbiting atoms to light transmission 

in optical fibers, are fundamental principles governing a vast array of phenomena in both 

natural and engineered systems [1-4]. A captivating concept at this crossroads is the 

phenomenon known as Bound States in the Continuum (BICs). BICs defy conventional 

wisdom by representing wave modes that remain localized and non-radiative, even while 

existing within a continuous frequency spectrum where radiation would normally occur [5-8]. 

This counterintuitive behavior arises primarily from destructive interference. When waves 

within a system overlap in a specific manner, they can either amplify or cancel each other out. 

In BICs, precise cancellations – governed by factors like system geometry, material properties, 

and boundary conditions – ensure that what should radiate remains perfectly confined. This 

confinement is so pronounced that BICs often exhibit infinitely high Q-factors, a measure of 

resonance quality, further highlighting their unique and powerful nature in wave-based 

applications [9, 10]. 

Introduced by von Neumann and Wigner in 1929 within the realm of quantum mechanics, 

BICs initially remained a theoretical curiosity [11]. However, scientific advancements have 

led to their observation across various wave systems, encompassing acoustics, optics, and even 

electronics. The field of optics, in particular, has witnessed significant breakthroughs driven 

by BICs. Harnessing these perfectly confined wave modes with their exceptional Q-factors has 

paved the way for advancements in lasers, sensors, and communication technologies, ushering 

in a new era of innovation [12-16]. 
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This chapter delves into potential engineering of BICs in section 4.1, as originally proposed by 

von Neumann and Wigner and further elaborated by Stillinger and Herrick [11, 17]. We begin 

by exploring the transition from the principles of quantum mechanics to the realm of optics 

and photonics, highlighting the parallels between these two domains. By emphasizing how 

concepts developed in quantum physics have found profound applications in optics, this 

comparative analysis underscores the impact of BICs on advanced optical devices and bridges 

the gap between theoretical concepts and their practical applications in cutting-edge 

technologies [17]. 

The chapter then focuses on photonic BICs within periodic photonic structures. We discuss 

their properties and applications in photonics, including an overview of one-dimensional 

photonic crystal structures and their operating regimes as depicted in dispersion relation plots 

(Section 4.2.1). Furthermore, Section 4.2.2 delves into the theory and analysis of the Friedrich 

and Wintgen (FW) BIC model, a significant framework for understanding accidental BICs in 

photonic systems. 

Section 4.3 explores the concept of BICs in dielectric gratings and their implications for wave 

manipulation, leading to the formation of symmetry-protected (SP) BICs. 

Finally, the chapter concludes by exploring the observation of multiple quasi-BICs in hybrid 

photonic structures resulting from strong coupling between hybridized quasi-BICs (Section 

4.4). 
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4.1 Bound states in the continuum (BICs) through potential engineering: the 

von Neumann-Wigner method 

The phenomenon of bound states in the continuum (BICs) presents a captivating anomaly in 

quantum mechanics. These localized states exist within a continuous spectrum, defying the 

norm by remaining confined despite having energies that fall within the continuum of extended 

states [5, 6, 7]. 

The theoretical concept of BICs was first introduced by John von Neumann and Eugene 

Wigner in 1929. Their investigation explored the possibility of discrete eigenvalues (quantized 

energy levels) existing within the continuous energy spectrum, without the usual decay 

characteristics associated with such energies. 

von Neumann and Wigner demonstrated that BICs could be formed through careful 

manipulation of the potential energy landscape. Specifically, they showed that certain 

potentials, even if they decay at infinity, can lead to the formation of BICs [7]. This theoretical 

exploration is based upon the methodologies established by Stillinger and Herrick [7], as well 

as the work of Hsu et al. [5, 9]. 

The existence of BICs hinges on the condition: 

                                                             𝑉(𝑟) → 0 as 𝑟 → ∞, where, r signifies the radial distance. 

The governing equation for a single-particle system in quantum mechanics is the Schrödinger 

equation, written as: 

                                               (−
ћ2

2𝑚
▽2+ 𝑉(𝑟))𝜓(𝑟) = 𝐸𝜓(𝑟)            (4.1) 
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On translating to reduced units, equation (4.1) becomes: 

                                                 (−
1

2
▽2+ 𝑉)𝜓 = 𝐸𝜓                               (4.2) 

This equation can be further expressed as: 

                                                    𝑉 = 𝐸 +
▽2𝜓

2𝜓
                                          (4.3), 

Here, V represents a confining potential that remains finite as the radial distance (r) approaches 

infinity, while  𝜓 denotes the wavefunction of the target bound state in the continuum (BIC). 

It's important to note that the energy (E) for scattering states lies within the positive domain (E 

> 0). 

To realize the desired BIC, careful optimization of the potential V(r) and energy E is crucial. 

This ensures that the potential approaches zero as the radial distance tends to infinity (lim V(r) 

→ 0 as r → ∞). The specific solution to equation (4.3) proposed by von Neumann and Wigner 

[5, 9] for BIC formation is given by: 

                                                           𝜓(𝒓) = 𝑓(𝑟)𝑠𝑖𝑛(𝑘𝑟)/𝑘𝑟        (4.4), with  𝑓(𝑟) =

{𝐴2 + [2𝑘𝑟 − sin(2𝑘𝑟)]2}−1. 

In this context, A is a distinct non-zero constant, and the associated energy eigenvalue is 

defined as E= 
1

2
𝑘2. This energy is embedded within the continuous spectrum E ≥ 0, and that 

V = 0. 
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Adopting the parameters, A = 25, k = √8, and E = 4, and utilizing equations (4.3) and (4.4), we 

showcase the potential V(r) alongside the bound wave function  𝜓(𝒓)  in Fig. 4.1 

(a)                                                                                   (b)  

 

Figure .4.1. Illustration of the Bound State in the Continuum (BIC) as introduced by von Neumann and Wigner. 

(a) A potential-energy function. (b) Wave function (BIC) having its energy embedded within the continuous 

spectrum of extended states. 

This section explores the critical conditions for engineering bound states in the continuum 

(BICs) through potential manipulation. A key requirement is that the potential energy, V(r), 

approaches zero as the radial distance (r) tends to infinity (lim V(r) → 0 as r → ∞). Consider 
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an energy level E = 4 residing within the continuous spectrum, exceeding the peak potential 

value (Vmax). By carefully manipulating the potential, we can successfully create a bound state 

within this continuum, characterized by a narrow resonance and a high Q-factor (Fig. 4.1(b)) 

[9]. 

The concept of BICs can be approached from a reconstruction perspective, focusing on specific 

wavefunctions. A BIC mode represents the confinement of a wave even when its energy 

surpasses that of the surrounding medium (background potential). This confinement implies 

that the wave's amplitude diminishes to zero in specific directions as it extends towards infinity, 

while remaining free to propagate in other directions. For example, a BIC present in the z-

direction signifies that ψ(z) approaches zero as z approaches positive or negative infinity (ψ(z) 

→ 0 as z → ±∞), given that ω > ck0 (where k0 is the free-space wavevector). 

To qualify as a BIC mode, several criteria must be met: 

Finite Extent: The structure containing the BIC mode must possess a finite extent in the 

direction where the BIC is confined. 

High Energy: The energy of the BIC mode should exceed the potential of the background 

medium (ω > ck0). 

Zero Amplitude at Infinity: In the direction of BIC confinement, the wave's amplitude needs 

to tend towards zero at infinity. Mathematically, for all real values of kz, ψ(z) approaches zero 

as z approaches positive or negative infinity (ψ(r) → 0 as r → ±∞). 

In essence, a BIC mode requires a structure with a confined boundary, an energy higher than 

the background potential, and a wave amplitude that diminishes as it extends infinitely in the 
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confinement direction. This collective framework defines the unique nature of BICs within 

various physical systems [9, 18]. 

4.2 Bridging the gap: quantum mechanics and photonic BICs 

This section draws parallels between the formulation of photonic BICs and the foundational 

principles of quantum mechanics. We will explore this connection through the lens of a one-

dimensional quantum well. A quantum well exhibits translational symmetry along the z-

direction, meaning its properties remain consistent in that direction while potentially varying 

in others (e.g., x and y). This uniformity in z is depicted in Figure 4.2 (left panel). An analogous 

optical system is a parallel-plate dielectric waveguide, showcased in the right panel of Figure 

4.2. This analysis aligns with the work presented by [17]. 

By adapting the Helmholtz equation into the format of the stationary Schrödinger equation, we 

can demonstrate that the permittivity ε(x) (see Equation 4.5) has an analogous role to the 

quantum mechanical potential, U(x) (see Equation 4.8). Modes of the optical waveguide 

situated below the light line (ω < ckz) correspond to discrete states, while those above (ω > 

ckz) span the continuum (see the right side of Figure 4.2). In structures with translational 

symmetry or periodicity along a specific axis, BICs are confined strictly to orthogonal 

directions. The comparison between quantum systems and their photonic counterparts offers a 

valuable conceptual framework, although it is not a perfect analogy. 

To illustrate this concept, we consider a planar dielectric waveguide oriented along the x-axis, 

characterized by permittivity ε(x). We will derive the Helmholtz equation into the format of 

the stationary Schrödinger equation (see Equation 4.8). It is important to note that the 

waveguide can support both transverse electric (TE) and transverse magnetic (TM) modes. 
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However, for brevity, we will primarily focus on TE modes. For TE modes, the electric field 

(E) has a single component along the y-axis and is influenced by both x and z (representing the 

propagation direction) [19]. The temporal oscillations of the fields are conventionally 

described using harmonic modes with a phase factor e-iωt [11]. Therefore, our examination will 

primarily focus on the spatial fluctuations of the fields. Drawing from Maxwell's equations, 

the relevant equations for TE modes include: 

1.     
𝜕𝐻𝑧

𝜕𝑥
= −𝑖𝜔𝜀𝐸𝑦 

2.       
𝜕𝐸𝑦

𝜕𝑥
= 𝑖𝜔𝜇𝐻𝑧 

From the second equation: 

𝐻𝑧 = −
𝑖

𝜔𝜇

𝜕𝐸𝑦
𝜕𝑥

 

Substituting this into the first equation gives: 

𝜕2𝐸𝑦
𝜕𝑥2

= 𝜔2𝜇𝜀𝐸𝑦 

Now, since ɛ is a function of x, we can write it as 𝜀 = 𝜀0 +△ 𝜀(𝑥) where  𝜀0 is the average 

permittivity and △ 𝜀(𝑥) is the variation about this average. 

Using this in the above equation, we get: 

𝜕2𝐸𝑦
𝜕𝑥2

= 𝜔2𝜇𝜀0𝐸𝑦 +𝜔
2𝜇 △ 𝜀(𝑥)𝐸𝑦 

The propagation constant 𝛽 is related to 𝜔 as  𝛽 = 𝜔√𝜇𝜀0 =
𝜔
𝑐⁄  where c is the light speed in 

the medium (free space) defined by 𝜀0 .  



 

106 
 

 

This can be further written as: 

𝜕2𝐸𝑦
𝜕𝑥2

+ 𝛽2𝐸𝑦 = 𝜔
2𝜇 △ 𝜀(𝑥)𝐸𝑦 

Given that the mode propagates in the z-direction with kz, the total wavevector k in the material 

is given by 𝑘2 = 𝛽2 + 𝑘𝑧
2 . For a guided wave, kz is real and 𝑘𝑧

2 = 𝜔
2

𝑐2
⁄ − 𝛽2 . 

Thus, the equation can be written as: 

▽2 𝐸𝑦 + (
𝜔2

𝑐2
⁄ )𝐸𝑦 = (

𝜔2
𝑐2
⁄ ) [1 + 𝜇 △ 𝜀(𝑥)/𝜀0]𝐸𝑦 

Rearranging and focusing on the x-dependence gives: 

                                           −
𝜕2𝐸𝑦

𝜕𝑥2
+ (𝜔

2

𝑐2
⁄ ) [1 − 𝜀(𝑥)]𝐸𝑦 = (

𝜔2
𝑐2
⁄ − 𝑘𝑧

2)𝐸𝑦             (4.5). 

We will now analyze to derive an analogous expression for a 1-D quantum well with 

translational symmetry along the z-axis, replacing the Helmholtz wave equation with the 

Schrödinger equation. 

1. We consider a 1-D quantum well along the x-direction, with the system exhibiting 

translational symmetry along the z-axis. 

2. The well features a periodic potential denoted by U(x), dependent solely on the x-coordinate. 

3. The particle under consideration possesses mass m. 

For a system with translational symmetry along the z-axis, we define the domain of the 

continuum spectrum [17] as: 

                                                   𝐸𝑐 = 𝐸 −
ћ2𝑘𝑧

2

2𝑚
                                                                     (4.6). 



 

107 
 

 

Where 𝐸𝑐 = 𝐸 −
ћ2𝑘𝑧

2

2𝑚
> 0  and  𝐸𝑧 =

ћ2𝑘𝑧
2

2𝑚
 represents the kinetic energy of the particle in the 

z-direction. 

The basic time-independent Schrödinger equation in one dimension for such a system is given 

by [17,20]: 

                                             −
ћ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑈(𝑥)𝜓 = 𝐸𝑐𝜓              (4.7) 

Reformulating equation (4.7) using equation (4.6), we get: 

                                      −
ћ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑈(𝑥)𝜓 = (𝐸 −

ћ2𝑘𝑧
2

2𝑚
)𝜓             (4.8)   

 

 

Fig.4.2. An equivalence exists between quantum mechanical and electromagnetic phenomena for a one-

dimensional potential with translational symmetry along the z-axis. At the top, we have the Schrodinger equation 

for a 1D quantum well and the Helmholtz equation for a planar dielectric waveguide illustrated. The middle 
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sections demonstrate the potential well (to the left) and the dispersion diagram (to the right). The bottom visuals 

represent the potential well (seen on the left) and the planar waveguide (on the right) in relation to the coordinate 

space. 

4.3. Classifications of photonic bound states in the continuum (BICs) 

Introduced in 1929, BICs are localized light states within the continuum spectrum, exhibiting 

an ideal infinite quality factor (Q) due to destructive interference. They have revolutionized 

wave studies. Drawing from the formation process, the BICs that relevant to photonics can be 

classified into four unique types [21].   

Single-Resonance Parametric BICs: These arise from a single resonant mode where light 

from its components cancels out destructively, preventing radiation [9, 21]. 

Symmetry-Protected BICs (SP-BICs): Prevalent in structures with a specific symmetry, SP-

BICs exploit a mismatch between radiating and resonant states. Their unique configuration 

prohibits coupling with light waves that can escape, often manifesting at the center of the band 

structure (Γ-point) [9, 17, 21]. 

Accidental BICs (FW-BICs): Emerging from the interaction of various optical system states, 

these BICs appear when specific structural parameters lead to destructive interference, 

effectively silencing a resonant mode [9, 21]. 

Fabry-Perot (FP) BICs: Light becomes trapped between perfect reflectors, resonating 

perfectly due to complete destructive interference, maximizing light-matter interaction [9, 21]. 

In real-world applications, ideal BICs are rare due to limitations in size. However, "quasi-

BICs" with very high Q-factors can be achieved, offering a practical alternative. Additionally, 

the "near-BIC" regime exhibits high Q-factors near the ideal BIC and can be excited by freely 

propagating light waves, making it more robust to manufacturing variations [14, 15, 16, 17]. 
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BICs have been explored in various systems, from purely dielectric to metallic and hybrid 

configurations. Dielectric BICs are prominent in photonic crystal structures and metasurfaces 

[11, 14, 17]. Combining them with layered materials or high-index crystals can lead to complex 

optical behaviors. Metallic BICs involve the interaction between light and surface plasmon 

polaritons (SPPs). Hybrid BICs, combining photonic and plasmonic elements, offer 

exceptional light confinement despite challenges at visible and near-infrared wavelengths due 

to plasmonic losses [22, 23]. 

Since the first experimental observation in 2011 [15], BIC research has gained significant 

momentum. The potential for manipulating light within the continuum opens doors for 

innovative photonic devices. Enhanced Q-factors in nano-optical systems can lead to stronger 

light-matter interactions, with applications from nanocavities to advanced imaging [24]. 

Minimized losses due to BIC mode confinement have the potential to revolutionize on-chip 

communication [25]. Additionally, quasi-BICs in nonlinear mediums might enable harmonic 

generation, while systems with high chirality could advance circular dichroism and chiral 

sensing [25]. 

4.3.1 Bound States in the continuum (BICs):  Friedrich and Wintgen (FW) 

model      

In our study, we have extensively reviewed the 1929 proposition postulated by von Neumann 

and Wigner. They suggested that, under the influence of a specific oscillating bounded 

potential, the single-particle Schrödinger equation could produce localized solutions associated 

with discrete eigenvalues embedded within the continuum of positive energy states. This 

premise was further refined by Stillinger and Herrick, who studied various instances where 
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spherically symmetric local potentials could support BICs of scattering states, notably relating 

to potential BICs in atomic and molecular structures [5]. For a considerable duration, such 

phenomena were largely regarded as a mathematical curiosity, even though its core principles 

closely aligned with the Anderson localization approach [7,27]. BICs, understood as localized 

states, emerge due to the exact destructive interference of waves diffused by the constrained 

potential, ensuring that beyond a set boundary, no wave extends outward. This mechanism 

underpinning BICs was further illuminated through Friedrich and Wintgen's seminal work [6], 

offering a holistic perspective on realizing BICs in quantum frameworks. 

 BICs arise as a result destructive interference between two leaky waves. In this discussion, we 

explore how FW BICs come about from the interaction of different vibrations. 

At its core, the FW BICs model draws inspiration from the foundational principles of the 

temporal coupled-mode theory for an open system. This theory centers around the coupling of 

'n' modes using a time-dependent formalism specifically tailored for optical resonators. Our 

analysis here is guided by the work of Suh et al. [27], Hsu et al. [9], and Koshelev et al. [17]. 

The dynamic resonance amplitude equations can be represented as: 

𝑑𝑎

𝑑𝑡
= 𝑗𝛺𝑎 

Here, 𝛺  is a 𝑛 × 𝑛   matrix representing resonance frequencies and mode couplings, with a 

symbolizing the complex amplitude vector described as 𝑎 = (𝑎1, 𝑎2, ⋯ 𝑎𝑛)𝑇. 

Considering an open construct such as a resonator with two leaky modes, represented as |𝜓𝑠 >  

(where s can be 1 or 2), these modes possess nearly, or even matching, eigenfrequencies given 

by 𝛺𝑠 = 𝜔𝑠 + 𝑖𝛾 𝑠 for both s values. When these resonances overlap spatially, radiation 
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interference can facilitate the emergence of a BIC, culminating in either a true BIC or its 

approximation, known as a quasi-BIC. Examining this through a two-mode approximation 

lens, framed by the temporal coupled-mode theory, 𝑎 = (𝑎1, 𝑎2)𝑇 conveys the complex 

amplitudes of states|𝜓1 > and |𝜓2 >  ,evolving overtime as: 

                                        
𝑑𝑎

𝑑𝑡
= 𝐻𝑎, 

Here, the Hamiltonian is given by: 

                                       𝐻 = (
𝜔1 𝜅
𝜅 𝜔2

) − 𝑖 (
𝛾1 √𝛾1𝛾2

√𝛾1𝛾2 𝛾2
). 

The parameter κ signifies the internal resonance coupling, with frequencies 𝜔1,2 and varying 

radiation rates 𝛾1,2. Both resonances share a radiative channel, prompting interference, marked 

by the term √𝛾1𝛾2. Such interference leads to a specific condition, as dictated by: 

𝜅(𝛾1 − 𝛾2) = √𝛾1𝛾2(𝜔1 − 𝜔2) 

This condition, when met, transforms one eigenvalue into a purely real form, culminating in a 

BIC, while its counterpart becomes considerably more lossy. This BIC equation is a testament 

to Friedrich and Wintgen's contributions. 

Further exploration reveals that the onset of Friedrich–Wintgen BICs is observed near the 

frequency crossings of the uncoupled resonances, especially when κ is approximately zero or 

when 𝛾1 is nearly equal to 𝛾2 . Thus, the desired conditions can be achieved by adjusting the 

parameters associated with the two interconnected resonances.  
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4.4 Overview of one-dimensional photonic crystal structure 

Before discussing the potential formation of BICs in periodic optical structures using the 

proposed FW model, it is important to provide a concise overview of the design and modeling 

principles for a simple one-dimensional (1-D) photonic crystal structure, such as the one 

illustrated in Fig.4.3. 

 

 

 

 

 

Fig. 4.3. Illustration of a one-dimensional photonic crystal slab. The slab demonstrates a period d in the x-direction 

and comprises alternating layers with different properties. The layers possess refractive indices n1 and n2, each 

with corresponding thicknesses d1 and d2. 

 

In the field of nanophotonics, 1D photonic crystals can be realized through periodic strip 

structures, as shown in Fig.4.3. These strip configurations consist mainly of a high-index 

crystal layer, which serves as the core layer for optical waveguides. This high-index layer is 

combined with materials of lower refractive indices, such as air, silicon oxide, or polymer, 

resulting in a periodically modulated refractive index distribution. In our study, the selected 

refractive indices for the low and high-index crystals are 𝑛1 = 1.5   and 𝑛2 = √12 respectively. 

The thickness of the low-index layer is defined as 𝑑1 = 0.6  and the thickness of the high-index 
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layer is 𝑑2 = 0.4, giving 𝑑 = 𝑑1 + 𝑑2,  as the periodicity. In our analysis, we use normalized 

units due to the scale invariance of the Maxwell’s equations. 

Light can propagate in any direction relative to these photonic crystals, but two commonly 

employed cases are [29]:  

(a) when light propagates across the 1D photonic crystal (along the y- or z-axis in Fig.4.3), and 

(b) when light propagates along the length of the 1D photonic crystal (along the x-axis). Here 

we will primarily focus on lengthwise periodic structures because they can be easily integrated 

with sub-micrometer silicon waveguides for example when designing and modelling silicon 

photonics, and offer more flexibility compared to crosswise periodic structures. 

A lengthwise 1D photonic crystal, as shown in Fig.4.3, generally operates in three regimes 

based on the ratio between the structure's period (d) and the operating free space wavelength 

(λ): 

(i) Diffraction regime: In this regime, the incoming beam scatters into different orders. 

(ii) Bragg reflection regime: Here, the incoming beam is reflected backward.  

(iii). Sub-wavelength regime: In this regime, the diffraction and reflection effects caused by 

the periodicity of the structure are minimized. 

In Fig. 4.4, we present the plot of k-ω diagram (band diagram) of the 1-D periodic structure 

depicted in Fig. 4.3. The Γ point (0,0), highlighted in red, represents one of the highly 

symmetric points within the first Brillouin zone. 

 It is evident that, for a given periodic structure, the operating regime strongly depends on the 

free-space operating wavelength (λ) or operating frequency (ω). When ω exceeds 1.70 (above 
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the first photonic bandgap), the waveguide becomes lossy for Bloch mode, leading to the 

radiation of light out of the waveguide. This characteristic has been utilized in the design of 

fiber-to-chip surface couplers (grating couplers).  

In the frequency range of 1.03 < ω < 1.70 (the first photonic bandgap), light cannot propagate 

through the periodic structure and is reflected, which corresponds to the Bragg reflection 

regime.  

 In this particular regime, the propagation constant, denoted as kB, retains a constant value given 

by kB = π/d. Given that d = 1 in our study, this directly translates to kB = π, as depicted in 

Fig.4.4. 

This specific bandgap property has been extensively utilized to create distributed Bragg 

reflectors (DBRs) on different photonic platforms. The final phase occurs below the initial 

photonic bandgap, where the operating frequency is lower than 1.03. As illustrated in Fig.4.4, 

it can be observed that the propagation constant, kx, increases progressively as the operating 

frequency increases, indicating that the periodic waveguide functions similarly to a 

conventional 

waveguide. As a result, in the sub-wavelength regime, these periodic configurations function 

as homogenous or uniform mediums (for instance, dielectric slab waveguide). 



 

115 
 

 

 

 

 

 

 

 

Fig.4.4. Dispersion relation plot for a one-dimensional photonic crystal slab, with the boundary of the first 

Brillouin zone indicated by two vertical red dashed lines at Bloch wavenumbers kB = π and kB = -π. 

We will now focus on using the FW model to generate potential BICs in periodic structures. 

To demonstrate our desired outcomes, we will modify the structure illustrated in Fig.4.3 and 

transform it into a periodic potential with a negligible amplitude. This concept aligns with the 

notion of an empty lattice commonly referenced in solid-state physics. Essentially, the 

structure maintains a regular, repetitive pattern, but the variations within this pattern are so 

minuscule that they are nearly non-existent. Moreover, the layers comprising the structure in 

Fig.4.3 possess identical dielectric constants, indicating a uniform medium in all directions, 

representing a homogeneous medium where 𝑛1= 𝑛2. In this medium, the speed of light is 

reduced by the index of refraction, and the modes align with the light line as described by ω(k) 

= ck/√𝜀. A classic example of such a structure is a homogeneous, non-dispersive dielectric 

slab waveguide. 

As a result, the band diagram plot reveals that the second bandgap remains closed, and the 

eigenstates at the Γ-point display degeneracy, characterized by opposing leaky waves, as 
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shown in Fig.4.5(a). Consequently, the bands at the Γ-point (which represent the center of the 

Brillouin zone) exhibit the same energy value. 

On the other hand, transforming the slab waveguide into a grating waveguide while light 

propagates through the 1D photonic crystal structure along the x-axis with a period of d, as 

illustrated in Fig.4.5(b), introduces a non-zero amplitude to the periodic potential. 

Consequently, this disrupts the degeneracy and gives rise to a noticeable bandgap. If the 

periodic potential maintains symmetry with respect to the transformation x → -x, new states or 

bands emerge at the edges of the second bandgap. These states or bands include a bound state 

in the continuum (BIC) formed through the anti-symmetric combination of the leaky modes, 

as well as a state with superradiance formed through the symmetric blend of the leaky modes, 

as depicted in Fig.4.5(b). 

As a result, the grating waveguide exhibits both radiative (leaky) modes and guided (non-

leaky) modes. If the grating waveguide is precisely designed, these modes can interfere in such 

a manner that the outgoing radiation from one mode precisely cancels out that of another mode, 

resulting in a non-radiating mode or BIC. 
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(a) homogenous slab waveguide                               (b) Grating waveguide with period d 

  

Fig. 4.5: (a) Illustrates the band structure and mode profiles for a homogeneous slab waveguide, highlighting 

guided modes propagating to both the left and right. (b) Depicts the band structure and mode profiles of a grating 

waveguide with a period of 'd'. In this configuration, the periodicity facilitates mode interactions, leading to the 

formation of two distinct states. These states result from constructive (leaky mode) and destructive (Bound State 

in the Continuum, BIC) interference patterns. 

 

4.5 Bound states in the continuum in periodic gratings structures 

Section 4.3 established that light confined within individual cavities or waveguides does not 

interact with the continuous spectrum modes of free space. This implies that optical system 

eigenstates can only be localized when their energies fall below the light line in the surrounding 

medium [30]. Conversely, modes within the continuous spectrum, known as leaky modes, 

exhibit low-quality factors due to radiation losses [31]. 
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However, Bound States in the Continuum (BICs) can be realized using periodic structures such 

as dielectric gratings or photonic crystals [32, 33]. This section delves deeper into the 

mechanisms underlying BIC formation in these structures. We will explore this concept using 

the example of a dielectric grating or a one-dimensional photonic crystal structure with a period 

d, as depicted in Figure 4.6a. 

Within a photonic crystal, any eigenmode can be characterized by its wavevector k. The electric 

field resonance can be expressed as follows [34]: 

                                 𝐸(𝑥, 𝑦, 𝑧) = 𝑈𝑁,𝑘𝑥(𝑥, 𝑧) ∙ 𝑒
𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦                    (4.9). 

In this context, z represents the direction perpendicular to the slab, while 𝑈𝑁,𝑘𝑥(𝑥, 𝑧) is a 

function periodic in x, satisfying  𝑈𝑁,𝑘𝑥 (𝑥 + 𝑑, 𝑧) = 𝑈𝑁,𝑘𝑥(𝑥, 𝑧),  𝑘𝑦 is a wavenumber 

corresponding to the direction of the translation symmetry, 𝑘𝑥 is the Bloch wavenumber, and 

N is the index of the band. 

If the structure under consideration (Fig. 4.6a) is periodic, with dielectric variation in the x-

direction, then equation (4.9) becomes a Bloch function, and limiting our analysis to the case 

of TE polarized modes [𝐸 = (0, 𝐸𝑦,0)] [33], equation (4.9) can be expressed as: 

                                          𝐸𝑦(𝑥, 𝑧) = 𝑈𝑘𝑥(𝑥, 𝑧) ∙ 𝑒
𝑖𝑘𝑥𝑥+𝑖𝑘𝑦𝑦                  (4.10), 

 and if   𝑘𝑦= 0, for a TE polarized mode, then equation (4.10) can be written as: 

                                         𝐸𝑦(𝑥, 𝑧) = 𝑈𝑘𝑥(𝑥, 𝑧) ∙ 𝑒
𝑖𝑘𝑥𝑥                              (4.11). 

 In a periodic structure such as a photonic crystal slab, electromagnetic fields exhibit a 

consistent and repetitive pattern because of the slab's periodic structure. However, when these 
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fields leave the slab, they can either freely propagate as plane waves that do not diminish in 

intensity, or in specific circumstances, they appear as evanescent waves that rapidly decrease 

in intensity as they move away from the surface of the slab.  

Therefore, BICs in these structures appear only if either 𝑘𝑥 = 0, or 𝑘𝑦 = 0. 

Hence, the periodic Bloch amplitude, 𝑈𝑘𝑥(𝑥, 𝑧), which is a periodic function with respect to 

the x variable can be decomposed into a Fourier series as: 

                                          𝑈𝑁,𝑘𝑥(𝑥, 𝑧) = ∑ 𝐶𝑚,𝑘𝑥𝑚 (𝑧)𝑒
𝑖2𝜋𝑚𝑥

𝑑      (4.12). 

In this analysis, m is an integer that denotes a diffraction channel. The coefficients 𝐶𝑚,𝑘𝑥(𝑧) 

are functions dependent on the vertical variable z and exhibit asymptotic behavior akin to 

exponential functions. These coefficients symbolize far-field or near-field behaviors for open 

or closed channels, respectively. Closed channels, or near fields, correspond to those 

eigenstates situated below the light line [32], as depicted in Fig.4.6c. In this region, 

characterized by the absence of open channels, only waveguide modes prevail, preventing 

wave radiation into the far field, as shown in the figure. 

When a diffraction channel m is open, 𝐶𝑚,𝑘𝑥(𝑧)  simplifies to a plane wave with complex 

amplitudes along the z-direction. To realize a Bound State in the Continuum (BIC), it is 

essential to nullify the complex amplitudes of these open diffraction channels 𝐶𝑚,𝑘𝑥(𝑧). Our 

goal is to minimize radiation 

losses to enhance the Q-factor, and hence BIC appear when leakage into all open diffraction 

channels are forbidden. Therefore, we focus on the sub-diffractive regime, where there is only 

one open channel — predominantly normal to the surface plane. By this approach, all other 
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open channels are canceled out, focusing exclusively on the open channel corresponding to m 

=0, where the amplitude of the outgoing leaky wave is defined by the zeroth Fourier coefficient 

𝐶0,𝑘𝑥(𝑧). 

However, it is important to note that 𝐶0,𝑘𝑥(𝑧) essentially the average value of the periodic 

function 𝑈0,𝑘𝑥(𝑥, 𝑧).   

We can now determine the expansion coefficient C0 (z) for the diffraction channel m =0, as 

well as the Bloch wavevector, since it has previously been stated that the region on the 

dispersion band diagram, which yields a (BIC) corresponds to the open channel with m = 0. 

Specifically, a resonance evolves into a BIC when the outgoing power becomes zero. This 

condition is met when 𝐶0,𝑘𝑥(𝑧) = 0. Therefore, in our study, the primary objective is to nullify 

C0 (z). To achieve this, we calculate the zeroth Fourier coefficient from the expansion presented 

in equation (4.12). Consequently, for m = 0, equation (4.12) is reformulated as follows: 

                                                      𝑈0,𝑘𝐵 = ∑ 𝐶0,𝑘𝑥(𝑧) 0 𝑒𝑖𝑘𝐵𝑥                        (4.13) 

Hence, the complex coefficients for the zeroth-order (m = 0) in the Fourier series are given by: 

                                                    𝐶0,𝑘𝑥(𝑧) = ∫ 𝑈0,𝑘𝐵

𝑑

2
−𝑑

2

(𝑥, 𝑧) ∙ 𝑒−𝑖𝑘𝐵𝑥𝑑𝑥            (4.14) 

 

Equation (3.29) depicts the average value of the periodic function 𝑈𝑘𝐵(𝑥, 𝑧) for a state located 

at the center of the Brillouin zone, where 𝑘𝑥 = 𝑘𝐵 = 0 . Therefore, equation (4.14) can also be 

expressed as follows: 
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                                        𝐶0,𝑘𝑥(𝑧) = ∫ 𝑈0,𝑘𝐵(𝑥, 𝑧)𝑑𝑥
𝑑

2
−𝑑

2

= 〈𝑈0,𝑘𝑥(𝑥, 𝑧)〉𝑥          (4.15) 

We recognize that for a periodic structure with a unit cell symmetric along the x-direction—

characterized by time-reversal and 180° rotational symmetries under the operation 𝐶2
𝑧𝑇 —the 

coefficient 𝐶0,𝑘𝑥(𝑧) becomes purely real [35]. Here, 𝐶2
𝑧 denotes a 180° rotation around the z-

axis, and T represents the time-reversal operator. Consequently, at the Γ-point (the center of 

the Brillouin zone), all eigenstate solutions, denoted as 〈𝑈0,𝑘𝑥(𝑥, 𝑧)〉𝑥, can be classified into 

symmetric (even) and antisymmetric (odd) functions with respect to x. This classification leads 

to the realization that for antisymmetric (sine) solutions, the mean (average) value of 

〈𝑈0,𝑘𝑥(𝑥, 𝑧)〉𝑥 = 0, resulting in 𝐶0,𝑘𝑥(𝑧) = 0 according to equation (4.15). 

Therefore, at the Γ-point, the appearance of a BIC necessitates that the x-averaged field be 

zero. This prerequisite ensures that all antisymmetric states decouple at the Γ-point, one of the 

most symmetric points in the Brillouin zone, where the Bloch wavenumber kB = 0. 

Fundamentally, a resonance evolves into a BIC when the outgoing power is eliminated, 

achievable only if 𝐶0,𝑘𝑥(𝑧) = 0, causing the Q-factor to diverge and, theoretically, becomes 

infinite at the Γ-point. Consequently, all such states—resonances above the light line and 

wavelengths below the diffraction limit—are classified as BICs. These are identified as 

symmetry-protected BICs, highlighting that the radiation cancellation is ensured by the 

structure’s symmetry. Since these BICs emerge at the Γ-point, they are occasionally referred 

to as 'at-Γ BICs'.  
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 (a)                                                                                            (b) 

 

 

 

 

 

 

(c) 

  

 

 

 

 

Figure. 4.6 Bound States in the Continuum within a dielectric grating: (a) provides a schematic of the grating 

structure, characterized by one-dimensional periodicity along the x-direction; (b) illustrates the band diagram for 

a structure similar to that depicted in (a); (c) presents the Q-factor for a structure resembling the one in (a), adapted 

from [32]. 

Regarding the symmetric (even) solutions, the average value of the eigenstate, 〈𝑈0,𝑘𝑥(𝑥, 𝑧)〉𝑥 , 

can be nullified at a specific point in the Brillouin zone. This phenomenon is not solely due to 

symmetry considerations but also through the fine-tuning of the system's parameters, such as 
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period, radius, and permittivity, leading to the emergence of a BIC. This type of BIC is 

commonly referred to as an accidental, parametric, or tunable BIC (Friedrich-Wintgen BIC), 

necessitating precise structural adjustments to achieve 〈𝑈0,𝑘𝑥(𝑥, 𝑧)〉𝑥 = 0. These BICs are also 

known as 'off-Γ BICs,' distinguishing them from those that occur at the Γ-point 

Fig.4.6 presents various aspects of the structure under examination: (a) illustrates its schematic 

representation, (b) depicts its band structure, and (c) demonstrates the Q-factor, highlighting 

both symmetry-protected and accidental Bound States in the Continuum (BICs). 

4.5.1 Engineering bound states in the continuum (BIC) for enhanced light-

matter interaction in hybrid metasurfaces 

This section explores the emergence of Bound States in the Continuum (BIC) within the 

proposed hybrid metasurface. Strong mode confinement in the elements leads to multiple 

quasi-BIC points due to destructive interference and the collapse of the Fano lineshape width.  

The proposed hybrid metasurface under consideration consists of a periodic array of unit 

cells, each containing two nanopillars (see Fig.4.7a, for detailed unit cell description). Each 

nanopillar is composed of four nanodisks: two plasmonic, fabricated from silver, and two 

made from high-refractive-index silicon. The nanodisks share a uniform height (H = 120 nm). 

One radius (R1) is fixed at 50 nm, while the other radius (R2) varies between 30 nm and 70 

nm. The pairs are arranged periodically with a lattice constant (P) of 550 nm (Px = Py = P) in 

both x and y directions. The entire array is illuminated with x-polarized light at normal 

incidence. Both the substrate and the superstrate surrounding the array are composed of silica. 
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(a)                                                                                          (b) 

 

Figure 4.7. (a) Schematic of the proposed hybrid metasurface under consideration, where the unit cell consists of 

two elements (nanopillars). Each element has four nanodisks: two plasmonic made of silver and two made of 

high-refractive-index material, silicon. The nanodisks are of height H = 120 nm and radii R1 = 50 nm (fixed) and 

R2, varied from 30 to 70 nm. The pairs are arranged in periodic array with periods Px = Py = P = 550 nm. The 

array is illuminated with the x-polarized light at the normal angle. The substrate and superstrate materials are 

silica. Considering the center of the unit cell has coordinates (0, 0), the first element has coordinates (−Px/4, 

−Py/4), and the second element has coordinates (Px/4, Py/4). (b) Numerical results and mode contours are for 

modeling the proposed nanostructure: The simulated absorption spectra versus radius of nanoantenna showing 

sextuple Fano resonances and triple Rabi splitting. It shows quintuple BICs in the nanostructure. Bound states in 

the continuum are shown in red circles due to the collapse of the widths of Fano resonances observed in the 

nanostructure. Inset: Fano profile of the mode at ~1.38 eV for R2 = 48 nm. 

Considering the center of the unit cell at coordinates (0, 0), the first element has coordinates 

(−Px/4, −Py/4), and the second element has coordinates (Px/4, Py/4). The BIC-based hybrid 

metasurface exhibits high sensitivity and selectivity because a small parameter mismatch in 

the binary array can create a BIC within the bandgap of the coupled modes. 
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The identification of spectral features near BIC points is achieved by analyzing the resonance 

linewidth. At the BIC point, the linewidth becomes very narrow due to destructive interference 

between discrete and continuum modes. Additionally, analyzing the electromagnetic field 

intensity and polarization patterns near the resonance can provide valuable information for 

identifying BICs. 

In binary nanoparticle arrays, BICs are achieved by tailoring the geometric parameters of 

individual elements to create destructive interference between modes, leading to unique optical 

properties with potential applications in sensing. A small parameter mismatch in the binary 

array can create a BIC within the bandgap of the coupled modes, enhancing light-matter 

interaction within the metasurface region for highly sensitive and selective sensing. The 

presence of the BIC also leads to a sharp resonant peak in the transmission or reflection 

spectrum, facilitating the detection of changes in the surrounding environment, such as 

biomolecule adsorption or gas presence. Furthermore, BIC-based plasmonic sensors exhibit 

high robustness against fabrication imperfections and environmental changes due to the highly 

localized nature of the BIC, enabling highly reproducible sensing with minimal drift over time 

[36]. 

Figure 1b shows discontinuities in the nanostructure modes (around the anticrossings marked 

by red circles in the absorption colormap) that occur due to suppressed radiative losses from 

destructive interference and BIC formation. These discontinuities indicate singularities in the 

Fano parameter, leading to the collapse of the Fano lineshapes and trapping of electromagnetic 

modes within the nanostructure. This phenomenon results in a rapid increase in the Q-factor 

until it reaches a maximum value due to finite size effects [36]. 
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5.0 Rabi Splitting: a hallmark of strong light-matter interaction 

The interaction between light and matter is a cornerstone of quantum optics, driving a wide 

range of phenomena with profound implications for quantum technologies. Among these, Rabi 
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splitting stands out as a signature of strong coupling between a quantum emitter and a photonic 

cavity mode [1]. 

Rabi splitting arises from the quantum mechanical description of light-matter interaction, 

particularly the Rabi model. This model depicts the oscillation of an atomic state under an 

oscillating electric field, leading to a periodic energy exchange between the atom and the field, 

known as Rabi oscillations [2,3]. When a quantum emitter (atom or quantum dot) resides 

within a resonant cavity, the coupling strength between them can reach a regime where the 

energy exchange surpasses the individual decay rates. In this strong coupling regime, the 

system's eigenstates hybridize into light-matter states, manifesting as a doublet in the system's 

emission or absorption spectrum, corresponding to the energy difference between the 

hybridized states [4]. 

A more comprehensive theoretical description of Rabi splitting comes from quantum 

electrodynamics (QED), specifically the Jaynes-Cummings model. It extends the Rabi model 

by including the quantization of the electromagnetic field within the cavity [5,6]. This 

quantization is crucial for understanding the discrete nature of the interaction and the 

conditions for Rabi splitting. The Jaynes-Cummings model predicts that the visibility of Rabi 

splitting depends on the coupling strength, the damping rates of the emitter and cavity, and the 

detuning between the emitter's transition frequency and the cavity resonance [7]. 

Experimental evidence for Rabi splitting exists in various systems, including atoms in optical 

cavities, semiconductor quantum dots in microcavities, and molecules coupled to plasmonic 

structures [8, 9, 10]. These experiments not only validate theoretical predictions but also 

showcase the diverse platforms where Rabi splitting can be observed and harnessed. The 
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ability to engineer and control these hybridized states opens doors to novel devices based on 

quantum light-matter interactions, such as quantum dots for quantum computing, single-

photon sources for quantum cryptography, and ultra-sensitive sensors. 

Beyond the quantum realm, strong coupling can also occur in classical photonic systems. An 

example is the observed avoided crossing of resonances between surface plasmon polaritons 

and photonic modes in hybrid plasmonic-photonic structures [11]. Additionally, strong 

coupling can arise between two Fano resonances that share the same continuum state. In this 

scenario, manipulating the discrete state of one Fano resonance can induce significant 

interaction between them [12]. 

This chapter introduces the concept of Rabi splitting through quantum mechanical modeling 

of a two-level quantum system interacting with a photonic cavity. We then explore classical 

analogs of Rabi splitting, demonstrating the potential for strong coupling between Fano 

resonances in a photonic nanostructure system, distinct from the quantum mechanical 

approach. 

Following this, we present nanostructure designs featuring layered hybrid plasmonic-dielectric 

nanoantennas. By adjusting the dimensions of one nanoantenna, this design facilitates strong 

mode coupling and the formation of multiple quasi-BICs with high-quality factors. These 

dimensional variations lead to interactions between multiple Fano resonances, and under 

strong coupling conditions, this results in the hybridization of the interacting Fano resonances, 

observable as multiple anti-crossings (Rabi splitting) in the energy dispersion plots. 

In conclusion, Rabi splitting epitomizes a fundamental phenomenon in quantum optics, 

capturing the essence of strong coupling interactions between light and matter. Its exploration 
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not only deepens our understanding of quantum mechanics but also paves the way for 

groundbreaking quantum technologies. 

5.1 Theoretical Foundations of Rabi Splitting 

Rabi splitting, a hallmark of strong coupling between a quantum system and a quantized 

electromagnetic field, is frequently observed in atom-cavity, exciton-photon, and spin-boson 

configurations. It manifests as the splitting of the energy levels in the quantum system due to 

its interaction with a resonant driving field (Fig. 5.1). This phenomenon occurs when the 

emitter's atomic transition frequency (ωa) aligns with the resonant frequency of the cavity 

mode (ωc). This alignment leads to the hybridization of the two states, resulting in their 

splitting into two new energy levels. These hybridized states are known as the lower polariton 

(|𝐿1⟩  )  and upper polariton (|𝐿2⟩), separated by the Rabi splitting energy (ℏΩR), where ℏ is the 

reduced Planck constant and ΩR represents the Rabi frequency. The splitting of the energy 

levels is reflected in the peaks of the scattering parameters (reflection, transmission, 

absorption) spectra, highlighting the significant impact of Rabi splitting on the system's optical 

properties. 
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Fig. 5.1: Schematic Illustration of Rabi Splitting (Strong Coupling) in a Quantum System. The figure depicts the 

interaction between a two-level quantum emitter undergoing a transition from the ground state |𝑔⟩  (n=0) to the 

excited state |𝑒⟩  (n=1), and an optical cavity mode transitioning from m=0 to m =1. Here, |𝑟⟩  represents the 

resonance of the cavity, illustrating the precise moment of strong coupling between the quantum emitter and the 

cavity mode. 

At the heart of Rabi splitting is the interaction between a two-level atom (or, equivalently, a 

molecule or quantum emitter) and the discrete modes of an electromagnetic field within a 

photonic cavity. When the excited state (|𝑒⟩)  of an atom strongly couples with a resonance 

state (|𝑟⟩)  of a photonic cavity, the two states hybridize. This leads to the formation of two 

new states: the upper (|𝑆2⟩) and lower ((|𝑆1⟩)) polariton states, as illustrated in Fig. 5.2(a). This 

energy splitting is reflected by the anticrossing feature in the energy dispersion plot, as shown 

in Fig. 5.2(c). The presence of an atom within an optical cavity is represented by a red dot in 

Fig. 5.2(b) of the illustration. In the circle located at the lower right, we illustrate the atom's 

energy levels — the ground (|𝑔⟩) state and the excited (|𝑒⟩) state — interacting with the field 

mode inside the cavity. The emission or absorption of photons by the atom, corresponding to 

transitions between these two states, contributes to the field mode within the cavity. 
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This interaction, indicative of strong coupling, necessitates a quantum mechanical framework 

for accurately modeling both the atom and the cavity. The Jaynes-Cummings model, a 

fundamental theory in quantum optics, effectively describes this interaction when an atom is 

coupled with a single-mode electromagnetic field. The Hamiltonian for this interaction is 

outlined below [13]: 

𝐻 = 𝐻0 +𝐻1 =
1

2
ћ𝜔𝑎𝜎𝑧 + ћ𝜔𝑐𝛼

†𝛼 + ћ𝑔(𝜎+𝛼 + 𝜎−𝛼†)      (5.1) 

Where, 𝐻0 represents the free Hamiltonian of the atom and the electromagnetic field, featuring 

the first two terms,  𝐻1 = ћ𝑔(𝜎
+𝛼 + 𝜎−𝛼†) denotes the interaction Hamiltonian between the 

atom and the field, ћ  is the reduced Planck's constant, 𝜔𝑎 is the atomic transition frequency, 

𝜔𝑐 is the cavity mode frequency, 𝜎𝑧 is the Pauli  operator reflecting the two-level atom's energy 

states, 𝛼† and 𝛼  are the creation and annihilation operators for the cavity photons, 𝜎+ and 𝜎− 

are the raising and lowering operators for the atom's energy states, 𝑔  is the coupling strength 

between the atom and the cavity mode. 

 

(a)                                                                                            (b) 

 

                                   (c) 
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Figure. 5.2: Schematic Representation of Strong Coupling and Anti-Crossing in an Atom-Optical Field Interaction 

System. (a)Visualization of energy level splitting in a single atom interacting with an optical field, showcasing 

the atomic transition frequency ωa and the resonance frequency of the optical field ωc. This panel illustrates the 

transition of optical (photonic) cavity modes from m = 0 to m = 1. (b) Depiction based on the Jaynes-Cummings 

model of the interaction between an atom and a cavity. An atom within an optical field is represented by a red dot 

situated in the photonic cavity. The energy levels of the atom, forming a two-level quantum system that couples 

with the field mode inside the photonic cavity, are indicated by black circle. The coupling strength between the 

atom and the cavity is denoted by g. (c) Demonstration of the anti-crossing phenomenon, leading to Rabi splitting 

at the convergence point of ωa and ωc, highlighting the essential features of strong coupling between the atom 

and the optical field. 

The Hamiltonian, H, encapsulates the quantum mechanical interaction responsible for Rabi 

splitting, underscoring the crucial roles of the coupling strength, 𝑔 , and the resonance between 

the atom's transition frequency and the cavity mode frequency. 

In the regime of strong coupling between the atom (or emitter) and the optical field mode, the 

coupling strength, 𝑔 , can be characterized by the emitter's dipole moment, μ, and the vacuum 

electromagnetic field strength, 𝐸𝑣𝑎𝑐, as follows: 
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                                                           𝑔 =
1

ћ
|𝜇 ∙ 𝐸𝑣𝑎𝑐|    [14], with 𝑔 expressed in units of 

frequency. For N number of dipoles, 𝑔 can be expressed as          𝑔 = √𝑁μ𝐸𝑣𝑎𝑐. 

 For the system to achieve strong coupling, 𝑔 must surpass all decay rates, symbolized by the 

condition 𝑔 >> 𝜅, 𝛾, where 𝜅, and 𝛾 denote the cavity's loss rate and the atom's (or emitter's) 

dissipation rate, respectively. 

This state of strong coupling necessitates that the interaction strength not only dominates over 

the intrinsic decay mechanisms of the system but also ensures the coherent exchange of energy 

between the atom and the cavity mode, a prerequisite for observing Rabi splitting. 

The vacuum electric field, 𝐸𝑣𝑎𝑐, is inversely proportional to the square root of the effective 

cavity volume, 𝑉𝑒𝑓𝑓, represented as 𝐸𝑣𝑎𝑐 ∝
1
√𝑉𝑒𝑓𝑓
⁄   .   For a single electromagnetic mode, the 

magnitude of  𝐸𝑣𝑎𝑐can be determined by equating its energy with the zero-point energy of the 

mode: 

                                  𝐸𝑣𝑎𝑐
2 𝑉𝑒𝑓𝑓 =

1

2
ћ𝜔𝑐 . 

Here, it is assumed that the emitter is located at the maximum of the field associated with this 

mode. This assumption leads to the expression for  𝑔 =
𝜇
ћ⁄ √

ћ𝜔0

2𝑉𝑒𝑓𝑓
,  where 𝜔0 is the resonant 

frequency, with ωa = ωc. 

 In Fig. 5.3, we utilize a simplified model resembling the one shown in Fig.5.2. This model 

consists of a single two-level system, such as an atom, and a single-mode electromagnetic field, 

like a photon. By solving the Jaynes-Cummings Hamiltonian, which characterizes the 

interaction between light and matter, we are able to calculate the eigenvalues of the 
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Hamiltonian for various coupling strengths, denoted by g, and plot the resulting data. The 

obtained results exhibit the distinct "avoided crossing" phenomenon, which serves as an 

indicator of Rabi splitting. We assume that the atom and cavity are not in resonance and 

therefore manipulate the detuning, which represents the difference between the frequencies of 

the atom and the cavity. Through this manipulation, we are able to observe Rabi splitting, with 

the lower and upper polaritons each displaying anticrossings, as depicted in Fig. 5.3 (a) with g 

= 0.1. The energy of Rabi splitting, which is given by ћΩR, is evident in the plots.  

The plots effectively illustrate the occurrence of Rabi splitting as an "avoided crossing" in the 

energy spectrum. As the coupling strength, g, increases, the splitting becomes more prominent. 

To demonstrate this, we vary the frequency of the cavity while keeping the atom's frequency 

fixed. The difference between these two frequencies creates a detuning, which in turn leads to 

Rabi splitting.  

This splitting manifest as two distinct curves, representing the lower and upper polaritons, 

which notably avoid crossing each other. This avoidance signifies the presence of Rabi 

splitting. The magnitude of the splitting is directly influenced by the coupling strength, g, as 

illustrated in Fig. 5.3(b). By employing values of g such as 0.01, 0.1, 0.2, and 0.5, we can 

clearly demonstrate the varying degrees of Rabi splitting strength. 
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(a) 

 

                      (b) 

 

Figure.5.3 Rabi splitting (eigenvalues of the Hamiltonian) plots corresponding to (a) a two-level atom interacting 

with a single mode of the electromagnetic field. The states are |g, n=0> and |e, n=1>, where |g> and |e> are the 
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ground and excited states of the atom. (b) same as Fig.(a), but different values of coupling strength, g = 

0.01,0.1,0.2, and 0.5. 

It is worth noting that this is a simple model and does not account for many factors such as 

decay, or multi-level systems. 

 

5.2 Strong Coupling via Fano Resonances 

While our previous analysis of Rabi splitting focused on the quantum mechanical interaction 

between a two-level atomic system and a photonic cavity, a classical analog of strong coupling 

can also be observed in interacting photonic nanostructures. This phenomenon arises from the 

interplay of two Fano resonances. 

Fano resonances occur due to interference between a narrow, discrete resonance and a broader 

spectral continuum. This interaction manifests as characteristic asymmetric line shapes in the 

scattering parameter spectra. When two or more Fano resonances experience strong coupling, 

the system can exhibit Rabi splitting. This happens when the energy exchange rate between 

the resonances, or between the resonances and an external field, becomes faster than the 

individual resonance decay rates. 

In a scenario where two Fano resonances share the same continuum state (Fig. 5.4), a strong 

interaction can be observed by continuously varying the discrete state of one resonance (R2, 

red-dashed circle) while keeping the other (R1) constant [12]. This manipulation can lead to 

the hybridization of the system's energy levels, forming new eigenstates. This hybridization 

manifests as the splitting of the original resonance peak into two distinct peaks, signifying the 

emergence of new eigenstates (Rabi splitting). 
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Fig. 5.4. Schematic illustration of the potential for strong coupling between two Fano resonances sharing the same 

continuum state. 

Following the approach outlined in Ref. [15], we can describe the anti-crossing behavior 

(strong coupling) observed in the energy dispersion plot when two resonances interact with a 

radiation continuum. Similar to the quantum mechanical case, we can model this interaction 

using a non-Hermitian Hamiltonian for coupled optical resonances, neglecting nonradiative 

damping terms [16, 17]. The rigorous theoretical framework for this approach was established 

by Friedrich and Wintgen [18]. 

𝐻 = (
𝐸1 𝑘
𝑘 𝐸2

)-i(
𝛾1 𝑒𝑖𝜓√𝛾1𝛾2

𝑒𝑖𝜓√𝛾1𝛾2 𝛾2
) = (

𝐸1 − 𝑖𝛾1 𝑘 − i𝑒𝑖𝜓√𝛾1𝛾2
𝑘 − i𝑒𝑖𝜓√𝛾1𝛾2 𝐸2 − 𝑖𝛾2

)          (5.2) 

In this Hamiltonian, E₁ and E₂ represent the resonance energy levels of the two coupled modes, 

γ₁ and γ₂ are the corresponding radiative damping rates, characterizing the energy loss of each 

mode due to radiation, k signifies the internal coupling strength between the modes, 

quantifying their near-field interaction. The term √𝛾1𝛾2 represents the radiative coupling 

between the modes, arising from their far-field interaction. ψ denotes the phase difference 
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between the two modes' radiating waves. The parameter eiψ√𝛾1𝛾2  captures the critical concept 

of interference between the radiating waves due to far-field coupling [19]. 

The eigenvalues of the non-Hermitian Hamiltonian (Eq. 5.2) are obtained by solving the 

secular equation, leading to the following solutions: 

                    𝐸̅=
𝐸1+𝐸2
2

−i
𝛾1−𝛾2

2
±
1

2
√(

𝐸1−𝐸2

2
− i

𝛾1−𝛾2

2
)
2
+ (𝑘 − i𝑒𝑖𝜓√𝛾1𝛾2)

2          (5.3) 

Equation (5.3), as established by Friedrich and Wintgen [24], represents two avoided photonic 

bands within the parameter space. It yields two distinct energy solutions for E₁ and E₂. Fixing 

one energy value (e.g., E₁ = 1.5) and continuously varying the other (E₂) in the energy 

dispersion plots reveals an avoided-crossing behavior (characteristic of strong coupling) due 

to the formation of hybridized states, often referred to as upper and lower polaritons. 

Figure 5.5 visualizes these avoided crossings for different coupling strengths (k = 0.01, 0.1, 

0.2, and 0.5) when E₁ is held constant at 1.5 (arbitrary units), with γ₁ = 0.1 and γ₂ = 0.2. 
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Figure 5.5: Anti-crossings due to strong coupling in energy dispersion plots. This figure shows the anti-crossings 

arising from strong coupling between two energy resonance states. These anti-crossings manifest as the splitting 

of the original resonance into upper and lower polariton branches. The splitting is visualized through the 

eigenvalues (E₁ and E₂) obtained from the non-Hermitian Hamiltonian. These eigenvalues correspond to the 

resonance energy levels of the two coupled modes. The plots illustrate the behavior for different coupling 

strengths (k) of 0.01, 0.1, 0.2, and 0.5. Here, E₁ is held constant at 1.5 (arbitrary units), while E₂ is continuously 

varied. The values of the radiative damping rates are γ₁ = 0.1 & γ₂ = 0.2. 

5.3. Refractive index tuning for mode coupling and Rabi Splitting in hybrid 

metasurfaces 

 

Three-dimensional (3D) megastructures, typically composed of metals and dielectrics, offer 

versatile light manipulation capabilities at the subwavelength scale. However, their complex 
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design and fabrication challenges make them less favorable for integration into photonic 

devices. Metasurfaces, their two-dimensional (2D) counterparts, offer a simpler and more 

practical alternative. They achieve comparable light manipulation at the subwavelength scale 

with established fabrication techniques and easier integration. 

Fano resonances and Rabi splitting observed in photonic and metamaterial nanostructures have 

attracted significant interest due to their potential applications in sensing, quantum information 

storage, and processing. Fano resonances arise from the interaction of a discrete quantum state 

with a continuum band state, resulting in an asymmetric linewidth in the spectral response [20]. 

Rabi splitting, on the other hand, occurs when the coupling between an excitation state and a 

resonance state causes their energy levels to repel, leading to their splitting [20-22]. 

All-dielectric metasurfaces composed of high-refractive-index nanostructures can exhibit Fano 

resonances. These structures have been explored for various applications, both experimentally 

and theoretically [22]. They can excite both electric dipoles (EDs) and magnetic dipoles (MDs) 

at the nanoscale due to their dimensions. The observed Fano resonances arise from the 

interaction of these EDs and MDs originating from the metasurface structures. This interaction, 

similar to that in high-index dielectric nanostructures, involves resonant dark and 

corresponding bright modes [21]. An example is the experimentally realized Fano resonance 

in a binary silicon nanodisk array within the visible range [21]. Additionally, Xu et al. 

investigated strongly directional Fano resonance in an individual silicon nanorod using 

numerical simulations [22]. 

Several studies have explored the simultaneous realization of both Fano resonance and Rabi 

splitting. Liu et al. theoretically and experimentally investigated both phenomena using 3D 
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asymmetric split-ring resonators (aSRRs) made of gold [23]. Similarly, Zhang et al. achieved 

both Fano resonance and Rabi splitting numerically using a metal-dielectric-metal (MDM) 

plasmonic waveguide with stub resonators [24]. 

 

 

 

 

Figure 5.6. Schematic of a single unit cell. The unit period is 550 nm in x- and y-directions ( 550 nmxp =  and 

550 nmyp = ). Dark grey layers are dielectric segments, and light grey layers are silver. The height of each layer 

is fixed to H = 120 nm, R1 = 30 nm, R2 = 50 nm. We vary the refractive index of the dielectric segments. The 

structure has silica as substrate and index-matching oil superstrate 

This work presents the resonant response of plasmonic-dielectric hybrid metasurfaces obtained 

using CST full-wave simulation modeling with electric field polarization in the y-direction. 

We design scattering elements out of multilayer silver-dielectric nanostructures and study 

periodic arrays of such scatterers (Fig. 5.6). These multi-segment nanostructures enable 

subwavelength light confinement [25]. Unit cells (lattice units) contain either one or two 

scattering elements. We demonstrate that the dielectric scatterer's refractive index determines 

whether identical or mismatched resonances are excited in the array. A slight mismatch in the 
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resonance positions, controlled by the dielectric scatterer refractive index, leads to the 

excitation of Fano resonances observed as peak splitting and characteristic asymmetric spectral 

profiles. 

Our structure consists of a paired periodic array of silver-dielectric nanodisk metasurfaces. We 

observe Rabi splitting in the scattering parameters' spectral response due to the interaction 

between different Fano resonances, resulting in strong coupling and the observation of Rabi 

splitting within the nanostructure array. Figure 5.6 shows the schematic of the unit cell of the 

structure under study with the corresponding parameters used in the numerical simulations. 

 

Figure. 5.7. Mode contours and their splitting due to significant coupling in the nanostructure. We show the 

comparison between the modes excited by nanoantennas made up of multilayer silver-dielectric with strong 

absorption in the unit cell of the nanostructure. 

We investigate the electric field enhancement due to Fano resonances in the nanoantenna 

caused by changing the refractive index of the dielectric segments. This analysis demonstrates 

that the refractive index of the dielectric scatterer is responsible for the enhancement by tuning 

the refractive index of dielectric segments (Fig. 5.7). We observe the splitting of the modes 

due to significant coupling (Rabi splitting) as the dielectric refractive index is varied. 
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To sum up, we designed a hybrid Ag/dielectric nanopillar metasurface and observed Fano 

resonances and Rabi splitting in its spectral response. Surface plasmon polaritons, excited at 

the interface between Ag and dielectric structures, interact destructively with localized surface 

plasmon resonances and surface plasmon polariton modes, giving rise to the observed Fano 

resonances in the proposed metal-dielectric hybrid metasurface. The significant coupling 

between excitation states of plasmonic resonances leads to Rabi splitting in the nanostructure. 

This strong coupling, possible due to the interaction between nanopillar resonances and surface 

plasmon polaritons in the nanostructure arrays, leads to the anti-crossing behavior of the 

resonances. Finally, we observed that the spectral peaks of the Fano resonances can be 

effectively tuned by varying structural parameters like the refractive index of the dielectric 

scatterers. 

5.4 Radius-dependent Rabi Splitting in plasmonic-dielectric metasurfaces 

We investigate the emergence of Rabi splitting in the proposed hybrid plasmonic-dielectric 

metasurface (Figure 5.8(a)) due to the strong interaction between its nanostructure modes. This 

interaction arises from the constructive coupling between resonant dark and bright modes 

within the nanostructure. 

The unit cell of the metasurface comprises two nanopillars, each containing four nanodisks 

(Figure 5.8(a)). Two of these nanodisks are plasmonic, fabricated from silver, while the other 

two utilize high-refractive-index silicon. All nanodisks possess a uniform height (H = 120 nm). 

One radius (R1) is fixed at 50 nm, while the other radius (R2) varies between 30 nm and 70 nm. 

The pairs are arranged periodically with a lattice constant (P) of 550 nm (Px = Py = P) in both 

x and y directions. The entire array is illuminated with x-polarized light at normal incidence. 
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Both the substrate and the superstrate surrounding the array are composed of silica. Since the 

elements are arranged in a periodic array, the metasurface supports collective resonances. 

These resonances are excited within periodic structures, with their properties heavily 

influenced by the periodicity of the array itself [26-29]. 

(a)                                                                                   (b)                                                           

       

                                               (c) 

 

 

 

 

Figure 5.8. (a) Schematic of the proposed hybrid metasurface under consideration, where the unit cell consists of 

two elements (nanopillars). Each element has four nanodisks: two plasmonic made of silver and two made of 

high-refractive-index material, silicon. The nanodisks are of height H = 120 nm and radii R1 = 50 nm (fixed) and 

R2, varied from 30 to 70 nm. The pairs are arranged in periodic array with periods Px = Py = P = 550 nm. The array 

is illuminated with the x-polarized light at the normal angle. The substrate and superstrate materials are silica. 

Considering the center of the unit cell has coordinates (0, 0), the first element has coordinates (−Px/4, −Py/4), and 
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the second element has coordinates (Px/4, Py/4). (b) Contours of one mode pair. The horizontal line corresponds 

to the mode in Element #1 (unchanged due to the constant R1 = 50 nm), and the diagonal line corresponds to the 

mode in Element #2 that changes along with R2. The solid lines are the results for a single element in the unit cell, 

while the dashed lines are the results of modeling two elements. (c) Contours of three pairs of the nanostructure 

modes. To better understand the nature of mode excitation, we utilize a nanostructure with only 

one element in the array’s unit cell, as shown in Figure 5.8.  

(a)                                                                         (b) 

 

 

 

 

Figure 5.9. Nanostructure with one element. (a) Schematics of a single element in the unit cell. The element radius 

is R. Other geometrical parameters, materials, and illumination are the same as in the binary array. (b) Absorption 

for different radii. We perform calculations for a single element to aid in analyzing mode excitations in the binary 

array. Dot-dash yellow, solid red, and solid black lines are eyeball fit. They are subsequently transferred to Figure 

1b,c to interpret the absorption mode maps. 

By varying the element radius R and tracing the resulting modes that manifest as peaks in the 

absorption spectra, we are able to identify a consistent trend. Using a visual eyeball fit, we 

draw lines to represent the excited modes, with dot-dash yellow, solid red, and solid black lines 

indicating a nearly linear change in the mode position with changes in the element radius. 

These lines correspond to the solid diagonal lines in the figures for a binary array (Figure 

5.8b,c), while the solid horizontal lines correspond to the case of a fixed radius R1 of 50 nm. 

Thus, the diagonal and horizontal solid lines in Figure 5.8b,c represent the results of the 
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calculations for an array with only one element in the unit cell. We performed a similar analysis 

of the absorption maxima for a binary array, akin to the case of a unit cell with only one 

element. Using an eyeball fit, we identified the excited modes, which are represented by dashed 

yellow, red, and black lines in Figure5.8 c. A key observation is an excellent agreement 

between the results obtained for a unit cell with only one element and those obtained for the 

binary array, which highlights the robustness of our analysis method. While the solid and 

dashed lines in Figure 5.8c come from two different types of simulations, we see that the 

dashed lines are the modes experiencing Rabi splitting because of the binary nature of the 

array. This observation is significant as it highlights the effects of lattice coupling on mode 

excitation and behavior. Figure 5.8b,c show mode energy maps with one mode pair only and 

three mode pairs, respectively. One can observe mode anticrossing as a result of the Rabi 

splitting due to the coupling of nanostructure modes. For instance, in Figure 5.8c, the Rabi 

splitting energy (shown in blue double-head arrows) is due to the strong coupling between 

nanostructure modes. One can observe triple anticrossings indicated in the dashed lines due to 

the splitting of the resonant modes in the nanostructure as a result of the strong coupling 

between different Fano resonances. Figure 5.8c illustrates three anticrossings in yellow, red, 

and black lines corresponding to triple Rabi splittings with energies 0.055, 0.08, and 0.025 eV, 

respectively. 
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6.0 Hot electron generation in plasmonics 

This chapter examines the phenomenon of hot electron generation within the realm of 

plasmonics. The discovery of the photoelectric effect and its explanation by Einstein laid the 

groundwork for exploring how light interacts with matter at the quantum level, including the 

generation of hot electrons through plasmon excitation in metallic nanostructures [1]. This 

phenomenon lies at the intersection of quantum physics and materials science, involving the 

complex interaction between light and electrons on the nanoscale. Hot electron generation 

holds promise for technological advancements in various domains. 

Surface plasmon polaritons (SPPs) are electromagnetic waves that propagate along the 

interface between a metal and a dielectric or air, typically in the infrared or visible light 

spectrum. These waves combine the properties of surface plasmons (charge density oscillations 

in the metal) and polaritons (electromagnetic waves in the dielectric) [2]. 

When light interacts with metallic nanostructures whose dimensions are comparable to or 

smaller than the incident light's wavelength, localized surface plasmon (LSPR) resonance is 

induced (Fig. 1(b)). Light absorption is enhanced when the light's frequency matches the LSPR 

resonance, which is characterized by the collective oscillation of the nanostructure's free 

electrons in response to the light. This creates a significant, time-varying dipole moment that 

interacts strongly with the incoming light's electric field. LSPs can decay radiatively, emitting 

photons, or non-radiatively through Landau damping, generating hot electrons (energetic 

electron-hole pairs) (Fig. 2(a)). These hot carriers play a crucial role in applications ranging 

from photocatalysis to photodetection [4]. 
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Plasmonic nanostructures are captivating due to their ability to exhibit optical extinction cross-

sections significantly larger than their physical size and generate exceptionally strong local 

electric fields under resonant conditions [5]. The resonant excitation and subsequent decay of 

localized surface plasmons (LSPs) lead to unique optical properties that have expanded 

applications in spectroscopy, photovoltaics, imaging, sensing, and photothermal therapy 

[6,7,8]. Notably, the generation of hot carriers through non-radiative decay processes, 

particularly via Landau damping, highlights the vast potential of these metallic nanostructures 

to drive progress in diverse fields. The high energy of these carriers allows them to overcome 

material interfaces, making them valuable for developing electronic devices and sensors [9]. 

Recent research has focused on enhancing hot-electron generation efficiency and utilization 

by designing novel materials and nanostructures. This includes efforts to gain a deeper 

theoretical understanding of the dynamics underlying hot electron phenomena induced by 

plasmons, encompassing their generation, transport, and decay [10,11]. 

Optimizing hot electron generation efficiency can be achieved through various strategies, such 

as modifying the nanostructure's shape, size, material composition, and the surrounding 

medium's refractive index [12,13]. Section 6.1 reviews the processes responsible for hot 

electron generation in plasmonic nanostructures. 

Section 6.2 explores nanostructure designs that promote efficient hot electron generation from 

plasmonic effects. Here, we focus on periodically arranged gold nanoelectrodes that exploit 

surface lattice resonances (SLRs). SLRs enable the excitation of strong electric fields localized 

near the Rayleigh anomaly of the nanoelectrode array. Prior research has demonstrated that 

SLRs significantly enhance the extinction cross section of plasmonic nanostructures [14]. This 
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translates to a pronounced increase in light absorption at the nanoelectrode surface, thereby 

promoting hot electron generation into the surrounding aqueous environment. 

6.1    Process of hot-electron Generation 

Hot electron generation through plasmon excitation is a multi-step quantum mechanical 

process initiated by light absorption in metallic nanostructures [15]. When light interacts with 

these structures, it can excite surface plasmons (SPs) – collective oscillations of free electrons 

at the metal-dielectric interface (Fig. 1(a)) [16]. The energy and momentum of the incident 

light must match specific plasmon modes, which are influenced by the nanostructure's 

geometry and material properties [17]. 

Following light absorption, localized surface plasmon resonances (LSPRs) are excited (Fig. 

1(b)). LSPRs concentrate light into sub-wavelength volumes, significantly enhancing the local 

electric field. This enhancement is crucial as it increases the probability of photon absorption, 

effectively converting light into plasmon oscillations [18]. Here, we adopt the process 

breakdown outlined by César Clavero [19] and utilize diagrams for clarity. 
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(a)                                                                                          (b) 

 

 

 

Figure 6.1. Surface plasmon polaritons (SPPs) and localized surface plasmon resonance (LSPR) (a) Surface 

Plasmon Polaritons (SPPs): This schematic depicts an evanescent electron density wave propagating at the 

interface between a metal and a dielectric medium. The collective motion of electrons generates an associated 

electromagnetic field (E), whose intensity decays exponentially with increasing distance from the interface. SPPs 

can be efficiently excited by visible light. 

(b) Localized Surface Plasmon Resonance (LSPR): This illustration shows an LSPR occurring within a 

metallic nanoparticle induced by an external electric field. The electric field drives the coherent oscillation of 

delocalized electrons at the particle's surface, creating a localized resonance. 

 (a)                                                                                                          (b) 

          

 

 

                                                                  (c) 

 

 

                                                                                 

  Figure 6.2: Surface Plasmon Decay and Hot-Electron Generation (a) Decay Mechanisms of Localized 

Surface Plasmons: Localized surface plasmons can decay through two primary mechanisms: radiative and non-
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radiative. Radiative decay involves the re-emission of light (photons). In contrast, non-radiative decay occurs 

through energy transfer to electrons within the metallic nanostructure, generating "hot electrons." These hot 

electrons possess high kinetic energies exceeding the average thermal energy of the surrounding electrons. In 

noble-metal nanostructures, non-radiative decay can proceed via two main pathways: Intraband Excitations: 

Electrons are excited to higher energy states within the conduction band of the metal. Interband Excitations: 

Electrons undergo transitions from other occupied bands (such as d-bands) to the conduction band. (b) This 

schematic depicts energy band diagram of a plasmonic Schottky detector. When illuminated with light, localized 

surface plasmons are excited within the metallic nanostructure. These plasmons decay non-radiatively, generating 

"hot electrons" with kinetic energy (KEE) exceeding the Fermi level. Correspondingly, "hot holes" are created 

with kinetic energy (KEH) [20]. (c) Plasmonic Hot-Electron Injection: The energy stored in surface plasmons 

can be harnessed for various applications through the phenomenon of hot-electron injection. When a plasmonic 

nanostructure is placed in contact with a semiconductor, a Schottky barrier can form at the interface. This barrier 

arises due to the work function difference between the metal and the semiconductor. Hot electrons generated 

within the plasmonic nanostructure possess sufficient kinetic energy to overcome the Schottky barrier (ϕSB), 

enabling their injection into the conduction band (Ec) of the neighboring semiconductor. The value of the Schottky 

barrier depends on the work function (ϕM) of the metal and the electron affinity (χS) of the semiconductor.  

Illuminated nanostructures exhibit rapid energy dissipation (within femtoseconds) driven by 

LSPR. This decay can be radiative (emitting light) or non-radiative (creating energetic 

electrons) (Fig. 6.2(a)). Non-radiative decay, particularly through Landau damping, plays a 

key role in hot electron generation. During this process, plasmon energy is directly transferred 

to an electron, pushing it above the Fermi level and generating an electron-hole pair with high 

kinetic energy (hot carriers). 

In noble-metal nanostructures, non-radiative decay typically involves excitations within the 

conduction band or inter-band transitions, particularly involving d-bands. However, due to the 

significant energy gap between d-band levels and the Fermi level in materials like gold and 
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silver, intraband excitations dominate. Hot electrons then lose energy through interactions with 

other electrons and the lattice, eventually converting to heat. 

Figure 6.2(b) illustrates the process of hot electron generation using the concept of the 

parabolic density of states (DOS) in the conduction band. Notably, in noble metals, surface 

plasmons can impart energies ranging from 1 eV to 4 eV to hot electrons, depending on 

nanostructure characteristics like carrier concentration, size, and shape. 

A promising approach to utilize hot electrons involves creating a Schottky barrier between the 

metallic nanostructure and an n-type semiconductor (Fig. 6.2(b)). These semiconductors 

possess a high DOS in their conduction band, making them efficient electron acceptors and 

facilitating injection. Hot electrons with energies exceeding the Schottky barrier height (ϕSB) 

can be injected into the semiconductor's conduction band with varying efficiencies. Tunneling 

through the barrier is also possible, although less likely. Importantly, the energy required to 

overcome the Schottky barrier is significantly lower than the semiconductor's bandgap (Eg). 

Once injected, the metallic nanostructure becomes positively charged due to electron depletion 

(Fig. 6.2(c)). Figure 6.2(c) depicts a simplified schematic of a surface plasmon detector. A 

plasmon with energy (ℏω) generates hot electrons with kinetic energy (KEE) above the Fermi 

level and holes with kinetic energy (KEH). Electrons with sufficient energy can overcome the 

Schottky barrier (ϕSB) and be injected into the semiconductor's conduction band (Ec), 

contributing to the photocurrent. However, successful injection requires the electron to travel 

an unimpeded path (x) to the interface and possess a sufficiently low in-plane momentum 

component to enter the semiconductor. This avoids reflection analogous to total internal 

reflection in optics [20]. 



 

161 
 

 

The critical factor is the significant momentum mismatch between the metal (where high 

kinetic energy aligns with the Fermi level, typically 5-6 eV in gold or silver) and the 

semiconductor (where hot electron kinetic energy is KEE - ϕSB, or at most 1 eV). 

The acceptance angle [21] is given by: 

𝛩𝑎 = 𝑆𝑖𝑛
−1 [√

𝑚𝑠(𝐾𝐸𝐸 − 𝜙𝑆𝐵)

𝑚0𝐸𝐹
] 

where ms and m₀ represent the effective masses in the semiconductor and metal, respectively. 

This typically results in an acceptance angle of 10-20 degrees. Consequently, overall injection 

efficiencies for carriers propagating in all directions are often below 1%. Therefore, analyzing 

the energy, spatial, and angular distributions of hot carriers generated by surface plasmon 

decay is crucial. 

To maintain current flow and electrical continuity, an electron-donor solution or a hole-

transporting material needs to be integrated with the nanostructures, facilitating hole transfer 

to the counter electrode. 
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6.2 Lattice effect for enhanced hot-electron generation in 

nanoelectrodes  

The illumination of plasmonic-metal nanostructures and nanoparticles with light gives rise to 

collective oscillations of electrons at the interface of the nanostructures if the incident 

electromagnetic field matches the resonant frequency of collective electrons. This phenomenon 

generates intense electromagnetic fields known as localized surface plasmon resonance 

(LSPR). Recently, surface-plasmon-based nanostructures have been employed to concentrate 

and manipulate light, enhance light-matter interaction, and couple light energy to photonic 

devices at the nanoscale regime [22-24]. 

The excited plasmonic resonances undergo radiative and nonradiative decays. The far-field 

light scattering leads to radiative loss. In turn, plasmonic enhancement of the near 

electromagnetic field results in the interband and intraband transitions, which generate 

energetic (hot) electrons with very high kinetic energies [24]. In many cases, the generation of 

hot electrons in plasmonic nanostructures is attributed to the nonradiative decay of surface 

plasmon resonance through Landau damping [24,25]. Plasmon-generated hot electrons have 

attracted increased attention due to their ability to improve the efficiency of photovoltaic 

devices and photodetectors, photocatalysis for green fuels, photochemistry and 

electrochemical processes, photothermal heating, as well as their potential applications in 

optoelectronics and nonlinear optics [26-31]. 

The development of injection of plasmonic hot electrons into vacuum, solid, or liquid 

environments has been reported both numerically and experimentally by many research groups 

[33-39]. For instance, Dombi et al. reported numerical investigation of highly directional and 

monoenergetic plasmonic hot electrons into vacuum for ultrafast and high spatial resolution 
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applications [40]. Knight et al. experimentally investigated plasmonic hot electron injection 

into a semiconductor (silicon) for photodetection [41]. Boulais et al. reported investigations of 

plasma-mediated off-resonance plasmon-enhanced nanocavitation by the injection of 

plasmonic hot electrons from a gold nanosphere into water, induced by ultrafast laser radiation 

[42]. Zilio et al. used both numerical and experimental techniques to demonstrate that the 

energy transfer of plasmonic hot electrons from gold nanoelectrodes into water is more 

efficient in water than in vacuum (17 times higher), because free-electron clouds are more 

confined when injected hot electrons from the gold nanoelectrodes contact water molecules 

[43]. 
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  (b) 

 

 

Figure 6.3. (a) Unit cell of the nanostructure under consideration. The period is P = Px = Py in 

the x- and y-directions. The cylindrical gold nanoelectrode (nanotube) has a height of h = 1800 

nm and an internal radius of 60 nm. The nanotube has 30-nm-thick walls, and it is connected to 

a planar gold electrode of 30-nm thickness. Both the nanotube and planar electrodes are 

immersed in water (upper half-plane) and are placed on a silicon nitride substrate. The wave 

propagates in the z-direction and is polarized in the x-direction. (b) Schematic of the mesh 

curvature in the numerical simulations and position of the probe for detecting electric field. 

Assuming the center of the nanotube is at xo = 0 and yo = 0, the probe is positioned at xp = 75 

nm and yp = 0 and at the height of zp = h + 1 nm = 1801 nm from the substrate surface or 1 nm 

above the nanotube. 



 

165 
 

 

A periodic array of metallic nanoparticles has been shown to support LSPR and possess 

diffractive behavior in the same spectral region [44-46]. The Rayleigh anomaly is defined as 

wavelengths at which a diffracted order appears or disappears at a grazing angle, and the 

diffractive effects are attributed to the interparticle lattice period. By tuning the interparticle 

lattice period, it is possible to excite lattice modes resulting from the hybridization of the 

LSPRs and lattice resonances in the proximity to the Rayleigh anomaly induced by the periodic 

arrangement of the nanostructure. When the lattice period is altered, one can achieve a rapid 

increase in the amplitude of the diffracted spectral orders resulting from the Rayleigh anomaly, 

and thereby generating intense electric field enhancement [47-50]. The very high-quality 

factors associated with plasmonic nanoparticle arrays due to diffractively coupled plasmon 

resonances can offer potential applications in the development of optoelectronics, 

photovoltaics, data storage, and biosensing [51]. 

Nanoelectrodes involving the injection of hot electrons have many potential applications in 

electrochemical sensing of single nanoparticles, chemical imaging of samples at the ultrahigh 

spatial resolution, development of plasmonic nanobubbles, and energy storage such as batteries 

and capacitors. Most importantly, such nanoelectrodes can be used, for example, as an in vitro 

platform for delivering a broad range of molecules into the intracellular compartment [39]. 

Injected hot electrons can be accelerated in the nanoantennas near-field and produce 

nanoscopic shockwaves opening membrane pores. This process allows avoiding nanobubbles, 

which are dangerous for biological cells. The microfluidic chip underneath the nanostructure 

allows bringing the required components to the targeted cell part. 

Nanoelectrodes can be optical antennas (nanotubes) made up of either metals or 

semiconductors of nanometer dimensions. Plasmonic nanoantenna with a high aspect ratio can 
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support the excitation of multiple resonances because of its complex shape and possibility of 

excitation of higher-order modes [52]. Such three-dimensional vertical plasmonic gold 

nanoantennas (nanoelectrodes) can radiate in all directions and act as a metal reservoir [53,54]. 

This configuration also offers a stronger plasmonic response, higher field enhancement, longer 

carrier lifetime, and more efficient carrier generation and recombination. 

Here, we report on a numerical study of a strong plasmonic field enhancement in a gold 

nanoelectrode array applied for hot-electron generation in a water environment. The schematic 

of the unit cell of the nanostructure under study is illustrated in Fig. 6.3a, with corresponding 

parameters used in numerical simulations. We show an excitation of the unique optical modes 

induced by the Rayleigh anomalies supported by the periodicity of the nanostructure and 

thereby enhancing the generation of plasmonic hot electrons. The modes are observed in the 

resonant absorptance and field enhancement in the nanostructure. We demonstrate the effect 

that can serve as a guideline for improving electric field enhancement and consequently 

stimulate the generation of plasmonic hot electrons from the nanoelectrodes in an aqueous 

environment. 

In our design, both planar and nanotube electrodes are placed on a silicon nitride substrate, as 

shown in the schematic in Fig. 6.3a. To simulate the nanostructure, we consider a cylindrical 

gold nanoelectrode with an internal radius R and a height h. The nanoelectrode walls are 30-

nm-thick. The nanoelectrode is positioned on a planar gold film of thickness 30 nm. We choose 

the same thickness for the walls of the plasmonic gold nanoantenna and planar electrode 

because of the specifics of the possible fabrication procedures [53]. For the same reason, the 

material of the cylindrical and planar electrodes is the same. In the fabrication of the cylindrical 

gold nanoantenna (nanoelectrode), a layer of insoluble resist is deposited on a silicon nitride 



 

167 
 

 

substrate. A thin layer of gold, whose shape is determined by the insoluble resist, is then 

deposited, covering the whole sample surface. As a result, the planar electrode is deposited at 

the same time as the nanotube, and because of it, they have a comparable thickness and the 

same material. The planar electrode also acts as a heat sink to decrease thermal effects resulting 

from electromagnetic heating of the plasmonic gold nanoantenna, generated due to resistive 

losses. 

In the near-field zone, the electric field radiates in all directions at the tip of the nanoelectrode. 

To analyze the nanostructure's resonant behavior, we carry out full-wave numerical 

simulations using the finite-element method (FEM) implemented in CST Studio Suite 

frequency-domain solver. We use periodic boundary conditions in the x- and y-directions and 

domain with the same periodicity P. The structure is illuminated with a plane wave propagating 

along the z-direction and with the electric field polarized in the x-direction (electric field along 

the x-axis) at normal incidence. The top edge of the nanoelectrode is curved (Fig. 6.3b) to avoid 

artificial hot spots from artifacts of numerical simulations. We use data from Refs. 55,56 to 

define complex permittivities of gold and silicon nitride, and the refractive index of water is 

nw = 1.33. 
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(a) (b) 

  

Figure 6.4. (a) Absorptance in the array of gold nanoelectrodes for different lattice periods P. 

The absorptance increase indicates spectral positions of modes excited in the nanostructure. 

The solid magenta lines indicate Rayleigh anomalies (1,0) and (1,1). The dashed white lines 

indicate periods P = 602 and 677 nm, analyzed in the figure that follows (see Fig. 6.5). See in 

Appendix for the simulation results in a broader range of periods and wavelengths. (b) The 

electric field enhancement E/E0 in the array of gold nanoelectrodes for different lattice periods 

P at a particular probe position (see Fig. 1b). The enhancement reaches the values of up to 50 times in 

resonances following Rayleigh anomalies. The internal radius is R = 60 nm, and the height is h = 1800 nm. 

Figure 6.4 illustrates the spectra maps of the absorptance and the electric field enhancement at 

a particular probe position indicated in Fig 6.3b, calculated for the plasmonic gold nanoantenna 

with a varying periodicity of the nanostructure P. Absorptance is defined as a ratio of optical 

power lost in the nanotube and planar electrode to the incident power. Absorptance in each 

nanostructure element is extracted from the simulation software package directly (settings 

"Specials" → "Calculate material power loss" → "Store per solid"). It does not require 

additional simulations as the software stores each solid's characteristics and material 

separately. While a significant portion of the absorbed incident power goes into heating rather 

than generating hot carriers [31], the latter is higher for higher absorptance. In our simulations, 
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the part of absorptance that is due to the silicon nitride substrate is negligible for the entire 

lattice period range under consideration. Some optical power is absorbed in the nanotube, and 

some in the planar electrode. The planar electrode absorptance is negligible for the lattice 

period larger than 677 nm (not presented here). On one side, with an increase of lattice period, 

a larger portion of the unit cell is occupied by the planar electrode, so its contribution to the 

absorptance increases proportionally with the increase of lattice period. However, on another 

side, the lattice with a period larger than 677 nm is sparse, and the nanotubes are positioned 

far away from each other. Absorptance in the planar electrode is defined mainly by the tails of 

the near field around the nanotubes. The sparse lattice result in weaker nanotube resonances, a 

smaller electric field around the nanotube and in the planar electrode, and therefore smaller 

absorptance in the planar electrode. Below those values, the absorptance due to the planar 

electrode is about 10 to 15% of the total. The absorptance in the nanostructure due to the 

nanotube is about 90%, leading to intense electric field enhancement and hence high generation 

of plasmonic hot electrons. 

Absorptance is an integral characteristic that determines the spectral position of field 

enhancement in the whole structure (Fig. 6.4a). Alternatively, one can analyze an enhancement 

of the field at the specific point of the nanostructure (Fig. 6.4b), and one can identify places 

with the higher field enhancement. Whenever electric field enhancement is presented in our 

work, it is detected by a probe positioned as shown in Fig. 6.3b. To calculate the enhancement 

E/E0 in the array, the electric field E at the probe position is normalized to the magnitude of 

the incident electric field in water E0. We compare Figs. 6.4a and 6.4b as scan maps to Figs. 

6.5a and 6.5b as linear profiles, and we see that peaks in both characteristics are in good 

agreement. It confirms that enhancement of the electric field at the probe position close to the 
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nanotube edge spectrally coincides with increases in absorptance for the whole structure. It 

also confirms that both absorptance and field enhancement can be used for identifying most 

efficient regimes for hot electron generation. 

(a) (b) 

  

(c) #1 (d) #2 (e) #3 (f) #4 (g) 

 

λ1 = 908 nm 

 

λ2 = 884 nm 

 

λ3 = 840 nm 

 

λ4 = 802 nm 

 

Figure 6.5. (a) Absorptance and (b) electric field enhancement E/E0 at a particular probe position (shown 

in Fig. 1b) in the array of gold nanoelectrodes for periods P = 602 and 677 nm. The dashed lines indicate 

Rayleigh anomalies (1,0): λRA = 800 nm for period P = 602 nm (blue dashed line) and λRA = 900 nm for 

period P = 677 nm (magenta dashed line). The spectra are shifted in the ordinate axis for clarity. Four 

resonances for P = 602 nm and three resonances for P = 677 nm are labeled for further discussion. (c)-
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(f) Field distributions averaged over the wave oscillation cycle at the resonances #1-4 for P = 602 nm. 

The maps are shown in the xz-coordinate cross-section (for y = 0). (g) Color scale that corresponds to all 

resonances in panels (c)-(f). The internal radius of the nanotube is R = 60 nm, and the height is h = 1800 

nm. 

Tracing absorptance peaks is the most reliable way to interpret the nanostructure spectrum and 

identify the mode spectral position. Being an integral characteristic of field enhancement in 

the nanostructure, the absorptance profiles are accurate indicators of nanostructure modes and 

their resonances. If nanostructure modes do not couple with each other (e.g., uncoupled dipole, 

quadrupole, etc., eigenmodes of a single nanoparticle), the absorptance profile is not subjected 

to interference effects, as opposed to reflection or transmission. 

The sharp resonances are observed due to diffraction at the Rayleigh anomaly, resulting 

from collective plasmonic resonances in the nanostructure. By tuning the periodicity of the 

nanostructure, we can excite lattice resonances at the wavelength close to the Rayleigh 

anomaly. Since the nanoantennas are immersed in water with the refractive index nw = 1.33, 

the resonance positions of absorptance and field enhancement occur at the wavelength close to 

λRA = nwP, where λRA is the Rayleigh anomaly wavelength. We denote this Rayleigh anomaly 

(1,0), and because the lattice is square in our case, the notations (1,0) and (0,1) can be used 

interchangeably. The next Rayleigh anomaly for the square lattice appears at λRA = nwP/√2, 

and we denote it as (1,1) Rayleigh anomaly. In the general case of rectangular lattice with 

periods Px and Py. and with normal light incidence, the spectral positions of Rayleigh 

anomalies can be found from the equation (
2𝜋

𝑃𝑥
𝑛𝑥)

2 + (
2𝜋

𝑃𝑦
𝑛𝑦)

2 = 𝑘𝑤
2 , where nx and ny are the 

integers 0, ±1, ±2,…, and kw is the propagation constant in the surrounding medium that 

corresponds to the Rayleigh anomaly (nx, ny), that is kw = 2𝜋/λRA. The case of an oblique 

incidence and different polarizations is discussed in [55]. 
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Figure 6.6. Normal electric field enhancement square (En/E0)2 averaged over the nanoelectrode 

surface in the array of gold nanoelectrodes for periods P = 602 and 677 nm. The dashed lines 

indicate Rayleigh anomalies (1,0): λRA = 800 nm for period P = 602 nm (blue dashed line) and 

λRA = 900 nm for period P = 677 nm (magenta dashed line). The spectra are shifted in the 

ordinate axis for clarity. The internal radius of the nanotube is R = 60 nm, and the height is h = 

1800 nm. 

Lattice resonances provide an additional degree of freedom and great flexibility in tuning the 

resonant response of the nanostructure. Because of the excitation of lattice resonances in the 

proximity to Rayleigh anomaly wavelength, one can adjust resonance wavelength by changing 

the period of the structure. One can see in Fig. 6.4a that resonances closely follow Rayleigh 

anomalies (1,0), (1,1), and higher-order (not presented here). In Fig. 6.5, we demonstrate the 

linear plots of the absorptance and field enhancement in the structure at two different lattice 

periods, P = 602 and 677 nm, and we study the effects on the nanostructure spectral response 

at these lattice periods. We observe that in the case of the smaller lattice period of 602 nm, 

there are slightly higher absorptance peaks compared to those for the lattice period of 677 nm. 

Also, we notice a slightly higher field enhancement for the lattice period of 602 nm than for 

the lattice period of 677 nm. Examples of spectra for two different periods, P = 602 and 677 

nm, are shown in Fig. 6.5a. We deliberately choose lattice periods that result in multiple 
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resonances, and we show the change in resonance position with the shift of Rayleigh 

anomalies, λRA = 800 and 900 nm for the periods P = 602 and 677 nm, respectively (Figs. 6.5a, 

b). 

Multiple resonances are excited because the nanotube supports modes of different orders due 

to its elongation. In the periodic array, these modes experience hybridization, which results in 

multiple lattice resonances. Figures 6.5c-f show the simulated electromagnetic field 

distribution around the plasmonic gold nanoantenna of lattice period P = 602 nm, where we 

observe an electric field enhancement in the proximity to Rayleigh anomaly λRA = 800 nm. 

Namely, there are four peaks with field profiles that correspond to the excitation of different 

modes. The results show strong electric field enhancement around the plasmonic nanoantenna 

along its walls and at the tip. Figures 6.5c-f depict the electric field distribution around the 

nanoantenna due to higher-order modes resulting from the coupling of these modes of 

plasmonic gold nanoantenna into diffractive orders of the lattice period. These resonances can 

be controlled by the lattice period and shifted altogether (see Fig. 6.4 and 6.5). 

Most of the lattice resonances, whether they are excited in the arrays of nanoparticles of simple 

shapes, such as a sphere, or nanoantennas with rather complex modes, possess similar features 

with respect to Rayleigh anomaly tuning. When the Rayleigh anomaly is close to the resonance 

of a single nanoscatterer (nanoparticle, nanorod, nanotube, etc.), the lattice resonance is 

relatively broad and spectrally positioned at a distance from the Rayleigh anomaly [51]. When 

the array period increases, the lattice resonance gets narrower and moves spectrally closer to 

the Rayleigh anomaly. Higher-order resonances approach the Rayleigh anomaly faster, while 

lower-order resonances often move parallel to the Rayleigh anomaly in a large spectral range. 

One can see in Figs. 6.4a,b and 6.5a,b that resonances #1 and #2 shift parallel to the Rayleigh 
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anomaly (i.e., remain at the same spectral distance for periods P = 602 and 677 nm), resonances 

#3 moves spectrally much closer to the Rayleigh anomaly for period P = 677 nm in comparison 

to its spectral position for period P = 602 nm, and resonance #4 disappears for periods P = 

677 nm. A similar trend can be seen for higher-order Rayleigh anomaly (1,1) in Fig. 6.4. 

Lattice resonances are narrow and appear as sharp features in the spectra. Besides them, one 

can see broader features, e.g., minima at wavelengths around 800, 950, and 1180 nm (vertical 

dark regions in Fig. 6.4) and maxima at the wavelengths around 880 and 1080 nm for any 

period. These features do not have a resonant nature and are not of the Lorentzian line shape 

(see, e.g., Fig. 6.5b, blue line for P = 602 nm for the wavelength range 960 - 1200 nm). Instead, 

these are interference patterns related to the reflection from the substrate and planar gold 

electrode of 30 nm thick. The interference brings an envelope function and modulates lattice 

resonance excitations. 

 

Figure 6.7. Lattice resonances for nanoelectrodes in a different environment. The uniform surrounding 

can be realized by means of the substrate and index-matching liquid in the upper half. We show examples 

for fused silica, acrylic, and BK 7 glass, using Cargille datasheets for the refractive indices [40]. The 

dashed lines indicate Rayleigh anomalies (1,0), and they are shifted because of the different material 
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indices. The period P = 677 nm and other geometrical parameters are the same as in Figs. 2 and 3. The 

spectra are shifted in the ordinate axis for clarity. The internal radius of the nanotube is R = 60 nm, and 

the height is h = 1800 nm. 

Surface and volume photoelectric effects are competing causes of hot electron generation 

[16,37]. As discussed above, the total loss of optical power in the nanoelectrode defines the 

efficiency of the volume mechanism. Similarly, the normal electric field enhancement square 

(En/E0)2 averaged over the nanoelectrode surface defines the efficiency of the surface 

mechanism [36,57-59]. Absorptance in the nanostructure is chosen in Figs. 6.4 and 6.5 to 

predict the efficiency of hot electron generation. As a counterpart, in Fig. 6.6, we calculate the 

wavelength dependence of (En/E0)2 averaged over the nanoelectrode surface in the structure at 

two different lattice periods, P = 602 and 677 nm. Normal electric field En is an E field 

component normal to the nanotube's surface at each coordinate point. We further average its 

normalized square by integrating this characteristic over the entire nanotube surface and 

dividing this integral by the total nanotube surface. The total nanotube surface includes the 

outer and inner walls of the tube. 

The normal electric field enhancement square (En/E0)2 averaged over the nanoelectrode 

surface (in Fig. 6.6) is about one order of magnitude smaller than the magnitude of E/E0 at the 

probe position (in Fig. 5b). The reason is that the probe position is chosen at the nanotube edge, 

where the field enhancement is very strong. It is common for near fields in a plasmonic 

nanostructure to be significantly enhanced at the curved surfaces of the nanostructure. In 

contrast, the normal electric field enhancement square (En/E0)2 is an average characteristic and 

accounts for the regions in nanotube with smaller field enhancement. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.8 Change in absorptance and averaged field enhancement under variations of the 

internal radius of nanotube R. (a) Absorptance; (b) Normal electric field enhancement square 

(En/E0)2 averaged over the nanoelectrode surface; (c) Same as (b) but multiplied by nanotube 

surface area for an accurate comparison of surface photoemission efficiency. The legend is the 

same for all three panels. The period P = 616 nm. The dashed lines indicate Rayleigh anomalies 

(1,0): λRA = 820 nm for period P = 616 nm. The nanotube height is h = 1800 nm. 

 

In Fig. 6.6, peaks #1 and #2 are very close to each other, and they are indistinguishable because 

of their broad linewidth. Nevertheless, results in Figs. 6.5 and 6.6 have the qualitative 

agreement, and we see that the peaks are spectrally positioned at the same wavelength. It 

confirms that the lattice resonances can increase the efficiency of hot-electron generation 
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regardless of whether the surface or volume mechanism dominates in the photoelectric effect. 

Excitation of lattice resonances results in a more prominent field enhancement in the 

nanostructure, which, in turn, produces more hot electrons.  

Lattice resonances are stronger in the case of a uniform environment or when substrate and 

superstrate have close or equal refractive indices [51]. For this situation, we choose three 

common examples of the substrate and corresponding index-matching liquid [60]: fused silica, 

acrylic, and BK 7 glass (Fig. 6.7). One can see from the simulation results that even a slight 

change in the refractive index (1.45, 1.48, and 1.51 for fused silica, acrylic, and BK 7 glass, 

respectively) of the surroundings results in a significant shift in the nanoelectrode resonance. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.9. Change in absorptance and averaged field enhancement under variations of 

nanotube height h. (a) Absorptance; (b) Normal electric field enhancement square (En/E0)2 

averaged over the nanoelectrode surface; (c) Same as (b) but multiplied by nanotube surface 

area for an accurate comparison of surface photoemission efficiency. The legend is the same 

for all three panels. The period P = 616 nm. The dashed lines indicate Rayleigh anomalies (1,0): 

λRA = 820 nm for period P = 616 nm. The internal radius of the nanotube is R = 60 nm. 

The enhancement of the near field produced by the lattice resonances of arrays of metallic 

nanoparticles has been investigated extensively in recent years. In particular, it has been shown 

that for infinite arrays, the enhancement can be made arbitrarily large by appropriately 

designing the geometrical characteristics of the array [62]. Here, we aim to show the general 

mechanism of enhancing hot electron generation with the lattice resonances. We refrain from 
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optimizing the nanostructure, as this routine task can be performed at a later stage of 

engineering a particular practical application. Figures 6.8 and 6.9 indicate that the nanotube 

height and radius variations can result in more optimal hot electron generation. Varying the 

internal radius of the nanotube, we also change the external radius so that their difference 

remains at 30 nm. In Fig. 6.8, we see that using a larger radius, e.g., R = 60 or 80 nm, results 

in a higher absorptance (panel (a)) and consequently more efficient volume photoemission. 

However, a smaller radius, e.g., R = 40 nm, results in a larger normal electric field enhancement 

square (En/E0)2 averaged over the nanoelectrode surface and multiplied by the nanotube surface 

area (panel (c)). We use this characteristic for an accurate comparison of surface photoemission 

efficiency in the case of nanotubes with different radii and correspondently different surface 

areas. In Fig. 6.9, we see that a larger nanotube length facilitates more intense surface 

photoemission. Further optimizations, potentially involving machine learning algorithms, can 

be performed to identify specific nanostructure parameters targeting applications with a 

particular wavelength, material composition, and so on. 

In conclusion, we have numerically studied the collective modes observed in the electric field 

enhancement and absorptance spectra in the plasmonic gold nanostructure. We have 

demonstrated that by selecting the array period comparable to the resonance wavelength, one 

can achieve high and narrow bandwidth absorptance and electric field resonances in the 

proximity of the Rayleigh anomaly in the nanostructure. We have shown intense electric field 

enhancement close to the Rayleigh anomaly wavelengths, consequently enhancing the 

generation of plasmonic hot electrons in the plasmonic gold nanoantenna (nanoelectrodes). We 

believe this novel approach for designing nanoelectrodes will be useful in researching and 

developing enhanced plasmonic hot-electron generation.  
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Figure 6.10 showcases the behavior of lattice modes across a wider range of wavelengths and 

periods.  

(a) 

 

(b) 

  

Figure. 6.10. Absorptance in the array of gold nanoelectrodes for different lattice periods P. Compared 

to Fig. 6.4, the range of wavelengths and periods is larger. The white rectangle shows the range of 

results in Fig. 6.4. (a) Absorptance map. (b) Electric field enhancement map. 
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Chapter 7 

Conclusions 

This dissertation explored the design of nanostructures using hybrid plasmonic-dielectric metasurfaces. 

By meticulously adjusting nanoantenna dimensions, we achieved the formation of multiple Fano 

resonances, bound states in the continuum (BICs), and strong couplings, culminating in the observation 

of Rabi splitting. 

These findings illuminate the power of manipulating Fano resonances to induce strong 

interactions and generate new eigenstates (Rabi splitting). This knowledge unlocks the 

potential for a new generation of tunable devices, high-Q-factor resonators, and advanced 

optical filters. 

Furthermore, the dissertation presents a novel nanostructure design with periodically arranged 

gold nanoelectrodes for efficient plasmonic hot electron generation. Numerical simulations 

revealed a critical link between array period, resonance wavelength, and generation efficiency. 

This approach offers valuable insights for future research on hot electron generation in aqueous 

environments. 
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Overall, this dissertation demonstrates the immense potential of hybrid plasmonic-dielectric 

metasurfaces and periodic nanostructures for manipulating light-matter interactions at the 

nanoscale. By highlighting their tunability, sensitivity, and selectivity, we have established a 

strong foundation for the development of advanced photonic devices and inspired future 

research in this exciting field. 

Chapter 8 

Future Work 

This dissertation primarily explored the potential of multilayer plasmonic-dielectric 

metasurfaces for manipulating light at the nanoscale. While these structures offer exciting 

possibilities, their real-world application faces limitations due to inherent challenges with 

plasmonic materials. These limitations include high intrinsic losses, difficulties in integration 

with other photonic components, and complex fabrication processes. To overcome these 

limitations and broaden the applicability of the studied structures, future work proposes a 

strategic shift towards all-dielectric metasurfaces. 

Proposed Material Composition Changes 

High-Index Dielectric Layers: The current design utilizes plasmonic layers, which, despite 

their light manipulation capabilities, suffer from high optical losses and thermal instability. 

These issues are particularly detrimental for applications requiring high efficiency and 

durability. Future work proposes replacing these layers with high-index dielectric materials 

like silicon, germanium, or titanium dioxide. These materials offer low optical losses and 

support both electric and magnetic resonances, potentially enhancing efficiency and 

operational bandwidth. 
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Porous Silica Integration: The current dielectric component will be replaced with porous 

silica. This choice is motivated by its lower refractive index and unique structural properties 

that can introduce additional light-scattering mechanisms for finer control over light 

propagation. Additionally, porous silica offers improved compatibility with biological 

environments, making it advantageous for biosensing applications. 

Advantages of All-Dielectric Metasurfaces 

Simplified Fabrication and Integration: All-dielectric metasurfaces are compatible with 

standard lithographic techniques used in semiconductor manufacturing, simplifying the 

fabrication process. This compatibility facilitates easier integration with existing photonic 

circuits and electronic components, crucial for developing integrated photonic systems. 

Enhanced Device Performance: By utilizing all-dielectric materials, the proposed 

metasurfaces aim to significantly reduce energy losses and increase the Q-factor of resonant 

elements. This improvement is vital for applications in laser technology, imaging systems, and 

advanced sensing where energy efficiency and signal clarity are paramount. 

Broadened Application Spectrum: The introduction of porous silica and high-index 

dielectrics opens new avenues in applications ranging from non-invasive medical diagnostics 

to robust environmental sensing. The unique properties of these materials, such as chemical 

inertness and mechanical stability, extend the functional environment where these 

metasurfaces can be employed. 

Research Objectives and Methodology 

Future investigations will focus on optimizing the design and arrangement of the all-dielectric 

elements to maximize their light-manipulating capabilities. This will involve: 
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Simulation and Modeling: Extensive numerical simulations will be conducted to study the 

light-matter interaction within the new metasurface configuration. Optimization algorithms 

will be employed to identify the most effective patterns and structures. 

Experimental Validation: Prototype devices will be fabricated and rigorously tested in 

controlled environments. These experiments will validate theoretical predictions and refine the 

models based on empirical data. 

In summary, by transitioning to all-dielectric metasurfaces and addressing the limitations of 

plasmonic materials, this proposed future work aims to significantly advance the field of 

nanophotonics. The proposed changes not only promise enhanced performance and broader 

applicability but also pave the way for the practical deployment of these advanced optical 

devices in real-world applications. 
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