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Abstract

This dissertation consists of three parts that chronicle my major research as a Statis-

tics Ph.D Candidate at the University of New Mexico. First, I present my primary

research in the UNM Department of Mathematics & Statistics, which delves into

the relationship between parametric bootstrap and objective Bayesian approaches

to significance testing, and includes an in-depth examination of the heteroscedas-

tic analysis of variance problem. For the one-way problem, we present tests based

on the parametric bootstrap, objective Bayes, the predictive distribution, and an

unweighted test statistic. These approaches are compared theoretically, with simu-

lation studies, and with a real data application. The findings of the one-way case

is extended to testing for differences in means in the RCBD with subsampling and

heteroscedastic errors model. We establish variance parameter estimates, propose

an objective Bayesian test, and a new unweighted test for fixed group effects. We
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derive the asymptotic distribution for which to compare the unweighted test statis-

tic, conduct a simulation study, and show how to solve an applied problem using

the objective Bayesian method. Lastly, we look at some general results pertaining

to Bayesian significance testing, defining a Bayesian p-value and describing some of

its properties.

The second part involves my work with the UNM Department of Neurology and

discusses the development of a random forest algorithm for the early detection of

patients with Binswanger’s disease, a subgroup of vascular cognitive impairment de-

mentia. We use cross validation to compare several methods for predicting if vascular

dementia patients are of the Binswanger type or if they more likely suffer from some

other small vessel disease. We investigate which biomarkers are most important

for classification and see that a random forest algorithm accurately identifies Bin-

swanger’s patients earlier than clinicians are able to, which can reduce the number

of patients needed for a clinical trial while improving the chance of success.

The dissertation concludes with my work in Statistical Genomics from my time

at the UNM Cancer Research Facility, which involves an examination of methods

for high-throughput gene expression analysis under the case-cohort study design.

The case-cohort study design blends the efficiency of case control studies with the

philosophical soundness of full cohort studies, and is an efficient way to analyze

survival data, particularly for large cohorts with low failure rates. Using a tandem

of real data examples and simulation studies, we investigate the performance of the

most popular case-cohort analysis approaches in the context of high-dimensional

biomarker evaluation.
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Chapter 1

Introduction

This research places a major emphasis on linear models, which are mathematical

models that are linear in the parameters. The standard linear model is

Y = Xβ + e, E[e] = 0

where Y is a vector of observations of a random variable, X is a known matrix

that specifies the model, β is a vector of unknown fixed parameters that we want

to estimate, and e is a vector of unobservable error terms. Linear models are used

to model a non-deterministic process or phenomena in such a way that we can un-

derstand the relationships between variables involved and predict future outcomes.

The assumptions behind this model are that we have no systematic bias, so that

E[e] = 0, i.e. the expected value of the error terms is zero.

Analysis of variance (ANOVA) is perhaps the most commonly applied procedure

in the linear modeling framework. Any time we want to predict a continuous re-

sponse using categorical predictors, we have an ANOVA problem. Whether we are

comparing two groups with a t test or using a more complicated design such as a

randomized complete block design (RCBD), they can all be viewed as special cases

of the ANOVA problem. To compare groups, we have parameters representing group
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Chapter 1. Introduction

means and the X matrix indicates the group each observation is in.

In many cases, we can assume normally distributed and uncorrelated error terms

uncorrelated with constant variance such that Cov(e) = σ2I, where I is the identity

matrix. Under these conditions the ordinary least squares (OLS) procedure gives

known distributional results.

To provide more flexibility for modeling less well-behaved data, we need to loosen

these strict assumptions. Our primary focus will be a consideration heteroscedastic

data. For ANOVA problems, heteroscedasticity means that each group has a different

variance term. We allow for an unbalanced design where we have different sample

sizes per group, giving us an unbalanced heteroscedastic ANOVA model.

For the one-way heteroscedastic ANOVA model, we have:

yij = µi + εij the linear model

yij independent observations

i = 1, 2, . . . , a groups

j = 1, 2, . . . , ni observations within a group

eij ∼ N(0, σ2
i ) normally distributed errors

N =
a∑
i=1

ni total observations

µi population means

ȳi. =
1

ni

ni∑
j=1

yij sample means

σ2
i population variances for each group

s2
i =

1

ni − 1

ni∑
j=1

(yij − ȳi.)2 sample variances for each group

Our goal is to perform a significance test of the hypothesis:

H0 : µ1 = µ2 = · · · = µa

3



Chapter 1. Introduction

This is a problem with a rich history, and many competing approaches have been

proposed. Chapter 2 includes a literature review to help establish some of the key

topics related to this problem.

In Chapter 3 we explore the one-way heterANOVA problem in depth, comparing

tests based on the parametric bootstrap (PB), objective Bayes (OB), the predictive

distribution, and an unweighted test statistic. We establish conditions for which

the PB and OB tests are equivalent, compare how the methods approximate the

distribution of the test statistic, evaluate their performance with a simulation study,

and show how to solve a real data problem.

Chapter 4 investigates the randomized complete block design (RCBD) with sub-

sampling when there are heteroscedastic error terms. In this chapter, we develop

an OB test and an unweighted test for testing for a difference in group means. We

present the results of a simulation study that compares the type I error rate achieved

by the OB test to the chi-squared test that is used when the variance terms are known

as an upper bound to how well we can do. A real data example is presented, and we

derive the asymptotic distribution of the unweighted test statistic.

Chapter 5 focuses on general Bayesian significance testing. We propose a general

Bayesian p-value for significance testing and discuss its properties. We close this

research in Chapter 6 with a brief synopsis and proposal of future research paths.

4



Chapter 2

Literature Review

2.1 Significance Testing

Christensen (2005) describes Fisherian significance testing as a probabilistic “proof

by contradiction” in which a model is proposed and we use observed data to “examine

the extent to which the data contradict the model”. If the data we observe is highly

unlikely under the assumed model, it implies that the null model is incorrect. In

significance testing, the p-value represents the probability under the null model of

observing a test statistic “as weird or weirder than you actually saw”. Sufficiently

low p-values lead us to conclude that we’ve observed enough evidence to suggest that

the initial assumptions are incorrect, in which case we reject the null model.

Researchers often posit a parametric hypothesis, such as H0 : θ = θ0, that the true

population parameter θ is equal to some proposed value θ0. A test statistic T (Y ) is

calculated and compared to some reference distribution, and if a low p-value is found,

people often assume that a rejection of H0 is the same as saying there is evidence that

θ 6= θ0. While this is one reason for a low p-value, model misspecification is another.

Examples of model misspecification are assuming normality when it isn’t reasonable

5



Chapter 2. Literature Review

or assuming homoscedasticity when it is violated. For linear models, we can look

at a plot of the residuals to assess these assumptions. If they are upheld, we can

reasonably conclude that θ 6= θ0, but when the assumptions appear inappropriate,

we are forced to rethink everything we are doing.

If we have a test statistic that does not follow a tractable distribution, obtaining

a p-value is not straightforward. This often occurs when nuisance parameters are

present. Nuisance parameters are parameters that we are not interested in doing

inference on, but cannot be ignored. The one-sample t test features a nuisance

parameter in the unknown σ2. Although we wish to test a mean µ, because we

don’t know the variance σ2 we cannot use the normal distribution. Instead, we use

a pivotal quantity t = ȳ−µ0
s
√
n

which follows a tn−1 distribution and does not depend

on the unknown variance parameter. The heteroscedastic ANOVA problems also

result in a test statistic that doesn’t follow a known distribution, and the p-value

resulting from the classical tests depend on nuisance parameters, so we have to find

a workaround.

2.2 The Behrens-Fisher Problem

The Behrens-Fisher problem is another name for the two-sample t test when the

groups have different variance terms. When these terms are equal, the classical test

statistic follows a t distribution, a result that is not guaranteed under heteroscedastic-

ity. In the usual two-sample t test, the assumptions of normality, constant variance,

and independence are all part of the null model. When there is evidence contradict-

ing the equal variance assumption, we can reject the null either because the means

or the variances are different. A better interpretation is that we are testing whether

the data comes from the same normal population.

Welch (1938) proposed an approximate answer to the Behrens-Fisher problem.

6



Chapter 2. Literature Review

This solution has eclipsed the classical homoscedastic t test as the default approach

since it is better under heteroscedasticity and the same in the balanced case when

variance terms are equal. Welch’s observed test statistic is:

tW =
ȳ1 − ȳ2√
s21
n1

+
s22
n2

where the difference in means follows a normal distribution. In the balanced case,

tW follows a t distribution with degrees of freedom df = N − 2. For the general

case, Welch proposes a normal approximation when samples are large, but in the

small sample case uses the Satterthwaite approximation (Satterthwaite, 1946) for

the degrees of freedom of the t distribution, so df =

(
s21
n1

+
s22
n2

)2

1
n1−1

(
s21
n1

)2

+ 1
n2−1

(
s22
n2

)2 .

2.3 Heteroscedastic One-Way ANOVA

In one-way ANOVA problems we are interested in testing if group means are different.

Our null hypothesis is H0 : µ1 = µ2 = · · · = µa, and assumes independent and

normally-distributed error terms. In the homoscedastic case, OLS gives an F test

that looks at the proportion of variability explained by the differences in groups

compared to the remaining variability:

MSGrps =

a∑
i=1

ni(ȳi. − ȳ..)2

a− 1

MSE =

a∑
i=1

ni∑
j=1

(yij − ȳi.)2

N − a

FObs =
MSGrps

MSE

FObs ∼ Fa−1,N−a

The homoscedastic F test performs poorly for heterANOVA, especially for small

samples. Generalized least squares (GLS) loosens the constant variance assumption,

and allows for an arbitrary covariance matrix for the error terms, i.e. Cov(e) = V .

7



Chapter 2. Literature Review

Chapter 3, Section 2 gives the details of the test. Under H0, the weighted Wald-style

test statistic features group means being weighted by the inverse of their standard

error terms. When the σ2
i ’s are known, we get:

T =
a∑
i=1

ni
σ2
i

ȳ2
i. −

(
a∑
i=1

ni
σ2
i
ȳi.

)2

a∑
i=1

ni
σ2
i

and we can compare T to a χ2
a−1 distribution to obtain p-values for a significance

test. In applied problems where the variance terms are unknown, we replace them

with their respective sample variances and obtain the observed test statistic:

TObs =
a∑
i=1

ni
s2
i

ȳ2
i. −

(
a∑
i=1

ni
s2i
ȳi.

)2

a∑
i=1

ni
s2i

In the heteroscedastic case, the distribution of TObs under H0 is not known, so we

need another way to obtain a p-value. The generalized p-value approach described in

Chapter 2, Section 4 allows us get a p value when nuisance parameters are present.

The nuisance parameters for the one-way heteroscedastic ANOVA problem are the

σ2
i s. This typically requires us to simulate the distribution of the test statistic under

H0 using approaches like PB and OB.

Akritas and Papadatos (2004) have proposed an unweighted test that works well

for one-way heteroscedastic ANOVA problems, even when the number of groups goes

to infinity. We’ll look more into this approach in Chapter 3, Section 5, and generalize

it for testing fixed effects in the RCBD with subsampling with heteroscedastic errors

in Chapter 4, Sections 7–9.

It is worth noting that an alternative path to solving the heterANOVA problem

is by transforming the response. The famous approach by Box and Cox (n.d.) tries

to find a power transformation that makes the likelihood look as good as possible

by attempting to fix all problems in the residuals, including heteroscedasticity. This

approach is widely implemented and readily available in software, but results in the

8
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analysis is being done on a different scale than that of the original data, resulting in

an analysis that may be answering very different questions, or provides unintelligible

answers. One solution to this problem is to back-transform to the original scale

before interpretion, but this is reasonable when E[f(Y )] ≈ f(E[Y ]). Our focus is

on modeling the covariance structure, so we will not explore the transformation

approach any further.

2.4 Generalized P-values

Tsui and Weerahandi (1989) propose a “generalized” p-value as a solution to per-

forming significance tests when nuisance parameters prevent a trivial solution. In

our case, the nuisance parameters are the σ2
i ’s. In general, suppose we wish to test

a null model, say:

Y ∼ f0(y|θ0,φ0)

where Y is a random variable, y is an observed sample of Y , θ0 is a vector of the

parameters of interest under H0, and φ0 is a vector of nuisance parameters under H0.

To find the generalized p-value for testing H0 : θ ≤ θ0, we need to find a generalized

test variable. T (Y |y,θ,φ) is called a generalized test variable if the following hold:

1. T (y|y,θ,φ) is a pivot, free of θ and φ.

2. If we specify θ, the distribution of T (Y |y,θ0,φ) is free of φ.

3. For fixed y and φ0, Pr(T ≤ t|θ) is a monotonic function of θ for any u.

The generalized p-value is defined as:

p− value = Pr [T (Y |y,θ0,φ) ≥ T (y|y,θ0,φ)]

9
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Tsui and Weerahandi used their generalized p-value idea to solve the Behrens-

Fisher problem. Suppose we have:

Ȳ1 ∼ N

(
µ1,

σ2
1

n1

)
, Ȳ2 ∼ N

(
µ2,

σ2
2

n2

)
,

n1S
2
1

σ2
1

∼ χ2
n1−1,

n2S
2
2

σ2
2

∼ χ2
n2−1

where Ȳ1, Ȳ2, S2
1 , and S2

2 are independent of one another. Let lower case versions of

these letters represent the observed values from a sample. Our parameter of interest

is θ = µ1 − µ2, and the nuisance parameter is φ = (σ2
1, σ

2
2). A good choice for the

generalized test variable is:

T = T (Y1, Y2|y1, y2,φ) =
Ȳ1 − Ȳ2√
σ2
1

n1
+

σ2
2

n2

√
s2

1σ
2
1

S2
1n1

+
s2

2σ
2
2

S2
2n2

= Z

√
(n1 − 1)s2

1

n1X2
1

+
(n2 − 1)s2

2

n2X2
2

where Z ∼ N(0, 1), X2
1 ∼ χ2

n1−1, and X2
2 ∼ χ2

n2−1 are all independent random

variables. TObs = ȳ1 − ȳ2, and for fixed y1 and y2, the distribution of T is free of

φ. Since E[T ] is monotonically increasing with respect to φ, T is a generalized test

variable and the corresponding generalized p-value is:

Pgen = Pr(|T | ≥ |ȳ1 − ȳ2||θ = 0) = Pr(T 2 ≥ (ȳ1 − ȳ2)2|θ = 0)

which we can evaluate via simulation.

2.5 The Parametric Bootstrap (PB)

Krishnamoorthy, Lu, and Mathew (2007) compared several approaches to the one-

way heteroscedastic ANOVA problem, showing that the PB approach outperformed

the Welch test, generalized F test, and James test. Unlike the more commonly

implemented nonparametric bootstrap, the PB requires a model parameterization.

While the PB is less flexible, it has the advantage of being more efficient, which is

particularly advantageous in small sample problems.

The fundamental idea driving the PB is the “plug-in” principle. For some data

model Y ∼ f(Y |θ) we sample from Y ∼ f(Y |θ̂). This uses the naive frequentist

approach to prediction that ignores the fact that we have to estimate the unknown

10
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parameters. The hope is that given a representative sample and a reasonable estimate

of θ, we can replicate the mechanism generating the data. For our purposes, we’ll use

the PB to simulate the sampling distribution of the observed test statistic under the

null hypothesis, and compare the observed test statistic to this estimated sampling

distribution to obtain an estimate of the generalized p-value for testing differences

in group means.

Zhang (2015a) proposed a PB approach for multiple comparisons in the one-way

heteroscedastic ANOVA problem. His work includes a solution for the unbalanced

case and a simulation study demonstrating its efficacy. Zhang (2015b) showed that

using the PB to construct simultaneous pairwise comparisons outperforms the Tukey-

Kramer procedure in two-way heteroscedastic ANOVA.

2.6 Objective Bayes (OB)

Objective Bayes (OB) uses Bayes’ Theorem to obtain posterior distributions of pa-

rameters based on some “objective” prior distribution and the likelihood function.

Objective priors are proposed to be appropriate in situations that we have no prior

beliefs, information, or opinions about the parameters. The goal is to let the data

speak for itself as much as possible.

The pioneers of Bayesianism, Thomas Bayes and Pierre-Simon Laplace, employed

flat priors on the unobserved parameters in the context of their “inverse probability”

approach (Bayes & Price, 1763; marquis de Laplace, 1820), but Jeffreys (1946)

is widely considered the originator of OB methodology. As Kass and Wasserman

(1996) discuss, despite Bayesian inference being rooted in subjectivist philosophy,

the vast majority of applied Bayesian analyses are carried out using “so-called ‘non-

informative’ priors”.

11
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There is no such thing as a truly “noninformative” prior, and examples like the

paradox described in Lindley (1957) demonstrate the potentially catastrophic nature

of using flat priors. In most cases, flat priors have little effect on the posterior analysis

and give answers that resemble frequentist solutions, but it is worth recognizing that

a flat prior for a mean parameter that places equal probability on the (−∞,∞)

line is a bit ridiculous. For any monstrously large central interval, the density is

still infinitely small compared to the density outside that interval. Practically, this

selection is fine for most problems, similar to how we can get away with using a normal

distribution to model variables such as height despite the physical impossibility of

observing negative values.

For the sake of argument, it is nigh impossible to think of a problem in which we

can’t come up with a prior that is less ridiculous than a flat one without influencing

our posterior much. For mean parameters, one may use a bounded uniform prior with

a very large range. Nevertheless, we are concerned with the relationship between the

PB and OB methods, and the use of flat priors facilitates an understanding of the

connection between the two approaches.

2.7 PB and OB Relationship

Tsui and Weerahandi (1989), note that their “p-value for the Behrens-Fisher problem

turns out to be numerically... the same as Jeffreys’s Bayesian solution and the

Behrens-Fisher fiducial solution.” Jeffrey’s is the OB solution. The fiducial solution

in Fisher (1941) arose from considering “Studentization”. For Student (1908), this

meant dividing the sample mean by the sample standard deviation so it only depends

on the location parameter µ. Fisher proposes an extension of this argument to

justify the procurement of a posterior distribution for a parameter θ without any

prior. By attempting to “make a Bayesian omelet without breaking the Bayesian

12
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eggs” (Savage, 1961), Fisher’s approach quickly garnered controversy. Nonetheless,

the fiducial argument proposed an elegantly simple solution to the Behrens-Fisher

problem. Despite being considered a dead end for awhile, fiducial inference has been

resurrected with generalized confidence distributions, an extension of Weerahandi’s

generalized confidence intervals (Weerahandi, 1995).

From Efron (1998): assume we can construct an upper confidence limit α×100%

for θ for every possible value of α, then we define the confidence distribution of θ as:

Pr[θ < θ̂(α)] = α

and if we “interpret this as a probability distribution for θ given the data... the

classic wrong interpretation of confidence”, that “θ is in the interval (θ̂(0.9), θ̂(0.91))

with probability 0.01”, etc., then by taking the limit, we have that the confidence

distribution is the fiducial distribution. Hence, the only difference between confi-

dence distributions and fiducial ones is the interpretation. There is a perfectly valid

frequentist justification for confidence distributions if we don’t confuse the repeated

sampling property with actual probability (easier said than done).

Bootstrap distributions are the most common type of confidence distribution.

Studentization is used to establish pivotal quantities in PB tests. For the Behrens-

Fisher problem, there is a clear relationship between the PB and OB tests, and we will

demonstrate that there is a strong similarity between PB and some OB approaches

in the one-way heterANOVA problem.

Bayarri and Berger (2004) consider OB to be perhaps “the most promising

route to the unification of Bayesian and frequentist statistics”. Efron (2013) dis-

cusses the relationship between the PB and OB, specifically demonstrating their

near-equivalency for the problem of estimating the correlation parameter of a bivari-

ate normal distribution and Efron (2012) shows the existence of a “Bayes/bootstrap”

conversion factor for multidimensional exponential families.

13
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From a philosophical standpoint, the PB and OB tests are fundamentally coming

from different places. The PB considers the data as random and the parameters as

fixed, while OB considers the data as fixed and the parameters as random. Em-

pirically, the PB and OB approaches tend to give similar results, so for one-way

heteroscedastic ANOVA, we’ll investigate an OB test that looks at how far away

TObs is from the posterior distribution of:

T̃ =
a∑
i=1

ni
s2
i

(ȳi. − µi)2 −

(
a∑
i=1

ni
s2i

(ȳi. − µi)
)2

a∑
i=1

ni
s2i

because under H0, T̃ = TObs. We use an analogous procedure for an OB test for fixed

group effects in the RCBD with subsampling model with heteroscedastic errors.
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One-Way Heteroscedastic ANOVA

3.1 The Problem

One-way heteroscedastic ANOVA is a class of problems where we wish to test for

differences in group means when the observations for each group have differing levels

of variability. The model in focus is:

yij = µi + eij, i = 1, . . . , a, j = 1, . . . , ni, eij ∼ N(0, σ2
i )

For a significance test of H0 : µ1 = µ2 = · · · = µa, the Wald-type weighted test

statistic is given by:

T ≡
a∑
i=1

ni
σ2
i

ȳi.
2 −

(
a∑
i=1

ni
σ2
i
ȳi.

)2

a∑
i=1

ni
σ2
i

and since the σ2
i ’s are unknown in practice, we replace them with their respective

sample variances to get the observed test statistic:

TObs ≡
a∑
i=1

ni
s2
i

ȳi.
2 −

(
a∑
i=1

ni
s2i
ȳi.

)2

a∑
i=1

ni
s2i
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See Appendix A for a derivation of T and TObs. The distribution of TObs is unknown,

so our goal is to estimate it so that we can perform a significance test for the equality

of group means.

In this chapter, we explore several approaches to testing H0, including the PB

(Section 2), OB (Section 3), predictive approach (Section 5) and the unweighted

test statistic approach of Akritas & Papadatos (Section 6). Section 4 highlights the

relationship between the PB and OB tests, and establishes the conditions for which

they are equivalent. simulation study in Section 7. Finally, we conclude with a real

data example in Section 8.

3.2 Parametric Bootstrap (PB) Approach

For a PB test, one can simulate the raw data, but for our goal of simulating TObs

under H0, we can directly sample the sufficient statistics ȳi and s2
i :

ȳiB ∼ N

(
ȳ..,

s2
i

ni

)
and s2

iB ∼
s2
iχ

2
ni−1

ni − 1
While the plug-in principle in general will use a normal distribution with mean ȳ..,

under H0 the ȳiB’s have the same mean, and based on the structure of TObs, it

doesn’t matter what that mean is, so without loss of generality, we take it to be 0

for simplicity, sampling ȳiB ∼ N
(

0,
s2i
ni

)
.

For each value of B = 1, ...,M , we sample ȳiB , s
2
iB , for i = 1, ..., a, and compute:

TPB ≡
a∑
i=1

ni
s2
iB

ȳ2
iB −

(
a∑
i=1

ni
s2iB
ȳiB)2

a∑
i=1

ni
s2iB

With a sufficiently large number of draws M of TPB, we can flesh out an estimate

of the sampling distribution of TObs under H0, and estimate the generalized p-value
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Pr(TPB > TObs) with:

PPB =
1

M

M∑
B=1

I(TPB > TObs)

where I() is an indicator variable such that:

I(TPB > TObs) =

1 if TPB > TObs

0 otherwise

3.3 Objective Bayesian (OB) Approach

Empirically, the OB approach to the significance test of H0 : µ1 = µ2 = · · · = µa is

very similar to the PB approach. A Bayesian significance test looks at how far away

TObs is from the posterior distribution of:

T̃ =
a∑
i=1

ni
s2
i

(ȳi. − µi)2 −

(
a∑
i=1

ni
s2i

(ȳi. − µi)
)2

a∑
i=1

ni
s2i

Note that when H0 is true, T̃ = TObs. With flat priors on the µis:
ȳi. − µi
si/
√
ni
|Y ∼ tni−1 ∴ ȳi. − µi|Y ∼

si√
ni
tni−1

we repeatedly sample and compute:

TOB ≡
a∑
i=1

ni
s2
i

(
si√
ni
tni−1

)2

−

(
a∑
i=1

ni
s2i

si√
ni
tni−1

)2

a∑
i=1

ni
s2i

=
a∑
i=1

t2ni−1 −

(
a∑
i=1

√
ni
si
tni−1

)2

a∑
i=1

ni
s2i

Similar to the PB test, for the OB test, we sample TOB M times, and estimate the

p-value with:

POB =
1

M

M∑
B=1

I(TOB > TObs)
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3.4 PB/OB Relationship

Noting the relationship between the standard normal, chi-squared, and t distribu-

tions:
zi√

χ2
ni−1/(ni − 1)

d
= tni−1

We can rewrite TPB in terms of draws from the tni−1 distribution:

TPB =
a∑
i=1

t2ni−1 −

(
a∑
i=1

√
ni
si
tni−1

)2

a∑
i=1

ni(ni−1)

s2iχ
2
ni−1

Hence, TPB and TOB will be equivalent when:

ψ̂ =
χ2
ni−1

(ni − 1)
= 1 for all i

where ψ is the dispersion parameter. Also note that TPB → TOB asymptotically. To

see this, note that a χ2
ni−1 is a sum of ni − 1 independent squared standard normal

variables:

z2 ∼ χ2
1 E[z2] = 1

so by the law of large numbers:
ni−1∑
t=1

z2
t

ni − 1
→ 1

and hence ψ̂ → 1 for all i, and TPB → TOB.

3.5 Predictive Distribution

The predictive distribution is the distribution for unobserved or future realizations

of the response variable, given the already observed data. Ron Christensen sug-

gested investigating a test based on the predictive distribution, based on the work of

Aitchison (1975). The crux of this paper is that the predictive distribution f(Ynew|Y )
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provides a better estimate of f(Y |θ) than the plug-in distribution f(Y |θ̂), based on

the Kullback-Leibler divergence K(), i.e.:

K(f(Ynew|Y ), f(Y |θ)) ≤ K(f(Y |θ̂), f(Y |θ))

Our test of H0 : µ1 = µ2 = · · · = µa is a one-sided test, so performance is primarily

related to the behavior of the right-tail of the sampling distribution of TObs under

H0. Hence, even if the predictive approach gives a better estimate of this sampling

distribution overall, it may not lead to a better test. For one-way heteroscedastic

ANOVA, under H0, new data observations come from:
yni+1

si
√

1 + 1
ni

|Y ∼ tni−1

and for a new sample of size m: yni+1, yni+2, ..., yni+m we have:

ȳ∗i. =

m∑
j=1

yni+j

m
= ȳi. + si

√
1 +

1

ni

m∑
j=1

ti

m
with:

E[ti] = 0,Var(ti) =
ni − 1

ni − 3
∴ E[ȳ∗i.|Y ] = ȳi.,Var(ȳ∗i.|Y ) = s2

i

(
1 +

1

ni

)
ni − 1

ni(ni − 3)
Implementing a normal approximation, we have:

ȳ∗i.|Y ∼ N

(
ȳi.,

(ni − 1)(ni + 1)

n2
i (ni − 3)

s2
i

)
s2∗
i |Y ∼

χ2
ni−1

ni − 1

(ni − 1)(ni + 1)

ni(ni − 3)
s2
i

and noting that:

ȳ∗i.|Y
d
= (zi + ȳi.)

(ni − 1)(ni + 1)

n2
i (ni − 3)

s2
i

we can compute draws of:

Tpred ≡
a∑
i=1

ni

s2
i

(
χ2
ni−1

ni−1
(ni−1)(ni+1)
ni(ni−3)

) ((zi + ȳi.)

√
s2
i (ni − 1)(ni + 1)

n2
i (ni − 3)

)2

−

 a∑
i=1

ni

s2i

(
χ2ni−1

ni−1

(ni−1)(ni+1)

ni(ni−3)

) ((zi + ȳi.)
√

s2i (ni−1)(ni+1)

n2
i (ni−3)

)
2

a∑
i=1

ni

s2i

(
χ2ni−1

ni−1

(ni−1)(ni+1)

ni(ni−3)

)
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To approximate the generalized p-value Pr(TPred > TObs), we take M draws of TPred,

and calculate:

Ppred =
1

M

M∑
B=1

I(TPred > TObs)

3.6 The Unweighted Test Statistic

Akritas and Papadatos (2004) developed an alternative one-way ANOVA test statis-

tic as a competitor to the usual weighted, ratio-based F statistic. Their statistic is

unweighted and difference-based:

Ta ≡

a∑
i=1

[
ni (ȳi. − ȳ..)2 − s2

i

(
1− ni

N

)]
√
a

and is inspired by the fact that in the balanced case E[MSGrps] = E[MSE] under

H0. Ta reflects an adjustment to center MSGrps −MSE for use in the unbalanced

case. For the unbalanced case, as a→∞, the asymptotic distribution of Ta is:

Ta
d→ N

(
0, 2

(
τ 4 + γ4

))
where 1

a

a∑
i=1

σ4
i → τ 4 ∈ (0,∞) and 1

a

a∑
i=1

σ4
i

ni−1
→ γ4 ∈ (0,∞). We compare Ta to

this distribution to obtain the p-value, Pa. The unweighted test statistic is effective

for one-way heteroscedastic ANOVA, and performs well even when the number of

groups is very large. Appendix B includes details on how to estimate the σ4
i s to

ensure consistent estimation of τ 4 and γ4.

3.7 Simulation Study

To evaluate and compare the PB, OB, predictive, and unweighted approaches, we use

several simulation based approaches. First, we compare how the methods estimate

the sampling distribution of the observed test statistic for a specific set of parameter

values. Next, we evaluate the effectiveness of the tests based on their empirical type I
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error rate and power. We split this task into two components—a “shotgun” approach

where we consider hundreds of scenarios to get a sense of which methods are effective

for an arbitrary one-way ANOVA problem, and a more traditional, focused approach

that looks at power curves. All simulations are carried out using R (R Core Team,

2016).

3.7.1 Density Estimation Comparison

In this section we compare how the PB, OB and predictive approaches estimate the

sampling distribution of the observed test statistic. We omit the approach of Akritas

& Papadatos as it is based on an entirely different test statistic. The simulation

proceeds as follows:

• Select the number of groups a, sample sizes ni, group means µi and group

variances σ2
i for i = 1, 2, . . . , a.

• Generate the sufficient statistics ȳi and s2
i .

• Calculate B = 1, 2, . . . , 1000 draws of TPB, TOB, and Tpred.

• Plot the kernel density estimates.

We present examples of a small sample size case and large sample size case. For each,

we consider a = 3 groups under H0, with the µis all equal to zero, and σ2
i = c(9, 4, 1).

Figure 3.1 shows the small sample case that features group sizes ni = c(5, 7, 6), and

Figure 3.2 shows the large sample case that features group sizes ni = c(108, 72, 69).
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Figure 3.1: Density Estimation—Small Sample Sizes
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Figure 3.2: Density Estimation—Large Sample Sizes

In both cases we see the methods estimating the test statistic with a similar shape—

positive, unimodal, right-skewed distributions with the bulk of the density close to 0,

which coincides with the null hypothesis of equal group means. In the small sample

case, all approaches perform similarly, and in the large sample case, the methods are

nearly identical, suggesting the asymptotic equivalence of the methods.
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3.7.2 Type I Error Rate and Power

The most common way to compare statistical tests is via power analysis. In a

simulation, we generate the data, so we know the true parameter values, and hence

whether the null hypothesis is true or not true. The power of a test is the probability

that it correctly rejects H0 when it is false. We estimate the power by calculating

the proportion of false null hypotheses that are correctly rejected. The closer to 1,

the better, with one important caveat—the method must also be able to control the

type I error rate.

A type I error is committed when a true null hypothesis is incorrectly rejected.

We set a nominal level of significance, which is the proportion of null hypotheses

that will be rejected based on sampling variability alone, and estimate the type I

error rate with the proportion of true null hypotheses that are incorrectly rejected.

The closer to the nominal level, the better. Controlling the type I error rate takes

precedence over power. To illustrate this, consider a test that always rejects the

null hypothesis. This ridiculous test will achieve 100% power, but it will also always

make type I errors when the H0 is true.

Both type I error rate and power are rejection rates—the type I error rate is the

rejection rate when H0 is true, and power is the rejection rate when H0 is false. The

simulation proceeds as follows:

• Specify the number of groups a, sample sizes ni, group means µi, group vari-

ances σ2
i , and a nominal significance level α.

• For plotting power curves, calculate the effect size. We use T .

• For each of the R simulation repetitions:

– Generate sufficient statistics ȳi and s2
i .
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– Calculate the observed test statistic TObs and unweighted test statistic Ta.

– Draw B observations of TPB, TOB, and Tpred, and calculate their corre-

sponding p-values PPB, POB, and Ppred.

– Calculate τ 4 and γ4 and obtain Pa.

– Compare the p-values from each method to the nominal α level—if P < α,

add 1 to the rejection counter for that method.

• Divide the number of rejections for each method by the number of simulation

repetitions R to obtain the rejection rate.

• If H0 is true (all µis are equal), the rejection rate represents the type I error

rate.

• If the H0 is false (not all µis are equal), the rejection rate represents the power.

With so many parameters, it is difficult to assess how the methods will perform

in all situations. We propose a shotgun approach where we throw a vast array of

parameter combinations at each method and pool together the type I error rate and

power results to compare the relative effectiveness of the methods. We also present

an example of a more traditional or focused approach that looks at power curves.

The shotgun approach sees only α = 0.05, R = 1000, and B = 1000 fixed. Our

simulation considers hundreds of combinations of the number of groups, group sizes,

sample means, and sample variances. With so many combinations, we are able to get

a better sense of how the methods perform for an arbitrary one-way heteroscedastic

ANOVA problem, but are unable to look at each individual case in detail. We present

box plots of the rejection rates broken down by the number of groups. We plot the

true null scenarios (for assessing type I error rate) in Figure 3.3, and the false null

scenarios (for assessing power) in Figure 3.4.

25



Chapter 3. One-Way Heteroscedastic ANOVA

Figure 3.3: Type I Error Rate—106 Different Scenarios

In general, the PB, OB, predictive, and unweighted approaches are all able to control

the type I error rate across the board. PB and OB have very similar performance,

with type I error rates very close to the nominal level 0.05. The predictive approach

is a bit more conservative, with type I error rate typically less than the nominal level,

and the unweighted test appears to be even more conservative. For the 12 and 30

group simulations, the predictive and unweighted tests demonstrate more variability

than they do in the 3 and 6 group cases.
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Figure 3.4: Power Analysis—712 Different Scenarios

The PB, OB, predictive, and unweighted approaches all perform fairly similarly in

terms of power. Based on the median power levels and interquartile ranges, PB

and OB have nearly identical performance, slightly outperforming the predictive

approach, which in turn slightly outperforms the unweighted approach.

The focused approach reveals the behavior of the power curves with higher res-

olution at the expense of considering fewer cases. Figure 3.5 shows an example of

the power curves, where we leave the number of groups fixed at a = 3, group sizes

at ni = c(4, 8, 9), and variances at σ2
i = c(1, 4, 9), while varying only the µis. In

the example, we look at 7 sets of µi’s, ranging from small to large effect sizes. We

set a nominal significance level of α = 0.05, perform R = 1000 runs at each setting,
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and use B = 1000 draws of TPB, TOB, and Tpred a density from which to find the

approximate p-values associated with these methods.

Figure 3.5: Power Curves

Overall, we see what we’d expect, with power increasing for each as effect size in-

creases. The methods perform comparably, and we see that the PB and OB ap-

proaches have nearly identical performance.

28



Chapter 3. One-Way Heteroscedastic ANOVA

3.8 Example: Red Dye Number 40

To illustrate the testing procedure in a more practical light, we demonstrate the OB

approach for a real one-way heteroscedastic ANOVA problem. The dataset in focus is

from Lagakos and Mosteller (1981), who explored the carcinogenic effects of Red Dye

Number 40 by feeding mice various doses of the dye and then recording their time

of death (in weeks). The experiment features four groups of various sizes: a control

group (n1 = 11), a low dosage group (n2 = 9), a medium dosage group (n3 = 10),

and a high dosage group (n4 = 8). Figure 3.6 uses box plots to show the empirical

distribution of survival time for each group, and suggests that heteroscedasticity is

present.

Figure 3.6: Empirical Distribution of Mouse Lifespan by Group

A Breusch-Pagan test gives a p-value of 0.0058, so we conclude that heteroscedasticity

is present. Hence, the Red Dye 40 experiment is a one-way heteroscedastic ANOVA
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problem. To conduct the OB test for a difference of group means, first calculate

group means and variances, and center group means around the grand mean. Next,

calculate the observed test statistic. For this problem, we obtain TObs = 21.71.

We then generated 10000 draws of TOB under H0. Figure 3.7 depicts the estimated

distribution of the test statistic under H0 in purple, along with a black vertical line

indicating the observed test statistic:

Figure 3.7: Objective Bayes Simulated Test Statistic Distribution

Our estimate for the generalized p-value POB = Pr[TOB > TObs] is the proportion of

TOB draws that were greater than TObs, so POB = 64
10000

= 0.0064. Hence, we reject

H0 and conclude that at least two of the groups of mice have different lifespans, on

average.

30



Chapter 4

RCBD with Subsampling and

Heteroscedastic Errors

4.1 Introduction

In this chapter we offer a more complicated special case where we have dependent

data—specifically, two-way heterANOVA under the randomized complete block de-

sign (RCBD) with subsampling and heteroscedastic errors. The model in focus is:

yijk = µi + ηj + eijk the linear model

i = 1, 2, . . . , a groups

j = 1, 2, . . . , b blocks

k = 1, 2, . . . , nij subsamples

µi group means

ηj ∼ N(0, σ2
w) random block effects

eijk ∼ N(0, σ2
i ) normally distributed measurement errors
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ηj |= eijk block effects independent of measurement errors

In the RCBD, observations within each block are correlated with one another,

hence our descriptor of the data as dependent. A standard RCBD features one

observation at each treatment-block combination, but an obvious extension is to

allow for subsampling multiple observations at each treatment-block combination.

There are two sources of error in this model, the within-block or measurement

error terms σ2
i , and the random block effect term σ2

w. We’ll allow for heteroscedastic

measurement error terms. The subsampling model is incredibly useful if there is

a great deal of variability within each block, but subsamples will only reduce our

estimate of the within block variability. Hence, in order to reduce the total variability

associated with the response, we need to increase the number of complete blocks.

If between block variability is high and within block variability is low, for example,

you’ll gain very little additional information by collecting subsamples.

Our goal is to perform a test for fixed group effects: H0 = µ1 = µ2 = · · · = µa,

and the observed test statistic does not follow a known distribution. Hence, we once

again need to simulate the sampling distribution of the observed test statistic under

H0 to obtain a generalized p-value and conduct the test.

In Section 4.2, we describe the RCBD with subsampling and heteroscedastic

errors model, and present the weighted test statistic for testing H0. Section 4.3

details an OB approach and includes a simulation study to explore the type I error

rate. An application to a real data example—the sea urchin grazing experiment—is

demonstrated in Section 4.4.

Sections 4.7–4.9 define a new unweighted test statistic for the RCBD with sub-

sampling model. We discuss how to appropriately consider the sources of error,

define the expected values of the relevant mean squared terms, and conclude with a

derivation of the asymptotic distribution of this unweighted test statistic.
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4.2 RCBD with Subsampling

In our exploration of the RCBD with subsampling model, we consider fixed group

effects and random block effects. We’ll focus on testing for a difference in group

means. For this purpose we can simplify the model described by averaging over the

subsamples:

ȳij. = µi + ηj + ēij.

ȳij. =

nij∑
k=1

yijk

nij

ēij. =

nij∑
k=1

eijk

nij

ηj ∼ N
(
0, σ2

w

)
ēij. ∼ N

(
0,
σ2
i

nij

)
Var(ȳij.) = σ2

w +
σ2
i

nij
We see that an increase in subsamples only gives a reduction of within block vari-

ability. For comparing group means, we can reframe the RCBD with subsampling

model as a one-way ANOVA problem. Blocks are assumed to be independent from

one another, so we have:

ȳi.. = µi + ξi

ξi =
1

b

b∑
j=1

(ηj + ēij.)

vi ≡ Var(ȳi..) = Var

(
1

b

b∑
j=1

ȳij.

)
=

1

b2
Var (ȳi1. + ȳi2. + . . .+ ȳib.)

=
1

b2

((
σ2
w +

σ2
i

ni1

)
+

(
σ2
w +

σ2
i

ni2

)
+ . . .+

(
σ2
w +

σ2
i

nib

))
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=

bσ2
w +

b∑
j=1

σ2
i

nij

b2
≡ 1

ωi
By averaging over the subsamples and blocks, it is clear that for a reduction of

the overall variance terms associated with the group means, we need to increase

the number of complete blocks. This approach also facilitates the derivation of a

weighted Wald-type test statistic for testing H0:

T =
a∑
i=1

ωiȳ
2
i.. −

(
a∑
i=1

ωiȳi..

)2

a∑
i=1

ωi

In practice, we don’t know the σ2
w or σ2

i terms, so we have to estimate them, giving

the observed test statistic:

TObs =
a∑
i=1

ω̂iȳ
2
i.. −

(
a∑
i=1

ω̂iȳi..

)2

a∑
i=1

ω̂i

The derivation of T and the estimation of the ω̂is is presented in Appendix C.

4.3 OB Approach & Simulation Results

The OB test aims to see how far away TObs is from the posterior distribution of:

T̃ =
a∑
i=1

ω̂i(ȳi.. − µi)2 −

(
a∑
i=1

ω̂i(ȳi.. − µi)
)2

a∑
i=1

ω̂i

To do this, we sample from:
ȳi.. − µi
v̂i

|Y ∼ ta(b−1) ∴ ȳi.. − µi|Y ∼ v̂ita(b−1)

and calculate:

TOB ≡
a∑
i=1

t2a(b−1) −

(
a∑
i=1

√
ω̂ita(b−1)

)2

a∑
i=1

ω̂i
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With enough samples of TOB, we can simulate the distribution of TObs under H0, and

estimate the generalized p-value:

POB =
1

M

M∑
B=1

I(TOB > TObs)

Table 4.1 lists the achieved type I error rates from simulations under various

parameter settings. In the table: a is the number of groups, b is the number of blocks,

the σ2
i s are the measurement errors for each group, σ2

w is the between block error,

and the nijs are the number of subsamples for each treatment/block combination.

For economy of space, the entire list of the nij values for each simulation run is

not displayed, but the various values the nijs take are displayed to convey if the

simulation features large or small, and balanced or unbalanced subsample sizes. We

present both the type I error rate from the OB test as well as that from the χ2

test when we know the true variance parameters as an upper-bound for how well

we can do. Each simulation was run 2000 times with 5000 draws of TOB used to

approximate the sampling distribution of the observed test statistic under H0. For

each simulation, the nominal significance level is α = 0.05.
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Table 4.1: Objective Bayes Simulation Table

a b σ2
i ’s σ2

w nij’s
OB Type I
Error Rate

Known Variance
Type I Error Rate

3 4 1,1,1 16 40 0.0155 0.0515
3 4 1,1,1 0.25 40 0.02 0.059
3 10 1,1,1 16 40 0.039 0.0525
3 10 1,1,1 0.25 40 0.0355 0.0525
5 5 1,4,9,16,25 16 40 0.0305 0.0525
5 5 1,4,9,16,25 0.25 40 0.023 0.0485
5 5 1,4,9,16,25 16 40,20 0.0285 0.0485
5 5 1,5,9,16,25 0.25 40,20 0.032 0.0585
5 5 1,4,9,4,1 16 40 0.0275 0.059
5 5 1,4,9,4,1 0.25 40 0.0275 0.05
5 5 1,4,9,4,1 16 40,20 0.03 0.0575
5 5 1,4,9,4,1 0.25 40,20 0.03 0.053
3 50 1,1,1 16 40 0.0585 0.063
3 50 1,1,1 0.25 40 0.039 0.0405
3 50 1,4,9 16 40 0.465 0.048
3 50 1,4,9 0.25 40 0.049 0.0515
3 50 1,4,9 16 40,20,10 0.04 0.0445
3 50 1,4,9 0.25 40,20,10 0.0475 0.0495
3 50 1,4,9 16 5,10,15 0.048 0.048
3 50 1,4,9 0.25 5,10,15 0.0475 0.0485
3 20 1,4,9 16 20,10,15 0.0455 0.0505
3 20 1,4,9 0.25 20,10,15 0.048 0.0575
3 10 1,4,9 16 5,10,15 0.027 0.0435
3 10 1,4,9 0.25 5,10,15 0.036 0.045
30 10 1,4,9,1,4,9,...,1,4,9 16 20,10,15 0.048 0.055
30 10 1,4,9,1,4,9,...,1,4,9 0.25 20,10,15 0.052 0.0565
30 50 1,4,9,1,4,9,...,1,4,9 16 20,10,15 0.056 0.0555
30 50 1,4,9,1,4,9,...,1,4,9 0.25 20,10,15 0.051 0.0505
3 50 1,25,100 225 40,20,10 0.041 0.042
3 50 1,25,100 0.25 40,20,10 0.052 0.052
3 5 1,25,100 225 40,20,10 0.0205 0.046
3 5 1,25,100 0.25 40,20,10 0.02 0.0525
3 5 1,25,100 225 5,10,8 0.0285 0.0585
3 5 1,25,100 0.25 5,10,8 0.0245 0.0535
3 5 1,4,9 16 5,10,8 0.016 0.041
3 5 1,4,9 0.25 5,10,8 0.0175 0.0385
3 20 1,4,9 16 5,10,8 0.045 0.0515
3 20 1,4,9 0.25 5,10,8 0.043 0.054
3 20 1,4,9 16 2,1,3 0.0515 0.059
3 20 1,4,9 0.25 2,1,3 0.044 0.0495
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The OB approach produces p-values close to the nominal level, regardless of the

presence of heteroscedasticity. It appears to be equally effective regardless of whether

whether σ2
w is large or small, relative to the σ2

i ’s, and works well for both the balanced

and unbalanced cases. The number of groups and number of subsamples has little

effect on the type I error rate in the cases considered. The one situation in which the

model produces unsatisfactory performance is the case where we have 5 or less blocks.

For these simulations, the OB test is conservative as it tends to produce p-values less

than the nominal level. This result reflects the crux of the subsampling problem—to

reduce the overall variability, we need to increase the number of blocks, not just the

number of subsamples, hence the poor performance in the small number of blocks

case even when the number of subsamples is large. Comparatively, increasing the

number of blocks results in a rapid performance boost—in the cases featuring more

than a handful of blocks, the OB type I error rate is typically within around 0.01

of the nominal level of significance, which is nearly in line with the achieved type I

error rate for the χ2 test when variance terms are known. This indicates that the

OB approach reliably controls the type I error rate for these cases.

4.4 Example: Sea Urchin Grazing Experiment

Andrew and Underwood (1993) performed an experiment in which they altered the

density of sea urchins in various subtidal regions in New South Wales, Australia,

in order to examine the effect of sea urchin grazing on the percentage cover of fila-

mentous algae. Their experiment is an example of RCBD with subsampling. The

treatment of interest is sea urchin density, and there are four groups: control (orig-

inal density at the site), 66% original density, 33% original density, and all urchins

removed. The experiment was performed in four patches, which are considered ran-

dom blocks, with five subsamples per group/patch combination. The response of
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interest is the percentage of algae coverage at each site. Hence, the sea urchin graz-

ing experiment is an example of a balanced RCBD with subsampling experiment.

Figure 4.1 shows the empirical distribution of algae coverage by group, and suggests

the presence of heteroscedasticity:

Figure 4.1: Empirical Distribution of Algae Coverage by Group

The side-by-side box plots of algae cover by urchin density tend to be right-
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skewed with the exception of the rather symmetric “all urchins removed” group.

The control group exhibits far less variability than the others, and a Breusch-Pagan

test confirms the presence of heteroscedasticity (p-value=0.0016). There may be a

bit of a boundary problem since we can’t have less than 0% algae coverage, but we’ll

proceed with our test of fixed effects using the OB approach for illustrative purposes:

Figure 4.2 depicts the distribution of the test statistic under the null model as

approximated by the OB procedure. A vertical line shows the value of the observed

test statistic TObs = 87.66.

Figure 4.2: Illustration of the OB Test

The density is based on 10, 000 draws of TOB, none of which were higher than the

39



Chapter 4. RCBD with Subsampling and Heteroscedastic Errors

observed test statistic. This gives us a p-value of less than 0.0001, leading us to reject

H0 and conclude that at least two group means differ. The sites in which urchins

were NOT removed typically have close to 0% algae coverage, since there are urchins

to eat the algae. Conversely, the sites at which the urchins were completely removed

typically have over 40% coverage as there are no urchins to eat the algae.

4.5 An Unweighted Test Statistic

In this section, we propose a difference-based statistic for a test of fixed effects in

the RCBD with subsampling and heteroscedastic errors model. With two sources of

error, we cannot naively look at something like:

Twrong = MSGrps−MSE

as this approach would underestimate the variability by only including the measure-

ment error σ2
i . Ignoring the random block effect makes the group effects “appear to

be more significant than they really are” (Christensen, 2011). Instead, we need to

look at the appropriate error line. First, we average over the subsamples and then

proceed as in one-way ANOVA. The model is:

ȳij. = µi + εij

where:

εij = ηj + ēij. and εij ∼ N

(
0, σ2

w +
σ2
i

nij

)
Define the relevant MS terms as:

MSGrps =
b

a− 1

a∑
i=1

(ȳi.. − ȳ...)2 and “MSE” =
1

a(b− 1)

a∑
i=1

b∑
j=1

(ȳij. − ȳi..)2

where:

ε̄i. = η̄. + ēi.. and ε̄i. ∼ N

0,

bσ2
w +

b∑
j=1

σ2
i

nij

b2


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and

ε̄.. = η̄. + ē... and ε̄.. ∼ N

0,

abσ2
w +

a∑
i=1

b∑
j=1

σ2
i

nij

a2b2


Under H0, E(MSGrps) = E(“MSE”), so it is reasonable to conduct a test based on:

Ta = MSGrps− “MSE”

See Appendix D for details. To perform a significance test for a difference in group

means, we can compare Ta to its asymptotic distribution:

N

(
0,

2bτ̃ 4

a(b− 1)

)
and obtain the p-value for the test, Pa. Appendix E details the derivation of the

asymptotic distribution of Ta.
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Bayesian Significance Testing

5.1 The Bayesian P-value

In this section, we propose a general framework for Bayesian significance testing. In

the one-way problem, the PB and OB methods approximate both the distribution

of the test statistic in a very similar way. Note that nothing about Bayesian signifi-

cance testing requires us to be objective, so we could implement similar ideas using

conjugate Bayesian approaches. The Bayesian p-value is based on a significance test

that essentially takes the null hypothesis to be the test statistic, and we broadly

define it as:

PB = Pr[g(θ|Y ) ≤ g(θ0|Y )|Y ]

which reduces to the posterior probability of being outside the posterior ellipse that

has θ0 on it. This is equivalent to checking if the observed test statistic is too large

to reasonably be from the null distribution. In other words, using Bayesian p-values

to make a decision in a significance test is equivalent to looking at highest posterior

probability intervals. For the one-sided tests we are interested in, to calculate the
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p-value, we use:

PB = Pr[T (Y ,θ) ≥ T (Y ,θ0)|Y ].

The PB uses a sampling distribution with θ fixed and Y random, while OB uses

a sampling distribution with Y fixed and θ random. Despite arising from different

philosophical arguments, both methods tend to result in empirically similar or iden-

tical tests. In Section 2, we look at some properties of OB significance testing that

are valued from a frequentist perspective—the repeated sampling property and large

sample property.

5.2 Properties of OB Significance Testing

5.2.1 Repeated Sampling Property

Suppose that T =< T1, T2, . . . , Tk > form a sequence of test statistics T (Y ,Xβ,φ).

For a sequence of parameters < β1,β2, . . . ,βk > from k populations with indepen-

dent sample spaces, where the βi’s have the regular posterior distribution with a

non-informative prior on β. Under the null hypothesis, T0 =< T01, T02, . . . , T0k >

forms a sequence of observed values T (Y ,X0γ). For a significance test where we

reject H0 when PB < α, when the null hypothesis is true, an OB significance test

will reject that hypothesis an average of α times with repeated sampling.

Proof. For a one-sided test, define a sequence of indicator variables as:

δi =

1 if T0i 6∈ [0, ui]

0 otherwise

where ui is the critical value from a posterior distribution such that:

Pr[Ti ∈ [0, ui]|Yi] = 1− α.
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Then we have:

Pr

limk→∞

k∑
i=1

δi

k
= α

 = 1

If we define:

∆i =

1 if T0i 6∈ [0, Ui]

0 otherwise

then ∆i is a sequence of Bernoulli random variables. Because Pr(Ti ∈ [0, ui]|Yi) =

1− α, by construction we have:

Pr(∆i = 1) = α for i = 1, 2, . . . , k

Moreover, δi is an observation of the Bernoulli random variable ∆i. Because <

∆1,∆2, . . . ,∆k > is a sequence of independent Bernoulli random variables with prob-

ability of success α, the result follows from the strong law of large numbers.

5.2.2 Large Sample Property

Under the conditions described in Section 5.2.1, ui, the critical value from the poste-

rior distribution of the test statistic is a consistent estimate of Qα, the αth quantile

from the limiting χ2 distribution.

Proof. As the sample size goes to infinity, the consistent estimates of the nuisance

parameters converge in probability to their population parameters:

φ̂
p−→ φ

From linear model theory:

T (Y ,Xβ, φ̂)
d−→ χ2

r(X)−r(X0)

and since the χ2 distribution is continuous:

ui
p−→ Qα
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Discussion & Future Work

For one-way heteroscedastic ANOVA, the PB, OB, and predictive approaches esti-

mate the sampling distribution of the observed test statistic very similarly, even for

small samples, and for large samples, they are almost identical. The PB and OB

approaches only differ by a φ̂ term, and they are asymptotically equivalent. Regard-

ing future work, perhaps one could find a Bayesian approach that gives exactly the

same test as the PB. In all simulations, the PB and OB approaches are practically

identical. The PB and OB approaches control the type I error rate very extremely

effectively, while the predictive and unweighted approaches are a bit more conserva-

tive in this regard. Similarly, the PB and OB have slightly better performance than

the predictive and unweighted tests, in terms of power.

For the RCBD with subsampling and heteroscedastic errors model, we proposed

two new solutions for testing H0 = µ1 = µ2 = · · · = µa. The OB test is able to

control the type I error rate close to the nominal level, except for the cases where

there are only a few blocks. For future work in this area, it would be interesting to

investigate the PB and predictive approaches, and see how these and the unweighted

test perform in terms of type I error rate and power.
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Ideally, future research will find an elegant means of unifying the PB and OB

approaches to significance testing. Otherwise, one will have to investigate these

approaches to testing on a case-by-case basis. ANOVA problems present a clear

path to implementing the approaches we considered, but regression problems and

others remain unexplored.
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Appendix A

One-Way Heteroscedastic ANOVA

Observed Test Statistic

For testing H0 = µ1 = µ2 = · · · = µa, we set up a full model: yij = µi + eij and

reduced model: yij = µ + eij. Let Jni denote a ni × 1 matrix of ones, J ≡ JN , and

Ini be an ni × ni identity matrix. The one-way heteroscedastic ANOVA model fits

in the linear model framework thusly:

Full Model: Y = Xβ + e
y11

y12

...

yana

 =


Jn1 0 · · · 0

0 Jn2 · · · 0
...

...
. . .

...

0 0 · · · Jna




µ1

µ2

...

µa

+


e11

e22

...

eana


where:

V ≡ Cov(e) =


σ2In1 0 · · · 0

0 σ2
2In2 · · · 0

...
...

. . .
...

0 0 · · · σ2
aIna


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Reduced Model: Y = Jµ+ e

The test statistic takes the form T = Y ′(A − A0)′V −1(A − A0)Y . Letting

C() denote the column space: C(V X) ⊂ C(X), and thus AY = MY , where

M = X(X ′X)−1X ′ is the perpendicular projection operator onto C(X). Hence,

we establish that:

AY = MY = X(X ′X)−1X ′Y

= Xdiag

(
1

n1

,
1

n2

, . . . ,
1

na

)

y1.

y2.

...

ya.



= X


ȳ1.

ȳ2.

...

ȳa.

 =


ȳ1.Jn1

ȳ2.Jn2

...

ȳa.Jna


where diag indicates a diagonal matrix.

In the reduced model, C(V X0) 6⊂ C(X), so we have to calculate the estimate

for µ directly. For ease of notation, let J = JN and D(σ2
i Ini) = V so that we have:

A0Y = X0

[
X ′0V

−1X0]
]−1

X ′0V
−1Y

= J
[
J ′D(σ2

i Ini)
−1J

]−1
J ′D(σ2

i Ini)
−1Y

= J

[
a∑
i=1

ni
σ2
i

]−1 a∑
i=1

ni∑
j=1

yij
σ2
i

= J

 1
a∑
i=1

ni
σ2
i

 a∑
i=1

yi.
σ2
i

= J

 1
a∑
i=1

ni
σ2
i

 a∑
i=1

ni
σ2
i

ȳi. = J


a∑
i=1

ni
σ2
i
ȳi.

a∑
i=1

ni
σ2
i


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Appendix A. One-Way Heteroscedastic ANOVA Observed Test Statistic

If we let ȳ∗.. =

a∑
i=1

ni
σ2
i

ȳi.

a∑
i=1

ni
σ2
i

be our weighted average, then we have:

AY −A0Y =


ȳ1.Jn1

ȳ2.Jn2

...

ȳa.Jn1

−
(
ȳ∗..J

)

so that:

T = Y ′(A−A0)′V −1(A−A0)Y =
a∑
i=1

ni
σ2
i

ȳ2
i. −

(
a∑
i=1

ni
σ2
i
ȳi.

)2

a∑
i=1

ni
σ2
i

and estimating the σ2
i ’s with their sample variances, we get the observed test statistic:

TObs =
a∑
i=1

ni
s2
i

ȳ2
i. −

(
a∑
i=1

ni
s2i
ȳi.

)2

a∑
i=1

ni
s2i
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Appendix B

U Statistic Calculation for the

Unweighted Approach

For consistent estimation of τ 4 and γ4, we need an unbiased estimate for the σ4
i terms.

U statistics (Hoeffding, 1948), provide a method for finding unbiased estimators. If

we have a random sample of independent, identically distributed random variables,

and can find an unbiased estimator for a parameter based on a subset of these

observations, the U statistic is defined as the arithmetic average of this unbiased

estimator across all possible subsamples that can give rise to that estimator. U

statistics are minimum-variance unbiased estimators, are strongly consistent, and

follow a normal distribution, asymptotically. (Hoeffding, 1961).

To use U statistics to estimate the σ4
i ’s, we need ni ≥ 4 for every group. For one

parameter σ4:

x1, x2, . . . , xn
iid∼ E[x1] = µ,Var(xi) = σ2

h(x1, x2, x3, x4) =
1

4
(x1 − x2)2(x3 − x4)2

E[h(x1, x2, x3, x4)] = σ4
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Appendix B. U Statistic Calculation for the Unweighted Approach

U =
1(
n
4

) ∑
1≤i<j<k<l≤N

h(xi, xj, xk, xl)

=
1(
n
4

) ∑
i<j<k<l

1

4
(xi − xj)2(xk − xl)2

=
1(
n
4

) 1

4

1

P 4
4

∑
i

∑
j

∑
k

∑
l

(xi − xj)2(xk − xl)2

=

∑
i

∑
j

∑
k

∑
l

((xi − x̄)2(xj − x̄)2) ((xk − x̄)2 + (xl − x̄)2)

4n(n− 1)(n− 2)(n− 3)

=
n

(n− 1)(n− 2)(n− 3)

∑
i

∑
k

(xi − x̄)2(xk − x̄)2

=
n

(n− 1)(n− 2)(n− 3)

∑
i

∑
k

(x2
i − 2xix̄+ x̄2)(x2

k − 2xkx̄+ x̄2)

=
n

(n− 1)(n− 2)(n− 3)

∑
k

(∑
i

x2
i − nx̄2

)
(x2

k − 2xkx̄+ x̄2)

=
n

(n− 1)(n− 2)(n− 3)

(∑
i

x2
i − nx̄2

)(∑
k

x2
k − nx̄2

)

=
n

(n− 1)(n− 2)(n− 3)

(∑
i

x2
i − nx̄2

)2

=
n(n− 1)

(n− 2)(n− 3)
(s2)2

So for each σ4
i , we’ll have:

σ̂4
i =

ni(ni − 1)

(ni − 2)(ni − 3)
(s2
i )

2
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Appendix C

RCBD Observed Test Statistic

We use the GLS framework to derive our weighted test statistic for a test of fixed

effects under the RCBD with subsampling and heteroscedastic errors model. Our

null hypothesis is H0 : µ1 = µ2 = · · · = µa, that all group means are equal. Thus,

the test statistic takes a similar form as before. T = Ȳ ′(Ā − Ā0)′V̄ −1(Ā − Ā0)Ȳ :

Full Model

Ȳ = Iaβ + ξ
ȳ1..

ȳ2..

...

ȳa..

 = Ia


µ1

µ2

...

µa

+


ξ1

ξ2

...

ξa



V̄ = Cov(ξ) =


v1 0 · · · 0

0 v2 · · · 0
...

...
. . .

...

0 0 · · · va


Reduced Model

Ȳ = Jaµ+ ξ
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Appendix C. RCBD Observed Test Statistic

To construct T , note that:

J ′aV̄
−1Ja =

a∑
i=1

b2

bσ2
w +

b∑
j=1

σ2
i

nij

≡
a∑
i=1

ωi

Ā0 = Ja[J
′
aV̄
−1Ja]

−1J ′aV̄
−1 =

1
a∑
i=1

ωi

JaJ
′
aV̄
−1

=
1

a∑
i=1

ωi

(ω1Ja, ω2Ja, . . . , ωaJa)


µ̂

µ̂
...

µ̂

 = Ā0Ȳ = Ā0


ȳ1..

ȳ2..

...

ȳa..


∴

µ̂ =

a∑
i=1

ωiȳi..

a∑
i=1

ωi

ĀY = Ia


ȳ1..

ȳ2..

...

ȳa..


∴

µ̂i = ȳi..

T = Ȳ ′(Ā− Ā0)′V̄ −1(Ā− Ā0)Ȳ

=
a∑
i=1

ωiȳ
2
i.. −

(
a∑
i=1

ωiȳi..

)2

a∑
i=1

ωi
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Appendix C. RCBD Observed Test Statistic

Since we never know the true values of the variance components in applied problems,

we derive their sample estimates in furtherance of finding the observed test statistic.

We estimate the σ2
i s with the sample variance terms (the s2

i s), and for σ2
w, we look

at the expected block effect, plug in the estimates for the σ2
i s, and solve for σ̂2

w:

µ̂ = ȳ... =
1

a

a∑
i=1

ȳi.. =
1

a

a∑
i=1

(
µ+ η̄j +

1

b

b∑
j=1

ēij.

)

= µ+ η̄j +
1

ab

a∑
i=1

b∑
j=1

ēij.

ȳij. − ȳ... = µ− µ+ ηj − η̄j + ēij. −
1

ab

a∑
i=1

b∑
j=1

ēij.

=
b

b
ηj −

1

b
ηj −

1

b

b∑
t=1
t6=j

ηt + ēij. −
1

ab
ēij. −

1

ab

a∑
u=1
u6=i

b∑
t=1
t6=j

ēut.

E (ȳij. − µ̂)2 =

(
b− 1

b

)2

σ2
w +

(
b− 1

b2

)
σ2
w

+

(
ab− 1

ab

)2
σ2
i

nij
+

(
1

ab

)2 a∑
u=1
u6=i

b∑
t=1
t6=j

σ2
i

nut

=
b2 − 2b+ 1 + b− 1

b2
σ2
w

+
a2b2 − 2ab+ 1

a2b2

σ2
i

nij
+

1

a2b2

a∑
u=1
u6=i

b∑
t=1
t6=j

σ2
i

nut

=
b− 1

b
σ2
w +

ab− 2

ab

σ2
i

nij
+

1

a2b2

a∑
i=1

b∑
j=1

σ2
i

nij

E
a∑
i=1

b∑
j=1

(ȳij. − µ̂)2 =
a∑
i=1

b∑
j=1

E (ȳij. − µ̂)2

=
a∑
i=1

b∑
j=1

(
b− 1

b
σ2
w +

ab− 2

ab

σ2
i

nij
+

1

a2b2

a∑
i=1

b∑
j=1

σ2
i

nij

)

= a(b− 1)σ2
w +

ab− 2

ab

a∑
i=1

b∑
j=1

σ2
i

nij
+

1

ab

a∑
i=1

b∑
j=1

σ2
i

nij
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Appendix C. RCBD Observed Test Statistic

= a(b− 1)σ2
w +

ab− 1

ab

a∑
i=1

b∑
j=1

σ2
i

nij

∴ σ̂2
w =


1

a(b−1)

(
a∑
i=1

b∑
j=1

(ȳij. − µ̂)2 − ab−1
ab

a∑
i=1

b∑
j=1

s2i
nij

)
, if σ̂2

w > 0

0, otherwise

Plugging in these estimates, we get:

ω̂i =
b2

bσ̂2
w +

b∑
j=1

si
nij

so the observed test statistic under the null hypothesis is:

TObs =
a∑
i=1

ω̂iȳ
2
i.. −

(
a∑
i=1

ω̂iȳi..

)2

a∑
i=1

ω̂i
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Appendix D

Expected Value of MSGrps and

“MSE” for the RCBD Model

The expected values of MSGrps and “MSE” reveal that a test of H0 based on Ta =

MSGrps− “MSE” is reasonable in the RCBD with subsampling and heteroscedastic

errors model. To find the expected value of “MSE”, note that:

ȳij. − ȳi.. = µi + εij − µi − ε̄i.

= εij − ε̄i. = εij −
1

b

b∑
j=1

εij

=
b

b
εij −

1

b
εij −

1

b

b∑
t=1
t6=j

εit

=

(
b− 1

b

)
εij −

1

b

b∑
t=1
t6=j

εit

E(ȳij. − ȳi..)2 =

(
b− 1

b

)2(
σ2
w +

σ2
i

nij

)
+

1

b2

b∑
t=1
t6=j

(
σ2
w +

σ2
i

nit

)
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Appendix D. Expected Value of MSGrps and “MSE” for the RCBD Model

=

(
b− 1

b

)2

σ2
w +

b− 1

b2
σ2
w +

(
b− 1

b

)2
σ2
i

nij
+

1

b2

b∑
t=1
t6=j

σ2
i

nij

=
b2 − 2b+ 1 + b− 1

b2
σ2
w +

b2 − 2b

b2

σ2
i

nij
+

1

b2

b∑
j=1

σ2
i

nij

=
b− 1

b
σ2
w +

b− 2

b

σ2
i

nij
+

1

b2

b∑
j=1

σ2
i

nij

E
a∑
i=1

b∑
j=1

(ȳij. − ȳi..)2 =
a∑
i=1

b∑
j=1

(
b− 1

b
σ2
w +

b− 2

b

σ2
i

nij
=

1

b2

b∑
j=1

σ2
i

nij

)

= a(b− 1)σ2
w +

b− 2

b

a∑
i=1

b∑
j=1

σ2
i

nij
+

1

b

a∑
i=1

b∑
j=1

σ2
i

nij

= a(b− 1)σ2
w +

b− 1

b

a∑
i=1

b∑
j=1

σ2
i

nij

and hence:

E(“MSE”) = σ2
w +

1

ab

a∑
i=1

b∑
j=1

σ2
i

nij

To find the expected value of MSGrps, note that:

ȳi.. − ȳ... = µi − µ̄. + ε̄i. − ε̄..

= (µi − µ̄.) +
1

b

b∑
j=1

εij −
1

ab

a∑
i=1

b∑
j=1

εij

= (µi − µ̄.) +
a

ab

b∑
j=1

εij −
1

ab

b∑
j=1

εij −
1

ab

a∑
u=1
u6=i

b∑
j=1

εuj

E(ȳi.. − ȳ...)2 = E(ȳi.. − ȳ...)2 = (µi − µ̄i)2 +

(
a− 1

ab

)2 b∑
j=1

(
σ2
w +

σ2
i

nij

)

+

(
1

ab

)2 a∑
u=1
u6=i

b∑
j=1

(
σ2
w +

σ2
su

nuj

)

= (µi − µ̄i)2 +

(
a− 1

ab

)2
(
bσ2

w +
b∑

j=1

σ2
i

nij

)
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Appendix D. Expected Value of MSGrps and “MSE” for the RCBD Model

+

(
1

ab

)2

(a− 1)bσ2
w +

a∑
u=1
u6=1

b∑
j=1

σsu
2

nuj


= (µi − µ̄.)2 +

a2 − 2a+ 1

a2b2
bσ2

w +
a− 1

a2b2
bσ2

w

+
a2 − 2a+ 1

a2b2

b∑
j=1

σ2
i

nij
+

1

a2b2

a∑
u=1
u6=i

b∑
j=1

σ2
su

nuj

= (µi − µ̄.)2 +
a2 − 2a+ 1 + a− 1

a2b2
bσ2

w

+
a2 − 2a

a2b2

b∑
j=1

σ2
i

nij
+

1

a2b2

a∑
i=1

b∑
j=1

σ2
i

nij

= (µi − µ̄.)2 +
a− 1

ab
σ2
w

+
a− 2

ab2

b∑
j=1

σ2
i

nij
+

1

a2b2

a∑
i=1

b∑
j=1

σ2
i

nij

E
a∑
i=1

(ȳi.. − µ̂)2 =
a∑
i=1

(µi − µ̄.)2 +
a− 1

b
σ2
w

+
a− 2

ab2

a∑
i=1

b∑
j=1

σ2
i

nij
+

1

ab2

a∑
i=1

b∑
j=1

σ2
i

nij

=
a∑
i=1

(µi − µ̄.)2 +
a− 1

b
σ2
w +

a− 1

ab2

a∑
i=1

b∑
j=1

σ2
i

nij

and hence:

E(MSGrps) =
b

a− 1

a∑
i=1

(µi − µ̄.)2 + σ2
w +

1

ab

a∑
i=1

b∑
j=1

σ2
i

nij

Under H0 : µ1 = µ2 = · · · = µa, all µis are equal, so µi = µ̄. and:

E(MSGrps) = σ2
w +

1

ab

a∑
i=1

b∑
j=1

σ2
i

nij
= E[“MSE”]

Hence, it would be reasonable to do a test based on:

Ta = MSGrps− “MSE”

where we see how far away Ta is from zero.
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Appendix E

Asymptotic Distribution of Ta for

the RCBD Model

We consider the RCBD with subsampling and heteroscedastic errors model averaged

over the subsamples so we can following the proof for the one-way balanced case

in Akritas and Papadatos (2004) to find the asymptotic distribution of Ta. The

number of blocks b ≥ 2 is fixed, with ȳij. independent, E[ȳij.] = µ under H0, and

0 < ν2
i ≡ Var(ȳij.) = σ2

w +
σ2
i

nij
< ∞ so the random variables ȳij. have the same

distribution for each row i. Now, assume:

1

a

a∑
i=1

ν4
i

a→∞−−−→ τ̃ 4 ∈ (0,∞)

and that for some δ > 0,

sup
a≥1

1

a

a∑
i=1

(
E |zi1|2+δ

)2

<∞

then we have:

Ta
d−−−→

a→∞
N

(
0,

2bτ̃ 4

a(b− 1)

)
Proof. Under H0, the µis are all equal, so without loss of generality, assume that
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Appendix E. Asymptotic Distribution of Ta for the RCBD Model

they are equal to zero, and hence E[ȳij.] = 0. Define:

A ≡


B1 −c3JbJ

′
b · · · −c3JbJ

′
b

−c3JbJ
′
b B2 · · · −c3JbJ

′
b

...
...

...
...

−c3JbJ
′
b −c3JbJ

′
b · · · Ba


with Bi being b× b matrices having elements bij:

bij =


c1
b
− c2 − c3, if i = j

c1
b
− c3, if i 6= j

where

c1 =
N − 1

(N − a)(a− 1)
c2 =

1

N − a
c3 =

1

N(a− 1)

If we define Z =


ȳ11.

ȳ12.

. . .

ȳab.

, then:

Ta = MSGrps− “MSE” = Z ′AZ

and

E[Z ′AZ] = E[Z ′ADZ]

where AD =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Ba

. We can establish the limiting distribution of Ta

by by looking at that of:
√
aZ ′ADZ =

√
a(MSGrps− “MSE”)

as

aE[Z ′AZ −Z ′ADZ] ≤ 2

a(a− 1)2

(
a∑
i=1

ν2
i

)2

a→∞−−−→ 0.
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Appendix E. Asymptotic Distribution of Ta for the RCBD Model

The U statistic:

U =
1√

a(b− 1)

( b∑
j=1

ȳij.

)2

−
b∑

j=1

ȳ2
ij.


has E[U ] = 0 and Var(U) =

2bσ4
i

a(b−1)
. Because

√
aZ ′ADZ =

a∑
i=1

Ua,i we can show:

Var(
√
aZ ′ADZ) =

2b

a(b− 1)

a∑
i=1

ν2
i

a→∞−−−→ 2bτ̃ 4

b− 1

where
a∑
i=1

v2
i
a→∞−−−→ τ̃ 4, and since Lyapunov’s condition holds, as for some δ > 0:

a∑
i=1

E |U |2+δ = (a(b− 1)2)−1−δ/2
a∑
i=1

∣∣∣∣∣∣
(

b∑
j=1

ȳij.

)2

−
b∑

j=1

ȳ2
ij.

∣∣∣∣∣∣
2+δ

≤ b2+δa−1−δ/2
a∑
i=1

(
E[|zi1|2+δ]

)2 a→∞−−−→ 0

then by the central limit theorem:

Ta
d−−−→

a→∞
N

(
0,

2bτ̃ 4

a(b− 1)

)
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Chapter 1

Introduction

Vascular disease has a major impact on all forms of dementia, and reducing vascular

risk factors is now recognized as a way to reduce the worldwide burden of demen-

tia (Gorelick et al., 2011; Hachinski et al., 2006; Snyder et al., 2015). Vascular

cognitive impairment dementia (VCID) has a heterogeneous nature, which impacts

epidemiological studies and interferes with drug testing (Pantoni, 2010; Román

et al., 2010). VCID can be dichotomized into small vessel disease (SVD) and large

vessel disease (LVD). While LVD is characterized by strokes and can be diagnosed by

neuroimaging, SVD has slowly progressive symptoms and findings on neuroimaging

that overlap with neurodegenerative diseases and normal aging. Binswanger’s disease

(BD) is a SVD with extensive demyelination secondary to vascular disease that is

characterized by hyperreflexia, gait imbalance, incontinence, and executive dysfunc-

tion (Bennett, Wilson, Gilley, & Fox, 1990; Caplan, 1995; Miller Fisher, 1989;

Olszewski, 1962; Román, Erkinjuntti, Wallin, Pantoni, & Chui, 2002; Rosenberg,

Kornfeld, Stovring, & Bicknell, 1979). The BD group is optimal for treatment trials

since the natural history is more apparent, which is often difficult to discern in pa-

tients with random strokes (Erkinjuntti, Roman, Gauthier, Feldman, & Rockwood,

2004). One approach to this dilemma is to obtain a large number of biomarkers at
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Chapter 1. Introduction

the time of entry into the study in a group of suspected VCID patients and to follow

them for two to five years to obtain a clinical diagnosis. Earlier, we showed that a

Binswanger Disease Score (BDS) derived from multiple biomarkers could predict the

BD diagnosis with over 80% accuracy (Rosenberg et al., 2015), but these results

were not cross validated and thus overoptimistic. Recent improvements in comput-

ers enable a multimodal, data-driven approach, using increased numbers of factors.

In this report we used Random Forests (RF) to calculate the probability that an

individual patient belongs in the BD group. Several recent studies have used RF

methods to diagnose Alzheimers disease (AD) based on MRI, PET and blood-based

biomarkers (DeMarshall et al., 2016; Gray et al., 2013; Lebedev et al., 2014). We

hypothesize that the RF algorithm is an improvement over BDS, exploratory factor

analysis (EFA), and logistic regression.
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Methods

2.1 Data Sets

2.1.1 Established Diagnosis Dataset

62 patients with suspected VCI that were recruited from 2007–2010 formed the

dataset used to train and test the statistical methods. Patients were seen in the

Neurology Clinics at University of New Mexico Hospital and Albuquerque Veterans

Medical Center. A test of competency was performed to assure that patients under-

stood and consented to all study procedures. The University of New Mexico Human

Research Review Committee approved the study. All patients underwent neurological

examination, a full battery of neuropsychological tests, MRI, and lumbar puncture to

obtain cerebrospinal fluid (CSF). They were followed for multiple years to ascertain

the best clinical diagnosis. The diagnoses used in the study were: 1. multiple or

single cerebral infarcts (MI), including lacunar infarcts limited to the basal ganglia;

2. BD or subcortical ischemic vascular disease (SIVD) when diffuse white matter

(WM) involvement on MRI was associated with imbalance, hyperreflexia, and exec-
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utive dysfunction; 3. leukoaraiosis (LA) when the etiology of WM changes on MRI

could not be determined; and 4) AD based on elevated phosphorylated tau181 (PTau)

in the CSF.

2.1.2 Provisional Diagnosis Dataset

A second cohort of 23 patients with suspected VCI recruited from 2012–2014 forms

the “provisional diagnosis” dataset. They underwent the same tests as the first set,

except all of the MRI studies were done on a 3T MRI (Siemens Corp.) rather than

the 1.5T used in the MRI studies in the original dataset. The long-term clinical

diagnoses are not known, but we determined a provisional diagnosis using the RF

trained on the established diagnosis dataset.

2.2 Biomarkers

2.2.1 Neuropsychological Test Batteries

Cognitive tests were administered by trained research psychologists and scored ac-

cording to standard procedures. Standardized (T) scores were calculated for each

test. Averaged composite T-scores were calculated for executive function.

2.2.2 Magnetic Resonance Studies

Proton magnetic resonance spectroscopy imaging (1H-MRSI) was performed on a

1.5T or 3.0T MRI scanner (Siemens Corp.) with a phase-encoded version of a

point-resolved spectroscopy sequence (PRESS) with or without water pre-saturation

(TR/TE=1500/135ms, FOV=220x220mm, slice thickness=15mm, circular k-space
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sampling (radius=24), total scan time=9min42s). The WM concentrations of to-

tal N-acetyl-containing compounds (NAA and N-acetylglutamylaspartate, together

referred as NAA), choline-containing metabolites (CHO), and creatine + phospho-

creatine (CR) are reported (Gasparovic et al., 2013). MR blood-brain barrier (BBB)

measurements were performed with the dynamic contrast-enhanced MRI (DCEMRI),

using Gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA; Magnevist, Bayer

Corp.), as previously described (Taheri et al., 2011).

2.2.3 CSF and Blood

White matter lesions due to multiple sclerosis were ruled by measurements of albumin

index, myelin basic protein and oligoclonal bands in the CSF. The inflammatory

biomarkers, matrix metalloproteinases-2 (MMP-2) and MMP-9 were measured in

the CSF and plasma by gelatin-substrate zymography (Candelario-Jalil et al., 2011).

MMP-2 and MMP-9 indexes were calculated (Liuzzi et al., 2002). Measurements of

AD proteins, amyloidβ142 (Aβ42), total tau, and PTau were made using assay kits

(INNO-BIA AlzBio3, Innogenetics, Gent, Belgium) with the LUMINEX instrument

(Luminex Corp. Austin, TX) in a laboratory that was part of the AD consortium.

2.3 Prediction Methods

2.3.1 Binswanger’s Disease Score (BDS)

BDS was calculated from a heuristic combination of clinical, imaging, and CSF

characteristics to indicate the likelihood that patients with clinical symptoms may

have BD. The 10 items used in the original BDS are shown in Table 3.2. The BDS

ranges from 0 to 10, with 10 indicating the highest expression of characteristics that
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are associated with BD. BDS is similar to the Delphi method as it is based exclusively

on expert opinion.

2.3.2 Logistic Regression (GLM)

A generalized linear modeling approach to the classification problem that fits a re-

gression model with a categorical response variable, logistic regression has the benefit

of familiarity and interpretability (Christensen, 2006).

2.3.3 Exploratory Factor Analysis (EFA)

EFA is a variable reduction technique used with high-dimensional data. EFA pro-

duced a small set of latent factors which are linear combinations of the predictors,

and these factor loadings are listed in Table 3.4.

2.3.4 Random Forests (RF)

RF is a supervised ensemble learning algorithm that is based on classification trees

(Breiman, 2001; Breiman et al., 2001). Many classification trees (a “forest”) are

fit (or “grown”) on bootstrapped samples of the original data. Each tree partitions

the data based on a random subset of predictor variables in such a way as to try

to get optimal separation between the BD and Other SVD groups. RF shows how

much each variable contributes to classification accuracy by comparing how well the

trees that include a variable predict compared to those that do not.

The RF algorithm is a powerful and efficient means of diagnosing patients early

and it allows for the assessment of the value of biomarkers via variable importance.

It can perform multiclass prediction, including other diagnoses, such as AD, with
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no additional burden of interpretation; this differs from logistic regression where

proportional odds must be assumed for the multiclass case. RF is an attractive

classification method because: 1. it automatically employs external CV by predicting

a patient diagnosis based on the trees that did not include that patient in their

construction, 2. it does not make assumptions other than that the sample data are

representative of the population of interest, and 3. it is easy to implement.

2.3.5 Cross Validation (CV)

CV was used with logistic regression and EFA to better assess prediction accuracy

by iteratively leaving out a proportion of observations when “training” a model

or algorithm and then testing how well it predicts the left-out data by comparing

the external predictions to the “true” clinical diagnosis. RF has CV built in and

estimates the prediction error by comparing the so-called “out-of-bag” predictions

to their respective known outcomes.
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Results

Comparing the classification accuracy of RF, BDS, logistic regression, and EFA meth-

ods, using the original 1.5T dataset, we found that RF and BDS are the two best

methods. Figure 3.1 presents a visual representation of the confusion matrices for

each classification method.
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Figure 3.1: BD Classification Accuracy by Method

The methods are ordered from left to right by best to worst overall classification

accuracy. Results are based on external predictions, where applicable. The green

bars indicate how well each method classified individuals with a clinical diagnosis of

BD while the orange bars show the classification accuracy for those with a clinical

diagnosis of Other SVD. A method with perfect prediction would have both of these
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bars at 100%. Since we have binary prediction, subtracting the percentage of patients

correctly classified from 100

Prediction accuracy for the BD class was superior to those diagnosed with some

Other SVD, which is reasonable, as there is more heterogeneity in the Other SVD

class. To determine the optimal cutoff value for classification with each method,

ROC curves were used. Figure 3.2 provides a comparison of ROC curves:

Figure 3.2: ROC Curve Comparison
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The ROC curves summarize the predictive ability for a range of thresholds by plotting

sensitivity vs. one minus the specificity for each method. They can be used to assess

classification ability, using area under the curve (AUC). A perfectly predicting model

would have an AUC of 1 while a coin flip would have an AUC of 0.5. Note that the

results here are not based on CV, except in the case of RF, for which out-of-bag

predictions naturally accomplishes this. Each point on the ROC curve corresponds

to a potential Pr(BD) cutoff, and the optimal cutoff is the one corresponding to the

top-left most point on the ROC curve.

A tabular summary of method performance can be found in Table 3.1, where false

positive, true positive (“sensitivity”), false negative, and true negative (“specificity”)

rates are delineated:

Table 3.1: ROC Prediction Accuracy Summary by Method
Method %FP %TP %FN %TN
RF 22 84 16 78
BDS 37 76 24 63
GLM 41 76 24 59
EFA 48 80 20 52

Method represents the classification method used, %FP is the false positive rate,

%TP is the true positive rate or “sensitivity”, %FN is the false negative rate, and

%TN is the true negative rate or “specificity”.

In the BDS, the characteristics most common to those with BD were: gait imbal-

ance (93%), albumin index >6 (90%), MMP-2 index >0.01 (86%), executive function

>45 (83%), hyperreflexia (79%), mean permeability >0.0018 (79%), and hyperten-

sion (76%). Table 3.2 breaks down the frequency of attributes contributing to BDS in

the original 29 BD patients, where “proportion” is the relative frequency of patients

exhibiting a specified characteristic:
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Table 3.2: BDS Variable Importance
Characteristic Frequency Proportion
Gait Imbalance 27 0.93
Albumin >6 26 0.90
MMP-2 Index <0.01 25 0.86
Executive Function <45 24 0.83
Hyperreflexia 23 0.79
Mean Permeability >0.0018 23 0.79
Hypertension 22 0.76
NAA <12 20 0.69
Aβ42log(Pτ181) >150 15 0.52
Diabetes Mellitus 10 0.34

The logistic fit was determined by first fitting the full model to the original 13

predictors, and then performing stepwise model selection based on the Bayesian

information criterion, a metric that balances fit and parsimony with the deviance (a

measure of how well the model fits the data) versus a penalty for complexity (more

predictors means a higher penalty) (Schwarz et al., 1978). The logistic fit is is

presented in Table 3.3:

Table 3.3: Logistic Regression Model After Variable Selection
Parameter Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.97 4.34 2.76 0.01
Executive Function -0.13 0.06 -2.1 0.04
NAA -0.96 0.37 -2.61 0.01
Permeability 1994.01 762.4 2.62 0.01

The reduced logistic model includes only 3 predictors: Executive Function, NAA,

and mean permeability. Interpretation of logistic model coefficients is on the scale

of the log-odds of having BD, a monotonic transformation of Pr(BD). For example,

if there is no multicollinearity, then for each unit increase in NAA we expect a -0.96

increase in the log-odds of BD, in other words, the probability of BD decreases as

NAA increases.
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EFA extracted four factors from the nine variables considered. Factor loadings

range from -1 to 1 with high positive values indicative that high values of the observed

variable are related to high values of the factor, while high negative values indicate

that low values of that observed variable are related to high values of the factor.

Table 3.4 illustrates the factor loadings:

Table 3.4: EFA Factor Loadings.
Variable F1 F2 F3 F4
Executive Function 0.41 -0.05 -0.21 0.1
NAA 0.71 0.26 0.43 0.17
Choline 0.71 0.27 0.35 -0.1
Creatine 0.94 0.13 0.01 0.2
Albumin Index -0.22 -0.74 0.11 -0.47
Mean Permeability -0.02 -0.54 -0.09 0.17
MMP-2 Index 0.12 0.66 -0.01 0.14
MMP-9 Index 0.1 0.04 0.02 0.57
Aβ42log(Pτ181) 0.06 -0.02 0.73 0.01

High values of Factor 1 (F1) are associated with high values of NAA, choline,

and creatine. Factor 2 (2) will take high values when albumin index and mean

permeability are low, or when the MMP-2 index is high. Factor 3 (F3) is positively

associated with Aβ42log(Pτ181), and Factor 4 (F4) isn’t related to much at all.

Variable importance derived from RF is shown in Figure 3.3, which shows the

average drop in accuracy when a variable is left out of trees. Variables are ordered

top to bottom from most to least important. Along the horizontal axis we have the

average decrease in classification accuracy that occurs when a variable is left out of

trees. The higher this decrease is, the more useful the variable is to prediction.
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Figure 3.3: RF Variable Importance Plot

RF indicates that NAA is the most useful predictor, while the variables that hurt

our ability to predict (sex, hypertension, hyperreflexia, stroke, diabetes, and MMP-9

Index) were dropped. After variable selection, the RF algorithm predicts BD vs

Other SVD with 81% accuracy, implying we expect that 4 out of 5 diagnoses based

only on the patients biomarkers obtained at the initial visit will match the clinicians

76



Chapter 3. Results

diagnosis after a multi-year follow-up.

We used RF to predict the provisional diagnoses for the second cohort of 23

patients (those without long-term follow-up diagnoses). Although sometimes criti-

cized as a “black box” method, with a little creativity, RF can be used show the

relationship between individual biomarkers and outcome. For example, NAA, our

most important predictor, has a strong, negative, linear association with Pr(BD), as

shown in Figure 3.4:

Figure 3.4: Relationship Between NAA and the Probability of a Diagnosis of Bin-
swangers Disease Pr(BD)
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Since RF is not a model and can not be fit with a line as in logistic regression, we can

still get an idea of how the predictor variables are related to our predicted probability

of a BD diagnosis. Here we see that those with higher Pr(BD) tend to have lower

NAA values. The aforementioned strong, negative linear association between the RF

predicted Pr(BD) and NAA has a Pearsons r correlation coefficient of -0.75. This

plot also shows the predictions for the new cohort of patients. Closed green circles

represent patients with a clinical diagnosis of BD, closed orange circles represent

those with a clinical diagnosis of Other SVD, and open purple circles represent the

new cohort of patients with provisional diagnoses. The vertical line drawn at Pr(BD)

= 0.50 is an optimal cut point (based on ROC analysis) for classifying patients as

BD or Other SVD. Using this approach, four BD patients would be misclassified

as Other SVD and six Other SVD patients misclassified as BD. In this new cohort,

we see seven patients predicted to have Other SVD and 16 predicted to have BD,

suggesting that this new cohort may have a higher proportion of BD patients than the

original cohort. Individuals close to the vertical line are those for whom a diagnosis is

nebulous, while the purple circle provisional patients farthest to the right are likeliest

to have BD, making them the prime candidates for early inclusion in a clinical trial.
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Discussion

Our results show that RF can be used with multimodal biomarkers to predict the

likelihood of a diagnosis of BD several years prior to a clinical diagnosis. This over-

comes one of the principal impediments to treatment trials in VCID—the heteroge-

neous nature of the patients. BD, the small vessel progressive form, is the optimal

form of VCID for clinical trials because it has a more predictable course than seen

with multiple strokes, which tend to occur sporadically. RF prediction can be used

to eliminate patients with white matter lesions of uncertain significance, which we

have labeled as leukoaraiosis, and RF improved diagnostic accuracy in the subgroup

of VCID patients with BD (Rosenberg et al., 2016; Snyder et al., 2015).

Approaches like BDS are static and do not allow for adaptability. In this report

we compared the BDS with the RF algorithm and other data-driven approaches.

Using a prior group of patients that had undergone long-term follow-up to form our

original dataset, we showed that the set of biomarkers obtained at study entry could

be used in an RF framework to classify a new group of patients as BD vs Other SVD

with improved accuracy without the need for long-term follow-up. This study was

another confirmation that RF could be used for personalized medicine, allowing early
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diagnosis in patients with VCID of the BD type and permitting treatment trials at

an earlier stage of the illness.

Several of the biomarkers emerged as the most important in establishing the BD

diagnosis, including structural damage to WM as shown by decreased levels of NAA,

executive dysfunction on neuropsychological testing, disruption of the blood-brain

barrier as indicated by increased albumin index and raised DCEMRI, and neuroin-

flammation as shown by reduced MMP-2 index. These factors provided the basis

for the predictions and were derived using reports on BD in the literature. The

heuristic BDS classifies patients well, but it is a less flexible process which cannot

improve as new features or patients are included for analysis. In contrast, RF and

other data-driven approaches open novel ways of analyzing large data sets such as

those commonly found in medicine. RF has many advantages in prediction because

it is not dependent on a parametric data model, affording both flexibility and conve-

nience, as there is no need to impose assumptions beyond having observations that

are representative of the process under study, which is inherent to any inferential

procedure (Lebedev et al., 2014). RF avoids the pitfall of over fitting by implement-

ing CV to ensure generalization to new observations, and it overcomes the problem

of dimensionality by using random subsets of features in the construction of each

tree that composes the ensemble forest. Without the need to estimate parameters

as in a linear model, the number of predictors does not pose a problem, even in the

extreme case where the number of predictors is greater than the sample size. Finally,

RF can be used in an iterative approach—the established diagnosis dataset can be

updated with members whose diagnoses become known in the future, improving the

reliability of prediction for new patients.

In summary, this predictive strategy provides some important advantages for clin-

ical treatment trials: 1. an individual patient can be sub-grouped on the basis of the

pathophysiology, improving the chance of a successful trial in a smaller population,
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using an agent designed specifically for that pathophysiology, and 2. a patient can

be diagnosed at an earlier stage of the illness, allowing the agent to have a better

chance of success.

While our goal was to compare these methods as if they were in competition, it is

also important to note the benefits of trying multiple reasonable approaches in any

statistical analysis: if the methods agree, it gives more credibility to the result, as all

paths lead to the same conclusion. In this data, for example, each method suggests

that NAA and permeability are highly informative in determining the diagnosis of

BD vs Other SVD.

In the original cohort, 43% of patients were eventually found to have BD. If

Pr(BD) was used to select patients, it would be possible to reduce the inclusion of

extraneous Other SVD patients in a clinical trial while enriching the sample with

BD patients, improving the efficiency and the chance of obtaining a positive result.

The goal is to have an ongoing, iterative process in which initial RF predictions

are made before clinical diagnosis is revealed through long-term follow-up. Our ini-

tial findings are promising in that RF agreed with clinicians provisional diagnoses in

roughly 4 out of 5 patients. The RF will get stronger once a diagnosis for a provi-

sionally diagnosed patient is confirmed and that patient is added to the established

diagnosis dataset, in turn allowing an update to the RF.

An important consideration for personalized medicine is that no single biomarker

was sufficient for classification. Although 1H-MRS measurements of NAA were an

excellent biomarker for structural damage, and more likely to be low in the BD group,

a number of patients with other diagnoses had low NAA. Using the white matter

hyperintensities (WMH) on FLAIR MRI, which are used in many large population-

based studies, as a surrogate biomarker for BD, would also have failed because of

the high percentage of normal elderly people with WMH. However, adding the BBB
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opening, which is indicated by the elevation of the albumin index and the increased

permeability with DECMRI, improved diagnostic accuracy. Other biomarkers that

proved useful in the diagnosis of BD included abnormal MMPs in the CSF, which

indicates neuroinflammation, and impairment in executive functions.

A caveat for the present report is that diagnoses of patients in the provisional

diagnosis group will not be known with the same level of certainty as in the estab-

lished diagnosis group for several years. However, once they reach that level, they

will be used to validate predictions in a refined RF. Because this is an early attempt

to classify VCID patients, it is possible that the initial group of biomarkers will need

to be modified for use in larger cohorts of patients required for collaborative studies.

In the initial phases of the clinical trials, the patients with the highest probability

from the RF method can be used in small, carefully selected patient groups. If there

is success in these initial trials, the studies can be expanded to multiple centers with

greater certainty of success. This would reduce the cost by reducing the number of

patients that need to be studied.
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Table of Considered Variables

This project serves as an improvement on an initial attempt to classify Binswanger’s

patients (Rosenberg et al., 2015). The original analysis only looked at BDS and EFA,

and it is worth noting that for unknown reasons the original analyst did not utilize

all variables at their disposal for the BDS or EFA approaches. Table B.1 lists which

variables are used in each method, as well as which were deemed to be of importance.

As a key: “u” indicates that the feature was used in the model/algorithm and “M”

indicates that the feature was both used and deemed important by the method.
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Table F.1: Features Used to Select Patients Most Likely to have BD
Features BDS EFA Logistic Regression RF
I. Clinical Features

1. Hypertension u u u
2. Diabetes Mellitus u u u
3. Hyperreflexia u u u
4. Gait Imbalance u u M
5. Stroke u u
6. Sex u u
7. Age u M

II. Neuropsychological Testing
8. Executive Function u u M M

III. Metabolites in WM (H-MRSI)
9. NAA u u M M
10. Choline u u M
11. Creatine and Phosphocreatine u u M

IV. Inflammation and BBB
12. Albumin Index u u u M
13. Mean Permeability u u M M
14. MMP-2 Index u u u M
15. MMP-9 Index u u u

V. Alzheimer’s Biomarkers
16. Aβ42log(Pτ181) u u u M
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Background

1.1 The Case-Cohort Design

The case-cohort (CCH) study design is a prospective observational study design that

blends the economy of case-control studies with the philosophical soundness of cohort

studies. Proposed by Prentice (1986), CCH studies are similar to full cohort studies

in that the exposures (predictor variables) are measured before outcomes (response

variables). Used for survival analysis, cases are defined as observations that had an

event, while controls are those that are censored at the time of the analysis.

CCH designs only consider a sample of the full cohort, which is referred to as

the “subcohort”. The subcohort is augmented with all incident cases at the time

of analysis. The CCH design is far more efficient than a full cohort analysis as

it saves substantial time and money while sacrificing very little power. Especially

when dealing with gene expression studies with rare outcomes, it makes little sense

to measure an unnecessarily high number of controls.

A CCH analysis is best suited to data that is cheap to collect, but expensive
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to analyze or process. Taking a blood or tissue sample is quick and easy, but fully

genotyping an individual from such a sample requires considerably more resources.

All of the philosophical benefits of a full cohort study are preserved in a CCH

analysis. The prospective nature offers a clear narrative since the predictors are

measured before an endpoint is reached. This affords several benefits—more reliable

covariate information, the ability to calculate true incident rates, a reduction of

selection bias and confounding, and permits the investigation of multiple outcomes

on the same individuals. The CCH design is above a case-control study in the

hierarchy of evidence, but lower than a clinical trial as it is still an observational

study.

1.2 Survival Analysis Under the CCH Design

Researchers seek biomarkers that can inform if an individual is more or less likely

to suffer negative health outcomes, or whether they will be receptive to treatment.

The prevailing approach to survival analysis is the Cox proportional hazards (CPH)

model (Cox, 1972):

h(t|xi) = h0(t)exiβ

where t is time, xi is a row vector of predictors for observation i, β is a vector of

coefficients, and h0(t) is the baseline hazard function. Cox (1975) showed that we

can do maximum likelihood estimation, significance testing, and interval estimation

for β via the partial likelihood:

L(β) =
n∏
i=1

 exiβ∑
j∈R(ti)

exjβ


δi

where δi indicates the status of individual i (0 if they are censored, 1 if they had an

event), and R(ti) indicates the risk set, which includes all individuals in the study

at time ti that are still liable to have an event.
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In a CCH study, we weight the likelihood to account for the sampling scheme:

L(β) =
n∏
i=1


exiβ

ωiexiβ +
∑
j 6=i

j∈R(ti)∩S

ωjexjβ


δi

where ωi is the weight for individual i and the summation in the denominator only

includes individuals at risk in the subcohort. Individual i can either be a case from

inside or outside of the subcohort.

Barlow, Ichikawa, Rosner, and Izumi (1999) outline three popular methods for

CCH analysis—that of Prentice (1986), Self and Prentice (1988), and Barlow himself.

Table 1.1 is from Barlow’s paper and describes the ωi’s under the three approaches,

where π is the proportion of the full cohort taken as the subcohort:

Table 1.1: CCH Weighting Schemes
Outcome type and timing Prentice Self-Prentice Barlow
Case outside subcohort before failure 0 0 0
Case outside subcohort at failure 1 0 1
Case in subcohort before failure 1 1 1/π
Case in subcohort at failure 1 1 1
Subcohort control 1 1 1/π

Barlow’s method appears most sensible as the weights are proportional to the sub-

cohort size. Figure 1.1 offers a visual representation of the example of Barlow’s

weighting when the subcohort is π = 10% of the full cohort.
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Figure 1.1: Example of Barlow’s Weighting Method (π = 0.10)

In this example, Barlow’s method weighs controls in the subcohort as if they are

worth 10 people. Since all cases are included in this design, cases outside the subco-

hort are given a weight of 1. Subcohort cases are treated in two ways—before their

event they are weighted with a factor of 10, just like the controls, but at the time of

their event, they are treated like the cases outside the subcohort, with the weight of

1 individual.

Lin and Ying (1993) include the CCH design as a special case of the CPH

model where we have incomplete covariate measurements. They show that their

approximation to the likelihood score function reduces to that of Self & Prentice for
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the CCH problem.

Aside from weighting, the methods differ in how they estimate the variance of β̂.

Prentice proposed a complicated estimate to account for the correlation caused by

cases outside the subcohort being in the likelihood at their own failure time, but not

beforehand, and Self & Prentice feature a covariance matrix that is asymptotically

equal to Prentice’s. In the other camp, Barlow and Lin & Ying both use a robust

jackknife estimator.

1.3 Genomic Data

Our goal is to discover genes associated with survival. We call these “differentially

expressed genes” (DEGs). Genomic data is high-dimensional in the sense that the

number of features is usually far greater than the number of observations. While not

without its issues, analysts typically fit a CPH model for each gene, one at a time,

while adjusting for confounding variables. For each gene, we record the estimated

hazard ratio (HR) and its associated p-value. We adjust these p-values based on the

Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995), which is designed to

control the false discovery rate (FDR). Genes with corresponding adjusted p-values

less than a pre-specified threshold α are deemed to be significant.

Genomic data is typically contained in an ExpressionSet, which is a complicated

data structure that consists of three major components:

• Gene expression levels—a matrix of gene expression assay values for each

gene/individual combination.

• Sample annotations—a data frame of phenotypic metadata for the samples.

This includes the survival times, censoring status, and covariate information

such as age, sex, cohort membership, etc.
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• Gene annotations—a list of feature metadata that includes gene names, sym-

bols, chromosomal location, etc.

A visualization of the ExpressionSet is presented as Figure 1.2.

Figure 1.2: ExpressionSet data structure

No exploration of CCH method performance exists in the published literature

for applications to high-dimensional data like that seen in gene expression studies.

Such studies aim to discover “differentially expressed genes” (DEGs)—genes that are

associated with survival outcome. We investigate CCH method performance when

applied to real data and with a simulation study.

With real data, we never know the truth, but for existing cohort studies we can

investigate how well a CCH analysis captures the results from a full cohort analysis.

In simulation studies, we do know which genes are true DEGs, so we estimate the

power of a method with the proportion of DEGs that are found to be significant,

and estimate the FDR with the proportion of significant genes that are not DEGs.
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Results & Discussion

2.1 Childhood Leukemia Data

We first compare the four methods by analyzing a gene expression microarray dataset

from a study of patients with high-risk pediatric B-cell precursor acute lymphoblastic

leukemia (BCP-ALL) (Harvey et al., 2013; Kang et al., 2010). The dataset includes

207 children with BCP-ALL from the Childrens Oncology Group (COG) clinical

study P9906 and 594 pediatric BCP-ALLs from the COG clinical study AALL0232.

The original study data can be accessed at https://clinicaltrials.gov, using

the identification codes NCT00005603 and NCT00075725. The combined dataset

features 54,675 probe set expression levels of each patient’s pretreatment leukemia

cells, which were measured using the Affymetrix HG U133 Plus 2.0 platform. After

removing the probe sets associated with sex-related genes, globins, and Affymetrix

internal controls, we were left with 54,504 probe sets for the analysis. Without

ambiguity, we refer to these probe sets as genes. The Robust Multi-array Average

(RMA) algorithm was used to generate and normalize the gene expression levels.

The data have been deposited in the National Center for Biotechnology Information
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Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible

through series accession numbers GSE68735 and GSE68790. The data can also

be accessed at the NCI TARGET Initiative website (https://ocg.cancer.gov/

programs/target).

One of the study goals is to identify genes whose expression levels are associated

with event-free survival (EFS). “Event” can refer to relapse, death, or secondary

malignancies. To identify the DEGs, we fit the CPH model to the EFS data with

the expression level of a gene and a set indicator as the predictor variables. The set

indicator identifies whether patients were from the P9906 or AALL0232 trials, and

it is included in the model to adjust for the set effect between the two trials. Note

that we fit as many CPH models as there are genes (in this case, 54,504), as each is

assessing the association of only one gene with EFS.

Of the 801 individuals in the leukemia dataset, 213 had an event, giving an ob-

served incident rate of around 26.6%. Table 2.1 gives a breakdown of the expected

number of subjects that are cases or controls, by whether they are inside or outside

the subcohort, in a CCH design. Each row gives the expected sample size breakdown

for a given subcohort fraction π. Expected sample sizes are reported since the sam-

pling variability inherent to the CCH design means that the number of cases/controls

that are in/out of the subcohort is not guaranteed to be constant across samples.

Table 2.1: Expected Sample Size Breakdown for the Leukemia Data
Sampling Subcohort Cases in Cases outside Total Controls Total CCH
fraction π size subcohort subcohort cases in subcohort sample size

0.1 80.1 21.3 191.7 213 58.8 271.8
0.2 160.2 42.6 170.4 213 117.6 330.6
0.3 240.3 63.9 149.1 213 176.4 389.4
0.4 320.4 85.2 127.8 213 235.2 448.2
0.5 400.5 106.5 106.5 213 294 507
0.6 480.6 127.8 85.2 213 352.8 565.8
0.7 560.7 149.1 63.9 213 411.6 624.6
0.8 640.8 170.4 42.6 213 470.4 683.4
0.9 720.9 191.7 21.3 213 529.2 742.2
1.0 801 213 0 213 588 801
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The final row in Table 2.1 shows the characteristics for the full cohort, since π = 1.

A key feature of the CCH design is that it includes all cases. Hence, the “total cases”

column remains constant across π. Given the relatively high incidence rate for the

leukemia data, CCH samples will tend to have a higher number of cases than controls

when π = 0.4 or lower, so we can expect to see only modest gains in efficiency.

Figure 2.1 shows the “pseudo-FDR” achieved by each CCH method for the child-

hood leukemia dataset. Each boxplot represents the 5-number summary over 100

samples for various levels of π, with black dots indicating outlying samples. The

smooth lines represent the mean pseudo-FDR for each method.

Figure 2.1: Pseudo-FDR for the Childhood Leukemia Data
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Barlow and Lin-Ying are relatively more liberal than the other methods, particu-

larly for small subcohort sizes. The distribution of pseudo-FDR for each method

quickly approaches a similar shape and typical level of around 5%–15%, with Bar-

low’s method consistently a bit more liberal than the others, followed by Lin-Ying,

Self-Prentice, and Prentice’s method, which was the most conservative.

Figure 2.2 displays the “pseudo-power” achieved by each CCH method for the

childhood leukemia data. Each boxplot represents the 5-number summary from 100

CCH samples for various levels of π, with black dots indicating outlying samples.

The smooth lines intersect the mean pseudo-power for each method.

Figure 2.2: Pseudo-power for the Childhood Leukemia Data
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As π increases, so too does the pseudo-power. Note that the CCH methods are

equivalent to a full cohort analysis when π = 100%. Barlow’s method appears

more “powerful” than the others as it captures a greater proportion of genes deemed

significant by the full cohort analysis, followed by Lin-Ying and more distantly by

the nearly-identical Self-Prentice and Prentice methods.

2.2 Breast Cancer Data

The breast cancer data combines the NKI (Van De Vijver et al., 2002) and Trans-

BIG (Desmedt et al., 2007) data sets, which contain information related to the

survival rates of 493 breast cancer patients. The gene expression data is from mi-

croarrays and has 10,566 features. The pseudo-FDR for the CCH methods is pre-

sented in Figure 2.3.

Figure 2.3: Pseudo-FDR for the Breast Cancer Data
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The methods exhibit very similar behavior for the breast cancer, with pseudo-FDR

quickly converging to a similar shape. Barlow and Lin-Ying are too liberal for the

smallest subcohort size, but quickly approach similar pseudo-FDR levels as Prentice

and Self-Prentice as π increases. Self-Prentice has a lot of variability at π = 10%,

but is comparable to Prentice’s method for the other levels of π. Uniformly across

π, from most conservative to most liberal we have Prentice, Self-Prentice, Lin-Ying,

and Barlow.

Figure 2.4 shows the pseudo-power for the four CCH methods.

Figure 2.4: Pseudo-power for the Breast Cancer Data

Once again, we see a roughly linear increase in pseudo-power as π increases, regardless

of method. The approaches of Barlow and Lin & Ying perform comparably and
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are uniformly more powerful across π than the approaches of Prentice and Self &

Prentice, which also perform very similarly. The breast cancer data analysis suggests

a tradeoff—the methods of Barlow and Lin & Ying appear to be more powerful at

the cost of being too liberal for small samples, while the approaches of Prentice and

Self & Prentice are better at limiting the pseudo-FDR at the cost of having a lower

pseudo-power.

2.3 Simulation

Using simulated data to compare the effectiveness of the CCH approaches offers

the advantage of knowing which genes are true DEGs. First, we generated gene

expression data under various settings. Then, for each CCH method, we fit CPH

models for each gene and extracted the estimated HRs and their associated p-values.

P-values were adjusted using the BH procedure, and genes were called significant

if their adjusted p-values were less than 0.05. We then estimated the FDR and

power for each method. The estimated FDR was recorded as the proportion of

genes deemed significant that were actually null genes, and the estimated power

was recorded as the proportion of DEGs correctly identified as such. To account for

sampling variability, the simulation was repeated 100 times at each setting. Since the

empirical distributions of FDR and power appeared skewed, we used their median

values for comparing the CCH methods.

Survival times were generated to give an incidence rate near 10%. For more

details on how the gene expression data was simulated, please refer to the Methods

section. Regarding sample size, we left the full cohort size fixed while adjusting the

sampling fraction. Table 2.2 offers a breakdown of the expected sample sizes by

sampling fraction.
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Table 2.2: Expected Sample Size Breakdown for the Simulation Study
Sampling Subcohort Cases in Cases outside Total Controls Total CCH
fraction π size subcohort subcohort cases in subcohort sample size

0.05 200 20 380 400 180 580
0.10 400 40 360 400 360 760
0.15 600 60 340 400 540 940

With a full cohort size of 4000, we expect around 400 total cases in a given sample.

Our total CCH sample sizes tend to range from around 580 to 940, depending on

the sampling fraction π.

Aside from investigating the effect of the sampling fraction, we examined how

the methods behaved for different proportions of DEGs. The total number of genes

was fixed at 1000, and we investigated the cases where 0%, 4%, 8%, 12%, 16%, 20%,

40%, 60%, 80%, and 100% of these genes were DEGs. We explored the 0%–20%

window with finer resolution as it is more realistic range of DEGs.

Different HRs were used to generate the DEGs to see how the methods behave

as effect size changes. HRs were chosen uniformly from 1.3–1.4, 1.4–1.5,1.5–1.6, and

1.6–1.7. This range was selected because in preliminary testing, DEGs with HRs less

than 1.3 were undetectable, while those with HRs greater than 1.7 resulted near-

perfect performance for each method. As a rule of thumb, small, medium, and large

effect sizes are related to HRs around 1.3, 1.5, and 2.0, respectively.

2.4 FDR and Power

Using FDR and power to evaluate the methods, a method is considered superior if

it has higher power, with one major caveat—FDR has to be near or below 5% in

accordance with our nominal α = 0.05 significance level.

Figure 2.5 shows the median FDR achieved by each method, broken down by
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the range of hazard ratios used to generate the DEGs, sampling fraction, and the

percentage of genes that are DEGs.

Figure 2.5: Median FDR for the Simulated Data

All methods control the FDR for sampling fractions of 10% and 15%, but the ap-

proaches of Barlow and Lin & Ying have trouble controlling FDR for the smaller

samples associated with a sampling fraction of 5%.

Figure 2.6 displays the median power achieved by each method, broken down by

the range of hazard ratios used to generate the DEGs, sampling fraction, and the

percentage of genes that are DEGs.
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Figure 2.6: Median Power for the Simulated Data

As HR or sampling fraction increases, so too does median power. The methods of

Barlow and Lin & Ying are uniformly more powerful than those of Prentice and

Self & Prentice, but no method is sensitive enough to detect small HRs when the

proportion of DEGs is in the realistic range. Conversely, all methods are effective

for large samples or when HRs are at least medium.

2.5 Method Agreement

In addition to FDR and power, we consider method concordance. We use two

approaches—a Venn diagram to display how many of the genes identified as sig-

102



Chapter 2. Results & Discussion

nificant are the same across methods, and a scatter plot matrix to compare how

similarly the top genes are ranked by each method. Note that Figures 5 and 6 are

based on the case where π = 0.15, the proportion of genes that were DEGs was 20%,

and the DEGs were simulated based on HRs that were sampled from a U(1.5, 1.6).

Figure 2.7 depicts the Venn diagram approach, which shows the overlap between

the top 200 most significant genes identified by each method, ordered from most to

least significant based on adjusted p-value (lower p-value=more significant). Counts

in overlapping regions indicate the number of shared genes.

Figure 2.7: Venn Diagram for CCH Method Agreement
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In this example, 150 of the top 200 genes are the same for each method. This large

overlap implies high concordance among the four methods. The overlap between

Prentice and Self-Prentice is 196, and the overlap between Lin-Ying and Barlow is

195, indicating almost perfect concordance between Prentice and Self-Prentice, and

between Lin-Ying and Barlow.

Figure 2.8 shows the scatter plot matrix of gene ranking by method. The scatter

plot matrix allows us to compare how similarly the methods rank the genes in terms

of significance. The lower triangle of the matrix features the bivariate scatter plots,

and the upper triangle displays the corresponding correlation coefficients (Pearson’s

r). A ranking is needed from each method for each gene involved in a given scatter

plot, so we consider only the genes in the four-way intersection of the Venn diagram.

Hence, each of the scatter plots in the lower triangle feature 150 points, although

their rankings still range from 1 to 200. Note that a correlation coefficient of 1 would

indicate perfect agreement between two methods, as would the points falling on a

perfect line in the scatter plot.
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Figure 2.8: Scatter Plot Matrix of Gene Ranking.

A sampling fraction of π = 100% means the subcohort is equal to the full cohort,

and we get absolute agreement between the CCH methods. As the sampling fraction

decreases, there is gradually more and more disagreement between the methods,

with counts moving from the center of the Venn diagram toward the periphery, and

correlation decreasing in magnitude toward 0.

For real and simulated examples, we universally observed that the highest number
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of counts occurred in the four-way intersection, followed by the intersections between

Prentice and Self-Prentice, and between Barlow and Lin-Ying. Similarly, in terms

of gene rankings, there is a nearly perfect positive correlation between Prentice and

Self-Prentice, as well as between Barlow and Lin-Ying.
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Methods

3.1 Assessing Method Performance for Real Data

For real data problems such as our leukemia dataset, we treat the full cohort analysis

as “the truth” since we don’t actually know which genes are truly DEGs. We consider

the genes deemed significant by the full cohort analysis to be “DEGs” so we can

compare the CCH methods to some baseline. We define pseudo-FDR and pseudo-

power measurements to behave similarly to FDR and power for situations in which

the truth is known.

If we let F and C be the sets of genes called significant by the full cohort and CCH

analyses, respectively, and N(·) be a function that returns the number of elements

in a set, define pseudo-FDR as:

pseudo-FDR ≡ N(C ∩ F c)

N(C)
where c indicates the complement of a set, and define pseudo-power as:
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pseudo-power ≡ N(C ∩ F)

N(F)

Pseudo-FDR is the proportion of significant genes in a CCH analysis that are not

also detected by the full cohort analysis, while pseudo-power is the proportion of

significant genes from the full cohort analysis that are detected by a CCH analysis.

For a CCH method to be considered effective in a real data example, it should have

low pseudo-FDR and high pseudo-power.

3.2 Simulating Survival Times

Bender et al. Bender, Augustin, and Blettner (2005) used the inverse probability

integral transform (PIT) to generate survival data under the CPH model, which has

the survival function:

S(t|x) = exp[−H0(t)exβ]

where H0(t) is the cumulative hazard function. By the inverse PIT we have time T

as a random variable:

T = S−1(U |x) = H−1
0

(
− log(U)

exβ

)
where U is a random variable following a continuous U(0, 1) distribution. Draw a

random set of us and plug them into the distribution of T to get a set of observed

latent survival times t = S−1(u|x). Select β to be the desired log(HR) associated

with the predictor x. Draw censoring times C ∼ Exp(λcens) and compare them

to their corresponding latent survival times. If censoring occurs before the latent

survival time for an individual, they are right-censored, and hence in the control

group. Otherwise, they were observed to have experienced an event during the time

frame of the study and are considered cases.

Using a Weibull distribution with scale λ and shape ρ, survival times are gener-
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ated using:

t =

(
− log(u)

λexβ

) 1
ρ

This works for generating one gene expression vector, but to generate lots of genes

related to a set of survival times, we have to go a bit further.

To generate many DEGs, we first generate survival times and censoring informa-

tion using the method described above, with x∗ ∼ N(0, 1) as our “seed” gene used

to generate the survival times (since standardization will allow us to use HR as a

measure of relative effect size). For our simulations, the shape, scale, and censoring

rate parameters were fixed at ρ = 1, λ = 1, and λcens = 10 to give an incidence rate

near 10%. Rewriting the survival time equation in terms of xij, the expression level

of gene i for individual j is:

xij =
−log

(
−λtρj
log(uj)

)
βi

+ eij

where the eij’s are N(0, 1) perturbations. We choose βi = log(HRi) and draw a set

of perturbations to generate expression levels for each DEG. For the null genes, we

can draw random numbers since we only care that they are unrelated to survival.

3.3 Assessing Method Performance for Simulated

Data

For each gene i, our significance test is H
(i)
0 : HR = 1, as this indicates no relationship

between gene i and survival time. We know the truth as to whether genes are DEGs

or null genes, and we can either decide a gene is significant or not significant, so we

are left with four possible scenarios, two of which are correct decisions, and two of

which are incorrect. These are summarized in Figure 3.1.
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Figure 3.1: Summary of Possible Outcomes

We hope to identify all DEGs as significant and all null genes as not significant (the

correct decisions). We also aim to not say that null genes are significant (type I error)

or fail to call DEGs significant (type II error). Hence, to evaluate the performance of

our four methods in focus, we will look at median FDR and power for each method

under various settings.

To estimate FDR, we look at the proportion of rejected null hypotheses that were
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incorrectly rejected. If we have i = 1, 2, . . . , p total genes:

F̂DR =
false rejections

total rejections
=

p∑
i=1

I
(

H
(i)
0 rejected | H

(i)
0 true

)
max

[
p∑
i=1

I
(

H
(i)
0 rejected

)
, 1

]
where I(·) is an indicator function, and we take the maximum between the number

of rejections and 1 to avoid dividing by 0 in the denominator in the event that there

are no rejections. The FDR approach stands as an alternative to approaches that

aim to control the family-wise error rate (FWER). FDR preserves power while still

accounting for the multiple tests being performed. This is really the only reasonable

option for high-throughput data, as attempting to control the FWER usually leads

to a cripplingly conservative cutoff for significance that completely eradicates any

ability to detect DEGs.

To estimate power, we calculate the proportion of DEGs correctly identified as

such:

P̂ower =
correct rejections

total DEGs
=

p∑
i=1

I
(

H
(i)
0 rejected | H

(i)
0 false

)
p∑
i=1

I
(

H
(i)
0 false

)
where higher power indicates better performance. An important caveat is that this is

only true when the type I error rate or FDR is being controlled—one could obviously

use a test that calls every gene significant in order to achieve 100% power, but that

test would be useless!
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Conclusions

The theory, real data example, and simulation study all lead to the same over-

whelming conclusions. Prentice and Self & Prentice, with their similar weighting

schemes and asymptotically-identical covariance matrices for β̂, exhibit a great deal

of agreement when evaluating biomarkers in a high-throughput setting. Similarly,

the approaches of Barlow and Lin & Ying have strong agreement, due in large part

to their shared use of robust variance estimation.

If we base our decision exclusively on performance metrics like FDR and power, we

are left with essentially two options. The approaches of Prentice and Self & Prentice

staunchly control the FDR, but are less sensitive in their ability to detect DEGs

than the approaches of Barlow and Lin & Ying, which may have issues controlling

FDR in some cases. For most practical cases, all methods will give similar results,

but it is important to also consider philosophical soundness. In this regard, Barlow’s

method has the clear advantage as it has the most intuitive weighting scheme.
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Future Work

Although each of the analyses appear to lead to the same inevitable conclusions,

there is possible room to improve our investigation. Perhaps most notable is the

fact that genes were generated independently in our simulation study. In real data

examples, we typically see distinct clustering patterns, and therein lies a clear avenue

for more nuanced and realistic simulations. However, the testing procedure treats

genes as if they are independent, so this point may be inconsequential.

High-throughput data is fraught with many unexplored complications. The pop-

ular approach of fitting many CPH models will understandably raise some eyebrows

in regard to the inability to effectively evaluate the underlying model assumptions,

in particular, the proportional hazards assumption, for all of the models being fit.

Hence, it worth investigating a permutation test like the significance analysis of mi-

croarrays (SAM) (Tusher, Tibshirani, & Chu, 2001). Given the case-cohort sampling

design, such a test is not a straightforward application. My proposed avenue of anal-

ysis is to essentially use a technique like bootstrapping to augment the CCH sample

with additional controls outside the subcohort to effectually “fake” a full cohort, and

then proceed to use the permutation test.
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