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B.S Statistics, University of New Mexico, 2015

M.S Mathematics, University of New Mexico, 2017

The national Earthquake Information Center (NEIC) reports an occurrence

of about 13,000 earthquakes every year, spanning different values on the Richter

scale from very mild (2) to “giant earthquakes” (8 and above). Being able to study

these earthquakes provides useful information for a wide range of applications in

geophysics. In the present work we study the characteristics of an earthquake

by performing seismic source inversion; a mathematical problem that, given some

recorded data, produces a set of parameters that when used as input in a mathe-

matical model for the earthquake generates synthetic data that closely resembles

the measured data. There are two approaches to performing this source inver-

sion: a deterministic and a probabilistic approach. We present an overview of

both methods and implement them in order to perform different seismic source

inversion experiments for recorded waveforms in one and two dimensions.
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Chapter 1

Introduction

Seismic source inversion involves the set of methods which seismologists use in or-

der to infer properties of an earthquake (such as the epicenter), through physical

measurements. In practice, an array of seismographs is used to record physical

information about the earthquake. Usually, the recorded data consists of time se-

ries of ground displacements, velocities, and accelerations, recorded at the surface

of the ground and in observation wells. A depiction of a recording array is given

in Figure (1.1).

Figure 1.1: A schematic of the receiver array.
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Chapter 1. Introduction

Once the data is collected, the goal is to obtain a set of parameters ✓ such that,

when used as input in a forward model (e.g, a solver for the wave equation), the

resulting synthetic output closely resembles the measured data. To find ✓ we

use a cost functional c(✓) that measures the distance between the simulated and

recorded data. When the cost functional is minimized we hope that ✓ is a good

representation of the physical model.

1.1 Deterministic Vs. Probabilistic Inversion

In general, there are two approaches to find the parameters ✓; deterministic and

probabilistic (Bayesian), each of which has advantages and disadvantages. In the

deterministic approach we use optimization algorithms, such as steepest descent,

conjugate gradient, or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,

in order to find the set of parameters ✓ that will minimize the cost functional.

This approach is susceptible to the numerical disadvantages of the traditional

optimization algorithms: 1) their convergence is sensitive to the initial guess of

parameters ✓0; and 2) there is no guarantee that the method will converge to a

global minimum. That being said, this deterministic approach does have the ad-

vantage of being less computationally expensive than its probabilistic counterpart.

In contrast, the probabilistic approach does not depend on an initial point. It

also has the advantage of taking the uncertainty in the model into consideration.

However, the main drawback of this approach is the computational cost associated

with the large number of forward solves required.

2



1.2. Forward Simulation by Discontinuous Galerkin Methods

1.2 Forward Simulation by Discontinuous Galerkin

Methods

Regardless of which approach we take in order to solve the seismic source inversion

problem, we need an accurate, stable, and reliable forward model. To this end,

all forward model computations presented in this work are performed using the

Discontinuous Galerkin (dG) method presented in [1].

Discontinuous Galerkin methods are element-based PDE solvers first introduced

in the late seventies in order to simulate a neutron transport. As we shall discuss

in Chapter 3, the main idea behind them is to divide the computational domain

into k non-overlapping elements and approximate the solution to the PDE by a

polynomial of degree Np � 1 on each of them.

The rest of this thesis is as follows. Chapter 2 formulates the problem and discuses

some of the relevant literature. Chapter 3 describes the discontinuous Galerkin

method used this text. Chapter 4 and 5 describe the theory behind the determinis-

tic and probabilistic methods, respectively. Chapter 6 presents the implementation

of the methods discussed in this work. Lastly, chapter 7 presents the conclusions

and discusses some future work.

3



Chapter 2

Seismic Source Inversion Problem

We begin our discussion with a general formulation of the seismic source inversion

problem. We then discuss some of the techniques used to solve this problem, their

strengths, and issues that arise with their use. We conclude this chapter with a

brief discussion of related work in the literature.

2.1 Problem Formulation

The main goal of seismic source inversion is to determine a set of source param-

eters such that when used as input in a forward model, a good approximation

to the measured data is obtained. Thus, we seek parameters ✓ that minimize

a cost functional c(✓) measuring the misfit between the simulated and recorded

waveforms at Nr recording stations,

c(✓) =
1

2

NrX

r=1

Z T

0

|dr(t)� u(xr; ✓, t)|2dt. (2.1)

Here Nr is the total number of recording stations, T is the final time, xr is the

location of the rth receiver, dr(t) is the recorded quantity, and u(xr, t) is the sim-

ulated quantity. Note that this cost functional is the sum of the L2-norms of the

error between the simulated and recorded waveforms at each recorder.

4



2.1. Problem Formulation

In the present work we consider the acoustic wave equation1, given by

utt � c2(x, t)ru = f(x, t), x 2 ⌦, t 2 [0, T ], (2.2)

with initial data

u(x0, 0) = u0(x), ut(x0, 0) = 0, (2.3)

and boundary conditions given by

ru · n = 0, (2.4)

where ⌦ ⇢ Rn is a compact spatial domain, and the source term is given by

f(x, t) = M

Tr�(x� x0)s(t; t0,!, H), (2.5)

where M is a vector that mimics the stress tensor coefficients of the elastic wave

equation, s(t; t0, w,H) is the time component of the source term, which we take

as s(t; t0, w) = H2e�w2(t�t0)2 ; w is the frequency, H is the amplitude, t0 is the time

at which s(t) obtains its peak, and x0 is source location. The source parameter

vector ✓ reads

✓ = (x0, t0, w,H,M). (2.6)

In practice each of the Nr receivers records data at Nt + 1 discrete times over

[0, T ]. That is, each seismograph will record data for each ti, 0 = t0 < t1 < · · · <
1
There are other more general versions of the wave equation, such as the elastic wave equation.
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Chapter 2. Seismic Source Inversion Problem

tm < · · · < tNt�1 < tNt = T . Thus, we rewrite the integral in Eq. (2.1) as a sum

c(✓) =

NrX

r=1

NtX

m=0

|dr(tm)� uh(xr, tm; ✓)|2, (2.7)

where uh ⇡ u is a computational approximation to u at the grid size h. Note that

we have omitted the time step �t in Eq. (2.7) since all time steps are equal. Our

goal is to find ✓ that minimizes c(✓).

2.2 Solution Techniques

There are in general two approaches in order to minimize Eq. (2.7), a determin-

istic and a probabilistic approach. The former employs optimization techniques,

such as conjugate gradient or BFGS to compute a minimizer. In order to obtain

a unique minimizer these types of methods add a regularization term to the cost

functional. The latter approach is based on Bayes theorem and involves maximiz-

ing a likelihood function, which in turn is equivalent to minimizing the Eq. (2.7)

(see Chapter 5). In this approach, the output is a probability density function for

each parameter.

2.2.1 Deterministic Approaches

Deterministic approaches have the advantage of being less computationally expen-

sive than their probabilistic counterpart. Nevertheless, according to [2], using a

non-linear optimization approach for seismic source inversion remains challenging,

for example:

6



2.2. Solution Techniques

1. Optimization algorithms might only find local minima.

2. The optimization problem might be ill-conditioned.

Adding a regularization term, such as Tykhonov or total variation regularization,

can be used to address this issue (see [2]). In inverse problems, regularization

refers to the process of introducing additional information in order to solve an

ill-posed problem or to prevent over-fitting. We consider the following regularized

cost functional:

J(✓;↵) =

NrX

r=1

Z T

0

|dr(t)� uh(xr, t; ✓)|2dt+ ↵R(✓), (2.8)

where the constant ↵ denotes the importance we choose for the regularization.

The effect of the regularization depends on the exact form of R, for example,

when R corresponds to Tykhonov regularization the cost functional becomes more

quadratic. We can see an example of how regularization works in Figure (2.1).

7
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Figure 2.1: An illustration of how regularization works. To the
left we have a toy example of a function given by Eq. (2.9). We
take the true parameter to be ✓

⇤ = 0.5. The right plot is the misfit
function with regularization terms, for different values of ↵. As we
can see, as ↵ increases, the function becomes more quadratic with

a single global minima.

In Figure (2.1) we illustrate the concept of regularization by considering the

function

f(t; ✓) = (t� ✓)e�50(t�✓)2 . (2.9)

In this toy example, we choose the true value of our parameter to be ✓⇤ = 0.5, and

define the true data to be d = f(t; 0.5). Having this, we can define our regularized

misfit function by

J(✓) =
1

2

||d� f(t; ✓)||2 + ↵R(✓), (2.10)

R(✓) =
1

2

||✓||2. (2.11)

8



2.2. Solution Techniques

In the case where ↵ = 0, we have that the misfit function is very steep at ✓⇤ but

becomes flatter away from this value, hence making it difficult to optimize if we

do not use an appropriate initial guess. Note that as ↵ increases, the function

becomes smoother, without changing the location of the minimum. As we shall

discuss later, this regularization term corresponds to imposing certain prior dis-

tributions on model parameters in the Bayesian (probabilistic) approach, which is

why we do not discuss regularization in that case.

Two popular regularization techniques are Tykhonov regularization,

R(✓)TH =

Z

⌦

||r✓||2dx, (2.12)

and total variation regularization,

R(✓)TV =

Z

⌦

p
||r✓||2 + ✏dx, (2.13)

for some small variation ✏.

We can classify the deterministic methods presented in this work in two cat-

egories: gradient based and quasi-Newton methods. Gradient based methods,

such as steepest descent and conjugate gradient, have previously been used to

solve seismic source inversion problems in [3], and [4], where the latter authors

used conjugate gradient in order to perform a magnetotelluric source inversion.

Additionally, [2], implemented an optimization strategy that includes the use of

conjugate gradient method. On the other hand, quasi-Newton methods, in partic-

ular the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, have previously

9



Chapter 2. Seismic Source Inversion Problem

been implemented in [5], in order to perform a seismic source inversion. How-

ever, contrary to the work presented here, they use the Huber norm, which is a

more robust error measure that interpolates between smooth treatment of small

residuals, just as an l2 norm would, and also provides a robust treatment of large

residuals, just as a l1 norm would. Additionally, [6] used a low storage version of

this method (L-BFGS) in order to perform a three-dimensional source inversion

using Helicopter-born Electromagnetic data, a data collecting procedure different

from the one presented in this text.

Note that both gradient-based and quasi-Newton methods require the gradient of

the cost functional. We can achieve this by computing a finite difference approx-

imation for each component of the gradient, however, this can get prohibitively

expensive really quickly. A more efficient approach to computing the gradient is

using adjoint state methods, which require only two simulations of the forward

model. These methods have been implemented by [7], [8], and [2].

2.2.2 Probabilistic Approach

A different approach to solving source inversion problems is to consider probabilis-

tic methods, which are based on a Bayes theorem and Markov Chain Monte Carlo

(MCMC). Two major MCMC methods are the Gibbs sampler and the Metropolis-

Hastings (MH) algorithm. The latter method has been used in [9] to perform

the inversion of seabed reflection data in order to resolve sediment structure on

the Malta Plateau (Mediterranean sea). According to the authors they were able

to obtain satisfactory data consistent with other available experimental results.

10



2.2. Solution Techniques

The authors in [10] argue that even though the MH algorithm can handle a two-

dimensional source inversion problem, it is less severe to use a Gibbs sampler,

provided that the conditional distribution ⇡(✓j|✓1 . . . ✓j�1, ✓j+1, . . . , ✓n), along with

the parameter cell ✓j can be computed.

MCMC methods have the disadvantage of requiring a large number of forward

solves. In order to improve the efficiency of these methods, [11], proposed a gen-

eralization of the Metropolis-Hastings algorithm which allows for parallelization.

The main idea behind the method is to consider a Markov chain with more than

two states, hence creating various stationary distributions and sampling from them

in parallel. According to the author, this approach is widely generalizable and is

fairly straight forward to implement. In addition, [12], propose the use of stochas-

tic collocation methods based on generalized polynomial chaos (gPC) in order to

construct an approximation to the forward solution over the support of a prior

distribution, which in turn defines a surrogate posterior that can be evaluated

repeatedly at a negligible cost. Lastly, [13], (based on previous work from [2])

propose what they call a Stochastic Newton method for which the MCMC is ac-

celerated by sampling from a proposal that builds a local Gaussian approximation

based on local gradient and Hessian of the log posterior.

2.2.3 Forward Wave Propagation

For this project, the forward model for the numerical solution of the wave equa-

tion is performed using discontinuous Galerkin methods. These methods have

been previously implemented to solve the wave equation by [14], [15], and [16].

11



Chapter 2. Seismic Source Inversion Problem

More recently, [1], developed a strategy for the spatial discontinuous Galerkin dis-

cretization of wave equations in second order form. The forward solver used in

this thesis based on the method presented in [1].

12



Chapter 3

Discontinuous Galerkin Methods

Discontinuous Galerkin methods use the same element approach as finite elements,

and as such we get the flexibility to discretize more complex geometries. In dG

methods, the domain ⌦ is approximated by a combination of K non-overlapping

elements Dk of the form

⌦ ⇡ ⌦h =

K[

k=1

Dk. (3.1)

On each of these elements we express the local solution to the PDE of interest as

a polynomial of order q = Np � 1

x 2 DK
: uk

h(x, t) =

qX

n=1

ûh
n(t)�n(x) (3.2)

where �n, is an qth-degree local polynomial basis (this is called modal formulation).

The global solution to a given PDE is then assumed to be approximated by the

direct sum of the K piecewise nth-order local polynomials solutions uk
h(x, t),

u(x, t) ⇡ uh(x, t) =

KM

k=1

uk
h(x, t). (3.3)

13



Chapter 3. Discontinuous Galerkin Methods

3.1 An Illustration of a dG Method for the Trans-

port Equation

We introduce dG methods by considering the linear, scalar, transport equation

with a source term g(x, t)

@u

@t
+

@f(u)

@x
= g(x, t), x 2 [L,R] = ⌦, (3.4)

(3.5)

where we choose the flux to be

f(u) = au. (3.6)

The initial condition is

u(x, 0) = u0(x), (3.7)

and depending on the sign of a we impose boundary conditions:

8
>><

>>:

u(L, t) = g(t), if 0  a,

u(R, t) = g(t), if a < 0.

(3.8)

We seek an approximate solution uh(x, t) on each element Dk such that

uk
h(x, t) =

qX

n=1

ûk
n(t)�n(x) for x 2 Dk, (3.9)

14



3.1. An Illustration of a dG Method for the Transport Equation

where {�i, . . . ,�n} span the space of polynomials of degree at most q on Dk. We

define the residual

Rh(x, t) =
@uh

@t
+

@f(uh)

@x
� gh, (3.10)

for some discretization of gh, and require that this residual vanishes on each ele-

ment in the Galerkin sense, i.e, we require our test function to be orthogonal to

the residual,

0 =

Z

Dk

Rh(x, t)�
k
j (x)dx =

Z

Dk

✓
@uk

h

@t
+

@f(uk
h)

@x
� gh

◆
�(x)dx. (3.11)

We perform an integration by parts in Eq. (3.11) and obtain

Z

Dk

✓
@uk

h

@t
�j(x)� f(u)

@�j(x)

@x
� gh�j(x)

◆
dx = � [f�]x

k+1

xk . (3.12)

Note that Eq. (3.12) implies that the solution is multiply defined for different

interfaces. We define the numerical flux as the average, u⇤
=

uR+uL

2 , where uR

and uL are the values of the function at the right and left sides of the interface.

There are other choices for the numerical flux, for example the upwind flux (see

[17]). If we perform an additional integration by parts in Eq. (3.11), we recover

the strong form of the scheme

Z

Dk

Rh�j(x, t)dx = [(fk
h � f ⇤

)�j]
xk+1

xk . (3.13)

15



Chapter 3. Discontinuous Galerkin Methods

We can form the matrices Mk and Sk with components given by

Mk
ij =

Z

Dk

�i(x)�j(x)dx, (3.14)

Sk
ij =

Z

Dk

�i(x)
@�j(x)

@x
dx, (3.15)

in order to obtain semi-discrete schemes from Eq. (3.13) and Eq. (3.12) given by

Mk
(uk

h)t � (SK
)

T
(fh)�Mk

(gh) = [f ⇤�]x
k+1

xk , (3.16)

Mk
(uk

h)t + SK
(fh)�Mk

(gh) = [(f ⇤ � fh)�]
xk+1

xk , (3.17)

where the weak and strong form are shown in Eq. (3.16) and Eq. (3.17), respec-

tively. The semi-discrete schemes can be marched in time respectively by and

ODE solver like RK4.

3.2 Discretization for the Scalar Wave Equation

We present a discretization for the scalar wave equation based on the formulation

given in [1]. Consider the scalar wave equation in second order form with constant

speed, c, and homogeneous boundary conditions:

@2u

@t2
= c2r2u+ f(x, t), x 2 ⌦ ⇢ Rd, t > 0, (3.18)

↵
@u

@t
+ �cru · n = 0, (3.19)

where ↵ and � are nonnegative functions, ↵2
+ �2

= 1, and n is the outward unit

normal. Note that ↵ = 1, � = 0 is our formulation of Dirichlet conditions and

↵ = 0, � = 1 is our formulation of Neumann conditions. Following [1], we can

16



3.2. Discretization for the Scalar Wave Equation

rewrite Eq. (3.18) as a first order system in time

@u

@t
= v, (3.20)

@v

@t
= c2r2u, (3.21)

with initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x). (3.22)

We present the discretization for one-dimensional case. Assume that the compu-

tational domain has been discretized by a uniform grid x0, . . . , xj, xj+1, . . . xK with

spacing h. Let xj+ 1
2
= (xj+xj+1)/2. Then the mapping z =

2
h
(x�xj+ 1

2
) takes ele-

ment ⌦j to the reference element ⌦R = [�1, 1] where we expand the displacement

and velocity in test functions:

uh
j (x, t) =

qX

l=0

ûh
l,j(t)�l(z), (3.23)

vhj (x, t) =

q�1X

l=0

v̂hl,j(t) l(z). (3.24)

Based on the energy function of the system E(t),

E(t) =
1

2

Z
v2 + c2|ru|2

17



Chapter 3. Discontinuous Galerkin Methods

and Eq. (3.20)-(3.21) we impose the following variational problem:

Z

⌦j

r2�u

✓
@uh

@t
� vh

◆
=

Z

@⌦j

r�u · n
✓
@uh

@t
� v⇤

◆
, (3.25)

Z

⌦j

�v
@vh

@t
+ c2r�v ·ruh � �vf = c2

Z

@⌦j

�vw
⇤ · n, (3.26)

Z

⌦j

✓
@uh

@t
� vh

◆
= 0, (3.27)

which can be discretized on each element by

M v
v̂

0
(t) + Su

û(t) = Fv. (3.28)

Mu
û

0
(t) + Sv

v̂(t) = Fu, (3.29)

where û = [ûh
0,j, û

h
1,j, . . . , û

h
q+1,j]

T , v̂ = [v̂h0,j, v̂
h
1,j, . . . , v̂

h
q,j]

T , and the mass (Mu,M v
)

and stiffness (Su, Sv
) matrices are given by

M v
k,l =

h

2

Z 1

�1

 k(z) l(z)dz, k, l = 0, . . . , q, (3.30)

Mu
0,l =

h

2

Z 1

�1

�l(z)dz, l = 0, . . . , q + 1, (3.31)

Mu
k,l =

h

2

4

h2

Z 1

�1

�00
k(z)�l(z)dz �


2

h
�0
k(z)�l(z)

�1

�1

, k = 1, . . . , q, l = 0, . . . , q + 1,

(3.32)

Sv
0,l = �

h

2

Z 1

�1

 l(z)dz, l = 0, . . . , q, (3.33)

Sv
k,l = �

h

2

4

h2

Z 1

�1

 00
k(z)�l(z)dz, k = 1, . . . , q, l = 0, . . . , q + 1, (3.34)

Su
k,l =

h

2

4

h2

Z 1

�1

 0
k(z)�

0
l(z)dz, k = 0, . . . , q, l = 0, . . . , q + 1, (3.35)
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3.3. Implementation: Wave Equation with Singular Sources

where the factors h
2 ,

2
h

appear from the integral and derivative due to the change

of variables. The flux terms are given by

Fv
l =

✓
@u

@x

◆⇤

 l(z(x))

�xj+1

xj

, l = 0, . . . , q, (3.36)

Fu
l = �2

h
[v⇤(rz�l(z(x)) · n)]xj+1

xj
, l = 0, . . . , q + 1, (3.37)

and  l(z) = �l(z) are Chebyshev polynomials:

 l(z) = �l(z) = Tl(z) = cos(lt), t = arccos(z). (3.38)

Once we had this semi-discrete system we used a Taylor time stepping in order to

perform the time integration. For a detailed analysis of the formulation see [1].

3.3 Implementation: Wave Equation with Singu-

lar Sources

Consider the wave equation with singular sources

utt = uxx + f(t)�(x� x0) + g(t)�0(x� x0).

We begin by considering the case when x0 = 0, g(t) = 0 and f(t) = �4 ⇥ 6

2
(t �

1)e�62(t�1)2 so that the solution is

u(x, t) =

8
><

>:

e�62(x+(t�1))2 x < 0,

e�62(x�(t�1))2 x > 0.

When x0 coincides with a node we simply add half of the contribution from the
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Chapter 3. Discontinuous Galerkin Methods

source to each of the numerical fluxes in such a way that the source discretization

is consistent with the properties of the Dirac delta, particularly

Z 1

�1
 (x)�(x� x0)dx =  (x0), (3.39)

for some (integrable) function  (x). When x0 is inside an element we also add

the source as a point-wise contribution. Both cases appear to result in spectral

convergence as long as the source term integrates to 0 and this error is measured

after the source has been turned off for some time.

In Figure 3.1 we plot the max-error as a function of the polynomial degree for

the case when x0 coincides with an element interface and when x0 is inside an

element. The time stepping is done by Taylor series expansion and we must there-

fore evaluate high order derivatives of f(t). We do this by first evaluating f(t) on

a Chebyshev grid centered around the current timestep and then evaluating the

derivatives by a finite difference approximation. As it can be seen in the figure

this becomes numerically ill-conditioned due to finite precision effects when the

order is too high.
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3.3. Implementation: Wave Equation with Singular Sources
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Figure 3.1: Max-error i.e, maximum of the error with respect to
x between the computed solution u

h(xr, tm) and the closed form
solution, u(xr, tm)) as a function of polynomial degree with grid
refinement. To the left is the case when the source is at an interface,
to the right is when the source is inside. To the left the domain is
x 2 [�5, 5], to the right x 2 [�5.1, 5]. The source term for this case

is f(t)�(x), where f(t) = �4⇥ 62(t� 1)e�62(t�1)2 .

Now consider the opposite case on which f(t) = 0 and g(t) = �4 ⇥ 6

2
(t �

1)e�62(t�1)2 . The solution in this case is given by

u(x, t) =

8
><

>:

36(x� (t� 1))e�36(x�(t�1))2 x < 0,

36(x+ (t� 1))e�36(x+(t�1))2 x > 0.
(3.40)

By performing an analysis similar to the first case, we obtain similar results; as

we can see in Figure 3.2.
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Chapter 3. Discontinuous Galerkin Methods
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Figure 3.2: Max-error (i.e, maximum of the error with respect to
x between the computed solution u

h(xr, tm) and the closed form
solution, u(xr, tm)) as a function of polynomial degree with grid
refinement. To the left is the case when the source is at an interface,
to the right is when the source is inside. To the left the domain is
x 2 [�5, 5], to the right x 2 [�5.1, 5]. The source term in this case

is given by g(t)�0(x), with
g(t) = �4⇥ 62(t� 1)e�62(t�1)2 .

Moreover, we get that the error between the analytic and numerical solution at

t = 3 for different choices of polynomial degree q and different number of elements

K is given in Figure 3.3. As we can see, as we increase q the error decreases. This

should not be a surprise, for the core idea of this method is to approximate the

solution u with polynomials on a finite number of elements, thus, if the polynomial

degree or the number of elements increase, then the approximation uh will be more

precise.
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3.3. Implementation: Wave Equation with Singular Sources
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Figure 3.3: Error as a function of x between simulated and closed
for solution at t = 1 for different polynomial degrees and 21 ele-
ments between [-5.1,5]. The figure at the left uses a 5-degree poly-
nomial, whilst the middle one and the one at the right one use a
10 and 30 degree polynomial respectively. Notice the decrease with

respect to the maximum error in each case.
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Chapter 4

Deterministic Inversion Methods

The minimization of the cost-functional is a non-linear optimization problem,

which in general is solved by an iterative algorithm. Different optimization meth-

ods make use of different information; we will consider methods that make use of

the gradient as well as methods that use the gradient together with an approxi-

mation to the Hessian matrix. All of the methods rely on a line search. We begin

by describing the line search algorithm we use.

4.1 The Line Search Algorithm

The backbone of the optimization methods studied in this work is the line search

algorithm1. Assuming we know a descent direction p such that c(✓ + ↵p) <

c(✓) 8↵ > 0, the line search determines a good value for ↵, i.e, how much we

should move on that descent direction.

In general, the search direction is given by

p = �Brc(✓), (4.1)
1
There also exist other other type of algorithms that can be used instead of the line search

algorithm, such as trust region. See [18]
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4.2. Gradient-Based Algorithms

where B is a matrix associated with different optimization methods.

We start with an adequately chosen ↵ and shrink it iteratively by a factor of

⌧ 2 (0, 1) until moving from ✓ to ✓ + ↵p achieves an adequate decrease on the

function, i.e until

c(✓ + ↵p)  c(✓)� ↵mpTrc(✓), (4.2)

where m 2 (0, 1). This adequate decrease condition is called the Armijo rule. The

algorithm for this method is given by

Backtracking Algorithm

1. Choose ↵, m 2 (0, 1), ⌧ 2 (0, 1)

2. While c(✓)� c(✓ + ↵p)  �↵mpTrc(✓), let

↵ ↵⌧.

3. Go to 2.

It is customary to choose ⌧ = 1/2 and m << 1 ([18]). For a detailed expla-

nation of the convergence properties of these type of methods see [18], and [19].

4.2 Gradient-Based Algorithms

Having explained the line search algorithm, we consider different methods that

arise from different choices of Bi.
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Chapter 4. Deterministic Inversion Methods

4.2.1 Steepest Descent

We first consider the steepest descent algorithms. These types of methods rely

on the computation of the gradient, thus making them easier to implement than

other methods, however, they have the disadvantage of being inefficient. Their

convergence is linear, with a constant of proportionality usually close to 1. In

fact, it could happen that the method converges so slowly that ✓i+1� ✓i is smaller

than machine precision, which will cause the method to fail ([19]). Regardless of

this issue we decided to consider them given that they provide a basis for compar-

ison.

In order to compute the direction of steepest descent we consider the first two

terms of the Taylor series expansion on c(✓i + p)

c(✓i + p) ⇡ c(✓) + pTrc(✓i). (4.3)

We want to choose p such that pTrc(✓) is as small as possible. Assume that

||pT || = 1 and recall that

pTrc(✓i) = ||pT ||||rc(✓i)|| cos�, (4.4)

which means that pTrc(✓) is minimized when pT and rc(✓) are anti-parallel. This

implies that

pT =

�rc(✓i)
||rc(✓i)||

. (4.5)

The steepest descent method can be implemented form this result by iteratively

doing a line search in the direction of p. The steepest descent algorithm is given

in in the following table:
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4.2. Gradient-Based Algorithms

Steepest Descent Algorithm

1. Choose an initial point ✓0

and some convergence tolerance, ✏.

2. For i = 0, 1, . . . ,

(a) if ||rc(✓i)|| < ✏, stop. Otherwise,

(b) Set pi = �rc(✓)

(c) use a line search to determine ✓i+1 = ✓i + ↵ipi.

4.2.2 Conjugated Gradients

We now present an improved version of steepest descent. We first discuss conjugate

gradients for linear optimization and then move to the non-linear case. Consider

the quadratic linear function

f(✓) =
1

2

✓TA✓ � bT ✓. (4.6)

We want to generate a sequence of vectors {pi} that are conjugate with respect to

the coefficient matrix A, i.e, we want

pTi Apj = 0 if j 6= i. (4.7)

Let ✓ be a linear conbination of N of these vectors;

✓ =

NX

j=0

↵jpj. (4.8)
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Chapter 4. Deterministic Inversion Methods

Thus, we can write Eq. (4.6) as

f(✓) = f

 
NX

j=0

↵jpj

!
(4.9)

=

1

2

 
NX

i=0

↵jpi

!T

A

 
NX

j=0

↵jpj

!
� bT

 
NX

j=0

↵jpj

!
(4.10)

=

1

2

NX

i=0

NX

j=0

↵i↵jp
T
i Apj �

NX

i=0

↵ib
Tpi (4.11)

=

1

2

NX

j=0

a2jp
T
j Apj �

NX

i=0

↵ib
Tpi = �

NX

i=0

✓
1

2

a2jp
T
j Apj � ↵jb

Tpj

◆
. (4.12)

Thus, if we want to minimize f(✓) over all ↵, we can take the derivative of Eq.

(4.12) with respect to ↵ and set it equal to 0,

ajp
T
j Apj � bTpj = 0 =) ↵j =

bTpj
pTj Apj

. (4.13)

If we let the residual at the ith iteration to be ri = b�Axi = �rf(✓) and replace

the computation of ↵ with a line-search algorithm, we are able to use this method

to minimize non-linear function (see [18]). Thus, the conjugate gradient algorithm

is given by:
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4.2. Gradient-Based Algorithms

Conjugate Gradient Algorithm

1. set p�1 = 0, �0 = 0, choose some initial points ✓0, and some

convergence tolerance, ✏.

2. for i = 0, 1, . . . ,

(a) if ||rc(✓i)|| < ✏, stop. Otherwise,

(b) if i > 0, let

�i =
rc(✓i)Trc(✓i)
rc(✓i�1)

Trc(✓i�1)
.

(c) Set pi = �rc(✓i) + �ipi�1.

(d) use a line search to determine ✓i+1 = ✓i + ↵ipi.

In general there are different formulas for �i. The one in the algorithm is called

the Fletcher-Reeves, however, other formulas for �i include

�FR
i =

rc(✓i)Trc(✓i)
rc(✓i�1)

Trc(✓i�1)
, (4.14)

�PR
i =

rc(✓i)T (rc(✓i)�rc(✓i�1)

rc(✓i�1)
Trc(✓i�1)

, (4.15)

�HS
i = �rc(✓i)

T
(rc(✓i)�rc(✓i�1)

sTn�1rc(✓i�1)
Trc(✓i�1)

, (4.16)

�DY
i =

rc(✓i)Trc(✓i)
sTn�1rc(✓i�1)

Trc(✓i�1)
, , (4.17)

where the superscripts stand for FR: Fletcher-Reeves, PR: Polak-Ribiere, HS

Hestens-Stieffel, and DY : Dai-Yuan. Additionally,

sTn = rc(✓i) + �isn�1, (4.18)

sT0 = rc(✓0). (4.19)
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Chapter 4. Deterministic Inversion Methods

Figure 4.1: Comparison between the conjugate gradient and the
steepest descent algorithms, where steepest descent is plotted in

green and the conjugate gradient is plotted in red.

Finally, we illustrate a comparison between both methods in Figure 4.1, where

steepest descent is plotted in green and the conjugate gradient is plotted in red. As

we can see, the conjugate gradient is a more efficient way to obtain the minimum;

note that the steepest descent has a zig-zagging trajectory, whilst the conjugate

gradient is more direct.
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4.3. Quasi-Newton Methods

4.3 Quasi-Newton Methods

We now discuss quasi-Newton methods. The main idea behind these methods is

to perform a Taylor expansion of the function c in the vicinity of ✓, i.e

c(✓ + p) ⇡ c(✓) + pTr(c(✓)) + 1

2

pTH(✓)p, (4.20)

where H(✓) is the Hessian matrix of the function c(✓). In general, a necessary

condition for a local minimum of our approximation is given when

rc(✓) +H(✓)p = 0, =) p = �(H(✓))�1rc(✓), (4.21)

which is called the Newton direction. In general, an exact Newton method for

minimization is reliable when the Hessian matrix exist and is positive definite.

However, as we have mentioned before, this matrix is not necessarily easy to

compute, and as such, we resort to approximate this matrix and and proceed to

modify this approximation iteratively. In general we can think of these types of

methods as a generalization of the secant method for one dimensional problems.

4.3.1 The BFGS Algorithm

Of peak importance is the BFGS algorithm, developed independently in 1970

by Broyden, Fletcher, Goldfarb, and Shanno (see [20]), this method provides a

rank-two update formula for the approximation of the Hessian. Denote the ap-

proximation of the Hessian at iteration k by Bk. From Eq. (4.21), we get that our

search direction at the k-th iteration satisfies the Newton equation

Bkpk = �rc(✓k) =) pk = �B�1
k rc(✓k). (4.22)
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Chapter 4. Deterministic Inversion Methods

Once we have obtained our search direction, we proceed to do a line search in the

direction of pk in oder to obtain the next point in our iteration, ✓k+1. In general,

we want to update Bk+1 by adding two rank-one matrices, that is

Bk+1 = Bk + Uk + Vk. (4.23)

Moreover, given its computational properties, as well as its similarity to the Hes-

sian, it is desirable for Bk to be a symmetric positive definite matrix. One way to

assure this is to consider Uk = ↵uuT and Vk = �vvT . Thus, the update for Bk at

the k + 1-step is given by

Bk+1 = Bk + ↵uuT
+ �vvT . (4.24)

Define the quasi-Newton condition at the k-th step by

Bk+1(✓k+1 � ✓k) = rc(✓k+1)�rc(✓k), (4.25)

=) Bk+1dk = yk, (4.26)

where sk = ✓k+1 � ✓k, yk = rc(✓k+1)�rc(✓k). Thus, if we let

u = yk (4.27)

v = Bksk, (4.28)

we get that,

↵ =

1

yTk sk
, � =

1

sTk �ksk
, (4.29)
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4.3. Quasi-Newton Methods

which in turn implies that

Bk+1 = Bk +
yky

T
k

yTk sk
� Bksks

T
kBk

sTk �ksk
. (4.30)

There are different ways to compute the first approximation to the Hessian, B0,

however the identity matrix I is usually a good enough approximation. The gen-

eral form for the BFGS algorithm is given by

BFGS Algorithm

1. Choose an initial guess ✓0 and and initial guess for the Hessian,

B0. If no information is available, I is usually a good choice.

2. for k = 0, 1, . . . ,

(a) If ||rc(✓i)|| < ✏, stop. Otherwise,

(b) Solve Bkpk = rc(✓k) for pk.

(c) Determine ✓k+1 = ✓k + ↵pk using a line-search

(d) Compute sk = ✓k+1 � ✓k and yk = rc(✓k+1)�rc(✓k).

(e) Compute Bk+1 = Bk +
yky

T
k

yTk sk
� Bksks

T
k Bk

sTk �ksk
.

It is important to mention that this is the simplest form of this method; there

are versions of the BFGS algorithm that are optimized in order to minimize the

storage used, which is useful for large problems. A more detailed discussion of

these methods is given in [19], and [18].
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4.4 Adjoint State Methods

We finalize this chapter by discussing adjoint state methods, which are efficient

ways of computing the gradient or Hessian. For our particular problem of interest,

these methods can be understood as obtaining information in two ways; one when

we solve for our wave-field, i.e record the data from one source at Nr locations,

and the other from reversing the problem and solving for the case where we have

one recorder (at the location of the source) and Nr sources (at the location of the

recorders). This section draws from the papers by [2], and [8]. We will discuss

both implementations.

The idea behind the adjoint computation of the gradient presented in [2], is as

follows. Denote the forward solver of our model by L✓u = f (where the subscript

denotes an intrinsic dependency on ✓ and f denotes the forcing term) and the

minimizer as F (u, ✓), where u is the continuous wave-form. Moreover, define the

Lagrangian function by

L(✓, u, p) = F (u) + pT (Lu� f), (4.31)

where p is a Lagrange multiplier but can be thought of as the adjoint wave-field.

Minimizing the function thus gives

ruL = rF + LTp = 0 =) pT = (rF )

TL�1, (4.32)

rpL = Lu� p = 0 =) u = L�1f, (4.33)

r✓L = pT [D✓L] u = 0, (4.34)
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4.4. Adjoint State Methods

where Dxf(�x) = limh!0
f(x+h�x)�f(x)

h
. Thus, replacing from Eq. (4.32) and Eq.

(4.33) we get that Eq. (4.34) becomes

r✓L = (rF )

TL�1
[D✓L]L

�1f. (4.35)

Note that there are two key factors here; the term L�1f corresponds to a forward

solve and (rF )

TL�1 corresponds to a backwards solve for the adjoint state using

the difference between the the measured and simulated solutions for the (forward

in time) model.

On the other hand, [8] present a slightly different approach for the computa-

tion of the gradient via adjoint state methods. Just as in the previous approach,

define the adjoint state waveform by p. From Theorem 1 in [8], we have that for

a conservative discretization,

NtX

n=1

hG, ui =
NtX

n=1

hp,Hi (4.36)

where H and G the source terms for u and p respectively. Eq. (4.36) can be

thought of as a reversibility condition.

Recall the formula for the (discrete) cost functional

c(✓) =
1

2

NrX

r=1

NtX

m=0

|dr(tm)� uh(xr, tm; ✓)|2, (4.37)
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Chapter 4. Deterministic Inversion Methods

thus, assuming that we want to invert for n parameters, the gradient of the cost

functional will look like

rc(✓) =
✓
@k

@✓1
. . .

@k

@✓n

◆
=) (4.38)

@c

@✓j
=

NrX

r=1

NtX

m=0

⌦
|dr(tm)� uh(xr, tm; ✓)|, u✓j

↵
. (4.39)

Note that equation Eq. (4.39) can be used to compute the gradient, however,

this would imply that we need to run the forward model once for each parameter,

which is something that we might want to avoid, particularly if the forward model

is expensive to compute. Thus, if we define G = |dr(tm) � uh(xr, tm; ✓)| and use

the reversibility condition Eq. (4.36), we obtain that

@c

@✓j
⇡

NrX

r=1

NtX

m=0

⌦
G, u✓j

↵
=

NrX

r=1

NtX

m=0

⌦
p,H✓j

↵
. (4.40)

Thus, we can compute each component of the gradient by solving the forward

model and the adjoint forward model, and then computing an inner product which

will be of negligibly cost compared to the forward model solution. Note that this

does not depend much on the number of components of ✓. Given the reversibility

condition, we can think of the adjoint forward model as the standard forward

model traveling backwards in time, using the misfit as the source function.
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Chapter 5

Bayesian Inversion

In this chapter we present the theory behind Bayesian inversion, an alternative to

the deterministic approach to finding ✓. This method is largely based on Bayes

theorem.

5.1 Bayes Formulation

5.1.1 Bayes Theorem

Denote the probability of two events, A,B by ⇡(A), ⇡(B), respectively. More-

over, let ⇡(A|B) denote the probability of event A given event B (this is called

conditional probability). Then, Bayes theorem states that

⇡(A|B) =

⇡(B|A)⇡(A)
⇡(B)

. (5.1)

Throughout this document we will refer to ⇡(A) as the prior and ⇡(A|B) as the

posterior. In practice, we are interested in finding the distribution of the posterior,

which we will be able to estimate provided that we can compute the right hand

side of equation Eq. (5.1).

37



Chapter 5. Bayesian Inversion

5.1.2 Construction of the Posterior

In practice, Bayesian inversion considers the prior as expert information; that is,

knowledge that we have a priori about the parameters based on previous results

or expert information. Assuming that the noise is additive, the recorded data

dr(tm) is given by

dr(t) = u(xr, t; ✓) + E, (5.2)

where E 2 RNr is the noise of the measurements assumed to be Ei ⇠iid N(0, �2
),

with i = 1, . . . Nr, and u(xr, t; ✓) is the true quantity given by the deterministic

model.

By equation Eq. (5.1), our posterior distribution takes the form

⇡(✓|dr(tm)) / ⇡(dr(tm)|✓)⇡(✓). (5.3)

In order to propose a likelihood function and a posterior distribution we follow

[21], and write

⇡(✓|d(tm)) / exp

"
�1

2

NrX

r=1

NtX

m=0

|dr(tm)� uh(xr, tm; ✓)|2

�2

#
⇡(✓), (5.4)

where � is the standard deviation of the noise. Note that the likelihood becomes a

normal distribution since the noise is assumed to be normally distributed. Based
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5.2. MCMC Sampling: Metropolis Hastings

on this, we can also define the log-cost functional, L(✓):

L(✓) := � log(⇡(✓|dr(tm)))

=

1

2

NrX

r=1

NtX

m=0

|dr(tm)� uh(xr, tm; ✓)|2

�2
� log(⇡(✓)) + c, (5.5)

for some constant c. It is evident then that maximizing the likelihood is an equiv-

alent problem to minimizing our log-cost functional. Thus, we get an expression

for our posterior which we will be able to use provided that we can sample from

the right hand side of equation Eq. (5.5). This is where the Markov Chain Monte

Carlo algorithm come in handy.

5.2 MCMC Sampling: Metropolis Hastings

Markov chain Monte Carlo (MCMC) algorithms are used for sampling from some

probability distribution based on the construction of a Markov chain which has

the property that its stationary distribution is the same as the distribution that

we are trying to sample from. That is, given a probability distribution ⇡, we are

able to draw samples form it by constructing a Markov chain P with stationary

distribution ⇡ ( P n ! ⇡ as n ! 1), and then drawing samples from it. From

this requirement of stationarity our approximation becomes better as the number

of steps n becomes lager.

As a motivating example consider computing the right hand side of equation Eq.

(5.1). Assuming we have ⇡(B|A), ⇡(A), and ⇡(B) this should be a straightforward

computation. However, if we do not know the value of ⇡(B) we would have to
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compute it by

⇡(B) =

Z

⌦

⇡(B,A)dA, (5.6)

where ⌦A is the parameter space of A. Such integral is not necessarily easy to

calculate, and we are not generally able to compute it analytically, and as such we

need to resort to a numerical approximation, thus making the MCMC methods

helpful for this task.

There are different types of MCMC algorithms, however, the Metropolis and the

Metropolis-hastings algorithms are of particular importance to the present work.

The Metropolis algorithm was first presented by [22], and was then generalized to

non-symmetric distributions by [23].

Intuitively, the Metropolis-Hastings algorithm generates a chain of values such

that, as we increase the length of the chain, the distribution of these values approx-

imates the targeted distribution. These sample values are produced iteratively,

with the distribution of the next sample being dependent only on the current

sample value, effectively making the sequence of samples a Markov chain. The

algorithm picks a candidate based on the current sample value, and this candidate

is later accepted or rejected with some probability a. If we reject the candidate,

the current value of the chain remains unchanged, and if we accept, this generated

value becomes the new chain value.

5.2.1 Theory

We follow the approach presented in [24] in order to show the theoretical framework

behind the Metropolis-Hastings algorithm. Let A, A ⇢ Rd be our space of

parameters. For x, y 2 A, we define p(x, y) as the transition probability function
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5.2. MCMC Sampling: Metropolis Hastings

from x to y. We say that p(x, y) satisfies the detailed balance condition if

⇡(x)p(x, y) = ⇡(y)p(y, x), 8x, y 2 A. (5.7)

Consider the proposal distribution, q(x, y), which generates a value y whenever

the process is at point x. Usually q(x, y) is not reversible, and as such, we can

assume without of generality that

⇡(x)q(x, y) > ⇡(y)q(y, x), (5.8)

which, intuitively, corresponds to the case on which we are moving from x to y

more frequently than from y to x. Introduce some probability a(x, y)  1 so that

⇡(x)q(x, y)a(x, y) � ⇡(y)q(y, x)a(y, x). (5.9)

We want to choose a(x, y) in such a way that the reversibility condition holds for

Eq. (5.9). In order to do so, we must choose a(y, x) = 1 and a(x, y) as small as

possible:

⇡(x)q(x, y)a(x, y) = ⇡(y)q(y, x)a(y, x), (5.10)

= ⇡(x)q(x, y)a(x, y) = ⇡(y)q(y, x)(1), (5.11)

=) a(x, y) =
⇡(y)q(y, x)

⇡(x)q(x, y)
. (5.12)

Lastly, since a(x, y)  1 a(x, y), let

a(x, y) =

8
>><

>>:

min

h
⇡(y)q(y,x)
⇡(x)q(x,y) , 1

i
if ⇡(x)q(x, y) > 0

1 otherwise,
(5.13)
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which will in turn guarantee the detailed balance condition. Note that in the

special case where q(x, y) is symmetric, i.e, q(x, y) = q(y, x), Eq. (5.26) becomes

a(x, y) =

8
>><

>>:

min

h
⇡(y)
⇡(x) , 1

i
if ⇡(x)q(x, y) > 0

1 otherwise,
(5.14)

which was the original version of the algorithm proposed by [22].

5.2.2 Numerical Algorithm

Having described the theory behind the Metropolis-hastings algorithm, we pro-

ceed to take the above section into an algorithmic form:
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5.2. MCMC Sampling: Metropolis Hastings

Metropolis Hastings Algorithm

1. Set an initial value ✓(1)

2. For i = 1, . . . , N

3. Given ✓i, generate ✓i+1 from q(✓i, ✓i+1
)

4. Compute

a(✓i+1, ✓i) =

8
>><

>>:

min

h
⇡(✓i+1|d)q(✓i,✓i+1)
⇡(✓i|d)q(✓i+1,✓i) , 1

i
if ⇡(✓i+1

)q(✓i+1, ✓i) > 0,

1 otherwise (i.e, if they are outside the support).

5. Sample ˆU from the uniform distribution ˆU ⇠ U(0, 1).

6. If ˆU  a(✓i+1, ✓i), then ✓i+1
= ✓i+1. Otherwise , ✓i+1

= ✓i.

7. End.

Intuitively, we wonder around the support of the posterior, visiting the points

with higher probability density more frequently. Note the following remarks:

• It is common to run these algorithms for a large number of iterations and

remove the first Nd samples. This is called the burn-in period. This is done

in order to loose the dependency on the initial points and guarantee the

detailed balance condition.

• Two good diagnostic plots are the autocorrelation function and the plots of

the traces. In general we would like to see that there is no clear pattern or

dependence, for this would imply that the Markov-chain was not stationary.
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5.2.3 Proposal Distribution

As described above, the MH algorithm relies on simulating a candidate value of

✓i+1 from a proposal distribution, q(✓i, ✓i+1
), which in turn, will be later accepted

with some probability a. In practice, symmetric proposal distributions are easier

to implement because this implies that q(✓i+1, ✓i) = q(✓i, ✓i+1
) thus simplifying the

ratio a(✓i+1, ✓i) = ⇡(✓i+1|d)
⇡(✓i|d) . Examples of symmetric proposals include the normal

and uniform distribution. In general, this proposal distribution will dictate how

our algorithm behaves, since the the acceptance rate depends on how wide the

distribution is. As an example, consider the case where the proposal distribution

is normal with variance �2
p. If �2

p is too small, the acceptance rate will be close

to 1, however, there will be point in the support that would not be explored. On

the other hand, if �2
p is too big, the acceptance rate would be very small and the

chain would hardly move to a different point.

5.2.4 A Toy Example

We implement the Metropolis-Hastings algorithm on a simple example. Suppose

we have some data that looks like the following figure

44



5.2. MCMC Sampling: Metropolis Hastings

0 0.2 0.4 0.6 0.8 1
t

-0.5

0

0.5

1

1.5

e-
w
02 (
t-t
0)
2 )

Figure 5.1: “Recorded" data for our toy example.

Moreover, suppose we know that the data is modeled by the function

f(t; t0, w0) = e�w0(t�t0)2 , (5.15)

however, we do not know what values of t0 and w0 were used to produce Figure 5.1.

Additionally, we would like to characterize the distribution of the noise. Choosing

a normal proposal distribution and the following prior distributions,

t0 ⇠ U(0, 1), w0 ⇠ U(0, 10), �2 ⇠ �

�1
(2, 100), (5.16)
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simulating 20000 times, and considering only the last 10000 iterations (called a

burn-in period), we obtain the results shown in Figure 5.2.
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Figure 5.2: Posterior distribution for our parameters of interest.

As we can see, we are able to obtain smooth posterior distributions centered

very close to the true value of the parameter. Moreover, there is a lot of mixing in

the chain, which implies that the reversibility condition of the MCMC was met.

There is no visible trend in the lower plots, which is ideal.

5.2.5 Parallelization of the Metropolis Hastings Algorithm

In order to address the last concern, we were able to come up with a rather

simple, yet effective approach to increase the computational efficiency. Based on

ideas proposed by [11], and [25], we proceed to parallelize the MH algorithm to

some extent. The idea behind the method is rather simple; instead of running the

MCMC algorithm for a large number of iterations N and collect the same amount

of samples, we proceed to run the method simultaneously on p different machines

(in practice processors) for a smaller number of iterations, Np. After doing so, we
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5.2. MCMC Sampling: Metropolis Hastings

proceed to combine all p samples, obtaining N elements in total, thus effectively

increasing the efficiency of the method. We should be a little careful on how

we approach to do this because, in practice we discard the first Nd observations

when we perform MCMC algorithms in order to eliminate any dependencies to the

initial point and obtain a good mixing of the chain (i.e, obtaining an irreversibly

Markov chain). Thus, we run the MCMC algorithm for N iterations of which we

only consider the last M = N �Nd of them. Define the CPU gain, G, by

G =

N +Nd

N
p
+Nd

= (5.17)

p
N +Nd

N +Ndp
(5.18)

⇡ p, for large N. (5.19)

Thus, we can obtain roughly a p-times gain in CPU time for large N . This simple

procedure allows us to tackle problems with an expensive forward model on an

efficient way.

Gelman-Rubin Convergence

A diagnostic tool that can be used to examine the validity of the parallelized MH

is the Gelman-Rubin convergence. Proposed by [26], this diagnostic analyzes the

difference between multiple Markov chain by examining the variance between and

within chains. Suppose we have M chains of length L. Denote the lth simulated

chain by ✓l and let ˆ✓l, �̂2
l be the sample posterior mean and variance of this chain.

We define the sample mean over all chains by ¯✓ = (1/M)

PM
l=1

ˆ✓l. Then we can

define the between-chains variance, given by

B =

L

M � 1

MX

l=1

(

¯✓ � �̂l)2, (5.20)
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and the within-chains variance, given by

W =

1

M

MX

l=1

�2
l . (5.21)

We define an unbiased estimator for the posterior variance of ✓:

ˆV =

L� 1

L
W +

M + 1

ML
B, (5.22)

and define the potential scale reduction factor, R,

R =

s
df + 3

df + 1

ˆV

W
, (5.23)

where df are the degrees of freedom of a t-distribution. Ideally, we want R to be

as close to 1 as possible. Large values of R indicate that the chain needs more

iterations in order to converge (see [27], and [28]). We implement the Gelman-

Rubin convergence to the toy model presented in Section 5.2.4 in order to evaluate

the behavior of the parallelized chains:
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Figure 5.3: Gelman-Rubin convergence plot. On the top we have
the convergence for t0 and w0, from left to right. At the bottom we

have the convergence for �

2.

As we can see from Figure 5.3, the chains approach 1, which indicates conver-

gence between the parallelized chains.

5.3 Other Methods

We finalize this chapter by describing one last approach to perform the Bayesian

inversion. These types of methods are based on generalized polynomial chaos

(gPC), a technique that creates a polynomial approximation to the likelihood

function and as such, to the posterior. These methods are in general more compu-

tationally efficient than MCMC algorithms provided that the simulated quantity

is highly regular with respect to the parameter vector. We follow an approach sim-

ilar to [12]. An efficient way to implement this gPC technique is to use stochastic

collocation. One of the main advantages of this method is that it requires a finite

number of uncoupled deterministic solvers, thus increasing the efficiency of the
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inversion. For a detailed analysis of the convergence of these type of methods see

[12].

5.3.1 Generalized Polynomial Chaos

We denote the forward model by F (✓). We define the N th degree gPC expansion

of F (✓) by

FN(✓) =

NX

|i|=0

ai�i(✓), (5.24)

where i = (i1, . . . , im) is a multi-index with |i| = i1 + · · · + im, �i(✓l) defined as

�i(✓) =
Qim

l=i1
�l(✓) are lth degree orthogonal polynomials satisfying

Z
�m(✓k)�n(✓k)⇡(✓k)d✓k = �m,n, (5.25)

and ai is given by

ai =

Z

⇥

F (✓)�i(✓)⇡(✓)d✓. (5.26)

Furthermore we have that this expansion converges when FN(✓) is square inte-

grable with respect to the prior, i.e

||F (✓)� FN(✓)||2 =
Z
(F (✓)� FN(✓))

2⇡(✓)d✓ ! 0, as N !1. (5.27)

Finally, it can also be shown that the convergence rate will depend on the regularity

of F ; when F is smooth then the converge rate will be large (see [29]). Having

defined this polynomial expansion we proceed to approximate the integrals in Eq.
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5.26, thus leading to an approximation to Eq. 5.25 of the form:

˜FN(✓) =

NX

|i|=0

ãi�i(✓), (5.28)

ãi =

QX

j=1

F (z)�i
(j)
(✓)⇡(✓(j))w(j), (5.29)

where w(j), with j = 1, . . . , Q are the weights corresponding to the Q quadrature

points for a given integration rule. Clearly,

˜FN(✓)! F (✓) as Q,N !1. (5.30)

Thus, we can use these methods in order to approximate the posterior. Such

approximation is given by

⇡(✓|d) = ⇡̃N(d|✓)⇡(✓)R
⇡̃N(d|✓)⇡(✓)d✓

. (5.31)

Thus, once an accurate gPC solution for ˜FN(✓) is obtained, the dependence on ✓

is known analytically, hence we would be able to sample from the posterior at a

negligible cost.
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Numerical Examples

In this chapter we present experiments that illustrate Chapter 4-5 applied to

seismic source inversion problems in one and two dimensions

6.1 A 1D Numerical Test

We generate synthetic data by solving the acoustic wave equation with given by

utt � uxx = f(x, t), (x, t) 2 [�5.1, 5]⇥ [0, 3] (6.1)

u(�5, t) = u(5, t) (6.2)

f(x, t) = �0(x� x0)2(h
2
)(t� 1)e�(w2)(t�1)2 , (6.3)

where we chose the true parameters to be x0 = 0, w = 6, h = 6, where x0 is

the location of the source and w and h are proportional to the frequency and

amplitude respectively. Note that this problem can be solved analytically and its

solution is given by

u(x, t) =

8
>><

>>:

36(x� (t� 1))e�36(x�(t�1))2 , x > 0

36(x+ (t� 1))e�36(x+(t�1))2 x  0.

(6.4)
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Thus, we have a closed form that we can use to generate our “recorded” data.

Moreover, we know what the true values of our parameters are and as such we can

use them to verify the validity of the results.

6.1.1 Deterministic Approach

We proceed to compare the methods described in Chapter 4. We recorded at 11

equally spaced receivers during 21 different times ti, 0 < t1 < · · · < ti < · · · <

tNt = 3. For both deterministic examples we consider the convergence criteria

to be |✓k+1 � ✓k| < 10

�5. The results are given in the following table, where

✓ = (x0, w, h), ✓0 is the initial guess, k is the number of iterations, ✓⇤ is the true

value of the parameters, ✓k is the computed vector of parameters at iteration k

and the error is given by the difference between the recorded data and the data

generated by ✓k.
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✓⇤ = (0, 6, 6), ✓0 = (1, 4, 7)

Mehtod ✓k Error k

Steepest Descent ( -2.582(-2) 5.999, 5.9993) 2.5849(-2) 17

CG (3.0267(-3), 6.0094, 6.016) 1.723(-2) 9

BFGS (0.2185, 6.001, 5.9847 ) 2.191(-2) 8

✓⇤ = (0, 6, 6), ✓0 = (1, 7, 7)

Mehtod ✓k Error k

Steepest Descent (-2.58(-2), 5.99, 5.999) 2.4364(-2) 17

CG (8.013(-3), 6.003, 5.982) 1.920(-2) 7

BFGS (2.925(-2), 6.0681, 6.0150) 3.001(-2) 4

As we can see from the tables, these methods are quite sensitive to the choice

of initial point. Moreover, we can see that, in general BFGS converges faster than

CG. This comes as no surprise because BFGS makes use of the Hessian, or at least

an approximation to it, which in turn provides more information about the search

direction.

6.1.2 Probabilistic Approach

We next illustrate the Bayesian approach by considering an array of 11 receivers

collecting data at 21 different time instances between t = 0 and t = 6. The vector

of parameters ✓ is given by ✓ = (x0, w, h, �
2
) = (0, 6, 6, 0.3).
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6.1. A 1D Numerical Test

Calibration Model I: Metropolis-Hastings

We start by considering a calibration model which uses the closed form solution

as a forward model. We perform the MCMC sampling by using the standard

Metropolis-Hastings algorithm explained in Chapter 5. The choice of priors was

given by 8
>>>>>>>>>><

>>>>>>>>>>:

x0 ⇠ U(�4, 4),

w ⇠ U(4, 7),

h ⇠ U(5, 8),

�2 ⇠ �

�1
(1, 1),

(6.5)

where the ranges for the priors are determined by an estimation of the physical

parameters of the model (i.e “expert information”). We ran the MCMC algorithm

for 50,000 iterations with a burn-in period of 10,000. This in turns yields the

posterior distribution of the parameters shown in Figure 6.1.
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Figure 6.1: Posteriors for the priors given by Eq. (6.5).

As we can see in Figure 6.1, the chains seem to mix appropriately. Moreover,
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the probability density function of the posterior captures the true values of the

parameters. A table of the characteristics of the distribution is given by

x0 w h �2

Min. -0.0321353 5.306 4.514 0.2591

1

st Quantile. -0.0065644 5.7871 5.884 0.2943

Median -0.0036877 5.910 6.023 0.3047

Mean -0.0036479 5.924 6.019 0.3040

3

rd -0.0007988 6.071 6.159 0.3131

Max. 0.6209674 6.549 6.592 0.4235

From the previous table we can see that the average values are indeed very close

to the true values of the parameters, which validates the model.

Another experiment included the following priors:

8
>>>>>>>>>><

>>>>>>>>>>:

x0 ⇠ U(�3, 3),

w ⇠ N(5, 1),

h ⇠ U(5, 8),

1
�2 ⇠ �(1, 1/10).

(6.6)

And yields the posterior distributions shown in Figure 6.2. Note that in this case

the posterior distributions of h, w, and �2 are not able to capture the true value of

the parameter, however, they get relatively close to it. The posterior distributions

for x0 is able to capture this true value.
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Figure 6.2

A third attempt uses

8
>>>>>>>>>><

>>>>>>>>>>:

x0 ⇠ U(�1, 1),

w ⇠ N(5, 1),

h ⇠ N(7, 1),

�2 ⇠ �

�1
(1, 1),

(6.7)

and yields the posterior distributions shown in Figure 6.3, where an issue similar

to the one presented in Figure 6.2 arises.
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Figure 6.3

From the three experiments shown, the most accurate results are obtained

using the priors given by Eq. (6.5).

Forward Model:

We now proceed to perform MCMC algorithm using our forward discontinuous

Galerkin model. In order to produce a fair comparison, we use the same pri-

ors presented in Eq. (6.5). Doing so we get the following distributions for the

posteriors.
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Figure 6.4: Bayesian Inversion using dG

As we can see from Figure 6.4, we obtain similar posterior distributions to

the ones presented in Figure 6.1. Note that the true values of the parameter are

captured in the posterior distributions.

6.1.3 Experiment 3: Comparison Between Serial and Par-

allel MCMC

We now proceed to compare how the serial and parallel MCMC algorithm compare.

Selecting the same priors as in Eq. (6.5), we proceed to perform the inversion

both for the closed form solution and the Forward model. The results are given

by Figure 6.5. The total number of iterations was 5,000, on which the parallel

MCMC divided them into 4 processors. The running times were as follows:
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Figure 6.5: Comparison between Parallel MCMC and serial
MCMC. On the left we have the results for parallelizing the MCMC
using the closed form solution. To the right we have the results for
when the forward model is used. The top graphs are the ones for the
parallelized code and the bottom ones represent the serial results.

As we can see, the distributions seem behave similarly. Moreover, we are able

to capture the true values of the parameters, which deems this method as useful,

A comparison of the running times is given in Table (6.1).

Exact Model dG Model

Serial MH 172.4 s 1787.5 s

Parallel MH 60.7 s 640.6s

Gain 2.84 2.79

Table 6.1: Comparison between parallel and serial MCMC

As we can see, we obtain a performance gain of about 3 times. In theory, this

gain should be a number closer to 4 times. We believe the reason behind this is

that this experiment was not run on a dedicated machine that had to run other

processes at the same time. Regardless, the experiment shows how both methods

compare and provides an experimental efficiency gain. Clearly, this gain would

be higher if the method is implemented in a machine with more processors. In
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6.2. A 2D Numerical Test

order to compare the parallelized and the serial MH we utilize the Gelman-Rubin

diagnostic plot, show in Figure 6.6.
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Figure 6.6: Gelman-Rubin diagnostic plot. At the top we have
the diagnostic for the parameters x0 and w0, from left to right. At

the bottom we have the diagnostic for h and �

2.

As we can see from the plot, there is convergence, which implies that the

parallelized method resembles the serial method. However, the plot also suggest

that we should use a larger number of iterations in order to adequately capture

the posterior distribution of �2.

6.2 A 2D Numerical Test

We now consider the two-dimensional case. This set of examples present higher

complexity; not only we need to find more parameters, we also have to deal with a

more complex forward model, which translates into a higher computational time.

In order to overcome this difficulty, we can reduce the polynomial degree for the

dG solver and simulate over a smaller time. However, the trade-off is that the
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solver would be more imprecise, and as such the errors associated to the results

might be somewhat high (although yet acceptable). Moreover, we do not count

with the appropriate resources at the moment to run such demanding scheme hun-

dreds or even thousands of times, so we have to resort to this approach..

We consider the two-dimensional acoustic wave equation with periodic boundary

conditions given by

utt �r2u = f(x, t), (x, t) 2 [0, 1]2 ⇥ [0, 2], (6.8)

(6.9)

with homogeneous Neumann boundary conditions

ru · n = 0, (6.10)

initial conditions given by

u(x0, 0) = 0, ut(x0, 0) = 0 (6.11)

and source term given by

f(x, t) = M

Tr�(x� x0)s(t), (6.12)

s(t) = �2(w0)
2
(t� t0)e

�(w0(t�t0))2 , M = (a1, a2). (6.13)

Note that in this case we have more parameter to invert, namely x0, y0, t0, a1, a2, w0,

as opposed to just three parameters for the one dimensional case. We proceed as

in Section 6.1 by first considering the deterministic inversion.
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6.2.1 2D: Deterministic Approach

Just as in the previous section, we proceed to implement the inversion using the

steepest descent, CG, and BFGS methods. We try them at different initial guesses

and analyze their behavior. On each experiment we take ✓⇤ as the true parameter.

We consider 3 measuring devices located at y = 1 and throughout the x component

of the domain. We denote steepest descent by SD and conjugate gradient by CG:

✓⇤ = (0.5, 0.5, 1, 5, 10, 20), ✓0 = (0.9, 0.9, 5, 7, 13, 23)

Mehtod ✓k Error k

SD ( 0.501, 0.502, 0.999, 5.016, 10.016, 20.025) 3.3(-2) 37

CG (0.500, 0.500, 0.999,4.999,10.002,20.001) 1.2(-2) 27

BFGS (0.498, 0.497, 0.996, 4.993, 9.993, 19.990) 1.5(-2) 22

✓⇤ = (0.5, 0.5, 1, 5, 10, 20), ✓0 = (0.1, 0.8, 3, 13, 8, 18)

Mehtod ✓k Error k

SD ( 0.505, 0.505,0.999, 5.010, 10.021, 20.054) 5.9(-2) 34

CG (0.496, 0.499, 0.999, 4.999, 10.002, 20.001) 4.9(-2) 25

BFGS (0.502, 0.503, 0.996, 4.997, 9.993, 19.990) 1.3(-2) 19

Thus, we can see that with a properly chosen initial guess we are able to obtain

a vector of parameters very similar to the true one.

6.2.2 2D Probabilistic Case

We now consider the probabilistic approach to the 2D source inversion. We con-

sider the same parameters as before, as well as an array of 5 receivers at y = 1 and
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different locations in x. Given that the forward model is quite computationally

expensive, we were only able to run each simulation a handful (⇠5000) times,

which in turn produced less than satisfactory results. We start by generating the

“recorded" data using the following parameters: ✓⇤ = (x0, y0, t0, w0, a1, a2, �
2
) =

(0.1, 0.9, 0.1, 50, 1, 2, 0.2). We also test different combinations of priors and propos-

als. The following results were some of the most meaningful, where each experi-

ment was run with 5000 iterations. We begin by using flat priors for all parameters

except �2 and a normal (hence symmetric) proposal distribution. The priors are

given by: 8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

x0 ⇠ U(0, 0.3),

y0 ⇠ U(0.2, 0.99),

t0 ⇠ U(0, 0.3),

w0 ⇠ U(40, 60),

a1 ⇠ U(�3, 3),

a2 ⇠ U(�4, 4),

�2 ⇠ �

�1
(10, 2),

(6.14)

and the results are shown in Figure 6.7.
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Figure 6.7: Results obtained using all flat priors and a normal
proposal.

As we can see, we are able to capture the true values of our distribution with

this choice of priors and proposal, however, the obtained distribution for the pa-

rameter w0 puts the true value of w0 on one of the tails of the distribution, i.e, it

barely captures said value.

On a second attempt, we use again the same flat priors, however, our proposal

function follows a Gamma distribution. The results are shown in Figure 6.8.
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Figure 6.8

In this case we get to capture all the true values on a region with higher prob-

ability, however, contrary to Figure 6.7, the density curves are not as smooth.
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Lastly, consider the following priors,

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

x0 ⇠ U(0, 0.2),

y0 ⇠ U(0.2, 0.99),

t0 ⇠ �(2, 20),

w0 ⇠ �(102, 2),

a1 ⇠ U(�3, 3),

a2 ⇠ U(�4, 4)

�2 ⇠ �

�1
(10, 2).

(6.15)

Using a � proposal distribution, we get the following results:
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Figure 6.9: Just as with Figure 6.8, we are able to capture the true
values of the parameters, however, we get less smooth posteriors.

We consider that the best choice of proposal distribution is a normal distri-

bution with an appropriately chosen standard deviation. This means a standard

deviation that is neither too small, so the whole support can be explored, or to
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big so that the acceptance rate is not too small. In general, an acceptance rate of

25% is ideal, according to [30].

Lastly, we implement a parallelized version of the Metropolis-Hastings algorithm

in order to solve the 2D inversion problem. We run the MH algorithm 5,000 times

on 4 different processors. The proposal is given by a normal distribution and the

priors are presented in Eq. (6.14). The results are shown in Figure 6.10.
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Figure 6.10: Results for the parallelized MH.

As we can see from Figure 6.10, each posterior is able to capture the true value

of the parameters.

We conclude that the results obtained are not ideal, however they do provide

some insight in the theory of MCMC. In this case we used a particularly ex-

pensive forward model, which effectively limited the number of iterations done.

However, note that when the parallelization is used in order to increase the number

of samples, we obtain smoother posterior distributions.
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Final Remarks

7.1 Discussion

We studied the seismic source inversion by deterministic and probabilistic ap-

proaches. Both methods can clearly be implemented in order to solve this source

inversion problem however, they do have their advantages and disadvantages. we

proceed to discuss them.

For the deterministic case, we were able to obtain satisfactory results using few

number of iterations on the optimization algorithm. For our experiments, we usu-

ally need less than a hundred forward solves. This is desirable because, as stated

earlier, the efficacy of the inversion is governed by the numerical efficiency of the

forward model. However, this methods have some issues as well. Firstly, they

often suffer from spurious minima and as such, they tend to be dependent on the

initial guess used. Additionally, they will usually require the construction of a

regularization function. Moreover, deterministic methods depend on at least a

computation of the gradient of the cost functional with respect to the unknown

parameters, which can be done by taking a finite difference approach for each

parameter, however, this requires an evaluation of the forward model for each
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component of the gradient. This was not too much of an issue in our case since we

only had 3 and 6 components for the one and two dimensional case, however, this

can clearly become an issue when more complicated models that include a larger

amount of parameters are considered. One way to fix this issue is to compute the

gradient using adjoint state methods. Finally, a subtle issue that arises with the

deterministic approach is that it does not take into consideration the uncertainty

in the model.

As for the probabilistic approach, we used a method that not only provides a

reliable, flexible, and easy to implement way of performing a source inversion,

but also takes into account the uncertainty in the model. Although both prob-

abilistic and deterministic methods are fundamentally different and as such not

very suitable to comparison between them, we consider that the probabilistic ap-

proach provides more information. Compared to the deterministic approach, the

Bayesian framework provides a more natural way of quantifying our a priori knowl-

edge. However, as mentioned before, The issue with these methods is that they

require a large number of forward solves, which again is feasible for one dimension

but gets more complicated as the number of dimensions increases.

Regardless of the issues that can arise with both methods, we consider that all

implementations provided insightful results.

We would like to remind the reader that inverse problems is a rather large field

in mathematics, engineering and science and as such these methods can be im-

plemented to many other different inversion problems, not just seismic source

inversion.
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7.2 Future Work

Improving the efficiency of the methods is of paramount importance. There are

some variations of the methods here presented that were not implemented and

that would be interesting to do so since they provide a more efficient probabilis-

tic inversion. Particularly the use of more advanced MCMC algorithms, such as

Hamiltonian Monte Carlo. Additionally, we would like to further study and im-

plement some of the more sophisticated methods, including gPC-based Bayesian

inversion. Techniques aimed to improve the efficiency of the deterministic ap-

proach, such as the use of adjoint state methods and the implementation of the

Wasserstein metric, are expected to be implemented in the future. As a longer

term goal, the creation and implementation of novel methods to perform Bayesian

inversion is expected as part of a doctoral dissertation.

71



Bibliography

[1] D. Appelö and T. Hagström, “A new discontinuous galerkin formulation for

wave equations in second-order form”, SIAM Journal on Numerical Analysis,

vol. 53, no. 6, pp. 2705–2726, 2015.

[2] C. Burstedde and O. Ghattas, “Algorithmic strategies for full waveform in-

version: 1d experiments”, Geophysics, vol. 74, no. 6, WCC37, 2009, issn:

00168033. doi: 10.1190/1.3237116.

[3] P. Mora, “Nonlinear two-dimensional elastic inversion of multioffset seismic

data”, Geophysics, vol. 52, no. 9, pp. 1211–1228, 1987.

[4] R. L. Mackie and T. R. Madden, “Three-dimensional magnetotelluric inver-

sion using conjugate gradients”, Geophysical Journal International, vol. 115,

no. 1, pp. 215–229, 1993.

[5] A. Guitton and W. W. Symes, “Robust inversion of seismic data using the

huber norm”, Geophysics, vol. 68, no. 4, pp. 1310–1319, 2003.

[6] Y.-H. Liu and C.-C. Yin, “3d inversion for frequency-domain hem data”,

Chinese Journal of Geophysics, vol. 56, no. 12, pp. 4278–4287, 2013.

[7] J. Tromp, C. Tape, and Q. Liu, “Seismic tomography, adjoint methods, time

reversal and banana-doughnut kernels”, Geophysical Journal International,

vol. 160, no. 1, pp. 195–216, 2005.

[8] B. Sjögreen and N. A. Petersson, “Source estimation by full wave form in-

version”, Journal of Scientific Computing, vol. 59, no. 1, pp. 247–276, 2014.

72



BIBLIOGRAPHY

[9] J. Dettmer, S. E. Dosso, and C. W. Holland, “Model selection and bayesian

inference for high-resolution seabed reflection inversion”, The Journal of the

Acoustical Society of America, vol. 125, no. 2, pp. 706–716, 2009.

[10] S. Stähler and K Sigloch, “Fully probabilistic seismic source inversion-part

1: Efficient parameterisation”, Solid Earth, vol. 5, no. 2, p. 1055, 2014.

[11] B. Calderhead, “A general construction for parallelizing metropolis- hastings

algorithms”, Proceedings of the National Academy of Sciences, vol. 111, no.

49, pp. 17 408–17 413, 2014.

[12] Y. Marzouk and D. Xiu, “A stochastic collocation approach to bayesian

inference in inverse problems”, 2009.

[13] J. Martin, L. C. Wilcox, C. Burstedde, and O. Ghattas, “A stochastic newton

mcmc method for large-scale statistical inverse problems with application to

seismic inversion”, SIAM Journal on Scientific Computing, vol. 34, no. 3,

A1460–A1487, 2012.

[14] E. T. Chung and B. Engquist, “Optimal discontinuous galerkin methods for

the acoustic wave equation in higher dimensions”, SIAM Journal on Numer-

ical Analysis, vol. 47, no. 5, pp. 3820–3848, 2009.

[15] M. Käser and M. Dumbser, “An arbitrary high-order discontinuous galerkin

method for elastic waves on unstructured meshes?i. the two-dimensional

isotropic case with external source terms”, Geophysical Journal Interna-

tional, vol. 166, no. 2, pp. 855–877, 2006.

[16] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A high-order dis-

continuous galerkin method for wave propagation through coupled elastic–

acoustic media”, Journal of Computational Physics, vol. 229, no. 24, pp. 9373–

9396, 2010.

73



BIBLIOGRAPHY

[17] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods:

Algorithms, analysis, and applications. Springer Science & Business Media,

2007.

[18] J. Nocedal and S. J. Wright, “Numerical optimization”, Springerverlang,

USA, 1999.

[19] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization. Siam,

2009.

[20] J. M. Papakonstantinou, Historical Development of the BFGS Secant Method

and Its Characterization Properties. ProQuest, 2009.

[21] Q. Long, M. Motamed, and R. Tempone, “Fast bayesian optimal experi-

mental design for seismic source inversion”, Computer Methods in Applied

Mechanics and Engineering, vol. 291, pp. 123–145, 2015, issn: 00457825.

doi: 10.1016/j.cma.2015.03.021. arXiv: 1502.07873.

[22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.

Teller, “Equation of state calculations by fast computing machines”, The

journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[23] W. K. Hastings, “Monte carlo sampling methods using markov chains and

their applications”, Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[24] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algo-

rithm”, The american statistician, vol. 49, no. 4, pp. 327–335, 1995.

[25] W. Neiswanger, C. Wang, and E. Xing, “Asymptotically exact, embarrass-

ingly parallel mcmc”, ArXiv preprint arXiv:1311.4780, 2013.

[26] A. Gelman and D. B. Rubin, “Inference from iterative simulation using mul-

tiple sequences”, Statistical science, pp. 457–472, 1992.

74



BIBLIOGRAPHY

[27] S. P. Brooks and A. Gelman, “General methods for monitoring convergence

of iterative simulations”, Journal of computational and graphical statistics,

vol. 7, no. 4, pp. 434–455, 1998.

[28] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, Handbook of markov

chain monte carlo. Chapman and Hall/CRC, 2011.

[29] M. Motamed, F. Nobile, and R. Tempone, “A stochastic collocation method

for the second order wave equation with a discontinuous random speed”,

Numerische Mathematik, vol. 123, no. 3, pp. 493–536, 2013.

[30] C. Robert and G. Casella, Introducing Monte Carlo Methods with R. Springer

Science & Business Media, 2009.

75


	Deterministic and Probabilistic Methods for Seismic Source Inversion
	Recommended Citation

	main.pdf

