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Abstract

A natural coordinate system for calculating neutral particle propagation in the

atmosphere due to point sources is two-dimensional spherical-polar (r, θ) coordinates.

Deterministic methods for solving the transport equation in this coordinate system re-

quire some interesting implementation details stemming from the two angular deriva-

tives present in this form of the equation. In this dissertation, we present a bilin-

ear discontinuous spatial discretization of the transport equation in this coordinate

system. The weighted diamond difference discretization is applied to the angular

derivative term in two angular dimensions, using zero-weighted starting directions to

start the differencing. To our knowledge, the only previous deterministic code that

solved the transport equation in the spherical-polar coordinate system was written

more than 50 years ago; the development of the deterministic methods we present

here and the application to atmospheric transport is new. Numerical experiments

are shown to verify that method has better than second-order accuracy and correctly

solves the spherical-polar form of the transport equation.
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1 Introduction

In this chapter, the research goals of the dissertation are discussed. Following this,

we define the physical problem of outward transport of atmospheric neutrons. We

continue by reviewing literature discussing past application of Monte Carlo and de-

terministic transport methods to solve variants of the problem.

1.1 Research Goals

Earth’s atmosphere has enabled the development and sustainment of terrestrial life.

Outside the thin atmospheric layer surrounding our planet there exists a universe

dominated by the presence of intense radiation. Space radiation impacting the Earth

includes the particles emanating from the Sun during solar flare events, the galactic

cosmic rays originating from outside the solar system, and local magnetically-trapped

radiation belts consisting of charged particles. Understanding how these extrater-

restrial radiation sources interact with the Earth’s magnetic field and atmosphere

through mathematical modeling has been important to predicting terrestrial effects

from solar storms, flares, and coronal mass ejections.

Radiation transport modeling has also enabled significant engineering advances

in our abilities to harness the energy available in nuclear radiation. These include

the design of nuclear power reactors, the development of safer techniques in medical

imaging, defense and industrial applications, and space travel. These applications rely
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on a capability to predict system performance as it relates to radiation physics. A

complementary problem to understanding how radiation propagates inward through

the atmosphere to the Earth, is how human-generated radiation might disperse as

it propagates outward from the surface. Radiation transport in the atmosphere is

an important numerical modeling calculation in many fields including astronomy,

environmental science, civil engineering and defense.

Applications of these calculations may include, for example, the determination of

a radiation dose field from a nuclear accident, and may inform the design of shielding

suitable for a radiographic analysis system. At a larger geographic scale it may

be useful to determine the radiation fields escaping the lower, thicker layers of the

atmosphere and impinging on objects of interest in the upper atmosphere, for example

high altitude aircraft and satellites.

This dissertation considers the application of neutral-particle deterministic trans-

port methods to the assessment of radiation fields at high altitude from point sources

either above or below, motivating the development of a new transport code, AT-

MOTRAN, that is designed to provide accurate, full phase-space results of radiation

fields at a low computational expense relative to other methods of calculation. AT-

MOTRAN is intended to enable calculation of the propagation of a source of neutrons

through an atmosphere with varying material properties. The code will calculate the

expected neutron fluence at all altitudes and polar angles, as a function of energy, re-

sulting from this source. This required us to derive an approximation to the transport

equation solved in spherical coordinates and requires two spatial dimensions, one in a

curvilinear direction. Because Monte Carlo codes are not computationally efficient in

the target application, we chose to use deterministic methods. While there has been

one deterministic code written for two-dimensional spherical coordinates [1], it did

not utilizes a discretization scheme that both preserves the diffusion limit and does

2



not put extremely challenging requirements on the cell size of any finite volumes used

in the calculation. There are three-dimensional spherical codes, for example [2], but

these use diamond differencing in space and angle, which is not practical for systems

as large as the Earth. Our goal then, is to derive a new bilinear discontinuous dis-

cretization of the two-dimensional spherical-polar transport equation that generates

results with high accuracy and, in conjunction with standard multigroup techniques,

will provide fast results of neutron fluence at all points in the physical phase space of

the atmospheric problem.

1.2 Problem Definition

Challenges of radiation transport modeling in the atmosphere include vast distances

and widely varying material properties. While some applications of interest may be

approximated, for example, by reducing the physical problem to a one-dimensional

atmospheric slab [3], others require the full three-dimensional geometry of the at-

mosphere to be considered. In favor of expediency, others may neglect azimuthally-

varying physical properties to reduce the physical atmosphere to a two-dimensional

spherical-polar (r, θ) coordinate system. The propagation of a source of neutral par-

ticles through great distances in the atmosphere is such a physical system. Although

the atmosphere varies with altitude, both greatly in density and only slightly in sto-

ichiometry, only slight variations appear in polar and azimuthal angles (latitude and

longitude). Considering the flow of an approximate point (or localized) source of

particles, it is of course necessary to consider the distance traveled in both the radial

and polar angle dimensions.

Figure 1 outlines the geometric problem. The smaller circle represents the Earth,

modeled as a sphere with an approximate average radius RE of 6378 km. The at-

mosphere A extends from the surface up to some boundary altitude. The results

3



in this dissertation use A = 1000 km, owing to available atmospheric models. The

source of radiation is point-like at radius RS from the center of the Earth, at angle ζ

from the Earth’s axis. When considering a two-dimensional spherical-polar system,

we always set this system at ζ = 0 . The source axis defines a polar angle θ0 (for our

system θ0 = 0 ) such that a polar coordinate system extends from this base angle.

Some point for which we want to calculate the particle fluence sits at angle θ and

at radius RD. The azimuthal dimension is represented by φ, and when ζ = 0, the

source is azimuthally isotropic, and the atmospheric material properties do not vary

appreciable with azimuthal angle, the problem becomes azimuthally symmetric. This

is the approximation we consider here.

Figure 1: Problem geometry (not to scale).
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The atmosphere is not a microscopically dense medium compared to solid mate-

rial, but is optically dense to neutrons and gamma rays, considering the many tens

or hundreds of kilometers that must be traversed to escape it. The total mean free

path for fast neutrons at sea level is on the order of ten meters. The atmosphere is a

highly scattering medium, although there is some absorption (capture and inelastic

scattering) that results in secondary gamma-ray production. Along with this there

are anisotropic scattering effects varying with particle energy. The probability of at-

mospheric neutron capture and scattering depends primarily on density. The density

profile as a function of altitude is shown in Figure 2.

Figure 2: Total atmospheric density (g/cm3) as a function of altitude (km).

As shown in the figure, the density of the atmosphere varies by some 15 orders

of magnitude from Earth’s surface up to 1000 km altitude. A secondary effect is

variation in the atmospheric elemental constituents. Nearly all the atmospheric mass

5



is contained below 30 km altitude, and in this range the ratios of the gas elements are

constant due to turbulent mixing [4]. The effect of the sharp density decline around

30 km impacts neutron transmission differently depending on the altitude of emission.

For neutrons below 30 km, the atmosphere acts as an attenuator, while for neutrons

above 30 km the atmosphere acts as a reflector, and for much higher altitude emission

the atmosphere can act somewhat as a lens, with the net effect of bending neutron

radiation, incident at the atmospheric edge, around the Earth to points where there

is no direct line of sight to the source.

The Unites States Naval Research Laboratory maintains a freely available model

of the atmosphere called Mass Spectrometer and Incoherent Scatter Radar Exosphere

(MSISE) [5]. This model can be linked as a library into C++ simulation codes. In the

model, the atmospheric density and elemental composition is provided as a function

of altitude, latitude, longitude, year, day of year, etc., for altitudes ranging from the

Earth’s surface up to 1000 km. The dominant variation is in altitude, such that the

implementation described in this work assumes a purely radial dependence of the

atmospheric density and elemental composition. As mentioned earlier, this allows

the problem to be reduced to two spatial dimensions, so that for a given source, the

neutron flux can be spatially described by the radial distance from the center of the

Earth, and the polar angle from the source (θ in Figure 1).

The cross sections of the dominant atmospheric constituents, 14N and 16O are 1-3

barns for keV-MeV neutrons. However, as shown in Figure 3, within the resonance

region the total cross section can exceed 10 barns for narrow energy widths. At lower

energies in this range, neutron capture is a significant component of the physics and

neutron absorption is important. This property can hamper codes reliant on Monte

Carlo methods that must employ variance reduction techniques to improve statistical

accuracy in highly absorbing media. There is also angular anisotropy in the scattering
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cross section as a function of incident energy as shown in Figure 4. In general, for

neutrons around 1-2 MeV elastic scattering from nitrogen and oxygen the scattering

is isotropic within a factor of two, and as neutron energy approaches 10 MeV and

higher the scattering is forward-peaked.

Figure 3: Total neutron cross section (b) as a function of energy (eV) for 14N in the
resonance region.

1.3 Current state of the problem

In this section we review some past methods employed to solve the problem of neutral

particle radiation transport in the atmosphere, and curvilinear transport methods

in general. The methods of primary interest that will be discussed here include

Monte Carlo and deterministic methods. This literature review will motivate the

development of ATMOTRAN.
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Figure 4: Neutron cross section as a function of scattering angle for 14N, for neutron
energies ranging from 1 MeV to 10 MeV.

1.3.1 Solution by Monte Carlo methods

Much of the existing peer-reviewed work on atmospheric neutron transport concerns

particles impinging on the earth from solar or cosmic-ray origins [6–8], with additional

specific reporting on transport of lightning-induced neutrons [9–11]. Point-source neu-

tron propagation in the atmosphere has been attempted by setting up a Monte Carlo

simulation using MCNP [12–15]. In [13], Culp performed MCNP simulations for a

point source of neutrons at an altitude of 40 km and compared the Monte Carlo

results with the SMAUG-II code, a deterministic code in one-dimensional spherical

coordinates. He concluded that two-dimensional effects are important to model point

source propagation. In [14] and [15], Byrd used MCNP to build an atmospheric

model to examine various phase space points for this problem, calculating neutron
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fluences as a function of angle and altitude and found interesting effects related to

secondary particle production. While it is possible to perform such simulations in

an analog Monte Carlo run, these runs are too time consuming to achieve suitable

statistics at all points in the problem. Monte Carlo can be accelerated by using vari-

ance reduction techniques [16], although the opacity of the atmosphere will still cause

significant issues due to the sheer size of the problem. For example while it is possi-

ble to use importance sampling (splitting) and weight windowing for deep shielding

calculations these techniques have immense calculational burden when considering

the atmospheric problem. A standard deep-shielding Monte Carlo simulation may

calculate neutron shielding properties of several feet (tens of mean free paths) of con-

crete, requiring tens of artificially spatially-defined regions with boundaries at which

to perform the splitting, one region at roughly every mean free path. The atmosphere

at sea level is hundreds of thousands of mean free paths thick for neutrons traveling

in the direction of the horizon. Additionally, the variance of the material proper-

ties requires varying cell sizes with altitude, and the number of variance reduction

cells must number in the millions to achieve gains from splitting. Implicit absorption

techniques are also possible, but again there are practical limitations to the achiev-

able gains in such a large system. Thus, Monte Carlo is only practically used to

calculate the neutron flux for some specific case of neutron emission, and that results

take a very long time to achieve reliable statistical accuracy. For these reasons, we

do not consider Monte Carlo to be a viable alternative to deterministic techniques

to achieve a general purpose fast-running code, although in this dissertation we do

present numerical comparison of Monte Carlo with ATMOTRAN results, to perform

a verification spot-check.
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1.3.2 Solution by deterministic methods

Work done at LANL in the late 2000’s produced results from a diffusion code tar-

geting the atmospheric problem [17]. The code blended Monte Carlo and diffusion,

utilizing MCNP at higher emission altitudes and from a custom diffusion code at lower

altitudes. The diffusion code used included a number of approximations, including

a two-dimensional Cartesian model of the atmosphere over a flat-Earth and a purely

exponential atmospheric density, which resulted in limited accuracy above 100 km,

and angular inaccuracies due to the flat-Earth geometry. The technical limitations of

this code brought on by these approximations preclude its use in the present problem.

We mentioned that ATMOTRAN is a two-dimensional, spherical-polar (r, θ) trans-

port code. Although this coordinate system is quite useful for atmospheric problems

it has only been considered once before in the deterministic transport code devel-

opment community. The application of transport methods to curvilinear coordinate

systems is commonly presented for one-dimensional spherical coordinates and one-

or two-dimensional cylindrical coordinates (r − z), and in all cases there is only one

angular derivative to consider, simplifying both the method derivation and the code

implementation. The literature suggests that solution of the transport equation in

the spherical (r, θ) coordinate system has only been implemented once before in a

code called TWOTRAN SPHERE [1, 18, 19], sometime around 1970. That work fo-

cused on peculiarities of the transport equation that must be considered including

approximating the two angular derivatives in the transport equation, and study of

the characteristic equations of motion through the spatio-angular mesh, which im-

pact the required sweep progression in different halves of the problem. TWOTRAN

SPHERE was diamond-differenced in angle and space, and used conventions of the

time including the step approximation to begin the angular recursion, rather than

zero-weighted starting directions, and no weighted-diamond-difference (WDD) for-
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mulation in angle [20]. There is no evidence that the code was used for solving

problems at the atmospheric scale, for which diamond-differencing in space would ne-

cessitate an immense number of spatial cells to avoid negative fluxes. We discuss this

further in the next chapter. The present work proposes a new method of solution to

the two-dimensional transport equation in (r, θ) spherical coordinates. Starting from

some of the results of TWOTRAN SPHERE, most importantly the angular sweeps,

we will develop a bilinear-discontinuous finite element method (DFEM) spatial dis-

cretization [21–23], with a WDD approximation to discretize the angular derivatives,

using zero-weighted starting directions in the two angular dimensions. This disserta-

tion describes details of the derivation and implementation, including a discussion on

how to upwind the DFEM and sweep in this coordinate system.

1.4 Chapter outline

Following this introduction to the problem, Chapter 2 reviews the transport equa-

tion, discretization schemes, and the TWOTRAN SPHERE code. Chapter 3 pro-

vides details of the derivation of the bilinear discontinuous discretization of the two-

dimensional spherical-polar form of the transport equation. Chapter 4 continues with

details of the implementation of the discretization into a working code. Chapter 5

gives evidence that the discretization is valid as presented and that the code is im-

plemented correctly, through verification by comparison with manufactured solutions

and code-to-code comparisons. Chapter 6 summarizes the work and discusses antici-

pated future work.
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2 The Discrete Ordinates Method

In this chapter we introduce the transport equation and discuss methods of solution.

We provide background information on the methods of discretization of physical vari-

ables. We review the spherical (r, θ) code TWOTRAN SPHERE and motivate a new

spatial discretization.

Particle transport calculations are foundational to the development of nuclear

physics instrumentation. The Boltzmann equation is an integro-differential volumet-

ric balance formulation describing the angular, spatial and energy variations of a

particle distribution. Analytical solutions of the equation are not possible for all but

the simplest physical problems, thus a computer program employing a discretized

numerical method is often used [24]. The method of discrete ordinates is commonly

used to discretize the angular variable; it is described in the original form in [25] and

refined in [27]. The discrete ordinates (also called SN) method simplifies the Boltz-

mann equation by evaluating the solution for certain values of the angular variable.

Instead of integrating over the continuous range of scattering angles, the integral is

converted to a weighted sum (quadrature). Angular discretization relies on particles

undergoing enough scattering interactions in enough cells to average out the effects

of discretization. This is truly the case in a dense, highly scattering material. If the

source is distributed through the scattering medium the approximation works even

better. For point-like sources there is a problem in particular if the medium is absorb-
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ing (weakly scattering) or low density. In this case, source particles are emitted into

a limited number of directions and can only scatter into a limited number of direc-

tions in adjacent cells. These ”ray effects” [26] can limit the effectiveness of discrete

ordinates for certain problems and a number of remedies are available although the

fundamental issue remains. This will be true in the atmospheric problem particularly

at high altitudes although an uncollided source method can help. Another issue in

discrete ordinates is the iterative nature of the method that is typically employed

to solve the discretized SN equations. In the first iteration (Richardson method),

source particles can scatter once into a new phase space region (in energy, angle). In

the next iteration, those scattered particles can scatter once more into yet another

phase space region. Highly scattering media will generate flux estimates with small

differences between each source iteration. This slows the convergence of the method

to such a degree that some problems require a high number of iterations. This has

led to the development of acceleration techniques that are applied within an iteration

and are designed to achieve convergence more quickly. The state of the art technique

is to apply an acceleration method to the transport iteration based on a lower order

approximation to the transport equation. A Krylov method, for example the Gen-

eralized Minimum Residual (GMRES), with such an acceleration method recast as

a preconditioner, can be used to speed convergence [28, 29]. The inner acceleration

operator must be consistently discretized with the outer transport operator to ensure

the acceleration and preconditioning is effective and robust. A discretization method

that can support this requirement is the linear discontinuous (LD) method [30,31], or

in two dimensions, the bilinear discontinuous method (BLD) [32]. The BLD method

also preserves the diffusion limit, which is an important condition to ensure that

solutions are accurate in optically thick problems without having to employ a large

number of mesh cells.
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2.1 The transport equation

The balance equation that describes neutral particle (neutron and photon) transport

is known as the Boltzmann Equation. This equation is derived by balancing the ef-

fects related to particle balance for a general point in phase space (position, direction,

energy and time). This phase space is generally seven-dimensional (seven indepen-

dent variables: three in position, two in direction, one in each of energy and time).

The complexity of the Boltzmann equation renders it impossible to solve analytically

except in limited cases, for example in one-dimensional slab geometry. Approxima-

tions to the solution are obtained by numerical techniques involving the discretization

of usually all of the continuous variables present in the equation. The full form of the

integro-differential time-independent linear Boltzmann equation describing neutron

transport and including prompt fission effects is given here:

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω)

=

Emax∫
0

dE ′
∫
4π

dΩ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

+
χ(E)

4π

Emax∫
0

dE ′
∫
4π

dΩ′ν(r, E ′)Σf (r, E
′)ψ(r, E ′,Ω)

+Q(r, E,Ω) ,

(1)

using standard notation as follows:

• r, the spatial position vector, which is typically expressed in three-dimensional

form in Cartesian (x, y, z), cylindrical polar (r, θ, z), or spherical polar (r, θ,

φ) coordinates;

• Ω, the direction of neutron motion;

• E, the particle energy;
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• Σt(r, E), the total cross section of the material at position r for neutrons of

energy E. The total cross section is the per unit path length probability of

neutron collision in the material. This value is known as the macroscopic cross

section, defined as Σ = Nσ, where σ is the microscopic cross section in units of

cm2 and N is the neutron density in units of inverse volume;

• Σs(r, E
′ → E,Ω′ · Ω), the differential macroscopic scattering cross section of

the material at position r. This value is the probability per unit path length of

a neutron at energy E ′ and direction Ω′ scattering into an energy window dE

about energy E and direction window dΩ about Ω;

• χ(E), the energy spectrum of neutrons produced in fission;

• ν(r, E), the multiplicity of neutrons produced in the material at position r and

energy E;

• Σf (r, E), the macroscopic fission cross section of the material at position r

for neutrons of energy E. The total cross section is the per unit path length

probability of a collision causing fission in a multiplying material;

• Q(r, E,Ω), the source of neutrons at position r at energy E and direction Ω.

For the time-independent transport equation this source is always present at the

same amplitude, and for time-dependent problems this source can be transient;

• ψ(r, E,Ω) is the angular flux, equivalent to vN(r, E,Ω), where v =
√

2E/m

is the neutron speed and N is the angular neutron density, and E and m are

the neutron energy and mass.

The linear Boltzmann equation expresses a neutron balance equation for particles

in a particular phase space. The phase space balance comprises independent variables
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in position, energy and angle. A phase space volume can be expressed as the product

of several differential values dV dEdΩ. The derivation of this balance equation exam-

ines an arbitrary phase space volume, placing neutron gain terms on the right and

neutron loss terms on the left.

Neutron gain terms include:

•
Emax∫

0

dE ′
∫
4π

dΩ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)dV dEdΩ is the neutron gain at

dV dEdΩ at r due to in-scattering to energy dE about E and direction dΩ about

Ω from all other energies E ′ and directions Ω′;

• χ(E)
4π

Emax∫
0

dE ′
∫
4π

dΩ′ν(r, E)Σf (r, E)ψ(r, E,Ω)dV dEdΩ is the neutron gain at

dV dEdΩ at r at energy E due to fission at all energies;

• Q(r, E,Ω)dV dEdΩ is the neutron gain due to a direct source of neutrons.

Neutron loss terms include:

• Σt(r, E)ψ(r, E,Ω)dV dEdΩ is the neutron loss due to collisions with the medium

within the phase space. This includes neutron scattering into, effectively, dif-

ferent volumes of phase space, and neutron absorption;

• Ω · ∇ψ(r, E,Ω) is the neutron loss due to neutrons streaming out of the phase

space volume. This term can be negative for some angles Ω, in which case those

terms become those of neutron gain.

In the discrete ordinates method the differential cross section is usually defined as

an expansion in Legendre polynomials

Σs,g′→g(r, E
′ → E,Ω′ ·Ω) =

L∑
`=0

2`+ 1

4π
Σs`,g′→g(r, E

′ → E)P`(Ω
′ ·Ω) , (2)
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where

P`(Ω
′ ·Ω) =

2

2`+ 1

∑̀
m=−`

Y`m(Ω′)Y ∗`m(Ω) , (3)

where Y`m(Ω) are the spherical harmonic functions following these relations

Y`m(Ω) = Y`m(µ, ω) = C`mP
|m|
` (µ)eimω , (4)

where

C`m = (−1)(m+|m|)/2
[

2`+ 1

2

(`− |m|)!
(`+ |m|)!

]1/2

, (5)

and

Pm
` (µ) = (−1)m(1− µ2)m/2

dm

dµm
P` , (6)

defining a relation

(−1)mY ∗`,m(Ω) = Y`,−m(Ω) . (7)

In the case of isotropic scattering, the polynomial expansion is truncated at ` = 0

and the scattering cross section reduces to

Σs`(r, E
′ → E,Ω′ ·Ω) = Σs0(r, E ′ → E) , (8)

indicating that the relative change in the cosine of the scattering angle, Ω′ · Ω, is

independent of orientation. This is a convenient simplification but is generally not

the case in practical problems, especially at higher neutron energies where scattering

becomes typically more forward-peaked in angle.

The Boltzmann equation must be solved subject boundary conditions, for example

the following condition:

ψ(r, E,Ω) = ψb(r, E,Ω), rε∂V, Ω · n̂ < 0, 0 < E <∞ . (9)
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This condition constrains the angular flux solution boundary of the problem domain

for inward neutron directions. Here, n̂ is the outward pointing surface normal for

the boundary surface and Ω is the particle direction. For example, many problems

specify ψb = 0, called the vacuum boundary condition, indicating that there is no

incident source of particles either originating external to the problem geometry, or

reflecting from its extents. For ATMOTRAN, the maximum radial boundary con-

dition (the upper atmosphere) is a vacuum boundary condition, since there is no

way for particles exiting the atmosphere to scatter back into it. Another common

boundary condition, also used in ATMOTRAN, is the reflective boundary condition,

which ensures symmetry of the solution when solving full circle spherical problems

on a hemisphere:

ψ(r, E,Ω) = ψ(r, E,−Ω) . (10)

The discrete ordinates method discretizes the angular flux term in the differential

form of the transport equation. Instead of solving for all possible angles of travel, only

a subset of these angles are chosen, and the transport equation solved. The angular

subset is chosen very specifically, following quadrature rules, in order to accurately

match the integral value of the non-discretized equation.

2.2 Coordinate system

The three dimensional spherical coordinate system is shown in Figure 5. At a point

specified by position (r, θ, φ) we show a direction vector Ω. The independent angular

directions are µ and ω. The integration over the spatial azimuth φ reduces the spatial

problem to two dimensions, shown in Figure 6, and we show a direction vector for

the case ξ = 0, although this is not generally the case. The angular component η is
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defined

η = (1− µ2)1/2 cos(ω) . (11)

Figure 5: Three-dimensional spherical coordinates extended view of vector directions

The phase space is divided into cells in space and angle using the indexing con-

ventions shown in Figure 7.

2.3 Angular discretization

The linear Boltzmann equation is continuous in angle. In the discrete ordinates

method, the integrals over angle are converted to weighted sums using the quadrature

method ∫
4π

dΩψ(Ω) ≈
K∑
k=1

wkψk(Ωk) , (12)

where K is the total number of angles used in the sum, and Ωk is a particular

angle, and k indicates some point (m, `), referring to Figure 7. The angle values
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Figure 6: Two-dimensional spherical coordinates

Figure 7: Spatial and Angular cell indexing convention.

and their weight wk are chosen following quadrature rules, which ensure the inte-

gral values of the quantities under integration are conserved. For discrete ordinates

codes, the selection of suitable quadrature sets is an important consideration to en-

sure accurate solutions. There are various methods of generating quadrature sets

depending on the dimensionality of the problem or certain physical requirements
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such as highly forward-peaked scattering [27, 33]. For multi-dimensional problems, a

Gauss-Chebyshev-Legendre quadrature set is often used for its favorable integration

properties [34]. Discretization rules must also be applied to angular derivatives. These

are complicated for curvilinear problems since straight-line trajectories through the

curvilinear coordinate system result in changing values of the angular components.

This process is called “angular redistribution”. Figure 8 shows how the straight line

trajectory forms a variable angle with the cell surface direction vectors depending

on geometric position. For a standard diamond-differencing, an angular mesh cell

Figure 8: Variability of angle (indexed θ and χ) in the coordinate frame during
straight line trajectory through a sphere.

at some intermediate angle index k, where the range of indices is k ∈ [1, K], we

approximate angular cell edge values in the following way

ψk =
1

2
(ψk+1/2 + ψk−1/2) , (13)

where ψk = ψi, the spatial cell average flux. These relations are used when sweeping

the angular mesh in a particular direction. If sweeping from low to high index value,

at index k, ψk−1/2 is known from the previous calculation, and we solve for ψk+1/2

upon obtaining ψk. A special case is for index k = 1 for which we do not have a prior
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calculation but must have some value ψ1/2 with which to begin the recursion. This

value is called the starting direction. For systems with transport equations having

two angular derivatives, starting directions are required in two dimensions, and this is

explored in the present document. Weighted diamond differencing was introduced as a

method to improve the performance of diamond angular differencing by ensuring that

the angular cell centers are collocated with the quadrature root, which in general they

are not for typical quadrature sets [20]. This weighted diamond method is extended

to two dimensions in this dissertation with demonstrated success. Weighted diamond

is still a very common angular discretization although discontinuous methods have

also been introduced for this purpose [35].

2.4 Energy discretization

The linear Boltzmann equation is continuous in energy. Deterministic methods solve

the equation numerically by discretizing the independent phase space variables, in-

cluding energy. This is unlike Monte Carlo, which treats energy as a continuous

variable. Discretizing the energy domain amounts to picking a number of groups in

energy within which all particles behave alike. Since particle behavior is most affected

by material cross sections it is reasonable to want to pick enough groups to adequately

reproduce the cross section data. However, the larger the number of groups the greater

the computational memory required to store the solution. The number of energy bins

required to reproduce the complex energy-dependent shapes of cross section data,

particularly in the resonance region (∼ 0.1-10 MeV), is prohibitive for many materi-

als. The problem then becomes how to get an approximate cross section value for an

energy group when the cross section varies significantly. These problems are tackled

in the multigroup form of the transport equation. To demonstrate the form of the

multigroup approximation we return to the steady state, three-dimensional transport
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equation. We assume non-multiplying media so the fission term is not present in the

following equation:

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω)

=

Emax∫
0

dE ′
∫
4π

dΩ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

+
Q

4π
(r, E,Ω) .

(14)

A finite number, G, of energy groups is chosen, typically ordered with subscripts such

that the highest energy group is denoted E0. The relation between the groups, or

energy bin centers is:

EG−1 < ... < Eg < Eg−1 < ... < E1 < E0 (15)

To give the best possible accuracy, the maximum extent of the energy range covered

by the groups should ensure that no neutrons are present in the physical system at

energies less than the lower bound of the EG bin and conversely at E0. Generally,

particles lose energy as they scatter, so they move upwards in group index number.

The typical exception for neutrons is that neutrons at thermal energies, which equate

to speeds comparable to the thermal motion of particles in the host material, can

kinematically gain energy in collisions, although they do not gain appreciable energy,

such that these effects can be contained within the lowest group or groups, depending

on the required fidelity of the problem. Now, if we define the group angular flux and

the group internal source in the following way,

ψg(r,Ω) =

Eg−1∫
Eg

dEψ(r, E,Ω) , (16)
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and

Qg(r,Ω) =

Eg−1∫
Eg

dEQ(r, E,Ω) , (17)

and integrating the equation over an energy group

Ω · ∇
Eg−1∫
Eg

dEψ(r, E,Ω) +

Eg−1∫
Eg

dEΣt(r, E)ψ(r, E,Ω)

=
G∑

g′=1

Eg−1∫
Eg

dE

Eg′−1∫
Eg′

dE ′
∫
4π

dΩ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

+

Eg−1∫
Eg

dE
Q

4π
(r, E,Ω) ,

(18)

and making the necessary substitutions we have

Ω · ∇ψg(r,Ω) +

Eg−1∫
Eg

dEΣt(r, E)ψ(r, E,Ω)

=
G∑

g′=1

Eg−1∫
Eg

dE

Eg′−1∫
Eg′

dE ′
∫
4π

dΩ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

+
Qg

4π
(r,Ω) .

(19)

The remaining integrals are over a convolution of cross section and flux functions. To

get these in terms of the group angular flux, we multiply these terms by unity, in the

form of the group angular flux definition:
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Ω · ∇ψg(r,Ω) +

[ Eg−1∫
Eg

dEΣt(r, E)ψ(r, E,Ω)

Eg−1∫
Eg

dEψ(r, E,Ω)

]
ψg(r,Ω)

=
G∑

g′=1

∫
4π

dΩ′

[ Eg−1∫
Eg

dE
Eg′−1∫
Eg′

dE ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

Eg′−1∫
Eg′

dE ′ψ(r, E ′,Ω′)

]
ψg′(r,Ω

′)

+
Qg

4π
(r,Ω) .

(20)

More compactly, the multigroup equations can be written

Ω · ∇ψg(r,Ω) + Σ̂t,g(r,Ω)ψg(r,Ω) =
G∑

g′=1

∫
4π

dΩ′Σ̂s,g′→g(r,Ω
′ ·Ω)ψg′(r,Ω

′)

+
Q

4π
(r,Ω) ,

(21)

with the definitions for the multigroup constants

Σ̂t,g(r,Ω) =

[ Eg−1∫
Eg

dEΣt(r, E)ψ(r, E,Ω)

Eg−1∫
Eg

dEψ(r, E,Ω)

]
, (22)

and

Σ̂s,g′→g(r,Ω
′ ·Ω) =

[ Eg−1∫
Eg

dE
Eg′−1∫
Eg′

dE ′Σs(r, E
′ → E,Ω′ ·Ω)ψ(r, E ′,Ω′)

Eg′−1∫
Eg′

dE ′ψ(r, E ′,Ω′)

]
. (23)
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In this form the multigroup equations are an exact representation of the continuous

energy transport equation, if the multigroup constants are known. However as evi-

denced by the above definitions, these quantities depend on the angular flux, which

is the quantity we are aiming to solve for in the transport equation. The approxi-

mation that arises in the energy discretization is made at this point, where instead

of ψ, a weighting function is introduced that is chosen for some application. This

weighting function may take the form of a Watt fission spectrum, or a E−1 slowing-

down spectrum, or some other application-specific choice is made. If the weighting

can be assumed to be separable in energy and angle, the angular dependence can be

taken out of the integral and cancels out, however this is not generally the case. The

accuracy of the multigroup approximation is thus geometry and physics dependent

and the complexity of the derivation of the flux guess and the number of bins hinges

on the desired accuracy in the solution. For the atmospheric application described

here an appropriate spectrum weighing is E−1.

2.5 Spatial discretization

Spatial discretization using the diamond difference relations have been popular since

the early days of discrete ordinates codes. For orthogonal grids the method is simple

to code and to understand, and is second-order accurate. It suffers from shortcom-

ings, however, in particular it can produce negative extrapolated fluxes that can lead

to unphysical results [36, 37]. Although diamond performs quite well in some cir-

cumstances, concerns over the prevalence of negativity in physical quantities led to

investigations of other methods, such as the step approximation, that guaranteed

positivity at the expense of accuracy [38]. Following this, linear-discontinuous spa-

tial discretization schemes were introduced [39], establishing a third-order accurate

technique that was less susceptible to negative fluxes. Additionally this scheme does
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not preserve the diffusion limit, which is necessary for accurate solutions in optically

thick problems [40].

In this section, we examine the limitations and accuracy of the diamond spatial

discretization as compared to a linear discontinuous discretization. It is particularly

relevant to ATMOTRAN that we discuss spatial discretizations because this forms

part of the motivation for the development of a new code. Production codes exist

such as PARTISN which are fully three dimensional spherical (r, θ, φ), however this

code uses spatial diamond differencing, that performs poorly for optically thick and

diffusive mesh cells such as we find in a practical atmospheric problem. To illustrate

some properties of the two dimensional spherical transport equation, we can derive

the diamond difference discretization to the discrete ordinates approximation. The

transport equation has the form

µ

r2

∂

∂r
(r2ψ) +

η

r sin(θ)

∂

∂θ
(sin(θ)ψ) +

1

r

∂

∂µ
[(1− µ2)ψ]− cot(θ)

r

∂

∂ω
(ξψ) + Σψ = S .

(24)

In the following derivation, the discretized angular flux ψi,j,m,` is simplified as ψ,

removing subscripts. Integrating this over the phase space volume
∫
dΩdV we obtain

the finite-difference representation of the transport equation. The source and removal

terms are easy to evaluate since
∫
dΩ = w, the quadrature weight, and

∫
dV = V , the

cell volume. The divergence operator in two-dimensional spherical (r,θ) coordinates

has four terms, derivatives in space and angle ∂
∂r

, ∂
∂θ

, ∂
∂µ

, ∂
∂ω

, and each term can be

expanded using the divergence theorem. Explicitly, the spherical volume element,

and surface elements are

dV = r2 sin(θ)drdθdφ , (25)
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dSr = r2 sin(θ)dθdφ , (26)

and

dSθ = r sin(θ)drdφ . (27)

Along the r-direction the finite-difference term becomes

∫
dΩ

∮
S

ψΩ · êrdSr = 2πwµ

∫
ψr2 sin(θ)dθ

= 2πwµ[r2
i+ 1

2
ψi+ 1

2
− r2

i− 1
2
ψi− 1

2
](cos(2πθj− 1

2
)− cos(2πθj+ 1

2
)) ,

(28)

and for the θ-direction

∫
dΩ

∮
S

ψΩ · êθdSθ = 2πwη

∫
ψr sin(θ)drdφ

= 2πwη(ψj+ 1
2

sin(2πθj+ 1
2
)− ψj− 1

2
sin(2πθj− 1

2
))
[r2

i+ 1
2

2
−
r2
i− 1

2

2

]
= πwη(ψj+ 1

2
sin(2πθj+ 1

2
)− ψj− 1

2
sin(2πθj− 1

2
))
[
r2
i+ 1

2
− r2

i− 1
2

]
.

(29)

The angular derivatives are handled differently. An angular finite-difference method

is assumed, analogous to the spatial finite-difference method, but with undetermined

coefficients α and β, which are then solved for by satisfying particle balance in the

divergenceless case. The coefficients can be expressed by a recursive formula using

the quadrature data. For the µ derivative, the finite-difference term becomes
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∫
dSr

∫
dΩψΩ · n̂µ

= 2π(cos(2πθj− 1
2
)− cos(2πθj+ 1

2
))[r2

i+ 1
2
− r2

i− 1
2
]

∫
dΩψΩ · n̂µ

= 2π(cos(2πθj− 1
2
)− cos(2πθj+ 1

2
))[r2

i+ 1
2
− r2

i− 1
2
](αm+ 1

2
ψm+ 1

2
− αm− 1

2
ψm− 1

2
) .

(30)

Likewise for the ω derivative, the finite-difference term becomes

∫
dSθ

∫
dΩψΩ · n̂ω

= π(sin(2πθj+ 1
2
)− sin(2πθj− 1

2
))[r2

i+ 1
2
− r2

i− 1
2
]

∫
dΩψΩ · n̂ω

= π(sin(2πθj+ 1
2
)− sin(2πθj− 1

2
))[r2

i+ 1
2
− r2

i− 1
2
](βl+ 1

2
ψl+ 1

2
− βl− 1

2
ψl− 1

2
)

(31)

The other two terms in the transport equation are evaluated in the following way,

for a unit cell at (i, j)

∫
dΩ

∫
V

ΣtψdV = wΣtψ2π(cos(2πθj− 1
2
)− cos(2πθj+ 1

2
))

[r3
i+ 1

2

3
−
r3
i− 1

2

3

]
, (32)

and

∫
dΩ

∫
V

SdV = wS2π(cos(2πθj− 1
2
)− cos(2πθj+ 1

2
))

[r3
i+ 1

2

3
−
r3
i− 1

2

3

]
. (33)

Bringing all the terms together, and dividing through by the angular quadrature
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weight w = wm,` the finite-difference form of the transport equation is

2πµ[r2
i+ 1

2
ψi+ 1

2
− r2

i− 1
2
ψi− 1

2
](cos(2πθj− 1

2
)− cos(2πθj+ 1

2
))

+ πη(ψj+ 1
2

sin(2πθj+ 1
2
)− ψj− 1

2
sin(2πθj− 1

2
))
[
r2
i+ 1

2
− r2

i− 1
2

]
+ 2π(cos(2πθj− 1

2
)− cos(2πθj+ 1

2
))[r2

i+ 1
2
− r2

i− 1
2
]
(αm+ 1

2
ψm+ 1

2
− αm− 1

2
ψm− 1

2
)

w

+ π(sin(2πθj+ 1
2
)− sin(2πθj− 1

2
))[r2

i+ 1
2
− r2

i− 1
2
]
(βl+ 1

2
ψl+ 1

2
− βl− 1

2
ψl− 1

2
)

w

+ Σtψ2π(cos(2πθj− 1
2
)− cos(2πθj+ 1

2
))

[r3
i+ 1

2

3
−
r3
i− 1

2

3

]
= 2πS(cos(2πθj− 1

2
)− cos(2πθj+ 1

2
))

[r3
i+ 1

2

3
−
r3
i− 1

2

3

]
.

(34)

There are now eight spatio-angular mesh cell edge fluxes in this equation. By sweeping

the mesh, four of these will be known from prior calculation (or starting directions

or other approximations such as the step approximation). The other four are cast as

expressions involving the cell-averaged angular flux ψi,j and the known quantities in

the following way:

2ψi,j = ψi+ 1
2

+ ψi− 1
2

2ψi,j = ψj+ 1
2

+ ψj− 1
2

2ψi,j = ψm+ 1
2

+ ψm− 1
2

2ψi,j = ψ`+ 1
2

+ ψ`− 1
2

.

(35)

To illustrate the order of accuracy and limitations on the positivity of the diamond

difference method, we can examine a simplified slab equation, with no scattering

source and no internal source

µn
∂

∂x
ψn(x) + Σψn(x) = 0 . (36)
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Rearranging and adding an integrating factor e
xΣ
µ , we have

∂

∂x
ψn(x) +

Σ

µn
ψn(x) =

∂

∂x

[
e
xΣ
µ ψn(x)

]
= 0 . (37)

The solutions to this equation, at points x and x′ are

ψn(x) = Ce−
xΣ
µ (38)

and

ψn(x′) = Ce−
x′Σ
µ , (39)

where C is a constant of integration which can be eliminated from the two equations,

leaving

ψn(x′) = ψn(x)e−
(x′−x)Σ

µ (40)

for x′ > x. In the discretized mesh, if the points x′ and x are taken to be the spatial

mesh cell edges, then ∆x = x′ − x and we have

ψi+1/2,n = ψi−1/2,ne
−∆xΣ

µ . (41)

Expanding the exact solution as a Taylor series about zero, we have

ψi+1/2,n = e−2γψi−1/2 =

[
1− 2γ + 2γ2 − 4

3
γ3 +

4

3
γ4 +O(γ5)

]
ψi−1/2,n , (42)

where γ = ∆xΣ
2|µ| . For the diamond approximation we can integrate the slab equation

over the spatial variable of a single cell

xi+1/2∫
xi−1/2

dx

[
µn

∂

∂x
ψn(x) + Σ(x)ψn(x) = 0

]
, (43)
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which in compact notation can be written

µn(ψi+1/2,n − ψi−1/2,n) + ∆xiΣiψi,n = 0 . (44)

Now we can connect the three ψ values by a relation in order to solve this equation.

With the diamond difference relation

ψi,n =
1

2
(ψi+1/2,n + ψi−1/2,n) , (45)

we can combine the above two equations to arrive at

ψi+1/2,n =
1− γ
1 + γ

ψi−1/2,n , (46)

and so we find that if γ > 1 there will be negative flux values from this extrapolation.

Rearranging, the condition on γ, to avoid negative fluxes, becomes

∆x < 2µminλ , (47)

where λ = Σ−1 physically represents the mean free path. The µmin here is the smallest

(closest to zero) value in the quadrature root set (represented in Figure 9). This

becomes a difficult condition to meet in many problems. For example, an optically

thick problem where λ is small will require small mesh cell sizes, as will any problems

that require high order SN solutions.

Examining the result of the diamond difference method we can observe that it

preserves the first three terms of the exact solution (to second order, O(γ2)). The

Taylor expansion of the diamond difference approximation is

ψi+1/2,n =
1− γ
1 + γ

ψi−1/2,n =

[
1− 2γ + 2γ2 − 2γ3 +O(γ4)

]
ψi−1/2,n (48)
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Figure 9: Diagram of one-dimensional slab geometry.

While the diamond difference approximation preserves the first two terms O(γ2) of

the exact solution, the approximation is prone to negative fluxes for larger cells. The

appearance of negative fluxes can cause unphysical oscillations in the solution, but the

simplicity of the diamond differencing is appealing and many fix-up routines have been

developed over the years to permit the use of diamond differencing when modified by

these fix-ups. This process can degrade the order of accuracy. One of these methods

is to use a first-order accurate O(γ) approximation called the step approximation in

cases that produce a negative flux. This method, referencing the geometry of a 1D

slab, uses the known (incident) cell edge flux to calculate a cell-centered flux, and

then sets the unknown extrapolated edge equal to the cell-centered value.

As a comparison, the step approximation only preserves the first order of the true

solution O(γ) so it is expected to be less accurate, but with the benefit of guaranteeing

positive flux results. The Taylor expansion of the step approximation is

ψi+1/2,n =
1

1 + 2γ
ψi−1/2,n =

[
1− 2γ + 4γ2 − 8γ3 +O(γ4)

]
ψi−1/2,n . (49)
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2.6 Discontinuous methods

While the diamond difference scheme requires continuity on the mesh boundaries,

discontinuous spatial differencing methods relax that requirement by allowing dis-

continuities at the spatial mesh boundary by, in the case of linear discontinuous (LD)

methods, applying a linear functional representation within the cell [41]. In LD, the

flux in a cell i for angle index n is represented by

ψ =
1

∆x

[
ψL(xR − x) + ψR(x− xL)

]
. (50)

A diagram depicting this situation is shown in Figure 10.

Figure 10: Flux notation in the linear discontinuous spatial differencing method.

To evaluate the flux for example in the µ > 0 direction of travel, we plug the

linear representation into the sourceless slab transport equation from earlier

µn
∂

∂x
ψn(x) + Σψn(x) = 0 , (51)

and integrate over the mesh cell, using weighting functions 1 and x−xL. This results
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in two equations describing the two unknowns ψL and ψR

(
µ+

Σ∆

x

)
ψi,R +

Σ∆x

2
ψi,L = µψi−1,R , (52)

and

(−3µ+ Σ∆x)ψi,L + (3µ+ 2Σ∆x)ψi,R = 0 . (53)

Solving the second of these equations for ψi,L, inserting this into the first equation,

and rearranging, we get

ψi,R =

[
3− 2γ

2γ2 + 4γ + 3

]
ψi,L . (54)

Again expanding this as a Taylor series, we have

ψi,R =

[
3− 2γ

2γ2 + 4γ + 3

]
ψi,L =

[
1− 2γ + 2γ2 − 4

3
γ3 +

4

9
γ4 +O(γ5)

]
ψi,L , (55)

which demonstrates third-order (O(γ3)) accuracy of the LD method, with respect

to the exact solution of our previous slab problem, at the rightmost cell boundary

when the direction of neutron travel is to the right. The cell-averaged scalar flux also

exhibits third-order accuracy in LD schemes. In summary, LD improves the accuracy

of the solution over the diamond methods and is less prone, though not immune, to

negative fluxes at a higher computational cost, as the number of unknowns per cell is

doubled. The LD method has been successfully extended to some curvilinear systems

and multidimensional systems [23].
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2.7 TWOTRAN SPHERE

TWOTRAN [18] was one of the first general purpose two-dimensional discrete or-

dinates codes. Although some two-dimensional geometries could be modeled with

TWOTRAN, the two-dimensional spherical-polar system, and specifically the treat-

ment of two angular derivatives, required complexities of implementation that were

not anticipated in the TWOTRAN development. TWOTRAN SPHERE [1] was a

separate code designed to solve the transport equation in this system. To our knowl-

edge, no other code has been since developed to accomplish this. Limitations of

TWOTRAN codes include the exclusive use of diamond spatial differencing, since

discontinuous methods had not been developed yet, and the use of initialization an-

gular fluxes to start the angular recursion derived from the step approximation. These

limitations are eliminated with the development of the ATMOTRAN discretizations.

TWOTRAN SPHERE was an important influence to ATMOTRAN since it carefully

examined the requirements of directionality in sweeping the spatio-angular mesh. We

provide the salient details in this section.

The authors of TWOTRAN SPHERE noticed difficulties in producing solutions

that were homogeneous in the polar coordinate and traced the effect back to a re-

quirement imposed by the characteristic equations of particle motion in this geometry.

Sweeping the mesh in the direction of particle motion requires consideration of how

straight-line particle motion varies in terms of the angular coordinates. Returning to

the conservation form of the transport equation we may examine these characteristic

equations in detail. Evaluating the derivative terms we arrive at

∇ · Ωψ = µ
∂ψ

∂r
+
η

r

∂ψ

∂θ
+

1− µ2

r

∂ψ

∂µ
− ξ cot(θ)

r

∂ψ

∂ω
. (56)

Making a change of variables for the second angular derivative η = (1 − µ2)1/2κ,
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where κ = cos(ω), we have

∇ · Ωψ = µ
∂ψ

∂r
+
η

r

∂ψ

∂θ
+

1− µ2

r

∂ψ

∂µ
+

(1− µ2)1/2 cot(θ)(1− κ2)

r

∂ψ

∂κ
. (57)

This equation is now in the form of a total derivative with respect to the distance s

in the direction Ω

∇ · Ωψ =
∂r

∂s

∂ψ

∂r
+
∂θ

∂s

∂ψ

∂θ
+
∂µ

∂s

∂ψ

∂µ
+
∂κ

∂s

∂ψ

∂κ
, (58)

such that

∂r

∂s
= µ,

∂µ

∂s
=

1− µ2

r
,

∂θ

∂s
=
η

r
,

∂κ

∂s
=

(1− µ2)1/2 cot(θ)(1− κ2)

r
. (59)

Focusing on (r, µ)-space, we combine the two relations, eliminating ∂s we get

∂r

∂µ
=

µr

(1− µ2)
, (60)

which can be rearranged

∂r

r
=

µdµ

(1− µ2)
, (61)

and integrated to give

ln r + c′ = −1

2
ln(1− µ2) + c′′ , (62)

where c terms are constants of integration and can be combined into a single constant.
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Taking the exponential of each side, we have

r = c1(1− µ2)−1/2 , (63)

and rearranging,

r(1− µ2)1/2 = c1 , (64)

as the characteristic equation of motion in this plane. Similarly, equating the (θ, κ)

terms, we find

∂θ

∂κ
=

κ

cot(θ)(1− κ2)
, (65)

which can be rearranged

cot(θ)dθ =
κdκ

(1− κ2)
, (66)

and integrated to give

ln sin(θ) + c′ = −1

2
ln(1− κ2) + c′′ . (67)

Taking the exponential of each side, we have

sin(θ) = c2(1− µ2)−1/2 , (68)

and rearranging, we have

sin(θ)(1− κ2)1/2 = c2 , (69)

as the characteristic equation of motion in this plane. For the integrated equations,

c1 and c2 are indefinite constants of integration. Figure 11 shows projections of these
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characteristic equations in the relevant coordinates, where here we have switched back

to η for consistency with the code derivation presented in the following chapter.

Figure 11: (Left) Sweeping (r, µ). (Right) Sweeping (θ, η).

For one-dimensional codes, typically the spatial sweep starts at the outer shell of

the sphere rMAX , and with the most negative angle (usually a starting direction of

µ = −1), and then sweeps the spatial mesh inward for each angle and the angular

mesh with increasing µ values. This follows paths A-B in Figure 11. The progres-

sion in (η, θ) is more complicated than the progression in (µ, r), however, and for

TWOTRAN SPHERE the following angular sweep method is necessary to produce

the correct results. For full spheres, they start at a spatial cell with θj+1/2 = π for

negative η directions, moving downward in η until θj−1/2 = 0. These are paths D-E

in Figure 11. Once all negative η values are computed to θj−1/2 = 0, the sweep pro-

ceeds for all paths F and then C. With this procedure of following the characteristic

paths, TWOTRAN SPHERE can obtain solutions homogeneous in polar angle. The

TWOTRAN SPHERE angular sweep followed the following ordering in Figures 12

and 13, following the characteristic plots in Figure 11, and is shown here for an S6

angular discretization.

These sweeps, both in space and angle, are slightly modified for ATMOTRAN

given that zero-weighted starting directions supplant the step-initialization directions,
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Figure 12: TWOTRAN SPHERE Sweeping the angular mesh for small polar angle

and for the bilinear method we find the spatial sweep should start around π/2 rather

than at π. This requires an iteratively-lagged value to be stored with which to begin

the computation. Details of these sweeps are provided in Chapter 4.
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Figure 13: TWOTRAN SPHERE Sweeping the angular mesh for large polar angle
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2.8 Solution methods

Neutron transport problems are solved either by deterministic or stochastic meth-

ods. Stochastic methods include the Monte Carlo method, which tracks individual

simulated particles and computes probabilities of scattering and absorption events,

creating a statistically average solution. Deterministic methods algebraically solve the

transport equation either analytically, in the case that a solution exists, or through

discretization and direct inversion or iterative methods. Analytical solutions do not

exist for all but the simplest physical problems, and direct inversion is typically not

attempted for many practical problems either because it is not possible to create the

system or because the full system requires too much computational storage. We are

then left with iterative methods, which form the most commonly encountered class of

deterministic methods of solution. To motivate iterative methods of solution we begin

by considering the steady-state, monoenergetic, discrete ordinates neutron transport

equation in operator notation

Lψ = MSDψ + q . (70)

In this form, L represents the discretized streaming and removal operator for all

angles in the approximation. The operator M maps scalar flux moments onto angular

flux moments, where for isotropic problems this operator is (4π)−1 and anisotropy is

handled by expansion in the spherical harmonics. The operator S applies scattering

cross sections, and the operator D maps the angular flux moments onto scalar flux

moments, φ = Dψ, which amounts to summing up the angular fluxes weighting by

quadrature, and applying spherical harmonic expansions for anisotropic problems.
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Combining these relations we can write

(L−MSD)ψ = q , (71)

which is a problem of the general form

Ax = b , (72)

where in relation to the transport equation, the operator A represents all particle loss

terms and all sources of particles from scattering and other physical processes, while

b is the external source. The operator A can be written generally as a combination

of two generalized operators, A = M− S such that

(M− S)x = b , (73)

and expanding this

Mx = b+ Sx , (74)

and adding Mx terms summing to unity, we have

Mx = b+ Sx+ Mx−Mx

= b− (M− S)x+ Mx

= b−Ax+ Mx

(75)

Inverting to solve for x we find

x = M−1(b−Ax) + x , (76)
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and we can cast this in iterative form if we make an initial guess for x0

xn+1 = M−1(b−Axn) + xn . (77)

Defining a residual rn = b−Axn, which would be zero if our solution is exactly correct

xn = x,

xn+1 = M−1rn + xn . (78)

We began by setting A = M − S. The exact form this splitting takes depends on

the iterative method to be used. There is not necessarily a best method, and the

efficacy of the iterative method depends on the parameters of the problem, however

in general we seek to reduce the residual to near zero as quickly as possible. This

implies that we want the fewest iterations and the smallest computational time per

iteration. There are many iterative methods ranging from simple intuitive methods

that should have very low computational time per iteration but take more iterations

to complete, and more complex methods that converge in fewer iterations but require

additional calculations (in particular costly matrix inversions) at each iteration. There

are two main types of iterative methods, stationary and Krylov. Stationary methods

methods include Jacobi and Gauss-Seidel, both of which decompose A into diagonal

components for easier inversion. Krylov subspace methods include the conjugate

gradient and generalized minimal residual methods, which seek to minimize a residual

by spanning an expanding basis of products of the initial residual and successive

inverse matrix powers.

The simplest method, Richardson iteration (also called source iteration) has M =

I and S = I −A, where I is the identity operator. With these substitutions, source

iteration is represented by

xn+1 = rn + xn . (79)
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If we define the difference between the solution at an iteration xn and the true solution

x as the error εn = x− xn, then with source iteration we have

εn+1 = (I−A)εn , (80)

such that for an initial guess x0 the error at iteration n+ 1 is

εn+1 = (I−A)n+1ε0 , (81)

and so long as the norm ‖ I−A ‖< 1, then the error will approach zero and the method

will converge, meaning that it approaches the true solution. The source iteration

method will converge quickly if ‖ I−A ‖� 1 and slowly if ‖ I−A ‖→ 1. The latter

case is true for physical systems that are dominated by scattering Σs ≈ Σt in some or

all regions of the problem. A need to solve such problems has spurred development of

methods to improve the source iteration convergence rate by acceleration methods,

reviewed in detail elsewhere [42].

To relate the above derivation back to the physical quantities in operator notation,

we remark that source iteration can be expressed in the following series of calculations.

First, we start with an initial guess of the scalar flux φ0 (which, for example, can be

uniformly zero or one for all mesh cells), and solve the linear expression

Lψ1 = MSφ0 + q (82)

for ψ1. We then calculate the first iteration scalar flux φ1 = Dψ1, calculate the

residual ε1 = ||φ1 − φ0||, check this against the convergence tolerance, and repeat

until the tolerance is satisfied. The general form of the source iteration solution at
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iteration n, becomes

Lψn+1 = MSφn + q

φn+1 = Dψn+1

εn+1 = ||φn+1 − φn|| .

(83)
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3 Bilinear Discontinuous Discretization in Two-

Dimensional Spherical-Polar (r,θ) Coordinates

In this chapter we begin with the steady-state two-dimensional spherical-polar (r,θ)

transport equation and proceed to derive a discontinuous-Galerkin finite element

method (DFEM) for its solution. The bilinear basis approximation and terminology

is discussed. Each term in the transport equation is considered in detail, proceeding

through the DFEM to the formulation of the equations that arise from this method.

The method of angular redistribution and the associated weighted-diamond differenc-

ing (WDD) for two angular dimensions is derived, along with the equations for the

zero-weighted starting directions. This chapter is confined to the general method of

solution, while specific details of the ATMOTRAN implementation of this method

are left to Chapter 4.

3.1 Form of the transport equation

The transport equation can be written in two-dimensional spherical coordinates, in

conservation form, as

µ

r2

∂

∂r
(r2ψ) +

η

r sin(θ)

∂

∂θ
(sin(θ)ψ)

+
1

r

∂

∂µ
[(1− µ2)ψ]− cot(θ)

r

∂

∂ω
(ξψ) + Σψ = S .

(84)
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For brevity we are eliminating the energy dependence from this derivation since we are

concerned with the details of the spatial and angular differencing. The energy depen-

dence can be reintroduced following the methods in the previous chapter. Aligning

the arguments of the spatial differential terms to prepare for integration and use of

the divergence theorem, we can write

µ

r2 sin(θ)

∂

∂r
(r2 sin(θ)ψ) +

η

r3 sin(θ)

∂

∂θ
(r2 sin(θ)ψ)

+
1

r

∂

∂µ
[(1− µ2)ψ]− cot(θ)

r

∂

∂ω
(ξψ) + Σψ = S .

(85)

The components of the directional unit vector are µ, η, and ξ, and are related in the

conventional definition by

η =
√

1− µ2 cos(ω)

ξ =
√

1− µ2 sin(ω)

1 = µ2 + η2 + ξ2 .

(86)

To get the angular derivatives into a finite-difference form we follow the method

of Carlson, casting these terms as functions of quadrature weights and directions

with undetermined coefficients and then finding the coefficients by satisfying particle

conservation. For the two angular derivatives these approximations are

∂

∂µ
[(1− µ2)ψ] ≈

αm+1/2

wm
ψm+1/2,` −

αm−1/2

wm
ψm−1/2,`

∂

∂ω
(ξψ) ≈

βm,`+1/2

wm,`
ψm,`+1/2 −

βm,`−1/2

wm,`
ψm,`−1/2 .

(87)

Also, the angular cell flux terms are put into a finite-difference scheme. This creates

an angular mesh grid on which to solve. For example, the flux at spatial cell (i, j) also
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sits at angular cell indices (m, `) as shown in Figure 7. We recognize that angular

mesh cell edges exist akin to spatial mesh edges. For example an upper edge of

angular cell m has edge flux ψm+1/2. We cast the equation into the following form

µ

r2 sin(θ)

∂

∂r
(r2 sin(θ)ψ) +

η

r3 sin(θ)

∂

∂θ
(r2 sin(θ)ψ)

+
1

r

[
αm+1/2

wm
ψm+1/2,` −

αm−1/2

wm
ψm−1/2,`

]
− cot(θ)

r

[
βm,`+1/2

wm`
ψm,`+1/2 −

βm,`−1/2

wm`
ψm,`−1/2

]
+ Σψ = S .

(88)

This form of the equation still represents particle balance. The third and fourth terms

are the angular redistribution terms, which represent gain and loss of particles into

angular mesh cells during straight line trajectories through the curvilinear spatial

mesh. It is important that the angular redistribution terms conserve neutrons since

they account for a purely geometrical effect. Satisfying particle conservation amounts

to ensuring that these terms with undetermined coefficients neither create nor destroy

particles. As is done typically, we apply a test case of divergenceless particle flow

satisfying ∇ · (Ωψ) = 0 (here we chose ψ = S/Σ) and equate the remaining terms (µ

with α, η with β) to find two recurrence relations

αm+1/2 = αm−1/2 − 2µmwm

βm,`+1/2 = βm,`−1/2 + ηm,`wm` .

(89)

The boundary conditions are specific to the problem. Radially there are two bound-

aries in our intended application. The lower radial bound is along the surface of

the Earth. For neutrons this could be treated as a reflective surface or an absorbing

surface. The upper radial bound is actually in a vacuum, and a vacuum bound-

ary condition is appropriate. No exiting neutrons can scatter back in, and there is
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no source of neutrons from outside the geometry. The boundary conditions can be

described in the following way.

ψb(R, θ, µ, η, E) = 0, µ < 0

ψb(0, θ, µ, η, E) = 0, µ > 0 .

(90)

In the theta direction, we model only a hemisphere, from 0 to π radians. The bound-

aries are reflective, and are calculated using an initial guess, when starting on the

reflective boundary, and updating this guess with every iteration. The reflective

boundary flux lags the solution by one iteration.

ψb(r, θ = 0, µ, η, E) = ψ(r, θ = 0, µ,−η, E), η < 0

ψb(r, θ = π, µ, η, E) = ψ(r, θ = 0, µ,−η, E), η > 0 .

(91)

3.2 Basis function expansion

With the transport equation in this form we can now work toward a DFEM spa-

tial representation. This includes defining vector basis functions to relate quantities

within a spatial cell, allowing expansion of quantities in terms of these basis functions,

and integrating the terms in the transport equation over phase space volume for indi-

vidual cells. First we define these basis functions, and then we proceed through the six

terms in the above transport equation to obtain the DFEM representation. Weighted

residual methods such as this are often employed to solve differential equations for

which no practical analytical solution exists, to include the transport equation in

many real world cases. A brief background of the method follows, limited to what

is essential to understand the derivation presented in this chapter. To illustrate the

method of weighted residuals, a linear differential equation may be written
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L(u(x)) = f(x) , (92)

where L is a linear differential operator. An approximate solution ũ(x) satisfies

ũ(x) =
N∑
i=1

uiφi(x) . (93)

The approximate solution generates a residual

R(x) = Lũ(x)− f(x) = L
( N∑
i=1

uiφi(x)
)
− f(x) 6= 0 . (94)

Weighted residual methods are based on minimizing the value of this residual by

utilizing a set of N weighting functions and integrating the product over the problem

domain. This amounts to solving i = 1, N equations of the form

b∫
a

dxwi(x)R(x) = 0 . (95)

In the Galerkin method (this method is also called Bubnov-Galerkin to distinguish

it from other variants), the weighting function equals the guess solution (wi = φi).

This being the case, if the true solution can be described by a linear combination

of the basis functions then the approximate solution will be exact. Both continuous

(cG) and discontinuous Galerkin (dG) methods may be used in the solution of the

transport equation. Both methods approximate the solution in a finite physical cell

by a linear combination of basis functions, which are piecewise polynomials. cG re-

quires the polynomials to be continuous at the mesh cell boundaries, while dG allows

for discontinuities at these boundaries. dG methods are generally better at resolving

flux gradients that are steep, and so are considered more robust to a general set of
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physical problems, however dG methods have a greater number of unknowns requir-

ing more computation. cG methods have been applied to two-dimensional diffusion

problems [43], and successfully to transport problems, sometimes employing Petrov-

Galerkin methods [44]. cG is the is the diamond difference spatial discretization

employed in TWOTRAN-SPHERE, for example. dG was implemented for neutron

transport and presented with some advantages as an alternative to cG [39] and has

since been applied by many other researchers.

The starting point of the dG method is the choice of polynomial. In this derivation,

and for the results in this dissertation, we employ a linear representation in two

dimensions. Higher order polynomials are of course possible (e.g. quadratic) and

can allow for more accurate solutions at the cost of greater complexity. The present

bilinear discontinuous (BLD) method uses two-dimensional cardinal basis functions

that can be defined in the following way for spherical coordinates. The spatial cell

computational grid is defined in Figure 14. The four corners of the spatial mesh cell

are denoted by indices 1 to 4. Surfaces in the polar angle direction are named T(op)

and B(ottom) with the unit vector in the theta direction pointing from B to T, In

the radial direction the surfaces are named L(eft) and R(ight) with the unit vector

pointing from L to R.

The bilinear basis functions are indexed at each of the four corners:

B1(r, θ) =

(
rR − r

∆r

)(
θT − θ

∆θ

)
B2(r, θ) =

(
r − rL

∆r

)(
θT − θ

∆θ

)
B3(r, θ) =

(
r − rL

∆r

)(
θ − θB

∆θ

)
B4(r, θ) =

(
rR − r

∆r

)(
θ − θB

∆θ

)
.

(96)
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Figure 14: Schematic of a computational cell.

The angular flux can be expanded in terms of these basis equations. For example

the weighted residual approximation to the angular flux in a cell (i, j) with particle

direction (m, `) is

ψ̃ijm`(r, θ) =
4∑

k=1

ψkijmlBkij(r, θ) . (97)

3.3 The streaming term

In two-dimensional spherical polar (r,θ) coordinates, the gradient is

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
. (98)

The first two terms in the conservation form of the transport equation (Equation 85)

can be cast in a form reflecting the above gradient expression. Using µ = Ω · êr and
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η = Ω · êθ, we have

µ

r2 sin(θ)

∂

∂r
(r2 sin(θ)ψ) +

η

r3 sin(θ)

∂

∂θ
(r2 sin(θ)ψ) + ...

=
1

r2 sin(θ)

[
Ω · ∇(r2sinθψ)

]
+ ... .

(99)

This rearrangement allows for expanding this expression with the divergence theorem,

which allows us to separate the contributions from what we will call streaming and

gradient effects. Multiplying the transport equation by the basis and integrating over

the cell volume, this term can be written

∫
1

r2 sin(θ)
Ω · ∇(r2sinθψ)BdV = Ω ·

∫
∂E

n̂ψ̃BdA−Ω ·
∫
E

ψ̃∇BdV . (100)

The second term on the right-hand side of this equation represents the volumetric

term of the spatial gradient, and we refer to this the gradient term. The first term is

the surface integral term of the spatial gradient and we refer to this as the streaming

term. We will deal with expanding this streaming term presently. For reference we

also have the physical volume and surface area elements

dV = r2 sin(θ)drdθ

dAµ = r2 sin(θ)dθ

dAη = r sin(θ)dr ,

(101)

which follow from the geometrical definitions in Figure 15. We find that a physical cell

in the spherical-polar geometry, when normalized by 2π for the azimuthal dimension,

has a surface area in the outward µ direction of r2 sin(θ)dθ and in the η direction of

r sin(θ)dr.
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Figure 15: Dimensions of the physical unit cell in spherical polar coordinates.

Each integration over the element E (or surface ∂E) amounts to an integral in

the radial direction added to an integral in the polar direction. Considering B1(r, θ),

for example, the streaming term becomes

Ω ·
∫
∂E

n̂ψ̃B1dA

= Ω ·
∫ rR

rL

n̂Bψ̃B(θB)B1(θB)r sin(θB)dr

+ Ω ·
∫ θT

θB

n̂Lψ̃L(rL)B1(rL)r2
L sin(θ)dθ .

(102)

B1(r, θ) is unity at point 1 on the mesh cell and is zero at the other three points.

On the bottom and left surfaces, B1(r, θ) will have linear dependence. The angular

fluxes along these surfaces can be written as

ψ̃B = ψ̃1BB1(θB) + ψ̃2BB2(θB) (103)
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and

ψ̃L = ψ̃1LB1(rL) + ψ̃4LB4(rL) , (104)

where

B1(r, θB) =

(
rR − r

∆r

)
, (105)

B2(r, θB) =

(
r − rL

∆r

)
, (106)

and

B1(rL, θ) =

(
θT − θ

∆θ

)
, (107)

B4(rL, θ) =

(
θ − θB

∆θ

)
. (108)

As defined in the computational cell, the following relations hold

Ω · n̂B = Ω · −êθ = −η

Ω · n̂T = Ω · êθ = η

Ω · n̂L = Ω · −êr = −µ

Ω · n̂R = Ω · êr = µ .

(109)

The resulting integration for the B1(r, θ) term can now be evaluated. Note that in

the final step the integrals have been assigned the designation Mx. The solutions of

the individual integrals are tabulated in Appendix A. For B1(r, θ) we have
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Ω·
∫ rR

rL

n̂Br sin(θB)ψ̃B(θB)B1(θB)dr + Ω ·
∫ θT

θB

n̂Lr
2
L sin(θ)ψ̃L(rL)B1(rL)dθ

= −η sin(θB)
1

(∆r)2

[(∫ rR

rL

drr(rR − r)(rR − r)ψ̃1B

)
+

(∫ rR

rL

drr(r − rL)(rR − r)ψ̃2B

)]
− µr2

L

1

(∆θ)2

[(∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)ψ̃1L

)
+

(∫ θT

θB

dθ sin(θ)(θ − θB)(θT − θ)ψ̃4L

)]
= −η sin(θB)

(∆r)2
(M9ψ̃1B +M10ψ̃2B)− µr2

L

(∆θ)2
(M4ψ̃1L +M5ψ̃4L) ,

(110)

for B2(r, θ)

Ω·
∫ rR

rL

n̂Br sin(θB)ψ̃B(θB)B2(θB)dr + Ω ·
∫ θT

θB

n̂Rr
2
R sin(θ)ψ̃R(rR)B2(rR)dθ

= −η sin(θB)
1

(∆r)2

[(∫ rR

rL

drr(rR − r)(r − rL)ψ̃1B

)
+

(∫ rR

rL

drr(r − rL)(r − rL)ψ̃2B

)]
+ µr2

R

1

(∆θ)2

[(∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)ψ̃2R

)
+

(∫ θT

θB

dθ sin(θ)(θ − θB)(θT − θ)ψ̃3R

)]
= −η sin(θB)

(∆r)2
(M10ψ̃1B +M11ψ̃2B) +

µr2
R

(∆θ)2
(M4ψ̃2R +M5ψ̃3R) ,

(111)
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for B3(r, θ)

Ω·
∫ rR

rL

n̂T r sin(θT )ψ̃T (θT )B3(θT )dr + Ω ·
∫ θT

θB

n̂Rr
2
R sin(θ)ψ̃R(rR)B3(rR)dθ

= η sin(θT )
1

(∆r)2

[(∫ rR

rL

drr(r − rL)(r − rL)ψ̃3T

)
+

(∫ rR

rL

drr(r − rL)(rR − r)ψ̃4T

)]
+ µr2

R

1

(∆θ)2

[(∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)ψ̃2R

)
+

(∫ θT

θB

dθ sin(θ)(θ − θB)(θ − θB)ψ̃3R

)]
=
η sin(θT )

(∆r)2
(M11ψ̃3T +M10ψ̃4T ) +

µr2
R

(∆θ)2
(M5ψ̃2R +M6ψ̃3R) ,

(112)

and for B4(r, θ)

Ω·
∫ rR

rL

n̂T r sin(θT )ψ̃T (θT )B4(θT )dr + Ω ·
∫ θT

θB

n̂Lr
2
L sin(θ)ψ̃L(rL)B4(rL)dθ

= η sin(θT )
1

(∆r)2

[(∫ rR

rL

drr(rR − r)(r − rL)ψ̃3T

)
+

(∫ rR

rL

drr(rR − r)(rR − r)ψ̃4T

)]
− µr2

L

1

(∆θ)2

[(∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)ψ̃1L

)
+

(∫ θT

θB

dθ sin(θ)(θ − θB)(θ − θB)ψ̃4L

)]
=
η sin(θT )

(∆r)2
(M10ψ̃3T +M9ψ̃4T )− µr2

L

(∆θ)2
(M5ψ̃1L +M6ψ̃4L) .

(113)

Combining the terms we arrive at
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η

(∆r)2



− sin(θB)M9 − sin(θB)M10 0 0

− sin(θB)M10 − sin(θB)M11 0 0

0 0 sin(θT )M11 sin(θT )M10

0 0 sin(θT )M10 sin(θT )M9





ψ̃1B

ψ̃2B

ψ̃3T

ψ̃4T



+
µ

(∆θ)2



−r2
LM4 0 0 −r2

LM5

0 r2
RM4 r2

RM5 0

0 r2
RM5 r2

RM6 0

−r2
LM5 0 0 −r2

LM6





ψ̃1L

ψ̃2R

ψ̃3R

ψ̃4L


,

(114)

which can be written in matrix form as

ηVη



ψ̃1B

ψ̃2B

ψ̃3T

ψ̃4T


+ µVµ



ψ̃1L

ψ̃2R

ψ̃3R

ψ̃4L


, (115)

where

Vη =
1

(∆r)2



− sin(θB)M9 − sin(θB)M10 0 0

− sin(θB)M10 − sin(θB)M11 0 0

0 0 sin(θT )M11 sin(θT )M10

0 0 sin(θT )M10 sin(θT )M9


, (116)

and
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Vµ =
1

(∆θ)2



−r2
LM4 0 0 −r2

LM5

0 r2
RM4 r2

RM5 0

0 r2
RM5 r2

RM6 0

−r2
LM5 0 0 −r2

LM6


. (117)

Depending on the sweep directions, two of the angular fluxes denoted by ψ̃, also

known as numerical fluxes, are assigned upwind values from neighboring spatial mesh

cells. These upwind values, when multiplied by corresponding terms in the matrices

µVµ and ηVη, will be negative. These negative terms are moved to the right hand

side of the transport equation, essentially becoming boundary sources on the entering

surface of the spatial mesh cell. The sweep-direction-dependent flux values at each

corner are shown in Table 1 for combinations of angular polarity. For boundary cells,

the upwind fluxes become boundary fluxes.

Table 1: Sweep-direction-dependent flux values in the streaming term

η > 0 η < 0 µ > 0 µ < 0

ψ̃1B ψ4,i,j−1 ψ1,i,j - -

ψ̃2B ψ3,i,j−1 ψ2,i,j - -

ψ̃3T ψ3,i,j ψ2,i,j+1 - -

ψ̃4T ψ4,i,j ψ1,i,j+1 - -

ψ̃1L - - ψ2,i−1,j ψ1,i,j

ψ̃4L - - ψ3,i−1,j ψ4,i,j

ψ̃2R - - ψ2,i,j ψ1,i+1,j

ψ̃3R - - ψ3,i,j ψ4,i+1,j
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3.4 The gradient term

The gradient term is as follows, retaining the negative sign from the earlier equation

so that the result can be simply added into the resultant transport equation

−Ω ·
∫
E

ψ̃∇BdV , (118)

which expands to

−Ω ·
∫
E

ψ̃

[
r̂
∂B

∂r
+
θ̂

r

∂B

∂θ

]
r2 sin(θ)drdθ . (119)

Recalling the approximation to the angular flux, ψ̃ =
∑4

i=1 ψiBi, and taking the case

of B1(r, θ) through B4(r, θ) as the weighting functions, four equations result

−Ω ·
∫ rR

rL

dr

∫ θT

θB

dθ sin(θ)
4∑
i=1

ψiBi

[
− r2r̂

∆r∆θ
(θT − θ)−

rθ̂

∆r∆θ
(rR − r)

]
(120)

−Ω ·
∫ rR

rL

dr

∫ θT

θB

dθ sin(θ)
4∑
i=1

ψiBi

[
r2r̂

∆r∆θ
(θT − θ)−

rθ̂

∆r∆θ
(rR − r)

]
(121)

−Ω ·
∫ rR

rL

dr

∫ θT

θB

dθ sin(θ)
4∑
i=1

ψiBi

[
r2r̂

∆r∆θ
(θT − θ) +

rθ̂

∆r∆θ
(rR − r)

]
(122)

−Ω ·
∫ rR

rL

dr

∫ θT

θB

dθ sin(θ)
4∑
i=1

ψiBi

[
− r2r̂

∆r∆θ
(θT − θ) +

rθ̂

∆r∆θ
(rR − r)

]
.

(123)
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Evaluating the vector dot products and inserting the angular flux approximation and

the basis, the B1 term becomes

= µ
1

∆r∆θ

[(∫ rR

rL

drr2

(
rR − r

∆r

)∫ θT

θB

dθ sin(θ)

(
θT − θ

∆θ

)
(θT − θ)

)
ψ1

+

(∫ rR

rL

drr2

(
r − rL

∆r

)∫ θT

θB

dθ sin(θ)

(
θT − θ

∆θ

)
(θT − θ)

)
ψ2

+

(∫ rR

rL

drr2

(
r − rL

∆r

)∫ θT

θB

dθ sin(θ)

(
θ − θB

∆θ

)
(θT − θ)

)
ψ2

+

(∫ rR

rL

drr2

(
rR − r

∆r

)∫ θT

θB

dθ sin(θ)

(
θ − θB

∆θ

)
(θT − θ)

)
ψ4

]
+η

1

∆r∆θ

[(∫ rR

rL

drr(rR − r)
(
rR − r

∆r

)∫ θT

θB

dθ sin(θ)

(
θT − θ

∆θ

))
ψ1

+

(∫ rR

rL

drr(rR − r)
(
r − rL

∆r

)∫ θT

θB

dθ sin(θ)

(
θT − θ

∆θ

))
ψ2

+

(∫ rR

rL

drr(rR − r)
(
r − rL

∆r

)∫ θT

θB

dθ sin(θ)

(
θ − θB

∆θ

))
ψ3

+

(∫ rR

rL

drr(rR − r)
(
rR − r

∆r

)∫ θT

θB

dθ sin(θ)

(
θ − θB

∆θ

))
ψ4

]
.

(124)

The other three terms are similar, swapping out the relevant basis functions. All

together, the gradient matrices can be expressed as the sum of two matrix terms

Lµ =
1

(∆r)2(∆θ)2



M7M4 M8M4 M8M5 M7M5

−M7M4 −M8M4 −M8M5 −M7M5

−M7M5 −M8M5 −M8M6 −M7M6

M7M5 M8M5 M8M6 M7M6


(125)

and
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Lη =
1

(∆r)2(∆θ)2



M9M12 M10M12 M10M13 M9M13

M10M12 M11M12 M11M13 M10M13

−M10M12 −M11M12 −M11M13 −M10M13

−M9M12 −M10M12 −M10M13 −M9M13


. (126)

The gradient term of the transport equation can now be expressed in a compact

form

µLµψ + ηLηψ . (127)

As a final comment, unlike the streaming term, the gradient term does not change

with angular sweep direction.

3.5 The angular redistribution term

From Equation 88, we begin with the angular redistribution terms, where the flux is

expanded in terms of the basis

1

r

[
αm+1/2

wm
ψ̃m+1/2 −

αm−1/2

wm
ψ̃m−1/2

]
− cot(θ)

r

[
β`+1/2

wm`
ψ̃`+1/2 −

β`−1/2

wm`
ψ̃`−1/2

]
.

(128)

For the angular mesh cell average flux ψ̃m,` defined as in Equation 97, we extend

to two angular dimensions the weighted diamond difference approximation for the

angular flux

ψ̃m,`(r, θ) = τmψ̃m+1/2,` + (1− τm)ψ̃m−1/2,`

ψ̃m,`(r, θ) = λm,`ψ̃m,`+1/2 + (1− λm,`)ψ̃m,`−1/2 ,

(129)

where the coefficients are defined as
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τm =
µm − µm−1/2

µm+1/2 − µm−1/2

λm,` =
ηm,` − ηm,`−1/2

ηm,`+1/2 − ηm,`−1/2

.

(130)

We can now apply the DFEM method to these terms. We will begin with the term

pertaining to ∂
∂µ

. Since our sweep convention will be that µ is increasing, then ψ̃m−1/2,`

is known and the diamond relation can be used to express the unknown ψ̃m+1/2,` as

ψ̃m+1/2,`(r, θ) =
1

τm
ψ̃m,`(r, θ)−

1− τm
τm

ψ̃m−1/2,`(r, θ) , (131)

such that in the above expression the first term can be written

1

r

[
αm+1/2

τmw
ψ̃m,` −

1

w

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
ψ̃m−1/2,`

]
. (132)

After integration, the second term in Equation 132 is moved to the right side of

the transport equation to become part of the source term. The integration over the

computational cell volume dV and basis functions proceeds in the following way, for

example over basis function B1
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∫ rR

rL

dr

∫ θT

θB

dθB1r sin(θ)[
αm+1/2

τmwm,`
ψ̃m,` −

1

wm,`

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
ψ̃m−1/2

]
=

αm+1/2

τmwm,`(∆r)2(∆θ)2[(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ1,m,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ2,m,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ3,m,`

+

(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ4,m,`

]
− 1

wm,`(∆r)2(∆θ)2

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
[(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ1,m−1/2,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ2,m−1/2,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ3,m−1/2,`

+

(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ4,m−1/2,`

]
.

(133)

This can be expressed in matrix form

αm+1/2

τmwm,`
P



ψ1,m,`

ψ2,m,`

ψ3,m,`

ψ4,m,`


− 1

wm,`

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
P



ψ1,m−1/2,`

ψ2,m−1/2,`

ψ3,m−1/2,`

ψ4,m−1/2,`


, (134)
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with the definition

P =
1

(∆r)2(∆θ)2



M9M4 M10M4 M10M5 M9M5

M10M4 M11M4 M11M5 M10M5

M10M5 M11M5 M11M6 M10M6

M9M5 M10M5 M10M6 M9M6


. (135)

Likewise, the second angular redistribution term, pertaining to ∂
∂ω

, differs from the

above only in the differencing variable, now ω, and with a cosine coefficient instead

of sine. However, we have two options in our sweep direction over the η directions,

which adds complexity. When η is increasing, from most negative to most positive

values, ψ̃`−1/2 is known and

ψ̃m,`+1/2 =
1

λm,`
ψ̃m,` −

1− λm,`
λm,`

ψ̃m,`−1/2 (136)

and the term becomes

−cot(θ)

r

[
βm,`+1/2

λm,`wm,`
ψ̃m,` −

1

wm,`

(
βm,`+1/2

(
1− λm,`
λm,`

)
+ βm,`−1/2

)
ψ̃m,`−1/2

]
. (137)

When η is decreasing, from most positive to most negative values, ψ̃m,`+1/2 is known

and

ψ̃m,`−1/2 =
1

1− λm,`
ψ̃m,` −

λm,`
1− λm,`

ψ̃m,`+1/2, , (138)

and the term becomes
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−cot(θ)

r

[
−

βm,`−1/2

(1− λm,`)wm,`
ψ̃m,` +

1

wm,`

(
βm,`+1/2 +

(
λm,`

1− λm,`

)
βm,`−1/2

)
ψ̃m,`+1/2

]
.

(139)

The integration over volume with B1 is then, for η increasing,

−
∫ rR

rL

dr

∫ θT

θB

dθB1r cos(θ)[
βm,`+1/2

λm,`wm,`
ψ̃m,` −

1

wm,`

(
βm,`+1/2

(
1− λm,`
λm

)
+ βm,`−1/2

)
ψ̃`−1/2

]
=

βm,`+1/2

λm,`wm,`(∆r)2(∆θ)2[(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ cos(θ)(θT − θ)(θT − θ)
)
ψ1,m,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ cos(θ)(θT − θ)(θT − θ)
)
ψ2,m,`

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ cos(θ)(θT − θ)(θ − θB)

)
ψ3,m,`

+

(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ cos(θ)(θT − θ)(θ − θB)

)
ψ4,m,`

]
− 1

wm,`(∆r)2(∆θ)2

(
βm,`+1/2

(
1− λm,`
λm,`

)
+ βm,`−1/2

)
[(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ cos(θ)(θT − θ)(θT − θ)
)
ψ1,m,`−1/2

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ cos(θ)(θT − θ)(θT − θ)
)
ψ2,m−1/2,`−1/2

+

(∫ rR

rL

drr(rR − r)(r − rL)

∫ θT

θB

dθ cos(θ)(θT − θ)(θ − θB)

)
ψ3,m−1/2,`−1/2

+

(∫ rR

rL

drr(rR − r)(rR − r)
∫ θT

θB

dθ cos(θ)(θT − θ)(θ − θB)

)
ψ4,m−1/2,`−1/2

]
.

(140)

This can be expressed in matrix form
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βm,`+1/2

λm,`wm,`
Q



ψ1,m,`

ψ2,m,`

ψ3,m,`

ψ4,m,`


− 1

wm,`

(
βm,`+1/2

(
1− λm,`
λm,`

)
+ βm,`−1/2

)
Q



ψ1,m,`−1/2

ψ2,m,`−1/2

ψ3,m,`−1/2

ψ4,m,`−1/2


,

(141)

with the definition

Q =
1

(∆r)2(∆θ)2



M9M14 M10M14 M10M15 M9M15

M10M14 M11M14 M11M15 M10M15

M10M15 M11M15 M11M16 M10M16

M9M15 M10M15 M10M16 M9M16


. (142)

For η decreasing from most positive to most negative, the term changes only by

coefficients to become

−
βm,`−1/2

(1− λm,`)wm,`
Q



ψ1,m,`

ψ2,m,`

ψ3,m,`

ψ4,m,`


+

1

wm,`

(
βm,`+1/2 + βm,`−1/2

(
λm,`

1− λm,`

))
Q



ψ1,m,`+1/2

ψ2,m,`+1/2

ψ3,m,`+1/2

ψ4,m,`+1/2


.

(143)

3.6 The removal term

The removal term and source term have the same geometric coefficients and are

operated on by the collision matrix, denoted here as T. The integration against basis

function B1(r, θ) and dV , for example, is
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∫ rR

rL

dr

∫ θT

θB

dθr2 sin(θ)Σtψ̃m,`B1

=
Σt

(∆r)2(∆θ)2

[(∫ rR

rL

drr2(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ1,m,`

+

(∫ rR

rL

drr2(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)
)
ψ2,m,`

+

(∫ rR

rL

drr2(rR − r)(r − rL)

∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ3,m,`

+

(∫ rR

rL

drr2(rR − r)(rR − r)
∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

)
ψ4,m,`

]
.

(144)

Integration over the remaining basis vectors follow similarly, and we can define the

collision matrix

T =
1

(∆r)2(∆θ)2



M1M4 M2M4 M2M5 M1M5

M2M4 M3M4 M3M5 M2M5

M2M5 M3M5 M3M6 M2M6

M1M5 M2M5 M2M6 M1M6


, (145)

such that in compact form the removal term can be expressed as ΣtTψ.

3.7 The source term

The source term, S, has been expanded in the same nodal basis as ψ, for a given cell

as

S =
4∑
i=1

SiBi . (146)

If the source term is constant in the spatial coordinates, then it can be expressed as

TS, where S is a vector Si = Σsg′gφi+qi. Generally, for the definitions that follow, we

will leave it as S. The scattering source consists of self-scattering (within an energy
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group), and in-scattering from other energy groups. The scattering source can be

expressed as (omitting energy indices for brevity)

qscat(r, θ, µ, ω) =
L∑
`=0

∑̀
m=0

(2− δm0)Y e
`m(µ, ω)Σ`φ

m
` (r, θ, µ, ω) , (147)

where the scalar flux moments are (translating ω back to the η unit used in the

definitions)

φm` (r, θ, µ, ω) =
∑
µ,η

wµ,ηψr,θ,µ,ηY
e
`m(µ, ω) , (148)

and the azimuthally-even two-dimensional forms of the spherical harmonics are given

by the following relations

Y e
`m(µ, ω) =

√
C`mP

m
` (µ) cos(mω) , (149)

where

C`m =
(2`+ 1)(`−m)!

(`+m)!
, (150)

and

Pm
` (µ) =

(−1)m

2``!
(1− µ2)m/2

d`+m

dµ`+m
(µ2 − 1)` . (151)

The values of Pm
` (µ), up to L=3 are given in Table 2.

In the case of isotropic scattering, the polynomial expansion is truncated at ` = 0

and the scattering cross section reduces to

qscat(r, θ, µ, ω) = Σ0φ0(r, θ, µ, ω) . (152)
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Table 2: Spherical harmonic terms for the scattering operator

` m
√
C`m Pm

` (µ)
0 0 1 1

1 0
√

3 µ

1 1
√

3
2

−(1− µ2)1/2

2 0
√

5 1
2
(3µ2 − 1)

2 1
√

5
6

−3µ(1− µ2)1/2

2 2
√

5
24

3(1− µ2)

3 0
√

7 1
2
(5µ3 − 3µ)

3 1
√

7
12

1
2
(1− µ2)1/2(15µ2 − 3)

3 2
√

7
120

15µ(1− µ2)

3 3
√

7
720

−15µ(1− µ2)3/2

3.8 Starting directions

Starting directions are used to initialize the angular mesh recursions. These start-

ing directions are treated slightly differently than the directions that arise from the

quadrature approximation to the continuous direction operator, that we call the

weighted directions. One difference is that the starting directions have zero weight,

so they do not contribute to the scalar flux calculation. The lack of a suitable weight

means that the terms involving the quadrature weight w are treated differently, as

we describe in this section. The WDD coefficients τ and λ are also adjusted for these

directions and in some cases disappear altogether. For some of the starting directions

there is no angular redistribution at all, and for some there is angular redistribu-

tion along only one angular component. We begin by examining the one-dimensional

case and then we build up the starting direction transport equations we need for the

present discretization.

In one-dimensional spherical coordinates the starting direction is typicallyµ = −1.

Figure 16 shows the starting direction placement for an S6 discretization in one-
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dimensional spherical coordinates. This represents a particle direction radially in-

ward, and is a direction that does not change with respect to the coordinate axes as

the radial position changes. This implies the angular redistribution terms are zero

for this starting direction, since there is no angular redistribution along the particle

path owing purely to geometrical considerations.

Figure 16: Ordering of directions in one-dimensional spherical geometry for S6 sp-
proximation. The starting direction is denoted by s.

In analogy to the one-dimensional spherical system, we find that our equations for

two-dimensional spheres demand that we define starting directions in both angular

dimensions to begin our angular recursions. In Figure 17 we show the two-dimensional

starting direction locations on the angular coordinate system as triangular points,

and the weighted S6 quadrature directions as filled dots. Note that the information

flow between starting and weighted directions for the ATMOTRAN implementation

will be detailed in Chapter 4. The point arrangement is Gauss-Legendre in µ and

Gauss-Chebyshev in η. The third angle axis ξ points toward the reader. The starting

directions all have the feature of ξ = 0 (these are located in the µ−η plane). Returning

to the original definition of the transport equation we can proceed to derive discretized

equations for the starting directions. Like the one-dimensional system, the angular

recursion in the µ direction is started by calculation in the µ = −1 direction. For this

direction we can confirm there is no η component by the geometrical relation

ηm` = (1− µ2
m)1/2 cos(ωm`) = 0 . (153)
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Figure 17: Positioning of directions in two-dimensional spherical-polar geometry for
S6 approximation. The starting directions are shown as triangles.

In one-dimensional spherical geometry the weighted directions are a set {µ1 . . . µM}.

For reflected geometries it is useful to calculate µM+1/2 = +1. Both these directions do

not require angular redistribution, as evidenced by the disappearance of the angular

derivative in the transport equation for (µ = ±1, η = 0). However, the second

angular derivative adds a starting direction (and a reflected complement) for each µ

level m where, for an angular index of the format ηm,`, these starting directions are

ηm,1/2 and ηm,L+1/2, where there are L weighted directions on a µ level (e.g. for S6

there are six directions on a level in Gauss-Chebyshev-Legendre quadrature). Note

that for the implementation in ATMOTRAN, the use of a square Gauss-Chebyshev-

Legendre quadrature means M = L. Examining the transport equations, these η

starting directions do have angular redistribution to consider in the µ component of
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the equation. In Chapter 2 we introduced the reasoning for bidirectional angular mesh

sweeps due to the characteristic particle paths in this coordinate system. Information

flow in the angular mesh must be reversed depending on the cell location being in

either the upper or lower half of the spatial θ coordinate. In the upper half we begin

with the most positive η directions and work downward, while in the lower half we

begin with the most negative η and work upward. At the boundary θ = π/2 we need

to allow a spatial upwind flux value for the starting directions (using the same value

of η) so we must have all η values calculated for both upper and lower halves of the

physical sphere. Of course, there is also mathematical need for these angles in the

case of reflection at the θ = 0 and θ = π, but these values are trivial to the solution of

the transport equation for full spheres since at these points the physical surface area

is zero and there cannot be particle flow. However, solutions on spherical segments

would require these directions. So, while the µ complement (µ = +1) is required

for iterative solutions of problems with reflection conditions in the radial dimension

(a reflected sphere, for example), more η starting directions are required to permit

upwinding of angular fluxes across the θ = π/2 boundary. That is, they are both

required, but for different reasons in the implementation. We now proceed to derive

discretized transport equations for these starting directions.

3.8.1 Starting directions in µ

Returning to the two-dimensional spherical-polar conservation form of the transport

equation (Equation 84) and evaluating the derivatives, where µ = −1 and η, ξ = 0,

the transport equation reduces to

− ∂

∂r
ψ + Σψ = S . (154)
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This is the one-dimensional slab transport equation in the direction µ = −1. This

equation has no angular redistribution term, and so we must ensure this is also the

case when we evaluate the discretized form of the starting direction equation. This

starting direction is sub-scripted µ1/2 or µM+1/2, given M weighted directions. Recall

the angular redistribution term is

1

r

[
αm+1/2

wm
ψm+1/2 −

αm−1/2

wm
ψm−1/2

]
. (155)

The discretized form of this term, for µ1/2 is

1

r

[
α1

w1/2

ψ1 −
α0

w1/2

ψ0

]
. (156)

At least within the recursion relation definition, α is only defined at edge points, which

are half-integer values, and there is no physical meaning to weights w1/2 for a zero-

weighted starting direction. These undefined terms can be replaced with tractable

values in the following manner. For the case of the µ = 1/2 starting direction, the

recursion relation for α is

α1 − α0 = −2w1/2µ1/2 , (157)

and this term is undefined outside the recursion relation, so α0 ≡ 0. So we have,

when calculating the m=1/2 starting direction,

α1

w1/2

= −2µ1/2 = 2 . (158)

Likewise, for m = M + 1/2, we have

αM+1 − αM = −2wM+1/2µM+1/2 , (159)
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and this term is undefined outside the recursion relation, so αM+1 ≡ 0. So we have,

αM
wM+1/2

= 2µM+1/2 = 2 . (160)

Since there is no angular redistribution, there is no WDD coefficient (τm) for these

starting angles.

3.8.2 Starting directions in η

The starting directions in η exist on the weighted µ-levels and are slightly more

complicated. Examining the derivative in the azimuthal angle, an extreme value can

be chosen, analogous to the choice of µ = −1. When sweeping from most negative

to most positive η, we choose ωS = π, for which cos(ωS) = −1 and then η can be

calculated, given µ. When sweeping from most positive to most negative values of

η, we choose ωS = 0 as the initial azimuthal direction. These choices are consistent

with the geometrical requirement that ξ = 0 for all starting directions (recall the

definition ξ =
√

1− µ2 sin(ωS) = 0. Calculation of the starting η value is by the

following relation

ηm` = (1− µ2
m)1/2(−1) , (161)

which provides the unweighted (µ, η) pairs needed to initialize the angular mesh

recursion in the η direction. Example values for S6 are shown in Table 3, for only the

most negative µ level.

With this process to define the η values for the starting directions, we can now

evaluate the recursion relation coefficients α and β. Returning to the the transport

equation in conservation form (Equation 84)
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Table 3: Gauss-Chebyshev-Legendre square S6 η angles along the µ1 level

index ` µ η w
START -9.3246951420E-01 -3.6124871151E-01 0

1 -9.3246951420E-01 -3.4893942475E-01 8.9705294440E-02
2 -9.3246951420E-01 -2.5544138768E-01 8.9705294440E-02
3 -9.3246951420E-01 -9.3498037070E-02 8.9705294440E-02
4 -9.3246951420E-01 9.3498037070E-02 8.9705294440E-02
5 -9.3246951420E-01 2.5544138768E-01 8.9705294440E-02
6 -9.3246951420E-01 3.4893942475E-01 8.9705294440E-02

µ

r2

∂

∂r
(r2ψ) +

η

r sin(θ)

∂

∂θ
(sin(θ)ψ) +

1

r

∂

∂µ
[(1− µ2)ψ]− cot(θ)

r

∂

∂ω
(ξψ) + Σψ = S .

(162)

We note there are two terms that involve η and β,

η

r sin(θ)

∂

∂θ
(sin(θ)ψ)− cot(θ)

r

∂

∂ω
(ξψ) , (163)

or equivalently

η

r

∂ψ

∂θ
− ξ cotθ

r

∂ψ

∂ω
. (164)

We showed earlier that all starting directions have ξ = 0, so the second of the above

terms is zero for all starting directions in both dimensions. The first term is zero for

the µs starting directions since η = 0. For the starting directions where η 6= 0, this

term is merely the slab equation (in the polar direction), for which there is no angular

redistribution. Thus we expect the angular redistribution in η to always reduce to

zero for the η starting directions. This is consistent with the one-dimensional concept

that there is no angular redistribution along the starting dimension axis for a starting

direction. Explicitly, this does not prohibit angular redistribution in the µ direction
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for the η starting directions, and we find there are indeed valid α coefficients to

describe this redistribution. Since none of the full set of starting directions make

use of weighted η levels at all, the recursion terms in β do not exist. We recall the

discretization of the angular variable ω resulted in this term

−cotθ
r

[
βm,`+1/2

wm,`
ψm,`+1/2 −

βm,`−1/2

wm,`
ψm,`−1/2

]
(165)

There are two η starting directions, the maximum positive and maximum negative

values, corresponding to ω = 0, π respectively. As for the µ starting directions we need

to swap out the recursion and weight terms for an equivalent value that is defined.

For the case of the η starting directions, ` = 1/2 or ` = L+1/2, the recursion relation

becomes, for ` = 1/2,

βm,1 − βm,0 = wm,1/2ηm,1/2 . (166)

Since this term is undefined outside the recursion relation, βm,0 ≡ 0. So when calcu-

lating the ` = 1/2 starting direction

βm,1
wm,1/2

= ηm,1/2 . (167)

Likewise, for ` = L+ 1/2

βm,L+1 − βm,L = wm,L+1/2ηm,L+1/2 , (168)

and this term is undefined outside the recursion relation, so βm,L+1 ≡ 0, and

− βm,L
wm,L+1/2

= ηm,L+1/2 . (169)
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3.9 The fully discretized transport equations in the two-

dimensional spherical-polar (r,θ) coordinate system

Collecting the terms from the previous sections we can write for a given cell at energy

group g ∈ [1, G], for weighted directions, for η increasing

ηVη



ψ̃1B,g

ψ̃2B,g

ψ̃3T,g

ψ̃4T,g


+ µVµ



ψ̃1L,g

ψ̃2R,g

ψ̃3R,g

ψ̃4L,g


+ µLµΨm,`,g + ηLηΨm,`,g

+

[
αm+1/2

wτm
P−

βm,`+1/2

wλm,`
Q

]
Ψm,`,g + Σt,gTΨm,`,g

=
1

w

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
PΨm−1/2,`,g

− 1

w

(
βm,`+1/2

(
1− λm,`
λ`

)
+ βm,`−1/2

)
QΨm,`−1/2,g

+
G∑

g′=1

Σs,g′→gφg′ + qm,`,g ,

(170)

and for weighted directions, for η decreasing
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ηVη



ψ̃1B,g

ψ̃2B,g

ψ̃3T,g

ψ̃4T,g


+ µVµ



ψ̃1L,g

ψ̃2R,g

ψ̃3R,g

ψ̃4L,g


+ µLµΨm,`,g + ηLηΨm,`,g

+

[
αm+1/2

wτm
P +

βm,`−1/2

w(1− λm,`)
Q

]
Ψm,`,g + Σt,gTΨm,`,g

=
1

w

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
PΨm−1/2,`,g

+
1

w

(
βm,`+1/2 + βm,`−1/2

(
λm,`

1− λm,`

))
QΨm,`+1/2,g

+
G∑

g′=1

Σs,g′→gφg′ + qm,`,g .

(171)

The starting direction equation for µs, where s = 1/2,M + 1/2 starting directions is

µVµs



ψ̃s,1L,g

ψ̃s,2R,g

ψ̃s,3R,g

ψ̃s,4L,g


+ µLµΨs,g − 2µsPΨs,g + Σt,gTΨs,g =

G∑
g′=1

Σs,g′→gφg′ + qm,`,g ,

(172)
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and the transport equation for the ηm,`=s starting directions in either sweep direction

is

ηm,sVη



ψ̃m,s,1B,g

ψ̃m,s,2B,g

ψ̃m,s,3T,g

ψ̃m,s,4T,g


+ µmVµ



ψ̃m,s,1L,g

ψ̃m,s,2R,g

ψ̃m,s,3R,g

ψ̃m,s,4L,g


+ µmLµΨm,s,g + ηm,sLηΨm,s,g

+

[
αm+1/2

wmτm
P

]
Ψm,s,g − ηm,sQΨm,s,g + Σt,gTΨm,s,g

=
1

wm

(
αm+1/2

(
1− τm
τm

)
+ αm−1/2

)
PΨm−1/2,s,g

+
G∑

g′=1

Σs,g′→gφg′ + qm,`,g .

(173)

These equations use the following definitions:

µ is the direction vector, µ = cos(θ),

η is the direction vector, η =
√

1− µ2 cos(ω),

w is quadrature weight for angle index (m, `),

αm+1/2 is the angular redistribution coefficient for the upper edge of cell m,

αm−1/2 is the angular redistribution coefficient for the lower edge of cell m,

βm,`+1/2 is the angular redistribution coefficient for the upper edge of cell (m, `),

βm,`−1/2 is the angular redistribution coefficient for the lower edge of cell (m, `),

τm is the weighted diamond difference mixing parameter for cell m,

λm,` is the weighted diamond difference mixing parameter for cell (m, `),

Σt,g is the total interaction cross-section,
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Σs,g′→g is the scattering interaction cross-section from energy group g′ to energy

group g,

φg′ is the scalar flux at energy group g′,

qm,`,g is the external source at angle indices m, ` at energy group g,

Vµ is a matrix of surface integrals over the cell, representing surface gradients in

the µ direction,

Vη is a matrix of surface integrals over the cell, representing surface gradients in

the η direction,

Lµ is a matrix of volume integrals over the cell, representing volume gradients in

the µ direction,

Lη is a matrix of volume integrals over the cell, representing volume gradients in

the η direction,

P is a matrix of volume integrals over the cell, representing angular redistribution

amongst the µ directions,

Q is a matrix of volume integrals over the cell, representing angular redistribution

amongst the η directions,

T is the mass matrix,

ψ̃ik,g is the numerical flux at cell corner i at surface k, energy group g, and

Ψm,`,g is a vector of angular fluxes at each cell corner for angle index (m, `), energy

group g.
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4 ATMOTRAN Implementation

This chapter includes functional block diagrams of ATMOTRAN, brief code module

descriptions, and some practical computational details of the code. Details focus on

those elements that are unique to ATMOTRAN, or are required in order to under-

stand the verification results that follow in Chapter 5.

4.1 Approach and main functional blocks

ATMOTRAN is a C++ program comprising around 7000 lines of code, split into six

main functional blocks:

geometry.cc: Builds data structures related to problem physical geometry.

xsstore.cc: Loads multigroup data for application to geometry.

quadrature.cc: Builds quadrature sets, angular redistribution and angular

weighted diamond difference coefficients.

solver.cc: Sets up data structures including all angular and scalar fluxes and

sources. This function includes the main outer iteration (in energy), inner

iteration angle selection, and calculation of convergence.

sweep.cc: This code performs the spatial portion of the inner iteration for a

specific angle. The sweep direction and extents are determined by the value of
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the angle.

utils.cc: This includes functions that are called from the sweep and solver

routines to access data structures and perform repeated calculations.

Figure 18: ATMOTRAN functional block diagram.

The current code depends on Eigen [45], an open-source header-only set of tem-

plate files for linear algebra, matrix and vector operations, and numerical algorithms.
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Eigen was used primarily to provide a set of methods for computing matrix inverses

and for matrix and vector classes since they were available, however standard tem-

plate library containers could also be used. Data analysis for the results show in

Chapter 5 used scripts written in ROOT [46], with some plotting in Python mat-

plotlib [47]. The build system is GNU autotools [48]. Simulation parameters are set

in a text file and read in at runtime. This approach allows for running successive

simulations without recompiling the code and also allows for running simultaneous

simulations with different parameters, for example on multiple CPUs. The generic

parameters file for a non-atmospheric-scale geometry with a single material includes

the following:

Table 4: Simulation parameters with types and example values

Par. Type Example Description
quad int 6 quadrature order
nx int 10 number of cells in radial dimension
ny int 10 number of cells in polar dimension
xl float 10.0 minimum radial edge in cm
xr float 20.0 maximum radial edge in cm
yl float 0.0 minimum polar edge in units of π
yr float 1.0 maximum polar edge in units of π
xt float 1.0 total cross section Nσ, units cm−1

c float 0.9 ratio of scattering to total cross section
tol float 1E-9 convergence tolerance

reflectx boolean 0 reflection in the radial dimension
reflecty boolean 1 reflection in the polar dimension

q vector float 1.0,0,0... internal source as function of energy, cm−3

qb vector float 0,0,0... boundary source as function of energy, cm−3

The parameters shown in Table 4 relate to a general problem geometry. For

atmospheric geometries the physical extents and cross-sectional data shown in this

parameter file are overwritten in the geometry function with altitude-dependent val-

ues. Some additional detail on each main functional block follows.
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4.2 Details of xsstore.cc

This function reads nuclear cross section data text files processed and formatted by

the NJOY2016 code [49] and makes it available to be combined with the physical

geometric definitions to create cell-averaged cross section quantities. The NJOY Nu-

clear Data Processing System is a code designed to read evaluated data in ENDF [50]

format, to transform it as requested by a user, and to export it in another format

suitable for transport code applications. For ATMOTRAN, NJOY was used to create

representative multigroup cross section data. NJOY output files are contained within

ATMOTRAN and read in at runtime. Appendix C contains more details related to

how ATMOTRAN interfaces with the nuclear data. Some example data is shown in

Table 5, for the isotope 14N, which is the principal component of the atmosphere.

Group-to-group isotropic scattering fractions are shown in Table 6.
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Table 5: Multigroup nuclear data for 14N

Bin Energy low (eV) Energy high (eV) σt σs0 c
1 1.39E-04 1.52E-01 17.04390 9.91140 0.58152
2 1.52E-01 4.14E-01 10.52340 9.91132 0.94184
3 4.14E-01 1.13E+00 10.28160 9.91118 0.96397
4 1.13E+00 3.06E+00 10.13540 9.91075 0.97784
5 3.06E+00 8.32E+00 10.04630 9.90991 0.98642
6 8.32E+00 2.26E+01 9.99016 9.90747 0.99172
7 2.26E+01 6.14E+01 9.95045 9.90028 0.99496
8 6.14E+01 1.67E+02 9.91491 9.88452 0.99693
9 1.67E+02 4.54E+02 9.85023 9.83187 0.99814
10 4.54E+02 1.24E+03 9.73478 9.72369 0.99886
11 1.24E+03 3.35E+03 9.44609 9.43944 0.99930
12 3.35E+03 9.12E+03 8.77021 8.76628 0.99955
13 9.12E+03 2.48E+04 7.53824 7.53590 0.99969
14 2.48E+04 6.76E+04 5.86866 5.86711 0.99974
15 6.76E+04 1.84E+05 4.29462 4.29325 0.99968
16 1.84E+05 3.03E+05 3.35065 3.34873 0.99943
17 3.03E+05 5.00E+05 2.90588 2.88641 0.99330
18 5.00E+05 8.23E+05 2.07450 2.01835 0.97293
19 8.23E+05 1.35E+06 1.76938 1.74411 0.98572
20 1.35E+06 1.74E+06 2.16885 2.07264 0.95564
21 1.74E+06 2.23E+06 1.77285 1.66523 0.93930
22 2.23E+06 2.87E+06 1.44567 1.29339 0.89466
23 2.87E+06 3.68E+06 1.65835 1.32017 0.79607
24 3.68E+06 6.07E+06 1.58309 1.22565 0.77421
25 6.07E+06 7.79E+06 1.38198 0.99244 0.71813
26 7.79E+06 1.00E+07 1.30806 0.87574 0.66950
27 1.00E+07 1.20E+07 1.40930 0.85001 0.60314
28 1.20E+07 1.35E+07 1.56053 0.97698 0.62605
29 1.35E+07 1.50E+07 1.57297 0.96980 0.61654
30 1.50E+07 1.70E+07 1.58238 0.97801 0.61806
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Table 6: Group-to-group scattering cross sections for 14N

From To σs0 From To σs0 From To σs0
1 1 9.9114 13 12 1.1107 23 22 0.7060
2 1 1.3589 13 13 6.4252 23 23 0.5899
2 2 8.5524 14 13 0.8962 24 22 0.0104
3 2 1.3561 14 14 4.9709 24 23 0.2944
3 3 8.5551 15 14 0.6487 24 24 0.9209
4 3 1.3668 15 15 3.6446 25 24 0.4062
4 4 8.5440 16 15 0.9210 25 25 0.5862
5 4 1.3611 16 16 2.4278 26 24 0.0067
5 5 8.5488 17 16 0.7482 26 25 0.3115
6 5 1.3623 17 17 2.1382 26 26 0.5576
6 6 8.5452 18 17 0.5320 27 25 0.0096
7 6 1.3613 18 18 1.4864 27 26 0.3279
7 7 8.5390 19 18 0.4040 27 27 0.5125
8 7 1.3584 19 19 1.3401 28 26 0.0584
8 8 8.5261 20 19 1.0221 28 27 0.3255
9 8 1.3544 20 20 1.0506 28 28 0.5931
9 9 8.4775 21 19 0.0292 29 27 0.0932
10 9 1.3427 21 20 0.8764 29 28 0.2584
10 10 8.3810 21 21 0.7597 29 29 0.6182
11 10 1.3209 22 20 0.0106 30 27 0.0077
11 11 8.1186 22 21 0.7541 30 28 0.0608
12 11 1.2499 22 22 0.5287 30 29 0.2122
12 12 7.5164 23 21 0.0243 30 30 0.6973

4.3 Details of geometry.cc

This function creates indexed data structures related to the physical cells of the

problem: cell areas and volumes, edge lengths, and cell centers. Here we also uti-

lize the processed nuclear data from xsstore to create cell-indexed quantities for

macroscopic cross sections, employing the relevant densities from the NRL-MSISE

atmospheric model introduced in Chapter 1. For the results shown here, we compose

the atmosphere only of 78% nitrogen and 22% oxygen (specifically 14N and 16O).

These values can be changed in the code, and other relevant elements can be added
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as required. It is also possible to change the mixing fraction of gases as a function of

altitude. The scattering fraction c, the ratio of scattering to total cross section, as a

function of energy is shown in Table 7. The typical geometry used in ATMOTRAN

is an atmosphere that extends from a round Earth surface 6378 km in radius, up to

1000 km altitude. The Earth is typically set to be a perfect absorber as a simplifi-

cation for problems of interest, but this is not a requirement. Note that in Chapter

5 we show verification results of correct code performance for reflecting surfaces and

for spheres with no central hollow. For the present atmospheric demonstration we

employ an orthogonal grid that is binned logarithmically in altitude, following the

density profile of the atmosphere. In Table 8 we show the number of mean free paths

in the radial direction using a 30 cell logarithmic spacing approach, as a function of

altitude, for four energies. With this spatial cell size, we have from roughly 1-10 mean

free paths per cell, with some energy dependence related to the higher cross section

at lower energies. The high values in the first altitude bin are artificial and reflect the

absorbing Earth layer. It is evident that above 30 km altitude, as the density of the

atmosphere drops off, the probability of interaction is tiny. If we have an identical

number of cells in the radial and the polar dimensions, the polar dimension is roughly

20 times larger than the radial dimension, in this case around 20,000 km. Generally,

more bins should be used in the polar dimension to avoid negative fluxes, depending

on the application of interest. In the polar dimension, we typically employ equidistant

bins but this is not a requirement of ATMOTRAN, and for point sources a nonlinear

binning that is finer near the source could be useful.
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Table 7: Composite atmosphere scattering fraction as a function of bin for the AT-
MOTRAN energy range

Bin Energy low edge (eV) Energy high edge (eV) c
1 1.39E-04 1.52E-01 0.6038
2 1.52E-01 4.14E-01 0.9467
3 4.14E-01 1.13E+00 0.9670
4 1.13E+00 3.06E+00 0.9797
5 3.06E+00 8.32E+00 0.9876
6 8.32E+00 2.26E+01 0.9924
7 2.26E+01 6.14E+01 0.9954
8 6.14E+01 1.67E+02 0.9972
9 1.67E+02 4.54E+02 0.9983
10 4.54E+02 1.24E+03 0.9990
11 1.24E+03 3.35E+03 0.9994
12 3.35E+03 9.12E+03 0.9996
13 9.12E+03 2.48E+04 0.9997
14 2.48E+04 6.76E+04 0.9998
15 6.76E+04 1.84E+05 0.9997
16 1.84E+05 3.03E+05 0.9995
17 3.03E+05 5.00E+05 0.9957
18 5.00E+05 8.23E+05 0.9802
19 8.23E+05 1.35E+06 0.9910
20 1.35E+06 1.74E+06 0.9644
21 1.74E+06 2.23E+06 0.9512
22 2.23E+06 2.87E+06 0.9086
23 2.87E+06 3.68E+06 0.8485
24 3.68E+06 6.07E+06 0.8125
25 6.07E+06 7.79E+06 0.7239
26 7.79E+06 1.00E+07 0.6489
27 1.00E+07 1.20E+07 0.6029
28 1.20E+07 1.35E+07 0.6172
29 1.35E+07 1.50E+07 0.6148
30 1.50E+07 1.70E+07 0.6150
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Table 8: Number of mean free paths in the radial dimension for a 30 cell discretization
for several energies

Bin Alt. (km) Nλ 1 MeV Nλ 2 MeV Nλ 5 MeV Nλ 10 MeV
0 1.025 1.0E+06 1.0E+06 1.0E+06 1.0E+06
1 2.335 4.84238 3.80322 3.44626 3.06808
2 2.97 5.57772 4.38076 3.9696 3.53398
3 3.745 6.25238 4.91064 4.44974 3.96144
4 4.695 6.99285 5.49221 4.97673 4.43059
5 5.87 7.65853 6.01503 5.45048 4.85236
6 7.315 8.0623 6.33216 5.73784 5.10818
7 9.09 8.28415 6.5064 5.89573 5.24875
8 11.275 8.10688 6.36717 5.76956 5.13643
9 13.965 7.22302 5.67298 5.14053 4.57642
10 17.275 5.42376 4.25984 3.86002 3.43644
11 21.345 3.39408 2.66572 2.41552 2.15045
12 26.35 1.87202 1.47029 1.33229 1.18609
13 32.51 0.925414 0.726823 0.658606 0.586332
14 40.09 0.399263 0.313582 0.28415 0.252969
15 49.41 0.14988 0.117716 0.106668 0.0949622
16 60.88 0.0483454 0.0379706 0.0344068 0.0306311
17 74.995 0.0113103 0.00888313 0.00804938 0.00716607
18 92.355 0.00135574 0.0010648 0.000964863 0.000858982
19 113.71 5.43299E-05 4.26709E-05 3.86659E-05 3.44228E-05
20 139.985 1.96399E-06 1.54252E-06 1.39774E-06 1.24436E-06
21 172.315 3.49795E-07 2.7473E-07 2.48944E-07 2.21626E-07
22 212.085 1.05798E-07 8.30942E-08 7.52952E-08 6.70326E-08
23 261.01 3.54621E-08 2.78521E-08 2.52379E-08 2.24684E-08
24 321.205 1.15991E-08 9.11001E-09 8.25497E-09 7.34909E-09
25 395.265 3.4758E-09 2.72991E-09 2.47368E-09 2.20223E-09
26 486.375 8.99903E-10 7.06786E-10 6.40449E-10 5.70168E-10
27 598.46 1.92573E-10 1.51247E-10 1.37051E-10 1.22012E-10
28 736.36 3.63868E-11 2.85783E-11 2.5896E-11 2.30543E-11
29 906.015 8.937E-12 7.01915E-12 6.36035E-12 5.66239E-12
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4.4 Details of quadrature.cc

This function calculates the roots and weights for the Gauss-Chebyshev-Legendre

quadrature using standard definitions [51]. Associated values are also calculated and

stored into data structures for later retrieval, including the angular redistribution and

weighted diamond difference coefficients. The following tables show relevant data for

an S4 angular approximation. Table 9 shows the quadrature roots and weights. The

angular redistribution recursion coefficients α and β are tabulated in Tables 10 and

11, where for η we only need to show half the values, since those for m=3,4 are

mirror images of m=2,1 respectively. The weighted diamond coefficients are shown

in Tables 12 and 13, where there is a simplification since λ values, by definition, are

the same for every µ level. The two-dimensional zero-weighted starting directions are

calculated and shown in Table 14.

Table 9: S4 Two-dimensional Gauss-Chebyshev-Legendre quadrature roots and
weights

µ η w
-0.861136312 -0.469676451 0.273204557
-0.861136312 -0.194546356 0.273204557
-0.339981044 -0.868846143 0.512193607
-0.339981044 -0.359887856 0.512193607
-0.861136312 0.469676451 0.273204557
-0.861136312 0.194546356 0.273204557
-0.339981044 0.868846143 0.512193607
-0.339981044 0.359887856 0.512193607
0.861136312 -0.469676451 0.273204557
0.861136312 -0.194546356 0.273204557
0.339981044 -0.868846143 0.512193607
0.339981044 -0.359887856 0.512193607
0.861136312 0.469676451 0.273204557
0.861136312 0.194546356 0.273204557
0.339981044 0.868846143 0.512193607
0.339981044 0.359887856 0.512193607
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Table 10: S4 Angular redistribution coefficients in the µ direction

m µ αm−1/2 αm+1/2

1 -8.6113631159E-01 0.0 4.7053272819E-01
2 -3.3998104358E-01 4.7053272819E-01 8.1880496217E-01
3 3.3998104358E-01 8.1880496217E-01 4.7053272819E-01
4 8.6113631159E-01 4.7053272819E-01 0.0

Table 11: S4 Angular redistribution coefficients in the η direction

m ` η βm,`−1/2 βm,`+1/2

1 1 -4.6967645066E-01 0.0 -1.2831774640E-01
1 2 -1.9454635579E-01 -1.2831774640E-01 -1.8146869725E-01
1 3 1.9454635579E-01 -1.8146869725E-01 -1.2831774640E-01
1 4 4.6967645066E-01 -1.2831774640E-01 0.0
2 1 -8.6884614343E-01 0.0 -4.4501744004E-01
2 2 -3.5988785622E-01 -4.4501744004E-01 -6.2934969920E-01
2 3 3.5988785622E-01 -6.2934969920E-01 -4.4501744004E-01
2 4 8.6884614343E-01 -4.4501744004E-01 0.0

Table 12: S4 Weighted-diamond angular differencing coefficients τm

m τm
1 3.9920009839E-01
2 4.7867274479E-01
3 5.2132725521E-01
4 6.0079990161E-01

Table 13: S4 Weighted-diamond angular differencing coefficients λ`

` λ`
1 2.5989153247E-01
2 4.5880389985E-01
3 5.4119610015E-01
4 7.4010846753E-01

4.5 Details of solver.cc

This routine essentially sets up the problem including creating data structures for the

calculation and aligning the iterative procedure. The matrices related to integration

of the basis functions over the cell volumes are performed here for all cells and then
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Table 14: S4 Starting directions

µ η
-1.0000000000e+00 0.0
-8.6113631159E-01 -5.0837412685E-01
-3.3998104358E-01 -9.4043228890E-01
3.3998104358E-01 -9.4043228890E-01
8.6113631159E-01 -5.0837412685E-01
-8.6113631159E-01 5.0837412685E-01
-3.3998104358E-01 9.4043228890E-01
3.3998104358E-01 9.4043228890E-01
8.6113631159E-01 5.0837412685E-01
1.0000000000e+00 0.0

stored in a structure to be accessed later within the spatial sweep. Depending on the

angular order of the calculation, starting direction and weighted direction ordinates

are set up and the ordering through the angular mesh is established and executed.

The internal source is set up for all cells and angles. All these data structures are

made available to the sweep routine specifying an angular direction set and a flag for

whether the inner spatial sweep is to solve in the upper or lower physical hemisphere

of the problem. As detailed earlier, this flag affects sweep direction. When the inner

iteration returns from the sweep routine, the convergence criterion C is calculated,

summing scalar flux values over all indices (v: cell corner, i: radial cell index, j: polar

cell index, e: energy index, s: scattering order index) and evaluating the difference

between successive iterations, scaled by the total number of cells N in the problem if

the following way

C =
1

N

∑
v,i,j,e,s

(
φn − φn−1

)
. (174)

The iteration continues until C is smaller than some threshold value set as an input

parameter to the calculation (e.g. Cthresh = 1 × 10−9). This routine also calculates

quantities of interest such as particle balance and error calculations for manufactured

solutions.
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4.6 Details of sweep.cc

This routine, given an angle and a flag for upper/lower hemisphere, sets up the spatial

cell range and direction for the problem. We introduced the spatio-angular mesh

sweep for two-dimensional spheres in Chapter 2 and detailed the progression used

in TWOTRAN SPHERE. The progression is slightly different with ATMOTRAN for

two reasons: (1) ATMOTRAN uses zero-weighted starting directions (rather than the

step-approximation-generated initialization directions in TWOTRAN SPHERE) so

the information flow must include these, and (2) ATMOTRAN uses a discontinuous

spatial discretization which benefits from non-zero upwind fluxes, and so we find

starting the spatial sweep at the center of the sphere (θ = π/2), where all cell surfaces

have non-zero area, gives better results that starting at either extreme end of the θ

range, as was done using spatial diamond differencing in TWOTRAN SPHERE.

For the (µ, r) sweep, we start with the most negative angle (a starting direction

of µ = −1) and then sweep the angular mesh for increasing µ values, following paths

A-B in Figure 11. For the (η, θ) sweep we find the following progression is necessary to

produce the correct results. For full spheres, we start at a spatial cell with θB = π/2

and start at a maximum positive η value, sweeping in angle to decreasing yet positive

values of η and up to θ = π (note, the µ sweep is always from most negative to

most positive and the radial sweep from the outer radius inward as usual for one-

dimensional codes). Then we return from θ = π to θ = π/2 using negative values

of η until we reach the most negative value. Then, we start with the cell that has

θT = π/2 sweep down to θ = 0 using the negative values from most negative to

closest to zero. Finally we sweep from θ = 0 back to θ = π/2 starting the smallest

positive value of eta and working up to the largest positive value. This description

follows successively paths C-D-E-F in Figure 11. With this procedure of following the

characteristic paths we can obtain solutions homogeneous in polar angle when this is
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expected.

The above procedure requires that we check what hemisphere we are in, and prop-

erly upwind the spatio-angular solutions across the θ = π/2 boundary. This requires

that we are able to sweep the angular mesh for η in either direction, accounting for

the direction of flow through the angular mesh, and this is why we derived transport

equations for both flows in Chapter 3. The nesting of sweeps in ATMOTRAN is the

same as other multigroup transport codes, so that the outer iteration is over energy,

from highest to lowest energy in the problem, then we proceed in the inner iteration

through the angular mesh and then the spatial mesh. Diagrams of information flow

in the S6 angular mesh are shown for both hemispheres below, Figure 19 shows the

case of θ < π/2 and Figure 20 shows θ > π/2. Note that this procedure implies that

an even number of cells must be used in the θ direction. The figures are grid-plotted

by (m, `) index, not by (µ, η) value. Starting directions are shown as triangles and

are indexed with letter from a to n and weighted directions are filled dots indexed

with numbers from 1 to 36. Information flow is along the small arrows, meaning that

the calculation of a particular direction requires information from all arrows flowing

into it.

Some comments are appropriate for clarity of this rather complicated sweep. We

can see that starting direction index a (representing µ = −1) feeds into all fluxes

on the next most negative µ-level, both starting and weighted. Starting directions

in η, appearing along the horizontal, can feed into the weighted direction calculation

(indices b through g), since there is angular redistribution to consider for the weighted

direction, but the weighted direction fluxes never feed into starting direction fluxes.

This is consistent with our derivation in Chapter 3 where we found that there is no

angular redistribution in the η dimension for any of the starting fluxes (indices b

through m). To be clear, these η starting direction fluxes (indices h through m) that
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Figure 19: ATMOTRAN: sweeping the angular mesh for small polar angle.

do not feed into weighted direction calculations are required only to calculate cell

fluxes needed for spatial upwinding across the π/2 boundary. The µ = +1 flux at

index n is not involved in the angular information flow but is calculated to provide

a necessary value for radially reflective problems. The logic in setting up the spatial

ranges is detailed in Tables 15 and 16.

Table 15: Spatial extents of the radial sweep

µ istart iend idirection
< 0 I 0 -
> 0 0 I +

The angular mesh upwind terms ψm−1/2 and ψ`±1 are accessed via an index match-

ing routine that is set up in the utils function. The spatial upwind terms are set

up and the discretized transport equation is solved by an algorithm included in the
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Figure 20: ATMOTRAN: sweeping the angular mesh for large polar angle.

Table 16: Spatial extents of the polar sweep

η (θ > π/2)?1 : 0 jstart jend jdirection
< 0 1 J J/2 -
< 0 0 J/2− 1 J/2 -
≥ 0 1 J/2 J +
≥ 0 0 0 J/2− 1 +

Eigen package that performs LU decomposition with pivoting.

4.7 Details of utils.cc

This function defines a utility class with methods required for repeated calculations

in the solver and sweep functions. The methods are described in Table 17.
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Table 17: Method and description table for solver utils.cc

Method Description
GetIntegral Calculate the individual terms that go into the BLD

matrices for a specified computational cell
GetMatrices Build the BLD matrix terms (V, L, M, T, P, Q) for a

specified computational cell
GetPhiQloc Retrieve the previous iteration scalar flux and current

source for a specified computational cell
GetCellAvgFlux Calculate the cell-averaged flux for a spherical segment

in the physical geometry given the angular flux calcu-
lated with the computational cell

GetAngleMatch Find the appropriate flux for upwinding the angular
mesh

GetAlphaBeta Retrieve the angular redistribution coefficients for this
angle index, given the cell location and status of whether
or not the angle is a zero-weighted starting direction

GetWDD Retrieve the weighted diamond difference angular coef-
ficients τ and λ
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5 ATMOTRAN Verification

The required mathematical derivations and code implementation details of ATMO-

TRAN have been presented in Chapters 3 and 4. In the following chapter we dis-

cuss the correctness of the code implementation and the validity of the fundamental

assumptions that went into the derivations. First we verify that the discretization

scheme does preserve the thick-diffusion limit. Then we proceed with numerical exper-

iments to verify code performance with results from several manufactured solutions,

code-to-code comparisons with another transport code, comparison of multigroup

performance with Monte Carlo results, and some individual examples of interesting

cases.

5.1 Thick-diffusion limit

Since the discretization method is new for this coordinate system, and given that

the intended application is an optically thick problem at least in some regions, it is

useful to investigate performance in the thick-diffusion limit. It has been established

that the diffusion equation is an asymptotic limit of the transport equation [52]. The

diffusion limit is analytically established by scaling the physical properties of the

transport equation such that it becomes increasingly optically thick and scattering

dominated. This is achieved by introducing a parameter ε to scale the cross sections,

source, and mesh size. The thick-diffusion limit is evaluated by keeping the mesh size
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fixed while scaling the cross sections and source such that the mesh cells approach

an infinite optical thickness. Schemes that preserve this limit are accurate so long as

the cell size is small compared to the diffusion length, which is a measure of how far

neutrons will diffuse before absorption and is quite large for highly diffusive problems.

Schemes that do not preserve this limit are only accurate when the cell size is small

compared to a mean free path, which is typically much smaller that the diffusion

length. If a scheme does not preserve this limit, more cells will need to be used in

order to get accurate solutions.

To demonstrate that the present scheme does preserve the thick-diffusion limit

we show here numerical results evaluated when ε → 0. Selecting a problem with

a constant isotropic source with vacuum boundary boundary conditions, we plot a

numerical S8 solution for r ∈ [1, 2] and a 10 x 10 spatial mesh, with a convergence

tolerance of 10−8. Starting with cross section values σt0 = 1.0 and σa0 = 0.1 we

successively show, the numerical solution for values

σt =
σt0
ε
, σa = εσa0, q(r, θ) = ε . (175)

where ε = 2−k for k = 0, 2, 4, 6, 8, 10. As we asymptotically approach the thick-

diffusion limit the solution converges on a non-zero solution, as shown in Figure 21,

demonstrating that the discretization scheme preserves the thick-diffusion limit.
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Figure 21: Numerical result for 10x10 problem approaching the thick difusion limit.

5.2 Manufactured solution verification

Manufactured solutions may be used to test the properties of transport discretization

schemes in the common event that analytic SN solutions do not exist [53]. The

general process is to specify some angular flux with properties that can test relevant

aspects of the code. Since the present code allows for flux variation in two dimensions

the specified flux should depend on the spatial variables in order to test the spatial

discretization scheme. Using the transport equation, this flux is used to calculate a

spatially discrete source term that corresponds to the flux, and numerical solutions

computed with this flux are computed with increasingly refined meshes in order to
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generate an angular flux for comparison with the manufactured solution. A correctly

implemented discretization scheme will show that the error between the numerical

and the manufactured solutions will decrease as the mesh cell size decreases, and the

rate of decrease will be proportional to the reduction in cell size, in which case the

numerical method is convergent.

We present verification of the methods described above with a manufactured so-

lution. In this section we show results for four manufactured solutions ΨM(r, θ) on a

annular shell test problem geometry. The hollow inner spherical void is a boundary

source for these problems. The four manufactured solutions are

1. a biquadratic isotropic flux (quadratic in both radial and polar dimensions) of

the form ΨM(r, θ) = θ(π − θ)r(2− r),

2. a bilinear isotropic flux (linear in both the radial and polar dimensions) of the

form ΨM(r, θ) = (π − θ)(20− r),

3. a biquadratic flux anisotropic in µ of the form

ΨM(r, θ) = (1 + 3µ2)θ(π − θ)r(2− r), and

4. a biquadratic flux anisotropic in η of the form

ΨM(r, θ) = (1 + 3η2)θ(π − θ)r(2− r).

The numerically calculated scalar flux solution, φ, is compared to the scalar flux

corresponding to the manufactured solution, ΦM =
∫
dΩΨM , using a discrete L2-

norm of the difference in the cell-average scalar fluxes, that is,

δ =

[
1

NxNy

Nx∑
i=1

Ny∑
j=1

(
ΦM(i,j) − φi,j

)2]1/2

, (176)

where Nx and Ny are the number of cells in the radial and polar directions, respec-

tively.
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5.2.1 Biquadratic isotropic manufactured solution

Since our basis functions are linear in (r, θ) the code will not be able to exactly model

higher order manufactured solutions, for example quadratic solutions. However, the

bilinear code should converge to the quadratic solution with mesh refinement since

geometrically shorter polynomial elements are more accurately represented by line

elements. This convergence property is confirmed by this verification. To begin, we

specify an angular flux, quadratic in both radius and polar angle, of the form

ΨM(r, θ) = θ(π − θ)r(2− r), r ∈ [1, 2]cm, θ ∈ [0, π] , (177)

which gives a scalar flux

ΦM(r, θ) =

∫
dΩΨM(r, θ) = 4πθ(π − θ)r(2− r) . (178)

Substituting these fluxes into the transport equation we can derive a continuous source

S(r, θ, µ, η) = 2ηπ + r(−πη) + θ(2πµ− 4η) + rθ(−2πµ+ 2η + 2π(σt − σs))

+ θ2(−2µ) + rθ2(2µ− 2(σt − σs)) + r2θ(−π(σt − σs))

+ r2θ2(σt − σs) .

(179)

From this expression, the spatially discrete isotropic source q is evaluated at each of

the four cell corners by the following integration for a single mesh cell, as

qk =
4∑
i=1

∫
dV SBi . (180)

Because this source is nonzero at the leftmost physical radial boundary, (rL = 1 cm ),

we must evaluate the source term at the boundary conditions. The source needs to

be integrated over the boundary surface and subtracted from q at that face. These
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terms are, for the rL = 1 cm face

q1L = Ω · n̂L
∫ θT

θB

ΨM,L(rL, θ)B1(rL, θ)r
2
L sin θdθ , (181)

and

q4L = Ω · n̂L
∫ θT

θB

ΨM(rL, θ)B4(rL, θ)r
2
L sin θdθ , (182)

where ΨM(rL, θ) = θ(π−θ). Note that the various integrals used in these evaluations

are included in Appendix A for reference. Proper implementation of the code will

demonstrate that as the spatial mesh is refined, the solutions will converge at a

predictable rate. We refine the spatial mesh by solving the problem successively for

increasing values of k, where Nx = Ny = 2k. The iterative convergence tolerance

is 10−9, the angular approximation is S8, Σt = 2 cm−1 and c = 0.99. Examining

the ratio of successive errors, one can estimate the order of accuracy by calculating

log2(δk−1/δk), as seen in Table 18. These results indicate the method is better than

second order order accurate.

Table 18: Manufactured solution verification for isotropic biquadratic flux

k Nx Ny NxNy δk δk−1/δk
3 8 8 64 2.3868E-02 —
4 16 16 256 5.3373E-03 4.4719
5 32 32 1024 1.0467E-03 5.0994
6 64 64 4096 1.9093E-04 5.4818
7 128 128 16384 3.3646E-05 5.6747
8 256 256 65536 5.8513E-06 5.7503
9 512 512 262144 1.0146E-06 5.7672

A two-dimensional visualization of this solution is shown in Figure 22. The cell-

averaged scalar flux (in units cm−2) is shown for each cell. For this plot there are 32

radial cells extending from 1 cm to 2 cm and 32 polar cells from 0 radians to π radians.
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The solution from π to 2π radians is a mirror image, no additional calculations are

done on that range. Since this is a two-dimensional code the flux is integrated over

the azimuthal direction, that extend out to the reader.

Figure 22: Numerical result for 32 x 32 biquadratic manufactured solution.

5.2.2 Bilinear isotropic manufactured solution

The manufactured solution is bilinear for this problem. Because the finite element

basis is also bilinear, the code should reproduce the posited flux to the level of the

iterative convergence tolerance of the numerical solution. We specify an angular flux,

linear in radius and polar angle, of the form
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ΨM(r, θ) = (π − θ)(20− r) r ∈ [10, 20] cm, θ ∈ [0, π] , (183)

which gives a scalar flux

ΦM(r, θ) =

∫
dΩΨM(r, θ) = 4π(π − θ)(20− r) . (184)

Again, from the transport equation we can derive the continuous source

S(r, θ, µ, η) = (−µπ + η + (Σt − Σs)) + θ(µ− 20(Σt − Σs))

− 20η

r
− r(π(Σt − Σs)) + rθ(Σt − Σs) .

(185)

We find that just as in the biquadratic case, this source is nontrivial at the leftmost

physical radial boundary, (rL = 10 cm ), and the bottommost polar boundary (θB =

0) and we again must evaluate the source term at the boundary conditions. The source

needs to be integrated over the boundary surface and subtracted from q at that face.

These terms for the rL = 10 cm face are the same form as for the biquadratic case

(Equations 181 and 182) with ΨM(rL, θ) = 10(π − θ). For the bottom face, we have

q1B = Ω · n̂B
∫ rR

rL

ΨM(r, θB)B1(r, θB)r sin θBdr , (186)

and

q2B = Ω · n̂B
∫ rR

rL

ΨM(r, θB)B2(r, θB)r sin θBdr . (187)

Note that these terms are zero for full spheres since sin θB = 0 for this cell. The

physical interpretation is that since there is no surface area at the extreme ends in

the polar dimension as defined in our coordinate system, there can be no leakage

across that face. Results were computed on the same spatial domain as before, with
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S8, Σt = 2.0 and c = 0.99, and Nx = Ny = 16, and δ was calculated for a series of

iterative convergence tolerance. The results in Table 19 confirm that the numerical

method reproduced the bilinear solution as expected. A two-dimensional visualization

of this solution is shown in Figure 23 with the same setup as the image shown for the

previous biquadratic plot.

Table 19: Manufactured solution verification for bilinear flux

tol. δ
1E-06 3.286E-06
1E-08 3.588E-08
1E-10 3.507E-10
1E-12 2.378E-11

Figure 23: Numerical result for bilinear manufactured solution, represented with 64
x 64 bins.
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5.2.3 Biquadratic anisotropic manufactured source

To investigate the accuracy of the weighted diamond difference angular approximation

we can use a manufactured source corresponding to an anisotropic flux of the form

ΨM(r, θ, µ) = (1 + 3µ2)θ(π − θ)r(2− r) r ∈ [1, 2] cm, θ ∈ [0, π] . (188)

This flux, similar to the isotropic biquadratic flux, has a boundary source on the

inner radial edge, although for this test the source is anisotropic. This angular flux

corresponds to a scalar flux

ΦM(r, θ) =

∫
dΩΨM(r, θ, µ) = 8πθ(π − θ)r(2− r) . (189)

We can then derive the manufactured source

S(r, θ, µ, η) = 2π(η + 3µ2η) + r(−π(η + 3µ2η)) + θ(14πµ− 6πµ3 − 4η − 12µ2η)

+ rθ(−8πµ+ 2η + 6µ2η + 2π(σt(1 + 3µ2)− 2σs))

+ θ2(6µ3 − 14µ) + rθ2(8µ− 2(σt(1 + 3µ2)− 2σs))

+ r2θ(−π(σt(1 + 3µ2)− 2σs)) + r2θ2(σt(1 + 3µ2)− 2σs) .

(190)

The anisotropic boundary source on the rL = 1.0 edge is, at the corners,

q1L = Ω · n̂L(1 + 3µ2)

∫ θT

θB

ΨM,L(rL, θ)B1(rL, θ)r
2
L sin θdθ , (191)

and

q4L = Ω · n̂L(1 + 3µ2)

∫ θT

θB

ΨM(rL, θ)B4(rL, θ)r
2
L sin θdθ . (192)
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To solve this numerically we use σt = 1.0, c = 0.1, and employ a mesh refinement

procedure in both angle and space. With multiple levels of mesh refinement it is easy

to see when the error in the solution is due to the angular derivative approximation

rather than the spatial accuracy. As before, the spatial meshes employ an equal

number of cells in the radial and polar dimensions. We show in Table 20 that the

error induced by an anisotropic source hinders the order of accuracy of the solution at

low angular quadrature. Once we reach S96 the errors are on the order of the spatial

error, around a second order accuracy.

Table 20: Verification for 1 + 3µ2 anisotropic biquadratic flux

8x8 16x16 32x32 64x64
S8 2.3537E-01 2.3440E-01 2.3440E-01 2.3450E-01
S16 7.0436E-02 6.3358E-02 6.2527E-02 6.2415E-02
S32 3.2970E-02 1.7797E-02 1.5978E-02 1.5802E-02
S64 2.8030E-02 8.2490E-03 4.3881E-03 4.0242E-03
S96 2.7558E-02 7.2269E-03 2.4317E-03 6.2308E-04

Similarly, we can investigate the accuracy of the angular discretization scheme in

the η direction with an appropriate manufactured source. If we posit an angular flux

with the form

ΨM(r, θ, η) = (1 + 3η2)θ(π − θ)r(2− r) r ∈ [1, 2] cm, θ ∈ [0, π] , (193)

giving a scalar flux, identical to the previous case

ΦM(r, θ) =

∫
dΩΨM(r, θ, η) = 8πθ(π − θ)r(2− r) . (194)
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We can then derive the manufactured source

S(r, θ, µ, η) = 2π(η + 3η3) + r(−π(η + 3η3))

+ θ(2πµ− 6πµη2 − 4η − 12η3)

+ rθ(−2πµ+ 2η + 6η3 + 2π(σt(1 + 3η2)− 2σs))

+ θ2(−2µ+ 6µη2) + rθ2(4µ− 2(σt(1 + 3η2)− 2σs))

+ r2θ(−π(σt(1 + 3η2)− 2σs)) + r2θ2(σt(1 + 3η2)− 2σs)

+ θ cot(θ)(12ηξ2π) + θ2 cot(θ)(−12ηξ2)

+ rθ cot(θ)(−6πηξ2) + rθ2 cot(θ)(6ηξ2) ,

(195)

and the anisotropic boundary source on the rL = 1.0 edge is, at the corners,

q1L = Ω · n̂L(1 + 3η2)

∫ θT

θB

ΨM,L(rL, θ)B1(rL, θ)r
2
L sin θdθ , (196)

and

q4L = Ω · n̂L(1 + 3η2)

∫ θT

θB

ΨM(rL, θ)B4(rL, θ)r
2
L sin θdθ . (197)

We show in Table 21 the combined mesh and angular refinement results for this

source.

Table 21: Verification for 1 + 3η2 anisotropic biquadratic flux

8x8 16x16 32x32 64x64
S8 2.0729E-01 1.9524E-01 1.8928E-01 1.8753E-01
S16 7.3558E-02 5.6426E-02 5.1838E-02 5.0434E-02
S32 4.4890E-02 1.9800E-02 1.4606E-02 1.3526E-02
S64 3.8734E-02 1.1276E-02 4.7892E-03 3.6422E-03
S96 3.7683E-02 9.873E-03 3.0598E-03 9.8071E-04
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5.3 Code-to-code comparison

Here we present a comparison of results for two problems as calculated by ATMO-

TRAN and by Capsaicin, a production transport code that can perform transport

calculations for one-dimensional spherical geometries using a linear-discontinuous spa-

tial discretization [55]. Problem 1 is a spherical geometry problem with a minimum

radius of 4 cm, inside of which is a pure absorber, and a maximum radius of 6.25

cm, outside of which is vacuum. The relevant cross sections are σt = 1.0 cm−1 and

c = 0.9. The radial dimension is split into 18 cells, indexed 0 through 17, and there

is no internal source except for cells 8 and 9 which have a source of 2 cm−3. An S64

angular discretization is used. For ATMOTRAN we used 10 spatial cells in the polar

dimension and the result is equal for all such spherical wedges, to the convergence tol-

erance of the simulation. For comparison here we select one of the wedges to compare

with the one-dimensional Capsaicin result in Table 22.

A similar S64 comparison is made for Problem 2, again an annular sphere with a

central absorber and vacuum outer boundary, this time with a minimum radius of 10

cm, a maximum radius of 20 cm, split into 10 radial cells indexed 0 through 9, with

cross sections σt = 1.0 cm−1 and c = 0.9, this time with an internal source 1 cm−3 in

all cells. The comparison is shown in Table 23.

5.4 Inspection of cases of interest

Here we show results for some cases of interest to demonstrate code performance.

First we show purely scattering spherical shells with a boundary source on the inner

radial boundary and either vacuum or reflector at the outer boundary. We then

show a solid sphere and confirm that there is no unphysical dip in the scalar flux at

the center of the sphere. Finally we show qualitative performance with a localized
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Table 22: ATMOTRAN and Capsaicin code-to-code comparison (Problem 1)

Cell ATMOTRAN Capsaicin
0 0.3961226643 0.3961211683
1 0.4983106567 0.4983096455
2 0.5829085590 0.5829083320
3 0.6645138383 0.6645150605
4 0.7492715793 0.7492748502
5 0.8437496236 0.8437547241
6 0.9628213314 0.9628257701
7 1.1523253142 1.1523241506
8 1.3956210210 1.3956145831
9 1.3673339199 1.3673321226
10 1.0794017583 1.0794039559
11 0.8593869421 0.8593873823
12 0.7177477545 0.7177477930
13 0.6083192923 0.6083192277
14 0.5155590534 0.5155589948
15 0.4328732092 0.4328732803
16 0.3558618708 0.3558622104
17 0.2787093301 0.2787097084

Table 23: ATMOTRAN and Capsaicin code-to-code comparison (Problem 2)

Cell ATMOTRAN Capsaicin
0 5.0142310580 5.0142310598
1 7.3660355575 7.3660355605
2 8.4390145650 8.4390145687
3 8.9288563723 8.9288563762
4 9.0638032856 9.0638032895
5 8.9314569865 8.9314569903
6 8.5284452286 8.5284452316
7 7.7709942846 7.7709942870
8 6.4764570799 6.4764570817
9 4.1184026202 4.1184026213

point source in a solid sphere and in a spherical shell, and for the latter we also

make a comparison of the ATMOTRAN solution to a spatial diamond-differenced

discretization.
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5.5 Boundary surface sources

The geometry is a spherical shell on r ∈ [0.5, 2.0] cm, θ ∈ [0, π], with c = 1.0, σt = 1.0

cm−1, and the code uses an S6 angular approximation. Figure 24 shows the result

for a source 1 cm−3 at the inner boundary, and with vacuum at the outer boundary.

Figure 25 shows the result for the same problem but adding a specular reflection at

the outer boundary, resulting as expected in a flat unity scalar flux.

Figure 24: ATMOTRAN result for spherical shell with inner boundary source and
vacuum outer boundary.
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Figure 25: ATMOTRAN result for spherical shell with inner boundary source and
reflecting outer boundary.

5.6 Solid spheres

Solid spheres are generally interesting although not needed for the atmospheric trans-

port application. Here we show performance of ATMOTRAN using a solid sphere

geometry. Figure 26 shows the solution of a problem with r ∈ [0.0, 1.0] cm, θ ∈ [0, π],

with c = 1.0, σt = 1.0 cm−1 and an internal source 1 cm−3, with an S2 angular ap-

proximation. This figure uses the ATMOTRAN weighted diamond difference angular

discretization. In Figure 27 we show a one-dimensional representation of the same

problem and compare the result with a diamond differenced angular discretization.

Both cases used bilinear discontinuous spatial discretization. This plot motivates the
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use of weighted diamond angular discretizations and confirms that the unphysical flux

dip observed and mitigated in [20] for spatial diamond differencing is also observed

for discontinuous spatial differencing.

Figure 26: ATMOTRAN result for a pure scattering solid sphere with an internal
source.

5.7 Point sources

The two-dimensional spherical-polar geometry allows for point sources within a spher-

ical medium. This is a critical requirement for the atmospheric problem. The atmo-

spheric verification is done by comparing one dimensional data, for example an energy

spectrum or fluence at a point, since it is hard to compare the full two-dimensional

data graphically. Some interesting qualitative results are shown here for small geome-
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Figure 27: Comparison of weighted and standard diamond differencing for the angu-
lar discretization, using bilinear discontinuous spatial differecing on the solid sphere
problem.

tries in two dimensions to illustrate the performance of the code for point sources.

Figure 28 shows an example of a solid sphere with 40 x 40 cells, on r ∈ [0.0, 20.0]

cm, θ ∈ [0, π], with c = 0.9, σt = 1.0 cm−1 and an internal source 1 cm−3 at cell

(20,40), with an S4 angular approximation. From this result, we can see that the

flux is isotropic from the source, and is represented properly on the curvilinear or-

thogonal grid. Figure 29 shows an example of a spherical shell with 10 x 40 cells, on

r ∈ [10.0, 20.0] cm, θ ∈ [0, π], with c = 0.9, σt = 1.0 cm−1 and an internal source 1

cm−3 at cell (0,10), with an S4 angular approximation and BLD spatial discretiza-
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tion. Figure 30 shows the performance of spatial diamond-difference code for the

same problem. Cells in white are negative fluxes, illustrating this key deficiency of

the diamond discretization, which is particularly obvious for two-dimensional point

source problems.

Figure 28: ATMOTRAN result for a point source in a solid sphere.
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Figure 29: ATMOTRAN result for a point source in a solid sphere with bilinear
discontinuous spatial discretization.
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Figure 30: ATMOTRAN result for a point source in a solid sphere with diamond
spatial discretization.
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5.8 Verification against Monte Carlo

An important check is to verify how well the code can represent the atmospheric prob-

lem of interest. This section shows ATMOTRAN results compared to Geant4 [54]

Monte Carlo results for the same physical problem. For the results presented here,

the Geant4 package (version 4.10.01) was configured to utilize the QGSP-BERT-HP

physics model, which performs high precision neutron transport at low energies (< 20

MeV). The Geant4 geometry included a spherical Earth with a radius 6378 km, and

an atmosphere extending to 1000 km. The density and composition of the atmosphere

was segmented into 200 layers, logarithmically spaced in radius. Each layer is assigned

material properties consistent with the NRL MSISE-00 model introduced in Chapter

1. A point source of neutrons is placed at a particular altitude and the fluence of

neutrons is scored leaving the atmosphere as a function of energy and angle. Neutron

fluence is scored in 60 angular bins from 0 to π radians, and in 30 energy bins (see

Table 24). Although the Monte Carlo data was scored into a finite number of bins,

the simulation treats energy as a continuous variable, which will reveal some energy

discretization error in ATMOTRAN. ATMOTRAN was configured similarly, with 30

energy bins and 60 angular bins, and used 60 radial bins, somewhat coarser than the

Monte Carlo geometry. We compare two quantities, the energy spectrum of neutrons

leaving that atmosphere directly overhead (Figure 31), and the energy-integrated flu-

ence of neutrons leaving the atmosphere as a function of polar angle (Figure 32). The

two plots contained this this section are examples of the full data set contained in

Appendix B. Note that these plots compare Monte Carlo data with ATMOTRAN

at increasing angular discretization order, and includes a comparison with a spatial

diamond difference discretization. Weighted diamond angular differencing is always

used. The lower panels of the plots show point-wise ratios of Monte Carlo to ATMO-

TRAN (S10) fluence values. These comparisons confirm several effects. First, that
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ATMOTRAN is properly down-scattering neutrons in energy. These examples are all

for monoenergetic sources, and so the lower energy portion of the spectrum is due to

the multigroup implementation in ATMOTRAN. We can see in Figure 31 that the

ATMOTRAN energy spectrum compares well with the Monte Carlo results partic-

ularly at the lower energy ranges below the resonance region. Second, in Figure 32

we can see that the fluence as a function of angle agrees well between higher order

ATMOTRAN and Monte Carlo, up to a point where horizon effects and geometry

differences are present. We can also see that the diamond-differenced solution starts

to oscillate and give unphysical results with higher angle as a result of negative fluxes.
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Figure 31: Atmospheric neutron energy spectrum at 1000 km θ = 0, for 10 MeV
source at 30 km
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Figure 32: Atmospheric neutron fluence vs polar angle at 1000 km, for 10 MeV source
at 30 km

5.9 Summary of verification results

In this chapter we showed evidence that the ATMOTRAN spatio-angular discretiza-

tion scheme and sweep is correctly implemented without errors. We accomplished this

through several tests. First we performed an asymptotic scaling test to verify that
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the scheme does preserve the thick-diffusion limit. This is expected for the linear dis-

continuous class of schemes and it important to ensure that accurate solutions can be

achieved for optically thick problems without resorting to very large numbers of mesh

cells. We then checked the accuracy of the scheme through comparisons of numerical

results with manufactured solutions. This confirms that the bilinear discontinuous

discretization of the transport equation in two-dimensional spherical coordinates, the

two dimensional weighted diamond angular differencing, and the two-dimensional

starting directions, all presented here for the first time, are correctly derived and

implemented. The biquadratic isotropic manufactured solution test demonstrated

that this scheme has better than second-order accuracy, and in fact a fractional or-

der of accuracy near 2.5. This is an interesting result and more study of the causes

may prove fruitful. Two-dimensional Cartesian (X-Y) BLD schemes achieve third

order convergence, but two dimensional cylindrical (R-Z) achieve second order, so

the present scheme falls in between. The bilinear isotropic manufactured solution

confirmed that the code exactly reproduces a solution of the same order as the ba-

sis. We showed two anisotropic biquadratic manufactured solutions and results from

a multi-level mesh refinement in space and angle. These results demonstrated that

with the WDD method many angular points are required to approach the level of the

spatial discretization error. This was true for both µ and η anisotropic sources. De-

pending on the application it may be useful to investigate angular schemes other than

WDD that can provide better accuracy with fewer points. Confirmatory code-to-code

comparisons were provided by showing good agreement between ATMOTRAN and

Capsaicin for two small problems. We showed several interesting cases including a

boundary source, a point source within a sphere, and a solid sphere. Finally, to test

the multigroup code we expanded the geometry to include a physical model the size

of the Earth with an atmosphere extending to 1000 km, and seeded mono-energetic
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point sources at several altitudes and energies. Results of these problems showed

down-scattered neutron energy spectrum and escaping fluence as a function of polar

angle agreed reasonably well between ATMOTRAN and the Monte Carlo simulation.
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6 Summary

In this chapter we summarize the main findings of this dissertation and discuss future

work that would benefit the application of ATMOTRAN to the atmospheric transport

problem. Specifically, this dissertation derived, implemented and verified the meth-

ods needed to realize a bilinear discontinuous discretization of the two-dimensional

transport equation in (r, θ) spherical coordinates. We will now summarize the main

points of each chapter.

In Chapter 1 we introduced the overall goals of this research and defined the prob-

lem of interest. Although the work done for this dissertation in terms of methods

development for deterministic transport is general, there is a specific target applica-

tion which we reviewed. We reviewed past work involving deterministic solution of

incoming plane waves of particles and contrasted this with the present method. We

discussed the shortcomings involved in using Monte Carlo methods for this applica-

tion, motivating the work presented in this dissertation.

In Chapter 2 we reviewed the discrete ordinates method and discussed techniques

of discretizing the transport equation in angle, energy and space to permit accu-

rate solution. Since it is particularly relevant to this dissertation we contrasted the

diamond-differenced and linear discontinuous spatial discretization methods. Follow-

ing this we touched on current techniques in the iterative solution of the transport

equation that are used in ATMOTRAN. We concluded this chapter with a detailed
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review of the most relevant prior work, that of the implementation of the diamond-

differenced TWOTRAN SPHERE code from 1970. This key reference provided in-

sight into the requirements of information flow in the spatio-angular mesh for discrete

ordinates solutions in the relevant coordinate system. We discussed the derivation of

the characteristic equations of motion and their implications, which are relevant to

any transport solution in this system regardless of discretization technique.

In Chapter 3 we introduced the bilinear discontinuous discretization in (r, θ) spher-

ical coordinates. We rearranged the form of the transport equation and worked

through the details to derive a finite element spatial representation. This included

defining vector basis functions to relate quantities within a spatial cell allowing ex-

pansion of quantities in terms of these basis functions, and integrating the terms in

the transport equation over phase space volume for individual cells. Once this was

completed, we presented the fully discretized transport equations in a form that is

readily implemented for solution on a computer. We concluded by providing a deriva-

tion of the discretized transport equations for the zero-weighted starting directions

in two dimensions.

In Chapter 4 we provided details of the implementation of the method of Chap-

ter 3 into the functional ATMOTRAN code. We described the six main functional

blocks of the code. We began by describing how the physical atmospheric geom-

etry is defined in the code, including use of external library data for atmospheric

density and composition, along with nuclear cross-sectional data. We then showed

a sampling of some of the data including mean free paths as a function of energy

and altitude, along with scattering fractions for the same ranges to provide a general

feel for how this large physical problem might relate to other problems with a simi-

lar phase space. Following this, we presented data in the S4 angular approximation

for the Gauss-Chebyshev-Legendre quadrature, angular redistribution and weighted
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diamond angular differencing coefficients, along with starting direction points. We

presented the iterative method of solution and presented some sample iterative con-

vergence measurements. We concluded with details of the spatio-angular sweep in-

formation flow noting that, although it follows the characteristic equations of particle

motion it is somewhat different from, and more complicated than, the already com-

plex sweep method presented in TWOTRAN SPHERE because of the presence of

starting directions.

In Chapter 5 we considered the correctness of the code and presented verifica-

tion data confirming the validity of the fundamental assumptions that went into the

derivations and the ATMOTRAN implementation. We presented verification results

from manufactured solutions, code-to-code comparisons with another transport code,

comparison of multigroup performance with Monte Carlo results, and some individual

examples of interesting cases. We showed that the scheme presented preserves the

thick-diffusion limit, which is necessary to ensure accurate solutions in optically thick

problems, such as neutron transport in the atmospheric transport application tar-

geted in this work. Numerical verification demonstrated that it is feasible to use this

discretization approach for such applications and that ATMOTRAN has successfully

accomplished this goal.

To emphasize the novelty of this work, we state that the bilinear discontinuous

spatial discretization of the transport equation in this coordinate system, the appli-

cation of weighted diamond difference discretization to the angular derivative term

in two angular dimensions, and the the use of zero-weighted starting directions and

complicated information flow presented are all new to the field and generally appli-

cable to any physical system to be represented in these coordinates. The application

of a deterministic, spherical (r, θ) code to the solution of a problem involving the

transport of point sources of neutral particles through the atmosphere is also new.
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Future work may include further investigation and analysis of the source of the

fractional order of convergence shown for this discretization scheme in the isotropic

biquadratic manufactured solution. Also, it may be useful to investigate other angular

differencing schemes that may improve the convergence speed of the solution with

fewer angles in the case of anisotropic source terms. Future work is anticipated to

investigate other improvements including the use of acceleration techniques for faster

convergence speed, and scaling down memory requirements of the code to improve

usability.
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7 Appendices

Appendix A - Matrix Elements

Appendix B - Atmospheric Calculation Results

Appendix C - NJOY Input Files
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7.1 Appendix A - Matrix Elements

This section contains formulations for the integrals used in the matrix representations

in the derivation and verification sections.

7.1.1 Tabulation of Mx Integrals

M1 =

∫ rR

rL

drr2(rR − r)(rR − r) =
(∆r)3

30
(6r2

L + 3rLrR + r2
R)

M2 =

∫ rR

rL

drr2(rR − r)(r − rL) =
1

60
(−3r5

L + 5r4
LrR − 5rLr

4
R + 3r5

R)

M3 =

∫ rR

rL

drr2(r − rL)(r − rL) =
(∆r)3

30
(r2
L + 3rLrR + 6r2

R)

M4 =

∫ θT

θB

dθ sin(θ)(θT − θ)(θT − θ)

= 2∆θ sin(θB) + ((∆θ)2 − 2) cos(θB) + 2 cos(θT )

M5 =

∫ θT

θB

dθ sin(θ)(θT − θ)(θ − θB)

= −∆θ(sin(θB) + sin(θT )) + 2 cos(θB)− 2 cos(θT )

M6 =

∫ θT

θB

dθ sin(θ)(θ − θB)(θ − θB)

= 2∆θ sin(θT )− ((∆θ)2 − 2) cos(θT )− 2 cos(θB)

M7 =

∫ rR

rL

drr2(rR − r) =
1

12
(3r4

L − 4r3
LrR + r4

R)

M8 =

∫ rR

rL

drr2(r − rL) =
1

12
(r4
L − 4rLr

3
R + 3r4

R)

M9 =

∫ rR

rL

drr(rR − r)(rR − r) =
(∆r)3

12
(3rL + rR)

M10 =

∫ rR

rL

drr(rR − r)(r − rL) =
(∆r)3

12
(rL + rR)

M11 =

∫ rR

rL

drr(r − rL)(r − rL) =
(∆r)3

12
(rL + 3rR)

M12 =

∫ θT

θB

dθsin(θ)(θT − θ) = ∆θ cos(θB) + sin(θB)− sin(θT )
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M13 =

∫ θT

θB

dθsin(θ)(θ − θB) = −∆θ cos(θT )− sin(θB) + sin(θT )

M14 =

∫ θT

θB

dθ cos(θ)(θT − θ)(θT − θ)

= −((∆θ)2 − 2) sin(θB) + 2∆θ cos(θB)− 2 sin(θT )

M15 =

∫ θT

θB

dθ cos(θ)(θT − θ)(θ − θB)

= −∆θ cos(θB)−∆θ cos(θT )− 2 sin(θB) + 2 sin(θT )

M16 =

∫ θT

θB

dθ cos(θ)(θ − θB)(θ − θB)

= ((∆θ)2 − 2) sin(θT ) + 2∆θ cos(θT ) + 2 sin(θB)

M17 =

∫ rR

rL

drr3(rR − r) =
1

20
(4r5

L − 5r4
LrR + r5

R)

M18 =

∫ rR

rL

drr3(r − rL) =
1

20
(r5
L − 5rLr

4
R + 4r5

R)

M19 =

∫ rR

rL

drr3(rR − r)(rR − r) =
1

60
(−10r6

L + 24r5
LrR − 15r4

Lr
2
R + r6

R)

M20 =

∫ rR

rL

drr3(rR − r)(r − rL) =
1

60
(−2r6

L + 3r5
LrR − 3rLr

5
R + 2r6

R)

M21 =

∫ rR

rL

drr3(r − rL)(r − rL) =
1

60
(−r6

L + 15r2
Lr

4
R − 24rLr

5
R + 10r6

R)

M22 =

∫ θT

θB

dθθ sin θ(θT − θ)(θT − θ)

= −(3θ2
B − 4θBθT + θ2

T − 6) sin θB

+ (θB(∆θ2 − 6) + 4θT ) cos θB − 6 sin θT + 2θT cos θT

M23 =

∫ θT

θB

dθθ sin θ(θT − θ)(θ − θB)

= θ2
B sin θB − θBθT sin θB + θBθT sin θT + (4θB − 2θT ) cos θB

+ 2(θB − 2θT ) cos θT − 6 sin θB − θ2
T sin θT + 6 sin θT
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M24 =

∫ θT

θB

dθθ sin θ(θ − θB)(θ − θB)

= −(θ2
BθT − 2θBθ

2
T + 4θB + θ3

T − 6θT ) cos θT + θ2
B sin θT − 4θBθT sin θT

+ 6 sin θB − 2θB cos θB + 3θ2
T sin θT − 6 sin θT

M25 =

∫ rR

rL

drr4(rR − r)(rR − r) =
1

105
(−15r7

L + 35r6
LrR − 21r5

Lr
2
R + r7

R)

M26 =

∫ rR

rL

drr4(rR − r)(r − rL) =
1

210
(−5r7

L + 7r6
LrR − 7rLr

6
R + 5r7

R)

M27 =

∫ rR

rL

drr4(r − rL)(r − rL) =
1

105
(−r7

L + 21r2
Lr

5
R − 35rLr

6
R + 15r7

R)

M28 =

∫ θT

θB

dθθ2 sin θ(θT − θ)(θT − θ)

= −2(2θB − θT )(θ2
B − θBθT − 6) sin θB

+ (θ4
B − 2θ3

BθT + θ2
B(θ2

T − 12) + 12θBθT − 2θ2
T + 24) cos θB

+ 2(θ2
T − 12) cos θT − 12θT sin θT

M29 =

∫ θT

θB

dθθ2 sin θ(θT − θ)(θ − θB)

= θ3
B sin θB − θ2

BθT sin θB + (6θ2
B − 4θBθT − 24) cos θB + θBθ

2
T sin θT

+ (4θBθT − 6θ2
T + 24) cos θT − 6θB sin θT + 6θT sin θB − 18θB sin θB

− θ3
T sin θT + 18θT sin θT

M30 =

∫ θT

θB

dθθ2 sin θ(θ − θB)(θ − θB)

= −(θ2
B(θ2

T − 2)− 2θBθT (θ2
T − 6) + θ4

T − 12θ2
T + 24) cos θT

− 2(θ2
B − 12) cos θB + 2(θB − 2θT )(θBθT − θ2

T + 6) sin θT + 12θB sin θB
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M31 =

∫ θT

θB

dθθ cos θ(θT − θ)(θT − θ)

= −(3θ2
B − 4θBθT + θ2

T − 6) cos(θB)

− (θB(∆θ2 − 6) + 4θT ) sin(θB)− 2θT sin(θT )− 6 cos(θT )

M32 =

∫ θT

θB

dθθ cos θ(θT − θ)(θ − θB)

= (θ2
B − θBθT − 6) cos(θB) + (θBθT − θ2

T + 6) cos(θT )

+ 2θT sin(θB)− 2θB sin(θT )− 4θB sin(θB) + 4θT sin(θT )

M33 =

∫ θT

θB

dθθ cos θ(θ − θB)(θ − θB)

= (θ2
B − 4θBθT + 3θ2

T − 6) cos(θT ) + θ2
BθT sin(θT )− 2θBθ

2
T sin(θT )

+ 4θB sin(θT ) + 2θB sin(θB) + 6 cos(θB) + θ3
T sin(θT )− 6θT sin(θT )

M34 =

∫ θT

θB

dθθ2 cos θ(θT − θ)(θT − θ)

= −2(2θB − θT )(θ2
B − θBθT − 6) cos(θB)− 2(θ2

T − 12) sin(θT )− 12θT cos(θT )

− (θ4
B − 2θ3

BθT + θ2
B(θ2

T − 12) + 12θBθT − 2θ2
T + 24) sin(θB)

M35 =

∫ θT

θB

dθθ2 cos θ(θT − θ)(θ − θB) = −6θ2
B sin(θB)

+ (θ3
B − θ2

BθT − 18θB + 6θT ) cos(θB) + (θBθ
2
T − 6θB − θ3

T + 18θT cos(θT ))

+ 4θBθT (sin(θB)− sin(θT )) + 24 sin(θB) + 6θ2
T sin(θT )− 24 sin(θT )

M36 =

∫ θT

θB

dθθ2 cos θ(θ − θB)(θ − θB) = 2(θB − 2θT )(θBθT − θ2
T + 6) cos(θT )

+ (θ2
B(θ2

T − 2)− 2θB(θ2
T − 6) + θ4

T − 12θ2
T + 24) sin(θT )

+ 2(θ2
B − 12) sin(θB) + 12θB cos(θB)
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7.2 Appendix B - Atmospheric Calculation Results

This Appendix shows ATMOTRAN results compared to Geant4 Monte Carlo results

for the same physical problem. Details of the models are discussed in Chapter 5. In

summary, a mono-energetic isotropic point source of neutrons is placed at a particular

altitude and the fluence of neutrons is scored leaving the atmosphere as a function of

energy and angle. Fluence is scored in 60 angular bins from 0 to π radians, and in 30

energy bins. ATMOTRAN results are shown for several angular approximations along

with a sample spatial diamond-differenced discretization to illustrate the limitations of

that method. The following plots are grouped into two sections that compare different

quantities: Figures 33 to 48 compare the energy spectrum of neutrons leaving the

atmosphere directly overhead, while Figures 49 to 64 compare the energy-integrated

fluence of neutrons leaving the atmosphere as a function of polar angle.
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7.2.1 Energy Spectrum Comparison
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Figure 33: Neutron energy spectrum at 1000 km θ = 0, for 10 MeV source at 300 km
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Figure 34: Energy spectrum at 1000 km θ = 0, for 10 MeV source at 100 km
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Figure 35: Energy spectrum at 1000 km θ = 0, for 10 MeV source at 30 km
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Figure 36: Energy spectrum at 1000 km θ = 0, for 10 MeV source at 20 km
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Figure 37: Energy spectrum at 1000 km θ = 0, for 5 MeV source at 300 km
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Figure 38: Energy spectrum at 1000 km θ = 0, for 5 MeV source at 100 km
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Figure 39: Energy spectrum at 1000 km θ = 0, for 5 MeV source at 30 km
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Figure 40: Energy spectrum at 1000 km θ = 0, for 5 MeV source at 20 km
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Figure 41: Energy spectrum at 1000 km θ = 0, for 2 MeV source at 300 km
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Figure 42: Energy spectrum at 1000 km θ = 0, for 2 MeV source at 100 km

146



9−10 8−10 7−10 6−10 5−10 4−10 3−10 2−10 1−10 1 10
Energy (MeV)

19−10

18−10

17−10)
-2

F
lu

en
ce

 (
# 

cm
MC

ATMOTRAN S6

ATMOTRAN S8

ATMOTRAN S10

ATMOTRAN S16

ATMOTRAN S16 DD

2MeV_30km

9−10 8−10 7−10 6−10 5−10 4−10 3−10 2−10 1−10 1 10
Energy (MeV)

0.7
0.8
0.9

1
1.1
1.2
1.3

M
C

:S
10

 R
at

io

Figure 43: Energy spectrum at 1000 km θ = 0, for 2 MeV source at 30 km
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Figure 44: Energy spectrum at 1000 km θ = 0, for 2 MeV source at 20 km
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Figure 45: Energy spectrum at 1000 km θ = 0, for 1 MeV source at 300 km
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Figure 46: Energy spectrum at 1000 km θ = 0, for 1 MeV source at 100 km
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Figure 47: Energy spectrum at 1000 km θ = 0, for 1 MeV source at 30 km
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Figure 48: Energy spectrum at 1000 km θ = 0, for 1 MeV source at 20 km
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7.3 Fluence vs Angle Comparison
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Figure 49: Fluence vs polar angle at 1000 km, for 10 MeV source at 300 km
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Figure 50: Fluence vs polar angle at 1000 km, for 10 MeV source at 100 km
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Figure 51: Fluence vs polar angle at 1000 km, for 10 MeV source at 30 km
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Figure 52: Fluence vs polar angle at 1000 km, for 10 MeV source at 20 km

156



0 0.2 0.4 0.6 0.8 1 1.2 1.4
Angle (rad)

21−10

20−10

19−10

18−10

17−10

)
-2

F
lu

en
ce

 (
# 

cm

MC

ATMOTRAN S6

ATMOTRAN S8

ATMOTRAN S10

ATMOTRAN S16

ATMOTRAN S16 DD

5MeV_300km

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Angle (rad)

0.7
0.8
0.9

1
1.1
1.2
1.3

M
C

:S
10

 R
at

io

Figure 53: Fluence vs polar angle at 1000 km, for 5 MeV source at 300 km
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Figure 54: Fluence vs polar angle at 1000 km, for 5 MeV source at 100 km
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Figure 55: Fluence vs polar angle at 1000 km, for 5 MeV source at 30 km
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Figure 56: Fluence vs polar angle at 1000 km, for 5 MeV source at 20 km
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Figure 57: Fluence vs polar angle at 1000 km, for 2 MeV source at 300 km
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Figure 58: Fluence vs polar angle at 1000 km, for 2 MeV source at 100 km
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Figure 59: Fluence vs polar angle at 1000 km, for 2 MeV source at 30 km
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Figure 60: Fluence vs polar angle at 1000 km, for 2 MeV source at 20 km
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Figure 61: Fluence vs polar angle at 1000 km, for 1 MeV source at 300 km
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Figure 62: Fluence vs polar angle at 1000 km, for 1 MeV source at 100 km
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Figure 63: Fluence vs polar angle at 1000 km, for 1 MeV source at 30 km
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Figure 64: Fluence vs polar angle at 1000 km, for 1 MeV source at 20 km
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7.4 Appendix C - NJOY Input Files

Multigroup cross sections are included in ATMOTRAN via direct read-in of NJOY

output files. NJOY produces pointwise and multigroup cross sections and related

quantities from evaluated data in the ENDF format. The currently available version

is NJOY 2016, maintained and distributed by LANL. The NJOY source code was

accessed online at www.njoy.lanl.gov. The ENDF evaluated raw data files were

downloaded from

t2.lanl.gov/nis/data/endf/endfvii.1-n.html. From this site the “raw eval”

data file can be downloaded for any isotope. Several isotopes are required to build

a realistic atmosphere, as detailed in the atmospheric geometry section. This site

also provides the material number for each isotope. The material number is required

within the NJOY input file. NJOY is run with the command njoy < input indi-

cating a text file runcard to be used as an input argument. On the second line is

the number 70, referencing the ENDF raw eval file, that in this case would need to

be named tape70. This program reads in these data and makes them available to

the geometry program, which combines these data with the physical geometry to

arrive at useful cross sections. In the following code listings are included the input

files to generate multigroup data for a nitrogen (Listing 1) and oxygen (Listing 2)

atmosphere. The energy scale used by ATMOTRAN and required for NJOY is shown

in Table 24.
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Listing 1: NJOY input file to create ATMOTRAN multigroup data for 14N

moder

70 -21

reconr

-21 -22

’pendf tape for 14N’ /

725 3/

.005 0.0 0.0 0.0/

’14N from ENDF ’/

’proc by njoy ’/

’see orig endf/b-vii ’/

0/

broadr

-21 -22 -23

725 1 0 0 0 /

.005/

0 / temperature

0/

groupr

-21 -23 0 -26

725 3 3 3 3 1 1 1 /

’14N ’/

0 / temperature

1.0e10 /

3 2/

6 2/

0/

0/

stop
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Listing 2: NJOY input file to create ATMOTRAN multigroup data for 16O

moder

70 -21

reconr

-21 -22

’pendf tape for 16O’ /

825 3/

.005 0.0 0.0 0.0/

’16I from ENDF ’/

’proc by njoy ’/

’see orig endf/b-vii ’/

0/

broadr

-21 -22 -23

825 1 0 0 0 /

.005/

0 / temperature

0/

groupr

-21 -23 0 -26

825 3 3 3 3 1 1 1 /

’16O ’/

0 / temperature

1.0e10 /

3 2/

6 2/

0/

0/

stop
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Table 24: Energy scale used in ATMOTRAN

Bin edge Energy (eV)
0 1.390e-04
1 1.520e-01
2 4.140e-01
3 1.130e+00
4 3.060e+00
5 8.320e+00
6 2.260e+01
7 6.140e+01
8 1.670e+02
9 4.540e+02
10 1.235e+03
11 3.350e+03
12 9.120e+03
13 2.480e+04
14 6.760e+04
15 1.840e+05
16 3.030e+05
17 5.000e+05
18 8.230e+05
19 1.353e+06
20 1.738e+06
21 2.232e+06
22 2.865e+06
23 3.680e+06
24 6.070e+06
25 7.790e+06
26 1.000e+07
27 1.200e+07
28 1.350e+07
29 1.500e+07
30 1.700e+07
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