
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Nuclear Engineering ETDs Engineering ETDs 

Spring 4-28-2020 

Modeling and Simulation of Stochastic Neutron and Cumulative Modeling and Simulation of Stochastic Neutron and Cumulative 

Deposited Fission Energy Distributions Deposited Fission Energy Distributions 

Patrick O'Rourke 
Doctoral Student, Nuclear Engineering 

Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds 

 Part of the Nuclear Engineering Commons 

Recommended Citation Recommended Citation 
O'Rourke, Patrick. "Modeling and Simulation of Stochastic Neutron and Cumulative Deposited Fission 
Energy Distributions." (2020). https://digitalrepository.unm.edu/ne_etds/94 

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It 
has been accepted for inclusion in Nuclear Engineering ETDs by an authorized administrator of UNM Digital 
Repository. For more information, please contact amywinter@unm.edu, lsloane@salud.unm.edu, 
sarahrk@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/ne_etds
https://digitalrepository.unm.edu/eng_etds
https://digitalrepository.unm.edu/ne_etds?utm_source=digitalrepository.unm.edu%2Fne_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=digitalrepository.unm.edu%2Fne_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ne_etds/94?utm_source=digitalrepository.unm.edu%2Fne_etds%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu
mailto:amywinter@unm.edu,%20lsloane@salud.unm.edu,%20sarahrk@unm.edu


Patrick Francis O’Rourke
Candidate

Nuclear Engineering
Department

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Prof. Anil Prinja Chair

Dr. Forrest Brown

Prof. Christopher Perfetti

Prof. Dimiter Petsev

Dr. Erin Davis

i



Modeling and Simulation of Stochastic
Neutron and Cumulative Deposited

Fission Energy Distributions

by

Patrick F. O’Rourke

B.S., Nuclear Engineering, University of New Mexico, 2015

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy
Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2020

ii



Dedication

To mom.

“And in the end, the love you take is equal to the love you make”

iii



Acknowledgments

Foremost, I would like to thank Dr. Anil Prinja for imparting on me a fragment of
his boundless knowledge regarding stochastic neutron transport and many topics on
life. Dr. Prinja’s patience, teaching ability, and mentorship were essential in helping
me to produce this dissertation. I am grateful to Erin Davis for her mentorship at
LANL and for teaching me neutron transport and many of the numerical methods
used throughout this document. I wish to thank my committee for their insight,
guidance, and willingness to study this dissertation. I am indebted to Scott Ramsey of
LANL for providing me with a workspace which undoubtedly increased the quality of
this dissertation. I am beholden to the unconditional support of my mother, Christina
Aulbach, my grandmothers, Barbara and Margaret, my siblings, Brigid, Thomas,
Lexy, and Erin and my closest friends, James Cole and Randy Light. I must thank
my grandfather, Albert Aulbach, for inspiring me to become an engineer in the first
place and for whom I would not be the man I am today. Finally, I simply wish to say
I miss you, grandpa Michael.

iv



Modeling and Simulation of Stochastic
Neutron and Cumulative Deposited

Fission Energy Distributions

by

Patrick F. O’Rourke

B.S., Nuclear Engineering, University of New Mexico, 2015
Ph.D., Engineering, University of New Mexico, 2020

Abstract

Methods of stochastic neutron transport are investigated and applied to novel for-

mulations for the neutron number distribution and the cumulative fission energy

deposition distribution. We utilize two Monte Carlo algorithms: the event-based

Monte Carlo (EBMC) method and the Stochastic Simulation Algorithm (SSA) to

benchmark and analyze systems. We show that the SSA outperforms the EBMC

for the parameter space we are interested in. We then utilize the SSA to analyze

systems composed of multiple spherical regions with fast and thermal neutrons with

time-dependent reactivity insertions and determine whether group-dependent number

distributions approach a gamma distribution. We develop two methods for calculating

the geometry-dependent transfer probabilities, the View Factor Approximation and

the Sphere Point Picking Monte Carlo Method, and compare the parametric space

for which the computationally superior VF approximation holds.

We discuss several numerical solution methods that have been developed for

solving the nonlinear adjoint transport equation satisfied by the neutron survival
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probability. We show the primary competitive direct solution referred to as the λ-

Acceleration Method (λAM), and introduce a new indirect solution method called the

Eigenfunction Expansion Method (EFE). The space-angle shape of the solution in a

nonhomogeneous planar medium equilibrate rapidly after the initiation of a chain and

for practical purposes 3 modes are sufficient to accurately capture the time variation

of the survival probability, with a full fission neutron multiplicity distribution, while

just 1 mode gives acceptable accuracy in steady state. The order of the nonlinearity,

correlated to the induced fission chain branching, has a larger effect on the solution

than the number of modes retained in the expansion. In particular, the quadratic

approximation, corresponding to truncation order 2 in the nonlinear fission branching

terms, is accurate for near critical systems but nonlinearity orders of 4 to 5 are

necessary for more strongly supercritical media. Comparison of numerical results

against the λAM establish the quantitative accuracy and computational efficiency

achievable with the EFE approach.

We derive space, angle, and time-dependent single chain a source equations for the

cumulative energy deposition distribution (the FPDF) in a system via the backward

Master equation formulation; from which, equations of the moments are also derived.

This new formulation has the benefit of not requiring knowledge of the neutron

number distribution. We then compare results of the EBMC method with the direct

numerical solution of the moment equations and show excellent agreement. We then

show that by altering the induced fission energy deposition distribution, the first four

moments are virtually the same for supercritical systems. It is shown that the FPDF

itself does indeed have noticeable alterations in the high energy deposition tails of the

distribution, suggesting that one may need to consider higher order moments in order

to witness a noticeable difference in the respective profile. It was also shown that the

multiplicity distribution model being used, where we compared the full distribution

with the MCNP mean-preserving model, has an effect on the higher energy deposition

region of the single chain FPDF.
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Finally, we formulate the Boltzmann Master equation- a novel nonlinear adjoint

transport equation satisfied by the neutron number density distribution. In a lumped

system setting, we consider several numerical discretization schemes for the number

distribution, which show that typical basis and test functions used in transport

methods are not robust. We apply the collocation method as well as derive an

analytical generalization of Bell’s distribution via solution ansatz. We then expand

our scope to include space and angle dependence, derived systems of equations

for the aforementioned discretization schemes, and compared the results, showing

excellent agreement for long enough times in supercritical systems with the Quadratic

Approximation applied.
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Chapter 1

Introduction

Throughout the design process of any system containing fissile material, one must

address the possibility that such a system may unpredictably occupy undesirable

states that may pose a threat to a system’s integrity and, more importantly, to human

life. The primary mechanism that will usher a neutron-multiplying system into an

undesirable state is usually due to the unpredictable growth of the neutron population

and the ensuing induced fission reactions which propagate the fission chain as well as

deposit thermal energy into the system. The topics of this dissertation concern the

characterization of such systems- systems for which the neutron population behaves

stochastically; i.e., for which the mean of the neutron population is not necessarily

representative of the true population at a given moment in time. To characterize

these types of systems, we must consider methods for determining the probability

distribution function (PDF) of the neutron population number and a related quantity

of interest referred to as the cumulative fission energy deposition distribution. Systems

for which the studies herein are applicable include: criticality excursions in spent fuel

storage and in the handling of fissile solutions in fuel fabrication and reprocessing;

approach to critical under suboptimal reactor start-up conditions; preinitiation in

fast burst research reactors; and weak nuclear signatures in the passive detection of

nuclear materials.
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Chapter 1. Introduction

In his classic 1963 paper, Bell obtained analytical expressions for the PDF of the

neutron number in a zero-dimensional supercritical multiplying assembly for a single

neutron chain as well as for a system containing a constant randomly emitting neutron

source [3]. In short, these expressions were obtained under the assumption that the

population was large and could therefore be treated as a continuous variable and

the nonlinear terms of the dictating equation need not be greater than second order

(known as the Quadratic Approximation). Later, Prinja and Souto derived single

chain and source neutron number PDFs for the discrete neutron number using the

Quadratic Approximation- generalizing Bell’s distributions [11, 12]. These lumped

model distributions, and others that have been developed [13, 14, 15], are utilized as

benchmarks for codes that have been developed to analyze systems of interest, for

example in the development of a Monte Carlo code to verify a deterministic code [16].

In Chapter 2, we introduce the lumped forward Master equation formulation and

the analytical solution process as outlined by Bell and Prinja and Souto, providing the

analytical PDFs used in practice. Further, we obtain analytical solutions without using

the Quadratic Approximation, which is a mathematical approximation, but rather by

restricting the fundamental physics of the neutron multiplicity. This novel PDF is

useful for benchmarking codes for systems in which the Quadratic Approximation is

invalid due to low neutron numbers and/or short time intervals.

In Chapter 3, we cover two Monte Carlo methods that may be employed in

simulating the evolution and behavior of the neutron population in systems of interest

referred to as the Event-Based Monte Carlo (EBMC) method and the Stochastic

Simulation Algorithm (SSA). The EBMC method is widely used in production codes,

such as MCNP, and the SSA was developed by Gillespie for the study of the dynamics

of chemical reactions [37], although the fundamentals had been known since the 1940s

with work done by Bartlett [38]. The SSA samples time intervals between interactions

and the resultant outcomes based on the reaction rates of the particle populations,

whereas the EBMC simulates a single particle’s random walk by sampling time
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Chapter 1. Introduction

intervals to collision events. Both methods are used throughout this document to

study systems or to verify/benchmark other methods we explore.

In Chapter 4, we investigate systems that are composed of regions that are

physically separated and we allow the neutron populations to populate different

energy groups. We begin the chapter by deriving the relevant coupled first-order

ODEs for the moments of the respective neutron populations. We then develop several

methods for calculating the probability that the neutrons will leak and transfer from

one region to another. Of particular interest is determining if systems that are in close

enough proximity will drive each other’s neutron populations and if those populations

may be modeled using known distribution types, such as Bell’s distribution, which is a

gamma distribution. We conclude the chapter by simulating systems that have a time-

dependent reactivity insertion and the behavior of the neutron number distribution

for such scenarios.

In Chapter 5, we replicate Bell’s expansive 1965 work which incorporated spatial,

angular, and energy dependence, along with time-dependence, on the neutron number

PDF [18]. By conducting a probability balance in the first collisional interval, referred

to as the Backward Formulation, and applying the probability generating function

transform, Bell obtained a nonlinear adjoint Boltzmann-like transport equation,

from which several probabilistic quantities of interest may be extracted, namely

the probability of extinction of a neutron chain, it’s complement, the probability of

survival, and the time-asymptotic limit of the survival probability, the probability

of initiation, or POI. Unbeknownst to Bell at the time, Pál had also derived a

similar equation [19], a few years prior in Hungarian, but he favored using a moment

generating function rather than the probability generating function. Originally

procured by Feynman, equations for the POI were shown to satisfy a special case

of the nonlinear generating function equation [23], and, with the advent of the SN
method devised by Carlson [24], in 1955 Goad implemented a one-speed code to
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numerically obtain the POI, which was a straightforward adaptation of the DSN

code [25]. Unfortunately, this solution method is slowly convergent for small POI

values corresponding to slightly supercritical systems. Therefore, Bell and Lee then

chronicled their development of an acceleration scheme [26, 27] for the solution of the

multigroup POI equation based on stringent global probability conservation, resulting

in the SNP code. This acceleration scheme was then generalized to efficiently solve

the time-dependent survival probability equation by Baker [28], allowing for detailed

calculations of systems with transient reactivity insertions in the PARTISN code [35].

We cover these principle equations of interest in the phase-space setting in Chapter 5,

followed by several numerical solution methods in Chapter 6.

Work has recently been conducted in determining the full phase-space cumulative

fission number PDF following the backward formulation [45], as well as the correlated

moments and coupled analytical solutions in lumped systems [15, 44]. We demonstrate

in Chapter 7 that an equation for the cumulative fission energy deposited due to

neutron interactions, referred to as the FPDF, may be obtained using the backward

formulation which is decoupled from the neutron number distribution. In other words,

the backward formulation permits us to write an equation for the FPDF without

knowledge of the neutron number distribution. The distribution of total fission energy

deposition is of tantamount interest as this quantity is directly related to the thermal

energy deposited within the system, and therefore allows one to predict the system

behavior response due to neutron chain reactions. Once the FPDF is known for a

time-interval of interest, the thermal-mechanical energy being deposited is known,

one may utilize thermodynamic and power models to allow for the inclusion of time-

dependent feedback mechanisms [46] that are commonly a concern in characterizing

the overall state, and safety, of a fissile system.

Recently, Saxby et al. demonstrated a labor-intensive methodology for obtaining

the full phase-space neutron number PDF in spherical systems [41], the process of

which requires solving the survival probability equation as well as an equation for each
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neutron number probability, which is unidirectionally coupled to all lower population

number solutions. The topic of Chapter 8 seeks to expedite the solution process by

treating the neutron population variable as a continuous one, developing a system of

nonlinearly coupled Boltzmann Master equations for the neutron number PDF and

to then solve said system.
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Chapter 2

Modeling Stochastic Neutron

Populations in Lumped Systems

In this chapter, we derive equations for determining the neutron number probability

distribution function in lumped (no phase-space dependence) systems. There are two

primary formulations that are employed in practice, known as the Forward Formulation

and the Backward Formulation, both resulting in differential Chapman-Kolmogorov

(CK) equations. In the lumped setting, there is no advantage one formulation has

over the other and the choice in which to use is merely based on preference. We begin

this chapter with a discussion on the basic physical nuclear processes and notation

in Sec. 2.1, followed by an exploration between the relationship of the forward and

backward formulations in Sec. 2.2. The remainder of the chapter exclusively concerns

the forward formulation as a means of garnering analytical equations for the neutron

number PDF, but the backward formulation is necessary in later chapters when we

expand to phase-space dependence. The chapter concludes with a discussion on the

asymptotic limits of the PDFs in Sec. 2.6 followed by a demonstration of obtaining

closed-form expressions for the moments of the PDFs in Sec. 2.7.
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2.1 Introductory Concepts and Notation

We consider zero-dimensional systems composed of material that free neutrons may

interact with which may also contain an intrinsic neutron source. The primary

interactions to consider are those that remove neutrons from or introduce neutrons

to the system; these mutually exclusive events are the processes known as radiative

capture, leakage, induced fission (IF), and spontaneous fission (SF). The system may

be characterized by reaction rates, λx, that are defined as the probability per neutron

per unit time that the particular event x will occur and a source, S, is defined as the

probability that a source event may occur per unit time. In a lumped one energy

group setting, the reaction rates at a given time, t, are typically calculated using the

macroscopic cross section for reaction x, Σx, and the neutron velocity, v, as

λx(t) = vΣx(t), (2.1)

where we will use the subscripts x = {c, f} for capture and induced fission, and we

will be required to consider assumed geometric features of the system to determine

the leakage rate, λ`(t). More sophisticated lumped reaction rate calculation methods

will be discussed in a later chapter of this document when such considerations are

relevant. We note that the absorption reaction rate is the sum of the capture and

induced fission rates and the total reaction rate is then the absorption added with

the leakage rate:

λa(t) = λc(t) + λf (t) (2.2a)

λt(t) = λa(t) + λ`(t) (2.2b)

τ(t) = 1
λt(t)

, (2.2c)

where we have introduced τ as the neutron lifetime. We may also calculate the

intrinsic source for a given system with mass m which may be composed of any

number of isotopes that may undergo radioactive decay using the formula

S = mNA

∑
i

psp,iλiwi
Mi

, (2.3)
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where NA is Avogadro’s Constant, psp,i is the probability that a radioactive decay of

isotope i is a spontaneous fission event, λi is the radioactive decay constant, wi is i’s

weight fraction, and Mi is the molar mass.

Figure 2.1: Particle multiplicity distributions for a Pu system.

The neutron interactions (and source events) are the principle stochastic elements

of a nuclear system insofar that, upon collision with a nucleus, a neutron will initiate a

random process with an associated probability. An often underappreciated stochastic

feature concerns the random multiplets of particles that emerge from the IF and SF

processes. Each of these emission numbers has an associated probability qν , defined

as the probability that ν neutrons are emitted in a given event, and the distribution

is normalized as
νm∑
ν=0

qν = 1. (2.4)

As an example, Fig. 2.1 shows the neutron and photon multiplicity distributions for

IF and SF events for a 20 wt% 240Pu and 80 wt% 239Pu system. We can see that the
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number of neutrons emerging from a fission event may range from zero up to some

max number, νm, typically between 6 and 8.

Given the interaction rates and the multiplicity distributions, we are now ready

to apply probability balances to quantify the neutron-multiplying systems we wish to

study. In the next section, we introduce the mathematical framework used to derive

what are known as Master equations.

2.2 On the Formulation of Master Equations

As we are interested in systems for which the neutron population behaves stochastically,

i.e., the mean of the population is not representative of the true state of the population

at any given time, we must transition our thinking and formulations from a moment

based (mean) setting to that of a probabilistic one where we consider the distribution

of discrete states that the neutron population may occupy. We then assume that, for

a given state at a given time, the collection of random walks of the particles in a

system is Markovian. That is, the individual paths of the particles are uncorrelated

and that the current state of the system, and not its past, alone dictates the temporal

evolution of the system [1].

We consider the exact neutron population of a system, n, to be a unique state

that has a single associated probability of being observed. Defining Pn|m(tf |t) as the

probability of being in state n at a time of observation tf conditioned on the system

being in state m at an earlier time t, and assuming that the m connected states are

finite and known, this quantity may be determined by the sum of all probabilistic

pathways the system may traverse beginning at some time t:

Pn|m(tf |t) =
∑
i

Pn|i(tf |t′)Pi|m(t′|t), (2.5)

where tf > t′ > t. Equation 2.5 may be used to describe the discrete-state continuous-

time Markov processes of interest and is known as the Chapman-Kolmogorov (CK)
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Flow of
Time

Final Time
tf

t′ = tf − ∆t

t′ = t + ∆t

Injection Time
t

Figure 2.2: Time variables.

equation [2, 5]. As seen in Fig. 2.2, we show time flowing from right to left, and

the variable arguments shall be read in the same manner. Equation 2.5 may be

restated/interpreted as: in its transition from state m at time t to state n at tf ,

the system may go through any number of transitional states, i, at an arbitrary

intermediate time t′.

In this chapter, we demonstrate the two methods most often used to obtain

the neutron number PDF, namely the Forward Formulation and the Backward

Formulation. Equation 2.5 is the starting point for both formulations; where they

differ is due to the location within the time interval that the probability balance

is conducted over some short time interval ∆t. The location may be acquired by

translating t′ either to the beginning near the injection time, t, or the final time, tf ,

defining which formulation is employed:
Forward: t′ = tf −∆t

Backward: t′ = t+ ∆t.

The forward case is a balance in the last collision interval leading to tf while the

backward is a balance in the first collision interval after t.

To elicit meaningful descriptions of Eq. 2.5, we must recognize that the transitional
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probabilities over the time interval ∆t, Pn|i(t′ + ∆t|t′), are the reaction rates:

λn←i(t′)∆t = Pn|i(t′ + ∆t|t′), (2.6)

where we use the notation that the mechanism represented by the reaction rate is

directly connected to state n when the system is in state i. It is understood that

the reaction rates over a short interval are normalized as ∆t∑i λn←i = 1. In the

limit as ∆t → 0, the probability of no event occurring is unity, i.e. λn←n = 1, but

the normalization as stated diverges (1/∆t→∞); thus, the no event rate is better

expressed as

λn←n∆t = 1−
∑
i 6=n

λi←n∆t. (2.7)

Once the balance is performed, we evaluate the limit as ∆t→ 0, resulting in a set

of first-order ordinary differential-difference equations which are categorically known

to be the differential CK equation [5], which are most commonly referred to as the

Forward or Backward Master equation. The name “master equation” was originally

coined by Nordsieck, Lamb, and Uhlenbeck [7] in their study of the Furry model of

cosmic rain showers. The Master equation is regarded as such because it is indeed

the underlying mathematical device used for describing the probabilistic behavior of

a system, from which specific properties and characteristics may be derived- thus,

the equation is ‘ruling’ over the subsequent equations. The differential CK equations

are obtained from Eq. 2.5 using Eqs. 2.6 and 2.7:

Forward: dPn|m(tf |t)
dtf

=
∑
i 6=n

λn←iPi|m(tf |t)− Pn|m(tf |t)
∑
i 6=n

λi←n

Backward: − dPn|m(tf |t)
dt =

∑
i 6=m

Pn|i(tf |t)λi←m − Pn|m(tf |t)
∑
i 6=m

λi←m,

(2.8)

where we notice that the operating variable in the forward Master equation is the final

time, tf , while the operating variable in the backward Master equation is the initial

time, t [6]. The sign of the time derivatives oppose one another and we integrate in
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opposing directions in time; i.e., the forward equation is integrated forward in time

and the backward equation is integrated backwards in time- hence the names. The

forward and backward Master equations describe the same process and will therefore

produce the same result, thus one chooses which to use based on which is easier to

solve.

2.3 Formulation of the Forward Master Equation

In applying the Forward Formulation to obtain an equation for the neutron number

PDF, we postulate that by inserting an ideal internal detector into the system at some

time of observation, tf , we will be able to detect the exact neutron population upon

insertion. Each possible population number, n, that may be observed by the detector

occurs with probability Pn|m(tf |t′), where each population state n is dependent on

the set of states m existing at an earlier time t′. As was stated in the previous section,

we simplify the notation Pn|m(tf |t′)→ Pn(tf ), where it is understood that state m is

known and defined by the initial condition; the variable m is a nuisance variable [8]

and we may drop it from the notation. Doing so provides the following CK equation:

Pn(tf ) = λn←n(tf )∆tPn(tf −∆t) +
∑
mi

λn←mi(tf )∆tPmi(tf −∆t). (2.9)

To obtain a more physically insightful balance of Eq. 2.9, we consider the mi

state-changing events a neutron may undergo according to Fig. 2.3. We account

for the possibility that there are already n neutrons in the system at tf −∆t and

therefore no event occurs, that a neutron either leaks or is captured, requiring n+ 1

particles at at tf − ∆t, or that ν neutrons may be emitted in either a source or

induced fission event, requiring n− ν and n+ 1− ν neutrons to be present at tf −∆t,

12
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n − ν SF, ν Neutrons

n n + 1 − ν IF, ν Neutrons

n + 1 Capture/Leak

t

tf tf − ∆t

mi

Figure 2.3: Forward formulation time scheme.

respectively. The ensuing CK equation, with the terms in order of introduction, is

Pn(tf ) = (1− S∆t)(1− λt∆t)nPn(tf −∆t) + (n+ 1)(λc + λ`)∆tPn+1(tf −∆t)

+ S∆t
νSm∑
ν=0

qSν Pn−ν(tf −∆t) + λf∆t
νfm∑
ν=0

qfν (n− ν + 1)Pn−ν+1(tf −∆t),

(2.10)

where νS/fm is the maximum number of neutrons emitted in a source or fission event,

and qS/fν is the associated probability that ν neutrons will emerge from said event.

In order to proceed, we must expand the no event transitional probability for

neutrons in a Taylor series about λt∆t = 0:

(1− λt∆t)n = 1− nλt∆t+ 1
2n (n− 1) (λt∆t)2 − 1

6n (n− 1) (n− 2) (λt∆t)3 + · · ·

= 1− nλt∆t+O
(
[∆t]2

)
,

allowing us to write the no event probability as

(1− S∆t) (1− λt∆t)n = (1− S∆t)
(
1− nλt∆t+O

(
[∆t]2

))
= 1− (S + nλt) ∆t+O

(
[∆t]2

)
.
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Inserting this expression into Eq. 2.10, rearranging, and evaluating the limit as

∆t→ 0, we arrive at an open set of linear ordinary differential-difference equations

more often referred to as the differential Chapman-Kolmogorov equation or the

forward Master equation:

dPn(t)
dt = − [S + nλt]Pn(t) + (n+ 1) (λc + λ`)Pn+1(t)

+ S
νSm∑
ν=0

qSν Pn−ν(t) + λf

νfm∑
ν=0

qfν (n− ν + 1)Pn−ν+1(t).
(2.11)

Note that we have replaced tf with t. Assuming the initial state consists ofm neutrons

within the system at time t = 0, the initial condition is

Pn(0) = δn,m, (2.12)

where δi,j is the Kronecker delta function. Although m is an arbitrary positive integer,

we typically only consider the cases for there being 0 or 1 initial neutrons. In the

m = 0 case, the number distribution is dictated by the source strength while the

m = 1 case is used for the determination of a single neutron chain (and the source is

then set to S = 0 s−1).

Equation 2.11 is the forward Master equation resembling the general form we

established with Eq. 2.8. We will employ several methodologies onto Eq. 2.11 to

extract equations we may use to characterize a system of interest; namely the solution

Pn(t) and the moments of the probability distribution satisfying the Master equation.

The solution to the Master equation 2.11 is intractable due to the set being open

as a result of the upward coupling of Pn with Pn+1 from the loss term (both from

capture as well as IF when ν = 0). A numerical solution option is to assume that

the distribution decays and that at a sufficiently large population N , the subsequent

probability PN+1 ∼ 0 and we may truncate the distribution at order N - closing the

system [16]. Analytical solutions require mathematical approximations or restrictions

to the physics of the system. We continue the next sections by exploring these two

analytical pathways that lead to PDF solutions.
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2.3.1 The Probability Generating Function

The solutions to the forward (and backward) Master equation we have introduced

is intractable in the form given by Eq. 2.11. It is therefore necessary to employ a

transformation onto the Master equations which irresistibly consolidates the infinite

number of differential equations into a single equation in the transform function.

The transform of choice is the probability generating function (PGF). The PGF is

attractive because it is effectively a power series representation of the PDF, which

has a well-developed theory established for non-negative coefficients [9].

If we define the PGF for the solution to the forward Master equation as

G(z, t) =
∞∑
n=0

znPn(t), (2.13)

we may multiply Eq. 2.11 by zn and sum over all n. Performing standard manipula-

tions, we arrive at the corresponding forward PGF equation:

∂G(z, t)
∂t

= g(z, t)∂G(z, t)
∂z

+ S
[
g
S
(z)− 1

]
G(z, t), (2.14)

which has the initial condition: G(z, 0) = zm, wherem is the initial neutron population.

We have defined the coefficient of the ∂G/ ∂z term as

g(z, t) =
[
− λtz + λc + λ` + λfgf (z)

]
, (2.15)

and gx(z) is the PGF of the multiplicity distribution of event type x, given by:

gx(z) =
νxm∑
ν=0

zνqxν . (2.16)

Equation 2.14 is a linear PDE of the forward PGF which, under certain conditions,

may be solved using the Method of Characteristics. These conditions are discussed

in Section 2.4.
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2.4 Solutions to the Forward PGF Equation

We seek analytical solutions to the PGF equation resulting from the forward Master

equation formulation, Eq. 2.14. In its current general form, Eq. 2.14 does not

have a solution in known mathematical functions, but we will steadfastly proceed by

recognizing that we may attempt to find solutions using the Method of Characteristics.

This is done by comparing Eq. 2.14 with the total derivative of G with respect to

time,
dG
dt = ∂G

∂z

dz
dt + ∂G

∂t
. (2.17)

By inspection, the system of characteristic equations is:
dz(t)

dt = −g(z(t)) (2.18a)

dG(z(t), t)
dt = S

[
g
S

(
z(t)

)
− 1

]
G(z(t), t). (2.18b)

Equation 2.18b is an elementary first-order differential equation that is solved by

separation of variables followed by integration over the time domain to yield

G(z(t), t) = [z(to)]m exp
{
S

ˆ t

to

dt′
[
g
S

(
z(t′)

)
− 1

]}
, (2.19)

where we are reminded that g
S
(z(t)) is an order-νSm polynomial in z. Depending on

the form of z(t), obtained by solving Eq. 2.18a, this may prove to be an incalculable

integral in and of itself. With that said, we see that Eq. 2.18a takes the integral form:ˆ z(t)

z(to)
dz′ 1

g(z′) =
ˆ z(t)

z(to)
dz′ 1
−λtz′ + λc + λ` + λfgf (z′)

= −(t− to). (2.20)

Recalling that gf (z(t)) is an order-νfm polynomial in z, this integral is not solvable for

polynomials greater than order 3 [10], prompting us to explore several solution paths

in the remainder of this section. There are two ways of solving Eq. 2.14; by means of

making a mathematical approximation to the equation itself, known as the Quadratic

Approximation, or by restricting the neutron multiplicity, discussed in Sections 2.4.1

and 2.4.2, respectively. Both of these approaches vie to lessen the complexity of Eq.

2.18a by lowering the variable coefficient power to order two.
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2.4.1 The Quadratic Approximation

We wish to solve Eq. 2.18a by approximating the form of g(z(t)). This is accomplished

by expanding g in a Taylor series and retaining only up to the second order terms.

This reduces the functional form of g to a quadratic polynomial; for this reason,

this process is referred to as the Quadratic Approximation (QA). It was originally

performed by Bell in obtaining the neutron number density function for large neutron

populations [3] and later employed by Prinja and Souto [11] to extract the discrete

number distribution. As this is a replication of previous work, we simply state the

relevant equations in moving forward.

By defining the factorial moments of the induced fission multiplicity distribution

as

χi =
νfm∑
k=i

k!
(k − i)!q

f
k , (2.21)

it can be shown that g may be approximated as a second-order polynomial function

of z:

g(z) ≈ 1
τ

[
(k − 1)(z − 1) + pfχ2

(z − 1)2

2

]
, (2.22)

where pf = λf/λt is the probability of fission, k = νpf is the multiplication factor,

and τ = 1/λt is the neutron lifetime. This is known as the Quadratic Approximation,

and it allows us to solve the characteristic equation for z(t). We note that, from the

definition of χ2, we are able to maintain effects of the full multiplicity distribution.

With the QA in-hand, the solution to the approximated form of Eq. 2.18a is

z(t) = 1 +
[

1
z(to)− 1a(t) + b(t)

]−1

(2.23)

where we have defined

a(t) = exp
{ˆ t

to

dt′α(t′)
}

(2.24a)
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b(t) =
ˆ t

to

dt′χ
′
2(t′)
2 exp

{ˆ t

t′
dt′′α(t′′)

}
. (2.24b)

along with two well-known variables:

α(t) = k(t)− 1
τ(t) , (2.25)

χ′2(t) = pf (t)χ2

τ(t) . (2.26)

We next insert Eq. 2.23 into the expression for G, Eq. 2.19, in order to solve the

PGF equation, Eq. 2.14:

G(z(t), t) = z(to)m exp
{
S

ˆ t

to

dt′
[
g
S

(
z(t′)

)
− 1

]}
. (2.27)

We proceed by addressing the two primary cases that are examined in practice: the

case of a single initial neutron without a source present (which we have been referring

to as the single chain case), and the case of zero initial neutrons in the presence of a

source.

Single Chain Case

For the case of a single initial neutron without a source present, we simply set S = 0

s−1 and we set m = 1 in Eq. 2.27. This tells us that dG/ dt = 0, and the PGF is

constant along the characteristic curve and is therefore equal to the initial condition,

i.e. G(z(t), t) = G(z(to), to) = z(to). Solving Eq. 2.23 for z(to) yields

G(z(t), t) = 1 + a(t)
(z(t)− 1)−1 − b(t) . (2.28)

Equation 2.28 is in its simplest of forms, and our next task will be to invert G to

determine the single chain neutron number distribution, discussed in Sec. 2.5.

Source Case

The case of a source with no initial neutrons (set m = 0 in Eq. 2.27) is more involved

than the single chain case due to the retention of the exponential functional form
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of G. In reference to Eq. 2.27, we see that the source multiplicity distribution PGF

introduces complications due to the νSm-order power of the argument, z(t′). For this

reason, the integral is not easily computed and we assume the source is singlet emitting,

i.e. qSν = δν,1. After rearranging and further assuming χ′2 is time-independent, we

obtain the solution

G(z(t), t) =
[
1−

(
z(t)− 1

)
b(t)

]−η
, (2.29)

where we have introduced the parameter, often called Bell’s parameter,

η = 2S
χ′2
. (2.30)

Equation 2.29 was obtained for the specific case of a singlet emitting source, where we

further assumed the source, S, and χ′2 to be time-independent. We recognize that we

did not need to make an assumption on the form of α(t), allowing us to maintain a

time-dependence on the system criticality; note that we require χ′2 to be constant and

hence the ratio of pf to τ must be constant (a quantity closely tied to α). Equation

2.29 is in the ideal form to invert G to recover the neutron number distribution in

the presence of a source, Pn(t), to be discussed in Sec. 2.5.

2.4.2 Restrictions on the Neutron Multiplicity Distribution

(The Generalized Binary Fission Model)

In this section, we explore solutions to the forward PGF equation for which we assume

some form the induced fission multiplicity distribution to solve the characteristic

equation given by Eq. 2.18a. Solutions have been obtained for the Binary Fission

Model [14, 16], which restricts the number of neutrons emitted in a fission event to

exactly two, i.e. qfν = δν,2. In this document, we wish to show a generalization to

account for the additional possibility of 0, 1, and 2 particles to be produced in a

fission event, and for this reason we refer to this methodology as the Generalized

Binary Fission Model (GBFM).
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The appeal of having a solution for an exact multiplicity distribution arises in the

need to benchmark codes, particularly Monte Carlo codes that we will be developing

later in this document. As was discussed in the previous subsection on the Quadratic

Approximation, we arrived at solutions to the forward PGF equation by approximating

the coefficient containing the nonlinear dependence on z– arising from being operated

on by the induced fission multiplicity distribution PGF, gf (z). The QA then provides

an approximate solution to the PGF equation, and if we are attempting to benchmark

a MC code for which no approximation in the simulation is translatable, there will

be irregularities and disagreements amongst results (specifically for small n and

short times). Thus, we require solutions for which the forward PGF equation is

solved exactly under an approximation to the physics of the system rather than an

approximation to the equation itself.

Proceeding, we assume that any number of neutrons may be emitted from an

induced fission event up to 2. Thus, Eq. 2.16 simplifies to ∑2
ν=0 z

νqfν , and Eq. 2.18a

becomes a nonlinear ODE of the Riccati-type with constant coefficients:

dz
dt = −

[
λfq

f
2 z

2 + (λfqf1 − λt)z + λc + λ` + λfq
f
0

]
. (2.31)

This resultant ODE is separable and we may simply solve the revised version of Eq.

2.20 as it is now an integral of a rational function with a quadratic function in the

denominator with the solution:

ˆ z(t)

z(to)
dz′ 1

Az′2 +Bz′ + C
= i

D
ln
(

1− i
D

(2Az′ +B)
1 + i

D
(2Az′ +B)

) ∣∣∣∣∣∣
z(t)

z(to)

= −(t− to), (2.32)

where i is the unit imaginary number and we have defined the coefficients:

A = λfq
f
2 (2.33a)

B = λfq
f
1 − λt (2.33b)

C = λc + λ` + λfq
f
0 (2.33c)
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D =
√

4AC −B2. (2.33d)

Note that B ≤ 0. As it is, D in Eq. 2.33d is a complex number residing on the

imaginary line (i.e., Re(D) = 0). We then factor i from D such that D = iD, where

we have now defined D as the magnitude of D:

D =
√
|4AC −B2| =

√
B2 − 4AC. (2.34)

Equation 2.32 then becomes

ln
{(
D − 2Az(t)−B
D + 2Az(t) +B

)(
D + 2Az(to) +B

D − 2Az(to)−B

)}
= −D(t− to), (2.35)

and solving for z(t) yields

z(t) =
D −B − (D +B)

[
D−B−2Az(to)
D+B+2Az(to)

]
e−D(t−to)

2A
(
1 +

[
D−B−2Az(to)
D+B+2Az(to)

]
e−D(t−to)

) . (2.36)

We will also need an expression for z(to), which is easily solved for by rearranging Eq.

2.36. With z(t) and z(to), we are now prepared to solve the characteristic equation

for G for the cases of a single neutron chain as well as in the presence of a source.

Single Chain Case

The solution for a single neutron fission chain is obtained by setting m = 1 and S = 0

in Eq. 2.19. As was observed in the previous section on the QA, this shows us that

dG/ dt = 0 and G is then equal to the initial condition: G(z(t), t) = G(z(to), to) =

z(to)1. Thus, we have:

G(z(t), t) = z(to) =
D −B − (D +B)

[
D−B−2Az(t)
D+B+2Az(t)

]
e+D(t−to)

2A
(
1 +

[
D−B−2Az(t)
D+B+2Az(t)

]
e+D(t−to)

) . (2.37)

In Sec. 2.5, we will invert this expression to obtain the number distribution for a

single chain for which we have restricted there to be 0, 1, or 2 neutrons emitted per

induced fission.
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Source Case

For the case where there are no initial neutrons but there is a source present within

the system, we set m = 0 in Eq. 2.19 and we further assume the source produces one

and only one particle per event, i.e. qSν = δν,1; with this, we ultimately find

G(z, t) =
[

2D
D + B + (D − B)e−D∆t + 2A(e−D∆t − 1)z

]η
e−S∆t(1−B−D2A ), (2.38)

where ∆t = t − to and we have introduced B = |B| because B < 0. We have also

defined the GBFM analog to Bell’s parameter:

η = S

A
= S

λfq
f
2
. (2.39)

Thus, we have now found a suitable solution from which we may invert to obtain

the number distribution in the presence of a source. We next show the process for

solving the backward PGF equations.

2.5 Inversion of the Forward Generating Func-

tions

In this section, we show how to invert the expressions for the forward PGFs to obtain

the neutron number distribution. We begin by considering the PGFs obtained by

application of the Quadratic Approximation for a single chain and a source. We then

show the number distributions for the case of restricting the order of the multiplicity

distributions for the single chain and source cases.
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2.5.1 The Quadratic Approximation PDFs

Single Chain

The PGF solution via the QA for the single chain is given by Eq. 2.28:

G(z, t) = 1 + (z − 1)a(t)
1− (z − 1)b(t) = 1 + (z − 1)a(t)

1 + b(t)

[
1− b(t)

1 + b(t)z
]−1

. (2.40)

Since 0 ≤ b/(1 + b) ≤ 1 and 0 ≤ z ≤ 1, then 0 ≤ bz/(1 + b) ≤ 1, and we may therefore

apply the Binomial Theorem to expand the bracketed term of Eq. 2.40; doing so

eventually provides

G(z, t) = 1− a(t)
1 + b(t) + a(t)[

1 + b(t)
]2 ∞∑

n=1

[
b(t)

1 + b(t)

]n−1

zn. (2.41)

Comparing Eq. 2.41 to the original definition of the generating function, G(z, t) =∑∞
n=0 Pn(t)zn, we see that the extinction probability is already isolated and the

remainder of the distribution may be inferred accordingly:

P0(t) = 1− a(t)
1 + b(t) (2.42a)

Pn(t) = a(t)[
1 + b(t)

]2
[

b(t)
1 + b(t)

]n−1

, n = 1, 2, 3, . . . . (2.42b)

Equations 2.42a and 2.42b constitute the discrete neutron number distribution in the

Quadratic Approximation. First obtained by Prinja and Souto [11], this PDF is a

natural generalization to Bell’s single chain distribution [3].

In the Presence of a Source

We are now interested in inverting the forward PGF solution in the presence of a

source, given by Eq. 2.29. The process is wholly the same as for the single chain case,

but the resulting distribution is categorically different, as will be seen. Equation 2.29
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is already in the ideal format after a simple factorization,

G(z, t) =
[
1−

(
z − 1

)
b(t)

]−η
= 1(

1 + b(t)
)η
[
1− b(t)

1 + b(t)z
]−η

, (2.43)

we may expand the bracketed term into a Taylor series about z = 0. In doing so, Eq.

2.43 becomes

G(z, t) = 1(
1 + b(t)

)η ∞∑
n=0

η(η + 1) · · · (η + n− 1)
m!

[
b(t)

1 + b(t)

]n
zn. (2.44)

The rising factorial of η may be written in terms of the Gamma function with the

identity η(η + 1) · · · (η + n − 1) = Γ(η+n)
Γ(η) . As before, if we then compare Eq. 2.43

to the definition of the PGF, G(z, t) = ∑∞
n=0 Pn(t)zn, we may readily extract the

number distribution in the presence of a source:

Pn(t) = 1(
1 + b(t)

)η
[

Γ(η + n)
n! Γ(η)

]
·
[

b(t)
1 + b(t)

]n
, n = 0, 1, 2, . . . . (2.45)

Equation 2.45 is the discrete neutron number PDF in the Quadratic Approximation,

first obtained by Prinja and Souto [11]. As with the previous section for the single

chain distribution, this PDF is a generalization of Bell’s distribution in the presence

of a source. It will be shown in Sec. 2.6 that Bell’s distribution emerges in the

asymptotic limit of Eq. 2.45.

2.5.2 PDFs for the Generalized BFM

Single Chain

Following the same procedure as the previous section of rearranging Eq. 2.37 to be

expanded with the Binomial Theorem and compared to the definition of G, we may

obtain the GBFM number distribution:

P0(t) = B −D2A ·

 1− e−D∆t

1−
(
B−D
B+D

)
e−D∆t

 (2.46a)
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Pn(t) = 4D2e−D∆t

[
2A

(
1− e−D∆t

)]n−1

[B +D − (B −D)e−D∆t]n+1 , n = 1, 2, 3, . . . . (2.46b)

This distribution is a generalization of the Binary Fission Model distribution presented

in [16] and allows for non-singular multiplicity distribution calculations. It differs

from Prinja’s distribution given by Eq. 2.42 in that it is an exact solution to the PGF

PDE for a multiplicity distribution that produces 0, 1, or 2 neutrons per induced

fission, while the Prinja Distribution made an approximation to the PGF PDE itself

and allows for any multiplicity distribution (encapsulated in the χ′2 parameter). A

final note concerns the the coefficient of Eq. 2.46a: (B −D)/2A, we see that when

the system is supercritical, (B − D)/2A < 1, and when the system is critical and

subcritical, (B−D)/2A ≡ 1. Thus, for a subcritical system, we find limt→∞ P0(t) = 1,

while for a supercritical system, limt→∞ P0(t) = (B −D)/2A. This fact will become

useful when we wish to determine the quantity know as the probability of initiation.

In the Presence of a Source

We may invert the PGF for the source case, starting with Eq. 2.38, by again

rearranging, Taylor expanding about z = 0, and comparing to the definition of G to

attain:

Pn(t) = (2D)ηe−S∆t(1−B−D2A )
[

Γ(η + n)
n!Γ(η)

] [
2A

(
1− e−D∆t

)]n
[B +D − (B −D)e−D∆t]η+n , (2.47)

where we recall that, for the GBFM, η = S/λfq
f
2 , given by Eq. 2.39. Equation

2.47 is a generalization to the source distribution in [16]- where we have allowed

for a less stringent induced fission multiplicity distribution. We note that, for a

subcritical system B − D = 2A and the exponential factor becomes unity and the

time-dependence of the distribution behaves according to the remaining decaying

exponentials. For a supercritical system, (B −D)/2A < 1, then 1− B−D2A ∈ [0, 1], and

the exponential factor therefore always decays with the progression of time.
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2.6 Asymptotic Limits of the Neutron Number

Distribution

In this section, we replicate an exercise performed by Prinja and Souto [11] with the

main goal of deriving the well-known Bell distribution [3], which is pivotal in the

analysis of systems we will be studying, and as a means of demonstrating its connection

to the discrete distributions. This is done by considering asymptotic behavior of the

forward discrete distributions for the QA when the neutron population has grown to

a point that it may effectively be regarded as a continuum (typically applicable for

n & 10, thus the population is still within a stochastic regime). For a more in-depth

demonstration, it is recommended the reader acquire [11].

Single Chain

We note that Eqs. 2.24a and 2.24b can be written in terms of the average of the

neutron number, n (given by Eq. 2.54a in a later Sec. 2.7), as well as the POI:

a(t) = n(t) = eαt and b(t) = n(t)−1
P∞

, where we are assuming constant reactivity. The

single chain distribution may then be restated as:

Pn(t) = P 2
∞

n(t)
(n(t)− 1)2

[
n(t)− 1

n(t)− (1− P∞)

]n+1

.

If we now consider the initial neutron has been propagating for a long time so that

t� 1/α and n(t)� 1, Prinja and Souto were able to argue that, for large neutron

populations, the discrete probability distribution should instead be treated as a

continuous probability density function, i.e. Pn(t)→ P (n, t) dn. Thus, we may write

the single chain number distribution as [11]:

Pn(t) ≈ (1− P∞) δ(n) + P 2
∞

n(t) exp
{
− P∞
n(t)n

}
, (2.48)

where we have included the singular point of the density at n = 0, corresponding to

the extinction probability, to ensure proper normalization. Equation 2.48 is the result
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obtained by Bell [3], but he obtained it by applying an inverse Laplace transform to

the solution of the PGF PDE after making the Quadratic Approximation.

In the Presence of a Source

In the presence of a constant randomly emitting source, we note Stirling’s Formula

for large z arguments of the gamma function: Γ(z + 1) ∼
√

2πz
(
z
e

)z
, from which

we may write n! = Γ(n+ 1) ∼
√

2πnn+1/2 exp{−n}. Using this approximation, and

appropriate variations of it, in the number distribution in the presence of a source,

Eq. 2.45, Prinja and Souto provide [11]:

Pn(t) ≈ P (n, t) dn =
(
ηn

n(t)

)η−1
η

n(t)Γ(η)e−
η
n(t)n dn, (2.49)

which is known as Bell’s gamma distribution for the neutron number in the presence

of a source. The asymptotic analysis was first conducted by Prinja and Souto [11],

but Bell obtained his distribution directly from the PGF solution by inverting the

PGF using the inverse Laplace transform [3].

2.7 Equations for the Moments

Equations for the moments of the distribution are utilized for a myriad of applications,

including, but not limited to: characterizing the number distribution for instances

where the QA or GBFM are not applicable; for fitting the distribution to another

known distribution based on the calculated moments; for benchmarking codes. For

illustrative purposes, we will show the general process for obtaining equations satisfied

by the moments of the number distribution under investigation for the forward

formulation, but the process is applicable for the backward formulation as well.

To obtain the moments for the neutron number distribution from the forward

Master equation, Eq. 2.11, we recognize that the kth derivative of the PGF with
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respect to z evaluated at z = 1 is the kth-order falling factorial moment of the PDF:

∂kG(z, t)
∂zk

∣∣∣∣∣∣
z=1

=
∞∑
n=0

n(n− 1) · · · (n− k + 1)zn−kPn(t)

∣∣∣∣∣∣
z=1

=n(n− 1) · · · (n− k + 1)(t). (2.50)

We may then apply Eq. 2.50 to the PGF PDE, Eq. 2.14, and unfold the factorial

moment expression to obtain nk(t). The first moment is given by setting k = 1,

providing a linear first-order ODE:

dn(t)
dt = αn(t) + Sν

S
, (2.51)

which is the typical point-reactor kinetic equation without delayed neutrons [3, 11, 46].

In Eq. 2.51, we are using α = (pfνf − 1)/τ = (k − 1)/τ and we have recognized

dgx/ dz|z=1 = νx is the average of the multiplicity distribution x, from which we may

write the average of the factorial moments as

dkgx(z)
dzk

∣∣∣∣∣∣
z=1

= νx(νx − 1) · · · (νx − k + 1) = (νx)k, (2.52)

where we are utilizing Pochhammer notation for the falling factorial functions. Equa-

tion 2.51 can be solved for using the integrating factor technique:

n(t) = n(0)eαt + Sν
S

α

[
eαt − 1

]
(2.53)

where we have assumed α and S to be constant in time. For the single chain case,

n(0) = 1 and S = 0, while for the source case, n(0) = 0, thus we have:

Single Chain: n(t) = eαt (2.54a)

Source: n(t) = Sν
S

α

[
eαt − 1

]
. (2.54b)

Taking two derivatives with respect to z and evaluating at z = 1 yields:

dn2

dt − 2αn2(t) = dn
dt +

[
λf (νf )2 − 2α + 2Sν

S

]
n(t) + S(ν

S
)2, (2.55)
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which may be solved via the integrating factor technique to yield:

n2(t) =n2(0)e2αt +
ˆ t

0
dt′dn(t′)

dt′ e−2α(t′−t) + Sν
S

α

[
e2αt − 1

]
+
[
λf (νf )2 − 2α + 2Sν

S

]ˆ t

0
dt′n(t′)e−2α(t′−t).

(2.56)

This process must be applied as many times as there are desired moments. With

some effort, it can be shown that for constant system parameters α and S, the kth

moment is:

nk(t) = nk(0)ekαt + S(ν
S
)k

kα

[
ekαt − 1

]
+

k−1∑
j=1

− s1(k, j)
ˆ t

0
dt′dn

j(t′)
dt′ e−kα(t′−t)

+ c
(k)
j

ˆ t

0
dt′nj(t′)e−kα(t′−t)

,
(2.57)

where the coefficient is defined as:

c
(k)
j = ks1(k, j)α +

k−j∑
i=1

s1(k − i, j)
{(

k

i+ 1

)
(νf )i+1λf +

(
k

i

)
(ν

S
)iS

}
, (2.58)

and s1 is the Signed Stirling Number of the First Kind.

With these moment equations, or any moment equation obtained from an ap-

propriate Master equation, we may benchmark Monte Carlo or deterministic codes.

There will be several instances throughout this document where we hinge the accuracy

of a result based on its agreement with the moment equations.
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Monte Carlo Methods

In this chapter, we investigate two analog Monte Carlo methods to aid in obtaining

stochastically derived information for characterizing nuclear systems– namely the

traditional Event-Based Monte Carlo (EBMC) method and a method known as

the Stochastic Simulation Algorithm (SSA). Fundamentally, a Monte Carlo method

consists of analyzing an aggregate of outcomes of random walks a system may assume

in nature. These random walks are simulated by inverting the cumulative distribution

functions (CDFs) containing the probability mass functions dictating the behavior of

an individual particle (EBMC) or the state transition rate of the system (SSA). In

the above, analog refers to the direct simulation of particles by avoiding the use of the

particle weight as a variance reduction technique seen in many production codes [36].

It is necessary to avoid such variance reduction techniques as they modify the PDFs

for physics interactions to favor events of interest, and by making an assumption on

the outcome, or biasing a random walk, of a stochastic system denies true randomness

of the simulation at-hand.

Regardless of the MC method employed, the quantities of interest are not de-

pendent on individual outcomes, but instead on the collection of outcomes, and

either MC method should provide the same statistical results. For this reason, the
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Figure 3.1: Cumulative distribution functions for multiplicity distributions of (a)
spontaneous fission and (b) induced fission for the Pu system in Fig. 4.5.

post-processing of the set of simulations should be the same and we therefore discuss

the two quantities of interest: calculating the neutron number distribution in Sec.

3.1 and calculating the moments of the distribution in Sec. 3.2. Beforehand, we

discuss the cumulative distribution functions we sample from as well as the random

number generator used. We then discuss the individual algorithms in Secs. 3.3 and

3.4, corresponding to the EBMC method and SSA, respectively.

Cumulative Distribution Functions and Random Number Generators

Central to the study of the stochasticity of nuclear systems are the random emission

of particle multiplets in spontaneous and induced fission events. The CDFs for these

particle-multiplying events are shown in Fig. 3.1 for the 20 wt% 240Pu and 80 wt%
239Pu system with multiplicity distributions depicted in Fig. 2.1. If we generate a

random number, ξ ∈ [0, 1), we may then determine the number of particles emitted

in a given event depending on where its value lies on the vertical axis, projecting to

where that value intercepts the CDF, and the corresponding horizontal axis value
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provides the sampled number of particles for that ξ; this is the basis for inverting any

and all discrete CDF. For continuous PDFs, one must resort to analytical inversion

of the CDF or, if the CDF is noninvertible, some other form of inversion is required,

such as rejection sampling. Often when the CDF is analytically represented (i.e., the

integral has a solution), the variable we wish to sample may be transcendental in

the solution and we must then perform an iteration such as the Newton-Raphson

method.

In practice, ξ is truly a pseudorandom number pulled from a pseudorandom

number generator (PRNG); for the results shown throughout this document, we use

the PRNG from FORTRAN90, which uses the xoshiro256** PRNG. This generator

has a period of 2256 − 1 and, when using multiple threads, up to 2128 threads can

each generate 2128 random numbers before any aliasing occurs [52]. For our purposes,

this PRNG is sufficient for providing true Monte Carlo results.

3.1 Calculating the Neutron Number Distribu-

tion

As was the focus in Chapter 2, we are primarily concerned with determining the

neutron number distribution using Monte Carlo methods. In this section, we describe,

in broad terms disregarding mechanics of specific algorithms, how to obtain the

probability of there being n neutrons in the system at some final time tf due to some

initial state of the population: Pn(to) for n = 0, 1, 2, . . ..

For a given history, or simulation, there will be a single outcome, or state, that

the system occupies. The final state of history h will have a corresponding neutron

population, nh, at the final time of observation, tf ; this state may be defined as

Xh(nh, tf ). The probability of there being n neutrons at the final time, then, is simply

the total number of instances that that state occurs divided by the total number of
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histories simulated, H, given by

Pn(tf ) = 1
H

∑
h|nh=n

Xh(nh, tf ), (3.1)

where the above is read as the sum over h conditioned on nh = n, In practice, the

summation of Eq. 3.1 is accomplished by populating a histogram for every outcome

on-the-fly, preventing the need to store every outcome as an individual value in a

computer. Note that Eq. 3.1 assumes the bin width is unity, but if one were to

have bin widths greater than one, ∆ni for the ith bin, we would simply perform the

division: Pn(tf )/∆ni for n ∈ ∆ni.

3.2 Calculating the Moments

The moments of the neutron number distribution are determined by first partitioning

the total number of histories into sets, or batches. For each batch, the desired

moments are calculated and saved; the first four moments may be calculated using

the “Set of Histories” column of Table 3.1, where h is the number of histories per

batch. Once every batch has been simulated and there is a corresponding moment

for each batch, we then use the equations in the “Set of Batches” column of Table

3.1 to find the final results, where B is the total number of batches. Typically, a

batch may contain 103 to 106 histories with unique outcomes. Note that the minimal

number of batches must be equal to the order of the moments being calculated to

avoid singularities; e.g. four batches are required if we wish to calculate the kurtosis.

Once the simulation of all of the batches is concluded, a distribution of the

batch moments is obtained and, for increasing B, this distribution is expected to

approach the Gaussian distribution in accordance with the Central Limit Theorem

for independent identically distributed random variables [51]. The distribution of the

batch moments is typically referred to as the Sample Distribution. One may assess

the state of the sample distribution for a given moment by calculating the skewness,
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Table 3.1: Equations for the moments for an individual batch and for the total set
of simulations.

Set of Histories (jth Batch) Set of Batches (Sample Moments)

Mean xj = 1
h

∑h
i=1 xi x = 1

B

∑B
j=1 xj

Variance, V 1
h

∑h
i=1 (xi − xj)2 1

B−1
∑B
i=1 (xi − x)2

Skewness, γ
√
h

∑h

i=1(xi−xj)3[∑h

i=1(xi−xj)2
]3/2

B
√
B−1

B−2

∑B

i=1(xi−x)3

[∑B

i=1(xi−x)2]3/2

Kurtosis, κ h
∑h

i=1(xi−xj)4[∑h

i=1(xi−xj)2
]2

B(B+1)(B−1)
(B−2)(B−3)

∑B

i=1(xi−x)4

[∑B

i=1(xi−x)2]2

γ, and kurtosis, κ, of said moment’s sample distribution and, if γ ∼ 0 and κ ∼ 3, the

distribution is said to be converged because enough batches have been completed.

An estimate on the error of the reported moments is conducted by calculating the

confidence interval of the jth moment, Cj, using the 95% confidence level coefficient

of 1.96:

Cj = 1.96 σj√
B
, (3.2)

where σj is the standard deviation of the sample distribution of moment j, calculated

as σj =
√
Vj.

3.3 Event-Based Monte Carlo Simulation

Event-Based Monte Carlo lends itself to, perhaps, the most intuitive means of

simulating a particle’s random walk through a nuclear system. The method, as
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implemented in this document, initiates a simulation based on a given initial condition–

whether it be a single initial neutron without a source or there are zero initial neutrons

with a source present. We then follow the particles throughout the system until the

population goes to zero, grows to a preset maximum value, or until the final time

is surpassed, from which we catalog all of the desired information and move onto

the next history. In this subsection, we show the methodology for lumped systems

in Sec. 3.3.1 and we then expand the algorithm to account for spatial and energy

dependence in Sec. 3.3.2.

3.3.1 Lumped Simulations

For a lumped system simulation, we are only concerned with the temporal evolution

of the neutron population and we disregard spatial effects during the random walk.

As shown in Appendix B, one may incorporate spatial effects, such as leakage and

inhomogeneities of the material, in the value of the reaction rates. As the main focus

of this work is in obtaining the neutron number distribution and its moments, we

will describe the algorithm with these quantities in mind, but incorporating other

quantities, such as the amount of energy deposited in a fission event, should be

straightforward and clear to the reader once the algorithm is divulged. First, we will

describe how one may simulate a single chain and we will then show how a source

(which should be thought of as producing multiple independent single chains per

event) may be incorporated, and we will then show an example pseudocode. We will

be referring to a persistent neutron as being a neutron that has propagated passed

the final time of observation, and therefore exists at tf . On a final note, we consider

monoenergetic neutrons with velocity v and we will discuss inclusion of energy in the

next subsection.

For the single chain simulation, we initiate the system clock at to and then need to

determine or, rather, sample the distance the particle travels, s, to its first collision.
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This distance is sampled by constructing the CDF for the probability that a particle

will travel a distance s and collide, F (s). The CDF contains the probability mass

function that a particle will travel a distance and not collide and then, by traveling an

additional distance, will collide. This PDF may be separated into two probabilities:

the probability that the particle travels a distance x′ and does not collide, given by

exp{−
´ x′

0 dx′′Σt(x′′)}, and the probability that the neutron travels a short distance

∆x′ and undergoes a collision, given by ∆x′Σt(x′). Thus, the probability that a

particle travels a distance s and collides is given by the product of the aforementioned

probabilities, and taking the limit for ∆x′ → 0 gives:

F (s) =
ˆ s

0
dx′Σt(x′) exp

{
−
ˆ x′

0
dx′′Σt(x′′)

}
. (3.3)

Noting that F (s) ∈ [0, 1) (in the limit lims→∞ F (s) → 1) we may then obtain a

random number, ξ ∈ [0, 1) and set it equal to Eq. 3.3. For spatially constant Σt we

may evaluate the integral to find

ξ = 1− e−Σts. (3.4)

Solving for s, we arrive at the distance to collision sampling formula:

s = − 1
Σt

ln (ξ) , (3.5)

where we made the simplification ξ ← 1−ξ as both numbers are uniformly distributed

between 0 and 1. The system time, ts, is then updated as ts = to + s/v. If ts ≥ tf ,

the neutron is considered persistent, at which point we bin the particle and cycle

through to the next history. If ts � tf , the neutron collided before the observation

time and we must sample which event occurs. As an aside, an alternative approach

to sampling s and then updating ts would be to use the total reaction rate to directly

sample a time interval to collision as ∆t = − ln(ξ)/λt, and then ts ← ts + ∆t would

provide the update.

For this exercise, we assume that the neutrons may either be captured or cause

fission, thus Σt = Σc + Σf , but other collision outcomes are readily implemented. As
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we are considering monoenergetic neutrons, we do not account for scattering events

because a particle is not removed from the system; in an energy-dependent setting,

scattering must be accounted for because we need to account for removal/addition

to and from energy groups. In practice, one may sample leakage events as well if a

system geometry is assumed and the leakage probability is calculated in a global sense

(see Appendix B). Proceeding, the event that occurs may be sampled by obtaining a

new ξ and comparing 0 ≤ ξ ≤ Σc/Σt for a capture or Σc/Σt ≤ ξ ≤ 1 for an induced

fission. If it is a capture, the neutron chain perishes and we bin that there are 0

persistent neutrons before cycling histories. If the event is an induced fission, we then

sample the induced fission multiplicity distribution CDF, see Fig. 3.1b, to determine

the number of particles emerging from the event. It is then necessary to simulate

each of these branches, following the same algorithm just discussed for each particle,

until the branches die away or the final time is surpassed.

Regarding a source-driven system, we sample the number of source events that

have occurred by first sampling a time interval between successive source events (or

to, the initial time, for the first sample) using the formula

∆t = − 1
S

ln (ξ) . (3.6)

We then update the pseudo-system time ts ← ts + ∆t and continue to sample time

intervals until we surpass ts ≥ tf , and the number of source events is then the

number of time intervals that were sampled before surpassing tf . The time at which

the source events occur are then independently sampled. As we are considering

time-independent sources, tj for source event j is then determined by tj = − ln(ξ)/S,

such that tj < tf as it is defined to correspond to a source event within the time

interval of the simulation.

A Fortran code has been written to simulate neutron random walks, shown in

Fig. 3.2 for a given batch of histories, where we have eliminated numeric-type (e.g.,

real, integer) designation to declutter the code. The displayed code is written in
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Figure 3.2: Essence of an Event Based MC Algorithm (for a single batch).
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a general sense to allow for simulations of single chains, source-driven systems, or

the combination of both. The simulation is commenced by determining the initial

population of the system as well as sampling the number of source events and their

corresponding source times (if applicable). From this, we engage a nested loop that

will simulate each event throughout the time interval given the time the event occurred.

If the event being simulated is a source event, we sample from the multiplicity CDF

which then prompts a nested loop that then individually simulates each particle. It is

here that we perform the random sampling which was just discussed in the previous

paragraphs. By sampling a distance to collision, updating the time, checking if ts ≥ tf

(if true, call on BIN_POP, which simply adds persistent_ns = persistent_ns + 1),

and then determining the interaction that takes place, we capture the essence of an

event based MC algorithm.

Of utmost interest to the study of neutron-multiplying systems is contained with

the FISSION subroutine, and an example code is displayed in Appendix D. Following

the progeny of a fission event may become quite an involved process when successive

fissions may be induced by any number of neutrons. The example code shows how

we implemented a systematic methodology for saving the current generation and

previous generation of particles and follow each particle in the current generation

either to its demise, the final time is surpassed, or another fission is induced. If

another fission is induced, we sample the multiplicity of particles and bank them in

the next generation to be simulated once the current generation has finished. For

supercritical systems, a chain may diverge and as the criticality increases the number

of diverging chains will follow suit. There then must be a mechanism built into the

code to abandon the FISSION subroutine if it is clear that the chain will continue

to grow without bound. For marginally supercritical systems, the time it takes for

certain chains to reach such a level makes the analog MC method wholly inefficient

as the chains will persist for long times. It has been proposed by Méchitoua that the
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(a) (b)

Figure 3.3: Comparison of MC (x) and analytical (-) GBFM number distributions
for a supercritical system for (a) single chains and (b) in the presence of a weak
source.

population cutoff, C, should follow the formula [33]:

C = 10
k − 1 (3.7)

for k > 1. That is, as k → 1, the likelihood of a single chain to diverge is less certain

and one must simulate to longer chain lengths to guarantee divergence. As has been

observed in practice by Gregson [34], one may set C to 106 for k = 1.00001, which

may be regarded as the transition from a strongly stochastic to a weakly stochastic

population regime. For this reason, in any MC result we show, we set the divergence

cutoff to 106.

Figure 3.3 demonstrates a supercritical system with k = 1.0500 and a neutron

lifetime of τ = 1.4689 ns using an IF multiplicity distribution of 〈qf0 , qf1 , qf2 〉 =

〈0.1, 0.35, 0.55〉 (giving ν = 1.45), corresponding to the Generalized BFM. Figure

3.3a shows the single chain number distribution of Eq. 2.46 compared with the MC

simulation results. For the tf/τ = 40 case, the code switched to bin widths of ∆n = 5

due to the increasing persistence of the particles. As expected, the later we observe

the system, the higher likelihood we will see larger particle populations. Figure 3.3b
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shows the number distribution in the presence of a source of strength S = 105 1/s

and η = 3.6881 · 10−4 compared with Eq. 2.47.

3.3.2 Incorporation of Space and Energy

In this section, we present the equations necessary to adapt an EBMC algorithm to

account for space and energy dependence. The primary motivation for doing so is to

contrast the other MC method, the Stochastic Simulation Algorithm, discussed later

in this chapter. For detailed discussions and results, we refer the reader to [16].

Spatial Dependence

In this section, we consider spatial dependence in one-dimensional slab geometry and

then show how to simulate one-dimensional spherical systems. The process of source

time emission is the same as in the previous and now we assume the source is evenly

distributed in space and we can sample a SF event location x by generating a random

number ξ ∈ [0, 1) using the equation

x = (xR − xL)ξ + xL (3.8)

where xL and xR are the left and right boundary coordinates of the slab. From this

source event, we sample the cosine of the angle of emission relative to the x-axis, µ

such that µ ∈ [−1, 1], by assuming isotropic emission and, upon generating a new

random number, we have

µ = 2ξ − 1. (3.9)

Now that we have a position of emission and a direction of travel, we must determine

the distance travelled to the next collision site, s, using Eq. 3.5. The updated position

within the slab, x′, relative to the x-axis is then calculated as

x′ = x+ sµ, (3.10)
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and the updated time ts is ts = t+ s/v. We must now concern ourselves with four

possible scenarios before we proceed:

1. ts > tf , x′ ∈ [xL, xR]: n0 collision site is within the system and the n0 is still

in transit at tf , bin as persistent n0 and move onto the next particle.

2. ts < tf , x′ /∈ [xL, xR]: n0 collision site is out of the system and the n0 arrives

at site before tf , bin as either left- or right-leaked n0 and move onto the next

particle.

3. ts > tf , x′ /∈ [xL, xR]: n0 has either leaked or persisted, we must determine the

distance to the boundary and the time to get to the boundary and compare to

the final time. Discussed below.

4. ts < tf , x′ ∈ [xL, xR]: n0 collision site is within the system

Concerning item 3, the collision site is out of the system and the time to get there

is greater than the final time. To determine if the neutron is classified as persistent

or leaked, we calculate the distance to the boundary, sb, as

sb =


s− x−xR

µ
for µ > 0

s− x−xL
µ

for µ < 0.
(3.11)

Recall x is the original location of the neutron, not the collision site. We then

determine the time to get to the boundary, tb, as being

tb = t+ sb
v
, (3.12)

where t is, again, the time that the neutron was at the original site. We can then

determine whether the neutron was in the system at the final time, if tb > tf (the

time to get to the boundary was greater than the final time), or if it had leaked,

tb < tf . Concerning item 4, we must then proceed to sample from the discrete CDF

of the cross-sections and carry out the event that occurs.
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We now consider the algorithm for a spherical system. We maintain the assump-

tions that source emission as well as scattering events are isotropic and that the

source is evenly distributed in space. In order to sample locations of spontaneous

fission events within the sphere, the spatial probability density function at a radial

position, f(r), must depend on the mass associated with that position. The mass of

a sphere is proportional to the volume V and and incremental mass is proportional

to the volume of an incremental shell, dV , thus the appropriate spatial probability

distribution is [51]:

f(r) dr = dV
V

= 3r2

R3 dr, (3.13)

and the CDF, F (r), for which to sample a radial position of emission is then

F (r) = ξ =
ˆ r

0
dr′f(r′) → r = 3

√
ξR (3.14)

where R is the radius of the system, r ≤ R. Once the radial position is known, we

sample an angle of emission, assumed to be isotropic, and use Eq. 3.9. Note that

µ ∈ [−1, 1] is now the cosine of the angle made between the radial coordinate vector

and the direction of neutron travel. Next, the distance to collision is sampled using

Eq. 3.5 and the new radial position r′ is updated using

r′ =
√
r2 + s2 + 2rsµ. (3.15)

We use the same enumerated steps as stated above, where the distance to the boundary

may be calculated as:

sb =
√
R2 − r2(1− µ2)− rµ. (3.16)

If the neutron number distribution for the single chain in a spatial setting is to be

determined, one must consider a single injection location site for all batches to be

performed. This opposes the above random sampling of source emission locations

discussed above and introduces greater inefficiencies to the analog EBMC algorithm.

43



Chapter 3. Monte Carlo Methods

Regarding the resultant number distribution, this will provide the probability of

having n particles in the system due to the introduction of a neutron at the given

point at the earlier time. This is equivalent to the solution of the Pál-Bell equation,

to be discussed in Chapter 5.

Energy Dependence

We next discuss the incorporation of multigroup energy binning of the neutrons,

following the work in [16] whose goal was to benchmark LANL’s deterministic neutron

transport code PARTISN [35]. Extending the MC to account for multigroup neutrons

is accomplished by converting the cross-sections, multiplicity distributions, and sources

into arrays (with max dimension equal to the number of energy groups) that are then

used to sample a neutron’s energy or, more specifically, which energy bin the neutron

is in. As an example, if a neutron appears as a result of a spontaneous fission, the

discrete CDF of the group-dependent source strengths are sampled to determine the

energy, whereas a neutron born from an induced fission will have its energy sampled

from the χ-spectrum. The data is extracted from a PARTISN output file and this

allows one to construct the necessary CDFs for energy bin sampling as a means of

replicating the exact same system that the multigroup adjoint deterministic transport

code is solving.

Perhaps the most important difference between the monoenergetic and the multi-

group calculations is found in the scattering interactions. As it turns out, PARTISN

has absorption-emission events, such as (n, 2n), embedded in the scattering matrix

produced in the output file when NDI is used to generate the data. Thus, it has

proven necessary to include these events in the simulation process by calculating an

effective νs,g for scattering events as a function of the incident neutron energy and

sampling the number of neutrons created in every scatter event. This sampling is done

by selecting a random number ξ and comparing it to the difference d = νs,g − bνs,gc,

so that if ξ ≤ d, the number of neutrons born in the scatter event is dνs,ge, and if
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ξ > d, the number of neutrons born in the scatter event is bνs,gc. Note that the

notation bxc and dxe are the floor and the ceiling functions of x, respectively. It

would be ideal to sample the number of neutrons created in an (n, xn) reaction from

a multiplicity distribution, just as with any other stochastic neutron source, rather

than sampling only two possible outcomes about the average number emitted per

scatter event.

3.4 The Stochastic Simulation Algorithm

The Stochastic Simulation Algorithm (SSA) was developed by Gillespie for the study

of the dynamics of chemical reactions [37], although the fundamentals had been

known since the 1940s and 1950s with work done by Bartlett [38]. The SSA samples

time intervals between interactions and the resultant outcomes based on the reaction

rates of the particle populations. The sum of the population reaction rates is the state

transition rate CDF, which is simply obtained from the coefficients of the forward

Master equation. In that sense, the SSA is effectively a direct simulation of the

forward Master equation [39].

In traditional event based MC simulations, one simulates a single particle and

samples distance and time intervals dependent on the cross-sections of the system the

neutron is traversing. In the event of secondary particle production, one must save

location and time of birth, and simulate those particles as well. In the SSA approach,

we instead propagate the population state of the system and sample time intervals

between events that transition the system to a new population state. The appeal

of the SSA is that we do not need to allocate computer memory for all secondary

particles and the associated phase-space coordinates but, rather, simply update the

state of the system based off of those particles produced.

In proceeding, we consider a system composed of J regions, each with a neutron

population, nj. We allow for a neutron source in any region, Sj, to be defined as
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the probability of a source emission per unit time and we recall the probability

of a neutron interacting per unit time in region j is λy,j, where y = {c, f, `} for

capture, induced fission, and leakage, respectively. The probability that, upon leaking

from region j, a neutron’s trajectory coincides with region k is symbolized as pj→k
and is referred to as the transfer probability, and its complement, the non-transfer

probability is pj→∞ = 1−∑k pj→k. We consider the determination of the reaction

rates in Appendix B and transfer probabilities later in Sec. 4.2.

We define the state the system occupies at a time t as X(~n, t), where

~n = 〈n1, n2, . . . , nJ〉T (3.17)

is the vector composed of the region-specific particle populations. We may then write

an expression defining the total probability per unit time that an event will occur

within the system that will cause a departure from state X, which we will henceforth

call the state transition probability rate, µ(X). The transition probability rate is

simply the sum of the individual event probability rates. Thus, if the probability of

event i in region j is ei,j, the transition probability rate is

µ(X) =
J∑
j=1

∑
i

ei,j,

and as we are considering source events and events in which the neutron population is

altered upon interacting with the material, our transition probability per unit time is

µ(X) =
J∑
j=1
{Sj + njλt,j} , (3.18)

where the total state transfer rate for region j is λt,j = λc,j + λf,j + λ`,j.

In order to simulate our collection of regions and the particles interacting within

them, we employ the SSA. The rates may be time-dependent, but for introductory

purposes of the algorithm we reserve time-dependent rates until Sec. 4.4. It is vital to

make clear that the rates are an input into the SSA and are assumed known. The SSA

does not permit the determination of the rates, but is rather a means of ascertaining
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the time-evolution of the system, dependent on the rates and the imposed initial

state. The general computer algorithm is outlined as follows:

1. Form a list of all rates in the system, i.e., calculate λy,j and Sj.

2. Initialize the system at time t = 0 with a predetermined initial neutron popula-

tion state, X(~n, 0).

3. Calculate the cumulative function, µ(X(~n, t)).

4. Obtain a uniform random number ξ ∈ [0, 1].

5. Determine the event to carry out, i, in region j by finding the i, j for which

ei−1,j < ξµ < ei,j

Carry out event i, finding new population: ~n→ ~n′.

6. Obtain another uniform random number ξ ∈ [0, 1]

7. Update the time with

t′ = t + ∆t

where

∆t = − 1
µ

ln(ξ)

8. Update new state: X(~n, t)→ X(~n′, t′)

9. Either go to step 3 if t < tf or terminate the simulation if t ≥ tf .

By design, steps 5 and 7 are interchangeable as they are independent of each other.

The events to consider in step 5 are outlined in Table 3.2. Also, note that as the
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population and/or source strength increases, so does µ, causing the time intervals

between events to decrease. If the population becomes too large, the sampled ∆t

may become unmanageably minute that the SSA may be effectively forced into an

infinite loop calculation.

Table 3.2: SSA events that may occur in a given region, j.

Effect
Event, el,j Probability per unit time nj nk

Source Emission Sjq
Sj
ν +ν

Capture njλc,j -1
Induced Fission njλf,jq

fj
ν +(ν-1)

Leakage & no Transfer njλ`,jpj→∞ -1
Leakage & Transfer from j → k njλ`,jpj→k -1 +1

In the code-implementation of the SSA, we apply a nested approach to avoid

calculating all of the individual probabilities associated with the events in Table 3.2

unless deemed necessary [56]. As an example, suppose we have two regions with

sources S1 and S2 and total transition rates λt,1 and λt,2. We call the probability per

unit time that a source event occurred PS = S1 +S2 and the probability per unit time

that a neutron interaction occurred PN = n1λt,1 + n2λt,2, where µ = PS + PN . If we

then compare a random number ξ to determine which is satisfied: 0 ≤ ξ ≤ PS/µ or

PS/µ < ξ ≤ 1, we may then determine that it was either a source event or a neutron

interaction in either region 1 or 2.

If a source event occurs in region 1, the criteria (with a different ξ) 0 ≤ ξ ≤ S1/PS

is satisfied, otherwise S1/PS < ξ ≤ 1 is true and the source event occurs in region 2.

Once the region is known, we then sample the number of neutrons emitted in the

event using the appropriate CDF of the source multiplicity distribution and update

nj → nj + ν.

If a neutron induced event occurs, we first decide which region the event occurred

in by checking which criteria is satisfied: 0 ≤ ξ ≤ λt,1/PN or λt,1/PN < ξ ≤ 1 for
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region 1 or region 2, respectively. From there, the event that occurs is determined by

scanning 0 ≤ ξ ≤ λc,j/λt,j for capture; λc,j/λt,j < ξ ≤ (λc,j + λf,j)/λt,j for an induced

fission; or (λc,j + λf,j)/λt,j < ξ ≤ 1 for a leakage event. For a capture event, simply

update the population as nj → nj − 1; for an induced fission, we sample from q
fj
ν

to find ν neutrons emitted, and update the population as nj → nj + ν − 1; and for

leakage, we say nj → nj − 1, and if there is a successful transfer to region k, we

update nk → nk + 1. Our system is now in state X′, and we then update µ(X′) using

the updated populations to once again repeat the process until either the populations

go extinct or the final time is surpassed.

3.5 Number Distribution Parameter Fitting

The discrete neutron number distribution, for single chains and in the presence of a

source, were first derived by Prinja and Souto [11] using the Quadratic Approximation

of the PGF PDE discussed in Sec. 2.5.1. They then showed the equivalence of their

distributions to Bell’s original 1963 work when certain conditions on the neutron

population and system time are met [11, 12], discussed in Sec. 2.6. We consider the

essence of their findings below and we then discuss the importance of these asymptotic

distributions in the characterization of fissile multiplying systems and how we may

apply this information to quantifying the status of the neutron population in coupled

regions using the SSA.

We only consider systems with sources for which the system reactivity is constant.

For long times periods since the initial time such that t � 1/α, we may assume

that the neutron population has grown so that probabilities away from n = 1 have

developed to non-negligible values. This implies that the average of the population,

n(t), has departed from the low population domain. Under similar arguments outlined

by Prinja and Souto, one may find the Bell distribution for a system with a singlet
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emitting source to be a limiting case of Eq. 2.45 to be

P (n, t) =
[
ηn

n(t)

]η−1
η

Γ(η)n(t) exp
{
− η

n(t)n
}
. (3.19)

With this, we wish to determine if the systems composed of coupled regions are

behaving like this asymptotic distribution at a given time. In particular, we are

interested in establishing whether or not the PDF of an individual region, or the

composite PDF for the collection of regions, in the presence of a source will behave

as the gamma distribution given by Eq. 3.19. As an example, we show the behavior

of the Bell distribution compared with the Prinja-Souto distribution for sub- and

supercritical systems in Figs. 3.4 with η = 9.7351 · 10−4. For Fig. 3.4a, a subcritical

system with k = 0.8788, we see that both distributions asymptotically converge by

100 lifetimes, but they do not converge onto one another. Thus, the distributions

for subcritical systems do not share an asymptotic form. However, the supercritical

system of Fig. 3.4b, with k = 1.0035, shows that the discrete and continuous

distributions do indeed converge to a common form.

Given an SSA simulation (or any MC simulation) resulting in the successful,

statistically converged, calculation of the PDFs of each region, Pn,j(tf ), given by Eq.

3.1, as well as the first two moments according to the batching method in Table 3.1,

we wish to determine if any of these PDFs are gamma-like. This can be done by

comparing Eq. 3.19 to the general form of a gamma distribution:

f(n|α, β) = βα

Γ(α)n
α−1 exp {−βn} , (3.20)

where we see that α = η is the shape parameter and β = η/n(tf) is the scale

parameter. The mean, µΓ(tf), and variance, VΓ(tf), of the gamma distribution are

given by

µΓ(tf ) =α
β

= n(tf ) (3.21a)

VΓ(tf ) = α

β2 = [n(tf )]2
η

. (3.21b)
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(a)

(b)

Figure 3.4: Comparison of the Bell and Prinja-Souto distributions for (a) a subcrit-
ical system and (b) a supercritical system. Solid lines are the Bell distribution and
the discrete points, x and ◦, are the Prinja-Souto distribution.
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If we then set the moments as determined from the SSA to the quantities above, we

may then compare the SSA PDF to the gamma distribution with the moments derived

from the SSA simulation to aid in the determination of whether or not the SSA PDF

is indeed gamma-like. Thus, if µ
SSA

(tf) is the average obtained through SSA and

V
SSA

(tf) is likewise the variance, we set µ
SSA

(tf) = µΓ(tf) and V
SSA

(tf) = VΓ(tf) to

find the appropriate n(tf ) and η to insert into Eq. 3.19:

n(tf ) =µ
SSA

(3.22a)

η =
µ2
SSA

V
SSA

. (3.22b)

As a preliminary assessment, we may evaluate the fitted PDF, PΓ(n, tf ), at the same

n values corresponding to the SSA PDFs and calculate the error at the ith point of

n = ni as

εi =
∣∣∣∣∣1− Pni,SSA(tf )

PΓ(ni, tf )

∣∣∣∣∣ , (3.23)

and if the maximum error is less than some prescribed tolerance, ε, we may say

that the SSA PDF has evolved into a gamma distribution. One must be wary when

evaluating the fitted distribution for values of n near zero when η < 1, as this causes

a singularity in the first coefficient of Eq. 3.19 for n→ 0. It is recommended that,

when determining the error for such fitted distributions, to begin the error calculation

at a mesh point away from the n = 0 point; we have seen that starting the error at the

next mesh point of n = 1 is sufficient to avoiding any unrealistic and insurmountable

errors that would prevent one from recognizing the SSA PDF to be that of a gamma

PDF.

On a final note, the Central Limit Theorem tells us that the gamma distribution of

shape parameter α will converge to the normal distribution for large α [62] (application

of Slutsky’s Theorem which shows that the moment generating function of the gamma

distribution converges to that of the normal distribution). This knowledge will

prove beneficial when we happen upon number distributions with large mean and
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small standard deviation relative to the mean. For such systems, the calculation of

the gamma function will become difficult, and effectively impossible for arguments

η > 171.62 (Eq. 3.22b), i.e., Γ(η > 171.62) ≥ 1.7 · 10308– the largest number

conventional computation can handle. For this reason, we check for arguments

η > 170 and use a normal distribution with mean µ and standard deviation σ to

estimate the convergence of our SSA PDFs to a known distribution:

f
(
n|µ, σ2

)
= 1√

2πσ2
exp

{
−(n− µ)2

2σ2

}
. (3.24)

Thus, we may simply set µ = µ
SSA

and σ2 = V
SSA

in the above equation and

perform the necessary error computation to assess convergence to a gamma/Gaussian

distribution. As expressed previously in Sec. 3.2, we also know that a normal

distribution has a skew value γ = 0 and kurtosis κ = 3; then if the respective

moments of the SSA PDF are near these values, we may further conjecture on the

certainty of the convergence to a normal distribution.

In the results section of Chapter 4, we will assess whether or not a system will

be properly represented by the gamma distribution for a given final time and, when

placed within the proximity of another neutron-multiplying system, under what

conditions will a system that would not reach a gamma distribution approach one.

3.6 Comparison of the EBMC and the SSA

In this section, we explore the efficiency of the two Monte Carlo methods we have

explored in this chapter and whether one outperforms another for a range of criticality

values. We perform this analysis on lumped systems with monoenergetic neutrons

and we only consider single neutron chain simulations to remove the stochasticity

of times of source events. Following the same reasoning, we also reduce the induced

fission neutron multiplicity to produce 2 particles per event, i.e., qfν = δν,2, reducing
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(a) (b)

Figure 3.5: Lifetime-normalized time at which there is a certain probability that a
single neutron chain will have gone extinct for the BFM for (a) very near critical and
(b) over a greater k domain.

the GBFM equations of Sec. 2.5.2 to the BFM equations of [16]:

P0(t) = λc (1− eαt)
λc − λfeαt

(3.25a)

Pn(t) = α2eαt
[
λf
(
1− eαt

)]n−1 [
λc − λfeαt

]−(n+1)
n = 1, 2, . . . (3.25b)

Before showing results, we present a set of metrics for choosing an appropriate final

time and population limit as a means of reducing unnecessary computation time

but to allow for the codes to simulate the majority of the fission chains we initiate.

Finally, we remove all neutron number PDF and moment calculation capabilities from

the codes so as to eliminate any unnecessary time taken to work with said arrays for

what are effectively auxiliary capabilities not inherent in the algorithms.

For subcritical systems, we determine the final time to run a system to by inverting

the extinction probability, Eq. 3.25a, and setting P0(t) to some value near unity,

giving the expression:

t(P0) = 1
α

ln
 1− P0

1− λf
λc
P0

 , (3.26)

54



Chapter 3. Monte Carlo Methods

where we recall that α = (k − 1)/τ . We show the time to a certain probability of

extinction of a single chain in Fig. 3.5 for the BFM for varying system criticality

normalized by the neutron lifetime at that criticality. As the system approaches

exactly critical, the time that the fission chain will propagate increases and, for near

certain extinction (P0 = 0.9999), we must effectively simulate ∼ 30, 000 generations

of particles before the chain most certainly perishes. If we do not go above k = 0.995,

we may keep the final time below 103τ .

Concerning supercritical regimes, we will use Eq. 3.7 to determine at what

population, C, to terminate a simulation dependent on the criticality; we will round

C to the next largest integer (i.e., C = dCe). This presents challenges in the fission

subroutine for the EBMC due to the need to bank the times of fission events of

the progeny. As stated earlier, the fission subroutine has been written to allow for

dynamic allocation of the “time bank” arrays, but in this study, we remove this

capability and preallocate the bank arrays to be the size of C, removing a potential

slow-down of the EBMC code. For consistency, we embed this cutoff feature in the

single chain SSA code as well.

If we wish to simulate the majority of the supercritical chains to an assured

diverged population level, we must devise a means of determining how long it must

take for a chain to have grown to C or greater. We accomplish this by first defining

QN (t), the probability that the neutron population has grown to N or greater. Noting

the normalization: 1 = P0(t) +∑C−1
n=1 Pn(t) +∑∞

n=C Pn(t), we may write:

QC(t) =
∞∑
n=C

Pn(t) = 1− P0(t)−
C−1∑
n=1

Pn(t). (3.27)

In the limit of t→∞, we know for supercritical systems that the only two non-zero

probabilities of the number distribution are P0(∞) and P∞(∞) = P∞, or commonly

referred to as the probability of initiation or POI [11]; then QC(∞) = P∞. From this,

if we are able to predict the time at which a system has converged to the POI within

a given percentage, we may determine an appropriate cutoff time for the efficiency
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(a) (b)

Figure 3.6: Lifetime-normalized time at which there is a certain probability that a
single neutron chain will have diverged for the BFM for (a) very near critical and (b)
a larger breadth of k values.

simulations. Noting that the survival probability of a single chain, PS(t), converges

to the POI, P∞, we then define the ratio of the POI to the survival probability as

R(t) = P∞
PS(t) , (3.28)

where R(t) ∈ [P∞, 1] and P∞ = 1 − λc
λf

for the BFM. By setting R to a desired

convergence threshold, we may once again solve the BFM distribution equations for t

to find:

t(R) = 1
α

ln
(
λc
λf
· 1

1−R

)
. (3.29)

Figure 3.6 shows the lifetime-normalized solution to Eq. 3.29 for a range of super-

critical values. If we examine the R = 0.9999 line in Fig. 3.6a, we see that for the

system to have effectively converged to the POI (at a finite time), we need to run the

simulation to at least 103τ for k = 1.01; we will avoid k < 1.01 for this reason. As we

approach critical, we need to run the simulation to over 106τ or more to converge

to the POI. Keeping Eqs. 3.26 and 3.29 in mind, we are now prepared to assess the

EBMC and the SSA for all interesting criticality values.
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Using FORTRAN90’s intrinsic CPU timing function, cpu_time, we determine

the average time, t, to perform H = 104 histories by running H histories 103 times

and taking the average time to complete the set. Each simulation is initiated with

a random seed derived from random data retrieved from the operating system [52].

Table 3.3 shows the cutoff criteria used in the EBMC and the SSA simulations along

with the average time to complete H histories. Taking the ratio of the two times, we

see in the final column of Table 3.3 that the SSA tends to outperform the EBMC quite

substantially, especially in the subcritical regime. Interestingly, the ratio between

the times for the supercritical tests appear to be constant around 3. One possible

slow down of the EBMC code may reside in the preallocation of the arrays and

the continual sorting through those arrays to retrieve the times that fission events

occurred. This is entirely circumvented in the SSA as a single integer number, the

instantaneous population, is required to propagate the algorithm. As this was written

as a test of the utmost minimal capabilities of the codes, it is no surprise that the

SSA tends to outperform the EBMC for the range of parameters specified herein.
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Table 3.3: Performance of the EBMC and the SSA.

k C tf/τ t for H = 104, [sec] tEBMC/tSSA

EBMC SSA
0.70 150 30 0.21112 0.0048777 43.2827
0.75 150 35 0.24877 0.0058497 42.5270
0.80 150 40 0.29824 0.0071449 41.7417
0.85 150 50 0.37193 0.0094989 39.1551
0.90 150 80 0.46364 0.014117 32.8427
0.95 150 110 0.57968 0.028111 20.6211
0.98 200 300 1.18472 0.069667 17.0055
0.99 300 500 2.3024 0.13847 16.6274
1.01 1, 000 1, 000 7.67601 2.59001 2.9637
1.02 500 400 3.70768 1.33885 2.7693
1.05 200 200 1.34369 0.507638 2.6469
1.10 100 100 0.675714 0.247192 2.7336
1.15 66 60 0.442542 0.148314 2.9838
1.20 50 45 0.331859 0.107099 3.0986
1.25 40 35 0.266438 0.0834514 3.1927
1.30 34 30 0.218202 0.0666220 3.2752
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Coupling Effects of Communicable

Assemblies

In this chapter, we consider the effects on the neutron number distribution when

multiplying assemblies are placed within close proximity. In particular, we vie to

understand source driven lumped systems where we allow for energy-dependence on the

neutron number and we also incorporate the possibility of leakage events. We employ

methods discussed in the previous chapters to better understand such arrangements.

We develop Master equations and moment equations for code benchmarking purposes

in Sec. 4.1, followed by a discussion on two possible methods for calculating the

probabilities of leaking and transferring from one lumped assembly to another in

Sec. 4.2. In Sec. 4.3, we utilize the efficient Stochastic Simulation Algorithm (SSA)

to simulate two regions and to garner an intuition of the PDFs, and the chapter is

concluded by demonstrating results for time-dependent reactivity insertions in Sec.

4.4.
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4.1 Master and Moment Equations

In this section, we derive the forward Master equations and, subsequently, equations

for the moments of the particle population distributions of interest. We begin by

considering the general case of an arbitrary number of regions and monoenergetic

neutrons in Sec. 4.1.1, each with a neutron population and we then allow for two

energy groups in the next section, Sec. 4.1.2.

4.1.1 Multiple Regions with Monoenergetic Neutrons

Consider a collection of J lumped regions, with the jth region being characterized

by neutron interaction rates for capture, fission, and leakage, as well as containing

an intrinsic constant randomly emitting source, Sj. We state the forward Master

equation whose solution is the probability that at some time t there are n1 neutrons

in region 1, n2 neutrons in region 2, and so on to nJ neutrons in region J- defined by

P~n(t), where ~n = 〈n1, n2, . . . , nJ〉>:

dP~n(t)
dt +

J∑
j=1

[Sj + njλt,j]P~n(t) =
J∑
j=1

Sj
ν
Sj
m∑
ν=0

qSjν P~n−ν~δj(t) + λc,j(nj + 1)P~n+~δj(t)

+ λ`,j(nj + 1)

pj→∞P~n+~δj(t) +
J∑
k=1
k 6=j

pj→kP~n+~δj−~δk(t)



+ λfj

ν
fj
m∑

ν=0
qfjν (nj − ν + 1)P~n+(1−ν)~δj(t)

, (4.1)

where ~δj is a J-length column vector whose only non-zero entry is in position j and

is equal to one. The initial condition of Eq. 4.1 is

P~n(t = 0) =
J∏
j=1

δnj ,Nj , (4.2)

where Nj is the initial particle population in region j.
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In proceeding, we obtain ODEs for the moments of the distribution, which can

be solved analytically for simple region configurations or numerically in practice. To

obtain closed-form equations for the moments (and ideally the PDF as well), we

employ the probability generating function (PGF) to transform the Master equation

into a PDE:

G(~x, t) =
∞∑

n1=0
· · ·

∞∑
nJ=0

J∏
j′=1

x
nj′
j′ P~n(t), (4.3)

where ~x is a J-length column vector whose jth entry, xj ∈ [0, 1], is the PGF variable

for region j. Applying Eq. 4.3 to Eq. 4.1, we obtain the following PDE:

∂G

∂t
=

J∑
j=1


− λt,jxj + λc,j + λ`,j

pj→∞ +
J∑

j′=1
j′ 6=j

pj→j′xj′

+ λf,jhf (xj)
 ∂G
∂xj

+Sj
(
hS(xj)− 1

)
G(~x, t)

, (4.4)

with the initial condition,

G(~x, t = 0) =
J∏
j=1

x
Nj
j . (4.5)

The generating functions for the multiplicity distributions once again appear naturally

and are defined for region i and fission type y = {S, f}, for spontaneous and induced

fission, as

hy(xi) =
ν
yi
m∑

ν=0
xνi q

yi
ν . (4.6)

We now utilize the methodology outlined in Sec. 2.7 to obtain the moments of

the PDF directly from Eq. 4.4. In doing so, we arrive at a coupled system of linear

ODEs for the first moment of region j:

dnj(t)
dt = αjnj(t) + SjνS,j +

∑
j′=1
j′ 6=j

λ`,j′pj′→jnj′(t), (4.7)
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where αj = νf,jλf,j − λt,j. The initial condition of Eq. 4.7 is nj(0) = Nj- the initial

number of particles in region j. The moments of the neutron multiplicity distributions,

(νyj)m (using Pochhammer notation found in Appendix A), appear in the moment

equations from taking the necessary m derivatives of Eq. 4.6 and evaluating at xi = 1.

Equation 4.7 constitute a set of linear coupled ODEs that can be solved with relative

ease using standard time-stepping methods. The size of the system for the first

moments is J , but the size of the system of equations drastically grows when we wish

to calculate higher order moments.

The second moment for region j are obtained by taking the second order derivative

of Eq. 4.4 with respect to xj , evaluating at ~x = ~1, and unfolding the factorial moments

to obtain:

dn2
j(t)
dt − 2αjn2

j(t) = dnj(t)
dt +

[
λf,j(νf,j)2 + 2SjνSj − 2αj

]
nj(t) + Sj(νSj)2

+ 2
J∑

j′=1
j′ 6=j

λ`,j′pj′→jnjnj′(t),
(4.8a)

dnjnk(t)
dt − (αj + αk)njnk(t) =λ`,jpj→k

(
n2
j(t)− nj(t)

)
+ λ`,kpk→j

(
n2
k(t)− nk(t)

)
+
∑
i=1
i 6=j,k

λ`,i

[
pi→jnink(t) + pi→kninj(t)

]

+ SjνS,jnk(t) + SkνS,knj(t).
(4.8b)

The size of the system of equations given by Eqs. 4.7, 4.8 is 2J +
(
J
2

)
, where

(
J
2

)
is the binomial coefficient. The initial conditions are simply the products of the

initial populations, i.e., n2
j(0) = N2

j and njnk(0) = NjNk. We will use these moment

equations, as well as those in the next subsection, to benchmark new features that are

implemented in the SSA code. Numerical methods used for solving these equations

are discussed in the results section of this chapter, Sec. 4.3.
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4.1.2 Multiple Regions with Multigroup Neutrons

We now allow for neutrons to have an energy dependence to which these neutrons

may be characterized as either fast or thermal. We denote the fast group as g = 1

and thermal neutrons are then in group 2, g = 2. If a superscript is used in the

following formulations, it denotes the region that quantity is representing. Per usual,

we construct a probability balance for all mutually exclusive events that will alter

the neutron population and bring the system to state n, where n is a 2× J matrix

whose (g, j)th position is ng,j– the neutron population for energy group g and region

j. In developing the forward Master equation, we assume that only thermal neutrons

induce fission, only fast neutrons are born from both induced fission and spontaneous

fission events, and thermal neutrons do not up-scatter. From these assumptions, the

forward Master equation is

dPn(t)
dt +

J∑
j=1

Sj1 +
2∑
g=1

ng,jλ
j
t,g

Pn(t) =
J∑
j=1

(n1,j + 1)λjs,1→2Pn+δ1,j−δ2,j(t)

+ Sj1

νS,jm∑
ν=0

qS,jν Pn−νδ1,j(t) + (n2,j + 1)λjf,2
νf,jm∑
ν=0

qf,jν Pn+δ2,j−νδ1,j(t)

+
2∑
g=1

(ng,j + 1)
λjc,gPn+δg,j(t) + λj`,g

pj→∞Pn+δg,j(t) +
J∑
k=1
k 6=j

pj→kPn+δg,j−δg,k(t)

(4.9)

with the initial condition

Pn(t = 0) =
J∏
j=1

2∏
g=1

δng,j ,Ng,j . (4.10)

We note that δg,j is a 2 × J zero-matrix whose only nonzero element is located at

(g, j) and is equal to unity.

We wish to derive the equations for the moments of this joint distribution and we

thus introduce the PGF:

G(x, t) =
J∑
j=1

2∑
g=1

∞∑
ng,j=0

J∏
j′=1

2∏
g′=1

x
ng′,j′
g′,j′ Pn(t), (4.11)
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from which a PDE is obtained:
∂G(x, t)

∂t
=

J∑
j=1

Sj1[hjS,1(x1,j)− 1
]
G(x, t) + λjs,1→2x2,j

∂G

∂x1,j
+ λjf,2h

j
f,2(x1,j)

∂G

∂x2,j

+
2∑
g=1

− λjt,gxg,j + λjc,g + λj`,g

pj→∞ +
∑
k=1
k 6=j

pj→kxg,k


 ∂G

∂xg,j


(4.12)

with the initial condition

G(x, 0) =
J∏
j=1

2∏
g=1

x
ng,j
g,j . (4.13)

Here, the generating function for the multiplicity distribution for fission process ζ is

defined as:

hjζ,g(xi,k) =
νζ,jm,g∑
ν=0

qζ,jν,g · xνi,k. (4.14)

Using similar identities as the previous section, we obtain equations for the moments

by taking the desired order of derivatives with respect to the variable that corresponds

to the moment we seek and then evaluating at x = 1. In doing so, ODEs for the first

moments are:
dn1,j(t)

dt =− λjt,1n1,j(t) + ν jf,2λ
j
f,2n2,j(t) + ν jS,1S

j
1 +

J∑
k=1
k 6=j

λk`,1pk→jn1,k(t) (4.15a)

dn2,j(t)
dt =− λjt,2n2,j(t) + λjs,1→2n1,j(t) +

J∑
k=1
k 6=j

λk`,2pk→jn2,k(t), (4.15b)

where we emphasize the j superscripts denote the region which the property is to be

evaluated and is not a power. The initial condtions are simply the initial populations

for each group and region, i.e., ng,j(0) = Ng,j.

For the second moments, we find:

dn2
1,j(t)
dt + 2λjt,1n2

1,j(t) = dn1,j

dt + 2
(
λjt,1 + νjS,1S

j
1

)
n1,j(t) + 2ν jf,2λ

j
f,2n1,jn2,j(t)

+ (νjf,2)2λ
j
f,2n2,j(t) + (νjS,1)2S

j
1 + 2

J∑
k=1
k 6=j

λk`,1pk→jn1,jn1,k(t)
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(4.16a)

dn2
2,j(t)
dt + 2λjt,2n2

2,j(t) =dn2,j

dt + 2λjt,2n2,j(t) + 2λjs,1→2n1,jn2,j(t)

+ 2
J∑
k=1
k 6=j

λk`,2pk→jn2,jn2,k(t)
(4.16b)

where the initial conditions are n2
g,j(0) = N2

g,j. We see that we now require equations

for the correlated moments, and we now show the set of correlated moment equations

for the case where J = 2:

dn1,jn2,j

dt + (λjt,1 + λjt,2)n1,jn2,j = λjs,1→2

(
n2

1,j − n1,j

)
+ νλjf,2

(
n2

2,j − n2,j

)
+ νSj1n2,j

+
J∑
k=1
k 6=j

pk→j

(
λk`,1n1,kn2,j + λk`,2n1,jn2,k

)

(4.17a)

dn1,1n1,2

dt + (λ1
t,1 + λ2

t,1)n1,1n1,2 = νλ1
f,2n1,2n2,1 + νλ2

f,2n1,1n2,2 + νS1
1n1,2 + νS2

1n1,1

+ λ1
`,1p1→2

(
n2

1,1 − n1,1

)
+ λ2

`,1p2→1

(
n2

1,2 − n1,2

)
(4.17b)

dn2,1n2,2

dt + (λ1
t,2+λ2

t,2)n2,1n2,2 = λ1
s,1→2n1,1n2,2 + λ2

s,1→2n1,2n2,1

+ λ1
`,2p1→2

(
n2

2,1 − n2,1

)
+ λ2

`,2p2→1

(
n2

2,2 − n2,2

) (4.17c)

dng,1nh,2
dt + (λ1

t,g + λ2
t,h)ng,1nh,2 = νλgf,2n2,1n2,2 + νSg1n2,h + λhs,1→2n1,1n1,2

+ λ1
`,hp1→2n1,1n2,1 + λ2

`,gp2→1n1,2n2,2

(4.17d)

where it is understood that νSjg = νjS,gS
j
g , and νλjf,g = νjf,gλ

j
f,g. For the case of 2

coupled regions, we will need to solve a system of 14 ODEs in order to determine the

means and variances of the 4 respective neutron number PDFs.

The reaction rates will be calculated using the methodology outlined in Appendix

B. We need to consider specific geometric arrangements of and between the regions
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to determine the leakage and transfer probabilities. In the next section, we explore

two methods to calculate the transfer probabilities– the effective communication

mechanism between the regions in the system.

4.2 Calculation of the Transfer Probabilities

There are several methods for calculating the probability that a neutron, upon leaking,

will transfer from one region to another. The two methods we consider in this section

are by means of the view factor method as well as random point sampling on a

spherical surface coupled with trajectory sampling. The view factor method appears

to have the computational advantage when considering approximations of the integrals

involved, and will prove beneficial in verification of the SSA code. The point sampling

method is more computationally expensive as it requires several random number

samplings per leakage as well as for sampling the particle trajectory, but it has the

advantage of adhering to a purely Monte Carlo sampling scheme. The point sampling

method may be necessary in an experimental validation situation as there are no

approximations required. An alternative method to couple to the point sampling

method would be to sample a solid angle of emission from the surface and to the

solve the equations describing the quadric surface intersection curves to determine if

the particle transfers successfully [61]; such a method may be deemed competitive,

but is currently out of the scope of this study.

4.2.1 The View Factor Method

The view factor method essentially provides an expression for the fraction one surface

‘sees’ of another surface, and can be treated as the probability that radiation that is

emanating from a surface will then collide with another surface. Unfortunately, there

are no closed form analytical expressions for the view factors of two spheres near each
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y

z
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z

~R1

~r1

n̂1

~R2

~r2

n̂2

~S

~L

Figure 4.1: Variables involved in the view factor method.

other, but there are some appropriate approximations that we consider. The view

factor for one general surface, A1, to another general surface, A2, is defined as [58]

F1→2 = 1
A1

‹
∂V1

dA1

‹
∂V2

dA2
cos(ζ1) cos(ζ2)

πL2 , (4.18)

where L is the length of a line connecting both surfaces and ζ1 and ζ2 are the angles

between L and the respective surface normal. From the configuration seen in Fig.

4.1, we may define the surface unit vector for region j as

~̂nj = 〈cos(θj), sin(θj) cos(φj), sin(θj) cos(φj)〉 , (4.19)

and the radial vector anchored at the center of the sphere is defined as

~rj = Rj
~̂nj. (4.20)

From Fig. 4.1, we see that ~R1 = 〈0, R1, 0〉, ~R2 = 〈0, R2, 0〉, and ~S = 〈0, S, 0〉,

which allows us to define

~L = ~r1 − ~R1 − ~S − ~R2 − ~r2. (4.21)
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The cosine of the angles between the surface normal and ~L may be determined using

the relationship

cos(ζj) = n̂j · ~L
|n̂j||~L|

. (4.22)

At this point, we may insert all the relevant equations into Eq. 4.18 and as can

be seen, the expression balloons into an incalculable integral, even for this simple

geometric setup. One option is to numerically compute this integral [59]. The other

option is to approximate the radiating sphere as a point source with a modification

that takes into account some of the spatial effects, allowing for the integrand of the

double area integral to be separable [60]. This results in a closed-form expression

of the view factor with a maximum 5.8% error, occurring in the extreme situation

where the radii are equal and the spheres are touching (S=0). The view factor is

F1→2 =
(Q
R

)2
1−

√√√√1−
(
R
Q

)2

1−

√√√√1−
(

1
Q

)2
 , (4.23)

where R = R1/R2, S = S/R2, and Q = R + S + 1. By the Reciprocity Theorem,

if we know the view factor of one surface to another, then the view factor in the

opposite direction is related to the ratio of the areas, i.e. F2→1 = (A1/A2) ·F1→2; this

gives us the view factor for the other region to the first:

F2→1 = R2F1→2. (4.24)

Thus, if we consider a system of just two spherical regions, our transfer probabilities

are given by

p1→2 = F1→2

p2→1 = R2F1→2

p1→∞ = 1− F1→2

p2→∞ = 1−R2F1→2.
(4.25)

Upon leaking from region j, one may sample a neutron transfer to the other

system by using a random number ξ. If 0 ≤ ξ ≤ pj→k, then the neutron transfers to

region k, and if pj→k < ξ ≤ 1, then the neutron drifts into the cosmos. Once this
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outcome is known, the populations are updated accordingly and we continue the

algorithm outlined in Section 3.4.

This method is attractive because the calculation of the view factors is done once

before the SSA commences, and only one random number is needed per leakage to

determine whether a transfer is successful or not. Another advantage is the readiness

of the transfer probabilities to be placed into benchmarking equations, which is

addressed later in this document. On the other hand, for validation purposes, this

sampling scheme may prove to be too inaccurate, forcing us to consider a purely

Monte Carlo sampling scheme, which we refer to as the Sphere Point Picking Method,

described below.

4.2.2 The Sphere Point Picking Method

The sphere point picking method is a drastically more involved process than the

previously discussed view factor method, albeit purely Monte Carlo and potentially

more accurate given appropriately converged statistics. The method consists of

picking a random location on the surface of the leaked-from sphere along with a

random direction. Once the leakage point and trajectory are known, we simply check

to see if the neutron will then collide with the other system- updating the populations

accordingly.

The location of leakage is chosen by sampling a polar angle and azimuthal angle,

φ and θ, respectively, which map to an (x, y, z) location on the surface- initially a

unit sphere centered at the origin. Picking a direction of ejection is similarly done

by mapping a random set of polar and azimuthal angles to an elevated location near

the leakage point. The steps to do so involve first selecting the φ′ and θ′ from the

positive four octants of the unit sphere centered at the origin. We then translate

the coordinates to the north pole (i.e., simply add 1 to the z′ coordinate), and we

then rotate these coordinates about the unit sphere to appropriately align with the
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leakage point. We then scale these now-rotated coordinates to match with the true

size of the sphere the neutron is exiting from, and we then translate the coordinates

to the proper location of that sphere. Given these two points (leakage point and the

elevated point corresponding to the direction of ejection), we devise a parameterized

line and compare whether or not this line intersects the surface of the other system.

Once a neutron exits the system, a location on the spherical surface may be

sampled by obtaining two random numbers, ξφ and ξθ, to calculate the polar angle,

φ, and azimuthal angle, θ. The Formulae to do so are

φ = cos−1(1− 2ξφ) (4.26a)

θ = 2πξθ. (4.26b)

To perform the aforementioned steps as clearly as possible, we first consider selecting

points on a unit sphere centered at the origin. Equations 4.26a and 4.26b map to the

following leakage coordinates on that surface:

x` = sin(φ) cos(θ) (4.27a)

y` = sin(φ) sin(θ) (4.27b)

z` = cos(φ). (4.27c)

With these coordinates on the surface of the unit sphere, we use two more random

numbers to pick the unique direction the neutron is traveling when ejected from the

system. The range of the polar angles relative to the (radially parallel) surface normal

at (x`, y`, z`) is now restricted to φ′ ∈ [0, π/2]. This is because the φ′ ∈ (π/2, π]

would correspond to a reentrant neutron, which is precluded by virtue that we are

simulating a leakage event. The range of the azimuthal angles remains θ′ ∈ [0, 2π].
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The sampling equations and the coordinate mapping are thusly

φ′ = cos−1(ξφ′) (4.28a)

θ′ = 2πξθ′ (4.28b)

x′ = sin(φ′) cos(θ′) (4.28c)

y′ = sin(φ′) sin(θ′) (4.28d)

z′ = 1 + cos(φ′), (4.28e)

where we have translated the coordinates to the north pole of the unit system. The

north pole vector, N̂ = 〈0, 0, 1〉, the ejection direction vector, d̂ = 〈x′, y′, z′ − 1〉, and

the vector pointing to the coordinate defining the direction of leakage, ~Nd = N̂ + d̂

must now be rotated about an axis to align with the leakage location, defined by
ˆ̀= 〈x`, y`, z`〉. Specifically, the north pole needs to be rotated onto the leakage point

by the angle separating them, φ, and the other two vectors will follow suit.

Recognizing that we know that φ is the angle between N̂ and ˆ̀, we may construct

a rotation matrix that we can then use to rotate ~Nd to find ~̀d as well as d̂` = ~̀
d − ˆ̀

for the unit system as seen in Fig. 4.2. The axis of rotation is the vector that is

normal to both N̂ and ˆ̀, and is given by

~V = N̂ × ˆ̀. (4.29)

The rotation matrix, R, to rotate N̂ onto ˆ̀ is given by

R = I + [~V ]× + [~V ]2×
1− cos(φ)

sin2(φ) , (4.30)

where I is the identity matrix and [~V ]× denotes the skew-symmetric cross-product

matrix of ~V = 〈Vx, Vy, Vz〉:

[~V ]× ≡


0 −Vz Vy

Vz 0 −Vx

−Vy Vx 0

 .
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~V

N̂

~Nd

d̂

ˆ̀

~̀
d

d̂`

φ

Figure 4.2: An example of rotating the north pole coordinates to the leakage point.
(Not drawn to scale)

We should recover ˆ̀ from the operation: RN̂ , where N̂ is explicitly a column vector.

We may then find the rotated ejection direction vector as:

~̀
d = R ~Nd, (4.31)

to then find the unit vector defining the particle direction: d̂` = ~̀
d − ~̀. We simulta-

neously scale ˆ̀→ ~̀ and ~̀d to the true system size and location in space of region j

using the formulae:

~̀= ~Cj +Rj
ˆ̀ (4.32a)

~̀
d = ~Cj +Rj

~̀
d (4.32b)

~d` = ~̀
d − ~̀. (4.32c)
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~Cj
~Xj

x

y

z

~̀= 〈x`, y`, z`〉

θ

φ

Figure 4.3: Variables involved in parameterizing the leaked neutron trajectory
vector.

It is clear that the magnitude of ~d` is equal to Rj, so to recover a unit vector for the

direction, we find d̂` = ~d`/Rj.

Using the two terminal points of these two vectors, ~̀ and ~̀d, we may now extend a

line following the neutron trajectory to determine if it coincides with another system,

say the kth one with center ~Ck and radius Rk. If we define ~P` as the vector connecting

the leakage point with the origin, the parameterized trajectory line, ~L(t), is

~L(t) = ~P` + td̂`. (4.33)

If ~Xk is the collection of points defining the surface of region k, the equation for the
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target sphere is given by

R2
k =

∣∣∣∣∣∣ ~Xk − ~Ck
∣∣∣∣∣∣2

=
(
~Xk − ~Ck

)
·
(
~Xk − ~Ck

)
,

(4.34)

and at the collection of points where ~L(t) intersects the surface, we have an equation

that is quadratic in t:

0 =
(
~L(t)− ~Ck

)
·
(
~L(t)− ~Ck

)
,

=
(
d̂` · d̂`

)
t2 + 2d̂` ·

(
~P` − ~Ck

)
t+

(
~P` − ~Ck

)
·
(
~P` − ~Ck

)
−R2

k,
(4.35)

which we may solve for t using the quadratic formula:

t = −d̂` ·
(
~P` − ~Ck

)
±
√(

d̂` ·
(
~P` − ~Ck

))2
−
∣∣∣∣∣∣~P` − ~Ck

∣∣∣∣∣∣2 +R2
k (4.36)

where we have used d̂` · d̂` = ||~d`||2 = 1. We may determine if the neutron collides with

system k by considering cases of the discriminant of Eq. 4.36, D =
(
d̂` ·

(
~P` − ~Ck

))2
−(∣∣∣∣∣∣~P` − ~Ck

∣∣∣∣∣∣2 −R2
k

)
. If D < 0, the solutions are complex and the neutron does not

collide with the other system. If D ≥ 0, the solutions are real and we have potential

intersection of the trajectory with the other system. If the solutions are both negative,

t1, t2 < 0, then the neutron is traveling in the opposite direction from region k and

it is that neutrons “past” trajectory that would have collided with the other region.

Finally, if both solutions are real and positive, t1, t2 > 0, the neutron does indeed

collide with region k.

The transfer probability of a leaked neutron going from region j → k may then

be calculated by running H leakage simulations, determining if that leaked neutron

coincides with the other region, binning success of transfer such that the total number

of successful transfers is Y , and dividing by H to find:

pj→k = Y

H
. (4.37)

Calculating the reverse requires performing the H simulations on the surface of

the opposite system, thus it is necessary to perform 2H simulations to attain the
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aggregate transfer probabilities. Alternately, one may simply perform the sphere

point picking method during the MC simulation for every instance of a leakage event.

As has been shown, this process is far more expensive than the view factor

method. It has the advantage of being a purely stochastic method that should give

more accurate results than the view factor method, particularly for systems that

are close in size and proximity. As was emphasized before, the authors believe that

the view factor method should be used for verification of Monte Carlo codes with

analytical and numerical solutions. The sphere point picking method appears more

suitable for validation of the SSA with that of potential experimental results.

4.2.3 Comparison of the Two Methods

As mentioned earlier, the View Factor approximation provides acceptable transfer

probabilities for systems that are reasonably distanced from each other. The previous

analysis hedged the numerical solution of the double area integral with the approximate

view factor expression; we now compare the approximate expression to the purely

Monte Carlo Sphere Point Picking (coupled with trajectory picking) Method. For

reference, Fig. 4.4 gives the transfer probabilities, as calculated by the MC Sphere

Point Picking Method, from one sphere to another as a function of the ratio of the

radii, R = R1/R2, for several separation distances, S.

Assuming that the MC provides the true result within statistical noise, Fig. 4.5

then demonstrates the relative error between the transfer probabilities. We have also

assumed that region 1 is the approximate point source in the View Factor calculations.

The sphere point picking results are obtained by simulating 107 leakage events for

each sphere at distances of S = 0.05 cm through S = 1.00 cm and the 51 evenly

spaced R values ranging from [10−3, 1]. As the distance between spheres increases,

the MC noise does as well because the transfer probabilities decrease, necessitating

an increase in the number of realizations required to ascertain an accurate transfer
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(a) (b)

Figure 4.4: Transfer probabilities for two spheres of varying radii and separation
distances as calculated by the MC Sphere Point Picking Method.

(a) (b)

Figure 4.5: Relative error between the View Factor approximation with the MC
Sphere Point picking method for (a) p1→2 and (b) p2→1.

probability. Thus, for the S = 2 cm case, we ran 108 leakage events per data point.

Figure 4.5a shows the error in the view factor transfer probability going from

sphere 1 to 2, and we see that the error is entirely below the 1% threshold for S = 2

cm. The reverse transfer is seen in Fig. 4.5b, where we see that if we are transferring

from a larger system to a smaller one at close distances, the view factor approximation
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is inaccurate at a max error percentage of ∼ 6%, in-line with observations in [60],

and it is therefore advised to avoid the approximation if the systems are in close

proximity of each other.

4.3 Analysis of Coupled Regions

4.3.1 Two Regions with Monoenergetic Neutrons

We now consider a system consisting of two spherical regions composed of pure 235U

metal with radii R1 and R2 and a number density of N = 5.0884 · 10−2 (b · cm)−1.

We choose region 1 to have a center located at the origin such that ~C1 = 〈0, 0, 0〉,

while the second region has a center located a distance L = R1 + L+R2 along the

y-axis (L is the shortest distance between the two surfaces), giving ~C2 = 〈0, L, 0〉. For

problems that we consider a single initiating neutron with no source in either region,

we assume that the initiating neutron appears in region 1 at t = 0. For problems that

sources are considered, we need not differentiate systems based on neutron population

as the initial condition is nonunique: P~n(0) = δn1,0δn2,0. Further, we assume that the

reaction rates are time-independent; this should be an appropriate assumption if,

say, region 2 were very slowly brought closer to region 1 from ~C2 ∼ ~∞ until its final

location at ~C2.

To begin our analysis of coupled regions, we consider monoenergetic fast neutrons

where both systems are identical in composition but differ in size such that R1 = 5.9

cm and R2 = 5.0 cm and we use the spatially constant data in Table 4.1a for both

regions. Values for the cross sections were calculated from JENDL-4.0 at 300 K. We

obtain the reaction rates and neutron lifetime for each system by solving the forward

k-eigenvalue transport equation in one-dimensional spherical geometry in vacuum,
[
µ

r2
∂

∂r

(
r2
)

+ 1
r

∂

∂µ

[(
1− µ2

)]
+ Σt,j

]
ψ(r, µ) = 1

2

[
Σs,j + 1

k
νjΣf,j

]
φ(r), (4.38)
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Table 4.1: Data used for the two sphere system.

(a)

Energy [eV ] σf [b] σc [b] σs [b] v
[
cm
s

]
14 · 106 2.053 889.7 · 10−6 2.839 5.175 · 109

0.0253 585.1 98.71 15.12 2.200 · 105

(b) σs,g→g′ , [b].

g

g′ 1 2

1 1.5376 1.3014
2 0.0 15.12

Table 4.2: Calculated reaction rates for a purely fast system.

Region keff,j τj [s] λf,j [1/s] λc,j [1/s] λ`,j [1/s]

1 1.0035 7.741 · 10−10 5.406 · 108 2.343 · 105 7.509 · 108

2 0.8788 6.584 · 10−10 5.406 · 108 2.343 · 105 9.779 · 108

along with its adjoint counterpart. In Eq. 4.38, r is the radial coordinate and µ is the

direction cosine with respect to r. We numerically solve Eq. 4.38 using a standard

discrete ordinates in angle, diamond difference in space discretization with source-

and power-iteration to obtain the k-eigenvalue and the fundamental mode [51]. Once

we have the forward and adjoint solutions, ψ(r, µ) and ψ†(r, µ), we may then obtain

the neutron lifetime, τj, and the reaction rates for event y, λy,j, (to be more precise,

they are the probability per neutron per unit time that event y will occur) given by

Eqs. B.6 and B.11, respectively. These quantities are summarized in Table 4.2, where

we note that the algorithm we have outlined is only concerned with reactions that

alter the neutron population, thus the out-scattering reaction rate for monoenergetic

neutrons is zero and therefore not reported.

We are now prepared to demonstrate the SSA for the two-region system, and

we initially benchmark the SSA code against the numerical solutions of the moment

78



Chapter 4. Coupling Effects of Communicable Assemblies

(a) (b)

Figure 4.6: Comparison of the SSA (x) moments with the numerical solution (-) of
the moment ODEs derived from the forward Master equation for (a) the single chain
and (b) with a source.

equations defined by Eqs. 4.7 and 4.8. The system of ODEs are solved by a modified

divided difference form of the Adams PECE Formulae and local extrapolation,

adjusting the order and step size to control the local error per unit step [63].

By setting the distance between the sphere surfaces to L = 5.0 cm, we use the

view factor method to define the transfer probabilities which, for the aforementioned

system configuration, Eq. 4.25 gives p1→2 = 1.2376 · 10−2, p1→∞ = 0.98762, p2→1 =

8.8879 · 10−3, and p2→∞ = 0.99111. In Fig. 4.6, we compare the numerical solution of

Eqs. 4.7 and 4.8 with the results from the SSA for (a) a single neutron chain with the

initial populations being N1 = 1 and N2 = 0, and (b) for the case where both regions

have sources of S = 106 1/s and the initial condition being N1 = N2 = 0. The SSA

results were obtained by setting the final time to some scaled value of the neutron

lifetime in region 1 and running 103 batches each with 105 histories, amounting to 108

total simulations, resulting in highly converged confidence intervals. We see excellent

agreement between the solution methods out to many lifetimes.

A means of assessing the accuracy of the SSA results is to analyze the form of
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Table 4.3: Skew, γ, and Kurtosis, κ, of the sample distributions of the mean and
variance of the neutron population in both regions.

tf/τ1 γn1 κn1 γn2 κn2

1 8.59 · 10−2 2.85 6.85 · 10−3 2.94
10 7.48 · 10−2 3.08 0.18 2.80
50 7.31 · 10−2 2.86 −1.89 · 10−2 2.92
100 0.13 2.89 0.17 2.93
150 −6.72 · 10−3 2.74 1.03 · 10−2 2.82
tf/τ1 γV1 κV1 γV2 κV2

1 4.78 · 10−2 2.93 0.39 3.44
10 7.70 · 10−2 2.85 0.34 3.27
50 0.11 2.66 0.13 2.93
100 1.70 · 10−2 2.86 0.18 3.28
150 3.41 · 10−2 2.86 9.48 · 10−2 3.04

the sample distribution, i.e., the batch results distribution. It is known that the

distributions of the batch moments will asymptotically approach a normal distribution

for increasing batches of histories, where these histories represent outcomes produced

by independent and identically distributed random variables. If we then compare

the moments of the SSA sample distribution for a given moment of the neutron

population, we may determine if the batch results are truly normally distributed.

This is most easily done by considering the skewness and kurtosis of the distribution

being analyzed, and it is expected that these moments should be near zero and

three, respectively. We see in Table 4.3 that the third and fourth moments of the

first and second moment distributions of the neutron population have approached

these expected values, indicating that the batch distributions are characteristic of the

normal distribution.

Next, we consider the neutron number PDFs for this coupled region configuration.

We are primarily concerned with the effects the coupling will have in bringing long-

time behavior closer to the initial time. In particular, we wish to determine whether or
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not the neutron number distribution will approach Bell’s distribution in source-present

systems earlier in time than if those systems were completely isolated. Considering

the case when there is a source present, we may determine if a system in isolation has

achieved the Bell distribution by comparing Eq. 2.45 with Eq. 3.19. If we select a

tolerance of deviation, ε, in comparing two corresponding n values between the true

discrete distribution (Prinja-Souto) and the asymptotic distribution (Bell), we may

confidently say that the distributions have converged if the maximum relative error is

less than ε:

ε ≤ max
i

∣∣∣∣∣1− P (ni, tf )
Pni(tf )

∣∣∣∣∣ , (4.39)

where i = 1, 2, . . . , I. Equation 4.39 implies we must truncate the error calculation

at some nI , which must be sufficiently large that when we obtain the PDF from

the SSA algorithm, the PDF tails will have an expected exponential extrapolatory

behavior that may be inferred from the general trend regardless of statistical noise.

For each isolated region, the error is shown in Fig. 4.7 where each region has a

source of S = 106 1/s; relevant data are shown in Table 4.4. Note that these error

profiles also correspond to the distributions displayed in Fig. 3.4 of Sec. 3.5. Note

that η < 1, thus the source is considered weak and the number distributions will

be monotonically decreasing and the neutron population is therefore stochastic [11].

We see from the plots that the error is always highest at the tail of the distribution,

and thus convergence is dictated by the choice in nI for a set ε. For this analysis,

we choose nI = 100 and ε = 10−2, meaning we consider the asymptotic form to be

achieved when P100(tf) is within 1% of P (100, tf). From Fig. 4.7a, we see that this

criteria is satisfied in Region 1 around tf = ta,1 = 77τ1, where ta,j is the time to

converge to the asymptotic form. The behavior depicted in Fig. 4.7b for the isolated

second region is quite different; it is clear that the error between the two distributions

itself approaches a constant profile over time, indicating that the discrete distribution

does indeed converge to a distribution of a particular shape, but that distribution is

not of the gamma-type. In other words, the true distribution in Region 2 will never
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Table 4.4: Neutron source data.

Region Volume [cm3] Sj [1/s] Sj/Vj [1/(cm3 · s)] ηj ta,j/τ1

1 860.3 106 1, 162.4 9.7351 · 10−4 76.961
2 523.6 106 1, 909.6 9.7351 · 10−4 ∞

(a) (b)

Figure 4.7: Error between the discrete PDF and the asymptotic PDF for the neutron
number in (a) Region 1 and (b) Region 2 if both were isolated.

converge to the Bell distribution and thus ta,2/τ1 =∞.

Figure 4.8 shows the comparison between the actual neutron number PDF as

calculated by SSA as well as the gamma distribution that was produced by fitting

the first two SSA moments for two regions that are 5.0 cm apart. The presented

results were obtained by running 5 · 103 batches and 107 histories per batch to resolve

the tails of the PDFs as much as possible for the error calculations. We see that the

larger system, region 1 in Fig. 4.8a, visually agrees very well with the fitted gamma

as early as 5 lifetimes- a significant reduction from the ∼ 77 lifetime limit we would

observe in isolation. Region 2 in Fig. 4.8b shows a similar approach to agreement

and certainly agrees by 100 lifetimes. For a more rigorous comparison, Figs. 4.9a and

4.9b show that the relative error between the SSA and fitted gamma distributions do

indeed reside below 1% for n = 100 at tf = 50τ1 for region 1 (possibly even tf = 20τ1
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(a)

(b)

Figure 4.8: Comparison of the neutron number PDFs as calculated by SSA (x) and
the gamma distribution fit (-) for (a) region 1, (b) region 2.
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(a)

(b)

Figure 4.9: Per Fig. 4.8, but for the relative error between the SSA and gamma fit
for (a) region 1 and (b) region 2.

84



Chapter 4. Coupling Effects of Communicable Assemblies

if the SSA noise were to be reduced) and tf = 100τ1 for region 2. Clearly, the inherent

Monte Carlo noise begins to dominate the error calculation and the decreasing trend

in the error is reversed. For region 2 depicted in Fig. 4.8b, we see the higher n

probabilities converge to the fitted gamma distribution by tf ≈ 100τ1, showing that

the addition of the other region (equivalent to adding multiplying mass or a source to

a single system) will help to drive the other region to achieve a gamma distribution.

As an aside, it is clear that the probabilities for n = 1 do not agree for any time, but

this is of no concern as we are interested in the large n probabilities for which Bell

originally gleaned his distributions.

4.3.2 Two Regions with Two Energy Groups

For two regions with two energy groups, we first benchmark our code by simplifying

the physical model to be simulated, in-line with the assumptions made in deriving

the moment equations in Sec. 4.1.2. The key assumptions made were that only

thermal neutrons induce fission, only fast neutrons are born from both induced fission

and spontaneous fission events, and that thermal neutrons do not up-scatter. The

reaction rates must now be partitioned into appropriate energy groups and calculated

following the form of Eq. B.12 in Appendix B, and the total reaction rate for group

g is:

λt,g = λf,g + λc,g + λ`,g +
∑
g′ 6=g

λs,g→g′ , (4.40)

for which we do not include the self-scattering reaction rates as those events do not

alter the population state of the system. The neutron lifetime for a given group is then

calculated with the inclusion of the out-scatter reaction rates. In the ensuing analysis,

we benchmark the SSA code using the data in Table 4.1a, with the stipulation that

we set σjf,1 = 0 b, and we use the scattering matrix displayed in Table 4.1b as well as

the relevant multiplicity data is Table 4.5.
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Table 4.5: Multiplicity distributions.

ν ν2 qν
0 1 2 3 4 5 6 7

g1, IF 4.472 21.39 0.0 0.009 0.022 0.179 0.310 0.310 0.112 0.060
g2, IF 2.476 7.382 0.0222 0.200 0.306 0.307 0.136 0.035 0.004 0.0
SF 2.154 5.945 0.0638 0.2316 0.3325 0.2533 0.0987 0.0181 0.0020 0.0

Figure 4.10 shows the mean and variance as calculated by the numerically solved

system of coupled ODEs defined by Eqs. 4.15 through 4.17 and compared to the SSA

solution for the cases of the initiating neutron being fast in Fig. 4.10a, the initiating

neutron being thermal in Fig. 4.10b, and 4.10c shows the moments when there are no

initial neutrons and there is a fast singlet emitting source in each region equivalent

to the sources in Table 4.4. In every case, both systems are highly subcritical with

keff,1 = 0.579 and keff,2 = 0.500, with lifetimes given by τ 1
1 = 0.48 ns, τ 1

2 = 4.0 ms,

τ 2
1 = 0.38 ns, τ 2

2 = 4.0 ms. The moments, however, appear to reach a steady state

distribution. This behavior is understood when we note that the thermal neutron

lifetime is about seven orders of magnitude longer than the fast neutron lifetime, and

there simply has not been enough time for the system to respond to the thermal

neutron interactions. In Fig. 4.11, we show that by observing the system at final

times on the scale of the thermal neutron lifetime in region 1, τ 1
2 , the means for the

non-source systems do indeed decrease globally, as expected.

For a more realistic set of simulations, we next consider two regions where fast

neutrons may cause fission. Group-dependent reaction rates are displayed in Table

4.6, where we altered the system sizes to radii of R1 = 2.484 cm and R2 = 2.122

cm such that the effective multiplication factors are the same as before; as expected,

the critical mass decreases substantially when induced fission from fast and thermal

neutrons is accounted for (compared to the R1 = 5.9 cm from the previous section).

Now by spatially coupling the two regions and separating them by 5.0 cm, we

demonstrate the convergence of the energy-dependent neutron number PDFs for fast
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(a) (b)

(c) (d)

Figure 4.10: Moments for two groups and two regions for (a) an initiating fast
neutron, (b) an initiating thermal neutron, and (c) when there are fast neutron
sources present in each region. (d) is the shared legend for each plot, and the (x)
markations denote SSA results.

neutron source driven systems in Fig. 4.12. As was observed in the previous section,

the timescales worth considering are on the order of the thermal neutron lifetime (for

region 1). We see that the stochastic fast neutron sources give rise to deterministic

thermal neutron distributions within 5 thermal neutron lifetimes. The fast neutron
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Figure 4.11: Behavior of the means for final times on the order of the thermal
neutron lifetime, τ 1

2 . Here, go is the energy group of the initial neutron and jo = 1 for
all cases. (x) signifies a SSA calculation.

PDFs remain stochastic, at least in this example, due to the fact that all fast neutrons

that are born from fast fission, thermal fission, and source events will quickly vanish

by reacting with the medium or leaking. The large number of fast neutrons that are

down-scattering to the thermal regime accumulate in population because the thermal

neutrons are so much slower-moving, easily observed in the reaction rate values of

Table 4.6a. We also observe the thermal neutron PDFs in Fig. 4.12b are not quite

in agreement with a gamma distribution fit (dotted lines) obtained from the SSA

moments. We show how the SSA thermal PDFs are essentially bounded by a gamma

distribution and a Gaussian distribution at an early time corresponding to tf = 0.5τ 1
2 ,

and by tf = 5τ 1
2 , the SSA PDF is in agreement with a fitted Gaussian distribution.
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Table 4.6: Calculated reaction rates for a fast and thermal system. All reaction
rates have units of inverse seconds: [1/s].

(a)

Region j Group g keff,j τ jg λjf,g λjc,g λj`,g

1 1 1.0035 0.1753 ns 5.406 · 108 2.343 · 105 4.820 · 109

1 2 - 3.982 ms 214.4 36.16 0.5889
2 1 0.8788 0.1445 ns 5.406 · 108 2.343 · 105 6.039 · 109

2 2 - 3.980 ms 214.4 36.16 0.7268

(b) Scattering reaction rates

λ1
s,g→g′ λ2

s,g→g′

g

g′ 1 2
g

g′ 1 2

1 4.049 · 108 3.427 · 108 1 4.049 · 108 3.427 · 108

2 0.0 5.5395 2 0.0 5.5395

4.4 Time-Dependent Reactivity Insertions

4.4.1 Sampling Formulae

In this section, we derive Formulae for sampling time intervals to the next event in

systems with time-dependent reactivites. As it turns out, we may invert the state

transition CDF for an arbitrary order polynomial and we therefore write the reactivity

for region j as

ρj(t) = ρj(0) +
M∑
m=1

aj,mt
m, (4.41)

where ρj = ρj(0) is the initial value of the reactivity in region j and aj,m are known

coefficients. Allowing for multigroup energy dependence with a total of G energy

groups, we may define the neutron population in region j and energy group g to be

ng,j. We will also define Sjg to be the probability per unit time that a source event

occurs in region j, producing a neutron in energy group g, and Λj
g = τ jg/kj is the mean

generation time for neutrons in g, j. Noting that λjt,g = 1/τ jg and kj = 1/(1− ρj), we
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(a)

(b)

Figure 4.12: Neutron number PDFs in a two-region assembly at different times for
(a) fast neutrons and (b) thermal neutrons. The xs are SSA results, solid lines are
Gaussian fits, and dotted lines are Gamma fits.
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may rewrite µ of Eq. 3.18 in terms of the time-dependent region-collective reactivity:

µ(X, t) =
J∑
j=1

G∑
g=1

{
Sjg +

[
1− ρj(t)

Λj
g

]
ng,j

}
. (4.42)

The cumulative distribution function of the transition probability per unit time is

F (t) =
ˆ t

0
dt′µ(X, t′) exp

{
−
ˆ t′

0
dt′′µ(X, t′′)

}
. (4.43)

In general, an integral with an integrand of this form (i.e., y(x) exp(
´ x

y(x′) dx′)) can

be solved regardless of the functional form of the kernel, in this case µ(X, t). If we

make the substitution y(t′) =
´ t′

0 dt′′µ(X, t′′), then dy = µ(X, t′) dt′ and the CDF

becomes

F (t) =
ˆ y(t)

0
dy′ exp {−y′}

= 1− exp
{
−
ˆ t

0
dt′µ(X, t′)

}
. (4.44)

Computing the integral of the transition probability per unit time is a straightforward

integration of a sum of polynomial terms:
ˆ t

0
dt′µ(X, t′) =

J∑
j=1

G∑
g=1


[
Sjg +

(
1− ρj(0)

Λj
g

)
ng,j

]
t

− ng,j

Λj
g

M∑
m=1

aj,m
m+ 1t

m+1

.
(4.45)

Upon inserting Eq. 4.45 into Eq. 4.44, we may implicitly invert the CDF by setting

F (t) = ξ to arrive at an (M + 1)-order polynomial in t:
M∑
m=1

Amt
m+1 +Bt+ C = 0, (4.46)

with the coefficients defined as

Am = 1
m+ 1

J∑
j=1

aj,m
G∑
g=1

ng,j

Λj
g

B = −
G∑
g=1

J∑
j=1

[
Sjg +

(
1− ρj(0)

Λj
g

)
ng,j

]

C = − ln ξ.
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The time of the next event, t, is determined by finding the principle root of Eq. 4.46

for a sampled ξ.

For demonstrative purposes, we limit the reactivity for all J regions to a linear

functional form by setting M = 1. Recognizing that the extrema of a line occur at

the endpoints, we define the maximum or minimum value of the reactivity at the

completion time of the insertion, tin, to be ρj(tin) = ρj,m. From this, the coefficients

become aj,1 = ∆ρj/tin and the ramp reactivity is:

ρj(t) = ρj(0) + ∆ρj
t

tin
, (4.47)

where ∆ρj = ρj,m − ρj(0). From this, Eq. 4.46 reduces to a quadratic polynomial

with the roots

t = − B

2A1
± 1

2A1

√
B2 − 4A1C. (4.48)

As we are interested in the response of one region due to the change in another, we

further reduce the time-dependence of the reactivity to be in a single region, say

region `, thus aj,1 = ∆ρjδj,`/tin. The coefficients B and C do not change while A1

changes accordingly:

A1 = ∆ρ`
2tin

∑
g

ng,`
Λ`
g

= 1
2tin

∑
g

(
λ`t,g(0)− λ`t,g(tin)

)
ng,` (4.49a)

B = −
∑
g

∑
j

[
Sjg + λjt,g(0)ng,j

]
(4.49b)

C = − ln (ξ) (4.49c)

where we have further rewritten A and B in terms of the total time-dependent reaction

rates.

Results pertaining to systems with time dependent reactivity are shown in Sec.

4.4.2 for a system composed of two regions (J = 2). In particular, we will study

the effects of the neutron number distributions when one of the regions has a ramp

reactivity insertion and the other has static reactivity.
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Table 4.7: Coefficients of polynomial fits (see Eq. 4.50) for tin = 0.5τ 1
2 (0).

c4 c3 c2 c1 c0

keff,1 0 4.48774 · 106 −5, 369.43 76.7274 0.498436

% 2.77831 · 1010 −1.17728 · 108 4.42826 · 105 1, 054.81 9.02805

λ1
f,1 6.63819 · 1012 −3.23238 · 1010 8.98483 · 107 53156.0 374.621

λ1
f,2 3.59697 · 1012 −1.75182 · 1010 4.86670 · 107 28, 589.0 200.835

λ1
c,1 2.87676 · 109 −1.40080 · 107 38, 937.2 23.0360 0.162348

λ1
c,2 6.06832 · 1011 −2.95544 · 109 8.21042 · 106 4, 823.15 33.8821

λ1
`,1 2.47391 · 1012 −3.62303 · 109 6.55149 · 107 4.19049 · 105 3, 717.77

λ1
`,2 1.97452 · 109 −3.72182 · 106 48, 856.6 293.322 2.73307

λ1
s,1→2 4.20796 · 1012 −2.04901 · 1010 5.69550 · 107 33, 695.7 237.472

4.4.2 SSA Results

We choose to alter the material density of region 1 in order to achieve a reactivity

that varies linearly in time while keeping the radius and cross-sections constant and

all properties of region 2 constant. If the initial reactivity is ρ1(0) = ρo,1 = −1.0, and

the final reactivity (at the end of the insertion at tin) is ρ1(tin) = ρm,1 = 0.0909; the

criticality then varies from keff,1(0) = 0.50 to keff,1(tin) = 1.10. We also choose to

vary region 1 properties over time intervals relative to the initial thermal neutron

lifetime in region 1, τ 1
2 (0) = 8.7299 ms, as this is the longest lifetime in the system.

As a reminder, the criticality of region 2 is keff,2 = 0.8788 which corresponds to a

constant reactivity of ρ2 = −0.1379.

Given the linear reactivity profile for region 1 stated by Eq. 4.47, (i.e., ρ1(t) =

ρ1(0) + ∆ρ t/tin), we determined the system density required to achieve the criticality

and corresponding reactivity profile. For the previously used microscopic cross-

sections, the initial density must be %(0) = 9.02221825 g/cm3 and the final density

must be %(tin) = 22.21289 g/cm3. Solving the k-eigenvalue neutron transport equation
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Figure 4.13: Time dependent region 1 density, multiplication factor, and reactivity
data (◦ and x points) compared with polynomial fits (dashed lines) used in SSA code.

for every integer value of density between these two values gives an array of 15 keff,1
values. For a given keff,1, we calculate the reactivity with ρ1(keff,1) = 1− 1/keff,1,

and we then determine the corresponding time using t = tin[ρ1(keff,1)−ρ1(t = 0)]/∆ρ.

From this, we then perform a least-squares fit to the data points using MATLAB’s

polyfit function. Figure 4.13 shows the data values (◦ and x markations) and the

fourth-order polynomial fit lines for keff and % out to a tin = 0.5τ 1
2 (0). Table 4.7

presents the coefficients for the polynomial fits of the functional form:

f(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0, (4.50)

that we will then use to update our reaction rates and other values in the SSA code for

time interval sampling. Note that, if tin is altered for a given ∆ρ, one must refit the

polynomials. For the sake of reproducibility of the upcoming examples, we provide

coefficient tables in Appendix C for two other tin values.

By now altering the final time of the reactivity insertion, tin, we may effectively
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alter the severity of the insertion; in the extreme case where tin → 0 (while holding

∆ρ constant), the region would experience a discontinuous, or jump, insertion. We

will refer to a faster, more stark, insertion as a more severe insertion. Figure 4.14

shows the reactivity profile from Fig. 4.13 along with two additional, more severe,

profiles that we will investigate. We note that the system remains subcritical for

∼ 90% of any of the given reactivity insertion time intervals, but will be supercritical

for the remainder of the simulations.

Figure 4.15a shows the fast neutron population PDFs at the end of the respective

insertions, depicted in Fig. 4.14, for region 1; we do not show the fast PDFs for region 2

as the means are so low and seem to be constant values of n1,2(0.01τ 1
2 (0)) ≈ 1.87 ·10−4,

n1,2(0.1τ 1
2 (0)) ≈ 1.30 · 10−4, and n1,2(0.5τ 1

2 (0)) ≈ 1.50 · 10−4. Figure 4.15b shows

the thermal neutron number PDFs for both regions at the end of the respective

reactivity insertions. As was shown in Sec. 4.3, we compare the SSA (true) results

with a gamma distribution and Gaussian distribution by matching the moments

(see Sec. 3.5 for details on fitting), where it is clear that the SSA result is always

Figure 4.14: Reactivity insertion profiles of differing severity.
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(a)

(b)

Figure 4.15: Neutron population PDFs at the end of several reactivity insertions
in region 1 for (a) fast neutrons and (b) thermal neutrons. xs are SSA results, solid
lines are Gaussian fits, and dotted lines are Gamma fits.
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bounded by the fitted distributions. Interestingly, the region 1 fast neutron PDFs

agree perfectly with the fitted gamma distribution (the x’s lie atop the dotted gamma

fit line), while the thermal neutron PDFs converge to the Gaussian fitted line (for

which the gamma has converged to as well due to smaller variances), even though

the populations are smaller than their fast counterparts. We note that at the earlier

time of tin = 0.01τ 1
2 (0), although region 1 is the region experiencing the reactivity

insertion, it is region 2 that has a larger thermal neutron population average. This

is most likely due to the increase in the neutrons leaking, specifically fast neutrons,

from region 1 which then transfer the the other region.

We now complete the simulations by running past the insertion times to a

communal final time of tf = 0.5τ 1
2 (0), in reference to the region 1 reactivity profiles

of Fig. 4.14. In the SSA code, once the system time surpasses the prescribed tin,

the reaction rates are held constant at their max values occurring at the end of the

insertion. This is accomplished by simply checking whether the system time is less

than or greater than tin, and if it is greater than, simply setting t = tin in Eq. 4.50.

Illustrated in Fig. 4.16 are the corresponding energy-dependent neutron number

distributions for fast neutrons in Fig. 4.16a and thermal neutrons in Fig. 4.16b.

Again, we do not display the fast PDFs of region 2 as the average number of particles

is so low due to either down-scatter to the thermal range or leakage from the system

and the relative standard deviation is much larger than the average. As expected, the

PDFs of the more severe reactivity insertions have much larger population averages.

This can be explained by considering the extreme case of tin = 0.01τ 1
2 (0) (the blue

and red lines), where the system is only abruptly subcritical and is then highly

supercritical for ∼ 99% of the simulation- it is also for this reason that the statistics

are not as converged as the other distributions because of the larger number of

divergent chains (which corresponds to sampled ∆t→ 0). We are able to discern that

the fast distributions are still atop the gamma fit (more so than on the Gaussian)

while the thermal distributions for the longer times appear to agree with the gamma
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(a)

(b)

Figure 4.16: Per Fig. 4.15, to later times. xs are SSA results, solid lines are
Gaussian fits, and dotted lines are Gamma fits.
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fits as well. This suggests that once a distribution’s standard deviation relative to the

mean has decreased enough, it will agree more closely with a gamma distribution, even

when the fitted gamma distribution has not converged to its asymptotic Gaussian

shape.
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Chapter 5

Modeling Stochastic Neutron

Populations in Unlumped Systems

In this chapter, we derive the well known Pál-Bell Equation following the process

outlined by Bell [18], which was first published by Pál in 1958 [19, 20] in Hungarian.

Their formulations result in an integral Chapman-Kolmogorov equation where the

only difference is that Bell used a probability generating function to transform the

Master equation while Pál preferred to use the moment generating function. Later,

Lewins demonstrated a more direct methodology for obtaining the differential form of

the Pál-Bell Equation [21]. We demonstrate the essence of Bell’s formulation in Sec.

5.1 and we then derive the principle equations of interest in Sec. 5.2 that we will then

numerically investigate in Chapter 6. The primary motivation for this chapter is to (1)

inform the reader of the space of applications that the Backward Formulation proves

superior to the Forward Formulation of Ch. 2 (an unlumped forward formulation was

founded by Stacey [22]) and (2) to provide the framework and logic used in obtaining

Backward Master equations in the ensuing chapters.
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5.1 Derivation of the Pál-Bell Equation

The probability of there being a specific number of neutrons within an unlumped

system of volume V and convex surface ∂V is of interest in this section. Historically,

the Backward Formulation has proven advantageous in deriving an equation for

Pn(R, tf |~r, Ω̂, t): the probability of there being n neutrons in R at a final time, tf ,

due to the introduction of a single neutron at the point ~r traveling in the direction

Ω̂ at an earlier time t. Here, R is some element of (~r, Ω̂)-space. Clearly, this is

the number distribution for a single neutron chain and we will address the number

distribution in the presence of a source subsequently. Without loss of generality, we

assume that the neutrons are monoenergetic with velocity v, emerge from scattering

events isotropically, and we neglect delayed neutron precursors.

In words, Pn may be calculated as the probability that the initiating neutron has

a first collision at some point multiplied by the probability that the particles emerging

from the collision then lead to n neutrons, added to the probability that the initiating

neutron does not have a collision and the subsequent events then lead to n neutrons

in R at tf . Thus, by noting that the probability that the initiating neutron collides in

a short distance ds is Σt(~r + sΩ̂, t+ s/v) ds and the probability that the neutron will

not collide after traveling a distance s as exp
{
−
´ s

0 ds′Σt(~r + s′Ω̂, t+ s′/v)
}
. Then

the probability the neutron will collide in
[
~r + sΩ̂, ~r + (s+ ds) Ω̂

]
is

Σt

(
~r + sΩ̂, t+ s

v

)
exp

{
−
ˆ s

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
ds.

From this first collision, i neutrons emerging with probability ci(~r+ sΩ̂, t+ s/v) then

must lead to n neutrons in R at tf . If i = 0, then the chain perishes and we are

guaranteed to have n = 0 neutrons in R at tf . If i = 1, this one neutron will then

lead to n neutrons provided that s/v < tf − t (the initiating neutron collided before

the final time). If i = 2, one neutron will lead to m neutrons and the second will lead

to n−m neutrons, and so on. Introducing the notation: `(sb, st) as taking on the
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value of the lesser between sb, the distance to the boundary, and st = v(tf − t), the

distance the neutron will travel if unimpeded, we may write the probability balance

as:

Pn
(
R, tf |~r, Ω̂, t

)
=
ˆ `(sb,st)

0
dsΣt

(
~r + sΩ̂, t+ s

v

)
e−
´ s
0

ds′Σt
(
~r+s′Ω̂,t+ s′

v

)
+

νfm∑
ν=0

cν

(
~r + sΩ̂, t+ s

v

) ∑
n1+···+nν=n

ν∏
k=1

ˆ
4π

dΩk

4π Pnk

(
R, tf |~r + sΩ̂, Ω̂k, t+ s

v

)
+

3∑
j=1

Aj,

(5.1)

where we recognize that the combinatorial sum and product of the ν = 0 term are

unity when n = 0 and zero otherwise (i.e., c0δn,0). The Aj terms are:

A1 = δn,0A
′
1 = δn,0H (st − sb) exp

{
−
ˆ sb

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(5.2a)

A2 = δn,0A
′
2 = δn,0H (sb − st)

∣∣∣
(~r+stΩ̂,Ω̂)/∈R

exp
{
−
ˆ st

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(5.2b)

A3 = δn,1A
′
3 = δn,1H (sb − st)

∣∣∣
(~r+stΩ̂,Ω̂)∈R

exp
{
−
ˆ st

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(5.2c)

where H is the Heaviside function. A1 is the probability that the initial neutron

streamed out of the system, A2 is the probability that the neutron has not collided

but it is not in R, and A3 is the probability that the neutron has not collided but it

is in R. The terminal condition for the single chain is

lim
tf←t

Pn(R, tf |~r, Ω̂, t) =


δn,1 if

(
~r, Ω̂

)
∈ R

δn,0 if
(
~r, Ω̂

)
/∈ R

(5.3)

and the boundary condition is

Pn
(
R, tf |~r, Ω̂, t

)
= δn,0 for ~r ∈ ∂V, and n̂b · Ω̂ > 0, (5.4)

102



Chapter 5. Modeling Stochastic Neutron Populations in Unlumped Systems

where n̂b is the surface unit normal vector. Equation 5.3 can be easily verified by

taking the limit of tf ← t, in which case st → 0, causing the foremost integral of Eq.

5.1 to vanish because `(sb, st) = st = 0. In the limit, A1 will also vanish due to the

argument of H being negative, while A2 = δn,0 or 0 and A3 = δn,1 or 0 depending on

whether or not (~r, Ω̂) ∈ R, respectively.

Equation 5.1 is in the integral form of the Chapman-Kolmogorov equation for

the neutron number distribution; it is an open set of coupled equations and we must

resort to the probability generating function (PGF) to transform the set of equations

into a single equation. The PGF in the unlumped backward formulation is defined as

G
(
z,R, tf |~r, Ω̂, t

)
=
∞∑
n=0

znPn
(
R, tf |~r, Ω̂, t

)
, (5.5)

where we will suppress the R and tf dependence for clarity in the ensuing equations.

By multiplying Eq. 5.1 by zn and summing over all n, we find an equation for G:

G
(
z|~r, Ω̂, t

)
=
ˆ `(sb,st)

0
dsΣt

(
~r + sΩ̂, t+ s

v

)
e−
´ s
0 ds′Σt

(
~r+s′Ω̂,t+ s′

v

)
νfm∑
ν=0

cν

(
~r + sΩ̂, t+ s

v

){
Go

(
z|~r + sΩ̂, t+ s

v

)}ν + A′1 + A′2 + zA′3.

(5.6)

Here, we have defined the angle-integrated PGF:

Go(z|~r, t) =
ˆ

4π

dΩ′
4π G

(
z|~r, Ω̂′, t

)
. (5.7)

If we now evaluate Eq. 5.6 at a short distance away from the original injection

coordinates, δs, such that the LHS becomes G(z|~r + δsΩ̂, Ω̂, t + δs/v), the only

difference in the corresponding equation and Eq. 5.6 is the value of the lower integral

limits change from 0 to δs. By then subtracting the two equations, we find:

G

(
z|~r + δsΩ̂, Ω̂, t+ δs

v

)
−G

(
z|~r, Ω̂, t

)
= B(z|δs, ~r, Ω̂, t)−B(z|0, ~r, Ω̂, t)+∆A′ (5.8)
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where we have defined

B(z|a, ~r, Ω̂, t) =
ˆ `

a

dsF
(
z|~r + sΩ̂, t+ s

v

)
exp

{
−
ˆ s

a

ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(5.9a)

F(z|~r, t) = Σt(~r, t)
νfm∑
ν=0

cν(~r, t) [Go(z|~r, t)]ν (5.9b)

∆A′ = A′1(δs)− A′1(0) + A′2(δs)− A′2(0) + zA′3(δs)− zA′3(0), (5.9c)

where the value in the parentheses of Eq. 5.9c are the lower limits of the integrals

in Eq. 5.2. By now dividing Eq. 5.8 by δs and taking the limit as δs→ 0, the LHS

becomes the total derivative of G with respect to s, which simplifies to

dG(z|~r, Ω̂, t)
ds = ∂G

∂t

dt
ds + ∂G

∂~r
· d~r

ds,

where dΩ̂/ ds = 0 because Ω̂ is not a function of space. By definition, the gradient of

G is ~∇G = ∂G/ ∂~r. Also, the time derivative of space is the definition of velocity:

ds/ dt = v, and noting that ~r = sΩ̂, we have d~r/ds = Ω̂. From these, the limiting

LHS of Eq. 5.8 is

dG(z|~r, Ω̂, t)
ds = 1

v

∂G

∂t
+ Ω̂ · ~∇G. (5.10)

Now by dividing the RHS of Eq. 5.8 by δs and evaluating the limit δs → 0,

we see that the limδs→0 ∆A′/δs and limδs→0(B(δs) − B(0))/δs are indeterminate

(0/0). Applying L’Hôpital’s Rule, we find that we must evaluate limδs→0 ∂(A′1(δs) +

A′2(δs) + zA′3(δs))/ ∂δs and limδs→0 ∂B(δs)/ ∂δs. These derivatives may be evaluated

by following the Leibniz Integral Rule (see Eq. A.8) in concert with the chain rule:
∂[A′1(δs) + A′2(δs) + zA′3(δs)]

∂δs
= Σt

(
~r + δsΩ̂, t+ δs

v

) [
A′1(δs)+A′2(δs)+zA′3(δs)

]
and

∂B(δs)
∂δs

= −F
(
z|~r + δsΩ̂, t+ δs

v

)
+ Σt

(
~r + δsΩ̂, t+ δs

v

)
×

×
ˆ `

δs

dsF
(
z|~r + sΩ̂, t+ s

v

)
exp

{
−
ˆ s

δs

ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
.
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Evaluating the limit, the RHS of Eq. 5.8 (divided by δs) is therefore

lim
δs→0

RHS = −F (z|~r, t) + Σt (~r, t)


ˆ `

0
dsF

(
z|~r + sΩ̂, t+ s

v

)
e−
´ s
0

ds′Σt
(
~r+s′Ω̂,t+ s′

v

)

+ A′1(0) + A′2(0) + zA′3(0)


= −F (z|~r, t) + Σt (~r, t)G

(
z|~r, Ω̂, t

)
.

(5.11)

Combining Eqs. 5.10 and 5.11, we arrive at the Pál-Bell equation for the PGF of the

neutron number distribution for a single chain:
1
v

∂G

∂t
+ Ω̂ · ~∇G

(
z|~r, Ω̂, t

)
= Σt (~r, t)G

(
z|~r, Ω̂, t

)
− Σt (~r, t)

νfm∑
ν=0

cν (~r, t)
[ˆ

4π

dΩ′
4π G

(
z|~r, Ω̂′, t

)]ν (5.12)

with terminal conditions given by

lim
tf←t

G
(
z,R, tf |~r, Ω̂, t

)
=


z if

(
~r, Ω̂

)
∈ R

1 if
(
~r, Ω̂

)
/∈ R

(5.13)

and the boundary condition is

G
(
z,R, tf |~r, Ω̂, t

)
= 1 for ~r ∈ ∂V, and n̂b · Ω̂ > 0, (5.14)

Equation 5.12 is a nonlinear transport-like equation whose operational variables are

the injection neutron’s phase-space coordinates. As is customary, we may put Eq.

5.12 into a more suitable form by introducing the complementary PGF:

G
(
z,R, tf |~r, Ω̂, t

)
= 1−G

(
z,R, tf |~r, Ω̂, t

)
. (5.15)

Solving Eq. 5.15 for G and inserting into Eq. 5.12, we find:

−1
v

∂G
∂t
− Ω̂ · ~∇G

(
z|~r, Ω̂, t

)
= Σt (~r, t)

[
1− G

(
z|~r, Ω̂, t

) ]

−Σt (~r, t)
νfm∑
ν=0

cν (~r, t)
1−

ˆ
4π

dΩ′
4π G

(
z|~r, Ω̂′, t

) ν . (5.16)
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Expanding the nonlinear terms using the Binomial Theorem, we have

−1
v

∂G
∂t
− Ω̂ · ~∇G

(
z|~r, Ω̂, t

)
= Σt (~r, t)

[
1− G

(
z|~r, Ω̂, t

) ]

− Σt (~r, t)
νfm∑
ν=0

(−1)ν
ν!

[
Go(z|~r, t)

]ν νfm∑
k=ν

j!
(j − ν)!cj (~r, t) ,

(5.17)

where Go(z|~r, t) =
´

4π dΩ′G(z|~r, Ω̂′, t)/4π. Recognizing now that cj, the probability

of j neutrons emerging from a collision, may be written in terms of the macroscopic

cross sections as:

c0 = Σc

Σt

+ qf0
Σf

Σt

(5.18a)

c1 = Σs

Σt

+ qf1
Σf

Σt

(5.18b)

cj = qfj
Σf

Σt

j ≥ 2, (5.18c)

we may rearrange the RHS to ultimately find[
−1
v

∂

∂t
− Ω̂ · ~∇+ Σt (~r, t)

]
G
(
z|~r, Ω̂, t

)
= [Σs (~r, t) + νΣf (~r, t)]

ˆ
4π

dΩ′
4π G

(
z|~r, Ω̂′, t

)

− Σf (~r, t)
νfm∑
ν=2

(−1)νχν(~r)
ν!

[ˆ
4π

dΩ′
4π G(z|~r, Ω̂′, t)

]ν
,

(5.19)

where the space-dependent case of Eq. 2.21 is

χν(~r) =
νfm∑
j=ν

j!
(j − ν)!q

f
j (~r) . (5.20)

Finally, the terminal conditions are

lim
tf←t
G
(
z,R, tf |~r, Ω̂, t

)
=


1− z if

(
~r, Ω̂

)
∈ R

0 if
(
~r, Ω̂

)
/∈ R

(5.21)

and the boundary condition is

G
(
z,R, tf |~r, Ω̂, t

)
= 0 for ~r ∈ ∂V, and n̂b · Ω̂ > 0. (5.22)
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To complete this section, we now consider the neutron number distribution in the

presence of an isotropically emitting source of strength S(~r, t) = ω(~r)S(t) s−1cm−3,

where ω(~r) is normalized such that
´
V

d~rω(~r) = 1. The probability of there being n

neutrons within the system at time tf due to the “turning on” of the source at some

earlier time to ≤ tf is Θn(tf |to). There is no particle streaming requirement as there

are no initial neutrons within the system.

A probability balance in the first collision interval proceeding the introduction time

to + ∆to may be conducted. The probability of a source event occurring somewhere

in the system in the first collision interval is ∆to
´
V

d~rS(~r, to). The probability that

no source event occurs must then be multiplied by the probability that subsequent

source events occur in the time interval [to + ∆to, tf ] resulting in n neutrons at tf ,

Θn(tf |to + ∆to). Also, if a source event occurs in the first collision interval, emitting a

multiplicity of ν neutrons with probability qSν , each of these branches may propagate

to produce n1, n2, . . . , nν neutrons and subsequent source events in the time interval

[to + ∆to, tf ] must then produce mν neutrons such that n1 + · · ·+ nν +mν = n. The

probability balance is

Θn(tf |to) = Θn(tf |to + ∆to)
(

1−∆to
ˆ
V

d~rS(~r, to)
)

+ ∆to
νSm∑
ν=1

∑
n1+...+nν+mν=n

Θmν (tf |to + ∆to)×
ˆ
V

d~rqSν (~r)S(~r, to)
ν∏

ν′=1

ˆ
4π

dΩν′

4π Pnν′
(
R, tf |~r, Ω̂ν′ , to + ∆to

).
(5.23)

By subtracting Θn(tf |to + ∆to), dividing by ∆to and taking the limit ∆to → 0,

we obtain the backward Master equation for a system with a spatially distributed

isotropically emitting neutron source:

−∂Θn(tf |to)
∂to

= −S(to)Θn(tf |to) + S(to)
νSm∑
ν=1

∑
n1+...+nν+mν=n

Θmν (tf |to)×
ˆ
V

d~rqSν (~r)ω(~r)
ν∏

ν′=1

ˆ
4π

dΩν′

4π Pnν′
(
R, tf |~r, Ω̂ν′ , to

),
(5.24)
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with final condition:

lim
tf←to

Θn(tf |to) = δn,0. (5.25)

Equation 5.24 is linearly coupled in the number distribution in the presence of a

source and is nonlinearly dependent on the number distribution for a single chain.

By now applying the PGF for the source,

H(z, tf |to) =
∞∑
n=0

znΘn(tf |to), (5.26)

the Master equation given by Eq. 5.24 reduces to:

∂H

∂to
= S(to)

1−
νSm∑
ν=1

ˆ
V

d~rqSν (~r)ω(~r)
ˆ

4π

dΩ
4π G

(
z,R, tf |~r, Ω̂, to

) νH(z, tf |to),

(5.27)

with final condition:

lim
tf←to

H(z, tf |to) = 1. (5.28)

Finally, by rewriting the single chain PGF as G = 1−G, we can expand the bracketed

term with the Binomial Theorem to simplify Eq. 7.18:

∂H

∂to
= −S(to)


νSm∑
ν=1

(−1)ν
ν!

ˆ
V

d~rχSν (~r)ω(~r)
ˆ

4π

dΩ
4π G

(
z,R, tf |~r, Ω̂, to

) νH(z, tf |to)

(5.29)

subject to the final condition given by Eq. 7.19, where the spatially dependent

factorial moments of the source multiplicity distribution is defined as

χSν (~r) =
νfm∑
j=ν

j!
(j − ν)!q

S
j (~r) . (5.30)
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5.2 Equations for Quantities of Interest

The value of expressing the Master equation in terms of the generating function

is that closed equations for the desired probabilities can be readily obtained. For

instance, setting z = 0 in Eq. 5.5 immediately gives:

G
(
z = 0,R, tf |~r, Ω̂, t

)
≡ P0

(
R, tf |~r, Ω̂, t

)
, (5.31)

which is the probability of extinction of the neutron chain, i.e, the probability that

no neutrons from a chain initiated by the original neutron survive to time tf in

R. Similarly, it’s complement, obtained by setting z = 0 in Eq. 5.15, is just the

probability of survival:

PS
(
R, tf |~r, Ω̂, t

)
= 1− P0

(
R, tf |~r, Ω̂, t

)
≡ G

(
z = 0,R, tf |~r, Ω̂, t

)
, (5.32)

i.e., the probability that the chain has not become extinct at time tf . The time-

asymptotic limit of the probability of survival, also known as the probability of

initiation or POI, is of particular interest as it gives the probability that a neutron

chain will grow without bound in a supercritical medium [11, 13]. This is given by:

P∞
(
R, tf |~r, Ω̂

)
= lim

t→−∞
PS
(
R, tf |~r, Ω̂, t

)
. (5.33)

Noting that the variable z does not appear explicitly in the equation for the generating

function, but does so in the terminal condition, setting z = 0 does not alter the form

of the equation and hence closed equations for the probabilities of interest are easily

obtained. Thus the survival probability satisfies:[
−1
v

∂

∂t
+ T †

]
PS
(
R, tf |~r, Ω̂, t

)
=
[
S† + F † −N

]
PS
(
R, tf |~r, Ω̂′, t

)
, (5.34)

with the final condition:

PS
(
R, tf |~r, Ω̂, tf

)
=


1 if

(
~r, Ω̂

)
∈ R

0 if
(
~r, Ω̂

)
/∈ R,

(5.35)
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and boundary condition:

PS
(
R, tf |~r, Ω̂, t

)
= 0, ~r ∈ ∂V, n̂b · Ω̂ > 0. (5.36)

the various operators in the above equation are defined as:

T † ≡ −Ω̂ · ~∇+ Σt (~r, t) , (5.37a)

S† ≡
ˆ

4π

dΩ′
4π Σs

(
~r, Ω̂ · Ω̂′, t

)
, (5.37b)

F † ≡ νΣf (~r, t)
ˆ

4π

dΩ′
4π , (5.37c)

N ≡ Σf (~r, t)
νfm∑
ν=2

(−1)νχν (~r)
ν!

 ˆ
4π

dΩ′
4π

ν , (5.37d)

where we have relaxed the isotropic scattering condition from the previous section.

Setting the time derivative to zero in Eq. 5.40 gives the corresponding equation

for the chain divergence probability or POI:

T †P∞(R|~r, Ω̂) =
[
S† + F † −N

]
P∞(R|~r, Ω̂′). (5.38)

with boundary condition given by Eq. 5.36. Once again, Eqs. 5.40 and 5.38 are

time-dependent and steady state nonlinear adjoint transport equations and amenable

to numerical solution by standard phase-space discretization schemes adapted to

account for the nonlinear terms. It is known that the only solution to the POI

equation in subcritical and critical systems is zero, but the POI may take on non-zero

values for supercritical systems [32, 1]. Finally, although not of interest in this

investigation, setting z = 0 in successively higher orders of derivatives of G and its

defining equation yields the individual neutron number probabilities Pn of successively

higher orders [41].

On a final note concerning sources, the extinction probability in the presence of a

source, Θ0(tf |to) = H(z = 0, tf |to), satisfies [18, 41]:

−∂Θ0(tf |to)
∂to

= S(to)


νSm∑
ν=1

(−1)ν
ν!

ˆ
V

d~rχSν (~r)ω(~r)
[ ˆ

4π

dΩ
4π PS(~r, Ω̂, to)

]νΘ0(tf |to),
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Table 5.1: Source terms for the moments of the neutron number distribution.

k Sk(~r, t;n, . . . , nk−1)

1 0

2 2Λ2〈n〉2

3 6〈n〉
[
Λ2
〈
n2
〉

+ Λ3〈n〉2
]

4 6Λ2
〈
n2
〉2

+ 〈n〉
[
8Λ2

〈
n3
〉

+ 36Λ3
〈
n2
〉
〈n〉+ 24Λ4〈n〉3

]

(5.39)

with final condition limtf←to Θ0(tf |to) = 1. Thus, once the single chain survival

probability has been obtained, the survival probability when a random intrinsic

source exists is directly obtained by solving the linear ODE given in Eq. 5.39 as

ΘS = 1−Θ0.

Finally, the moments of the neutron number distribution may be determined using

a methodology outlined in [43]. The equation for the kth moment, nk(R, tf |~r, Ω̂, t), is

calculated as:[
−1
v

∂

∂t
+ T †

]
nk
(
R, tf |~r, Ω̂, t

)
=
[
S†+F †

]
nk
(
R, tf |~r, Ω̂′, t

)
+Sk

(
~r, t;n, . . . , nk−1

)
,

(5.40)

with the final condition: limtf←t n
k
(
R, tf |~r, Ω̂, t

)
= 1 for

(
~r, Ω̂

)
∈ R and 0 otherwise,

and boundary condition nk
(
R, tf |~r, Ω̂, t

)
= 0, for ~r ∈ ∂V , and n̂b · Ω̂ > 0. The

inhomogeneous source term for the kth moment, Sk, is a function of all lower order

moments and is therefore assumed to be known. The first four source terms are

shown in Table 5.1, where we have introduced the coefficient:

Λi(~r, t) = Σf (~r, t)
νfm∑
j=i

(
j

i

)
qfj , (5.41)
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and we note that the notation 〈·〉 refers to integrating over all angles (and χ spectrum-

weighted energy when applicable). Thus, the moment equations must be solved in an

ascending order starting with the first moment.
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Chapter 6

Solution Methods for the Survival

Probability Equation

In this chapter, we describe two methods for solving Eq. 5.40 and its steady state

version Eq. 5.38. One is a type of nonlinear eigenvalue method, originally devised

and demonstrated by Bell and Lee [26] for the POI and subsequently extended by

Baker [28] to the time dependent case. This method, known as the λ-Acceleration

Method (λAM), is unconditionally stable and while the algorithm has been described

in the literature we reproduce it here so as to provide a contrast with the second,

very different method based on a k-eigenmode expansion [64].

To solve Eq. 5.40 “directly” by Picard Iteration, or commonly referred to as

Fixed-Point Iteration, we simply follow the algorithmic procedure of the common

Source Iteration method [51]. This is done by performing standard adjoint reversals

in time and direction, and for a given time-step we “lag” the scattering and fission

source that now includes the nonlinear terms by one iteration and solve for the

angular-dependent survival probability for the next iteration. The source terms

are then updated with this new value for PS, and the process is iterated until a

convergence criteria is met and advanced to the next time step.
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Employing the discrete ordinates in angle, diamond difference in space, and

Crank-Nicholson in time discretizations, the Picard iteration proves efficient for highly

supercritical systems, when k ≥ 1.1. However, under these conditions the time

variation is exceedingly rapid, as the survival probability converges to the POI at a

faster rate, and requires smaller time steps to adequately resolve the solution. For

near-critical systems, k ∼ 1, the time dependent solution takes longer to converge to

the POI as neutron chains can survive very long times before one diverges. In other

words, a neutron must be injected farther into the past in a nearly critical system for

its progeny to grow without bound. We conclude that the Picard iteration is not an

efficient algorithm for computation of the survival and divergence probabilities.

6.1 A Nonlinear Scaling Method

We describe the λAM implementation for the static case, i.e., for the POI which

satisfies:

T †P∞(~r, Ω̂) =
[
S† + F † −N

]
P∞(~r, Ω̂′), (6.1)

where the operators, T †, S†, F †, and N are defined by Eq. 8.64. The time dependent

case is a straightforward generalization of the static case and is described in [28]. The

λAM solution proceeds by first solving the linear adjoint k-eigenvalue equation:

T †P∞(~r, Ω̂) =
[
S† + 1

k†
F †
]
P∞(~r, Ω̂′), (6.2)

and using this solution as an initial guess to the nonlinear equation. Next, we

integrate Eqs. 6.1 and 6.2 over the phase space, subtract the two, and then scale

P∞,o =
´

4π
dΩ
4π P∞ by some factor λ, from which we obtain an order J − 1 polynomial

equation for λ:

J∑
j=2

(−1)j
j! λj−1

ˆ
V

d~rΣfχjP
j
∞,o =

(
1− 1

k†

)ˆ
V

d~rνΣfP∞,o, (6.3)
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where J is the maximum number of neutrons emitted in an induced fission. Taking

the largest root of Eq. 6.3, the scaling factor is then used to estimate the scatter

term and scaled fission source term of Eq. 6.1,

Q(n)(~r) = S†P (n)
∞ (~r, Ω̂′) +

[
F † −N

]
λ(n)P (n)

∞ (~r, Ω̂′)

where the superscript (n) denotes the nth iteration. Once Q(0) is known, we proceed

by performing a classical source iteration [51] until F †P (n+1)
∞ /F †P (n)

∞ → 1. Upon

convergence, the scaling factor, λ(n+1), is then updated by solving for λ in the

polynomial:

J∑
j=2

(−1)j
j!

[
λ

(n+1)
]j−1 ˆ

V

d~rχjΣf

[
P

(n+1)

∞,o

]j
=
ˆ
V

d~r
{
F †P

(n+1)

∞ −
[
F † −N

]
P

(n)

∞

}
;

(6.4)

from which, we again use the greatest upper bound root of Eq. 6.4 to scale our fission

source term for the next λ-iteration. This process is continued until λ converges to 1.

In the time dependent case, the λ scaling is applied at each time step and the lagged

source terms supplemented with the solution from the previous time step [28].

For numerical illustration, the subvolume R is taken to be the domain V × S2,

i.e., we compute the divergence and survival probabilities over the entire system

volume. Although the cross sections are permitted to be piecewise constant in space,

they are assumed to be time independent, in which case the solution depends on the

time variables only through the time difference τ = tf − t. It is then convenient for

numerical purposes to transform to this forward time variable and, without risk of

confusion, we further restore the time variable back from τ to t. Introducing the

change ∂/∂t → −∂/∂t in Eq. 5.40 gives for one-dimensional slab geometry with
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isotropic scattering:
1
v

∂

∂t
− µ ∂

∂z
+ Σt(z)

PS(z, µ, t) =
[
Σs(z) + νΣf (z)

]ˆ 1

−1

dµ′
2 PS(z, µ′, t)

− Σf (z)
J∑
j=2

(−1)j
j! χj(z)

 ˆ 1

−1

dµ′
2 PS(z, µ′, t)

j,
(6.5)

with the now initial condition, as opposed to terminal or final condition, given by:

PS(z, µ, 0) = 1, (6.6)

and boundary conditions:

PS(zL, µ, t) = 0, µ < 0, PS(zR, µ, t) = 0, µ > 0, (6.7)

where zL and zR are the left and right boundary coordinates.

In the next section, we use the λAM method to assess the accuracy and com-

putational performance of the eigenfunction expansion method. In all calculations

requiring the numerical solution of the steady state nonlinear transport equation

(the POI equation) as well as the computation of the eigenspectrum of the linear

transport equation, we use diamond-difference discretization in space and discrete

ordinates in angle, and the nonlinear terms are evaluated at the cell centers. For the

λAM, a standard semi-implicit backward-Euler time discretization [35] is used for the

solution of the survival probability equation while the time dependent mode amplitude

equations are solved in MATLAB using the ode15s stiff ODE solver. Unless otherwise

stated, all numerical results for the probabilities were obtained with 300 spatial cells,

S16 discrete ordinates angular discretization, and a time-step width of ∆t = 10−3tf .

To ensure the correctness of the implementation of the λAM method, we first

benchmark this method using the Method of Manufactured Solutions (MMS), which

apparently has not been done before.
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Table 6.1: Static system iterations required to converge to the POI.

k Picard λAM
Initial Guess Total Inner Outer

1.1 604 67 664 25
1.05 1,098 64 654 24
1.01 4,779 61 629 22
1.001 38,262 59 588 17

6.1.1 Viability of the λAM for Marginally Supercritical Sys-

tems

In this section, we demonstrate the advantage of the λAM for near-critical static

systems in a one-dimensional sphere composed of 235U metal. The fundamental mode

is scaled by altering the system radius and Table 6.1 shows the computational cost in

the limit k → 1+ for both the Picard Iteration Method and the λAM. Solutions to

the POI as calculated by the Picard Method have convergence criteria of 10−9 for

the max error in the shape of the solution and the λAM has convergence criteria of

10−9 for the fundamental mode (initial guess via the Power Method), the shape of

the POI for successive inner iterations, and the convergence of λ onto unity.

Regarding the Picard scheme, a dramatic increase in the number of iterations

required to converge occurs in the approach to exactly critical; this is due to the

decrease in the solution’s magnitude toward zero (but greater than zero) and the

flattening of the gradient which causes the calculation of the relative error between

iterations to increase. The λAM appears consistent, and in fact reduces in the total

number of iterations for the calculation, proving a clear advantage to it’s utility in

any criticality regime. For this reason, we choose to use the λAM code to benchmark

the EEM results. This harkens one to question the accuracy of the solutions produced

by the λAM code, and we next show results of the verification of this code using the

Method of Manufactured Solutions.
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6.1.2 Verification of the Nonlinear Scaling Method

The MMS method consists of assuming a convenient closed form solution for the

survival probability, called the manufactured solution, and defining the residual

obtained by substituting this analytical solution in the equation for the survival

probability as a source. If the survival probability equation is then numerically solved

with this source and initial and boundary conditions chosen to be consistent with

the manufactured solution, the solution will represent a numerical approximation to

the manufactured solution [53, 54]. This approach therefore enables the accuracy

and order of convergence of the discretized problem to be established for the original

nonlinear equation without having to rely on analytical benchmark solutions that

inevitably require oversimplifying the original problem.

Following standard practice, the manufactured solution is constructed as a conve-

nient product of 1D factors:

P̂S(z, µ, t) = Af(z)g(µ)h(t), (6.8)

where the coefficient A is arbitrary and is chosen here by fixing the global maximum

of the survival probability P̂m. We further impose the normalization
´ 1
−1 dµg(µ) = 1.

Substituting the manufactured solution Eq. 6.8 into Eq. 6.5 readily yields the

manufactured source:

1
A
Q(z, µ, t) = fg

1
v

dh
dt − µgh

df
dz + Σtfgh− (Σs + νΣf )

fh

2

+ Σf

J∑
j=2

(−1)jχjAj−1

j!

[
fh

2

]j
.

(6.9)

Several examples of the separable factors that define the manufactured solution are

shown in Table 6.2, which provide relatively simple initial and boundary conditions.

We set zL = 0 cm, zR = 1 cm, choose the number of cells, nI , to be equal to the

number of time steps, nt, and we select an SN order N = 2nI = 2nt. We further

restrict time variation to t ≤ 1. The error between the manufactured solution and the

118



Chapter 6. Solution Methods for the Survival Probability Equation

Table 6.2: MMS test functions.

Case f(z) g(µ) h(t)

1 1 1
2 1

2 1− z/zR 1
2 1

3 1− z/zR 1
4 + 3

2µ+ 3
4µ

2 1

4 1− z/zR 1
2 e−t

5 z(zR − z) 1
4 + 3

2µ+ 3
4µ

2 e−t

6 z
zR
e−z/zR 3

2µ
2 1− e−t

7 1 1
2 1− t

8

 1, z < zI ,

1− z
zR
, zI < r < zR

1
2 1

numerical result, PS(zi, µm, tj), is calculated using the following L2 error norm [55]:

ε(nI , N, nt) =

√√√√√ nt∑
j=1

nI∑
i=1

N∑
m=1

(
P̂S(zi, µm, tj)− PS(zi, µm, tj)

)2

wm∆zi∆tj, (6.10)

where wm is the Gauss-Legendre quadrature weight, ∆zi is the width of cell i with zi
the midpoint, and ∆tj is the width of the jth time-step.

Figure 6.1 shows the error between various manufactured solutions given in

Table 6.2 and the numerical solution. For Case 1, the constant solution is obtained

practically exactly to machine precision, regardless of the level of mesh refinement.

But it is also evident from the error plot that the chosen discretizations are able to

resolve practically exactly the manufactured solutions that display constant or linear

spatial and temporal variation and quadratic angular variation, as in Cases 2, 3 and

7. This indicates that the numerical scheme is second-order in space and time. When

the spatial or time variation of the manufactured solution is nonlinear, as in Cases 4 -

6, the error is larger and decays linearly with increasing numbers of cells, i.e., the

overall scheme is first order. For the two-region slab in Case 8 with constant material

properties and the interface in the center, zI = 0.5 cm, the manufactured solution is
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Figure 6.1: MMS error for several test problems.

again highly resolved, indicating that the treatment of the material interface does not

introduce additional errors for a continuous solution. Finally, it is seen that the order

of the nonlinearity J has no effect on the convergence order for all manufactured

solutions. These results show that the λAM code converges to the manufactured

solution and provides verification of the code.

6.2 The Eigenfunction Expansion Method

We now describe an indirect but physically appealing method for the solution of

Eq. 5.40. It is known that for marginally supercritical media the space-angle shape

of the POI is well approximated by the fundamental mode [18], which reduces the

computation of the survival probability to a point kinetic equation for the time

amplitude and for the divergence probability to a nonlinear algebraic equation. Here
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we generalize this concept by representing the survival probability as an expansion

in terms of higher eigenfunctions of the adjoint transport operator to extend the

validity of this approach to more strongly supercritical media. This work extends to

the transport formulation from our previous application of the eigenmode expansion

method in the diffusion approximation [49, 50].

Proceeding, we express PS(R, tf |~r, Ω̂, t) as:

PS
(
R, tf |~r, Ω̂, t

)
=

∞∑
m=1
Tm (tf |t) Ψ†m

(
R|~r, Ω̂

)
, (6.11)

where Ψ†m
(
R|~r, Ω̂

)
represents the mth adjoint eigenfunction and Tm (tf |t) is the

associated time-dependent coefficient or mode amplitude. The adjoint eigenfunctions

are the nontrivial solutions of the linear homogeneous adjoint transport equation:

[
T † − S†

]
Ψ†m = 1

k†m
F †Ψ†m, (6.12)

where k†m are the corresponding eigenvalues, which are the same as the forward

eigenvalues, that is k†m = km, therefore we will use km for the remainder of the

chapter. Now inserting the expansion Eq. 6.11 into Eq. 5.40 and noting Eq. 6.12

gives after some algebra:

∞∑
m=1

−Ψ†m
1
v

dTm
dt + Tm

(
1− 1

km

)
F †Ψ†m

 = −N
( ∞∑
m=1
TmΨ†m

)
. (6.13)

The spectrum of k-eigenfunctions, Ψ† and corresponding reciprocal k-eigenvalues, λ,

is obtained by discretizing the adjoint neutron transport equation using N discrete

ordinates and I spatial cells, then solving the system of I N equations in the form of

a generalized eigenvalue problem:
[
T† − S†

]
Ψ† = F†Ψ†λ, (6.14)

where [T† − S†] and F† are square matrices of order I N × I N , λ is a diagonal

matrix of generalized eigenvalues and Ψ† is a full matrix whose columns are the
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corresponding right eigenvectors. The eigenspectrum is obtained by solving Eq. 6.14,

and the mth k-eigenvalue is determined by reciprocating the (m,m) position of λ as

km = 1/λ(m,m).

The forward and adjoint eigenfunctions satisfy the bi-orthogonality condition:

〈
Ψm, F

†Ψ†m′
〉

=
〈

Ψ†m, FΨm′

〉
= γmδm,m′ , (6.15)

where the inner product 〈·〉 denotes integration over the spatial and angular domain

and γm is the normalization coefficient. Operating on Eq. 6.13 with F † and taking

the inner product over the forward eigenfunctions Ψm′ then yields the following set

of coupled nonlinear ordinary differential equations for the time-dependent mode

amplitudes:

−γm
1
v

dTm
dt =

M∑
m′=1
Tm′

[
1− 1

km′

] ˆ
V

d~r
[
νΣf

]2
ΦmΦ†m′

−
J∑
j=2

(−1)j
j!

ˆ
V

d~r ν[Σf ]2χjΦm

[
M∑

m′=1
Tm′Φ†m′

]j
,

(6.16)

where Φ†m(~r) =
´

4π dΩ′Ψ†m(~r, Ω̂′)/4π and the expansion is truncated at order M and

expanded via the Multinomial Theorem. The terminal condition and normalization

factor are given by:

Tm(tf |tf ) = 1
γm

ˆ
V

d~r νΣf (~r)Φm(~r),

γm =
ˆ
V

d~r νΣf (~r)Φm(~r)Φ†m(~r).
(6.17)

Once the mode amplitudes have been computed by numerically solving the above

M nonlinear differential equations, the space, angle and time-dependent survival

probability can be reconstructed by truncating the expansion in Eq. 6.11 at order M .

In the next section we present and contrast numerical results from both methods

of solution for the survival probability and POI.
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6.3 Eigenfunction Expansion Method Results

We now consider the Eigenfunction Expansion Method (EEM) for solving the neutron

chain survival probability equation in one-dimensional slab geometry. We obtain

the space-angle adjoint eigenspectrum by solving Eq. 6.14 with the QZ algorithm,

and the coupled temporal coefficient ODEs, Eq. 6.16, are solved using MATLAB’s

built-in stiff ODE solver, ode15s.

6.3.1 Obtaining the Eigenspectrum

The eigenspectrum is computed by solving the linear forward and adjoint k-eigenvalue

slab-geometry transport equations as generalized eigenvalue problems. Additionally,

we take advantage of the fact that the one-speed forward and adjoint scalar eigen-

functions are identical, as shown in Fig. 6.2a for an 8 cm Pu slab flanked by two 2.5

cm graphite slabs in vacuum, where the vertical lines indicate material interfaces.

Plutonium neutron multiplicity data for induced and spontaneous fission events is

taken from [48], pertaining to a system composed of 80 wt% 239Pu and 20 wt% 240Pu,

replicated in Table 6.3 for convenience. Figure 6.2b shows the k-eigenvalue spectra

for this slab system for two different fundamental mode values (k1 = 1.0025 and

k1 = 1.5019), which have the same eigenvector spectrum for a given geometry, for

which we see a sharp reduction in the magnitude of first few eigenvalues for increasing

m followed by a slower decay of the spectrum. The fact that the eigenvectors are

identical for different eigenvalue spectra is due to our choice in artificially altering ν

values without changing the multiplicity distribution. Thus, only F † changes and to

rebalance Eq. 6.12, only the 1/k factor changes to compensate for the change in ν.

This would not be true if we altered the fission cross section as T † (and N) would

also change and recalculating the eigenspectrum would become necessary.

We note that the eigenvectors with even-valued indices of the displayed spectrum

correspond to odd functions with respect to z and will therefore not contribute to
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Table 6.3: Neutron multiplicity data.

k 0 1 2 3 4 5 6 7 8

qfk 0.0071 0.0674 0.2283 0.3263 0.251 0.0958 0.0208 0.0029 0.0004

qSk 0.0638 0.2316 0.3325 0.2533 0.0987 0.0181 0.0020 - -

the solution of the system of ODEs defined by Eq. 6.16 because their final conditions

will be zero, i.e., because

ˆ zR

zL

dzν(z)Σf (z)Φ†2m(z) = 0,

where m = 1, 2, . . ., then T2m(tf |0) = 0 and these amplitudes will remain null for

all time. Thus, in the ensuing results, we only use the odd-value index eigenvectors

and corresponding eigenvalues. In general, this is not the case and only occurs

here because the slab system is symmetric - we simply exploit this symmetry to

demonstrate the EEM without loss of generality of the behavior of the resultant

survival probability distributions.

The convergence of the eigenvalue spectrum with spatial mesh refinement is shown

in Figure 6.3, which gives the relative error of the k-spectrum for a system very near

critical, k = 1.0025, and a highly supercritical system, k = 1.5019, respectively, for

which the reference converged spectrum contains 300 cells (100 cells per region) for

either system. If we choose the maximum deviation from the I = 300 spectrum to

be no more than 4%, we may safely use up to 9 modes with 120 cells (40 cells per

region) for any practical range of criticality we may be interested in. Similar results

hold true for the convergence on the angular eigenvector spectrum, where the integral

global balance of the neutron transport equation was compared. For the remainder

of the paper, we will use the spectrum with I = 300 cells to minimize spatial error in

calculating the projection integrals.
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(a)

(b)

Figure 6.2: For a three-region slab: (a) the forward and adjoint scalar flux spectrum
and (b) the k-eigenvalue spectrum.
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Figure 6.3: Relative error of the eigenvalue spectrum for differing I as compared to
spectrum values calculated for I = 300.

6.3.2 Single Chain Survival and Divergence Probabilities

Figure 6.4a shows the absolute value of the relative error spatial profiles for the

scalar POI as calculated by the benchmark λAM and the EEM for the near-critical

and highly supercritical three-region system with eigenspectrum depicted in Figs.

6.2a and 6.2b. It is observed that, for a fixed modal expansion order M and system

criticality k1, the nonlinearity order J has the same error profile indicating that the

EEM provides consistent results for differing J when compared to the λAM; this

shows that the modal truncation order and the nonlinearity order are not correlated,

so we may parametrically analyze the effects on the solution of one quantity without

considering a change in the other quantity. Figures 6.4b and 6.4c show the right-half

of the inner multiplying region (6.5 cm ≤ z ≤ 10.5 cm) for the k1 = 1.0025 and

1.5019, respectively, to allow for better examination of the details of the error profiles.

Another observation in Fig. 6.4 concerns the error profiles within the center of the
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(a)

(b) (c)

Figure 6.4: Relative error of the scalar POI, P∞,o(z), as calculated by the λAM
and the EEM for (a) the right-half of the three-region Pu − C slab system along
with detailed comparisons within the multiplying regions for (b) k1 = 1.0025 and (c)
k1 = 1.5019.

system as a function of criticality. We see in Fig. 6.4c, for the k1 = 1.5 case, the error

in the center drastically decreases by an order of magnitude when going from M = 1

to M = 5, but for the k1 = 1.0025 case in Fig. 6.4b, the magnitude of the error in
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the center for the M = 1 and M = 5 cases is only about halved. This phenomena is

due to the fact that for increasing supercriticality, i.e. increasing multiplication, the

branches of a chain reaction resulting from the propagation of the initial neutron’s

progeny have a greater effect, and a more accurate representation of the nonlinear

terms (by increasing M) is necessary; conversely, for near-critical systems, where

the multiplication between successive generations is not as great, the essence of the

solution is sufficiently represented due to the fundamental mode and the nonlinear

terms are merely supplemental. A final note concerning Fig. 6.4c concerns the relative

error around z = 8 cm for the M = 1, k = 1.5 case, where all J values show it. This

dip is indicative of a crossing-over of the EEM solution with the λAM solution. The

dip shows how the fundamental mode ‘hugs’ the λAM solution, but the fundamental

mode is not appropriate for higher k-systems. This is evident in the k = 1.002

case, where the error is lower. Alternatively, one may utilize the α eigenspectrum to

represent the exponential time-dependent behavior of the neutron flux [29]. The α

eigenspectrum is obtained from the linear neutron transport operator with inclusion

of a time-component [30], and result in an imaginary eigenvalue spectrum (except

the fundamental mode remains on the real line) [31]. This then requires one to solve

two amplitude equations for non-fundamental amplitudes, which is acceptable for

systems that require only a few modes to resolve.

Figure 6.5 shows the spatial profiles of the scalar POI for differing M and J for

systems with fundamental modes of k1 = 1.0025 in (6.5a), k1 = 1.1567 in (6.5b), and

k1 = 1.5019 in (6.5c). The system criticality was altered by scaling ν in order to hold

the system dimensions constant. For the near-critical system depicted in Fig. 6.5a,

there is almost no visual difference in the profiles, regardless of the modal truncation

and the nonlinearity order; this is expected for such a system for the reasons described

regarding the error profiles in Fig. 6.4, where the fundamental mode dominates.

Fig. 6.5b shows an appreciable separation between the J = 2 lines and the higher

nonlinear lines, where the J = 4 and J = 6 lines lie atop one another. Thus, for such
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(a)

(b) (c)

Figure 6.5: Scalar POI profiles for systems with fundamental modes of (a) k =
1.0025, (b) k = 1.1567, and (c) k = 1.5019, for differing M and J .

a system with increasing supercriticality, the nonlinear terms begin to become more

relevant and a second-order or quadratic representation of the branching terms is

insufficient. Also, we observe less of an appreciable separation between the differing

M lines for a given J , but when we compare this phenomena between Fig. 6.5b

and Fig. 6.5c, the relative separation between modal truncation becomes a visually

noticeable feature in the J = 6 distribution for the k = 1.5 case. In the following

figures, we analyze this highly supercritical system in depth to determine the number

129



Chapter 6. Solution Methods for the Survival Probability Equation

of modes and degree of nonlinearity that must be retained in extreme cases.

Figure 6.6: Convergence of the modes.

Figures 6.6 and 6.7 illustrates the convergence onto the true solution for varying

mode truncation and nonlinearity order, respectively, for the k1 = 1.50 three-region

slab system. In Fig. 6.6, we hold J = 6 and vary M from 1 to 5 to demonstrate the

convergence of the solution. It can be seen that odd M values overestimate while

even M values underestimate, and if we consider M = 5 to be sufficiently converged,

the M = 3 line tends toward this value. This suggests that for the most extreme

case of this study, only three modes are required to represent the solution, and the

distribution produced for the M = 3 case will give a conservative over-estimate of

the solution. Considering Fig. 6.7, where we now hold M = 3 constant and vary J

from 2 to 6, we see that the J = 2 and 3 lines make large jumps toward the J = 6

solution, and the J = 5 line is indiscernible from the J = 6 line, suggesting that a

nonlinearity order of 5 is sufficient for such a calculation.

If we now vary the fundamental mode and observe the solution in the center

130



Chapter 6. Solution Methods for the Survival Probability Equation

Figure 6.7: Convergence of the nonlinear terms.

of the slab (z = 6.5 cm) as a function of the neutron lifetime, τ = 1/vΣa, in the

multiplying Pu region, it is seen in Fig. 6.8 that the approach to the POI is more

abrupt for systems with higher multiplication, i.e., one may introduce a neutron into

the system at times closer to the present to achieve a self-sustaining chain reaction

and that associated probability tends to increase for increasing system criticality. If

we concern ourselves with the number of modes required to sufficiently represent

the scalar survival probability during the time-dependent regimes depicted in Fig.

6.8, for the k1 = 1.15 case, we see the POI is not achieved until τ = 20. Figure 6.9

depicts the spatial distribution for differing values of τ to demonstrate the necessity

for increasing mode order for shorter time intervals for the k1 = 1.15 system. It can

be seen that for the very early introduction times shown in Fig. 6.9a, for which the

scalar survival probability is relatively flat across the system, as many as 10 modes

are required to roughly capture this level behavior. As the injection time occurs

farther into the past, the scalar survival probability approaches the shape of the POI,
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Figure 6.8: Transition of the survival probability to the POI for differing fundamental
eigenvalues.

the temporal coefficients of the higher oscillatory modes decrease in magnitude, and

within τ = 1 in Fig. 6.9b, the maximum number of modes needed is M = 2 to 3.

Finally, Fig. 6.10 shows the the survival probability as a function of both spatial

location and angular orientation of the initial neutron at one lifetime (6.10a) and

100 lifetimes (6.10b). The results correspond to k1 = 1.15 with M = 3 and J = 5

(providing sufficient problem resolution, as seen in Figs. 6.6 and 6.7). Figure 6.8

shows that for k1 = 1.15 the scalar survival probability is varying rapidly with time

after 1 lifetime while it has converged to the POI well before 100 lifetimes. Although

the magnitude of the angle-dependent survival probability decreases over time from

a maximum of ∼ 0.2 down to ∼ 0.05, the overall spatial and angular shape of the

solution is observed to remain unaltered. The space-angle symmetry of the solution is

a direct consequence of the symmetry of the problem geometry, with the probability

being zero for the neutron located at either free surface and directed along outward
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(a)

(b)

Figure 6.9: Modal convergence of the modes for early τ values of (a) τ = 0.001 and
0.01 as well as (b) τ = 0.1 and 1.
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(a)

(b)

Figure 6.10: Angle-dependent survival probability after (a) 1τ , and (b) 100τ .

directions.
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Figure 6.11: Surface plot of Θ0(τ = 5, 000) for differing J and JS .

6.3.3 Randomly Emitting Source Results

We now consider solutions of Eq. 5.39, the neutron extinction probability in the

presence of a random neutron source Θ0(τ), and it’s complement, 1−Θ0(τ), for the

k1 = 1.5 three-region system with a constant source with magnitude S = 2.78 · 105

n0/s within the multiplying region. Then ω(z) = 1/(zI2 − zI1), where zI1 , zI2 are

the first and second interface locations, respectively. Figure 6.11 shows the survival

probability in the presence of a source at 5, 000 lifetimes for several combinations of

nonlinearity orders corresponding to the induced fission multiplicity, J , and the source

multiplicity, JS . We see the expected behavior in the solution due to increasing J ,

where the solution appears converged at J = 4, but the solution converges for a source

multiplicity order of JS = 3. Finally, Fig. 6.12 shows the probability of survival

for differing source strengths given by S = 2.78 · 10x n0/s where the exponent x is

varied, for the k1 = 1.15 system with J = 5 and JS = 3. As expected, the survival
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Figure 6.12: Survival probability in the presence of neutron sources of varying
strength.

probability increases more rapidly with increasing source strength.

6.3.4 Numerical Performance

We now contrast the relative numerical performance of the iterative and reduced

order methods described in the previous sections. Recall, the first requires repeated

solution of a linear transport equation with a root finding step at each iteration while

the second requires computation of the adjoint eigenspectrum up to a certain order

followed by the solution of coupled first order nonlinear ODEs in time. Costs were

estimated of the major parts of the computation associated with each method but

only the total time of computation is contrasted. The run times reported below are

averages of 50 identical calculations performed on a MacBook Pro with a 3 GHz Intel

Core i7 processor using two 8 GB 1600 MHz DDR3 cores. All computations were

done in MATLAB.
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As the numerical results for the eigenfunction expansion method clearly demon-

strate, retaining between one and three modes in the expansion yields sufficiently

accurate divergence and survival (for times beyond a fraction of a neutron lifetime)

probabilities. The cost of generating the spectrum can therefore be substantially

reduced by employing a method that can compute modes successively, starting with

the fundamental, instead of all possible modes corresponding to the dimension of the

discretized problem. To this end, the Wielandt Deflation Method is a particularly

efficient technique for isolating the first few eigenvalues of the generalized eigenvalue

problem given by:

B†Ψ† = kΨ†, (6.18)

where B† = [T† − S†]−1F† and k is a diagonal matrix composed of the k-eigenvalues.

The eigenspectrum is obtained by first computing the largest eigenvalue and associated

eigenvector (the fundamental mode) of Eq. 6.18 using the standard Power Method

and then deflating the matrix to make the second eigenvalue the dominant eigenvalue,

and so on with the third and higher eigenvalues.

For the three-region symmetric slab problem considered above, with 300 spatial

cells, discrete ordinate order 16, and a critical eigenvalue k1 = 1.15, the cost of the

eigenfunction expansion method consists of: setting up the [T†−S†] and F† matrices,

the calculation of B†, the deflation calculation for the required number of eigenpairs,

and the calculation of the coupled nonlinear time-coefficient ODEs defined by Eq.

6.16. The matrices [T† − S†] and F† are 4, 800× 4, 800 and together take an average

of 13.24 sec to build while B† takes an average time of 4.17 sec to calculate. Table

6.4 shows the average computation time for the indicated number of eigenvalues

via Wielandt deflation, where the absolute error tolerance applied during the Power

method is set to 10−9 (convergence is measured in terms of the maximum norm of

the difference between successive terms in the eigenvector sequence).

Table 6.5 shows the average computation times for the single-chain survival
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Table 6.4: Wielandt Deflation Method computation times.

Modal
Truncation
Order, M 1 2 3 4 5 6 7 8 9

Eigenspectrum
Computation

Time [sec] 0.226 1.08 1.94 3.11 4.27 5.49 6.94 8.42 10.08

Table 6.5: ODE system average computation time [sec].

J

M 1 2 3 4 5

2 0.55 1.22 1.97 2.83 4.04
3 0.58 1.24 2.31 3.73 6.59
4 0.68 1.43 3.01 5.80 11.78
5 0.62 1.59 3.88 8.92 21.99

probability, using MATLAB’s built-in ODE solver ode15s, for the given number of

modes, M , and varying orders of nonlinearity, J , to a final time of 100τ with 103

time-steps. As explained before, only the odd-indexed eigenvectors are needed for

the symmetric problem geometry considered here. Thus, when calculating the set of

M nonlinear coupled ODEs, the 2M − 1 largest eigenpairs are needed.

For the calculation of the survival probability using the λAM method [28], we

use a convergence tolerance of 10−9 on the inner iterations and 10−5 on the outer “λ”

iterations per time step for the same space, angle, and time refinement as the EEM

calculations for the three-slab problem. Table 6.6 shows the average inner iteration

computation times and the average total computation times for varying orders of

nonlinearity. As expected, there is a slight increase in the average overall computation

time for increasing J , simply because an increase in J requires an increase in the

number of calculations performed per iteration and time-step. Interestingly, the inner

iteration times seem to oscillate in a similar manner as the PS distribution magnitudes

do for increasing J (see Fig. 6.7). This may be due to the magnitude of the solution
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Table 6.6: λAM average computation times.

J 2 3 4 5 6

Total Inner
IterationTime [sec] 65.59 54.94 58.01 56.51 56.56

Total Time [sec] 171.87 175.59 178.51 180.51 183.31

for increasing J as an input to the inner iteration scheme- for a smaller magnitude

solution like J = 2, the source iteration will take longer to converge than a larger

magnitude solution like J = 3.

Contrasting the computational costs of the two methods, we see that for J = 5

and M = 5 (requiring the calculation of the 9 largest eigenpairs), the EEM takes an

average of 49.5 sec while the λAM takes an average of 180.5 sec– about 3.6 times

slower than the EEM for the particular problem considered here. If only two modes

are retained in the eigenfunction expansion, which in the previous sections was shown

to give the probabilities with excellent accuracy, the timing-cost of the calculation

drops by another factor of two. More efficient numerical tools (including accelerating

inner iterations in the λAM method with, e.g., diffusion synthetic acceleration) and

using a more advanced programming language such as C++ will undoubtedly yield

computational speedups for both methods, but sufficient numerical evidence has

been provided to demonstrate the efficacy of the k-eigenmode expansion method for

computing both the divergence and survival probabilities in a supercritical medium.

Finally, we have implemented the k-eigenmode expansion method for a homoge-

neous sphere and observed similar numerical performance as for the planar geometry

case. The standard sphere-to-plane transformation was used to map the planar

modes to spherical modes but otherwise the same software was used to compute the

probabilities in spherical geometry. For nonhomogeneous spheres this simple mapping

does not hold but the experience with the approach thus far suggests efficiency and

accuracy of the eigenmode expansion method is unlikely to suffer when applied to
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nonhomogeneous media in curvilinear geometries, provided the correct eigenspectrum

is used.
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Chapter 7

The Cumulative Fission Energy

Deposition Distribution

The emphasis of much of the work to date has been on the neutron number distribution;

however, a complete description of certain phenomena of interest also requires a

knowledge of the amount of energy deposited in fissions due to the kinetic energy of

the fission fragments liberated during fission events. The energy released in fission

reactions is partitioned between kinetic energy of the fission fragments and the energy

of particles released in fission. This energy partitioning further depends on the

masses of the fission fragments and the multiplicities of the emitted particles and

is therefore itself a stochastic quantity. It follows that the deposited fission energy

distribution cannot be inferred directly from the distribution of neutron numbers

or indeed from the distribution of fission numbers. In general, it must be obtained

from an independent formulation that accounts for both the random occurrence of

fission events and the random distribution of deposited energy in each fission. In this

chapter, we demonstrate the application of the backward Master equation formulation

in obtaining the distribution for the cumulative fission energy deposited within a

system due to single neutron chains as well as in the presence of a randomly emitting
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neutron source.

The energy deposited in any fission event is a random function and we define

Wν (φ,~r ) dφ as the joint probability that ν neutrons are emitted in a fission event

and an amount of fission energy in the range (φ, φ+ dφ) is deposited at the location

~r. For the sake of generality, the fission energy deposited is allowed to be correlated

with the number of neutrons liberated in any fission event. If qfν (~r ), ν = 0, 1, · · · νfm,

is the fission neutron multiplicity, we can write:

Wν(φ,~r ) dφ = qfν (~r )W (φ|ν, ~r ) dφ (7.1)

where W (φ|ν, ~r ) is the energy deposition distribution conditioned on ν neutrons

having been emitted in the fission event. These distributions have the following

normalizations:
νfm∑
ν=0

ˆ ∞
0

dφWν(φ,~r ) = 1, (7.2a)
ˆ ∞

0
dφWν(φ,~r ) = qfν (~r ), (7.2b)

νfm∑
ν=0

Wν(φ,~r ) = W (φ,~r ), (7.2c)

νfm∑
ν=0

qfν (~r ) = 1, (7.2d)
ˆ ∞

0
dφW (φ,~r ) = 1, (7.2e)

where W (φ,~r ) is the deposited energy distribution in a fission event regardless of

the number of neutrons emitted. If the neutron number and deposited energy are

uncorrelated, Eq. 7.1 reduces to:

Wν(φ,~r ) dφ = qfν (~r )W (φ,~r ) dφ. (7.3)

Finally, for later convenience, we introduce the multi-index notation:

~αk = {α1, α2, . . . , αk}, |~αk| = α1 + α2 + · · ·+ αk, (7.4)

where α will subsequently denote the energy deposition variable, φ.
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7.1 Master Equations for Unlumped Systems

In this section, we formulate backward Master equations satisfied by probability

density function for the total energy deposited in a system due to single neutron

chains and in the presence of sources. In either case, the Master equations have

strong similarities to the analogous neutron number equations of Chapters 5 and 6,

but with the inclusion of the elemental stochasticity of the random amount of energy

deposited due to random induced fission and spontaneous fission events. We will

often refer to the cumulative fission energy deposition PDF simply as the FPDF for

brevity, where the context for single chains and sources will be clear.

7.1.1 Single Chain

Following the integral backward Master equation formulation given by Bell [18] and

further detailed in Chapter 5, we may write an equation for P (φ,R, tf |~r, Ω̂, t): the

probability of a total of φ energy being deposited in R at a final time, tf , due to the

appearance of a single neutron at ~r moving in direction Ω̂ at an earlier time t < tf .

We introduce the notation px(~r, t) = Σx/Σt for x = {c, s, f} being the probability of

event x occurring due to a collision at ~r, t with normalization pc + ps + pf = 1.

Given a collision resulting in capture with probability pc(~r, t), the chain deceases

and there must then be no energy deposited due to fission. In the event of a scatter

event after traveling a distance s, the initial neutron will emerge with a new direction,

Ω̂′, and we must then consider the probability P (φ,R, tf |~r + sΩ̂, Ω̂′, t+ s/v) for ∀ Ω̂′.

After traveling a distance s and inducing a fission resulting in the deposition of

φ′ ∈ [0, φu] energy, where φu is the maximum fission energy deposited per fission,

predicated on the emission of ν neutrons has probability Wν(φ′, ~r+ sΩ̂), we then need

to account for the probability of the resultant ν branches each depositing φ1, φ2, . . . , φν

energies conditioned on φ1 + · · ·φν + φ′ = φ. With these probabilities in mind and

recalling that sb is the distance to the system boundary from the point ~r in direction
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Ω̂, st = v(tf − t) is the distance the neutron will travel unimpeded, and `(sb, st) takes

on the lesser of the two arguments, the integral Chapman-Kolmogorov equation of

interest is:

P
(
φ,R, tf |~r, Ω̂, t

)
=
ˆ `(sb,st)

0
dsΣt

(
~r + sΩ̂, t+ s

v

)
e−
´ s
0

ds′Σt
(
~r+s′Ω̂,t+ s′

v

)
pc

(
~r + sΩ̂, t+ s

v

)
δ(φ)

+ ps

(
~r + sΩ̂, t+ s

v

)ˆ
4π

dΩ′
4π P

(
φ,R, tf |~r + sΩ̂, Ω̂′, t+ s

v

)

+ pf

(
~r + sΩ̂, t+ s

v

)W0(φ,~r + sΩ̂)H(φu − φ) +
νfm∑
ν=1

ˆ `(φu,φ)

0

dφ′Wν(φ′, ~r + sΩ̂)


ˆ

|~φν |=φ−φ′

dνφ
ν∏
k=1

ˆ
4π

dΩ′
4π P

(
φk,R, tf |~r + sΩ̂, Ω̂′, t+ s

v

)
+

3∑
j=1

Aj,

(7.5)

where H is the Heaviside function and |~φν | =
∑ν
i=1 φi is the combination of energy

deposited by each of the ν branches of the first fission event that satisfies the condition

φ− φ′ = |~φν |. The Aj terms are:

A1 = δ(φ)A′1 = δ(φ)H (st − sb) exp
{
−
ˆ sb

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(7.6a)

A2 = δ(φ)A′2 = δ(φ)H (sb − st)
∣∣∣
(~r+stΩ̂,Ω̂)/∈R

exp
{
−
ˆ st

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
(7.6b)

A3 = δ(φ)A′3 = δ(φ)H (sb − st)
∣∣∣
(~r+stΩ̂,Ω̂)∈R

exp
{
−
ˆ st

0
ds′Σt

(
~r + s′Ω̂, t+ s′

v

)}
,

(7.6c)

where A1 is the probability that the initial neutron streamed out of the system, A2 is

the probability that the neutron has not collided but it is not in R, and A3 is the
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probability that the neutron has not collided but it is in R. The terminal condition

for the single chain is

lim
tf←t

P
(
φ,R, tf |~r, Ω̂, t

)
= δ(φ) IR

(
~r, Ω̂

)
(7.7)

and the boundary condition is

P
(
φ,R, tf |~r, Ω̂, t

)
= δ(φ) for ~r ∈ ∂V, and n̂b · Ω̂ > 0, (7.8)

where IR(~r, Ω̂) is the indicator function that is unity for (~r, Ω̂) ∈ R and zero otherwise

and n̂b is the surface unit normal vector. Equation 7.7 can be easily verified by taking

the limit of tf ← t, in which case st → 0, causing the foremost integral of Eq. 7.5

to vanish because `(sb, st) = st = 0. In the limit, A1 will also vanish due to the

argument of H being negative, while A2 = δ(φ) or 0 and A3 = δ(φ) or 0 depending

on whether or not (~r, Ω̂) ∈ R, respectively.

Further analysis of the problem is facilitated by transforming the equation for the

PDF to one for the moment generating function (MGF), defined as:

G(λ,R, tf |~r, Ω̂, t) =
ˆ ∞

0
dφ e−λφ P (φ,R, tf |~r, Ω̂, t), (7.9)

which is equivocally the Laplace transform with respect to the deposited energy

variable. From the normalization of the FPDF we have G(λ = 0,R, tf |~r, Ω̂, t) = 1.

Laplace transforming Eq. 7.5 then yields

G
(
λ,R, tf |~r, Ω̂, t

)
=
ˆ `(sb,st)

0
dsΣt

(
~r + sΩ̂, t+ s

v

)
e−
´ s
0

ds′Σt
(
~r+s′Ω̂,t+ s′

v

)
pc

(
~r + sΩ̂, t+ s

v

)
+ ps

(
~r + sΩ̂, t+ s

v

)ˆ
4π

dΩ′
4π G

(
λ,R, tf |~r + sΩ̂, Ω̂′, t+ s

v

)

+ pf

(
~r + sΩ̂, t+ s

v

) νfm∑
ν=0

W ν

(
λ,~r + sΩ̂

) [ˆ
4π

dΩ′
4π G(λ,R, tf |~r, Ω̂′, t)

]ν +
3∑
j=1

A′j,

(7.10)

where the Laplace transform for the fission energy deposition distribution is

W ν(λ,~r ) =
ˆ ∞

0
dφ e−λφWν(φ,~r ). (7.11)
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Next, by evaluating Eq. 7.10 at a short distance away from the original injection

location, δs, the only difference between such an equation and Eq. 7.10 will be the

lower limits of the distance traveled integrals will change from 0 to δs. Following

the manipulations from Chapter 5, we obtain a nonlinear inhomogeneous adjoint

transport equation:[
− 1
v

∂

∂t
− Ω̂ · ~∇+ Σt (~r, t)

]
G
(
λ,R, tf |~r, Ω̂, t

)
= Σc (~r, t)

+ Σs (~r, t)
ˆ

4π

dΩ′
4π G

(
λ,R, tf |~r, Ω̂′, t

)

+ Σf (~r, t)
νfm∑
ν=0

W ν(λ,~r )
[ˆ

4π

dΩ′
4π G

(
λ,R, tf |~r, Ω̂′, t

)]ν
(7.12)

with the terminal and boundary conditions:

lim
tf←t

G
(
λ,R, tf |~r, Ω̂, t

)
= IR

(
~r, Ω̂

)
, (7.13a)

G
(
λ,R, tf |~r, Ω̂, t

)
= 1, ~r ∈ ∂V, n̂b · Ω̂ > 0. (7.13b)

In the event that the deposited energy distribution in a single fission event is inde-

pendent of the neutron multiplicity we have W ν(λ,~r ) = qfν (~r )W (λ,~r ). In the next

section, the backward Master equation for the FPDF in the presence of a source is

derived.

7.1.2 With a Random Source

Consider a system with no initial neutrons with an intrinsic isotropically-emitting

neutron source of strength S(~r, to) = ω(~r )S(to), where ω(~r ) is normalized such that´
V

d~rω(~r ) = 1. The probability of a total of φ energy being deposited within the

system at time tf due to the “turning on” of the source at some earlier time to ≤ tf is

Q(φ, tf |to). There is no particle streaming requirement as there are no initial neutrons

within the system.
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A probability balance in the first time interval proceeding the introduction time

to + ∆to may be conducted. The probability of a source event occurring somewhere

in the system in the first collision interval is ∆to
´
V

d~rS(~r, to) = ∆toS(to). The

probability that no source event occurs, (1−∆toS(to)), must then be multiplied by

the probability that subsequent source events occur in the time interval [to + ∆to, tf ]

resulting in φ energy being deposited at tf , Q(φ, tf |to + ∆to). Alternatively, a source

event does occur in the first interval at point ~r, depositing φ′ energy conditioned on

the emission of ν neutrons with probability W S
ν (φ′, ~r ). In the remaining time interval,

[to + ∆to, tf ], each of the ν branches will propagate and deposit φ1, φ2, . . . , φν energies

with probabilities P (φk, · · · ) and subsequent source events must then deposit φν+1

energy such that |~φν+1| =
∑ν+1
i=1 φi = φ− φ′ is satisfied. The probability balance is

therefore

Q(φ, tf |to) =
(

1−∆to
ˆ
V

d~rS(~r, to)
)
Q(φ, tf |to + ∆to)

+ ∆to
νSm∑
ν=0

ˆ
V

d~rS(~r, to)
ˆ `(φu,φ)

0

dφ′W S
ν (φ′, ~r )

ˆ

|~φν+1|=φ−φ′
dν+1φ


Q(φν+1, tf |to + ∆to)

ν∏
k=1

ˆ
4π

dΩ′
4π P

(
φk,R, tf |~r, Ω̂′, to + ∆to

).
(7.14)

Rearranging Eq. 7.14 and taking the limit ∆to → 0, we obtain the backward Master

equation for a system with a spatially distributed isotropically emitting neutron

source:

−∂Q(φ, tf |to)
∂to

= −S(to)Q(φ, tf |to) + S(to)
νSm∑
ν=0

ˆ
V

d~rω (~r )
ˆ `(φu,φ)

0

dφ′W S
ν (φ′, ~r )


ˆ

|~φν+1 |=φ−φ′
dν+1

φQ(φν+1 , tf |to)
ν∏
k=1

ˆ
4π

dΩ′
4π P

(
φk,R, tf |~r, Ω̂′, to

),
(7.15)
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with final condition:

lim
tf←to

Q(φ, tf |to) = δ(φ). (7.16)

Equation 7.15 is linearly coupled in the number distribution in the presence of a

source and is nonlinearly dependent on the number distribution for a single chain.

By now applying the MGF for the source,

H(λ, tf |to) =
ˆ ∞

0
dφ e−λφQ(φ, tf |to), (7.17)

the Master equation given by Eq. 7.15 is transformed accordingly

∂H

∂to
= S(to)

1−
νSm∑
ν=0

ˆ
V

d~rω(~r )W S
ν (λ,~r )

ˆ
4π

dΩ
4π G

(
λ,R, tf |~r, Ω̂, to

) νH(λ, tf |to)

(7.18)

with final condition:

lim
tf←to

H(λ, tf |to) = 1. (7.19)

Note that W S
ν is defined by Eq. 7.11, where we simply replace Wν with W S

ν . We can

easily solve Eq. 7.18 to yield

H(λ, tf |to) = exp


ˆ to

tf

dtoS(to)
1−

νSm∑
ν=0

ˆ
V

d~rω(~r )W S
ν (λ,~r ) [Go (λ,R, tf |~r, to)]ν


(7.20)

where Go =
´

4π dΩG(Ω̂)/4π. Next, we derive equations for the moments of the

respective FPDFs.

7.1.3 Moment Equations

While the Master equation or the equation for the MGF are complex and difficult to

analyze without approximation, the statistical moments of the FPDF satisfy standard
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linear transport equations that can be solved using standard numerical techniques.

These moments are related to the MGF through the following readily verified identity:

∂kG(λ,R, tf |~r, Ω̂, t)
∂λk

∣∣∣∣∣∣
λ=0

= (−1)k
ˆ ∞

0
dφφke−λφP (φ,R, tf |~r, Ω̂, t)

∣∣∣∣∣∣
λ=0

≡ (−1)k φk(R, tf |~r, Ω̂, t), (7.21)

and similarly for H to find the kth FPDF moment due to a source: φkS(tf |to). Applying

Eq. 7.21 to the single chain MGF equation, Eq. 7.12, yields[
− 1
v

∂

∂t
− Ω̂ · ~∇+ Σt

]
φk(R, tf |~r, Ω̂, t) = Σs

ˆ
4π

dΩ′
4π φk(R, tf |~r, Ω̂′, t)

+ νΣf

ˆ
4π

dΩ′
4π φk(R, t|~r, Ω̂′, t) + Sk

(
~r, t; φ, . . . , φk−1

)
,

(7.22)

with:

lim
tf←t

φk(R, tf |~r, Ω̂, t) = 0, (7.23a)

φk(R, tf |~r, Ω̂, t) = 0, ~r ∈ ∂V, n̂b · Ω̂ > 0. (7.23b)

In the above, Sk(· · · ) is an inhomogeneous source term in the kth moment equation

that depends only on the lower moments and hence considered known. When the

coupling between the amount of energy deposited in a single fission and the number

of fission neutrons emitted can be ignored so that Eq. 7.3 holds, the inhomogeneous

terms for varying k = 1 are given in Table 7.1. Note 〈·〉 indicates integration over

angle (as well as energy if there were an energy dependence) and Ek
f is the kth moment

of the fission energy deposition distribution:

Ek
f (~r ) = ∂kW (λ,~r )

∂λk

∣∣∣∣∣∣
λ=0

, (7.24)

where we specify that we have assumed Eq. 7.3 holds and we note that E1
f = Ef .

From the source terms, it is clear that we must solve the system of transport equations

in ascending k up to the desired order. We observe that the moment equations are

149



Chapter 7. The Cumulative Fission Energy Deposition Distribution

Table 7.1: Inhomogeneous source terms for the single chain moment equations of
the FPDF.

k Sk(~r, t;φ, . . . , φk−1)

1 Σf (~r, t)Ef

2 Σf (~r, t)
[
E2
f + 2νEf

〈
φ
〉

+ (ν)2

〈
φ
〉2
]

3 Σf (~r, t)
[
E3
f + 3ν

(〈
φ2
〉
Ef +

〈
φ
〉
E2
f

)
+ 3(ν)2

(〈
φ
〉2
Ef +

〈
φ
〉 〈

φ2
〉)

+ (ν)3

〈
φ
〉3
]

4 Σf (~r, t)
[
E4
f + 4ν

(〈
φ3
〉
Ef + 3

2
〈
φ2
〉
E2
f +

〈
φ
〉
E3
f

)

+ 4(ν)2

(
3
〈
φ
〉 〈

φ2
〉
Ef + 3

2
〈
φ
〉2
E2
f + 3

4
〈
φ2
〉2

+
〈
φ
〉 〈

φ3
〉)

+ 4(ν)3

(〈
φ
〉3
Ef + 3

2
〈
φ
〉2 〈

φ2
〉)

+ (ν)4

〈
φ
〉4
]

simply time-dependent, inhomogeneous, linear adjoint transport equations that can

be numerically solved using standard discretization methods, as is shown in the next

section.

In the presence of a constant randomly singlet-emitting neutron source, the

corresponding MGF equation, Eq. 7.18, simplifies to:

−∂H(λ, tf |t)
∂t

= −SH + SH

ˆ
V

d~rω(~r )W S(λ,~r )Go(λ,R, tf |~r, t), (7.25)

with final condition limtf←tH(λ, tf |t) = 1 and Go =
´

4π dΩG(Ω̂)/4π. Applying the

moment identity, the moments of the FPDF in the presence of a source, φn
S
(tf |t) may

be determined:

−
∂φk

S
(tf |to)
∂to

= SQk
(
tf |to, φS , . . . , φk−1

S
, φ, . . . , φk

)
, (7.26)

with the terminal conditions being φkS(tf |tf) = 0 and Qk are inhomogeneous source

terms that are functions of all lower order φS moments and all single chain moments

up to order k. These source terms are defined for the first four moments in Table 7.2.
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Table 7.2: Inhomogeneous source terms for the moment equations of the FPDF in
the presence of a source.

k Qk(tf |to, φS, . . . , φk−1
S

, φ, . . . , φk)

1
〈
ω(~r ), φ(R, tf |~r, to) + ES(~r )

〉
2

〈
ω(~r ), E2

S + 2ES

(
φ+ φS

)
+ φ2 + 2φφS

〉
3

〈
ω(~r ), E3

S + 3E2
S

(
φ+ φS

)
+ 3ES

(
φ2 + 2φφS + φ2

S

)
+ φ3 + 3φ2 φS + 3φφ2

S

〉
4

〈
ω(~r ), E4

S + 4E3
S

(
φ+ φS

)
+ 6E2

S

(
φ2 + 2φφS + φ2

S

)
+ 4ES

(
φ3 + 3φ2 φS + 3φφ2

S + φ3
S

)
+ φ4 + 4φ3 φS + 6φ2 φ2

S + 4φφ3
S

〉

This elementary ODE has the solution:

φk
S
(tf |to) =

ˆ tf

to

dt′S(t′)Qk
(
tf |t′, φS , . . . , φk−1

S
, φ, . . . , φk

)
. (7.27)

We make a few precautionary notes regarding Table 7.2: 〈·, ·〉 is the inner product over

the entire spatial domain of interest; φk for the single chain is pre-angle-integrated;

φk
S
are not themselves functions of space and the spatial integrals do not operate on

those terms. Finally, we note that the subscript S for Ek
S denotes the kth moment of

the source fission energy deposition distribution which, in general, differs from the

induced fission deposition distribution but is appropriately defined by Eq. 7.24 using

W S.

A final note concerns the moments of the fission energy deposition spectrum, En
f

and En
S . To obtain explicit expressions for the moments from the distributions we

have considered in this document, we may insert the desired W (φ) into

W (λ) =
ˆ ∞

0
dφ e−λφW (φ),
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Table 7.3: Moments of W (φ) for different types of distributions. Note that cn of
the truncated Gaussian distribution is given by Eq. 7.28.

Distribution En
f

Gamma 2−n(n+ 1)!En
f

Beta φnu
B(n+α,β)
B(α,β)

Truncated Gaussian cn

{√
2φp
σp

Γ
(
n+2

2

)
1F1

(
1−n

2 ; 3
2 ;− φ

2
p

2σ2
p

)
+ Γ

(
n+1

2

)
1F1

(
−n

2 ; 1
2 ;− φ

2
p

2σ2
p

)}

take n successive derivatives with respect to λ and evaluate at λ = 0. Expressions

for En
f are displayed in Table 7.3 for several distributions that we will investigate in

greater depth later in this chapter (for details on notation, the reader is referred to

Sec. 7.4). Note that we have defined the truncated Gaussian coefficient to be

cn =
2n

2−1σnp√
π (Ω(a)− Ω(b)) , (7.28)

and 1F1(· · · ) is Kummer’s confluent hypergeometric function (also referred to as the

confluent hypergeometric function of the first kind).

7.2 Numerical Results for the Moments

We consider monoenergetic neutrons in a one-dimensional sphere in vacuum, and

we wish to determine the moments of the FPDF by means of the deterministic

method as well as Monte Carlo simulation. We describe the solution process for

both methods and show that they agree with one another in Sec. 7.2.1 and then

show deterministically-derived results for the moments in multi-layered spheres in

Sec. 7.2.2 and the effects of differing the fission energy deposition distribution, W (φ),

on the moments in Sec. 7.2.3.
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7.2.1 Benchmarking with EBMC

In this section, we demonstrate the efficacy of the deterministic solution process by

benchmarking it with EBMC strictly for single neutron chains. For the deterministic

approach, we must solve the linear inhomogeneous one-dimensional spherical geometry

transport equations; for the kth moment of the single chain FPDF, we have[
− 1
v

∂

∂t
− µ

r2
∂

∂r

(
r2
)
− 1
r

∂

∂µ

[(
1− µ2

)]
+ Σt(r)

]
φk(R, tf |r, µ, t) =

+ 1
2

[
Σs(r) + νΣf (r)

] ˆ 1

−1
dµ′φk(R, tf |r, µ′, t)

+ Sk(r, t;φ, . . . , φk−1),

(7.29)

where r is the radial coordinate and µ is the direction cosine with respect to r. We

have assumed neutrons isotropically scatter and the Sk source terms are found in

Table 7.1. We numerically solve Eq. 7.29 using a standard discrete ordinates in angle,

diamond difference in space discretization with source-iteration convergence to then

advance the solution using the Crank-Nicolson time-stepping method [35, 51].

In order to simulate such systems with the Event-Based Monte Carlo method,

patently, we must initiate our MC simulations at the discrete mesh point values for r

and µ that the deterministic numerical transport solution resides upon. If we call

the ith spatial point ri and the nth ordinate µn, then we may designate a specific

injection location, ri,o, as well as an injection direction, µn,o, at the initiating time,

to. With these initial phase space coordinates, we then perform random walks to

attain the moments using the batching statistics method, discussed in Sec. 3.2, to

find φkMC(R, tf |ri,o, µn,o, to). If we wish to compare with the scalar (angle-integrated)

deterministic solution, we then run the MC code for each µn,o at the given ri,o for as

many batches and histories per batch that are required to attain statistically quiet

results. Clearly, if we wish to have a one-to-one comparison, the MC method is far

more computationally expensive, and will require a minimum number of calculations

of Cmin = 2BHIN , where B and H are the number of batches and histories per
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Table 7.4: Fast neutron data used for a 239Pu system.

N
[

1
b·cm

]
σc [µb] σs [b] σf [b] v · 10−9

[
cm
s

]
0.04998 847.4 2.944 2.334 5.1753

batch, respectively, and I and N are the number of spatial cells and ordinates used in

the deterministic solution process. The coefficient of 2 comes from the initial neutron

distance to collision calculation, r′ = Σ−1
t ln(ξ), where ξ is a random number, and

then updating the new radial position, r′′ =
√

(ri,o)2 + (r′)2 + 2ri,or′µn,o, which can

then be used to determine if the neutron is still in the system. Alternatively, one

could calculate the updated system time, ts = so + r′/v, to determine if the collision

occurred before or after the final time; regardless, the other calculation will have to be

made if the particle did not leak or stream too long, but this is not the case in every

simulation. The angle integrations are performed using Gauss-Legendre quadrature

to find:

φkMC(R, t|ri,o, to) =
N∑
n=1

wnφkMC(R, t|ri,o, µn,o, to), (7.30)

where wn are the quadrature weights.

We show a comparison between the Monte Carlo and deterministic solution

methods for a single initiating neutron in Fig. 7.1, where we have also solved the

neutron population moment equations, found in [43] and Sec. 5.2, for contrast. The

system depicted is a 3.9339 cm ball of 239Pu ran to tf = τ = 1.6558 ns using the

one-group 14 MeV neutron data in Table 7.4, calculated from JENDL-4.0 at 300 K.

We have set W (φ) to a gamma distribution with Ef = 180 MeV , and the higher

order moments, En
f , in the inhomogenous source terms may be determined by the

formulae in Table 7.3. The determinstic solution is obtained for an S8-order discrete

ordinates discretization with 50 mesh points and 100 time steps. As we described
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Figure 7.1: Comparison of Monte Carlo (x) and deterministic (-) solutions for the
moments of the neutron population and FPDF for a single initiating neutron in a
symmetric sphere.

earlier, we obtain the MC results by initiating at the radial mesh points and along

the trajectories corresponding to the S8 ordinates to then apply Eq. 7.30 to find

the reported values in Fig. 7.1. Each of the 8 initiation trajectories at each of the 9

radial points was simulated with 200 batches, each with 104 histories, amounting to a

total of 2 · 106 per ordinate per mesh point. In total, we simulated 1.44 · 108 histories

to arrive at the few points shown in Fig. 7.1. Overall, we see excellent agreement

between the two methods, providing us with confidence in moving forward to using

the superior deterministic method to analyze more complicated systems over greater

time intervals.
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(a) (b)

Figure 7.2: Moments of the single chain FPDF in a subcritical system for (a)
tf = 5τ and (b) tf = 100τ .

7.2.2 Multi-Layered Spheres

We now consider a 235U ball encased in a graphite shell and solve Eq.7.29 for the first

two moments (n = 1, 2) in spherically symmetric geometry. We used 100 spatial cells

per region, S80 discrete ordinates, and a time-step width of ∆t = 0.05, which provides

adequately resolved numerical solutions. The fission energy deposition distribution is

that of a gamma function, and the respective moments, En
f , may be found in Table

7.3 corresponding to the source terms of Table 7.1. The average energy emitted in

a single fission is set to Ef = 180 MeV . The neutron number moments are also

calculated and the respective inhomogeneous source terms are found in Table 5.1.

The spatial profile (recall, in the backward approach, the radial location refers to the

point of injection of the initial neutron) of the mean and standard deviation of the

deposited energy and the neutron number for a single initiating neutron without a

source are shown in Figs. 7.2, 7.3, and 7.4 at 5 and 100 neutron lifetimes for different

k-eigenvalues.

For the subcritical system of k = 0.9 in Fig. 7.2a, after 5 lifetimes we see that

the average neutron population has begun to decline with a large standard deviation.
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(a)

(b) (c)

Figure 7.3: Moments of the single chain FPDF in a near critical system for (a)
tf = 5τ , (b) tf = 100τ , and (c) tf = 1, 000τ .

The total amount of fission energy deposited in the system is maximum when the

injected neutron is in the center of the sphere with a value of φ ≈ 3.4Ef . If we then

observe the system at 100 lifetimes after injection, the average neutron population

has decreased to below n ≈ 10−10 with the standard deviation of σn ≈ 10−4 and thus

not shown in Fig. 7.2b; the average total energy deposited increases to φ ≈ 4.6Ef .

For this type of reflected system, as a fission chain extinguishes, on average it will

deposit a maximum of around 5Ef . It is expected that as the system approaches
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(a) (b)

Figure 7.4: Moments of the single chain FPDF in a supercritical system for (a)
tf = 5τ and (b) tf = 100τ .

critical from below, the fission chains will propagate for more generations (i.e., cause

more fissions) before dying away and the deposited fission energy will dramatically

increase as well– we consider this next.

For the near-critical system of k = 0.999 depicted in Fig. 7.3, we see that the

neutron average grows and eventually drops off for injection locations near the center

of the system. This is due to the system being so near critical that a given chain

may propagate for long time periods before eventually dying off, strengthened by the

possibility that some of the progeny may reflect back into the system if leaked into the

moderating graphite shell. It can be seen in Fig. 7.3c that n eventually decreases by

tf = 1, 000τ , but the total amount of energy deposited within the system continues to

grow to φ ≈ 100Ef for a neutron injected in the center. This is an important feature

for near-critical systems that one must consider; that is, as a system approaches

critical, the fission chains will persist for longer time periods and, although it is

certain that those chains will eventually decay away, the amount of energy deposited

in the system will continue to accumulate.

We show a supercritical case in Fig. 7.4, for which the neutron average, and
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(a)

(b) (c)

Figure 7.5: Moments of the source FPDF for (a) k = 0.90, (b) k = 0.999, and (c)
k = 1.10.

consequently the average cumulative energy deposited, grows without bound. This

is obviously expected, but there is a subtlety which is not illustrated here. For any

given chain that is initiated in a supercritical system, it will diverge and grow without

bound with a probability given by the POI (see Ch. 6). Alternatively, the chain will

grow but eventually die off with probability 1− P∞. Thus, what cannot be captured

with these moment figures, is the difference in the averages between those chains

that die away, depositing a finite amount of energy, and those chains which diverge,
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depositing an infinite amount of energy. We will then need to explore the actual

distributions to garner an understanding of this behavior outside of our intuition,

which will be done in Secs. 7.3 through7.6.

By now incorporating a constant randomly emitting uniformly distributed source

into the inner region, S(r) = ω(r)S, we may determine the FPDF in the presence of

a source. For a uniformly distributed source in the inner uranium region of radius Ri

and volume Vi = 4π
3 R

3
i , the normalized spatial distribution function is ω(r) = 1/Vi

for r ∈ [0, Ri] and ω(r) = 0 for r > Ri; we also set S = 1.0 s−1. Thus, the FPDF

moments in the presence of a source may be calculated using Eq. 7.27. Figure 7.5

shows the first four moments for the systems of varying criticality where we set WS(φ)

to be a gamma distribution identical to the induced fission W (φ). As the formulation

calls on the cumulative energy that has been deposited, the moments will continue to

rise regardless of the system criticality because source events will continue to occur.

As this is a very weak source, the average time between events is long, and we see

that the subcritical system of Fig. 7.5a appears to reach a steady-state, but if we

observe the system much later in time, the amount of energy deposited will eventually

grow to infinity. The growth in the moments is more apparent in the near critical

system of Fig. 7.5b, and we see the moments growing by 10 orders of magnitude in

the first 100 lifetimes of the supercritical system in FIg. 7.5c. If the source strength

is a multiple of the original source strength, we may simply scale the solution without

returning to the transport code (one will need to recalculate the higher order moment

integrals for the source FPDF moments).

7.2.3 Differing W (φ)

In this section, we compare the moment distributions for the systems from the previous

section, but for different fission energy deposition distributions, W (φ). In the previous

section, we setW (φ) to that of a gamma distribution with an average energy deposition
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Table 7.5: Calculated moments for different W (φ).

Ef [MeV ] E2
f [MeV 2] E3

f [MeV 3] E4
f [MeV 4]

Gamma 180 48,600 1.7496 · 107 7.8732 · 109

Truncated Gaussian 180 48,600 1.9746 · 107 8.3971 · 109

per fission of Ef = 180 MeV and E2
f = 48, 600 MEV 2 and φ ∈ [0,∞]. We now

changeW (φ) to a truncated Gaussian distribution with φ ∈ [0, 558] MEV and enforce

the first two moments of this distribution to be equal to the Ef = 180 MeV and

E2
f = 48, 600 MEV 2. Doing so means that the first two moments of the FPDF will

be identical for either W (φ) due to the inhomogeneous source terms being identical,

but the higher order moments are expected to differ. Once the transport sweeps are

complete, the skew and kurtosis are calculated using the formulae:

γ(R, tf |r, t) =
φ3 − 3φσ2

φ − φ
3

σ3
φ

(7.31a)

κ(R, tf |r, t) = φ4 − 4φφ3 + 6φ2
φ2 − 3φ4

σ4
φ

, (7.31b)

where each term is individually angle-integrated. The calculated moments of W (φ)

for the two distributions we consider are found in Table 7.5.

Figure 7.6 shows the skew, γ, and kurtosis, κ, of the single chain FPDF for the

different critical systems at the different times of observation. It can be seen that

the moments seem not to visually change between the Gamma distribution and the

truncated Gaussian for all criticality values and final times displayed. In reference

to Table 7.1 containing the inhomogeneous source terms, this lack of difference in

the results for differing W (φ) for the third and fourth moments becomes clear when

we see that E3
f and E4

f appear as standalone terms when they first appear and these

values are the same magnitude as the other terms in the source expression. Thus,
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(a)

(b) (c)

Figure 7.6: Moments of the single chain FPDF at different times for (a) k = 0.90,
(b) k = 0.999, and (c) k = 1.10.

one will not see an appreciable difference in the moments of the distribution until

the first and second moments of W are also notably different. We will analyze this

concept on the actual FPDF distributions at the end of Sec. 7.4.5.

We next consider the moments of the FPDF in the presence of a constant randomly

emitting uniformly distributed source. The source is the same as the previous section,

such that S = 1.0 s−1 and ω(r) = 1/Vi = 3
4πR

−3
i for r ∈ [0, Ri] and 0 otherwise. As

for the single chain calculations, we enforce the first two moments of the fission energy
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(a)

(b) (c)

Figure 7.7: Moments of the source FPDF for different WS(φ) at different times for
(a) k = 0.90, (b) k = 0.999, and (c) k = 1.10.

deposition distributions to be equal regardless of the event type (induced fission

or spontaneous fission). We wish to determine whether the moments of the source

FPDF will differ if WS(φ) is different. As was just demonstrated, the single chain

results are practically equivalent for this system, so we will keep W (φ) as a gamma

distribution and compare the source FPDFs for WS(φ) being a gamma distribution

and a truncated Gaussian distribution. As can be seen in Fig. 7.7, there are no

visual differences between the moments for any critical regime. The distributions do

163



Chapter 7. The Cumulative Fission Energy Deposition Distribution

indeed slightly differ, but not enough to be seen in the plots. These results come as

no surprise because the first two moments of the distribution are equal for all fission

energy deposition distributions in these calculations.

7.3 Lumped Model Description

Reducing our consideration to a lumped model setting permits a more detailed,

focused study of the unique attributes of the FPDF. In particular, we wish to examine

the actual distribution to better understand the effects of differing W (φ) for both

single chains and sources. In this section, we present the backward Master equations

and the low-order moment equations for the single chain and source cases in Sec.

7.3.1, followed by a discussion on an analytical solution obtained using the Binary

Fission Model in Sec. 7.3.2. We will then focus our study on the FPDF for lumped

systems in the next section, Sec. 7.4 primarily using an event-based Monte Carlo

code.

In the ensuing analysis, when numerical results for the FPDF are displayed, we

have set the energy cutoff in the Monte Carlo simulations to be 105 MeV unless

otherwise stated. This was an arbitrary choice, but proves to be an appropriate

domain for capturing the majority of the problems analyzed.

7.3.1 Master and Moment Equations

We define P (φ, tf |t) dφ as the probability of there being a cumulative amount of

energy deposited within the system in the range (φ, φ+ dφ) at a final time tf due to

the appearance of a single neutron at an earlier time t. Following standard backward

formulation practices and considering the physics of the previous section, the FPDF
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for a single neutron chain is:

−∂P (φ, tf |t)
∂t

=− λtP (φ, tf |t) + λcδ(φ) + λfq
f
0W (φ|0)H(φu − φ)

+ λf

νfm∑
ν=1

qfν

ˆ `(φ,φu)

0
dφ′W (φ′|ν)

ˆ

|~φν|=φ−φ′
dνφ

ν∏
k=1

P (φk, tf |t),
(7.32)

with final condition given by limtf←t P (φ, tf |t) = δ(φ). It is understood that the

ν-fold integrals are computed over the ranges that satisfy the condition:
∣∣∣~φν ∣∣∣ =

φ1 + · · ·+ φν = φ− φ′, given by Eq. 7.4.

The appropriate moment generating function transform is defined as:

G(λ, tf |t) =
ˆ ∞

0
dφ e−λφP (φ, tf |t), (7.33)

which ultimately provides a nonlinear PDE:

−∂G(λ, tf |t)
∂t

+ λtG(λ, tf |t) = λc + λf

νfm∑
ν=0

qfν W (λ|ν) [G(λ, tf |t)]ν , (7.34)

with final condition given by the limit: limtf←tG(λ, tf |t) = 1. We note that we may

write Eq. 7.34 in terms of the factorial moments of the fission energy deposition

distribution by introducing the modified transform:

G(λ, tf |t) = 1−G(λ, tf |t). (7.35)

Introducing Eq. 7.35 into Eq. 7.34, we derive an equation for G:

∂G(λ, tf |t)
∂t

= λt G(λ, tf |t) + λf

−1 +
νfm∑
ν=0

(−1)ν
ν! χν (λ)

[
G(λ, tf |t)

]ν , (7.36)

with final condition limtf←t G(λ, tf |t) = 0 and we have defined the factorial moments

of the fission energy deposition distribution:

χν (λ) =
νfm∑
i=ν

i!
(i− ν)!q

f
iW (λ|i). (7.37)
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In practice, we may truncate the sum in Eq. 7.36 to obtain a Quadratic Approximation

form of the FPDF. In Sec. 7.3.2, we will obtain an analytical solution of the single

chain equation for a binary fission model of the induced fission multiplicity distribution

and compare the distribution to event-based Monte Carlo simulation results.

Next, we define the probability of a cumulative amount of energy being deposited

in the range (φ, φ + dφ) at a final time, tf , due to the introduction of a source of

strength S at time to as Q(φ, tf |to). Once again following standard procedure, we then

obtain the lumped backward Master equation for the cumulative energy deposition

distribution due to a constant randomly emitting neutron source and the resultant

fission chains:

−∂Q(φ, tf |to)
∂to

= −SQ(φ,tf |to) + S
νSm∑
ν=0

qSν

ˆ `(φ,φSu)

0
dφ′WS(φ′|ν)


ˆ

|~φν+1|=φ−φ′
dν+1φQ(φν+1, tf |to)

ν∏
k=1

P (φk, tf |to)


(7.38)

with final condition limtf←to Q(φ, tf |to) = δ(φ). Provided the Laplace transform of

the energy deposition variable,

H(λ, tf |to) =
ˆ ∞

0
dφ e−λφQ(φ, tf |to), (7.39)

we may transform Eq. 7.38 to find

−∂H(λ, tf |to)
∂to

= S

−1 +
νSm∑
ν=0

qSνW S(λ|ν)
[
G(λ, tf |to)

]νH(λ, tf |to) (7.40)

with final condition limtf←to H(λ, tf |to) = 1. Finally, Eq. 7.40 may be solved via

separation of variables and integrating backwards in time yields

H(λ, tf |to) = exp

−
ˆ to

tf

dt′S
−1 +

νSm∑
ν=0

qSνW S(λ|ν)
[
G(λ, tf |t′)

]ν . (7.41)

By defining the factorial moments of the energy deposition distribution for source

events as

χSν (λ) =
νSm∑
i=ν

i!
(i− ν)!q

S
i W S(λ|i), (7.42)
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and inserting G = 1 − G into Eq. 7.41, expanding the [1 − G]ν via the Binomial

Theorem, we find:

H(λ, tf |to) = exp

−
ˆ to

tf

dt′S
−1 +

νSm∑
ν=0

(−1)ν
ν! χSν (λ)

[
G(λ, tf |t′)

]ν . (7.43)

Finally, if we consider singlet-emitting sources, such that qSν = δν,1, then χS0 (λ) =

W S(λ|1), χS1 (λ) = W S(λ|1), and χSν (λ) = 0 for ν ≥ 2. The solution for singlet-

emitting sources is then

H(λ, tf |to) = exp
{
−
ˆ to

tf

dt′S
[
− 1 +W S(λ|1)

(
1− G(λ, tf |t′)

)]}

= exp
{
−
ˆ to

tf

dt′S
[
− 1 +W S(λ|1)G(λ, tf |t′)

]}
.

(7.44)

An equation for the kth moment of the single chain FPDF in a lumped setting,

φk(tf |t), may be obtained by taking k successive derivatives of the generating function

and evaluating at λ = 0, i.e.,

∂kG(λ, tf |t)
∂λk

∣∣∣∣∣∣
λ=0

= (−1)kφk(tf |t). (7.45)

Applying the identity Eq. 7.45 to the Master equation satisfied by G(λ, tf |t), Eq.

7.34, provides:

−1
v

∂φk(tf |t)
∂t

− α

v
φk(tf |t) = Sk

(
tf |t;φ, . . . , φk−1

)
, (7.46)

where α = (k − 1)/τ and we have assumed that the coupling between the amount

of energy deposited in a single fission and the number of neutrons emitted can be

ignored, such that W ν(λ) = qfνW (λ). The right-hand side of Eq. 7.46 can be found

in Table 7.1, where one must remove spatial dependence and angular integrals from

the terms. The source moment equations are functionally the same as Eq. 7.26,

where once again the inhomogeneous source terms must have spatial and angular

dependence removed accordingly.
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7.3.2 Analytical Solution via the Binary Fission Model

Equation 7.34 is solvable in closed form for a binary fission model, i.e., exactly two

neutrons are emitted in each fission, so that Wν(φ) = δν,2W (φ). The time dependent

solution for the generating function, however, cannot be inverted to yield an expression

with explicit terms, but the solution in steady state, corresponding to the initial

neutron being introduced into the assembly in the infinite past, provides a closed

form and very insightful solution for the deposited energy distribution. There are two

solutions for the generating function for the binary fission model and the physically

correct solution is given by:

G(λ) = 1
2 pf W (λ)

[
1−

√
1− 4pf (1− pf )W (λ)

]
, (7.47)

where pf = Σf/Σa = k/2 is the fission probability and k is the multiplication

factor. Thus the system is critical if pf = 0.5. To proceed further it is necessary to

specialize to a specific form of W (φ). For illustrative purposes it proves convenient

and informative to use the following one-parameter normalized gamma distribution

which has a simple image function:

W (φ) = 4
E2
f

φ exp
(
− 2φ
Ef

)
, (7.48a)

W (λ) = 4
E2
f

1
(λ+ 2

Ef
)2 , (7.48b)

where Ef is the average energy deposited in a fission reaction:

Ef =
ˆ ∞

0
dφφW (φ). (7.49)

The Laplace transform in Eq. 7.47 can then be inverted to yield the steady state

probability density of the deposited fission energy in closed form:

P (φ) = (1− pf ) δ(φ) + 2(1− pf )
1
φ

exp
{
− 2
Ef

φ

}
I2

(
4
E2
f

√
γ φ

)
, (7.50)
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where γ = 4pf (1− pf ) and I2(·) is the modified Bessel function of order 2. The first

term describes the event in which the initial neutron is absorbed at the first collision,

with probability (1 − pf), in which case no fission energy is deposited, while the

second term gives the distribution of cumulative energy deposited in fission reactions

caused by the initial neutron and all its progeny. The normalization of the FPDF is

very simply obtained by setting λ = 0 in Eq. 7.47 to get:

G(λ = 0) =
ˆ ∞

0
dφP (φ)

= 1
2pf

(
1−

∣∣∣2pf − 1
∣∣∣)

= 1
k

(
1−

∣∣∣k − 1
∣∣∣) , (7.51)

a result that can also be obtained with considerably more algebra by integrating

the FPDF given in Eq. 7.50 over all φ. For pf ≤ 0.5 or k ≤ 1 Eq. 7.51 gives unit

normalization, an obvious and unsurprising result. The supercritical case, k > 1,

however is less obvious and will be discussed below.

The problem was also solved by time dependent event-based Monte Carlo simula-

tion in a subcritical medium for which it was possible to simulate to steady state. In

Fig. 7.8a, simulation results for the distribution plotted against the normalized energy

deposition variable ψ = φ/Ef , are compared with the exact solution in Eq. 7.50 for

various fission probabilities approaching critical. The agreement is seen to be within

statistical noise. The figure demonstrates a trend towards longer tailed distributions

as the system approaches critical, made clearer in Fig. 7.8b for pf = 0.49, k = 0.98

where the probability of significant cumulative energy deposition is observed to be

high.

To analyze this result, we consider ψ � 1, for which the exact solution Eq. 7.50

has the asymptotic form:

P (ψ) ∼ 1− pf√
π 4
√
γ

1
ψ3/2 exp {−2 (1−√γ)ψ} . (7.52)
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(a) (b)

Figure 7.8: Deposited fission energy probability density for (a) subcritical systems
and (b) near critical systems.

It is clear that as pf → 0.5 so that γ → 1 the exponent in Eq. 7.52 gets smaller which

slows the decay of the distribution with increasing ψ, consistent with the simulation

results. The physical reason is that near critical neutron chains can survive for very

long times before becoming extinct, resulting in larger numbers of fission reactions

and consequently greater cumulative deposited fission energy. The question as to what

happens when the system is exactly critical naturally arises and can be addressed by

noting that at critical, when pf = 1/2, γ = 1, the exponential factor vanishes and the

distribution reduces to:

P (ψ) ∼ 1
2
√
π

1
ψ3/2 , (7.53)

displaying an algebraic rather than an exponential decay of density. This means

that although the distribution remains normalized, all moments of the distribution of

order one or higher diverge, i.e.,
´∞

0 dφφn P (φ, t|s)→∞, n ≥ 1. The conclusion is

that the amount of deposited energy in a single chain can be significant and strongly

fluctuating near critical.

The single chain FPDFs for a supercritical system with pf in the range 0.506−0.90,

or k in the range 1.012 − 1.8, are shown in Fig. 7.9, obtained using the analytic
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Figure 7.9: Deposited Fission Energy Probability Density: Supercritical

solution in Eq. 7.50 as well as Monte Carlo simulation. Recall, the binary fission

approximation has been assumed for the multiplicity distribution. There are a

number of interesting aspects to these results that we address first with reference

to the analytic solution. Although the distribution shows the expected long tailed

behavior for the weakly supercritical case k = 1.012, very rapid fall-off is observed to

occur as the system becomes more supercritical. Moreover, the distribution clearly

loses mass with increasing k. That is, the normalization deviates increasingly from

unity, in contrast to the subcritical case where unit normalization was preserved

regardless of the level of subcriticality. In fact, it follows from Eq. 7.51 that pf > 0.5

gives
´∞

0 dφP (φ, t|s) = 1/pf − 1 = 2/k − 1 for the normalization, which is less than

unity. There is in fact a perfectly reasonable explanation for what at first blush is

a puzzling result, and to understand this result it is necessary to refer to the time
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asymptotic behavior of the neutron chain itself.

For a supercritical system it is known [3, 11] that as t → ∞ a neutron chain

will either diverge, i.e., the population will grow to infinity, with some probability

P∞ or become extinct, i.e., the population will vanish, with probability (1 − P∞).

There is zero probability of a finite neutron population existing. For the binary

fission multiplicity model in lumped geometry, the divergence probability is given by

P∞ = 2(1− 1/k) so that the extinction probability is just 2/k − 1 [3, 11], which we

note is the normalization factor above. Random variables (the neutron population in

our case) that can have a nonzero probability of assuming infinite values are known

as defective random variables [66] for which the infinite state probability must be

included to obtain a properly normalized distribution. Against this backdrop, we

can now understand the FPDFs in the supercritical case in Fig. 7.9. As soon as

the system becomes supercritical, unbounded growth of the neutron population can

occur (with probability P∞) and obviously the cumulative amount of fission energy

deposited by these diverging chains will likewise be infinite. However, for the chains

that eventually become extinct (with probability 1−P∞) there will be a finite amount

of fission energy deposited, although the neutron population has gone to zero in the

process. It is this component of the deposited energy whose distribution is captured

by the solution in Eq. 7.50 and plotted in Fig. 7.9 and the normalization is simply

the chain extinction probability, as it must be. With increasing k the likelihood of

chains diverging increases so a smaller mass of the distribution is captured by the

extinct chains. Eventually, for pf = 1 or k = 2 when there is no parasitic capture,

P∞ = 1 so that all chains diverge as will the amount of deposited fission energy.

Monte Carlo simulation of the supercritical case presents a challenge in that

diverged chains will require infinite simulation time. In implementation, chains were

simulated to a length of 106 neutrons and the fission energy deposited was accumulated

only for those chains that went extinct during this time. Chains that reached the

maximum length were assumed to diverge and their contribution to the deposited
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fission energy was added to the diverged component. The simulated results agree

with the analytical solution, although for the highly supercritical cases the chains

grew very rapidly, giving poor statistics for the larger energy deposition values due to

fewer realizations of the extinct chains for the same number of histories as the lower

k systems.

7.4 Single Chain FPDF Results for DifferingW (φ)

In this section, we devise schemes for sampling the amount of energy deposited in a

fission event depending on the form of the deposition distribution, W (φ); specifically,

we consider three distributions: the gamma distribution, the beta distribution, and

the truncated Gaussian distribution. Event Based Monte Carlo simulation results

are shown to demonstrate the behavior of the single chain FPDF for these differing

deposition distributions.

7.4.1 The Gamma Distribution

Using a gamma distribution to model W (φ) dφ was already realized in the previous

section, due to the simple form of its Laplace transform, to ascertain a steady-state

solution for the Binary Fission model. Replicating the distribution for ease of the

reader, we may write W (φ) dφ as:

W (φ) dφ = 4
E2
f

φ exp
{
− 2
Ef

φ

}
dφ, (7.54)

where φ ∈ [0,∞] and Ef is the average amount of energy deposited in an induced

fission event given by Eq. 7.49. We may obtain a PDF for the average-normalized

energy deposited per fission event by introducing the quantity ε = φ/Ef , and, by the

conservation of probability, we find:

W̃ (ε) dε = W (φ) dφ → W̃ (ε) = 4 ε exp
{
− 2ε

}
. (7.55)
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We next wish to sample ε from W̃ in the event of an induced fission by setting the

CDF equal to a random number ξ ∈ [0, 1]:

ξ =
ˆ ε

0
dε′W̃ (ε′) = 1− (2ε+ 1) exp

{
− 2ε

}
. (7.56)

Equation 7.56 is transcendental in ε, requiring the application of the Newton-Raphson

Iteration Method. We may sample a value of ε using the formula for the nth iteration:

εn = εn−1 + 1
2 + 1

4εn−1

(
1− ξ exp

{
2εn−1

})
, (7.57)

where we set the initial guess to be ε0 = 0.5. Once converged, such that εn is less

than some tolerance (we use a tolerance of 10−9), we accumulate the total energy

deposited for all fission events in a given history as:

ψ =
∑

ε. (7.58)

To recover the cumulative energy deposition, simply multiply Eq. 7.58 by Ef . One

must be careful not to confuse induced fission and spontaneous fission values of Ef if

one is accumulating ψ rather than φ for a given history involving sources because

Ef may differ between the two types of events. For this reason, it is recommended

not to accumulate ψ unless Ef is chosen to be a constant value for both induced and

spontaneous deposition events. On a final note, we recall the range of φ is [0,∞] and

this may cause unrealistically high energy deposition for select events. The next two

distributions consider an upper limit on the maximum energy that may be deposited

in an event.

7.4.2 The Beta Distribution

We next wish to compare the differences of the FPDF due to differing the energy

deposition distribution. Using the Beta Distribution of the First Kind, or simply the

Beta Distribution, the energy deposition distribution is stated as:

W (φ) dφ = φ1−α−β
u

B(α, β) · φ
α−1 (φu − φ)β−1 dφ (7.59)
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Table 7.6: Case-dependent Beta Distribution parameters

Case σφ α β

1 σΓ 2− 3Ef
φu

α
(
φu
Ef
− 1

)
2 rEf

1
r2

(
1− Ef

φu
(1 + r2)

)
r2α(α+1)

1−r2α

where φ ∈ [0, φu], φu is the maximum amount (upper limit) of energy deposited per

fission event, and B(α, β) = Γ(α)Γ(β)/Γ(α+β) is the Beta function. The distribution

given by Eq. 7.59 is a four-parameter distribution, where α and β are the shape

parameters and the limits on φ are the remaining two. The mean and standard

deviation of this Beta distribution are

φ =Ef = αφu
α + β

(7.60a)

σφ = φu
α + β

√
αβ

α + β + 1 . (7.60b)

The two positive shape parameters, α and β, may be determined in a myriad

of ways by using knowledge of the moments of the distribution; in the following

analysis we consider two cases, both of which assume the mean is known. In the

first case, we equate the standard deviation with that of the gamma distribution as

σφ = σΓ =
√

2Ef/2. For the second case, we choose to scale the standard deviation

to the mean, i.e., σφ = rEf for r ≥ 0. Table 7.6 summarizes the relationship between

the shape parameters and the moments for these two cases. We note that if we set

r =
√

2/2, the shape parameters for Cases 1 and 2 equate because the standard

deviation of the gamma distribution is σΓ =
√

2Ef/2.

Regardless of the shape parameters, the CDF of the beta distribution is
ˆ φ

0
dφ′W (φ′) = 1

αB(α, β) ·
(
φ

φu

)α
· 2F1

(
α, 1− β;α + 1; φ

φu

)

= I φ
φu

(α, β),
(7.61)
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(a) A = Analytical, MC = Monte Carlo (b) B = Beta Dist., G = Gamma Dist.

Figure 7.10: Monte Carlo simulation results for (a) the Case 2 beta distribution
W (φ) for differing r and (b) the single chain FPDF in a subcritical system (pf = 0.2)
for differing W (φ).

where 2F1 is the Gaussian hypergeometric function and Iφ/φu(α, β) is the regularized

incomplete beta function. Proceeding, we set Eq. 7.61 equal to a random number,

ξ ∈ [0, 1], and once again employ the Newton-Raphson Method to sample φ for a

given fission event. The iteration formula, in terms of Iφ/φu , is

φn = φn−1 +B(α, β)
[
ξ − Iφn−1

φu

(α, β)
] (

φn−1

φu

)1−α (
1− φn−1

φu

)1−β

, (7.62)

and once we have a converged value of φn, we calculate ε = φ/Ef , and we accumulate

ψ values according to Eq. 7.58.

In Fig. 7.10a, we show the Case 2 beta distribution for differing r values as

sampled by the given iteration scheme for 105 realizations of Eq. 7.62 as compared

to the analytical (A in the legend) distribution, Eq. 7.59, where we set the upper

energy limit to φu = 3.1Ef . For the r = 0.9 case, we see W →∞ for φ→ 0; this is

due to α < 1(= 0.51), causing the φα−1 factor in Eq. 7.59 to become a singularity

at φ = 0. For the r = 1.1 case, both α < 1(= 0.24) and β < 1(= 0.50), and we see

both end points of the distribution diverge. These diverging endpoint values have

no bearing on our ability to sample from the CDF of the Beta distribution because
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Iφ/φu(α, β) is bounded and normalized.

In Fig. 7.10b, we compare the FPDF for the beta distribution Cases 1 and 2 for

varying r values with the gamma distribution in a subcritical system with pf = 0.2,

k∞ = 0.4. Each of these distributions was obtained by running 107 histories out

to tf = 1, 250τ to ensure steady-state conditions are met. It is observed that the

Case 1 line deviates only slightly from the gamma distribution line due to the W (φ)

sharing the first two moments. We do not expect there to be an appreciable difference

for such a low multiplying system for minuscule fission energy deposition, but as

k → 1−, persistent fission chains are expected to occur more frequently, causing the

non-equivalent higher moments to differently affect the tails of the FPDFs.

Figure 7.11: Separation of the FPDF components for Case 2 with r = 1.1.

As r increases, we witness a “shouldering” behavior in the FPDF and this is

attributed to the increase in probability of φ = 0 and φ = φu for every fission event.

We now affix our attention on the extreme example for Case 2 with r = 1.1 in Fig.

7.11, recalling that we set φu = 3.1Ef for this exercise. We see a clear and dramatic
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increase in P (ψ = 3.1), corresponding to the upper limit of the first fission that

takes place in the simulated fission chain. As expected, the next shoulder occurs at

P (ψ = 6.2), and so on for every integer multiple of 3.1ψ. Figure 7.11 shows the single

chain FPDF and the components of the distribution for which histories concluded

with exactly one, two, or three fission events. As more fission events occur per history,

the distinctive inverted shape of W diminishes due to the overlapping of possible

successive φ combinations as well as an increase in the statistical noise in tandem

with the decreasing magnitude of the probability for increasing ψ. These component

distributions are obtained by adding to a separate designated histogram at the end

of each history if the condition that the number of fissions that occurred is met.

7.4.3 The Truncated Gaussian Distribution

The beta distribution provides interesting results and allows insight into the behavior

of the FPDF for increasingly exotic shapes of the fission energy deposition distribution,

W (φ); another form worth investigating is the truncated Gaussian distribution. We

choose to truncate the upper and lower bounds of a general Gaussian distribution with

mean φp and standard deviation σp. Here, the subscript p refers to the parent, general

Gaussian distribution. The truncated bounds of the energy deposition distribution

are set to a minimum value φ`, and maximum value φu, such that φ ∈ [φ`, φu]. With

this, the truncated Gaussian form of the fission energy deposition distribution is

defined as

W (φ) dφ =
ω
(
φ−φp
σp

)
σp

[
Ω
(
φu−φp
σp

)
− Ω

(
φ`−φp
σp

)] dφ, (7.63)

where ω is the probability density function of the standard normal distribution,

ω(χ) = 1√
2π

exp
(
−1

2χ
2
)
, (7.64)
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and Ω is the CDF of ω:

Ω(χ) = 1
2

[
1 + erf

(
χ√
2

)]
. (7.65)

Also, erf is the error function:

erf(χ) = 2√
π

ˆ χ

0
dt exp

{
−t2

}
. (7.66)

By setting the CDF equal to a uniformly distributed random number, ξ, we may

invert the CDF to sample an amount of energy deposited in the event of an induced

fission using the formula:

φ = φp + σp
√

2 erf−1
{
ξ

[
erf

(
φu − φp
σp
√

2

)
+ erf

(
|φ` − φp|
σp
√

2

)]
− erf

(
|φ` − φp|
σp
√

2

)}
,

(7.67)

where we have assumed φ` < φp. In the next subsection, we discuss a methodology

for obtaining the moments of the parent distribution based on assumptions and

restrictions imposed on the truncated distribution’s moments- allowing us to then

sample deposition values from Eq. 7.67.

7.4.4 Prerequisites for the Truncated Gaussian Distribution

Although the truncated Gaussian distribution provides a simplification in the sampling

of φ using Eq. 7.67 because we do not need to iterate, other complications arise. The

first issue is made apparent when one wishes to compare the truncated Gaussian to

the previous beta distribution and gamma distribution- we may immediately equate

the moments of the truncated Gaussian to

φ = Ef (7.68a)

σφ = rEf , (7.68b)

but Eq. 7.67 requires knowledge of the moments of the parent Gaussian distribution,

φp and σp. The truncation of the parent distribution is a mean-preserving contraction
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combined with a mean-changing rigid shift, and hence the variance of the truncated

distribution is less than the variance of the parent normal distribution. We may relate

the first two moments using the formulae:

φ = φp + σp

[
ω(a)− ω(b)
Ω(b)− Ω(a)

]
(7.69a)

σφ = σp

√√√√1 + aω(a)− bω(b)
Ω(b)− Ω(a) −

[
ω(a)− ω(b)
Ω(b)− Ω(a)

]2

(7.69b)

where

a = a
(
φp, σp

)
=
φ` − φp
σp

, (7.70a)

b = b
(
φp, σp

)
=
φu − φp
σp

. (7.70b)

In order to compute φp and σp such that φ = Ef and σφ = rEf , we must determine

the roots of Eq. 7.69. This is accomplished by, once again, employing the Newton-

Raphson method to iteratively solve the transcendental-in-φp and -σp system of

equations:

f
(
φp, σp

)
= 0 = φp − φ+ σpA(a, b) (7.71a)

g
(
φp, σp

)
= 0 = σp −

σφ√
1 +B(a, b)− [A(a, b)]2

, (7.71b)

where we have defined A and B as:

A
(
a
(
φp, σp

)
, b
(
φp, σp

))
= ω(a)− ω(b)

Ω(b)− Ω(a) (7.72a)

B
(
a
(
φp, σp

)
, b
(
φp, σp

))
= aω(a)− bω(b)

Ω(b)− Ω(a) . (7.72b)

We may then iterate on φp and σp until convergence is achieved; for the nth iteration,

the system of updating equations isφp,n
σp,n

 =

φp,n−1

σp,n−1

− J−1
n−1

f(φp,n−1, σp,n−1)

g(φp,n−1, σp,n−1)

 , (7.73)
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Table 7.7: Jacobian matrix entries for the parent Gaussian distribution iterative
scheme.

y

φp σp

∂f
∂y

1 + σp
∂A
∂φp

A+ σp
∂A
∂σp

∂g
∂y

σφ

2(1+B−A2)3/2

(
∂B
∂φp
− 2A ∂A

∂φp

)
1 + σφ

2(1+B−A2)3/2

(
∂B
∂σp
− 2A ∂A

∂σp

)
∂A
∂y

1
σp

(B + A2) 1
σp

(
a2ω(a)−b2ω(b)

Ω(b)−Ω(a) + AB
)

∂B
∂y

1
σp

(
(a2−1)ω(a)−(b2−1)ω(b)

Ω(b)−Ω(a) + AB
)

1
σp

(
(a2−1)aω(a)−(b2−1)bω(b)

Ω(b)−Ω(a) +B2
)

where Jn−1 is the Jacobian matrix of the previous iteration, defined as

Jn−1 =


∂f

∂φp

∣∣∣∣
(φp,n−1,σp,n−1)

∂f
∂σp

∣∣∣∣
(φp,n−1,σp,n−1)

∂g

∂φp

∣∣∣∣
(φp,n−1,σp,n−1)

∂g
∂σp

∣∣∣∣
(φp,n−1,σp,n−1)

 , (7.74)

and the entries of the Jacobian matrix are listed in Table 7.7 for convenience.

We may assess the convergence status of the iterative scheme by comparing the

set values φ = Ef and σφ = rEf with the truncated moments computed with Eqs.

7.69a and 7.69b using φp,n and σp,n. Once a prescribed tolerance in the relative

error has been satisfied, we declare the iteration process to be complete. In Fig.

7.12a, we demonstrate the effect on the mean of the parent distribution due to the

scaling factor of the standard deviation of the truncated Gaussian distribution, r, for

varying upper limit energy values, φu. These results are for a convergence tolerance

of 10−9, φ` = 0, φ = 180, and initial guesses of φp,0 = 180 and σp,0 = 180r. It is

apparent that φp dramatically decreases over small ranges of r, causing the number

of iterations to diverge, as seen in Fig. 7.12b. Also of note, we observe that φp
approaches an asymptotic value for increasing φu (the φu/Ef = 5 and 10 lines are

nearly indistinguishable); this is due to the diminishing mass in the higher-φ region

of the parent distribution, causing a lessening effect on the truncated distribution’s

profile.
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(a) (b)

Figure 7.12: (a) Parent Gaussian distribution mean as a function of truncated
Gaussian’s standard deviation scaling factor, r. (b) The number of iterations required
to converge for varying parent distribution mean, where the initial guesses are
φp,0 = Ef and σp,0 = rEf .

(a) (b)

Figure 7.13: L2-norm error in the approximated inverse error function for (a) the
φu/Ef = 2.5 case and varying r, and (b) for varying φu/Ef where φp = 0.

The second issue concerns the evaluation of the inverse error function in the

sampling formula Eq. 7.67, erf−1(x), for {x ∈ R|x ∈ (−1, 1)}. It is approximated
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using the N -order truncated Maclaurin series:

erf−1(x) =
N∑
k=0

ck
2k + 1

(√
π

2 x

)2k+1

, (7.75)

where c0 = 1, and

ck =
k−1∑
m=0

cmck−1−m

(m+ 1)(2m+ 1) . (7.76)

The necessary truncation order may be determined by randomly selecting ξ ∈ [0, 1]

and evaluating the argument of erf−1 in Eq. 7.67 a total of H times and calculating

an L2 error norm as

ε =

√√√√ 1
H

H∑
h=1

(
erf−1

T (ξh)− erf−1(ξh)
)2
, (7.77)

where erf−1
T is the assumed true, accurate calculation, and erf−1 is determined by Eq.

7.75. If we then run H simulations a total of B times, we will obtain a distribution

of error norms, and that distribution of ε approaches a Gaussian distribution in

accordance with the Law of Large Numbers. We then determine the average L2 error

norm, ε, from the distribution of B ε values:

ε = 1
B

B∑
b=1

εb. (7.78)

In Fig. 7.13a, we show ε as a function of the series truncation order, N , for the

φu/Ef = 2.5 case for r ∈ [0.6, 0.7], corresponding to the region of strongly varying φp
(see Fig. 7.12a). These results were obtained for H = 105, B = 20, and erf−1

T was

calculated using MATLAB’s intrinsic inverse error function. We see that ε drops to

the machine precision limit for N > 100 and r = 0.67, corresponding to φp → 0+, but

once φp < 0, ε quickly diverges. This supports the need to prevent φp from taking on

negative values.

A final analysis regarding the accuracy of the inverse error function approximation

is shown in Fig. 7.13b, where we have chosen to determine the L2-norm error at
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Table 7.8: Neutron multiplicity distributions used.

Method qf0 qf1 qf2 qf3 qf4 qf5 qf6

Full 0.0222 0.200 0.306 0.307 0.136 0.0248 0.0004

Bounded Integer 0.0 0.0 0.575 0.425 0.0 0.0 0.0

Binary Fission 0.0 0.0 1.0 0.0 0.0 0.0 0.0

φp = 0 for varying upper bounds, φu. The value of r that provides φp = 0 was

determined by iterating on rn and σp,n (and setting φp = 0) from a similar system

derived from Eqs. 7.69a and 7.69b, covered in Appendix E. It can be seen that

the error saturates for increasing φu, and to minimize the error, one should reduce

φu. Unfortunately, φu is a parameter with physical significance, thus reducing it to

numbers near or below φ will provide unrealistic distributions. To remain consistent

with the maximum energy deposited per fission with φu = 3.1φ, we choose to set

N = 200 to have an L2 error of ε ≈ 3 · 10−7.

7.4.5 Truncated Gaussian Distribution Results

With the numerical considerations of the Sec. 7.4.4 in mind, we are now prepared

to perform Monte Carlo simulations of systems with varying criticality in order to

determine the FPDF with an induced fission energy deposition distribution taking

the form of a truncated Gaussian distribution. Figure 7.14 shows several truncated

Gaussian distributions as determined through Monte Carlo sampling and compared

to the analytical distribution, Eq. 7.63, for φ` = 0, φu = 3.1Ef = 558 MeV , and

the parent moments are determined using the Newton-Raphson iteration scheme

previously discussed.

Figure 7.15a shows the single chain FPDF profiles for a subcritical system with

k = 0.4, ν = 2.4245, and multiplicity data is given in Table 7.8 for the full multiplicity
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Figure 7.14: The truncated Gaussian energy deposition distribution; analytical (-)
and Monte Carlo (x) results.

distribution. We vary the width of W (φ) by scaling r in σφ = rEf . As was observed

with the beta distribution for varying values of r, the FPDF displays shoulders for wide

deposition distributions corresponding to high values of r, and highly concentrated

consecutive peaks for lower r values. In the Monte Carlo simulations, we construct

the component distributions of the FPDF for which precisely a single fission, two

fissions, or three fissions occurred throughout the history, shown in Fig. 7.15b. For

the prominently-peaked FPDF with r = 0.3, we see the component distributions

centered about integer values of ψ with a positive skew corresponding to the higher

energy tail of W (φ). For the FPDF with r = 0.71, because W is more broad, the

shoulders appear near the ψ = φu/Ef = 3.1- in accordance with a higher frequency

of occurrence of the maximum energy deposited in a fission.

Next, we demonstrate the effect of the standard deviation coefficient of the energy

deposition distribution, r, for varying system criticality. In the limit of r → 0, we
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(a) (b)

Figure 7.15: The FPDF in a subcritical system (k = 0.4) for (a) differing r values
and (b) the separation of the FPDF components where precisely 1, 2, or 3 fissions
occur. Nf is the total number of fissions to have occurred.

see from Eqs. 7.68a and 7.68b that the moments of the truncated distribution are

φ = Ef and σφ = 0. For these limits to hold in Eqs. 7.69a and 7.69b, the limits of

the moments of the parent Gaussian distribution must be φp = φ = Ef and σp = 0

for r → 0. From this, we may determine the limit of W (φ) as:

lim
r→0+

W (φ) = lim
φp→Ef

lim
σp→0+

W (φ)

=2

 lim
σp→0+

1

erf
(
φu−Ef√

2σp

)
+ erf

(
|φ`−Ef |√

2σp

)

 lim
σp→0+

exp
(
− [φ−Ef ]2

2σ2
p

)
√

2πσ2
p

 ,
where we have enforced that φ` < Ef , which allows us to apply the identity erf(−|a|) =

− erf(|a|). The first bracketed limit is evaluated using the identity limx→0 erf(1/x) = 1,

thus the first limit is equal to 1/2. The second bracketed limit equals 0 whenever

φ 6= Ef , and it equals∞ when φ = Ef ; thus, by also recalling thatW (φ) is normalized,

this limit satisfies the criterion of the Dirac delta function as having infinite magnitude

at a singular point with unit area. This provides us with the result:

lim
r→0+

W (φ) = δ(φ− Ef ). (7.79)
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Unfortunately, for what appears to be an intuitively simple-in-form distribution given

by Eq. 7.79, there does not appear to be an attainable analytic form of P (φ) due

to the non-invertible expression of the generating function. However, we may still

employ the Monte Carlo method to study lumped systems and the consequences of

reducing r.

(a) (b)

Figure 7.16: The FPDF in a subcritical system (k = 0.4) (a) for several differing r
values and (b) for r = 0.05, 0.71, to demonstrate the separation of the FPDF tails as
a function r.

Figure 7.16a shows the FPDF as attained by Monte Carlo simulation of a sub-

critical system with k = 0.4 for a variety of standard deviations of W (φ). It is clear

that the FPDF undergoes a drastic qualitative change in the limit of r → 0, where it

can be seen that the energy deposited by successive fissions of a propagating chain

become separated to the point they appear to be an array of Dirac delta functions of

diminishing magnitude. For the two extremes of r = 0.05, 0.71, we show in Fig. 7.16b

that the tails of P (ψ) become noticably separate for increasing values of ψ, confirming

the intuition that the probability of more cumulative energy being deposited within

the system will occur for a more broad W (φ).

For the near-critical case of k = 0.98, where non-divergent fission chain reactions

have the potential to persist for uncharacteristically long time periods, we see in Fig.
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Figure 7.17: Per Fig. 7.16, but for k = 0.98 with varying r values.

7.17 that the tail of the FPDF tends to converge regardless r. This is to be expected

because the longer-lived chains occur with greater frequency (compared to the k = 0.4

case), increasing the average cumulative energy deposited, φ, and thus the difference

in the tails of the distributions are not apparent for this suite of simulations. It is

true, however, that if one were to refine the statistics to this calculation, there would

be a clear difference in the distributions at much higher ψ than is currently feasible.

Figure 7.18 shows the FPDF for varying r in a supercritical system with k = 1.1.

We see that the distributions tend toward a common asymptote. As we saw with the

subcritical case, we expect there to be a difference in the higher energy deposition

tails, but for supercritical systems this becomes unfeasible to simulate with analog

Monte Carlo. The reason for this lack of feasibility is that the supercritical system

does not have a steady-state distribution, except for the infinite future where the

FPDF has a diverged component and a finite distribution corresponding to the chains

that happen to go extinct but still deposit energy when they were propogating. In

order to obtain this extinct component, we must run the MC simulation to long
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Figure 7.18: Per Fig. 7.16, but for k = 1.1 with varying r values.

enough times that we may then discern a diverged chain from an extinct one, this is

where the difficulty arises. For the case presented in Fig. 7.18, we could run the MC

to longer final times in an attempt to resolve the higher energy tails of the respective

FPDFs, or we could increase the multiplication factor to mirror the subcritical case,

both of which require more computational power than is available at the time of

this writing, but it is expected that we would see a separation of the distributions in

either case.

Finally, we wish to compare the FPDF for differing W (φ), namely the gamma

distribution and the truncated Gaussian distribution. We compare the case where

both distributions have the same standard deviation (all W (φ) presented thus far

have had the same mean, Ef = 180 MeV ). The standard deviation of the gamma

distribution is given by σΓ =
√

2Ef/2 ≈ 0.71Ef , which by design corresponds to the

r = 0.71 cases we have considered in this section. Figure 7.19 shows a comparison of

the FPDF for the different W (φ) at several criticality regimes. For the low energy

deposition region, we see an expected difference in the FPDF profiles due to the
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fact that this region is only affected by the single-fission outcomes, and thus the

shape of the FPDF mimics that of W . We immediately witness a convergence of the

distributions once we surpass the ψ = 3.1 limit of the first fission (recall φu = 3.1Ef
for the TG). This behavior suggests that two functionally different energy deposition

distributions will produce the same high-energy tails of the FPDF, given those W

distributions have the same mean and standard deviation.

Figure 7.19: Comparison of the FPDF as given byW (φ) being a gamma distribution
(Γ) and a truncated Gaussian distribution (TG) for varying k.

7.5 Effects of the Multiplicity Distribution

The previous analysis has restricted the neutron multiplicity to the binary case.

We now consider two less restrictive neutron emission possibilities, introducing an

additional element of stochasticity to the problem space. We compare the natural

full distribution of 238U taken from [67] for ν = 2.45 with the bounded integer

sampling method used in the MCNP code [68]. For completion, Table 7.8 displays

190



Chapter 7. The Cumulative Fission Energy Deposition Distribution

Figure 7.20: The FPDF for W (φ) being a gamma distribution and comparing the
full emission distribution (FD) with the bounded integer emission method.

the multiplicity distributions. With the bounded integer method, the distribution is

decided by enforcing there to be either 2 or 3 neutrons emitted per induced fission

event and the probabilities are then determined via the first two moments of the

multiplicity distribution, i.e.,

1 = qf2 + qf3 (7.80a)

ν = 2qf2 + 3qf3 . (7.80b)

Solving the system of Eq. 7.80 results in the probabilities seen in Table 7.8. It is

expected that the PDFs produced will differ from the BFM analytical solution, and

we do not show a comparison. In Fig. 7.20, we show for the case where W (φ) is a

gamma distribution and several differing fission probabilities of pf = [0.16, 0.40, 0.62],

corresponding to multiplication factors of k = [0.392, 0.98, 1.519], respectively. It is

clear that the system criticality has an effect on the PDF produced depending on

the multiplicity model employed. For the highly subcritical case, the lines begin to
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show non-negligible separation for ψ > 10, where the neutron muliplets emerging

from the full distribution simulation cause a greater deposition of energy into the

system. For the highly supercritical case, the separation of the lines is immediate

and dramatic, showing how the bounded integer method is wholly insufficient in

modeling such a stochastic system. This is to be expected, as the bounded integer

method preserves only the first two moments of the multiplicity distribution and

any underlying randomness of a given fission event is neglected. This is not as

important in the near-critical case, where the branches of the fission chain are not as

crucial to the behavior of the energy deposition distribution, and the mean tends to

dominate the higher order moments. A final observation concerns the runtime of these

simulations, where the bounded integer method took, on average, twice as long to

complete. This is due to the fact that the bounded integer method must simulate an

additional two or three neutrons for every fission event while the full distribution has

the opportunity to simulate more lesser-emitting fission events, causing the simulation

to be substantially less costly. With these observations, it is recommended that a

consideration of the full distribution is tantamount in attaining the true FPDF, with

the added benefit of computational efficiency as compared to the bounded integer

method.

7.6 Lumped Results of the FPDF with a Source

Up to this point, we have only considered the probability distributions of the cumula-

tive energy deposition from a single neutron chain reaction. This has its usefulness

in that one may assess the safety regime a particular system exists within, and if a

single neutron chain has the potential of diverging, precautions must be engineered

into place to prevent such circumstances. A more realistic situation actually involves

systems which contain randomly emitting sources which, primarily, are intrinsic to

the multiplying medium itself. In this section, we consider lumped geometry systems
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Table 7.9: Some parameters and data for the source simulations.

k tf τ χ′2 · 10−8 Q(0) with S = · · · [s−1]
[ns] [s−1] 102 104 106

0.40 60τ 4.4469 1.7441 0.9999734 0.9973379 0.7658057
0.98 30τ 3.1815 5.9498 0.9999905 0.9990476 0.9089590
1.10 30τ 2.9012 7.3777 0.9999913 0.9991313 0.9166428

with sources of strength S, defined as the probability per unit time that a source

event will occur. From any given event, a stochastic amount of energy is deposited as

well as an emission of a random set of neutron multiplets, each one then propagating

their own branches of the chain reaction. From this, it is clear why we began our

investigation of the single chain to develop an intuition of multifold chain behavior.

As we are interested in the cumulative energy deposited, we may sample from the

source energy deposition distribution, WS(φ), before following the neutrons emitted

from the collection of source events. Upon accumulating the fission energy deposited

from the source events, the simulation of each source fission chain proceeds in a

typical manner, where we accumulate the induced fission energy that is deposited

within the system. We continue our analysis of a 238U system with the spontaneous

fission multiplicity distribution taken from [69], which has the first two moments:

νS = 2.1538 and ν2
S = 5.9450. Figure 7.21 displays the FPDF due to the presence

of a source, Q(ψ), for several source strengths and multiplication factors. We set

W (φ) and WS(φ) to be gamma distributions for both induced fission and spontaneous

fission, each with Ef = 180 MeV , and some other quantities are displayed in Table

7.9.

For the S = 102 1/s cases for each k, we ran 1010 total histories to resolve such

low-probability distributions out to tf ; note that the majority of the probability

mass is contained in the singular Q(ψ = 0) value (shown in Table 7.9) corresponding

to simulations where no source events occur. For the S = 104, 106 1/s cases, 109

total histories were performed. As the source strength increases, corresponding to an
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increase in the probability of source events occurring per unit time, the distributions

increase in magnitude equivalent to the increase in the magnitude of the source

strength, as seen in Fig. 7.21. For the k = 1.1 case, we would expect the tails to

decrease in magnitude if we simulated the system to a later final time, this would

be due to the increase in chains that have reached the divergence criteria, which we

have set to be 105 neutrons per chain, which would then not contribute to the finite

ψ portion of the distribution.

Figure 7.21: The FPDF in the presence of a source for systems of varying criticality.
Here, x determines the magnitude of S, such that S = 10x 1/s.

As was observed by Prinja and Souto, the neutron number probability distribution

in the presence of a source, Pn, will transition from a monotonically decreasing

distribution to a unimodal distribution as the source strength is increased [11, 12].

This transition may be quantified by the magnitude of Bell’s η parameter (originating

in [3]), defined as

η = 2S
χ′2

= 2S
λf
(
ν2 − ν

) , (7.81)
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(a) (b)

Figure 7.22: In the presence of a constant randomly emitting source, (a) the neutron
number distribution as it transitions from a stochastic to a deterministic system and
(b) the accompanying FPDFs.

where λf = pf/τ is the induced fission reaction rate and pf = k/ν is the probability

of fission. We see, then, that for a set material and criticality, η is only a function

of S. Prinja and Souto observed that the aforementioned transition occurs when

η < 1 → η > 1, corresponding to a transition of the neutron number distribution

from a stochastic quantity to a deterministic one. Every line in Fig. 7.21 pertains

to a source that is too weak to make η > 1, thus these systems are still behaving

stochastically with regards to the neutron number distribution.

For the k = 0.4 example, we have χ′2 = 1.7441 · 108 1/s, and from this η =

1.1467 · 10−8 · S. If we then select source strengths such that we may set η to values

near unity, we may study the effects of the FPDF with a source as the neutron

number distribution undergoes its transition. Figure 7.22 shows the neutron number

distribution undergoing this change for increasing η, and the accompanying FPDFs.

Although the FPDF in the presence of a source (and the single chain FPDF, for that

matter) is always a unimodal distribution for ψ 6= 0 for the W (φ) we have studied,

we see that the transition from η < 1→ η > 1 corresponds to the Q(ψ = 0)→ 0 and
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thus the distribution ‘flattens’ as the mass motivates toward ψ =∞.

We next contrast the single chain FPDF, P (ψ), with the source FPDF, Q(ψ), for

the case where the neutron number distribution in the presence of a source is stochastic

as well as deterministic. Figure 7.23 shows the single chain FPDF superimposed

onto Fig. 7.22b, illustrating the vast difference in energy deposition for the k = 0.4

system. This result implies that, even if a system has low multiplication properties,

if a source in strongth enough, there may still be a significant amount of energy

deposited within the system in a relatively short time. Figures 7.24 and 7.25 show

the same contrast, but for the k = 0.98 and k = 1.10 systems. In these higher k

simulations, we increased the cumulative energy cutoff from 105 MeV up to 106 MeV

in order to capture the breadth of these distributions. The single chain distributions

were run to 108 histories, while all the source distributions were run to 107 histories.

Figure 7.23: Comparison of P (ψ) with differing Q(ψ) for a k = 0.4 system.
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Figure 7.24: As for Fig. 7.23 but for a k = 0.98 system.

Figure 7.25: As for Fig. 7.23 but for a k = 1.10 system.
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Chapter 8

The Boltzmann Master Equation

Formulation

The topics and methods that have been discussed in this document allow us to now

introduce recent research that permit one to obtain, in principle, the neutron number

distribution in unlumped (full phase-space) systems. In short, this is accomplished

by treating the neutron population as a continuous variable and thus the discrete

probability distribution function becomes a continuous probability density function

in n; for example, in the lumped setting, the transition is made: Pn(t)→ P (n, t) dn.

The presented methodology circumvents the traditional difficulties in obtaining the

full distribution, whether it be by propagated error through numerical inversion of

the generating function solution [40] or cumbersome and labor-intensive numerical

solution of the set of coupled Master equations investigated by Saxby et. al [41].

We show a derivation of the equations for the single neutron chain and the

separate equations with intrinsic sources for the PDFs. We then show a reduction

to point models so as to demonstrate preliminary work that has been completed

and benchmarked against Monte Carlo and analytical lumped model equations. As

it stands, this chapter proves inconclusive in our attempt at treating the neutron
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number as a phase-space variable and thus allowing us to perform standard numerical

discretization schemes on n to quickly obtain the number distribution. In that sense,

the reader should interpret this chapter as a laying of the groundwork of this novel

formulation and, in that vain, there are many future work aspects worth pursuing

which we will discuss in Chapter 9.

8.1 Derivation of the Principle Equations

We begin this section by reminding the reader of the Pál-Bell equation, derived

in Chapter 5, whose solution is Pn(R, tf |~r, Ω̂, t): the probability of there being n

neutrons in R, a subvolume of (~r, Ω̂), at a final time of observation tf due to the

appearance of a single neutron at the location ~r moving in direction Ω̂ at an earlier

time t < tf :

Pn
(
R, tf |~r, Ω̂, t

)
=
ˆ `(sb,st)

0
dsΣt

(
~r + sΩ̂, t+ s

v

)
e−
´ s
0

ds′Σt
(
~r+s′Ω̂,t+ s′

v

)
+

νfm∑
ν=0

cν

(
~r + sΩ̂, t+ s

v

) ∑
n1+···+nν=n

ν∏
k=1

ˆ
4π

dΩk

4π Pnk

(
R, tf |~r + sΩ̂, Ω̂k, t+ s

v

)
+

3∑
j=1

Aj,

(8.1)

where the Aj terms account for the possibility that the neutron does not interact

with the material before leaving the system or before time tf , defined by Eq. 5.2.

Next, we introduce the discrete moment generating function (DMGF),

Md(z,R, tf |~r, Ω̂, t) =
∞∑
n=0

e−nzPn(R, tf |~r, Ω̂, t), (8.2)

with the aim of applying it to Eq. 8.1. In doing so, and then taking the difference

between Md(z|~r + ∆sΩ̂, Ω̂, t + ∆s/v)−Md(z|~r, Ω̂, t) and take the limit as ∆s→ 0,

we find a nonlinear partial differential equation describing the behavior of Md near

199



Chapter 8. The Boltzmann Master Equation Formulation

the point ~r. If we now assume that the neutron population is large enough such that

the discrete neutron number variable may be treated as a continuous variable, we

may make the conversion from a discrete PDF to a probability density function:

Pn(R, tf |~r, Ω̂, t)→ P (n,R, tf |~r, Ω̂, t) dn, (8.3)

then we may simultaneously convert the DMGF from a summation over n into a

continuous moment generating function (CMGF), Mc, defined as:

Mc(z,R, tf |~r, Ω̂, t) =
ˆ ∞

0
dne−nzP (R, tf , n|~r, Ω̂, t),

= Ln→z{P (R, tf , n|~r, Ω̂, t)},
(8.4)

which we immediately recognize as the Laplace Transform of P (n). We may formally

obtain P (n) by the inverse Laplace Transform of the CMGF as

P (n) = L−1
z→n{Mc(z)}. (8.5)

Further, it proves expedient and favorable in obtaining numerical and analytical

solutions to define the complementary CMGF:

Mc(z,R, tf |~r, Ω̂, t) = 1−Mc(z,R, tf |~r, Ω̂, t), (8.6)

and, upon applying the inverse Laplace Transform to Eq. 8.6, we find a quantity

henceforth referred to as the neutron number PDF pseudo-density:

P̃ (n,R, tf |~r, Ω̂, t) = δ(n)− P (n,R, tf |~r, Ω̂, t). (8.7)

Equation 8.7 provides an identity to obtain P (n) given the pseudo-density is known.

By applying the inverse Laplace Transform to the PDE satisfied byMc, an equation

satisfied by the pseudo-density is obtained:[
− 1
v

∂

∂t
− Ω̂ · ~∇+ Σt(~r, t)

]
P̃ (n|~r, Ω̂, t) =

(
Σs(~r, t) + νΣf (~r, t)

)ˆ
4π

dΩ′
4π P̃ (n|~r, Ω̂′, t)

− Σf (~r, t)
J∑
j=2

(−1)jχj(~r)
j!

ˆ
4π

dΩ′
4π P̃ (n|~r, Ω̂′, t)

~j−1
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(8.8)

where we have suppressed the explicit dependence on R and tf and the j-way

autoconvolution operator is defined as [71]:[
P̃ (n)

]~j
=
ˆ n

0
dnjP̃ (nj)

ˆ n−nj

0
dnj−1P̃ (nj−1) · · ·

· · ·
ˆ n−

∑j

k=2 nk

0
dn1P̃

n− j∑
k=1

nk

P̃ (n1).
(8.9)

The final condition for Eq. 8.8 is

lim
tf←t

P̃ (n,R, tf |~r, Ω̂, t) = δ(n)− δ(n− 1) for ~r, Ω̂ ∈ R (8.10)

and the boundary condition is given by

P̃ (n,R, tf |~r, Ω̂, t) = 0 for ~r ∈ ∂V, n̂b · Ω̂ > 0, (8.11)

where ∂V is the convex surface of the system and n̂b is the corresponding unit surface

normal vector.

Of significance is that in Eq. 8.8 we have an equation for the pseudo-density

wherein the neutron number appears as a continuous independent variable in the

range 0 < n < 1. This equation inherits features of the moment generating function

equation but crucially it is in “real” space form with respect to the neutron number n

that make direct numerical computation feasible. This is in contrast to the moment

generating function equation with its dependence on an unphysical transform variable

that must be continued into the complex plane and relying on numerical inversion

techniques for its solution. Equation 8.8 is a novel nonlinear transport equation (in

adjoint form) with the phase-space extended to contain the neutron number and the

branching process represented explicitly through convolutions of the pseudo-density.

As such, standard numerical and other approximation techniques for solving the linear

transport equation can be adapted to solve Eq. 8.8 for the pseudo-density, with the

true PDF obtained from Eq. 8.7. Finally, in view of the connection to the underlying
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Master equation and the similarity to a transport equation, we refer to Eq. 8.8 as

the Boltzmann Master Equation or BME. Generalizing the BME to include energy

dependence would not change the functional form of Eq. 8.8, as the linear adjoint

operators for scattering and fission would simply adopt their customary general forms

[51], while the autoconvolution terms would, in addition to the angle integral, include

an energy integral weighted by the fission energy spectrum.

In the next section, we simplify the form of the BME by applying the Quadratic

Approximation to the nonlinear autoconvolution terms, but first we present the

auxiliary equations for the number distribution in the presence of a neutron source.

We now consider the auxiliary equation for a system with an intrinsic randomly

emitting source. Let Θn(tf |to) be the probability that n neutrons exist within the

system at time tf due to the introduction of a volumetric source, S(~r, to), at some

earlier time to. Allowing for separability of the source, S(~r, to) = ω(~r)S(to), with´
V

d~rω(~r) = 1, it can be shown that Θn(tf |to) satisfies the partial differential equation:

−∂Θn(tf |to)
∂to

= −S(to)Θn(tf |to) + S
νSm∑
k=1

ˆ
V

d~rω(~r)qSk (~r)


∑

n1+...+nk+mk=n
Θmk(tf |to)

k∏
j=1

ˆ
4π

dΩ′
4π Pnj(R, tf |~r, Ω̂, to)

,
(8.12)

with final condition limtf←to Θn(tf |to) = δn,0.

We proceed by defining the discrete moment generating function for the source

case as

MS
d (z, tf |to) =

∞∑
n=0

e−nzΘn(tf |to), (8.13)

which we may apply to Eq. 8.12. We now elect to convert the discrete generating

function transform into a continuous one by treating Pn and Θn as probability density

functions; then, Θn → Θ(n) dn, and we write the continuous moment generating
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function transform as

MS
c (z, tf |to) =

ˆ ∞
0

dne−nxΘ(n, tf |to),

= Ln→z{Θ(n, tf |to)}
(8.14)

where it is immediately clear that this definition has the form of the Laplace transform,

and we use the formal shorthand as before. This provides a means of determining

the continuous PDFs by inverting the Laplace transform:

Θ(n, tf |to) = L−1
z→n{MS

c (z, tf |to)}. (8.15)

We ultimately find

−∂Θ(n, tf |to)
∂to

=− S(to)Θ(n, tf |to) + S(to)
νSm∑
k=1

ˆ
V

d~rω(~r)qSk (~r)


Θ(n, tf |to) ∗

[ ˆ
4π

dΩ′
4π P (n, tf |~r, Ω̂′, to)

]~k−1
,

(8.16)

with final condition limtf←to Θ(n, tf |to) = δ(n); this is consistent with the discrete

PDF’s final condition, being that there are zero neutrons in the system if the

observation time, tf , is also the time the source is introduced into the system. We

note that the solution convolved with the j-way autoconvolution is defined as

Θ(n) ∗
[
P (n)

]~j−1
=
ˆ n

0
dnjP (nj)

ˆ n−nj

0
dnj−1P (nj−1) · · ·

· · ·
ˆ n−

∑j

k=2 nk

0
dn1P

n− j∑
k=1

nk

Θ(n1).
(8.17)

By convention, we may only be concerned with a singlet emitting neutron source,

such that qSν = δν,1, and Eq. 8.16 reduces to

−∂Θ(n, tf |to)
∂to

=− SΘ(n, tf |to)

+ S
ˆ n

0
dn′Θ(n′, tf |to)

ˆ
V

d~rω(~r)
ˆ

4π

dΩ′
4π P (n− n′, tf |~r, Ω̂′, to).

(8.18)

We will consider Eq. 8.18 in the following sections where we present a discretization

framework for numerically solving Eqs. 8.29 and 8.18.
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8.1.1 The Quadratic Approximation

Assuming that the Quadratic Approximation holds, we truncate the nonlinear terms

at second order and Eq. 8.8 simplifies to

−1
v

∂P̃

∂t
− Ω̂ · ~∇P̃ + ΣtP̃ (n|~r, Ω̂, t) =

(
Σs + νΣf

)
P̃o(n|~r, t)

− Σfχ2

2

ˆ n

0
dn′P̃o(n− n′|~r, t)P̃o(n′|~r, t),

(8.19)

where P̃o(n|~r, t) =
´

4π dΩ′P̃ (n|~r, Ω̂′, t)/4π and the final and boundary conditions are

given by Eqs. 8.10 and 8.11.

By now introducing the decomposition of P̃ into a singularity appended with a

continuous function of n:

P̃ (n,R, tf |~r, Ω̂, t) = γ(R, tf |~r, Ω̂, t)δ(n)−Q(n,R, tf |~r, Ω̂, t), (8.20)

it can be shown that by inserting Eq. 8.20 into Eq. 8.8, we have two nonlinear adjoint

equations for γ and Q:− 1
v

∂

∂t
− Ω̂ · ~∇+Σt

γ(~r, Ω̂, t) =
(
Σs + νΣf

)
γo(~r, t)−

Σfχ2

2

[
γo(~r, t)

]2
, (8.21)

and− 1
v

∂

∂t
− Ω̂ · ~∇+ Σt

Q(n|~r, Ω̂, t) =
(
Σs + νΣf

)
Qo(n|~r, t)− Σfχ2γo(~r, t)Qo(n|~r, t)

+ Σfχ2

2

ˆ n

0
dn′Qo(n− n′|~r, t)Qo(n′|~r, t),

(8.22)

where γo(~r, t) =
´

4π dΩγ(~r, Ω̂, t)/4π, and Qo(n|~r, t) =
´

4π dΩQ(n|~r, Ω̂, t)/4π. The

final conditions are limtf←t γ(~r, Ω̂, t) = 1, and limtf←tQ(n|~r, Ω̂, t) = δ(n− 1) and the

boundary conditions are both 0 for ~r ∈ ∂V , n̂b · Ω̂ > 0.

It can be shown that the quantity γ is equivalent to the survival probability,

PS, to which we dedicated much effort in determining in Chapter 6. Thus, in order
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to determine the full neutron distribution, we must solve the survival probability

equation and then supplement that solution into the determining the remainder of

the distribution contained within the quantity Q. Similarly, equations are obtained

for the source as is common in literature, which are functions of the solution P̃ .

Once the the survival probability and the quantity related to the extant population

distribution, γ andQ, respectively, are obtained we may determine the neutron number

PDF as

P (n|~r, Ω̂, t) =
[
1− γ(~r, Ω̂, t)

]
δ(n) +Q(n|~r, Ω̂, t), (8.23)

where it is clear that 1− γ = P (0) is the extinction probability, and P (0)δ(n) only

contributes in the realization of the limit as n→ 0, thus Q(n = 0) = 0 for all time.

Integrating Eq. 8.23 over all n and enforcing normalization on P yields

ˆ ∞
0

dnP (n|~r, Ω̂, t) = 1 = 1− γ(~r, Ω̂, t) +
ˆ ∞

0
dnQ(n|~r, Ω̂, t),

from which we prove that Q is normalized to the survival probability:

ˆ ∞
0

dnQ(n|~r, Ω̂, t) = γ(~r, Ω̂, t). (8.24)

From Eq. 8.24, it is clear that Q gives the unnormalized neutron number PDF for

the finite but non-extinct portion of the particle population. The condition Eq. 8.24

is easily confirmed by integrating Eq. 8.22 over all n, which reduces to Eq. 8.21, as

does the final condition.

In the next section, we consider lumped systems to aide in our numerical investi-

gation of the convolution integral of Eq. 8.22, which is the only term in the equation

which contains explicit dependence on n.
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8.2 Lumped Equations Considered

We now consider the lumped description of the neutron number PDF for the single

neutron chain with the Quadratic Approximation applied as well as for the case

when a random source is present. Lumped equations are easily obtained by striking

the streaming operator from Eqs. 8.21 and 8.22 for the survival probability and

the extant number distribution. Further, by assuming the reactivity is constant,

then the probability density is time-translation invariant and we apply the change in

variables t→ −t. With some rearranging, the lumped equation may be written in a

forward-in-time setting as

∂Q

∂t
= −

α− χ2pf
τ

γ(t)
Q(n|t) + χ2pf

2τ

ˆ n

0
dn′Q(n− n′|t)Q(n′|t), (8.25)

with the initial condition Q(n|0) = δ(n− 1), and the lumped equation for the survival

probability satisfies the initial value problem

∂γ

∂t
= αγ(t)− χ2pf

2τ
[
γ(t)

]2
, (8.26)

with initial condition γ(0) = 1. Recognizing the POI for lumped systems is

limt→∞ γ(t) = p∞ = 2ατ/(χ2pf ), the survival probability equation may be simplified

to

∂γ

∂t
= αγ(t)− α

p∞
[γ(t)]2, (8.27)

with initial condition , which has the solution:

γ(t) = PS(t) = eαt

1 + 1
p∞

(
eαt − 1

) . (8.28)

We may also write Eq. 8.25 more compactly as

∂Q(n|t)
∂t

= − α̂(t)
p∞

Q(n|t) + α

p∞

ˆ n

0
dn′Q(n′|t)Q(n− n′|t), (8.29)
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where [n, t] ∈ (0, N ]× [0, tf ], and the time-dependent coefficient is

α̂(t) = α (2γ(t)− p∞) = α (2PS(t)− p∞) . (8.30)

The lumped equation for the source distribution is attained from Eq. 8.18 by

pulling P (n) out of the volume and angle integrals (for which
´
V

d~rω(~r) = 1) to find:

−∂Θ(n, tf |to)
∂to

=− SΘ(n, tf |to) + S
ˆ n

0
dn′Θ(n′, tf |to)P (n− n′, tf |to). (8.31)

By now inserting Eq. 8.23 (P (n) = γδ(n) +Q(n)) into Eq. 8.31, we find:

−∂Θ(n, tf |to)
∂to

=− Sγ(tf |to)Θ(n, tf |to) + S
ˆ n

0
dn′Θ(n′, tf |to)Q(n− n′, tf |to),

(8.32)

which has the final condition: limtf←to Θ(n|tf |to) = δ(n).

Equation 8.29 is a nonlinear in n Volterra-type integro-differential equation which

we choose to solve numerically. To solve this equation, we choose to discretize the

neutron population into M bins and to truncate the domain of n at some upper

population N . Once Q is known, the distribution in the presence of a source may be

determined by integrating Eq. 8.32 in time.

8.3 Discretization of the Neutron Number Distri-

bution

In this section, we introduce a general numerical discretization scheme for the neutron

number, which results in obtaining systems of coupled ODEs, presented in Sec. 8.3.1.

In Sec. 8.3.2, we then discuss different combinations of test functions and basis

functions and test their efficacy in accurately computing the convolution for the

quadratic approximation case. Based on the results of Sec. 8.3.2, we then present

numerical results for lumped systems for single chains and sources in Sec. 8.3.2, and
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we then compare these numerical solution methods to an satz solution of the number

distribution which we derive in Sec. 8.3.3.

8.3.1 A General Numerical Framework

In this section we demonstrate a general discretization method for solving the extant

neutron number distribution equation, Eq. 8.29, by introducing {φm(n)}1≤m≤M , a

continuous set of basis functions [73, 72]. In doing so, we may expand our solution as

Q(n|t) =
M∑
m=1

qm(t)φm(n). (8.33)

By inserting Eq. 8.33 into Eq. 8.29, we find

M∑
m=1

dqm
dt + α̂(t)

p∞
qm

φm = α

p∞

M∑
j=1

M∑
k=1

qjqk

ˆ n

0
dn′φj(n′)φk(n− n′). (8.34)

Next, we multiply by a test function, ξi(n) and integrate over all n to obtain M

ordinary differential equations

M∑
m=1

dqm
dt + α̂(t)

p∞
qm

 ˆ ∞
0

dnξi(n)φm(n) = α

p∞

M∑
j=1

M∑
k=1

qjqk×
ˆ ∞

0
dnξi(n)

ˆ n

0
dn′φj(n′)φk(n− n′).

(8.35)

Proceeding, we define the integral coefficient matrix, A, whose Ai,m element is

Ai,m =
ˆ ∞

0
dnξi(n)φm(n). (8.36)

The right-hand side of Eq. 8.35 can be simplified by defining

hij,k =
ˆ ∞

0
dnξi(n)

ˆ n

0
dn′φj(n′)φk(n− n′), (8.37)
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which is the (j, k)th element of Hi. We may write the system of equations in matrix-

vector form as

A

d~q(t)
dt + α̂(t)

p∞
~q(t)

 = α

p∞


~q>(t)H1~q(t)

...

~q>(t)HM~q(t)

 , (8.38)

where ~q(t) = 〈q1(t), . . . , qM(t)〉>, and, by defining a vector of the test functions as
~ξ(n) = 〈ξ1(n), . . . , ξM(n)〉>, we may determine the initial condition as

~q(0) = A−1~ξ(1). (8.39)

Note that if the test functions are the Dirac delta, {ξi(n) = δ(n − Ni)}, with Ni

being the collocation points, Ai,m = φm(Ni), and hij,k =
´ Ni

0 dn′φj(n′)φk(Ni − n′),

significantly reducing the number of integrals to be computed in constructing the

matrices of Eq. 8.38. A similar set of equations may be obtained for the source

equations by defining the expansion:

Θ(n|t) =
M∑
m=1

θm(t)φm(n), (8.40)

which provides

A

d~θ(t)
dt + Sγ(t)~θ(t)

 = S


~θ>(t)H1~q(t)

...
~θ>(t)HM~q(t)

 , (8.41)

with the initial condition ~θ(0) = A−1~ξ(0). We next explore different basis functions

that are commonly employed for numerically solving such systems of equations.

8.3.2 Test Functions and Basis Functions

In this section, we consider several combinations of test functions and basis functions

that will most accurately compute the first-order autoconvolution integral defined

209



Chapter 8. The Boltzmann Master Equation Formulation

Table 8.1: Test and basis functions analyzed for computing an exponential autocon-
volution.

Case Test Function, ξ`(n) Basis Function, φi(n) Compare To

0 Simpson’s - CA,1

1 Unity Dirac CA,1

2 Dirac Constant CA,1

3 Constant Constant CA,2

4 Dirac Linear CA,1

5 Constant Linear CA,2

6 Linear Linear CA,3

by Eq. 8.37. In order to assess which combination is best, we make the assumption

that the solution decays exponentially in n, say Q(n) = e−n, in accordance with

the functional form of Bell’s single chain solution given by Eq. 2.48. Thus the

autoconvolution of e−n will have an analytical solution given by:

CA(n) =
ˆ n

0
dn′e−n′e−n+n′ = ne−n. (8.42)

It is then the goal to determine which representation of Q will compute the result

of Eq. 8.42 with the highest degree of precision.

For brevity in presenting the results below, we show the cases we consider in

Table 8.1. For every case, we define a uniform grid of Nb bins and Nm = Nb + 1

mesh points such that the ith cell is defined as ci = [ni, ni+1] with midpoint ni+ 1
2
. For

the functions listed in Table 8.1, we define both the basis and test functions to be

localized within a given cell and null when n is out of the bounds of the cell. When

numerically computing the integrals given by Eq. 8.37, we appropriately break the

integral with respect to n into a sum over the cells leading to the final cell containing
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a chosen n. If the chosen n is within cell i, each of the given functions is defined as:

Dirac: δ(n− ηi) (8.43a)

Constant: 1
∆nj

δj,i (8.43b)

Linear: n− nj
∆nj

δj,i,
nj+1 − n

∆nj
δj,i. (8.43c)

We note that Case 0 corresponds to the Composite Simpson’s Rule and allows us to

compare a relatively accurate numerical integration scheme with the typical shape

functions we have selected. The “Compare To” column of Table 8.1 refers to the

analytical expression that corresponds to the discretization scheme, these expressions

are simply stated below for a given n ∈ ci:

CA,1 =ni+1e−ni+1 (8.44a)

CA,2 = 1
∆ni

[
(ni + 1)e−ni − (ni+1 + 1)e−ni+1

]
(8.44b)

CA,3 = e−ni
∆ni

[
− n2

i + ni(ni+1 − 2) + ni+1 − 2
]

+ e−ni+1

∆ni

[
ni+1 + 2

]
(8.44c)

To determine which method is most appropriate to use moving forward, we note

the obvious, that it is expected for each case to increase in accuracy for a given

n when the number of bins is increased. For a numerical method to be useful, we

need to relax the limit of Nb →∞ and select the method for which the smallest Nb

provides the highest accuracy. In essence, we will have as many equations to solve

as there are bins, so it is our goal to limit Nb ≤ dne. For this reason, we show in

Fig. 8.1 the absolute error between the analytical and numerical computation of

the convolution integral. Clearly, the greatest error occurs for lower n because the

bin resolution is more coarse. It is the desire of this study to determine the lower

order probability values with highest precision, then it follows that Cases 1 and 2

will provide the most consistent and accurate computation, especially for the lowest

bin numbers. In the proceeding sections, we will then use the Case 1 combination for

its overall simplicity. On a final observation, we see that the Composite Simpson’s
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Figure 8.1: Comparison of relative error between analytical and numerical compu-
tation of exponential autoconvolution where Nb = dne.

Rule (CSR) computation effectively oscillates between the high-error and low-error

Cases. This is due to the requirement that the CSR be uniformly computed on a

mesh with an even number of bins, thus the high error corresponds to meshes with

odd bin numbers.

8.3.3 The Exponential Ansatz

In the previous section, we explored numerical methods for basis functions with

compact support, i.e., locally defined, we now consider an example for a global basis

function in n. If one were to attempt to insert Bell’s single chain solution, Eq. 2.48,

into the Q equation given by Eq. 8.29, one would discover that Bell’s distribution is

not a solution. We know, however, that the solution to Eq. 8.29 will asymptotically

approach Bell’s distribution in time for systems where the quadratic approximation

holds, and it should also agree with the Prinja-Souto distribution given by Eq. 2.42b
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for earlier times. It is then natural to attempt to obtain an analytical solution to Eq.

8.29, and we therefore make the ansatz that the solution obeys the following form:

Q(n|t) = A(t)e−λ(t)n. (8.45)

We note that an identity for A in terms of λ is immediately available from the

normalization of Q given by Eq. 8.24,
´∞

0 dnQ(n|t) = PS(t), to give

A(t) = λ(t)PS(t), (8.46)

for which we note the terminal condition: A(0) = λ(0)(1). Inserting Eq. 8.45 into Eq.

8.29 and rearranging provides:

dA
dt + α̂(t)

p∞
A =

[
A

dλ
dt + α

p∞
A2
]
n, (8.47)

which to be true for ∀n, both sides of Eq. 8.47 must equal zero; two equations are

then obtained:

dA(t)
dt = − α̂(t)

p∞
A(t) (8.48a)

dλ(t)
dt = − α

p∞
A(t). (8.48b)

Solving Eq. 8.48a provides

A(t) = λ(0) exp
{
− 1
p∞

ˆ t

0
dt′α̂(t′)

}
. (8.49)

Inserting Eq. 8.49 into Eq. 8.48b gives

λ(t) = λ(0)
[
1− α

p∞

ˆ t

0
dt′ exp

{
− 1
p∞

ˆ t′

0
dt′′α̂(t′′)

}]
. (8.50)

Noting Eqs. 8.28 and 8.30 for systems with static reactivity, the integrals of Eqs.

8.49 and 8.51 are easily computed to yield:

λ(t) = λ(0)PS(t)e−αt = λ(0)PS(t)
n(t) , (8.51)
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where n(t) is the average neutron number for a single chain.From this, our ansatz

solution is

Q(n|t) = λ(0)[PS(t)]2

n(t) exp
{
−λ(0)PS(t)

n(t) n
}
. (8.52)

The initial condition ofQ(n|0) = δ(n−1), which would require us to set λ(0) = δ(n−1),

which would invalidate the solution given by Eq. 8.52 for n 6= 1. As we are interested

in times for which the neutron chain has potentially evolved to populations far from

n = 1, and can therefore be treated as a continuum, we may simply set λ(0) = 1.

In doing so, we find an expression that is essentially a generalization of Bell’s single

chain solution by simply replacing the POI with the survival probability. We note

that in the limit of t→∞, Eq. 8.52 → Eq. 2.48, and this solution is essentially a

bridge between the Prinja-Souto distribution and its asymptotic counterpart, the Bell

distribution.

Performing the ansatz on the source distribution, in-line with the functional form

of Bell’s gamma solution given by Eq. 2.49, is then:

Θ(n|t) = B(t)nbe−ξ(t)n. (8.53)

Inserting into Eq. 8.32 and assuming that the exponential shape of the source solution

is that same as the single chain solution, i.e. ξ(t) = λ(t), we arrive at a system of

equations:

dB(t)
dt =SPS(t)B(t) (8.54a)

dλ(t)
dt = dξ(t)

dt = −SA(t)
b+ 1 . (8.54b)

We then solve for B(t) by integrating over time, and we then use Eq. 8.54b to solve

for b:

B(t) =B(0)eS
´ t
0 dt′PS(t′) (8.55a)

b = Sp∞
α
− 1 = η − 1, (8.55b)
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We eliminate B(0) using the normalization:
ˆ ∞

0
dnΘ(n) = 1 = B(0)e−S

´ t
0 dt′PS(t′)Γ(η)λ−η, (8.56)

which provides the final solution for the number distribution in the presence of a

source:

Θ(n|t) =
[
λ(t)n

]η−1 λ(t)
Γ(η)e−λ(t)n, (8.57)

which is a gamma distribution. It is again advised to set λ(0) = 1 to avoid issues

with the singular initial condition of Θ(n|0) = δ(n).

8.3.4 Numerical Results

We first compare the single chain ansatz solution from the previous section, given

by Eq. 8.52, with the analytical distributions for the discrete distribution, the

Prinja-Souto distribution given by Eq. 2.42b, and the continuous distribution, the

Bell distribution given by Eq. 2.48. For a supercritical system of k = 1.136 with

P∞ = 0.122, we see in Fig. 8.2 that the ansatz solution is bounded by the two other

solutions, and the solutions eventually converge by tf = 20τ . We also note that the

ansatz solution converges to the Prinja-Souto distribution before it converges with

the Bell distribution, suggesting that the ansatz solution can be used within a few

lifetimes to accurately assess the number distribution.

As was demonstrated in Sec. 8.3.2, the most accurate basis-test function com-

bination for the lowest resolution cell is the case for which the test function is set

to unity and the basis function is the Dirac delta with a single collocation point per

population cell. Specifically, to solve Eq. 8.29, we begin by collocating Q(n|t) in, say,

population cell m, denoted as cm, at a single pivot point Nm. Doing so, we may write

Q(n|t) =
M∑
m=1

qm(t)δ(n−Nm). (8.58)
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Figure 8.2: Comparison of the ansatz distribution with the Prinja-Souto and Bell
distributions over time.

Table 8.2: Parameters used to compare the discrete analytical solutions with the
numerical results.

S [n0/s] ν ν2 k α [1/s] η

56.6 2.5416 7.5406 1.0074 1.1216 ·106 3.7577 ·10−7

v [cm/s] τ [s] χ′2 N [1/(cm · b)] σf [b] σc [b]

1.0351 ·109 6.5772 ·10−9 3.0125 ·108 0.0478 1.2180 1.8550

And upon inserting Eq. 8.58 into Eq. 8.29, integrating over a single bin i, ci, such

that n ∈ [ni, ni+1], and invoking the definition of the Dirac delta function, we find

with some work [70]:

dqi
dt = − α̂(t)

p∞
qi(t) + α

p∞

i∑
j=1

qj(t)
∑

Nj+Nk∈ci
qk(t), (8.59)

with i = 1, . . . ,M and the initial condition is qh(0) = 1 such that Nh = 1.
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Figure 8.3: Comparison of the analytical with the numerical neutron numbers for
different final times scaled by the neutron lifetime.

Figure 8.4: Demonstration of increasing mesh refinement on single chain solution.
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We proceed in comparing the numerical solution of the set of Eqs. 8.59 to the

Prinja-Souto distribution using the data in Table 8.2, shown in Fig. 8.3. The numerical

solutions are solved linearly in this case and we set the number of population bins

equal to the population truncation number, that is M = N . The corresponding

extinction probabilities are Q(0, τ) = 0.4974, Q(0, 2τ) = 0.6635, Q(0, 3τ) = 0.7441,

Q(0, 4τ) = 0.7949. We also note in Fig. 8.4 that the solution using collocation

requires the bin width to be ∆ni = 1, such that each bin contains a single integer

value of n. This phenomenon occurs because the initial condition of Eq. 8.59 occurs

at n = 1, and therefore the solution for bins corresponding to cells with 0 < n < 1

will always be zero because Q(n = 0) = 0 for all time and thus the calculation of

these coupled terms via the convolution operator will also always be zero. Once the

upward bin-sweep has reached n = 1, we arrive at the initial condition cell which is

the first non-zero probability and by continuing to the next cell, all other qi values

will equal zero and the only non-zero qi for the cell with n = 1 will be multiplied

by a qj that equals zero, nullifying its contribution. This continues until the next

integer bin, and will do so for all bins containing integer n. Similarly, by decreasing

the bin width, the error becomes too large. For this reason, we proceed by setting

the number of bins equal to the truncation population.

Clearly for supercritical systems, having the requirement that the bin number be

equivalent to the truncation population will cause the system of coupled ODEs to

grow to an unmanageable size for population regimes greater than n = 104. This is

especially troublesome when we shift our focus to unlumped systems, which will then

require us to solve a transport equation for each population size. An optional remedy

is to have the initial size of the system to be a set and small and to then add equations

for higher order populations as the population grows in time. This would be best

accomplished by following the growth of the average of the distribution compared to

the growth of the average as calculated from the moment equation. To elaborate, one

would need to calculate the average from the distribution using ndist(t) = ∑Nb
i=1 iqi(t)
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Figure 8.5: Remesh example based on the calculation of the remainder of the
distribution.

for every time step and to compare it to the solution of the ODE: dntrue(t) dt = αn(t).

Once the numerically computed average reaches a prescribed threshold relative to

the analytical true average, say ndist(t) = 0.1ntrue(t), we append more equations to

the system and solve accordingly. This is accomplished by calculating the remainder

of the distribution:

RN(t) = 1−
Nb∑
i=1

qi(t)δ(n−Ni), (8.60)

then if RN(t) exceeds a threshold, a non-negligible quantity of the distribution is

amassing for N ′ > N . In Fig. 8.5, we show such a scenario for a supercritical system

of k = 1.023 over a range of lifetimes. We set the initial Nb = 50 and once the

remainder equates to 10−3, we increase the number of bins by a factor of 1.5.
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Figure 8.6: Comparison of the analytical and numerical neutron numbers in the
presence of a source.

Singlet Emitting Source Equations

By performing the process that has been just described to the equation for a system

with an intrinsic randomly emitting source, we define the expansion of Θ(n, t) as

Θ(n|t) =
M∑
m=1

θm(t)δ(n−Nm), (8.61)

where we have changed the notation for t to represent to. Note that the pivots, {Nm},

are treated as the same set of pivots used for the single chain equations. With the

expansions defined by Eqs. 8.58 and 8.61, we find for the singlet emitting source case:

−dθi(t)
dt = −Sγ(t)θi(t) + S

i∑
j=1

qj(t)
∑

Nj+Nk∈ci
θk(t), (8.62)

with the final condition being θh(0) = 1, such that Nh = 0. We show in Fig. 8.6 the

numerical solution compared with the Prinja-Souto distribution for a source, given by
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Eq. 2.45. This numerical solution method is forced to have the same bin widths as

the single chain solution due to the computation issues we observed in the previous

subsection.

In the next section, we expand our consideration of the Boltzmann Master equation

into a phase-space setting and compare two solution methods. The first solves the

system of equations by collocation of the neutron number which, as was elucidated in

this section, requires solving as many transport equations as the truncation population.

8.4 Unlumped Systems Solution Methods

In this section, we introduce numerical solution methods of the Boltzmann Master

Equation for single neutron chains and in the presence of sources that we have

investigated and then show numerical results. Keeping in mind the results for the

lumped system setting, we are restricted to considering two discretization methods

for the neutron number variable. The first being the vastly inefficient solution by

collocation which requires truncating to some finite population number and we must

then solve a transport equation for every integer value of the population leading up

to the truncated population number. The other method, solution by eigenfunction

expansion, involves an identical process employed in Sec. 6.2. We then compare the

two methods in Sec. 8.4.3, concluding the chapter. In either solution method, we begin

with the BME for the single initiating neutron with the Quadratic Approximation

applied, restated in operator notation as:− 1
v

∂

∂t
+ T †

Q(n|~r, Ω̂, t) =
(
S† + F † −W

)
Q(n|~r, Ω̂′, t) + C(Qo, Qo), (8.63)

the various operators in the above equation are defined as:

T † ≡ −Ω̂ · ~∇+ Σt (~r, t) , (8.64a)

S† ≡
ˆ

4π

dΩ′
4π Σs

(
~r, Ω̂ · Ω̂′, t

)
, (8.64b)
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F † ≡ νΣf (~r, t)
ˆ

4π

dΩ′
4π , (8.64c)

W ≡ Σf (~r, t)χ2 (~r, t)PS,o(R, tf |~r, t)
ˆ

4π

dΩ′
4π , (8.64d)

C (Qo, Qo) ≡
Σfχ2

2

ˆ n

0
dn′Qo(n− n′|~r, t)Qo(n′|~r, t), (8.64e)

where PS,o(~r, t) =
´

4π
dΩ′
4π PS(~r, Ω̂′, t) and Qo(n|~r, t) =

´
4π

dΩ′
4π Q(n|~r, Ω̂′, t). The final

condition is limtf←tQ(n|~r, Ω̂, t) = δ(n−1) and the boundary conditionQ(n|~r, Ω̂, t) = 0

for ~r ∈ ∂V , n̂b · Ω̂ > 0.

8.4.1 Solution by Collocation

The solution by collocation requires expanding the solution in the following manner:

Q(n,R, tf |~r, Ω̂, t) =
Nb∑
m=1

Qm(R, tf |~r, Ω̂, t)δ(n−Nm), (8.65)

where Nm is the collocation point of cell m, where cell m is defined as cm = {n|n ∈

(nm, nm+1]}. Inserting the expansion of Eq. 8.65 into Eq. 8.63 and integrating over

cell ` allows us to isolate Q` for all linear operators to find− 1
v

∂

∂t
+ T †

Q`(~r, Ω̂, t) =
(
S† + F † −W

)
Q`(~r, Ω̂′, t)

+ Σfχ2

2
∑̀
j=1

Qj,o(~r, t)
∑

Nj+Nk∈c`
Qk,o(~r, t),

(8.66)

for ` = 1, 2, . . . Nb. The final condition and boundary condition are:

lim
tf←t

Q`(R, tf |~r, Ω̂, t) = δ`,i for 1 ∈ ci (8.67a)

Q`(R, tf |~r, Ω̂, t) = 0 for ~r ∈ ∂V, n̂b · Ω̂ > 0. (8.67b)

The system of equations is further discretized using a standard discrete ordinates

in angle, diamond difference in space discretization [51], as well as semi-implicit

backward-Euler time discretization [35]. We commence the solution by starting at
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` = 1, solve with source-iteration by assuming the lagging the right-hand side of

Eq. 8.66, converging, and then advancing `→ `+ 1. We note that the convolution

operator vanishes for ` = 1 for reasons described in Sec. 8.3.4.

Similarly, the number distribution in the presence of a source may be collocated

as

Θ(n, tf |to) =
Nb∑
m=1

θm(tf |to)δ(n−Nm), (8.68)

which provides an ODE for cell i

−dθi
dto

=− S(to)θi(tf |to)
ˆ
V

d~r ω(~r)PS,o(tf |~r, to)

+ S(to)
i∑

j=1

 ˆ
V

d~r ω(~r)
ˆ

4π

dΩ′
4π Qj(tf |~r, Ω̂′, to)

 ∑
Nj+Nk∈ci

θk(tf |to),
(8.69)

with the final condition θh(tf |tf ) = δh,` where 1 ∈ c`.

8.4.2 Solution by Eigenfunction Expansion

In solving the BME by means of the Eigenfunction Expansion Method, we begin by

expanding the solution into adjoint eigenfunctions:

Q(n,R, tf |~r, Ω̂, t) =
∞∑
m=1

Q̂m(n, tf |t)Ψ†m(R|~r, Ω̂). (8.70)

Inserting Eq. 8.70 into Eq. 8.63 and following the procedure outlined in Sec. 6.2, we

obtain a system of equations for the time-population dependent amplitudes:

−∂Q̂m(n|t)
∂t

=
∞∑
`=1

∆m,`(t)Q̂`(n|t)+
∞∑
j=1

∞∑
k=1

Dm,j,k

ˆ n

0
dn′Q̂j(n′|t)Q̂k(n−n′|t) (8.71)

where the coefficients defined above are

∆m,`(t) = v

γm


1− 1

k`

ˆ
V

d~rΦm(~r)
[
νΣf (~r)

]2
Φ†`(~r)

−
ˆ
V

d~rΦm(~r)ν(~r)
[
Σf (~r)

]2
χ2(~r)Ps,o(~r, t)Φ†`(~r)


(8.72a)
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Dm,j,k = v

γm

ˆ
V

d~rΦm(~r)ν(~r)
[
Σf (~r)

]2χ2(~r)
2 Φ†j(~r)Φ

†
k(~r), (8.72b)

and Φ†`(~r) =
´

4π dΩ′Ψ†`(~r, Ω̂′)/4π and similarly for the forward scalar eigenfunctions,

Φ`(~r). The final condition and normalization constant are:

lim
tf←t

Q̂m(n, tf |t) = δ(n− 1) 1
γm

ˆ
V

d~r νΣf (~r)Φm(~r) (8.73a)

γm =
ˆ
V

d~r νΣf (~r)Φm(~r)Φ†m(~r). (8.73b)

We are now required to discretize Q̂m in n and t. Based on the success of the ansatz

solution for the lumped model of Sec. 8.3.3, we choose to make the same assumption

on the functional form of the modes, such that

Q̂m(n, tf |t) = Am(tf |t)e−λm(tf |t)n. (8.74)

Inserting this ansatz solution into Eq. 8.71 and integrating over all n, we obtain a

coupled system of equations:

∂Am
∂t

= λm


∞∑
`=1

∆m,`(t)
A`
λ`

+
∞∑
j=1

∑
k 6=j

Dm,j,k
AjAk
λjλk

 (8.75a)

∂λm
∂t

= − λm
Am

∞∑
`=1

Dm,`,`
A2
`

λ`
. (8.75b)

The final conditions are obtained using the normalization of Q to PS and the first

moment (
´∞

0 dnnQ(n) = n) to find λm(tf |tf ) = 1 and Am(tf |tf ) = 1
γm

´
V

d~r νΣfΦm.

On a final note, if we are interested in final times for which the solution has converged

to the fundamental mode (recall this occurs by one lifetime, seen in Fig. 6.9), we

may truncate the expansion of Eq. 8.70 at m = 1. In doing so, and by converting to

forward time, we find closed-form solutions for the shape functions:

A(t) = A(0) exp
{ˆ t

0
dt′∆1,1(t′)

}
(8.76a)

λ(t) = λ(0)
1− D1,1,1

γ1

 ˆ
V

d~rνΣfΦ1

ˆ t

0
dt′ exp


ˆ t′

0
dt′′∆1,1(t′′)


, (8.76b)
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where A(0) = λ(0) 1
γ1

´
V

d~rνΣfΦ1 and λ(0) = 1. In essence, by reducing to the

fundamental mode, we have essentially obtained the space-generalized form of the

ansatz solution given by Eq. 8.52.

Under the same assumption, the closed-form solution for the number distribution

in the presence of a source is given by

Θ(n|t) =
(
λ(t)n

)η−1 λ(t)
Γ(η)e−λ(t)n, (8.77)

where

η = S
D1,1,1

ˆ
V

d~rω(~r)Φ†1(~r). (8.78)

In the next section, we compare numerical solution results for the two methods

discussed in this section.

8.4.3 Numerical Results

As the collocation method is cumbersome, computationally expensive, and provides

no clear advantage aside from being more accurate for earlier times, we begin by

simply comparing it to the fundamental mode result obtained in Sec. 8.4.2. We

consider an isolated slab system composed of pure 235U metal that is 5.75 cm thick,

with a fundamental k-mode of k = 1.157. The system is divided into 100 spatial

points and we restrict the time step width to ∆t = 10−3 s. The survival probability

is calculated with the Quadratic Approximation in place using the λAM described

in Sec. 6.1; we use the same survival probability for both methods to reduce the

possibility of a disagreement arising from a difference in computing the W operator

of Eq. 8.64d. In principle, one would compute the survival probability using the same

numerical method, but this would most certainly require a higher number of modes

to accurately compute the spatial integrals of the EFE.

Figure 8.7 shows the single chain solutions and their convergent agreement between

the two solution methods for differing final times for n = 1. As was demonstrated
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Figure 8.7: Comparison of collocation results (dotted lines) with the EFE funda-
mental mode results (◦) in a 235U slab for n = 1 for varying final times.

for the survival probability, the solutions settle into the fundamental mode relatively

quickly and this proves to be an acceptable assumption to make. We also note that

the n = 1 solutions agree in the center of the system for all final times shown. If we

then consider Fig. 8.8, for which we are now comparing the number distribution in

the center spatial cell, z1/2. It can be seen that the same convergence occurs within

the first 10 lifetimes of the introduction of the initiating neutron. This is promising

and permits us to proceed to more complicated geometries if we so choose.

We conclude this section and chapter by considering the number distribution

with a source for the single slab system at a final time of tf = 20τ . By altering the

source strength, we can change the η value given by Eq. 8.78. It can be seen that the

collocation method agrees well with the EFE method for the fundamental mode for

any source strength, whether it be weak (η < 1) or strong (η > 1).
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Figure 8.8: Per Fig. 8.7, but for all n in the center cell of the slab system.

Figure 8.9: Comparison of number distributions in the presence of a source for the
collocation method (dotted lines) and the fundamental mode results (◦) for varying
source strengths at tf = 20τ .
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Chapter 9

Conclusions & Future Work

In this chapter, we conclude the findings of this dissertation and discuss future work

that would further benefit the application space of stochastic neutron transport

problems. In proceeding, we discuss the primary take-aways of each chapter and then

propose ideas on future work for the subject matter of each chapter.

In Chapter 2, we presented the primary results given by Prinja and Souto [11]

and how those distributions asymptotically converge to Bell’s distributions. Further,

we developed a unique analytical solution by restricting the neutron multiplicity

distribution for the emission of 0, 1, or 2 neutrons per induced fission event. This

result would be more appropriately generalized to include the possibility of the

emission of three neutrons in an event. Recent work has shown that a third-order

nonlinear first order ODE (Abel’s nonlinear ODE of the First Kind) has a general

solution [10], if one is able to solve this form of the relevant characteristic equation

and then invert the generating function solution, such a PDF would prove beneficial

in characterizing zero-dimensional systems and benchmarking codes for which ν > 2.

In Chapter 3, we introduced the two Monte Carlo algorithms we use throughout

this document. The event-based Monte Carlo (EBMC) method is widely used in

large-scale codes, but the Stochastic Simulation Algorithm (SSA) is relatively new
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to this application space. We showed that the SSA outperforms the EBMC for

the restrictive parameter space we are interested in. In particular, we showed that

by reducing the neutron multiplicity distribution to the Binary Fission Model and

considering system multiplication factors within the range of k ∈ [0.70, 1.30], the

EBMC tends to take, at a minimum, 2.5 times longer to simulate the same system as

the SSA. Future work would include performing a more computer-science oriented

study on the efficiency of one algorithm over the other. As an example, the SSA clearly

outperforms the EBMC because the SSA does not require one to save information of

event times to follow all the progeny of a single initiating neutron.

In Chapter 4, we investigated systems composed of, at-most, two spherical regions

with neutrons that could occupy either a fast or thermal energy group with weak

fast neutron sources. Forward Master equations were derived and, from which,

systems of coupled linear ODEs satisfied by the population moments were obtained.

We then developed two methods for calculating the geometry-dependent transfer

probabilities, the View Factor Approximation and the Sphere Point Picking Monte

Carlo Method, and compared the parametric space for which the computationally

superior VF approximation holds. We proceeded to apply the SSA in analyzing

coupled regions of increasingly complexity while benchmarking the code with the

numerical solution of the moment equation ODEs. It was shown that, for a one-

group setting, a supercritical region has the capability of driving the neutron number

distribution of a subcritical region to behave like a gamma distribution within a few

decades of the region’s neutron lifetimes. Then, by incorporating two energy groups

and considering a thermal system, it was shown that the fast neutrons (born from

source events and induced fission) independent distribution decays monotonically

and behaves stochastically while the thermal neutron populations accumulate and

their independent distribution appears unimodal and may more quickly transition to

a deterministic regime. We concluded the chapter by introducing a time-dependent

reactivity insertion and showing that the approach to gamma-like distributions occurs,
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unsurprisingly, more abruptly. Future work may easily include a larger range of types

of systems analyzed, such as a system with more than two regions, a system that

requires higher energy group resolution, systems with non-multiplying barriers (for

shielding calculations), or systems with different energy group sources. A possible

increase in efficiency of the SSA worth exploring would be to restrict the time-step

width when the population has increased to such a size that the sampled times to event

occurrences becomes unmanageably small. If we force the time-step to a constant

value for such situations, we would need to alter our sampling scheme to include the

possibility that no event occurs in said time-interval. The choice in the size of the

set time-step would be system-specific, but would certainly require knowledge of the

time-dependent neutron lifetime, which would inform one of a “center of mass” that

a population evolves about in a given time interval.

In Chapter 6, we discussed the primary numerical solution methods that have been

developed for solving the nonlinear adjoint transport equation satisfied by the neutron

survival probability. We showed the primary competitive direct solution referred

to as the λ-Acceleration Method (λAM), and introduced a new indirect solution

method called the Eigenfunction Expansion Method (EFE). The λAM proves to be a

superior numerical scheme compared to the most direct solution method of Picard

iteration, especially for marginally supercritical systems. It was then shown that the

neutron chain survival and divergence probabilities in a static supercritical medium

can be efficiently calculated using an expansion in k-eigenmodes. The space-angle

shape of the solutIon in a nonhomogeneous planar medium equilibrates very rapidly

after the initiation of the chain and for practical purposes 3 modes are sufficient to

accurately capture the time variation of the survival probability, with a full fission

neutron multiplicity distribution, while just 1 mode gives acceptable accuracy in

steady state, i.e., for the divergence probability or POI. The order of the nonlinearity,

correlated to the induced fission chain branching, has a larger effect on the solution

than the number of modes retained in the expansion. In particular, the quadratic
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approximation, corresponding to truncation order 2 in the nonlinear fission branching

terms, is accurate for near critical systems but nonlinearity orders of 4 to 5 are

necessary for more strongly supercritical media. Comparison of numerical results

against the λAM, which itself was benchmarked with the MMS method, established

the quantitative accuracy and computational efficiency achievable with the eigenmode

expansion approach.

The eigenmode expansion has a physically appealing construct and the conclusion

that as few as 2 modes are sufficient for weakly and strongly supercritical systems,

suggests that more general point kinetic models may be developed for the description

of strongly stochastic neutron populations. In particular, by introducing the expansion

in the equation for the generating function itself, it may be possible to obtain the

neutron number distribution as well, thereby generalizing the classical infinite medium

solutions such as Bell’s gamma distribution [3]. An obvious extension of this work is

to multidimensional geometries and to energy dependent problems, both of which

impact only the calculation of the eigenmodes and not the computation of the mode

amplitudes. A less obvious generalization, that would greatly increase the utility of

this approach, is to allow time dependent reactivity. This would be feasible if, for

instance, the temporal variation of the reactivity is piecewise constant with time

between step changes in reactivity being one neutron lifetime or longer to allow the

modal expansion to equilibrate and hence be updated adiabatically when necessary.

In Chapter 7, we derived space, angle, and time-dependent single chain a source

equations for the cumulative energy deposition distribution (the FPDF) in a system

via the backward Master equation formulation; from which, equations of the moments

were also derived. This new formulation has the benefit of not requiring knowledge

of the neutron number distribution. We then compared results of the EBMC method

with the direct numerical solution of the moment equations and showed excellent

agreement. We then showed that by altering the induced fission energy deposition

distribution, W (φ), the first four moments are virtually the same for supercritical
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systems. We later showed that the FPDF itself does indeed have noticeable alterations

in the high energy deposition tails of the distribution, suggesting that one may need

to consider higher order moments in order to witness a noticeable difference in the

respective profile. It was also shown that the multiplicity distribution model being

used, where we compared the full distribution with the MCNP mean-preserving model,

has an effect on the higher energy deposition region of the single chain FPDF. Finally,

we then considered the effects of a source, where it was shown that cumulative energy

deposited will eventually diverge for a source that is continuously emitting neutrons.

Future work would include looking at the effects of subregions of a system to aide in

the determination of potential ‘hot-spots’ in a given assembly. Ultimately, one would

use this formulation to inform the design of a system where the temperature changes

as a result of the fission energy deposition could negatively affect the integrity of the

system. This would require supplementing either the FPDF or the moments into a

model for the system of interest, perhaps a backward Master equation formulation

for the temperature distribution of a system may be feasible. Finally, it would prove

beneficial to consider using fission energy deposition distributions derived from data,

which is readily available in codes such as FREYA [74].

In Chapter 8, we formulated the Boltzmann Master equation- a nonlinear adjoint

transport equation satisfied by the neutron number density distribution. In a lumped

system setting, we considered several numerical discretization schemes for the number

distribution, which showed that typical basis and test functions used in transport

methods are not as robust as we had hoped. It was found that the best results occur

for the collocation method as well as by deriving an analytical generalization of Bell’s

distribution via an exponential solution ansatz. We then expanded our scope to include

space and angle dependence, derived systems of equations for the aforementioned

discretization schemes, and compared the results, showing excellent agreement for

long enough times in supercritical systems for which the Quadratic Approximation

is applicable. Future work would involve solving the BME for higher orders of
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nonlinearity, as it is expected that for highly sub- and supercritical systems the number

distribution solution will rely more heavily on the higher order autoconvolution terms.

Further, one would be most interested in determining a numerical scheme that follows

the collocation method, but allows one to discretize the neutron number variable to

larger than unity bin widths while retaining precision. If such a scheme exists, it

would be advantageous to then parallelize, as is done with the transport solver in

PARTISN. Finally, if one is interested in the long-time behavior of the distribution

for Quadratic Approximation applicable systems, one may consider implementing a

continuous distribution function initial condition rather than the singularity initial

condition that is the Dirac delta function; this will allow for one to use a basis function

other than the collocation method.
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Appendix A

Mathematical Identities

Pochhammer Notation

The Pochhammer symbol, introduced by by Leo August Pochhammer, is the notation

(x)n, where n is a non-negative integer. It may represent either the rising or the

falling factorial, with different articles and authors using different conventions. In

this document, we use the convention (x)n to define the falling factorial and x(n) for

the rising factorial. These are defined as follows:

Falling Factorial: (x)n = x(x− 1)(x− 2) · · · (x− n+ 1) =
n−1∏
k=0

(x− k) (A.1a)

Rising Factorial: x(n) = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
n−1∏
k=0

(x+ k) (A.1b)

The Gamma function

The gamma function was originally derived by Daniel Bernoulli, for complex numbers

with a positive real part the gamma function is defined via a convergent improper

integral:

Γ(z) =
ˆ ∞

0
dx xz−1e−x, R(z) > 0. (A.2)
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The gamma function is a natural extension of the factorial function to complex

numbers; for any positive integer,

Γ(n) = (n− 1)!. (A.3)

Another important identity used throughout this document concerns the rising

factorial of a real number x, defined by Eq. A.1b, which may be written in terms of

the Gamma function:

x(n) = x(x+ 1) · · · (x+ n− 1) = Γ(x+ n)
Γ(x) , (A.4)

as well as the falling factorial given by Eq. A.1a:

(x)n = x(x− 1) · · · (x− n+ 1) = Γ(x+ 1)
Γ(x− n+ 1) . (A.5)

Finally, for large z, the gamma function asymptotically approaches a value given by

Stirling’s Formula:

Γ(z + 1) ∼
√

2πz
(
z

e

)z
(A.6)

Stirling Numbers of the First Kind

Stirling numbers of the first kind are the coefficients s1(n, k) in the expansion of the

falling factorial, (x)n = x(x− 1) · · · (x− n+ 1), into powers of the variable x:

(x)n =
n∑
k=0

s1(n, k)xk, (A.7)

thus it is no surprise that they appear in expressions involving expansions of multitudes

of derivatives.

Leibniz Integral Rule

The derivative of a definite integral is given by the formula:

d
dx

ˆ b(x)

a(x)
dx′f(x, x′) = f(x, b(x))db(x)

dx −f(x, a(x))da(x)
dx +

ˆ b(x)

a(x)
dx′∂f(x, x′)

∂x
(A.8)
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Binomial Theorem

A polynomial of order n may be rewritten as a summation of products of the

polynomial sum, x and y, such that the sum of their powers is equal to n with

coefficients given by the binomial coefficient:

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk, (A.9)

where
(
n
k

)
is the binomial coefficient, defined by:(

n

k

)
= n!

(n− k)!k! = Γ(n+ 1)
Γ(k + 1)Γ(n− k + 1) . (A.10)

Multinomial Theorem

The Multinomial Theorem is a generalization of the Binomial Theorem and gives the

expansion of a power of a sum in terms of powers of the terms of that sum as:(
K∑
k=1

xk

)n
=

∑
j1+j2+···+jK=n

(
n

j1, j2, . . . , jK

)
K∏
k=1

xjkk (A.11)

where(
n

j1, j2, . . . , jK

)
= n!
j1!j2! · · · jK ! (A.12)

is the Multinomial Coefficient.

The Gaussian Hypergeometric Function

The Gaussian or ordinary hypergeometric function has a power series representation

for |z| < 1 given by:

2F1(a, b; c; z) =
∞∑
k=0

a(k)b(k)

c(k)
zk

k! (A.13)

where x(k) is the rising factorial function using the Pochhammer notation. It is

undefined (or infinite) if c equals a non-positive integer and the series terminates
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if either a or b is a non-positive integer, in which case the function reduces to a

polynomial.

In the text, we utilize an identity relating the Gaussian hypergeometric function

to the regularized incomplete beta function, Iz(a, b), for the special form of the

arguments we encounter:

2F1(a, 1− b; a+ 1; z) = aB(a, b)z−aIz(a, b), (A.14)

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function.

Kummer’s Confluent Hypergeometric Function

Kummer’s confluent hypergeometric function, also referred to as the confluent hyper-

geometric function of the first kind, has a hypergeometric series given by

1F1(a; b; z) = 1 + a

b
z + a(a+ 1)

b(b+ 1)
z2

2! + · · · =
∞∑
k=0

a(k)

b(k)
zk

k! , (A.15)

where x(k) is the rising factorial function using the Pochhammer notation. There is

an integral representation given by:

1F1(a; b; z) = Γ(b)
Γ(b− a)Γ(a)

ˆ 1

0
dt eztta−1(1− t)b−a−1, (A.16)

where Γ(z) is the gamma function.
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Calculation of the Reaction Rates

The rates of interaction are inputs into all of the algorithms and methods discussed

and are assumed to be known. Further, it is crucial to define quantities, such as the

mean neutron lifetime and the reaction rates, in a consistent manner for a lumped

model description to be accurate. To obtain general expressions for the rates, we

solve the time-dependent homogeneous neutron transport equation. In doing so, we

make the assumption that the system is sufficiently isolated, allowing us to apply

vacuum boundary conditions. The neutron transport equation may be stated as:
[

1
v(E)

∂

∂t
+ Ω̂ · ∇+ Σt(~r, E, t)

]
ψ(~r, E, Ω̂, t) = 1

2

ˆ ∞
0

dE ′Σs(~r, E ′ → E, t)φ(~r, E ′, t)

+ χ(E)
2

ˆ ∞
0

dE ′ν(E ′)Σf (~r, E ′, t)φ(~r, E ′, t).

(B.1)

In Eq. B.1, we have assumed that scattering events are isotropic, and we allow for

energy dependence as we occasionally consider multigroup neutrons in this document.

Initially, we simply solve Eq. B.1 using traditional numerical solution methods-

namely we employ the standard discrete ordinates in angle, diamond difference in

space discretization with source-iteration [51] at every time step to obtain the solution,

ψ(r, E, µ, t), in one-dimensional spheres.
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With the angular flux distribution in-hand, we may then determine the lifetime

and reaction rates; to obtain expressions for said quantities, we perform a global

balance of Eq. B.1 by integrating over the entire system volume, all energies, and

all angles to yield a conservation equation of the neutron population. Evidently, in

order to more accurately describe the quantities of interest, we must perform an

adjoint-weighting of the transport equation [57], which is accomplished by multiplying

Eq. B.1 by the adjoint flux, ψ†(~r, E, Ω̂). The adjoint-weighted conservation equation

is then

dN(t)
dt = P (t)− L(t), (B.2)

where N is the adjoint-weighted total neutron population, P is the adjoint-weighted

production rate, and L is the adjoint-weighted loss rate, respectively defined as

N(t) =
ˆ
V

d3r

ˆ ∞
0

dE
ˆ

4π
d2Ωψ†(~r, E, Ω̂) 1

v(E)ψ(~r, E, Ω̂, t) (B.3a)

P (t) =
ˆ
V

d3r

ˆ ∞
0

dEφ†(~r, E)χ(E)
2

ˆ ∞
0

dE ′ν(E ′)Σf (~r, E ′, t)φ(~r, E ′, t) (B.3b)

L(t) =
ˆ ∞

0
dE
ˆ
n̂·Ω̂>0

d2Ω
‹
∂V

dAψ†(~r, E, Ω̂)
(
n̂ · Ω̂

)
ψ(~r, E, Ω̂, t)

+
ˆ
V

d3r

ˆ ∞
0

dE
ˆ

4π
d2Ωψ†(~r, E, Ω̂)

Σt(~r, E, t)ψ(~r, E, Ω̂, t)

− 1
2

ˆ ∞
0

dE ′Σs(~r, E ′ → E, t)φ(~r, E ′, t)

, (B.3c)

where the volume and surface of the region are V and ∂V , respectively. Further,

if P (t) 6= L(t) and the shape function has reached its asymptotic form, the total

adjoint-weighted neutron population will increase or decrease at an exponential rate

given by

N(t) = N(0) exp {αt} . (B.4)

Inserting Eq. B.4 into Eq. B.2, we find the time-dependent equation

αN(t) = P (t)− L(t),
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and by dividing through by the loss rate, L(t), we arrive at a well-known equation:

α τ(t) = k(t)− 1, (B.5)

where we recognize the ratio of the production rate to the loss rate as being the

definition of the fundamental k-eigenmode and we have come to define the neutron

lifetime as

τ(t) = N(t)
L(t) . (B.6)

As a consequence of this formulation of the neutron lifetime, one must solve the

forward time-dependent neutron transport equation and the steady-state adjoint

neutron transport equation. Once the solutions, ψ(~r, E, Ω̂, t) and ψ†(~r, E, Ω̂), are

known, the computation of the integrals of N and L is straight-forward and the

minimalization of error is left to the discretion of one’s choice in the discretization

schemes of the transport equations as well as the numerical integration method used.

Equation B.6 has an intuitive interpretation as being the ratio of the total number

of neutrons in the system to that of the rate of disappearance of neutrons from the

system- this is simply a statement that the neutron population has a probability of

disappearing which is inversely proportional to the total loss rate. We surmise that

these quantities should be adjoint-weighted to provide a more realistic global balance

of the rates pertaining to their true effects on the system. This adjoint-weighting

scheme is a way of assessing the effects the neutron flux at a location within the

system has on the entirety of the system. To provide an example, consider that a

neutron born in the center of the system will, on average, live longer than a neutron

born near the surface (leakage being a dominant factor in the depletion of near-surface

particles), and that center-born neutron has a higher likelihood of inducing fission

and thus has a greater importance to the time-evolution of the system.

Next we consider the probabilities of particular events occurring per neutron

interaction. When a single neutron interacts with the system, there is an associated
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probability that in that interaction the neutron is either captured, induces fission, or

leaks, given by pc, pf , and p`, respectively. We do not consider scattering events as

they do not remove neutrons from the system, nor have we allowed for multiplicative

scattering events, such as (n, 2n), but these types of reactions are readily incorporated

into the production term, Eq. B.3b (see [57] for insightful details). These probabilities

may be determined by calculating the ratio of the respective annihilation rate with

that of the total annihilation rate of the system, which can be interpreted as the

sum of the leakage, fission, and capture rates. Defining these rates as Ry, where

y = {c, f, `, t}, we have

Rc(t) =
ˆ
V

d3r

ˆ ∞
0

dE
ˆ

4π
d2Ωψ†(~r, E, Ω̂)Σc(~r, E, t)ψ(~r, E, Ω̂, t) (B.7a)

Rf (t) =
ˆ
V

d3r

ˆ ∞
0

dE
ˆ

4π
d2Ωψ†(~r, E, Ω̂) Σf (~r, E, t)ψ(~r, E, Ω̂, t) (B.7b)

R`(t) =
ˆ ∞

0
dE
ˆ
n̂·Ω̂>0

d2Ω
‹
∂Vj

dAψ†(~r, E, Ω̂)
(
n̂ · Ω̂

)
ψ(~r, E, Ω̂, t), (B.7c)

where the sum of these rates is denoted by Rt(t) and we see that ∑y Ry = L. The

aforementioned probabilities may then be determined with

py(t) = Ry(t)
L(t) . (B.8)

In-line with the logic of our definition of τ(t), we may now determine the mean

time per neutron between events of a particular event type y, τy, as

τy(t) = N(t)
Ry(t)

, (B.9)

where it is clear that the harmonic sum of these constituent lifetimes gives
1
τ(t) =

∑
y

1
τy(t)

. (B.10)

Finally, we may define the reciprocal of the consitutent lifetime of event y to be the

probability per unit time that a neutron will undergo a collision, resulting in the

effects of event y:

λy(t) = 1
τy(t)

, (B.11)
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which are appropriately referred to as the reaction rate lifetime of event y. If one

wishes to know a reaction rate within a given portion of space, energy range, and or

angle distribution, one simply needs to alter the appropriate integration limits of the

rates. As an example, the adjoint-weighted total neutron population within group g,

Eg, would be determined as

Ng(t) =
ˆ
V

d3r

ˆ
Eg

dE
ˆ

4π
d2Ωψ†(~r, E, Ω̂) 1

v(E)ψ(~r, E, Ω̂, t), (B.12)

and the total population would be obtained by N = ∑
gNg. As was described before,

we must then solve the pair of time-dependent forward and steady-state adjoint

neutron transport equations to then calculate N , the adjoint-weighted total neutron

population, and the set of Ry(t), the adjoint-weighted collisional outcome rates.

On a final note, one may be interested in asymptotic behavior of the system, or

time-independent distributions, to which one may remove the time-dependence on

the solution to the forward transport equation by striking the time derivative in Eq.

B.1; in doing so, one must then solve the k-eigenvalue form of the transport equation

by means of iteration.
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Time-Dependent Reaction Rate

Coefficient Tables

Table C.1: Coefficients of polynomial fits (see Eq. 4.50) for tin = 0.01τ 1
2 (0).

c4 c3 c2 c1 c0

keff,1 0 5.60968 · 1011 −1.34235 · 107 3, 836.37 0.498436

% 1.73644 · 1017 −1.47160 · 1013 1.10706 · 109 5.27407 · 104 9.02805

λ1
f,1 4.14887 · 1019 −4.04047 · 1015 2.24620 · 1011 2.65780 · 106 374.621

λ1
f,2 2.24811 · 1019 −2.18978 · 1015 1.21667 · 1011 1.42945 · 106 200.835

λ1
c,1 1.79797 · 1016 −1.75100 · 1012 9.73429 · 107 1, 151.80 0.162347

λ1
c,2 3.79270 · 1018 −3.69430 · 1014 2.05260 · 1010 2.41157 · 105 33.8821

λ1
`,1 1.54619 · 1019 −4.52878 · 1014 1.63787 · 1011 2.09524 · 107 3, 717.77

λ1
`,2 1.23407 · 1016 −4.65227 · 1011 1.46661 · 104 1.22141 · 108 2.73307

λ1
s,1→2 2.62997 · 1019 −2.56126 · 1015 1.42387 · 1011 1.68478 · 106 237.472
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Table C.2: Coefficients of polynomial fits (see Eq. 4.50) for tin = 0.1τ 1
2 (0).

c4 c3 c2 c1 c0

keff,1 0 5.60968 · 108 −1.34235 · 105 383.637 0.498436

% 1.736444 · 1013 −1.47160 · 1010 1.10706 · 107 5, 274.07 9.02805

λ1
f,1 4.14887 · 1015 −4.04047 · 1012 2.24620 · 109 2.65780 · 105 374.6218

λ1
f,2 2.24811 · 1015 −2.18978 · 1012 1.21667 · 109 1.42945 · 105 200.835

λ1
c,1 1.79797 · 1012 −1.75100 · 109 9.73429 · 105 115.180 0.162347

λ1
c,2 3.7927 · 1014 −3.69430 · 1011 2.05260 · 108 2.41157 · 104 33.8821

λ1
`,1 1.54619 · 1015 −4.52878 · 1011 1.63787 · 109 2.09524 · 106 3, 717.77

λ1
`,2 1.23407 · 1012 −4.65227 · 108 1.22141 · 106 1, 466.61 2.73307

λ1
s,1→2 2.62997 · 1015 −2.56126 · 1012 1.42387 · 109 1.68478 · 105 237.472
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Fortran Fission Subroutine

Example

Below is an example Fortran code that was implemented to simulate a fission chain

and all of its resultant progeny. The parameter gen_cutoff defines when one considers

a single fission chain to have diverged or grown to a point that it will not extinguish

within the observation interval based on the number of successive generations that

have occurred in the chain. This number is normally set to 106, because if we

have a slightly supercritical system of, say k = 1.0001, then if 106 generations

have propagated the population has likely grown to a level that it will most likely

not extinguish. The subroutine BANK_NS sorts the induced fission neutrons into the

appropriate fission_bank and time_bank arrays. It also allows for dynamic array

allocation so that we do not need to preallocate an unnecessarily large array at the

beginning of the chain simulation. On a final note, we also follow the total population

of the fission chain using the chain_pop value. The chain population begins at 1 due

to the initial particle and we only add to the population for every time there is a

fission event. From this, we specifically define a chain’s population as being the total

number of fissions that that chain produces and once the chain grows to a value
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greater than diverged_pop, we terminate the fission chain simulation.

1 subroutine FISSION (t, persistent_ns )

2 implicit none

3 real(dp), intent (in) :: t

4 integer (sik), intent (inout) :: persistent_ns

5 integer (sik), allocatable :: fission_bank (: ,: ,:)

6 real(dp), allocatable :: time_bank (: ,: ,:)

7 integer (sik) :: current , next , h, i, j, k, m

8 integer (sik) :: gen , Num_in_step , ns , chain_pop

9 real(dp) :: xi , s, tt , orig_t

10 ! Fission_bank & time_bank are partitioned into # of rows =

11 !t_steps , # of columns = fission locations w/in that t_step ,

12 !2 sheets for current & next generation of neutrons

13 allocate ( fission_bank (t_steps , 1000 , 2), &

14 time_bank (t_steps , 1000 , 2))

15 fission_bank (: ,: ,:) = 0_sik; time_bank (: ,: ,:) = 0.0 _dp

16 !As we enter this subroutine , the fission occurs at some time

17 !t, which we call orig_t

18 orig_t = t

19 chain_pop = 1_sik

20 !Start with generation 0

21 gen = 0_sik

22 mloop:do m = 1, gen_cutoff !Chain has diverged if m= gen_cutoff

23 ! Determine the " current " gen fission_bank column :

24 if (mod(gen ,2) .eq. 0_sik) then

25 current = 1_sik; next = 2_sik

26 else

27 current = 2_sik; next = 1_sik

28 end if

29 fission_bank (:,:, next) = 0_sik

247



Appendix D. Fortran Fission Subroutine Example

30 time_bank (:,:, next) = 0.0 _dp

31 ! Banking time of ORIGINAL n that induced a fission chain:

32 !Note: these emitted neutrons are considered ’current ’ gen

33 !Note: we consider a single SF n at a time in this subroutine

34 if (gen .eq. 0_sik) then

35 tscan1 :do j = 1, t_steps

36 if (( orig_t .ge. time_grid (j)) .and. &

37 ( orig_t .lt. time_grid (j+1))) then

38 ! Sample IF mult. distribution and bank # emitted

39 call IFMD_SAMPLER (ns)

40 if (ns .eq. 0_sik) then !No ns were emitted

41 exit mloop !Chain dies

42 else

43 time_bank (j ,1:ns , current ) = orig_t

44 fission_bank (j ,1:ns , current ) = 1_sik

45 exit tscan1

46 end if

47 end if

48 end do tscan1

49 end if

50 !At this point , we have the time & # of neutrons emitted from

51 !the ORIGINAL IF event. Now track each new particle individu -

52 !ally to determine the next gen and all ensuing gens.

53

54 ! Essence of the following procedure :

55 !1. Follow each n that was produced , determine if it persists ,

56 !gets captured , or induces yet another fission .

57 !a. If persistent , add it to the Pn , move to next particle .

58 !b. If captured , move to next particle .

59 !c. If fission , sample IFMD and add these ns to the next gen.
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60

61 tscan2 :do k = 1, t_steps

62 Num_in_step = sum( fission_bank (k,:, current ))

63 if ( Num_in_step .eq. 0) then

64 cycle tscan2

65 else !We have ns to track

66 ncounter :do j = 1, Num_in_step

67 tt = time_bank (k,j, current )

68 call random_number (xi)

69 s = -log(xi)/ XS_a

70 tt = tt + s/vel

71 ! Determine if n "leaks" from time interval

72 if (tt .ge. tf) then

73 call BIN_POP ( persistent_ns )

74 cycle ncounter

75 end if

76 call random_number (xi)

77 if (xi .le. micro_c / micro_a ) then

78 ! Captured :

79 cycle ncounter

80 else

81 ! Fissioned :

82 chain_pop = chain_pop + 1

83 call IFMD_SAMPLER (ns)

84 if (ns .eq. 0) then

85 cycle ncounter

86 else

87 call BANK_NS (ns ,time_bank , fission_bank )

88 end if

89 end if
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90 end do ncounter

91 end if !( Num_in_step .eq. 0) then

92 end do tscan2

93 ! Updating current gen to next gen:

94 gen = gen + 1

95 fission_bank (:,:, current ) = fission_bank (:,:, next)

96 time_bank (:,:, current ) = time_bank (:,:, next)

97

98 if ( chain_pop .gt. diverged_pop ) then

99 exit mloop

100 end if

101 if (sum( fission_bank (:,:, next )) .eq. 0) then

102 exit mloop

103 end if

104 end do mloop

105

106 deallocate ( fission_bank )

107 deallocate ( time_bank )

108

109 return

110 end subroutine FISSION
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Iteration Scheme for the

Truncated Gaussian W (φ)

We wish to determine r such that φp = 0, the mean value of the parent/general

Gaussian distribution. This is accomplished by setting φ` = 0 and φp = 0 in Eqs.

7.69a - 7.70b, which simplify to:

φ = Ef = 2σp ·
ω(0)− ω(b)
2Ω(b)− 1 (E.1a)

σφ = rEf = σp

√√√√1− 2bω(b)
2Ω(b)− 1 − 4

[
ω(0)− ω(b)

Ω(b)− 1

]2

, (E.1b)

where a = 0, b = φu/σp, and ω(0) = 1/
√

2π. In order to compute r and σp such that

φ = Ef , σφ = rEf , and φp = 0, we must determine the roots of Eqs. E.1a and E.1b.

Employing the Newton-Raphson method to iteratively solve the transcendental-in-r

and -σp system of equations:

f (r, σp) = 0 = σpA(0, b)− Ef (E.2a)

g (r, σp) = 0 = r − σp
Ef

√
1 +B(0, b)− [A(0, b)]2, (E.2b)

where A and B are defined by Eq. 7.72, but we replicate them below for convenience:

A
(
0, b

(
φp, σp

))
= ω(0)− ω(b)

Ω(b)− 1/2 (E.3a)
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Table E.1: Jacobian matrix entries for the parent Gaussian distribution iterative
scheme.

y

r σp

∂f
∂y

0 A+ σp
∂A
∂σp

∂g
∂y

1 − 1
Ef

(√
1 +B − A2 + σp

2
√

1+B−A2

(
∂B
∂σp
− 2A ∂A

∂σp

))
∂A
∂y

0 1
σp

(
AB − 2b2ω(b)

2Ω(b)−1

)
∂B
∂y

0 1
σp

(
B2 − (b2−1)bω(b)

Ω(b)−1/2

)

B
(
0, b

(
φp, σp

))
= − bω(b)

Ω(b)− 1/2 . (E.3b)

We then iterate on r and σp until convergence is achieved; for the nth iteration, the

system of updating equations is rn
σp,n

 =

 rn−1

σp,n−1

− J−1
n−1

f(rn−1, σp,n−1)

g(rn−1, σp,n−1)

 , (E.4)

where Jn−1 is the Jacobian matrix of the previous iteration, defined as

Jn−1 =


∂f
∂r

∣∣∣∣
(rn−1,σp,n−1)

∂f
∂σp

∣∣∣∣
(rn−1,σp,n−1)

∂g
∂r

∣∣∣∣
(rn−1,σp,n−1)

∂g
∂σp

∣∣∣∣
(rn−1,σp,n−1)

 , (E.5)

and the entries of the Jacobian matrix are listed in Table E.1 for convenience.

252



Bibliography

[1] PÁZSIT, I. and PÁL, L., Neutron Fluctuations, Elsevier, Oxford, UK (2008).

[2] ROSS, S.M. Introduction to Probability Models (11th ed.). (2014).

[3] BELL, G.I., “Probability Distribution of Neutrons and Precursors in a Multi-
plying Assembly,” Annals of Physics, 21, 243-283 (1963).

[4] WILLIAMS, M.M.R., Random Processes in Nuclear Reactors, Pergamon Press,
Oxford & UK (1974).

[5] PAPOULIS, A., Probability, Random Variables, and Stochastic Processes, 2nd
ed. New York: McGraw-Hill, 1984.

[6] PÁZSIT, I., “Theory and Use of Branching Processes in Nuclear Applica-
tions” Presentation given during the Miniworkshop on Stochastic Processes and
Transport at Chalmers University. May, 2008.

[7] WEBER, M.F. and FREY, E., “Master Equations and the Theory of Stochastic
Path Integrals,” Rep. Prog. Phys., 80, 046601 (2017).

[8] EDDY, S.R., “A Probabilistic Model of Local Sequence Alignment That Sim-
plifies Statistical Significance Estimation” PLoS Computational Biology, 4(5):
e1000069. DOI:10.1371/journal.pcbi.1000069. (2008).

[9] JOHNSON, N.L., KOTZ, S., KEMP, A.W., Univariate Discrete Distributions
(2nd edition). Wiley. ISBN 0-471-54897-9 (Section 1.B9) (1993) .

[10] PANAYOTOUNAKOS, D.E. and ZARMPOUTIS, T.I., “Construction of Exact
Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear
ODEs (Abel’s Nonlinear ODEs of the First Kind and Relative Degenerate
Equations),” International Journal of Mathematics and Mathematical Sciences,
2011, Article ID 387429, DOI:10.1155/2011/387429

253



Bibliography

[11] PRINJA, A., and SOUTO, F., “ Probability Distributions for Neutron Multi-
plying Systems without Delayed Neutrons,” Los Alamos National Laboratory
report LA-UR 09-07886 (2009).

[12] PRINJA, A., and SOUTO, F., “Some Considerations on Stochastic Neutron
Populations," Trans. Am. Nucl. Soc., 102, 255-257 (2010).

[13] PRINJA, A., “ Notes on the Lumped Backward Master Equation for the
Neutron Extinction/Survival Probability,” Los Alamos National Laboratory
report LA-UR-12-22638.

[14] O’ROURKE, P., PRINJA, A., and FICHTL, E., “Neutron Number Probability
Distributions in a Subcritical System Using the Forward Master Equation,”
Trans. Am. Nucl. Soc. (2016).

[15] PRINJA, A. “Fission Number Distributions,” Letter to Patrick O’Rourke. N.d.
MS. Albuquerque, New Mexico.

[16] O’ROURKE, P., “Benchmarking PARTISN with Analog Monte Carlo: Mo-
ments of the Neutron Number and the Cumulative Fission Number Probability
Distributions,” Los Alamos National Laboratory report LA-UR 16-28191 (2016).

[17] HARRIS, D.R., Naval Reactors Handbook, Vol. 1, “Selected Basic Techniques,”
Chapter 5 (1964).

[18] BELL, G., “On the Stochastic Theory of Neutron Transport,” Nuclear Science
and Engineering, 21, 390-401, (1965).

[19] PÁL, L., On the Theory of Stochastic Processes in Nuclear Reactors, Nuovo
Cim. supp VII. 25-42 (1958).

[20] PÁL, L., Statistical Theory of Neutron Chain Reactors, I, II, III. Acta Physica
Hungar., 14, 345 (1962). Translation by V. Shibayev, NP-TR-951 Harwell
(1962).

[21] LEWINS, J., “Linear Stochastic Neutron Transport Theory,” Proc. Royal Soc.
London A, 362, 537 (1978).

[22] STACEY, W.M., “Stochastic Kinetic Theory for a Space- and Energy-Dependent
Zero Power Nuclear Reactor Model,” Nuclear Science and Engineering, 36,
389-401, 1969.

[23] FEYNMAN, R., Los Alamos Scientific Laboratory, private communication,
(1946).

254



Bibliography

[24] CARLSON, B., “Solution of the Transport Equation by the Sn Method,” Los
Alamos Scientific Laboratory Report LA-1891 (1955).

[25] CARLSON, B., LEE, C., and WORLTON, W., “The DSN and TDC Neutron
Transport Codes,” Los Alamos Scientific Laboratory Report LAMS-2346 (1959).

[26] BELL, G., and LEE, C., “ On the Probability of Initiating a Persistent Fission
Chain,” LA-2608, Los Alamos National Laboratory, 1976.

[27] BAKER, R., “Probability of Initiation.” Presentation. LA-UR-04-6589. 2005.

[28] BAKER, R., “Deterministic Methods for Time-Dependent Stochastic Neu-
tron Transport,” International Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering, 2009.

[29] BROCKWAY, D., SORAN, P., and WHALEN, P., “Monte-Carlo Eigenvalue
Calculation.” Los Alamos National Laboratory, 1985.

[30] LARSEN, E.W. and ZWEIFEL, P.F., “On the Spectrum of the Linear Transport
Operator,” Journal of Mathematical Physics, 15, 1987-1997, 1974.

[31] BETZLER, B.R. “Calculating Alpha Eigenvalues and Eigenfunctions with
a Markov Transition Rate Matrix Monte Carlo Method.” PhD Dissertation.
University of Michigan, 2014.

[32] ATHREYA, K.B., and NEY, P.E., Branching Processes, Dover, New York
(1972).

[33] MÉCHITOUA, B., “Monte Carlo Estimation of Nonextinction Probabilities,”
Trans. Am. Nucl. Soc., 82, 2000.

[34] GREGSON, M., “Time Dependent Non-Extinction Probability for Fast Burst
Reactors.” PhD Dissertation. University of New Mexico, 2009.

[35] ALCOUFFE, R.E., BAKER, R.S., DAHL, J.A., TURNER, S.A., and WARD,
R., “PARTISN: A Time-Dependent, Parallel Neutral Particle Transport Code
System,” LA-UR-08-07258 (Revised 2008).

[36] BROWN, F.B., “Fundamentals of Monte Carlo Transport – Variance Reduction
– Lecture 9,” September 2014.

[37] GILLESPIE, D.T., “A General Method for Numerically Simulating the Stochas-
tic Time Evolution of Coupled Chemical Reactions,” J. Comput. Phys., 22(4),
403-434, 1976. DOI:10.1016/0021-9991(76)90041-3.

255



Bibliography

[38] BARTLETT, M.S., “Stochastic Processes or the Statistics of Change,” J. R.
Stat. Soc. C, 2(1), 44-64, 1953. DOI:10.2307/2985327.

[39] FICHTHORN, K.A. and WEINBERG, W.H., “Theoretical Foundations of
Dynamical Monte Carlo Simulations,” J. Chem. Phys., 95(2), 1090-1096, 1991.

[40] ABATE, J. and WARD, W., “Numerical Inversion of Probability Generating
Functions,” Operations Research Letters, 12(4), 245-251, 1992.

[41] SAXBY, J. E. M., PRINJA, A. K., and EATON, M. D., “Energy Depen-
dent Transport Model of the Neutron Number Probability Distribution in a
Subcritical Multiplying Assembly,” Nuclear Science and Engineering, DOI:
10.1080/00295639.2017.1367569 (2017).

[42] PEARSON, K., “Contributions to the Mathematical Theory of Evolution. II.
Skew Variation in Homogeneous Material,” Philosophical Transactions of the
Royal Society on London A, 186, 343-414 (1895).

[43] FICHTL, E. and BAKER, R., “Computing the Moments of the Neutron
Population Using Deterministic Neutron Transport.” International Conference
on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013).

[44] FICHTL, E., and PRINJA, A., “The Asymptotic Probability Distribution of
Fission Numbers in a Multiplying System,” Trans. Am. Nucl. Soc. (2014).

[45] PRINJA, A., “A Stochastic Theory of Number Distributions of Fissions in
a Multiplying Assembly.” Letter to Erin Fichtl. N.d. MS. Albuquerque, New
Mexico (2015).

[46] DUDERSTADT, J., and HAMILTON, L., Nuclear Reactor Analysis, Nuclear
Reactor Kinetics, Wiley & Sons, pp. 257-267 (1976).

[47] PATEL, S.B., Nuclear Physics: An Introduction. New Delhi: New Age Interna-
tional. pp. 62-72. (2000).

[48] ENQVIST, A., PAZSIT, I., and POZZI, S., “The Number Distribution of
Neutrons and Gamma Photons Generated in a Multiplying Sample,” Nuclear
Instruments and Methods: Accelerators, Spectrometers, Detectors and Associated
Equipment, 566.2, 598-608, (2006).

[49] KAMM, R.J. and PRINJA, A.K., “Eigenfunction Expansion of the Space-Time
Dependent Neutron Survival Probability,” Trans. Am. Nucl. Soc., 109, 1354
(2013).

256



Bibliography

[50] KAMM, R., “Eigenfunction Expansion of the Time and Space-Dependent
Neutron Survival Probability Equation.” Master’s Thesis. University of New
Mexico, 2005.

[51] LEWIS, E. E., and MILLER, W. F., Computational Methods of Neutron
Transport, New York: Wiley, 1984.

[52] “GCC Releases– GNU Project– Free Software Foundation (FSF),” GNU Project.
Retrieved 28-10-2019.

[53] SALARI, K., and KNUPP, P., “ Code Verification by the Method of Manufac-
tured Solutions,” SAND2000-1444, Sandia National Laboratory, 2000.

[54] PAUTZ, S., “Verification of Transport Codes by the Method of Manufactured
Solutions: The ATTILA Experience,” LA-UR-01-1487, Los Alamos National
Laboratory, 2001.

[55] MACHORRO, E., “Discontinuous Galerkin Finite Element Method applied
to the 1-D Spherical Neutron Transport Equation,” UCRL-JRNL-216956,
Lawrence Livermore National Laboratory, 2005.

[56] SUTTON, T.M., LaCHARITE, A.D., PRINJA, A.K. “Marduk: A Monte Carlo
Code for Analyzing Stochastic Neutron Population Dynamics,” International
Conference on Mathematics & Computational Methods Applied to Nuclear
Science & Engineeering, 2017.

[57] SPRIGGS, G.D., BUSCH, R.D., “On the Definition of Neutron Lifetimes in
Multiplying and Non-multiplying Systems,” Los Alamos National Laboratory
report LA-13260-MS, 1997.

[58] CENGEL, Y.A. and GHAJAR, A.J. Heat and Mass Transfer, 4th Edition (2011).

[59] JONES, L.R., “Diffuse Radiation View Factors Between Two Spheres,” Journal
of Heat Transfer, 87(3), 421-422, 1965.

[60] FELSKE, J.D., “Approximate Radiation Shape Factors Between Two Spheres,”
Journal of Heat Transfer, 100(3), 547-548, 1978.

[61] MILLER, J.R., “Geometric Approaches to Nonplanar Quadric Surface Intersec-
tion Curves,” ACM Trans. on Graphics, 6(4), 274-307, 1987.

[62] LEEMIS, L.M. and MCQUESTION, J.T., “Univariate Distribution Relation-
ships,” American Statistician, 62(1), 45-53, 2008.

257



Bibliography

[63] SHAMPINE, L.F., and GORDON, M.K., Computer Solution of Ordinary
Differential Equations: The Initial Value Problem Freeman, San Francisco,
1975.

[64] O’ROURKE, P.F. and PRINJA, A.K., “Solution of the Neutron Survival
Probability Equation Using k-Eigenmode Expansion,” Annals of Nuclear Energy,
134, 178-192, 2019.

[65] PRINJA, A.K. and O’ROURKE, P.F., “A Stochastic Theory of Deposited
Fission Energy in Neutron Chains,” Proceedings of The International Conference
on Mathematics and Computational Methods applied to Nuclear Science and
Engineering (M&C 2019) (2019).

[66] FELLER, W., An Introduction to Probability Theory and Its Applications Vols.
1 & 2, Wiley (1968).

[67] LESTONE, J., “Energy and Isotope Dependence of Neutron Multiplicity Dis-
tributions,” Los Alamos National Laboratory report, LA-UR-05-0288 (2005).

[68] RISING, M., and SOOD, A., “Using the MCNP6.2 Correlated Fission Multi-
plicity Models, CGMF and FREYA,” Los Alamos National Laboratory report,
LA-UR-17-20799 (2017).

[69] LESTONE, J., “A Comparison Between Two Evaluations of Neutron Multiplicity
Distributions,” Los Alamos National Laboratory report, LA-UR-08-1084 (2008).

[70] RAMKRISHNA, D., Population Balances: Theory and Applications to Particu-
late Systems in Engineering, Academic Press, 2000.

[71] CIRNU, M., “Initial-Value Problems for First-Order Differential Recurrence
Equations with Auto-Convolution”, Electronic Journal of Differential Equations,
2011(2), 1-13 (2011).

[72] SANDU, A., and BORDEN, C., “A Framework for the Numerical Treatment
of Aerosol Dynamics”, Applied Numerical Mathematics, 45(4), 475-497 (2005).

[73] SANDU, A., “Piecewise Polynomial Solutions of Aerosol Dynamic Equation”,
Aerosol Sci. and Tech., 40(4), 261-263 (2004).

[74] HAGMANN, C.A., RANDRUP, J., and VOGT, R.L., “FREYA- A New Monte
Carlo Code for Improved Modeling of Fission Chains”, Lawrence Livermore
National Laboratory report, LLNL-PROC-561431 (2012).

258


	Modeling and Simulation of Stochastic Neutron and Cumulative Deposited Fission Energy Distributions
	Recommended Citation

	tmp.1588091499.pdf.JfONt

