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B.S., Mathematics, University of New Mexico, 2013
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Abstract

When modeling physical phenomena we want to solve the inverse problem by es-

timating the parameters that characterize the source model that we are interested

in. In this thesis, we focus on the optimal placement of a finite number of individ-

ual sensors, called dosimeters, in R2 and R3 with a time dependent Gaussian wave

source. Using a computational model along with experimental data, we design an

iterative process to determine the optimal placement of an additional sensor such

that the noise in the measurements has a minimal effect on the parameter estima-

tion. First, we estimate the parameters that characterize the source model using a

non-linear least squares optimization method. Then using the estimated parameters

along with statistical analysis, we can determine an optimal location to place an

additional sensor. Each time we iterate, we use new experimental data to determine

a more accurate parameter estimation and optimal sensor placement. Upon reaching

the maximum number of iterations, we can determine the optimal location to place

an additional sensor such that we can most accurately characterize the wave source.
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Chapter 1

Introduction

When modeling physical phenomena we often try to solve the inverse problem in

which there exists some system or function of interest that has a finite number of

unknown parameters, whose values characterizes the system. Through the observable

measurements of these physical quantites, we try to accurately estimate the actual

parameter values [5].

Often to collect experimental measurements we use individual sensors that record

data from the environment in which they are placed. A thermoluminescent dosimeter

is a specific type of sensor that measures the dosage of ionizing radiation deposited

on it from an electromagnetic wave. Interest lies in finding the optimal place to put

a dosimeter such that we can characterize how an electromagnetic wave generated

from a known source propagates in a spatial domain. Using the data recorded on

each sensor, we want to estimate the parameters of the source model.

It is generally too expensive or impracticable to place a sensor at every point in

a discretized physical field, and so placement locations have to be chosen carefully

[6]. One benefit of using sensors is the ability to optimally design the experiment.

When trying to estimate the parameters that describe the source model, the location

of each sensor has a direct effect on the accuracy of the model parameter estimation,
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Wave Source

Sensor

Ω

Figure 1.1: Propagating wave generated from a wave source in a bounded domain,

Ω, with N = 6 sensors.

and so it is crucial that the sensors be placed as best as possible. Through the

use of optimization methods and statistical analysis, optimal experimental design

strives to choose sensor placements in such a way that the results are reliable and

the parameter values can be be accurately estimated. In this thesis, we describe a

method to find the optimal placement of a dosimeter such that we can accurately

model a wave source.

We consider the scalar wave equation with a Gaussian wave source (1.1), in R2

that contains N sensors as seen in Figure 1.

∂u

∂t
= b∇ · ~v,

∂~v

∂t
= a∇u,

f(x, y, t) = γe
−(t−t0)

2

β2 e−(
(x−x0/2)

2

α2
+

(y−y0/2)
2

α2
).

Using measurements, ~c0, from an initial experiment, we estimate the parameters,

~θ = (α, γ), of the wave source. Supposing we want to run the experiment again, but
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this time with an additional sensor at ζ = (x, y), we use a computational model to

try to determine where to place the sensor such that we get more accurate estima-

tions for the parameters. This experimental design is an iterative process in which

we must estimate the parameters, determine the best location to place the sensor

within the domain, and then perform a new experiment using the estimations we

acquired.

We start in Chapter 2 with the derivation of a finite difference method to ap-

proximate the wave equation in a spatial domain. Additionally, the implementation

of Perfectly Matched Layers is introduced. For a computational model, we have to

truncate the domain and in doing so, reflections at the boundaries occur. Through

the use of Perfectly Matched Layers we can approximate the solution with minimal

reflection.

Chapter 3 develops the finite difference method of lines discretization to solve the

wave equation in the temporal domain. We discuss the forcing function that is used

as the wave source, and the optimization method used to estimate the parameters of

the forcing function. In the final chapter, we estimate the covariance matrix of the

parameters at each possible additional sensor location. We then define metrics on

the covariance matrix for the parameters, and an use a simplified gradient descent

algorithm to find where the minimum of each metric occurs. Finally, we describe the

iterative method for optimal experimental design such that the parameters estima-

tions are the most accurate.
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Chapter 2

The Wave Equation and Perfectly

Matched Layers

In this chapter, we derive a staggered grid finite difference method used to approxi-

mate partial derivatives in a spatial domain. It also discusses the method of Perfectly

Matched Layers to avoid reflection in a bounded domain. We need an accurate and

effieicent numerical method to better estimate the parameters of the model and de-

sign an improved experiment.

2.1 The 1D Wave Equation

We consider the scalar wave equation, (2.1), in R2 or R3 with u(~x, t) being the wave

amplitude and for some medium parameters a(~x) and b(~x).

b∇ · (a∇u) =
∂2u

∂t2
. (2.1)

In order to solve this on a finite grid, it is helpful to split the second order partial

differential equation (PDE) into a system of first order PDEs. To do so, we introduce

an auxiliary field, ~v(~x, t), and let ũ = ut and ~v(~x, t) = a∇u. Differentiating both
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with respect to t, the wave equation can be written as the following system of first

order equations, each of which satisfy the scalar wave equation.

∂u

∂t
= b∇ · ~v,

∂~v

∂t
= a∇u. (2.2)

To see that ũ satisfies the wave equation, we simply differentiate in time to find,

ũ = ut,

ũt = utt = b∇ · (a∇u) = b∇ · ~v,

ũtt = b(∇ · ~v)t = b∇ · (a∇ũ).

The same can be shown for each component of ~v = a∇u. Splitting the wave equation

in this manner is also useful for implementing Perfectly Matched Layers, as will be

discussed in detail later on.

In order to solve the system of PDE’s (2.2) numerically, each partial derivative

is approximated using a finite difference method. Focusing first on solving the one

dimensional wave equation on a collocated grid of size N with Dirichlet boundary

conditions, Taylor series expansion is used to derive a central difference to approxi-

mate each of the partial derivatives. For i = 1, · · · , N with grid points xi = i∆x we

define the grid functions ui = u(xi), vi = v(xi). For the domain, 0 ≤ x ≤ N with

boundary conditions u0 = 0 and uN = 0 we have have the following central difference

approximation for the one dimensional wave equation,

∂ui
∂t

=
dv

dx
=
b(vi+1 − vi−1)

2∆x
+O(∆x2),

∂vi
∂t

=
du

dx
=
b(ui+1 − ui−1)

2∆x
+O(∆x2).

(2.3)

The only boundary conditions necessary for the scalar wave equation are on u; how-

ever, because a collocated grid is being implemented, considerations have to be taken
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to compute ∂v
∂t

at the boundary as well. Computing ∂vN
∂t

using the centered difference

method gives the following,

∂vN
∂t

=
∂uN
∂x

=
uN+1 − uN−1

2∆x
+O(∆x2).

Because the grid only has N grid points, uN+1 does not exist. The same follows for

computing ∂v0
∂t

. To deal with this, right and left sided finite differences can be used

to approximate ∂v
∂t

at i = 0 and i = N .

∂v0
∂t

=
−3ui + 4ui+1 − ui+2

2∆x
+O(∆x2),

∂vN
∂t

=
3ui − 4ui+1 + ui−2

2∆x
+O(∆x2).

Alternatively, we can use the PDE and the boundary condition to find that uxx = 0

is a compatibility condition from which we may derive an expression for uN+1 as

follows,

uN+1 − 2uN + uN−1
∆x2

= 0

=⇒ uN+1 = 2uN − uN−1.

To avoid these additional computations, a staggered grid can be used. Again,

Taylor series expansion is used to derive the centered difference for the partial deriva-

tives, but now, instead of taking ∆x steps, we take ∆x/2 steps. This allows u and

v to lie on different grid points within the domain. Equations (2.4) are the finite

differences on a staggered grid for the one dimensional wave equation.

∂ui
∂t

=
b(vi+1/2 − vi−1/2)

∆x
+O

(
(∆x/2)2

)
, for i = 1, · · · , N − 1 and xi = i∆x

(2.4a)

∂vi
∂t

=
a(ui+1/2 − ui−1/2)

∆x
+O

(
(∆x/2)2

)
, for i = 1/2, · · · , N − 1/2 and

(2.4b)

xi = i∆x.
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u0

v0
u1

v1
u2

v2
· · · uN

vN

u0

v1/2

u1

v3/2

· · ·
vN−1/2

uN

.

Figure 2.1: Top: Collocated grid with grid points x = i∆x. Bottom: Staggered grid

with grid points x = i∆x

As you can see in Figure 2.1, all u lie on integer grid points and all v lie on half

grid points in the staggered grid. This eliminates the additional computation for ∂v
∂t

at i = 0 and i = N . Additionally, while both the collocated and staggered grids

compute the derivatives to second order accuracy, on a staggered grid the error term

is O ((∆x/2)2), which is one quarter that of a collocated grid.

2.2 The 2D and 3D Wave Equation

Solving the wave equation on a discretized grid in higher dimensions becomes slightly

more complicated than the one dimensional problem. Deriving the finite difference

scheme that we will use for two dimensions will be done in detail. Once there is a

thorough understanding of how the method works in 2D, moving to 3D is intuitive.

For the domain 0 ≤ x ≤ N , 0 ≤ y ≤ N and the boundary conditions u(0, 0, t) = 0,

u(0, y, t) = 0, u(x,N, t) = 0 and u(N, y, t) = 0, we have the following two dimensional

wave equation,

∂u

∂t
= b

(
∂vx
∂x

+
∂vy
∂y

)
, (2.5a)

∂vx
∂t

= a
∂u

∂x
, (2.5b)

∂vy
∂t

= a
∂u

∂y
. (2.5c)
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u(xi, yj)

u(xi, yj+1) u(xi+1, yj+1)

u(xi+1, yj)

vy(xi+ 1
2
, yj) vy(xi, yj+ 1

2
)

vx(xi+ 1
2
, yj)

vx(xi+ 1
2
, yj+1)

Figure 2.2: Two dimensional finite difference grid for i, j = 0, 1 · · · , N − 1.

As in the 1D problem, we will be working on a staggered grid, but now we must

discretize in x and y. We want u and ~v = [vx, vy]
T on the same plane to keep the

number of operations minimal. To do so, we must create a grid for u, a grid for vx,

and a grid for vy. Again, we want u to lie on integer points and ~v to lie on half points,

but we have to be a little more careful because ~v now has an vx and vy component

in the x and y, respectively. We will denoted the ~v grid with x on half points and y

on whole points as vx, and the ~v grid with x on whole points and y on half points as

vy as in Figure 2.2. We will denote x grid points with i and y grid points with j for

i, j = 0, 1, · · · , N − 1. Using the Taylor Series expansions for u and ~v, we will derive

a centered finite difference approximation for each derivative. Starting with (2.5b)

we expand u in a Taylor series around xi± 1
2

with grid points xi = i∆x and yj = j∆y.

For simplicity, we let a = 1,

u

(
xi+ 1

2
+

∆x

2
, yj

)
= u(xi+ 1

2
, yj) + u′

∆x

2
+
u′′(∆x/2)2

2!
+
u′′′(∆x/2)3

3!
+ · · · ,

u

(
xi+ 1

2
− ∆x

2
, yj

)
= u(xi+ 1

2
, yj)− u′

∆x

2
+
u′′(∆/2x)2

2!
− u′′′(∆x/2)3

3!
+ · · · .
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Subtracting the two expressions and solving for the first derivative we get the desired

approximation

∂u

∂x
(xi+ 1

2
, yj) =

u(xi+ 1
2

+ ∆x/2, yj)− u(xi+ 1
2
−∆x/2, yj)

∆x
+O

(
(∆x/2)2

)
.

This can be written as,

∂vx
∂t

=
∂u

∂x
(xi+ 1

2
, yj) =

ui+1,j − ui,j
∆x

+O
(
(∆x/2)2

)
.

(2.6)

Following the same process for (2.5c), this time taking steps in y on the grid points

x = i∆x, y = j∆y, we have the following finite difference approximation

∂vy
∂t

=
∂u

∂y
(xi, yj+ 1

2
) =

ui,j+1 − ui,j
∆y

+
(
O(∆y/2)2

)
.

(2.7)

We are left with finding the finite difference scheme for ∂u
∂t

= b∂vx
∂x

+ b∂vy
∂y

. To

do this, we need the finite difference for each derivative on the right hand side.

This is done in the same manner as the previous derivatives; however, because there

are boundary conditions set on ∂u/∂t, the first value we need to compute is at

(xi+1, yj+1). The finite difference for each derivative, respectively, is,

∂vx
∂x

(xi+1, yj+1) =
vi+ 3

2
,j+1 − vi+ 1

2
,j+1

∆x
+O

(
(∆x/2)2

)
,

∂vy
∂y

(xi+1, yj+1) =
vi+1,j+ 3

2
− vi+1,j+ 1

2

∆y
+O

(
(∆y/2)2

)
.

Using Figure 2.2 as a guide, we see that for each derivative we take a half step

forward and a half step backward in the direction of the derivative. We now have

a finite difference approximation method, with second order accuracy for the two

dimensional wave equation.

As mentioned before, solving the 3D wave equation on a discrtized grid is intuitive

once the 2D dimensional grid is well understood. In three dimensions ~v = [vx, vy, vz]
T
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u(xi, yj , zk) u(xi+1, yj , zk)vx

u(xi, yj+1, zk)

u(xi, yj+1, zk+1)

vy

u(xi+1, yj+1, zk)

u(xi+1, yj+1, zk+1)

vz vz

vx

vx

vx

u(xi, yj+1, zk+1)

vz vz

vy vy

vy

u(xi+1, yj+1, zk)

Figure 2.3: 3D Finite Difference grid with i, j, k = 0, 1, · · · , N − 1.

and so we we need to introduce a vz grid in addition to vx and vy. The vz grid has

x and y on integer points and z on half points. Note, in the vx and vy grids, a

z component, which lies on integer points, must be added, see Figure 2.2. We

will denote the z coordinate with k. Using the same methodology as in one and

two dimensions, we derive the following finite difference approximations for i, j, k =

0, · · · , N − 1.

∂vx
∂t

(xi+ 1
2
, yj, zk) =

∂ui+ 1
2
,j,k

∂x
=
ui+1,j,k − ui,j,k

∆x
+O(∆x/2)2,

∂vy
∂t

(xi, yj+ 1
2
, zk) =

∂ui,j+ 1
2
,k

∂y
=
ui,j+1,k − ui,j,k

∆y
+O(∆y/2)2,

∂vz
∂t

(xi, yj, zk+ 1
2
) =

∂ui,j,k+ 1
2

∂z
=
ui,j,k+1 − ui,j,k

∆z
+O(∆z/2)2,

∂vx
∂x

(xi+1, yj+1, zk+1) =
vi+ 3

2
,j+1,k+1 − vi+ 1

2
,j+1,k+1

∆x
+O(∆x/2)2, (2.8)

∂vy
∂y

(xi+1, yi+1, zk+1) =
vi+1,j+ 3

2
,k+1 − vi+1,j+ 1

2
,k+1

∆y
+O(∆y/2)2,

∂vz
∂z

(xi+1, yj+1, zk+1) =
vi+1,j+1,k+ 3

2
− vi+1,j+1,k+ 1

2

∆z
+O(∆z/2)2,

Where
∂u

∂t
=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

.



Chapter 2. The Wave Equation and Perfectly Matched Layers 11

2.3 Perfectly Matched Layers

When solving PDE’s numerically, an infinite domain must be abridged. In doing so,

reflection at the boundaries is introduced. For the wave equation, this is of particular

importance; unlike some other problems where solutions decay quickly or are peri-

odic, the oscillating nature of waves along with slow decay with increasing distance,

means that using Dirichlet or Neumann boundary conditions will cause inadmissi-

ble reflections [4]. A Perfectly Matched Layer (PML) is one way to deal with this

for homogeneous medium. The idea behind PML is to create an absorbing layer,

sufficiently far from the region of interest, that turns propagating waves into expo-

nentially decaying waves and thus, eliminates reflection at the boundaries. This is

done by analytic continuation into complex coordinates, followed by a transformation

back to real coordinates, and then truncation of the domain.

2.3.1 Perfectly Matched Layers in 1D

Consider the plane wave in 1D,

~w(x, t) =
∑
k,ω

We(ikx−ωt) , ω/k phase velocity, (2.9)

which can be decomposed into expressions of the form

Wei(kx−ωt), (2.10)

for some amplitude W. Equation (2.10) is analytic which allows us to consider it as a

function of a complex variable, ϕ. Instead of evaluating the function on a strictly real

domain, a strictly increasing imaginary component is added adjacent to the region of

interest. This changes the coordinates from real to complex as shown in Figure 2.4.

Let ϕ = x+ if(x), f(x) real, be the new complex coordinates. Then the solution in

(2.10) becomes,

Wei(kϕ−ωt) = Wei(k(x+if(x))−iωt) = We−kf(x)ei(kx−ωt).
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For f(x) increasing with x, we now have exponential decay (note that k is assumed

greater than zero since we chose x in the positive direction). Thus, within the

region of interest the solution has not changed, while outside the region there is now

exponential decay, see Figure 2.5. For the negative x direction, ϕ = −x− if(x), k is

assumed less than zero, and again the result is exponential decay outside the region

of interest as seen in (2.11).

Wei(k(−x−if(x))−ωt) = We−ikx+kf(x)−iωt = Weikx−iωt−kf(x) = We−kf(x)ei(kx−ωt) (2.11)

Using ϕ = x + if(x) as the new coordinate, we can rewrite the system of equations

as,

∂u

∂t
= b

∂v

∂ϕ
(2.12a)

∂v

∂t
= a

∂u

∂ϕ
(2.12b)

We would like to work in the real domain and so we make a coordinate trans-

formation back to real coordinates. If ϕ = x+ if(x) is the complex coordinate, then

∂ϕ
∂x

= 1 + i∂f
∂x

, and with some simple rearranging we have,

dϕ =

(
1 + i

∂f

∂x

)
dx. (2.13)

We will denote ∂f(x)
∂x

by σx
ω

, for σx > 0. The solution in Eq(2.11) becomes

We−k
σx
ω ei(kx−ωt).

Re(x)

Im(x)

Re(x)

Im(x) if(x)

Figure 2.4: Left : x evaluated strictly on the real axis after analytic continuation in

to complex plane. Right : x evaluated along the real axis in the complex plane until

a certain point, then x is evaluated on deformed contour with imaginary component,

this is the absorbing region.
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Region of Interest
P
erfectly

M
a
tch

ed
L
ayer

Computational Boundary

Figure 2.5: Representation of Perfectly Matched Layers implemented in a finite

domain. The perfectly matched layer is placed adjacent to the boundary and as the

wave ~u propagates from the region of interest, the perfectly matched layer absorbs

it with out reflection. The solution in the region of interest remains unchanged.

By introducing ω, we have k/ω in the solution which is the inverse of the phase

velocity. In homogeneous medium, this term is constant, meaning it is independent

of frequency so all wavelengths will decay at the same rate [4]. Equation (2.13) can

now be written as

dϕ =
(

1 + i
σx
ω

)
. (2.14)

After the analytic continuation to complex coordinates, anywhere dϕ is in (2.12),

we replace it by the right hand side of (2.14). The PML transformation for one

dimension can be summarized by (2.15) [4].

∂

∂x
→ 1

1 + iσx
ω

∂

∂x
. (2.15)

The transformation (2.15) is frequency dependent, hence to be in the time do-

main, the 1/ω term from the transformation (2.15) must cancel. From the solution

to the wave equation (2.10), and the system of PDE’s, (2.2), we have the following
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system in 1D:

∂u

∂t
= b

∂v

∂x
= −iωeikx−iωt = −iωu, (2.16a)

∂v

∂t
= a

∂u

∂x
= −iωv. (2.16b)

Applying the PML transformation (2.15) to (2.16a) and multiplying both sides by

1 + iσx
ω

we get the following,

(
b

1 + iσx
ω

)
∂v

∂x
= −iωu,

=⇒ b
∂v

∂x
= −iωu+ σxu,

=⇒ −iωu = b
∂v

∂x
− σxu,

=⇒ ∂u

∂t
= b

∂v

∂x
− σxu.

Following the same steps for (2.16b), we get a similar equation

a
∂u

∂x
= −iωv + σxv.

We succeeded in canceling the undesired term, and our equations can now be written

without any frequency, putting us in the time domain. Our new system of equations,

for the one dimensional wave with PML implemented, forσx ≥ 0, is,

∂u

∂t
= b

∂v

∂x
− σxu, (2.17)

∂v

∂t
= b

∂u

∂x
− σxv.

. Perhaps now it is easier to see that when σx = 0, the equations are the same and

so the solution must also be the same. Therefore, we can solve the wave equation in

the area of interest without changing the solution while adding an absorbing layer

that eliminates reflection at the boundaries.

Finally, we can truncate the domain at some large x. Once the wave enters the

PML, it decays exponentially and only very small values reach the boundary. There,
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despite some reflection, they dissipate on their way back and the effect on the solu-

tion is minimal [4].

2.3.2 Perfectly Matched Layers in 2D and 3D

For one dimension, the frequency term cancels in the transformation and the equa-

tions can be easily converted back to the time domain; for higher dimensions we

must introduce auxiliary fields to eliminate the frequency terms. This section will

go through the 2D implementation of PML in detail and then briefly discuss the

3D implementation as the derivation for both dimensions are done with the same

methods.

The transformation (2.15) remains the same for higher dimensions; however, now

we need to apply the two transformations (2.18) with σx and σy corresponding to

each respective axis.

∂

∂x
→ 1

1 + iσx
ω

∂

∂x
,

∂

∂y
→ 1

1 + iσy
ω

∂

∂y
. (2.18)

Recall the 2D wave equation,

∂u

∂t
= b

∂vx
∂x

+ b
∂vy
∂y

, (2.19a)

∂vx
∂t

= a
∂u

∂x
, (2.19b)

∂vy
∂t

= a
∂u

∂y
, (2.19c)

u(x, 0, t) = 0, u(x,N, t) = 0, u(0, y, t) = 0, u(N, y, t) = 0.
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Applying the PML transformations (2.18) to (2.19) yields the following,

∂vx
∂x

(
1

1 + iσx
ω

)
+
∂vy
∂y

(
1

1 + iσy
ω

)
= −iωu, (2.20a)

∂u

∂x

(
1

i+ iσx
ω

)
= −iωvx, (2.20b)

∂u

∂y

(
1

1 + iσy
ω

)
= −iωvy. (2.20c)

(2.20d)

Equations(2.20b) and (2.20c) should look familiar as they are the same as we saw in

one dimension for ∂vx/∂t = ∂u/∂x. Multiplying through and solving for iωv as we

did in one dimensions, we get the following equations with PML in x and y on the

respective ~v grids,

∂vx
∂t

=
∂u

∂x
− σxvx, (2.21)

∂vy
∂t

=
∂u

∂y
− σyvy. (2.22)

Next, we multiply (2.20a) by both 1 + iσx
ω

and 1 + iσy
ω(

1 + i
σy
ω

) ∂vx
∂x

+
(

1 + i
σx
ω

) ∂vy
∂y

= −iωu
(

1 + i
σy
ω

)(
1 + i

σx
ω

)
. (2.23)

Upon expanding each term in (2.23), we find that the frequency terms ω do not

cancel as easily as they did in one dimension. Starting with the left hand side of

(2.23), we have the following,

∂vx
∂x

+
∂vy
∂y

+ i
σx
ω

∂vx
∂x

+ i
σy
ω

∂vy
∂y

. (2.24)

We introduce an auxiliary field ψ(x, y, t) for each term with a remaining ω

ψyx = i
σy
ω

∂vx
∂x

, ψxy = i
σx
ω

∂vy
∂y

. (2.25)

Let’s consider one of these terms, ψxy = iσx
ω

∂vy
∂y

. This is equivalent to −iωψxy =

σx
∂vy
∂y

. Using the Fourier Transform for some function x(t), we have the following

equivalence,

x(t) =
1

2π

∫ ∞
−∞

x̂(ω)eiωtdω,
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where x̂ is the Fourier Transform of x(t). Taking the derivative of x(t) in this form,

we introduce an iω term.

dx(t)

dt
=

d

dt

(
1

2π

∫ ∞
−∞

x̂(ω)eiωtdω

)
,

=
1

2π

∫ ∞
−∞

iωx̂(ω)eiωdω,

= iωx(t).

Therefore, −iωψxy = σx
∂vy
∂y

gives us the new partial differential equation

∂ψxy
∂t

= σx
∂vy
∂y

. (2.26)

Thus, we have introduced the two new PDE’s, (2.28), in to the 2D system (2.19).

∂ψxy
∂t

= σx
∂vy
∂y

, (2.27)

∂ψyx
∂t

= σy
∂vx
∂x

. (2.28)

Now consider the right hand side of (2.20a),

−iωu+ σxu+ σyu+ i
σxσy
ω

u. (2.29)

Again, we introduce an auxiliary field δ(x, y, t) = iσxσy
ω
u to deal with the remaining

ω term. Using the same process as we did with ψ we introduce the last PDE in to

the 2D system.

−iωδ = σxσyu =⇒ ∂δ

∂t
= σxσyu. (2.30)

The frequency terms have been successfully eliminated and we are in the time domain.

We now have the system for the 2D wave equation with perfectly matched layers in
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x and y for a bounded domain.

∂u

∂t
= b

∂vx
∂x

+ b
∂vy
∂y

+ ψyx + ψxy − σxu− σyu− δ, (2.31a)

∂vx
∂t

= a
∂u

∂x
− σxvx, (2.31b)

∂vy
∂t

= a
∂u

∂y
− σyvy, (2.31c)

∂ψxy
∂t

= σx
∂vy
∂y

, (2.31d)

∂ψyx
∂t

= σy
∂vx
∂x

, (2.31e)

∂δ

∂t
= σxσyu. (2.31f)

Notice, (2.31d) and (2.31e) are only nonzero when σx and σy are non-zero, respec-

tively. Also, (2.31f) is only nonzero when both σx and σy are nonzero, occurring in

the corners of a two dimensional grid. Additionally, when σx and σy are both zero,

we have the original two dimensional wave equation as seen in Figure 2.6.

σx = 0, σy = 0

σx, σy 6= 0

σx 6= 0, σy = 0σx 6= 0, σy = 0

σx = 0, σy 6= 0

σx = 0, σy 6= 0

Figure 2.6: Perfectly Matched Layer in 2D with σ representation
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Next, recall the system of equations for the 3D wave equation,

∂u

∂t
= b

∂vx
∂x

+ b
∂vy
∂y

+ b
∂vz
∂x

, (2.32a)

∂vx
∂t

= a
∂u

∂x
, (2.32b)

∂vy
∂t

= a
∂u

∂y
, (2.32c)

∂vz
∂t

= a
∂u

∂z
. (2.32d)

As we did in two dimensions, we apply the PML transformations for σx, σy and σz.

Applying the transformation to (2.32b), (2.32c) and (2.32d) yeilds three new PDE’s

in the same format as in one and two dimensions.

∂vx
∂t

=
∂u

∂x
− σxvx,

∂vy
∂t

=
∂u

∂y
− σyvy, (2.33)

∂vz
∂t

=
∂u

∂y
− σzvz.

Applying the PML transformations to (2.32a), we again need to introduce auxiliary

fields to eliminate any unwanted frequency terms. We apply the transformation as

usual,

∂vx
∂x

(
1

1 + iσx
ω

)
+
∂vy
∂y

(
1

1 + iσy
ω

)
+
∂vz
∂z

(
1

1 + iσz
ω

)
= −iωu. (2.34)

Starting again with the left hand side and multiplying through by each 1 + iσ
ω

term,

we now have six terms with a remaining ω and three terms with a remaining ω2.

Again we use the auxiliary field ψ(x, y, z, t) for the six terms with ω, and introduce

the auxiliary field φ(x, y, z, t) for the terms with ω2.

ψzx = i
σz
ω

∂vx
∂x

, ψxy = i
σx
ω

∂vy
∂y

, ψzy = i
σz
ω

∂vy
∂y
· · ·

φyzx = −σyσz
ω2

∂vx
∂x

, φxzy = −σxσz
ω2

∂vy
∂y

, φyxz = −σyσx
ω2

∂vz
∂z

.
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Each φ can be factored such that it contains ψ. For example, lets consider φyzx. We

can factor it as follows,

φyzx = −σyσz
ω2

∂vx
∂x

= i
σy
ω

(
i
σz
ω

∂vx
∂x

)
= i

σy
ω

(ψzx)

We can then define a new PDE for each φ,

∂φyzx
∂t

= σyψzx,

∂φxzy
∂t

= σzψxy,

∂φyxz
∂t

= σxψyz.

(2.35)

Next, we expand the right hand side of (2.23).

− iωu
(

1 + i
σy
ω

)(
1 + i

σz
ω

)(
1 + i

σx
ω

)
=

− iωu + σzu + σxu + σyu + i
σxσzu

ω
+ i

σyσzu

ω
− σxσyσzu

ω2
.

We again need to introduce an auxiliary field, ρ(x, y, z, t) for the two terms including

ω, and the final auxiliary field, δ(x, y, z, t) = σxσyσzu

ω2 . As we did in the left hand side,

we can write δ in terms of ρ,

ρxz = i
σxσzu

ω
,

δ =
σxσyσzu

ω2
,

⇒ δ = iρxz
σy
ω
,

with the respective derivatives,

∂ρxz
∂t

= σxσzu,
∂ρyz
∂t

= σyσzu,

∂δ

∂t
= σyρ.
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∂u/∂t can now be written with PML as follows,

∂u

∂t
=
∂vx
∂x

+
∂vy
∂y
−σxu−σyu−σzu+

∂vz
∂z

+ψxz+· · ·+ψxz+φyzx+φxzy+φyxz−ρxz−ρxy−δ.

Of course, there are constraints when implementing PML numerically. Solving

PDE’s on a discretized grid using the finite difference method only approximates the

solutions instead of solving them exactly. The PML still attenuates the waves that

enter, but because the solutions are not exact there is some reflection at the PML

boundary. Despite this, if the grid is discretized appropriately for the particular

PDE, these reflections will be small. Additionally, using a quadratic or cubic PML

can reduce the reflection at the PML boundary for a small perfectly matched layer;

less than or equal to half a wave length [4].
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Chapter 3

Parameter Estimation

This chapter uses the methods discussed in Chapter 1 to develop a finite-difference

method of lines discretization in which time stepping is done by a Runge-Kutta

method. This is followed by a discussion on optimization methods for parameter

estimation.

3.1 Time Domain Simulation

Code to simulate the wave equation is written for one, two and three dimensions;

however, the discussion will be done for the two dimensional wave equation with PML

(3.1) as the methods easily translate to three dimensions, and the computations are
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significantly faster.

∂u

∂t
= b

(
∂vx
∂x

+
∂vy
∂y

)
+ ψ1 + ψ2 − σxu− σyu− ρ,

∂vx
∂t

= a
∂u

∂x
− σxu,

∂vy
∂t

= a
∂u

∂y
− σyu, (3.1)

∂ψ1

∂t
= σy

∂vx
∂x

,

∂ψ2

∂t
= σx

∂vy
∂y

,

∂ρ

∂t
= σxσyu.

0 ≤ x ≤ `x, 0 ≤ y ≤ `y.

u(x, 0, t) = 0, u(x, `y, t) = 0, u(0, y, t) = 0, u(`x, y, t) = 0.

The initial condition for u is arbitrarily chosen as

exp

−
√

(x− `x
2

)2 + (y − `y
2

)2

4

 , (3.2)

where `x and `y are the lengths of the domain in the directions x and y respectively.

Initial conditions are also needed on ~v, as well as all additional PDE’s that are added

to the system of equations from the PML; these initial conditions are set to zero.

We use the following equations for the PML in x and y,

σx =

x− 95 if x ≥ 95

−(x− 5) if x ≤ 5
σy =

y − 95 if y ≥ 95

−(y − 95) if y ≤ 5
(3.3)

Using the staggered grid finite difference scheme discussed in Chapter 1, ∂u
∂x

, ∂u
∂y

,

∂vx
∂x

and ∂vy
∂y

are approximated. To verify that the finite differences are approximating

the derivative up to second order accuracy, each are written as their own function in

MATLAB, and then checked using a function that we can differentiate exactly. For

example, suppose we wanted to check the computation for ∂u/∂x. Letting u = 2x,
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we verify that the code is giving the correct approximation.

Discretization in space makes each derivative on the right hand side of (3.1)

an ordinary differential equation (ODE) which we evolve in time using the classic

Runge-Kutta method (3.4). Using dt = 0.1, Figure 3.1 shows the solution to the

wave equation with the prescribed boundary and initial conditions, at three points

in time during the simulation.

tn = t0

k1 = f(tn, yn)

k2 = f

(
tn +

∆t

2
, yn +

∆t

2
k1

)
k3 = f

(
tn +

∆t

2
, yn +

∆t

2
k2

)
(3.4)

k4 = hf(tn + ∆t, yn + ∆tk3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + ∆t

for n = 1, · · · , N

Finally, we focus on increasing the speed of the computations. The easiest way to

do this is to eliminate the number of operations that need to be done. We choose to

modify the grid by increasing ∆x and ∆y sufficiently, such that the simulation is still

numerically stable. Additionally, the Runge-Kutta algorithm is changed from fourth

order to second order, effectively eliminating half the operations needed to solve the

differential equations. Although the fourth order Runge-Kutta is more accurate than

the second order, at this point we are more concerned with proper implementation

than we are with efficiency. Although we did not choose to do so, one can store the

additional PDE’s derived in the implementation of the PML only where they are not

zero; σx, σy and σz 6= 0.

Remark: The second order Runge-Kutta method is not stable for hyperbolic equa-

tions such as the wave equation. Despite this, for the time duration in which the
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simulations for this thesis took place, the solution is stable. Instability only occurred

after a time period that was much longer than what we consider here. In future

work, the classical Runge-Kutta method should be used.

Figure 3.1: Simulation of the wave equation in two dimensions using Finite-Difference

Time-Domain with Perfectly Matched Layers on a 100x100 grid with ∆x and ∆y set

to 1/2. Although some reflection is observed in the third frame, it is small compared

to the amplitude of the wave, and the effect on the solution is minimal.

3.2 The Forcing Function

f(x, y, t) = γe
−(t−t0)

2

β2 e−(
(x−x0/2)

2

α2
+

(y−y0/2)
2

α2
). (3.5)

We turn the homogeneous wave equation into a non-homogeneous one by adding a
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forcing function f(~x, ~y, t) at some time t0. Using the time-dependent Gaussian (3.5)

as the forcing function f with parameters ~θ = (α, γ) we write the wave equation

(2.2) as,

∂2u

∂t2
= b∇ · (a∇u) + f. (3.6)

Because we split the wave equation in order to approximate it with finite differences,

we need to carefully construct the new system with the forcing function. For some

function g, we start with the following system,

∂u

∂t
= b∇ · ~v + g, (3.7a)

∂~v

∂t
= a∇u, (3.7b)

and derive the new system,

∂u

∂t
= b∇ · ~v + g,

∂~v

∂t
= a∇u,

∂g

∂t
= f(~x, ~y, t),

Recall that it was shown in Chapter 1, that (3.7a) and (3.7b) satisfy the wave equa-

tion. This must still hold true; however, now it should satisfy the inhomogenous

wave equation (3.6). We take the derivative of (3.7a) with respect to t.

∂2u

∂t2
= b∇ · ∂~v

∂t
+
∂g

∂t
, (3.9a)

= b∇ · (a∇u) +
∂g

∂t
. (3.9b)

Equation (3.9b) needs to satisfy (3.6), thus ∂g
∂t

must be f , and so we have added a

new PDE, (3.10) to the wave equation.

∂g

∂t
= f. (3.10)

Once the initial conditions are changed to zero and the forcing function has been in-

cluded, we want to estimate the parameters of f using measurements of the solution.
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3.3 Cost Function and Optimization

In a real experiment, measurements are taken at a finite number of sensor locations

within a given area. In our case we must generate these measurements from sim-

ulating the wave equation with chosen parameters, ~θ , in the forcing function. We

will denote the vector of synthetic experimental measurements with ~c0. In order to

accurately model the result of the experiment, we need to estimate the parameters

of the forcing function as best as possible.

The time dependent Gaussian function (3.5) with β = 2 and (x0, y0) = (50, 50) is

used as the forcing function f . Although we are only considering the width and am-

plitude, often the center, (x0, y0), of the forcing function can be a beneficial element

to add to the parameters of interest. Simulating the wave equation with parameters

~θ = (2, 4)T , Figure 3.2 shows the solution at (x, y) = (50, 50). In order to create

synthetic measurements ~c0, we need to quantify the amount of energy deposited on

the sensor in terms of the wave magnitude. We know from basic dimensional anal-

ysis, that (intensity)(time) = (power
area

)(time) = ( energy
time

)( time
area

) = energy
area

, in which the

area of the sensor is fixed. We also know that the wave intensity is proportional to

the wave magnitude squared, u2(x, y, t) [1]. Therefore the total energy delivered to

the sensor at any given location is proportional to the integral over time of the wave

intensity.

e(x, y) =

∫ T

0

u2(x, y, t)dt. (3.11)

Hence, to generate the synthetic data, the integral of the solution squared, with some

parameters ~θ, is approximated at each point in the grid and a selection of arbitrary

locations are chosen for ~c0.

Once we have generated the vector of measurements, ~c0, we want to estimate the

parameters, ~̂θ, that will accurately model the measurements. This is done through
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.

Figure 3.2: Solution to the wave equation with Gaussian forcing function at the point

(50, 50)

optimization of the cost function,

J(u) = ||~c(u(~θ))− ~c0||22, (3.12)

in which the norm of the difference between the observed values ~c0, and the mea-

surements from the measurement functional (3.13) is minimized. We will denote

the solution to the wave equation, u(x, y, t; ~θ), with parameters ~θ as u(~θ) to avoid

cumbersome notation. For the cost function (3.12), we use initial parameters ~θ0 to

compute the measurement functional,

~ci(u(~θ)) =

∫ T

0

u2(xi, yi, t, ~θ)dt. (3.13)

We want to find the parameters that gives the values of ~c(u(θ)) as close to ~c0 as

possible. To do so we search for the minimum of the cost function. In this case,

because we have noiseless data, the minimum of J(u) is zero. Starting with the

initial parameter, an optimization algorithm iteratively updates, building a sequence

of parameters that converge to a local minimum of the cost function at ~̂θ.
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The gradient descent method, Algorithm 1, is a commonly used optimization

method to find the minimum of a scalar valued function. It relies on the fact that

the negative gradient of a function points in the direction of the fastest descent [3].

As with most optimization algorithms, this means it cannot distinguish between local

minima and a global minimum. This algorithm only allows descending travel so for

a function with several local minima, it will find the one closest to the initial guess.

Due to this, it is highly important that the initial parameters are chosen carefully.

The algorithm requires a small step size, α > 0, and it stops once a tolerance is met

or a maximum number of iterations are completed. Because of its simplicity, we first

try to estimate the parameters by implementing the gradient descent algorithm 1,

with the cost function J(u) and initial parameters ~θ0.

Algorithm 1: Gradient Descent

Input : f : Rn → R

Output : x̂, approximate local minimum

Set α > 0

Choose ~x0

for k = 1 : max iteration do

df = ∇f(~xk−1)

~xk = ~xk−1 − α ∗ df

if ||~xk − ~xk−1|| < TOL then

Stop

end if

end for

Simulating the wave equation with (3.5) as the forcing function and ~θ = (2, 4)T ,

measurements are arbitrarily selected at x, y = [33, 55, 77] to be ~c0. We consider how

to determine a suitable step size, α, to be used in the gradient descent algorithm.

Using ~θ0 = (2.1, 4.1)T as the initial parameter, and setting the tolerance to 10−6,

four different values for α are used to compare convergence time. Figure 3.3 shows
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Figure 3.3: The convergence rate of the gradient descent algorithm for different step

sizes α. Left: Shows convergence at different iterations for corresponding α. Right:

Lack of convergence for larger α.

Figure 3.4: Parameter Estimations for the gradient descent algorithm for different

step sizes α. Left: Width estimation for corresponding α. Right: Amplitude estima-

tion for corresponding α.

the convergence rate for α = 5 · 10−7, 10−6, 2.25 · 10−6, and 5 · 10−6 and Figure 3.4

shows the associated estimated parameters.

Each α in Figure 3.3(a) converges, and in particular, the largest of the three

values converges the fastest. Figure 3.3(b) shows that for a slightly larger α there is

no convergence. The algorithm overshoots the minimum and bounces back and forth,

never converging. The smaller α is, the more likely it is to converge. Despite this,
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the smaller α is, the longer it will take to converge. Ideally, one wants to choose the

step size that allows the fastest convergence, meaning a slightly larger α, but because

of the sensitivity of the algorithm with respect to α, this can cause divergence.

The estimated parameter values associated with each step size, α, along with the

value of the cost function at convergence, are shown in Table 3.1. Even though the

tolerance was set at 10−6, the estimations, while still reasonable, are not as accurate

as we would expect and the cost function is not zero. To compute the gradient for

the algorithm, we use finite differences, so some error is introduced in the estimation.

Additionally, if the minimum of the function is particularly flat, then the gradient

descent takes very small steps and it stops iterating before actually meeting the

tolerance.

Method α ~̂θ J(u(~θ)) Iterations

Gradient

Descent

5 · 10−7 (1.9824, 4.0693)T 0.00059546 39

10−6 (1.9823, 4.0691)T 0.00058928 18

2.25 · 10−6 (1.9826, 4.0680)T 0.00057096 4

lsqnonlin (2.0000, 3.9999)T 3.3731 · 10−23 4
.

Table 3.1: Comparison of Parameter Estimation

Matlab has several built in functions for optimization that are faster and more

accurate. Table 3.1 shows the estimated parameters, ~̂θ, and iterations for the gradi-

ent descent algorithm versus the Matlab function lsqnonlin. Using ~θ0 = (2.1, 4.1)T

and α = 2.25 · 10−6 in gradient descent, convergence occurred in the same num-

ber of iterations as lsqnonlin; however, lsqnonlin is more accurate. Setting

~θ = (2.5, 3.8)T , slightly further from the actual parameters and using α = 2.25 · 10−6

for gradient descent, the two algorithms are again compared. The gradient descent

method converges to
~̂
θ = (2.1062, 3.6210)T in 9 iterations while lsqnonlin con-

verges to ~̂θ = (1.9999, 4.0000)T in 5 iterations. Due to the speed and sophistication

of lsqnonlin, we choose to use it over the gradient descent optimization.

Lastly, we have the ability to choose the number of measurements recorded in
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an experiment and so we are interested in whether this number affects the conver-

gence rate for the parameter estimation method. The algorithm, lsqnonlin, is used

with 3, 20, 45 and 77 random measurement points. For each set of measurements,

lsqnonlin converged in four iterations. Thus, we can determine that the number of

measurement points does not change the convergence rate.

3.4 Noisy Data

All experimental data is affected by noise. Noise is anything that causes unwanted

disturbances or indistinguishable changes to the data. In parameter estimation we

ultimately want to be able to model the data without noise. Understanding how the

noise affects the estimation of the parameters can be crucial in accurate modeling.

In the above discussion concerning optimization methods, lsqnonlin converged

to ~θ with high accuracy every time. This is because when we simulate an experiment

with a computer, the results are ideal in that no noise, beyond numerical error, affects

the data. To account for this, we need to add noise to the synthetic measurements, ~c0.

In an experiment, one would have some knowledge about the types of noise expected;

however, for the purposes of this thesis we will simply add varying percentages of

the measurements to ~c0.

Again, using (x, y) = [33, 55, 77] for the measurement locations of ~c0 and ~θ =

(2, 4)T , we add 5%, 10%, 15%, and 20% of each measurement to ~c0. The resulting

parameter estimations are shown in Table 3.2. The addition of noise in the form of a

percentage overestimates the amplitude parameter, while accurately estimating the

width. Also, notice that with each addition of 5% noise, the error in the estimated

amplitude increases by approximately 2.5%, or half that of the percentage of the noise

added. In most cases, we find that with the addition of noise in the measurements

~c0, the estimations are still valid; however, the minimum of the cost function (3.12)

is no longer zero. In this case, because we have just added a percentage of each
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measurement to the measurements themselves, we only increase the amplitude and

so the algorithm converges to the actual parameters that describe the data. Because

of this, the value of the cost function at convergence is still very close to zero.

% θ̂ J(u(~θ)) Approx. Error

in γ

5% (1.9999, 4.0988)T 7.5932 · 10−26 2.5%

10% (2.0000, 4.1952)T 5.6596 · 10−26 5%

15% (2.0000, 4.2895)T 1.1763 · 10−26 7.5%

20% (2.00004.3818)T 4.757 · 10−25 10%

Table 3.2: Parameter estimation with the addition of noise as a percent of the mea-

surement value.
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Chapter 4

Optimal Experimental Design

This chapter discusses the methods involved in determining the optimal placement

of an additional sensor in an experiment. It then combines the parameter estimation

done in Chapter 3 along with the sensor placement covered here, to design an optimal

experiment in which the results are most reliable.

4.1 Optimal Sensor Placement

For optimal sensor placement we try to determine the best location to place a new

sensor in an experiment such that there is the least amount of variation in the pa-

rameter estimation for the model. To do so, we fix some measurement points and

quantify the uncertainty associated with placing a new sensor at (x, y). Let ~θ be

the parameters and ~c(u(~θ)) be the measurement functional from Chapter 3, (3.13),

where u(~θ) is the solution to the wave equation with parameters ~θ.
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4.1.1 The Covariance Matrix

To measure the uncertainty of the parameter estimation at the new location (x, y),

we need to compute the covariance matrix, Cθ, for the parameters ~θ. For n random

variables, the covariance matrix is an n × n matrix that contains the variance of

each variable along the diagonal entires, i = j, and the covariance of the variables on

the off-diagonal entries, i 6= j. It assumes a normal probability distribution for the

variables. For two random variables x1 and x2, the covariance of x1 with x2 is the

same as the convariance of x2 with x1, thus the matrix is symmetric. The covariance

matrix for ~x = [x1, x2, · · · , xn]T is shown below.

Cx =


σx1 σx1x2 . . . σx1xn

σx2x1 σx2 . . . σx2xn
...

. . .

σxnx1 . . . . . . σxnxn

 (4.1)

From the covariance matrix we gain knowledge about the spread of the n dimensional

data. The covariance describes how the variables vary together; if x1 is positively

covaried with x2 then they both increase and decrease together and the slope of the

data is positive. Likewise if they are negatively covaried, one increases while the

other decreases and the slope is negative. The variance elements tell us how spread

out the data is in each variable.

Starting with the the measurements ~c(u(~θ)), we will derive the covariance matrix

for the associated parameters. We assume that the uncertainty in measurements are

independent and identically distributed (IID), meaning they have the same proba-

bility distribution, and are independent of one another. When this is the case, the

variables have a covariance of 0 so the covariance matrix is zero for all entries i 6= j.

The assumption that they have the same probability distribution means that the

variance, σ2, for each variable is the same. The covariance matrix for the observed
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measurements can then be written as in equation (4.2) where I is the identity matrix.

Cm =


σ2 0 . . . 0

0 σ2 . . . 0
...

. . .

0 . . . . . . σ2

 = σ2


1 0 . . . 0

0 1 . . . 0
...

. . .

0 . . . . . . 1

 = σ2I (4.2)

Next, for f : Rn → Rm, let X be the n×m Jacobian matrix Xij = ∂fi
∂xj

with,

X =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

. . . . . . . . .
...

...

∂fm
∂x1

. . . . . . ∂fm
∂xn

 (4.3)

The Jacobian tells us how the function changes with respect to each variable. Ac-

cording to the Error Propagation Law [2] one can compute the covariance matrix for

the measurements, Cm, using the Jacobian along with the covariance matrix for the

parameters, Cθ as follows,

Cm = XCθX
T (4.4)

We want to estimate the variance in the parameters from the variation in the mea-

surements at different locations so we want to compute the Jacobian for ~c(u(~θ)),

Xij = ∂ci
∂~θj

(u(~θ)). To estimate X, we perturb each parameter by small ε and simulate

the wave equation for each modified ~θ. Using the measurement functional (3.13), we

can then estimate the Jacobian as in (4.5) using Algorithm 2.

Xij =
∂ci
∂θj

u(θ) ≈ ci(u(θ + εej))− ci(u(θ))

ε
. (4.5)

We can then derive Cθ from (4.4) as follows:

Cm = XCθX
T

=⇒ Cθ = (XTX)−1XTCmX(XTX)−1

Recall, Cm = σ2I

=⇒ Cθ = σ2(XTX)−1 (4.6)
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Algorithm 2: Jacobian

Approximation of the Jacobian of a function f at ~x

Input : fx = f(~x)

Output : J, approximated Jacobian

Set ε > 0

for k = 1 : length(x) do

y = x

yk = yk + ε

fy = f(y)

J(:, k) = (fy−fx)
ε

end for

In Cθ, each of the diagonal elements is an estimated variance for the associated

parameter. For θ = (2, 4)T , we arbitrarily fix the point (x, y) = (33, 25) and con-

sider the covariance matrix of the parameters when an additional sensor is added at

(58, 50), a distance of 36.05 units from the fixed sensor point.

Cθ =

 2.3537 −9.0884

−9.0884 35.0931

 (4.7)

The covariance matrix (4.7), shows a negative covariance between the two param-

eters. If the amplitude increases, the width that gives the same sensor reading,

decreases and vice versa; this seems reasonable as it is intuitively what one would

expect. The value in the upper left corner is the estimated variance for the width,

and the value in the bottom corner is the estimated variance for the amplitude. With

the addition of this point, there is more variance in the amplitude parameter than the

width. We want to find the best location for an additional sensor to be placed, with

potentially more than one fixed location, such that the variation in both parameters

is the smallest. To do so, we need to find a way to quantify the covaraince matrix

Cθ.
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Suppose we have a covariance matrix such that the covariances are zero, then

the eigenvalues are exactly the variances of the variables. Recall that for a linear

transformation of ~x by a matrix A, we can write,

A~x = λ~x,

where the eigenvalue λ is the magnitude of the eigenvector ~x. If the covariance matrix

consists of only the variances, then the largest eigenvalue describes the variable with

the largest spread. If the covariances are not zero, then we need to consider what the

eigenvalues along with the associated eigenvectors are telling us about the spread.

Suppose we have the following covariance matrix,

C =

3 2

2 3

 (4.8)

with eigenvalues λ1 = 5, λ2 = 1 and eigenvectors ~v1 = (1, 1)T and ~v2 = (−1, 1)T .

The eigenvectors tell us the direction of the spread of the variables with magnitude

λ. Figure 4.2 shows the spread for the given covariance matrix (4.8).

x

y

v1, λ1 = 5

v2, λ2 = 1

Figure 4.1: Spread of data for the covariance matrix (4.8) determined from eigenval-

ues and associated eigenvectors.

It becomes clear that the eigenvalues are a measure of the variance of the data.

Therefore, if we want to find the location for the next sensor placement, such that
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the variance in the parameters is the least, we need to consider some metric on the

eigenvalues of the covariance matrix. To do so, we introduce the metrics,

Φ1 = det(Cθ) =
n∏
i=1

λi, (4.9a)

Φ2 = Tr(Cθ) =
n∑
i=1

λi, (4.9b)

Φ3 = ρ(Cθ) = max |λi|, (4.9c)

where each is a functional of the covariance matrix Cθ of the model parameters ~θ.

Each of the metrics gives a quantification of the overall variation in the parameters

at given locations. Because we want to find (x, y) such that the overall variance is

the least, we seek to minimize each Φ.

4.1.2 Design Parameter Optimization

To estimate the covariance matrix Cθ we need to first approximte the Jacobian, X, of

~c(u(~θ)) with parameters θ, using Algorithm 2. Once the Jacobian has been estimated

we can approximate the covariance matrix using (4.6). Although we do not know

the variance, σ2, of the parameters, because we have assumed them IID, it is just a

coefficient for the covariance matrix Cθ and so we set it to 1.

Cθ = (XTX)−1 (4.10)

For ~ζ = (x, y) ∈ Π where Π is the space of design parameters, we wish to minimize

Φ(Cθ(ζ)). Fixing the same three points we have been, x, y = [33, 55, 77], we create

a grid and treat each point on the grid as a potential fourth location for a sensor to

be placed. To get some intuition as to what the metrics (4.9) look like and where

minimums occur, we plot each Φ as a function of the fourth location (x, y), as seen

in Figure 4.2. Each Φ has a global minimum at the center; however, we would like

to apply the methods discussed in this thesis to an electromagnetic wave in which
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the intensity at the center is very high. Therefore, it is not a practical place to put

a sensor, thus we need to look for local minima away from the center.

.

Figure 4.2: Φ1, Φ2, Φ3 plotted as a function of grid points (x, y). Top left: Φ1 =

det(Cθ). Top right: Φ2 = Tr(Cθ). Bottom: Φ3 = ρ(Cθ)

Since we have data for the Φ functions on the computational grid, to find the lo-

cation of a local minimum for each, we implement a simplified version of the gradient

descent algorithm. Again, we start with an initial guess for the design parameter ~ζ0

and try to find the location ~ζ such that we are at a minimum of Φ. Starting with

~ζ0, Algorithm 3 evaluates the four surrounding locations and moves to the location

where Φ is smaller. Doing this iteratively, the algorithm stops once it reaches a ~ζ

such that no surrounding locations have a smaller value of Φ. Like the gradient de-

scent, it can only move downhill and so we must use Figures 4.2 to carefully choose

~ζ0 such that the algorithm does not find the global minimum at the center.
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Algorithm 3: Simplified Gradient Descent

Input : f = Φ(Cθ(z))

Output : z approximated minimum location

Choose z = (x, y)

for k = 1 : max iteration do

z1 = z + (1, 0)

z2 = z + (0, 1)

z3 = z + (−1, 0)

z4 = z + (0,−1)

for i = 1 : 4 do

if f(zi) < f(z) then

Go to f(zi)

else

z = z

end if

end for

end for
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4.2 Optimal Experimental Design

Now that we have an understanding of how to estimate model parameters and how

to find an optimal sensor placement, we combine the two ideas to design an optimal

experiment such that the results can be most accurately modeled.

In a real experiment, we have to deal with noisy data that prevents us from

finding the exact parameters of interest, as discussed in Chapter 3. In optimal

experimental design we strive to design an experiment such that the location of the

sensors minimize the effect of noise on the parameter estimation. In doing so, we can

more accurately model the phenomena. Using data collected from conducting a real

experiment, we estimate the parameters
~̂
θ. We then use these parameters along with

the computational model to find the optimal location to put a new sensor. Because

we have to deal with noisy data, we determine the experimental design iteratively as

shown in Figure 4.2.

~c0

ParameterEstimation

~̂θ

SensorP lacement

~ζ

Experiment

Figure 4.3: Iterative optimal experimental design diagram.

Starting with experimental measurements ~c0, we solve the parameter estimation

problem by simulating the wave equation with an initial guess, ~θ0, and minimizing

the cost function (3.12) to find the estimated parameters,
~̂
θ. Then we use

~̂
θ and an

initial ~ζ0, to solve the design parameter problem by minimizing the metrics (4.9) on

the covaraince matrix, Cθ, to determine the location, ~ζ, in which there is the least

variation in the model parameters. We then perform the experiment again, this time
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placing the 4th sensor at the location, ζ = (x, y), that has just been determined.

Going through the steps again, we estimate the parameters using ~θ0 =
~̂
θ, and ζ0 = ζ,

we determine where to move the 4th sensor so that when we perform the experiment

again, we get a slightly better parameter estimation. This process is iterated until a

maximum number of iterations has been executed. Once we reach the maximum, we

have determined the optimal location for the 4th sensor so that performing the finale

experiment with the senor in place gives us the most accurate parameter estimation.
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Chapter 5

Conclusion

Through the work in this thesis, we have developed an iterative method to deter-

mine the optimal location for an additional sensor to be added such that we can

reliably estimate the model parameters of a Gaussian wave source. Starting with

experimental data, we minimize the cost function to estimate the model parameters,

~θ = (α, γ). Using the estimated parameters,
~̂
θ, we can determine where to optimally

place an additional sensor. Keeping in mind that all experimental data has noise, we

design an iterative process to determine where to place a sensor such that the effect

of noise on the estimated parameters in minimal.

We only considered adding one additional sensor, but we are not limited to this.

The optimization methods and iterative design discussed in this thesis apply to

adding any number of sensors. No matter how many we choose to add or have the

resources for, we ultimately want the variation in the parameter estimation to be the

least, so we seek to minimize the metrics defined on the covariance matrix, Cθ.

Using the optimal experimental design method to characterize a wave source has

many applications. In particular, we can expand the finite difference method of lines

discretization to the Finite-Difference Time-Domain method for solving Maxwell’s

Equations. Then using the optimization methods discussed, we can use measure-
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ments from thermoluminescent dosimeters to optimally design an experiment so that

we can accurately characterize the propagation of an electromagnetic wave in a phys-

ical domain.

There remain lingering questions that merit consideration. For example, how well

can we characterize a more general wave source. In this thesis, we considered the

case where the forcing function was explicitly know, if this is not the case, how well

can we expect to characterize the model? Additionally, there are many metrics that

can be defined on the covariance matrix beyond the three that we considered here.

Is there a way to determine which is the optimal one to use for a particular problem?

Lastly, we assume that the noise in the measurements is a Gaussian distribution, but

what if that is not the case? How can we determine the distribution of the noise,

and if it is not Gaussian, do the methods to find the optimal sensor placement still

apply?
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