University of New Mexico

UNM Digital Repository

Computer Science ETDs Engineering ETDs

Fall 12-1-2018

Adaptive Parallelism for Coupled, Multithreaded

Message—Passing Programs

Samuel K. Gutiérrez

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

b Part of the Numerical Analysis and Scientific Computing Commons, OS and Networks
Commons, Software Engineering Commons, and the Systems Architecture Commons

Recommended Citation

Gutiérrez, Samuel K.. "Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs.” (2018).
https://digitalrepository.unm.edu/cs_etds/95

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in

Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/95?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Samuel Keith Gutiérrez
Candidate

Computer Science

Department

This dissertation is approved, and it is acceptable in quality
and form for publication:

Approved by the Dissertation Committee:

Professor Dorian C. Arnold, Chair

Professor Patrick G. Bridges

Professor Darko Stefanovic

Professor Alexander S. Aiken

Patrick S. McCormick

Adaptive Parallelism for Coupled,
Multithreaded Message-Passing Programs

by

Samuel Keith Gutiérrez

B.S., Computer Science, New Mexico Highlands University, 2006
M.S., Computer Science, University of New Mexico, 2009

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December 2018

©2018, Samuel Keith Gutiérrez

111

Dedication

To my beloved family

v

“A Dios rogando y con el martillo dando.”

Unknown

Acknowledgments

Words cannot adequately express my feelings of gratitude for the people that made
this possible. Please know that this accomplishment is as much yours as it is mine.
We made it—persevered. With all my being, thank you.

I was incredibly fortunate to have a dedicated academic advisor who was demand-
ing, yet patient—making me a better writer and researcher along the way. Dorian,
thank you for your friendship and mentorship throughout these years. I owe a thank-
you to the members of my committee, Alex Aiken, Dorian Arnold, Patrick Bridges,
Patrick McCormick, and Darko Stefanovic, for their helpful comments. To the mem-
bers of the Scalable Systems Lab at UNM, thank you for your honest feedback
and encouragement, but more importantly your fellowship. Special thanks to David
DeBonis, Matthew Dosanjh, Noah Evans, Kurt Ferreira, Aaron Gonzales, Taylor
Groves, Nathan Hjelm, Dewan Ibtesham, Edgar Ledén, Scott Levy, Whit Schonbein,
and Patrick Widener.

Many supportive and understanding individuals undoubtedly enabled my going
back to school while also working full-time at LANL. To my management, both
past and present, John Cerutti, Linn Collins, David Daniel, Ed Dendy, Gary Grider,
Jeff Johnson, Christoph Junghans, Mike Lang, Patrick McCormick, David Montoya,
Randal Rheinheimer, and Galen Shipman, thank you for allowing my research at
work to align nicely with my academic endeavors. To my colleagues, thank you for
being my extended academic family. Special thanks to Randy Baker, Zach Baker,
Ben Bergen, Bob Bird, Jon Dahl, Kei Davis, Daniel Holladay, Erika Maestas, Patrick
McCormick, Scott Pakin, Robert Robey, Ben Santos, Justin Tripp, and Joe Zerr.

vi

To all my friends, thank you for reminding me that the world is full of fun,
exciting people. To my uncles, aunts, and cousins, thank you for letting a curly
haired kid be a part of such a loving and supportive group. I thank especially my
uncle Frank, aunt Isabel, Krystal, and Brittany. To Max, Beth, Christina, Gerald,
and Max, thank you for accepting me so completely into your family and letting me
be a part of your lives.

I was blessed to have an upbringing full of love, encouragement, support, happi-
ness, hard work, and discipline. Mom, thank you. You worked so very hard, often
taking on multiple jobs so that I could have and do things that I found interesting.
You always put me first and made sure your hito was loved and cared for no matter
what. Grandma and grandpo, thank you for raising me as one of your own. Some
of my most cherished childhood memories are of us at the ranch.

To Jess—my love, my rock, my friend and confidant, the mother of our son.
Thank you for being there, through thick and thin. I know I'm not the easiest
person to get along with when I'm stressed, so thank you for your steadfast love
and support. It is because of your commitment that I saw this thing through—we
did it. To Andres—my son, my pride and joy. Thank you for bringing us so much
happiness. I look forward to our adventures together.

Vil

Sponsorship

Work supported by the Advanced Simulation and Computing program of the U.S.
Department of Energy’s NNSA and by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. Los Alamos National Laboratory
is managed and operated by Los Alamos National Security, LLC (LANS), under
contract number DE-AC52-06NA25396 for the Department of Energy’s National
Nuclear Security Administration (NNSA).

Viil

Adaptive Parallelism for Coupled,
Multithreaded Message-Passing Programs

by

Samuel Keith Gutiérrez

B.S., Computer Science, New Mexico Highlands University, 2006
M.S., Computer Science, University of New Mexico, 2009

Ph.D., Computer Science, University of New Mexico, 2018

Abstract

Hybrid parallel programming models that combine message passing (MP) and shared-
memory multithreading (MT) are becoming more popular, especially with applica-
tions requiring higher degrees of parallelism and scalability. Consequently, coupled
parallel programs, those built via the integration of independently developed and
optimized software libraries linked into a single application, increasingly comprise
message-passing libraries with differing preferred degrees of threading, resulting in
thread-level heterogeneity. Retroactively matching threading levels between inde-
pendently developed and maintained libraries is difficult, and the challenge is ex-
acerbated because contemporary middleware services provide only static scheduling
policies over entire program executions, necessitating suboptimal, over-subscribed
or under-subscribed, configurations. In coupled applications, a poorly configured
component can lead to overall poor application performance, suboptimal resource

utilization, and increased time-to-solution. So it is critical that each library executes

1X

in a manner consistent with its design and tuning for a particular system architec-
ture and workload. Therefore, there is a need for techniques that address dynamic,
conflicting configurations in coupled multithreaded message-passing (MT-MP) pro-
grams. Our thesis is that we can achieve significant performance improvements over
static under-subscribed approaches through reconfigurable execution environments
that consider compute phase parallelization strategies along with both hardware and

software characteristics.

In this work, we present new ways to structure, execute, and analyze coupled MT-
MP programs. Our study begins with an examination of contemporary approaches
used to accommodate thread-level heterogeneity in coupled MT-MP programs. Here
we identify potential inefficiencies in how these programs are structured and executed
in the high-performance computing domain. We then present and evaluate a novel
approach for accommodating thread-level heterogeneity. Our approach enables full
utilization of all available compute resources throughout an application’s execution
by providing programmable facilities with modest overheads to dynamically recon-
figure runtime environments for compute phases with differing threading factors and
affinities. Our performance results show that for a majority of the tested scientific
workloads our approach and corresponding open-source reference implementation

render speedups greater than 50 % over the static under-subscribed baseline.

Motivated by our examination of reconfigurable execution environments and their
memory overhead, we also study the memory attribution problem: the inability to
predict or evaluate during runtime where the available memory is used across the
software stack comprising the application, reusable software libraries, and support-
ing runtime infrastructure. Specifically, dynamic adaptation requires runtime inter-
vention, which by its nature introduces additional runtime and memory overhead.
To better understand the latter, we propose and evaluate a new way to quantify

component-level memory usage from unmodified binaries dynamically linked to a

message-passing communication library. Our experimental results show that our ap-
proach and corresponding implementation accurately measure memory resource us-
age as a function of time, scale, communication workload, and software or hardware
system architecture, clearly distinguishing between application and communication

library usage at a per-process level.

x1

Contents

List of Figures xvii
List of Tables XX
Glossary xxii
1 Introduction 1
1.1 Motivationo 1
1.2 Thesis Statement oL 2
1.3 Contributions and Organization 2

2 Background 8
2.1 Parallel Computers and Execution Models 8
2.2 High-Performance Computing Platforms 10
2.3 Parallel Programming Environments 12
2.3.1 Message Passing 000 13

xil

Contents

2.3.2 Shared-Memory Multithreading 14

2.4 Parallel Speedup 14
2.5 Summary ... o. o e 15
3 Accommodating Thread-Level Heterogeneity 16
3.1 Coupled Applications and Their Challenges 18
3.1.1 Parallelism. 19

3.1.2 Conflicting Configuration Requirements 20

3.2 Background and Related Work 24
3.2.1 Portable Hardware Locality 24
3.2.2 Abstract Hardware Representation 24
3.2.3 Multiprocessor Scheduling 25
3.2.4 Current Approaches in HPC 28

3.3 Adaptive Parallelism for Coupled MPI4+X 29
3.3.1 Adaptive Execution Environments with Quo 30
332 QuoContexts. 31
3.3.3 Hardware/Software Environment Queries 31
3.3.4 Programmable Dynamic Process Affinities 32
3.3.5 Data Dependencies L. 35
3.3.6 Parallel Task Distribution 36
3.3.7 Node-Level Process Quiescence 37

xiil

Contents

3.3.8 Policy Management L. 37

3.4 Quo Performance and Effectiveness 38
3.4.1 Experimental Setup L 38
3.4.2 Application Results: Evaluating Quo’s Effectiveness 40

3.5 Practical Considerations, 44
3.6 Summary 45
4 Addressing The Memory Attribution Problem 47
4.1 Background 49
4.1.1 Parallel Application Memory Utilization 50
4.1.2 Parallel Application Analysis 50
4.1.3 Intercepting Application Behavior 51
4.1.4 Collecting Process/System Information 52

4.2 Methods in Memory Utilization Analysis 53
4.2.1 Heap Profiling and Memory Map Analysis 54
4.2.2 Middleware Attribution of Memory Usage 55
423 Our Approacho 56

4.3 Micro-Benchmarks and Proxy Applications 60
4.3.1 Application Drivers: Proxy Applications 61

4.4 Results 64
4.4.1 Experimental Setup 64

Xiv

Contents

4.4.2 Memory Usage Timelines 64

4.4.3 Peak Memory Usage 68

4.4.4 Tool-Induced Application Overhead 69

4.5 Discussion and Summaryo 74

5 Overhead of Adaptive Parallelism: A Case Study with Quo 76
5.1 Runtime Overhead, 76
5.1.1 Micro-Benchmark Results: Cost of QUO Operations 7

5.1.2 Application Overhead from Process Quiescence 78

5.1.3 Application Overhead from Data Remapping 79

5.2 Memory Overhead 82
5.2.1 Cost of QUO Runtime State 83

5.2.2 Cost of Quiesced Processes 84

5.3 SUmMMAry e 87

6 Conclusion 88
6.1 Summary of Contributions 88
6.2 Open Related Studies 89
6.2.1 Transparent Data Dependency Satisfaction 89

6.2.2 Examination of Other Dynamic Configurations. 90

6.3 Concluding Remarks L. 91

XV

Contents

Appendices 92
A Example Quo Policies 93
A.1 Pseudocode for a Caller-Driven Quo Policy 94
A.2 Pseudocode for a Callee-Driven Quo Policy 95

XVl

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Flynn’s computer taxonomy.
Performance development of HPC systems as recorded by the TopP500.
Notional illustration of computational phases interleaved with data
structure remapping phases across library domains.

Interleaved phases of a coupled thread-heterogeneous message-passing

application with non-uniform runtime configuration requirements.

Compute resource utilization u(t) by tasks (processes and threads)

over time of a static over-subscribed MPI+X configuration.

Compute resource utilization u(t) by tasks (processes and threads)

over time of a static under-subscribed MPI+X configuration.

Log-log plot of modeled speedups showing the potential losses in

parallelism resulting from under-subscription as a function of scale. .
Schematic of a machine with two quad-core sockets.
Hardware topology of the machine diagrammed in Figure 3.6.

Example task to affinity mask relations.

xvil

11

18

20

21

22

23

25

List of Figures

3.9

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

QUuo architecture diagram. L.

Compute resource utilization by tasks over time wu(t) for a Quo-
enabled MPI+X configuration. Consult Table 3.1 for a description
of the phases.

Control flow of a QUoO-enabled application.

Application results without and with Quo.

MPI profiling interface example.

Code snippet showing memnesia instrumentation of MPI_Barrier ().

A typical offline tool architecture where analysis probes start with the
application and remain in place for the entirety of the application’s
execution. After all analysis data are written, they are then read,

aggregated, and finally analyzed by a separate tool.

The tool architecture we adopted, which bears many similarities to
its counterpart shown in Figure 4.3. The key difference is that tool

data aggregation is parallelized using the job’s resources with MPI.
Single-process memory usage and data collection points.

Point-to-point communication structure formed by each proxy appli-
cation used in this study. Colors are mapped to data transfer to-
tals between MPI processes (send/receive pairs) using point-to-point

communication operations.

Tool output showing per-process memory usage over time for LULESH.

Colors are mapped to a process’s MPT_COMM _WORLD rank.

Xviii

32

35

43

52

57

58

99

60

63

65

List of Figures

4.8

4.9

4.10

5.1

Tool output showing per-process memory usage over time for Kripke.

Colors are mapped to a process’s MPI_COMM_WORLD rank.

memnesia timelines showing aggregate total (i.e., MPI library and
application) memory usage over time from 216-process (six-node)

runs on Trinitite. L.

Results from the OSU multiple bandwidth/multiple message rate
micro-benchmark, where the number of send /receive pairs vary. Fig-
ure a shows our performance baseline, while Figure b shows perfor-
mance results with memnesia instrumentation enabled, both plotted

using a log-log scale.o L

Log-log plot of average execution times of QUO operations on Cielo.

XixX

List of Tables

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

Node and network architectures of contemporary HPC platforms. . .

The scales at which contemporary supercomputers operate.

Explanation of QUo-enabled MPI4-X phases in Figure 3.10.
An overview of compute node architectures used for this study. . . .

Application identifiers and descriptions of the applications they rep-

resent. ..o oL oL L e
Target applications and their environments used for this study. . . .
Application configurations used in this study.
Hardware statistics of the last 10 number one computer systems ac-
cording to the TopP500 by earliest date of first-place ranking.

Tools and their respective attributes.
An overview of hardware and software used for this study.
Average reported peak memory consumption (in MB) on Trinitite. .

Average peak memory consumption (in MB) on Trinitite (tt) and

Snow (sn) as reported by memnesia.

XX

11

12

33

39

40

41

41

48

56

68

70

List of Tables

5.1

5.2

9.3

5.4

9.5

Average quiescence-induced overhead by mechanism. 79

Application results: average data remapping costs without and with

QUO. . . 81
Average per-process cost of QUO runtime state. 84
MPI library memory footprint of fully subscribed node configurations. 85

Resource-subscription-induced memory overhead. 86

xx1

Glossary

ANSI
API
ASIC
CPU
DRAM
ECC
FLOPS
GPU
HPC
HPL
1/0
1SO

LINPACK

American National Standards Institute
Application Programming Interface
Application-Specific Integrated Circuit
Central Processing Unit

Dynamic Random-Access Memory
Error-Correcting Code

Floating point operations per second

Graphics Processing Unit

High-Performance Computing
High-Performance LINPACK: a parallel version of LINPACK.
Input/Output

International Organization for Standardization

A performance benchmark for computers that analyzes and solves

dense systems of linear equations [35].

xxii

Glossary

LSB-0
MP

MPS
MT-MP
NIC
Node
NUMA
OS

PE
POSIX
PPN
RMA
Rmax
Task
TFLOPS
T;/C;
yeies
TX/RX

UMA

Least significant bit zero

Message Passing

Messages Per Second

Multithreaded Message Passing

Network Interface Controller

A component in a system of networked machines—a computer.
Non-Uniform Memory Access

Operating System

Processing Element: a core or hardware thread.

Portable Operating System Interface

Processes Per Node

Remote Memory Access

An HPL performance metric.

A thread of execution associated with either an OS process or thread.
10* FLOPS

Task 7; has affinity to (can be scheduled to execute on) core Cj.
Task T; has affinity to cores C; and Cj.

Send/Receive

Uniform Memory Access

xxiii

Chapter 1

Introduction

Parallel computer simulation has been used as a tool to further scientific understand-
ing for decades, as it provides a way to conduct experiments that would otherwise
be too costly, dangerous, or impractical [7, 52, 58, 75, 76, 87]. Consequently, parallel
programming systems and applications have evolved to improve their performance
and scalability as computer systems have grown to higher degrees of parallelism.
This, in turn, has led to a field of study concerning how best to structure, execute,
and analyze massively parallel and distributed applications. In this work, we study
all three of these aspects in the context of coupled message-passing programs used

predominantly in the high-performance computing (HPC) domain.

1.1 Motivation

Hybrid parallel programming models that combine message passing (MP) and shared-
memory multithreading (MT) are becoming more popular, especially with applica-
tions requiring higher degrees of parallelism and scalability. Consequently, coupled

parallel programs, those built via the integration of independently developed and

Chapter 1. Introduction

optimized software libraries linked into a single application, increasingly comprise
message-passing libraries with differing preferred degrees of threading, resulting in
thread-level heterogeneity. Retroactively matching threading levels between indepen-
dently developed and maintained libraries is difficult, and the challenge is exacerbated
because contemporary middleware services provide only static scheduling policies
over entire program executions, necessitating suboptimal over-subscribed or under-
subscribed configurations. In coupled applications, a poorly configured component
can lead to overall poor application performance, suboptimal resource utilization,
and increased time-to-solution. So it is critical that each library executes in a man-
ner consistent with its design and tuning for a particular system architecture and
workload. Therefore, there is a need for techniques that address dynamic, conflicting

configurations in coupled multithreaded message-passing (MT-MP) programs.

1.2 Thesis Statement

Our thesis is that we can achieve significant performance improvements over to-
day’s static under-subscribed approach through reconfigurable execution environ-
ments that consider compute phase parallelization strategies along with both hard-

ware and software characteristics.

1.3 Contributions and Organization

This dissertation presents new ways to structure, execute, and analyze coupled MT-
MP programs. For the remainder of this section, we outline this document’s struc-
ture, summarizing significant contributions along the way. Please note that a sub-
stantial amount of material in this dissertation has been presented or published in

other venues:

Chapter 1. Introduction

Samuel K. Gutiérrez, Kei Davis, Dorian C. Arnold, Randal S. Baker, Robert W.
Robey, Patrick McCormick, Daniel Holladay, Jon A. Dahl, R. Joe Zerr, Florian Weik,
and Christoph Junghans. Accommodating Thread-Level Heterogeneity in Coupled
Parallel Applications. In 2017 IEEFE International Parallel € Distributed Processing
Symposium (IPDPS), Orlando, Florida, 2017.

Samuel K. Gutiérrez, Dorian C. Arnold, Kei Davis, and Patrick McCormick. On
the Memory Attribution Problem: A Solution and Case Study Using MPI. Journal
on Concurrency and Computation: Practice and Experience (ExaMPI Special Issue

Paper). To Appear.

Chapter 2: Background: We present an overview of core topics in parallel and
distributed computation with a focus on concepts and techniques typical to HPC
and their application to modeling and simulation. Related work and supplemental
background material on specific topics are not presented here but instead located

within relevant chapters that follow.

Chapter 3: Accommodating Thread-Level Heterogeneity: In this chapter,
we study coupled MT-MP applications with dynamic, phased configuration con-
flicts. Focusing on applications based on the Message Passing Interface (MPI), we
address the practical challenges of thread-level heterogeneity. We present a gen-
eral methodology and corresponding implementation for dynamically (at runtime)
accommodating coupled application configuration conflicts in a way that is compos-
able, hardware topology aware, MPI implementation agnostic, works with a variety
of unmodified Pthread-based parallel programming systems, increases overall system
resource utilization, reintroduces lost parallelism, and is straightforward to incorpo-
rate into existing parallel applications. To the best of our knowledge, this is the
first work to satisfy all of these criteria. Significant contributions of this work are

summarized as follows:

Chapter 1. Introduction

e We examine contemporary approaches used to accommodate thread-level het-
erogeneity in coupled MT-MP programs. Here, we identify potential inefficien-
cies in how these coupled programs are currently structured and executed in

the HPC domain.

e We present a novel approach for accommodating thread-level heterogeneity.
Our approach enables full utilization of all available compute resources through-
out an application’s execution by providing programmable facilities to dy-
namically reconfigure runtime environments for compute phases with differing

threading factors and affinities.

e We evaluate our methodology by applying it to three production-quality simu-
lation codes employing a variety of parallelization strategies. Our performance
results show that for a majority of the 30 tested scientific workloads our ap-
proach and corresponding open-source reference implementation, QUO, render

speedups greater than 50 % over the static under-subscribed baseline.

Chapter 4: Addressing The Memory Attribution Problem: We present the
design and implementation of memnesia, a novel memory usage profiler for parallel
and distributed message-passing applications. Our approach captures component-
level memory usage statistics from unmodified binaries dynamically linked to a
message-passing communication library. This work is motivated principally by the
lack of parallel tools capable of extracting metrics relevant to our study in Chapter 5
concerning QUO-induced memory overhead. Significant contributions of this work

are summarized as follows:

e We examine contemporary approaches in memory profiling and discuss their
limitations as pertaining to what we call the memory attribution problem: the
inability to predict or evaluate during runtime where the available memory is

used across the software stack comprising the application, reusable software

Chapter 1. Introduction

libraries, and supporting runtime infrastructure needed to enable the applica-
tion at a given scale, under a given workload, and in a time- and space-sharing

scheduled environment.

e We propose an approach for accurate, per-process quantification of memory
resource usage over time that is able to distinguish between application and
MPI library usage clearly. With this new capability, we show that job size,
communication workload, and hardware/software architecture can influence

peak runtime memory usage.

e We develop a corresponding open-source profiling library named memnesia for
applications using any implementation of the Message Passing Interface. We
develop this software with a specific goal in mind: once memory attribution is
better understood, applications will potentially be able to improve or maintain

their memory utilization as they are developed, maintained, and deployed.

e We evaluate our memory profiler’s runtime overhead and behavior using micro-
benchmarks. Here, we show that memnesia overheads are most apparent at
small-message sizes, where its effect on operational latencies dominates mes-
saging rates. Large-message bandwidth is least affected by the presence of
memnesia instrumentation, as increased operational latencies are amortized
over the transfer of larger payloads. That is, once a transfer is initiated, mem-

nesia instrumentation has no appreciable effect on transfer rate.

e We discuss memnesia’s memory overhead and application perturbation. For the
former, we show that total memory overhead is proportional to 2s Z?:Ol n;,
where the size of a single trace record s = 25B, m is the total number of
processes under memnesia supervision, and n, is the total number of trace

events triggered by process p € {0,1,2,...,m — 1}. For the latter, we show

that for a single process the amount of tool-induced application perturbation

Chapter 1. Introduction

is proportional to s times the number of trace records already collected by our

event-driven profiler.

Chapter 5: Overhead of Adaptive Parallelism: A Case Study with Quo:
Focusing on runtime and memory costs brought on by the use of our dynamic ap-
proach, we examine QUO’s overhead using proxy and full applications. We show that
QUuO’s overhead is modest, imposing small runtime and memory usage penalties over

the static baseline. Our results are summarized as follows:

e We quantify the individual overhead costs for a representative set of QUO
operations, showing that runtime operational latencies average ~2ms at 16

processes per node (PPN) across 128 nodes.

e We evaluate the overhead of QUO process quiescence by comparing two ap-
proaches, namely MPI_Barrier () and QUO_barrier (). Our results show
that QUO_barrier () significantly outperforms MPI_Barrier () and is close
to the ideal case where quiescence is not necessary. In particular, our approach
introduces approximately an 8 % overhead, while the naive approach using

MPI_Barrier () introduces approximately 116 % overhead.

e We quantify data remapping overhead at different scales and input configura-
tions using three scientific applications. Because of our approach’s quiescing
and later resumption of tasks (i.e., MPI processes), application data remap-
pings across library domains may increase and are dependent on job scale and
inter-domain data movement requirements. So we study those overheads as
a function of job size and application workload in two distinct regimes. Our
results show that in the worst case data remapping consumes approximately
15% of overall optimized application runtime—on average consuming about

4% across the 30 workloads tested.

Chapter 1. Introduction

e We study Quo-induced memory overhead, focusing on two sources: QUO run-
time state and increased hardware subscription levels often required by our
approach. For the former, our experiments show that QUO’s memory footprint
is influenced primarily by hardware/software architecture, job scale, and pro-
cess distribution—averaging across the 18 experiments ~1.4 MB of additional
memory per process. For the latter, we show that the cost of maintaining addi-
tional MPI processes is hardware-subscription-, platform- and implementation-

dependent, averaging across the 18 configurations tested ~14 MB per process.

Chapter 6: Conclusion: We conclude with a summary of our results and discuss

opportunities for future work.

Chapter 2

Background

In this chapter, we present an overview of core topics in parallel and distributed
computation with a focus on concepts and techniques typical to HPC and their
application to modeling and simulation. We begin with a discussion of parallel
computer architectures and programming models, focusing on Flynn’s taxonomy and
execution models that are of particular interest to this work. We then discuss HPC
platforms and describe how they are commonly programmed. Finally, we conclude

with a short description of parallel speedup.

2.1 Parallel Computers and Execution Models

A parallel computer comprises a potentially distributed collection of connected com-
ponents (processors and memories) that work cooperatively to solve a computational
problem. A standard way to classify these machines is Flynn’s taxonomy, which cat-
egorizes computers according to the number of data streams and instruction (or
control) streams they have [39]. In total there are four possibilities: SISD, MISD,
SIMD, and MIMD.

Chapter 2. Background

Instruction Pool Instruction Pool
E E
P PE — = Lpgll Llpg-
= =
A A
(a) SISD (b) MISD
Instruction Pool Instruction Pool
PE |~ — PE L PE
3 3 L]
ocj PE D? PE PE
8 8 L
< ~ < | ||
g PE g PE PE
PE — PE L PE
(c) SIMD (d) MIMD

Figure 2.1: Flynn’s computer taxonomy.

Single Instruction Stream, Single Data Stream (SISD): A sequential com-
puter architecture exploiting neither instruction stream nor data stream parallelism

as shown in Figure 2.1a.

Multiple Instruction Streams, Single Data Stream (MISD): An uncommon
parallel computer architecture exploiting instruction stream parallelism on a single

stream of data as shown in Figure 2.1b.

Single Instruction Stream, Multiple Data Streams (SIMD): A parallel com-

Chapter 2. Background

puter architecture exploiting data stream parallelism, where a single operation, such

as a multiply, is applied to multiple data simultaneously as shown in Figure 2.1c.

Multiple Instruction Streams, Multiple Data Streams (MIMD): A parallel
computer exploiting both instruction stream and data stream parallelism wherein
multiple autonomous processors execute different operations on different data as
shown in Figure 2.1d. The MIMD classification can be divided into two parallel
execution models: SPMD and MPMD.

Single Program, Multiple Data Streams (SPMD): The most common paral-
lelization strategy used in the high-performance computing domain. Developed by
Darema et al. [34], SPMD is characterized by a set of cooperating tasks executing

the same program while operating on multiple pieces of data.

Multiple Programs, Multiple Data Streams (MPMD): A parallel execution
model that extends the SPMD model to multiple programs.

2.2 High-Performance Computing Platforms

HPC platforms are built for executing parallel numerical calculations of modeled sys-
tems. These parallel computer simulations are used across a broad range of scientific
disciplines because they provide a way to conduct experiments that would otherwise
be too costly, dangerous, or impractical. As a consequence, the compute capability
of high-performance computing systems has grown exponentially over the last two
decades (Figure 2.2) to keep pace with increasingly ambitious goals such as modeling

complex physical phenomena through coupled multi-physics simulation [42].

Large-scale parallel computer simulations require an enormous amount of par-
allelism and memory capacity, so they must execute on parallel computers based

on a distributed memory architecture in which compute nodes with local processors

10

Chapter 2. Background

1018 .
—~ 90 ® o0 o-0¢
g—q) o0 ®® ° FURC PPN Lot

80) heAb

O 1016_ . o [] ey O
é o oo ® PRI S

o e A =
= 1] ‘.....O.. I Rkt e o
8 o ®® o-®® LAk Ak um BT
= o @ oo ® A T
T 1pl2 o ®® Al A A mom

10 A -
= o
ERULE ISR St
o R L T R o Sum - ke 4] #500

A O o g 8 T 2 P O g Nyt

Topr500 List

Figure 2.2: Performance development of HPC systems as recorded by the Topr500.

and memories are networked to create a larger system—a supercomputer. Below we
present architectural details of the top 10 supercomputers according to the November

2017 Tor500 list (Table 2.1) and show the scales at which they operate (Table 2.2).

System Node Architecture Network

TaihulLight Sunway SW26010 260C Sunway

Tianhe-2 Xeon E5-2692v2 12C, Xeon Phi 31S1P Express-2 Fat-Tree [74]
Piz Daint Xeon E5-2690v3 12C, Tesla P100 Aries Dragonfly [8]
Gyoukou Xeon D-1571 16C, PEZY-SC2 Infiniband EDR

Titan Opteron 6274 16C, Tesla K20x Gemini 3D Torus [9]
Sequoia IBM Power BQC 16C BG/Q 5D Torus [29]
Trinity Xeon E5-2698v3 32C, Xeon Phi 7250 68C Aries Dragonfly

Cori Xeon E5-2698v3 32C, Xeon Phi 7250 68C Aries Dragonfly
Oakforest Xeon Phi 7250 68C Omni-Path Fat-Tree [72]
K Computer SPARC64 VIIIfx 8C Tofu 6D Torus [6]

Table 2.1: Node and network architectures of contemporary HPC platforms.

11

Chapter 2. Background

System Node Count Core Count Memory Capacity Rmax

TaihuLight 40,960 10,649,600 1,311 TB 93,015 TFLOPS
Tianhe-2 16,000 3,120,000 1,375 TB 33,863 TFLOPS
Piz Daint 5,320 361,760 438 TB 19,590 TFLOPS
Gyoukou 1,250! 19,860,000 576 TB 19,136 TFLOPS
Titan 18,688 560,640 710TB 17,590 TFLOPS
Sequoia 98,304 1,572,864 1,536 TB 17,173 TFLOPS
Trinity 19,392 979,968 2,163 TB 14,137 TFLOPS
Cori 12,076 735,200 1,469 TB 14,015 TFLOPS
Oakforest 8,208 558,144 919TB 13,555 TFLOPS
K Computer 88,128 705,024 1,410 TB 10,510 TFLOPS

LA node is defined here as eight SC2 chips connected to a single Xeon D-1571.

Table 2.2: The scales at which contemporary supercomputers operate.

2.3 Parallel Programming Environments

Most parallel and distributed scientific applications (or software libraries) are pro-
grammed using general-purpose languages parallelized via optimizing compiler tech-
niques (e.g., automatic vectorization), language features or extensions (e.g., parallel
loop constructs), or runtime /middleware system services (e.g., collective inter-process
communication). Supercomputers offer a hierarchy of exploitable concurrency, so
parallelism in scientific programs is achieved by combining approaches that best suit
each level of an architecture-defined hierarchy. An example is the use of message-
passing SPMD for coarse-grained parallelism in which distributed tasks also exploit
loop- and instruction-level parallelism from within a node. Below we describe popular

approaches used in contemporary scientific software engineering.

12

Chapter 2. Background

2.3.1 Message Passing

In the context of parallel programming models, message passing is a way of struc-
turing cooperation between a collection of tasks executing concurrently on a parallel
computer. In this model, tasks cooperate by sending messages to one another; so the
sharing of data by other means, for example, shared memory, is prohibited. Data
may be exchanged between cooperating tasks using synchronous or asynchronous
messages, or a combination thereof. The former requires synchronization between a
sender and receiver such that the receiver is ready for receipt of a message before the
sender initiates transmission, whereas asynchronous messaging is less restrictive in
that a message may be sent to a task before it is ready (or able) to receive data. The
exchange of data between a single sender and a single receiver is called point-to-point
communication. The generalization of this concept, which allows for the transfer
of data between multiple senders and receivers, is called collective communication.

For more information about message passing models, consult the seminal works by

Hewitt et al. [54], Baker and Hewitt [16], Hoare [55], Valiant [99], and Milner [79].

Now that we have a general understanding of the message passing model let us
now focus on a particular message passing specification: MPI, the Message Passing
Interface [78]. MPI is a portable application programming interface (API) specifi-
cation for point-to-point communication with extensions to the canonical message
passing model that includes collective communication, remote memory access (RMA)
operations, dynamic process creation, and parallel file input /output (I/O). Function
calls defined by the standard’s C and Fortran language bindings express these op-
erations, though other language bindings exist outside the standard’s purview. For
over twenty years, MPI has served as the de facto message passing standard for
parallel and distributed scientific applications. Thus, a tremendous amount of soft-
ware infrastructure has been designed and built around its specification, which has

undergone two major revisions since its official debut in 1994.

13

Chapter 2. Background

2.3.2 Shared-Memory Multithreading

In the shared-memory model, a collection of tasks share a common address space,
and any data that are not explicitly designated as task-local, accessible only to a
single task, are shared. Tasks are allowed to read and write shared data structures
asynchronously, so multithreaded programs are carefully structured to avoid race con-
ditions, undesirable non-determinism that can affect program correctness. Because
scientific applications require large amounts of memory, shared-memory paralleliza-
tion strategies cannot be used without a distributed-memory component. Conse-
quently, hybrid approaches combining shared-memory multithreading and message

passing are becoming commonplace in scientific software (details in Chapter 3).

2.4 Parallel Speedup

Speedup is a standard metric used to assess the scalability of parallel programs. For

a fixed problem size, x, speedup is defined as follows:

S(p,x) = —ggg i; ,

where T'(1,z) is the time taken by an optimized sequential program to perform a

(2.1)

given computation on a single processor and T'(p,x) is the time taken to perform
the same calculation in parallel using p processors. Measuring speedups in this way
quantifies a parallel program’s strong scaling characteristics for a given workload
at increasing processor counts. By contrast, weak scaling measures speedups as a
function of both problem size and processor count and assumes a fixed problem size

per processor, so speedup in this regime is defined as
T(1,z)

T(p,x-p)

Demonstrating strong scaling requires solving a fixed problem size faster as p in-

S(p.x-p) = (2.2)

creases, while demonstrating weak scaling requires solving increasing larger problems

within a fixed amount of time.

14

Chapter 2. Background
2.5 Summary

In summary, supercomputers can be structured and programmed in different ways.
Some are built entirely from commodity components, a classic example is a Beowulf
cluster [20], while others opt for custom hardware altogether—the approach used
for TaihuLight. More commonly, though, a graded approach is taken where both
custom and commodity technologies are integrated into a single distributed memory
machine. As an example let us consider the architectural features of the computers
listed in Table 2.1. Here we will notice that the majority (9/10) are built using
commodity technologies interconnected by specialized high-speed networks. With
this diversity, achieving program and performance portability is challenging, so par-

allelism is achieved and expressed in different ways.

15

Chapter 3

Accommodating Thread-Level

Heterogeneity

Parallel and distributed software such as multi-physics applications play crucial roles
in science and engineering. Because of their interdisciplinary nature, these applica-
tions are often coupled, that is, built via the integration (or coupling) of indepen-
dently developed and optimized software libraries linked into a single application.
As previously described, in such coupled applications, a poorly performing library
can lead to overall poor application performance, suboptimal resource utilization,
and increased time-to-solution, so it is critical that each library executes in a man-
ner consistent with its design and tuning for a particular system architecture and
workload. Generally, each library (input/compute phase pair) has its optimal run-
time configuration, for example, number and placement of processes or threads. In
coupled applications, effective configuration parameters are determined (most often

heuristically, manually, and offline) for all performance-critical computational phases.

Configuration conflicts arise when an optimal configuration for one phase is sub-

optimal for another, and there are a variety of approaches for resolving configuration

16

Chapter 3. Accommodating Thread-Level Heterogeneity

conflicts. At one extreme lie applications written to parallel and distributed pro-
gramming systems such as Legion [18] and Charm++ [62], which by design resolve
such conflicts at runtime. At the other extreme lie MT-MP applications that use
message passing for inter- and intra-node parallelism and multithreading for addi-
tional intra-node parallelism, where the common approach is to allocate resources
to satisfy the most demanding compute phase. The library with the highest degree
of threading per process has one processing element per thread, and libraries with
fewer threads per process run under-subscribed, using only a fraction of the available

compute resources when running.

In this chapter, we study coupled MT-MP applications with dynamic, phased
configuration conflicts. Focusing on applications based on the Message Passing In-
terface, we address the practical challenges of thread-level heterogeneity, where a
coupled application comprises MPI libraries requiring different degrees of thread-
level parallelism. We present a general methodology and corresponding implemen-
tation for dynamically (at runtime) accommodating coupled program configuration
conflicts in a way that is composable, hardware topology aware, MPI implementation
agnostic!, works with a variety of unmodified Pthread-based parallel programming
systems, increases overall system resource utilization, reintroduces lost parallelism,
and is straightforward to incorporate into existing applications. To the best of our
knowledge, this is the first work to satisfy all of these criteria. Finally, we evalu-
ate our methodology by applying it to three production-quality simulation programs
that employ a variety of parallelization strategies. Our results show that significant
performance improvements are achievable when used in environments positioned to

make effective use of the additional levels of parallelism our approach enables.

S0 long as the underlying representation of an MPI process is a system process. This
is true for most MPI implementations with one notable excepion: MPC-MPT [81, 82].

17

Chapter 3. Accommodating Thread-Level Heterogeneity

3.1 Coupled Applications and Their Challenges

As previously described, parallel applications are often built by coupling indepen-
dently developed and optimized software libraries. For example, coupled physics ap-
plications are often implemented in a fashion where each physics library, in turn, up-
dates common application state data. Such scientific libraries tend to have their pre-
ferred data discretization scheme, for example, unstructured meshes, regular meshes,
or particles, so they manage their distributed state and parallelization strategies with
little or no coordination across library boundaries. More generally, libraries inter-
act by exchanging data through APIs that remap data from one library domain to
another, for example, from a field defined on a computational mesh to a system of
linear equations, or from one mesh to another as illustrated in Figure 3.1. Quite
often, such data structure remappings suggest complementary remappings of tasks
to hardware. Inter-library interactions can take place many times during the lifes-
pan of an application. Furthermore, at a given program point these interactions
may change during a simulation to accommodate new requirements, for example,

particular physics appropriate for a specific spatial scale and resolution.

Remap

Compute
=]
i
omduro))

Remap

Figure 3.1: Notional illustration of computational phases interleaved with data struc-
ture remapping phases across library domains.

18

Chapter 3. Accommodating Thread-Level Heterogeneity

3.1.1 Parallelism

Parallel scientific application executions exploit data parallelism, where many in-
stances of the same computation execute in parallel on different data and on different
computational resources. In the canonical MP model, message passing is used for
both inter- and intra-node parallelism (other than SIMD vectorization). For MPI ap-
plications this is called MPI-everywhere. In this model, computational resources are
usually fully subscribed, that is, the program’s set of single-threaded processes is in
one-to-one correspondence with processing elements (i.e., cores or hardware threads)
and parallelism is realized via either SPMD or MPMD schemes. Alternatively, a sci-
entific application can employ a hybrid model using multithreaded message passing
(MT-MP) for inter- and intra-node parallelism. For MPI applications, MT-MP is
an instance of the more general MPI+X model in which applications employ addi-
tional on-node parallelization strategies. This approach is increasingly popular as
core (or hardware thread) counts increase in shared-memory nodes, and because of

the flexibility and performance potential of a hierarchical approach [26, 53, 73].

While MPI+X is gaining popularity, it is not ubiquitous. Restructuring large,
mature code bases to exploit new parallel programming systems effectively is chal-
lenging and generally requires a significant amount of effort that is often unjustifiable
because of cost or priority. Furthermore, it is not uncommon that an MPI-everywhere
version of a scientific code performs as well as or better than its MPI+X instantia-
tion [15, 69], which discourages speculative hybridizing of existing programs. Finally,
while an MPI+X library may be written such that its runtime configuration is set-
table within some range at startup, the particular runtime parameters that give
the best performance may depend on static or dynamic variables such as input and
problem scaling factors. For all of these reasons, coupled scientific codes will for the
foreseeable future continue to be built from libraries that use a mix of non-uniform

runtime configurations as illustrated in Figure 3.2. A runtime configuration may

19

Chapter 3. Accommodating Thread-Level Heterogeneity

MP Phase MT-MP MP Phase | ... | MLT-MP
Phase Phase

Figure 3.2: Interleaved phases of a coupled thread-heterogeneous message-passing
application with non-uniform runtime configuration requirements.

include the total number of processes to use for SPMD or MPMD parallelism, a
process threading degree for shared-memory multithreading, and a mapping of tasks

(processes and threads) to compute resources, for example, PEs and memories.

3.1.2 Conflicting Configuration Requirements

For decades coupled applications had relatively uniform library configuration re-
quirements because they were built from single-threaded message-passing libraries,
so static configurations set at application launch were sufficient. Today, however,
configuration conflicts are common in coupled applications because they comprise
independently developed and maintained scientific libraries that have been written

or ported to hybrid MT-MP programming models.

Static Configurations

In today’s static computing environments, dynamically accommodating inter-library
configuration conflicts is difficult. While it is well understood that binding tasks to
hardware resources can improve the performance of an MPI application [25, 43], par-
allel application launchers such as orterun [27], srun [103], aprun [66], and Hydra [71]

allow only static allocations and static binding capabilities: launch-time configura-

20

Chapter 3. Accommodating Thread-Level Heterogeneity

tions persist for the entire parallel application’s execution. Most single-threaded
applications are launched by binding a single PE dedicatedly to each process. This
approach mitigates ill effects of task migration in multiprocessor architectures, for ex-

ample, cache invalidation that occurs when a thread moves from one PE to another.

Given a static configuration for coupled MT-MP applications with conflicting con-
figurations, the two primary configuration options are over-subscription and under-
subscription. In over-subscribed configurations, all allocated resources are always in
use, that is, the number of PEs equals the number of threads in the computational
phase with the lowest degree of threading per process. In phases that require more
threads, resources are over-subscribed with multiple threads per PE. Figure 3.3 il-
lustrates the evolution of an over-subscribed MPI+X configuration where hardware
utilization u(t) remains constant at 100 %. In this example, MPI-everywhere phases
fully subscribe hardware resources (phases P0-P2, P5-P6), while multithreaded re-
gions over-subscribe them (phases P3-P4). In practice, over-subscription is generally
avoided because increased resource contention in the threaded regions tends to affect

overall application performance and scalability negatively [101].

=
=
t

1 To }------
Ty r—----f----F =zl TZ ______________ Ty -
Ty foommforee [?Z R — g N — Parallel compute phase.
Ty f------f------ L==2277 ?1) I S Ty p------ Ti | PE occupied by task Ti.
g S - S [l g — % PE occupied by Ti and T.

PO P1 P2 P3 P4 P5 P6

Figure 3.3: Compute resource utilization u(t) by tasks (processes and threads) over
time of a static over-subscribed MPI4X configuration.

21

Chapter 3. Accommodating Thread-Level Heterogeneity

t
N e R To {11 To f------
gV — Parallel compute phase.
Ty pp Ty Ty - Vacant processing element.
Ts |- Ti | PE occupied by task Ti.

PO P1 P2 P3 P4 P5 P6

Figure 3.4: Compute resource utilization u(t) by tasks (processes and threads) over
time of a static under-subscribed MPI+X configuration.

The standard approach for accommodating thread-level heterogeneity in coupled
MPI applications is to statically (at application launch time) under-subscribe com-
pute resources such that the computational phase with the highest degree of thread-
ing per MPI process has one PE per software thread. As a consequence, phases with
fewer threads per process use only a fraction of the available compute resources, thus
leading to poor system resource utilization. Figure 3.4 illustrates the evolution of
compute hardware resource utilization over time for a typical MPI+X configuration.
Over time, hardware utilization fluctuates between 50 % and 100 % as the application

moves in and out of regions with differing degrees of multithreading.

Lost Parallelism Through Resource Under-Subscription

Given an application that strong-scales perfectly (the theoretical upper bound), we

can calculate the theoretical slowdown of static under-subscription approaches using

Amdahl’s law [11],
m -1
Di
S = — 3.1
(Z) 7 (3.1)

i=1

22

Chapter 3. Accommodating Thread-Level Heterogeneity

where n is the total number of available processors; m is the total number of phases;
t; is the optimal threading degree for a phase #; tyax = max(ty, ..., ty); Ui = ti/tmax
is a phase’s processor under-subscription factor; and s; = n - u; is the speedup factor
for a given phase. Consider two serial phases L1 and L2 whose percentages of exe-
cution time are equal: p; = 0.5 and py, = 0.5. Assuming L1 runs optimally with an
MPI-everywhere parallelization strategy and L2 optimally with an MPI+X strategy,
Figure 3.5 plots the theoretical speedups of three under-subscribed runtime configu-
rations where L1’s threading degree is fixed at ¢t; = 1 and L2’s varies. We compare
those to an idealized configuration (Ideal) where each phase of the parallel compu-
tation is exposed to all available PEs. This simple model illustrates the potential

losses in parallelism resulting from today’s static under-subscription approach.

In summary, coupled scientific applications based on the MT-MP model can
comprise libraries with conflicting configuration requirements. For such applications,
today’s static computational environments necessitate suboptimal over-subscribed
or under-subscribed configurations. Therefore, there is a need for techniques that

address dynamic, conflicting configurations in coupled MT-MP applications.

Speedup

Number of Processors

Figure 3.5: Log-log plot of modeled speedups showing the potential losses in paral-
lelism resulting from under-subscription as a function of scale.

23

Chapter 3. Accommodating Thread-Level Heterogeneity
3.2 Background and Related Work

In this section, we begin with a discussion of portable hardware locality and abstract
hardware representation, focusing exclusively on techniques and software systems
used in this work. We then discuss related topics in multiprocessor scheduling,

affinity scheduling, and runtime configuration conflict resolution.

3.2.1 Portable Hardware Locality

Contemporary HPC node architectures are complex and diverse, demanding careful
consideration of their processor and memory configurations. To effectively guide
the dynamic (runtime) mapping of application-specific software (logical) affinities
to hardware resources, one must be able to obtain both the underlying platform’s
resource information and the application’s current usage of those resources. To that
end, we use hwloc [25, 44], an open-source software library that provides services to
gather such information at runtime from the most popular and widely used operating
systems in HPC. Operating system and hardware portability are achieved by the
library’s use of Standard C (ANSI/ISO C), a common, widely supported C standard,

and a plugin architecture that allows for back-end component specialization.

3.2.2 Abstract Hardware Representation

hwloc represents hardware information as a k-ary tree of typed hardware objects
that carry additional information through type-appropriate attributes, for example,
cache level and size. The topology formed by these objects represents memory and
processor relationships existing in hardware, including cache, NUMA, and other gen-
eral hardware affinities such as those existing when processing elements are packaged

together within a socket. Further, abstract hardware topologies need not be full (for

24

Chapter 3. Accommodating Thread-Level Heterogeneity

\ 32 GB RAM \

Socket 0 | Socket 1
4 MB L2 4 MB L2 4 MB L2 4 MB L2
32kBL1|32kBL1||[32kBL1|32kBL1 32kBL1|32kBL1|[32kBL1|32kBL1
PE O PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

Figure 3.6: Schematic of a machine with two quad-core sockets.

Socket 0

Machine

Socket 1

PE O

PE1 PE 2

PE3 PEA4

PE5 PEG6

PE7

Figure 3.7: Hardware topology of the machine diagrammed in Figure 3.6.

all levels each node has exactly 0 or k children), symmetric (being a mirror image of

itself), or homogeneous (built from exactly one type of memory or processor), and so

can represent complex hardware configurations. The binary tree shown in Figure 3.7

depicts the compute node architecture diagrammed in Figure 3.6, namely a uniform

memory access (UMA) machine built from two quad-core sockets, where each core

has a dedicated level one cache (L1) and a shared level two (L2).

3.2.3 Multiprocessor Scheduling

MULTIPROCESSOR SCHEDULING (MSP) is a well-known optimization problem that

can be stated as follows: given ¢ processors and n tasks of varying lengths, find

25

Chapter 3. Accommodating Thread-Level Heterogeneity

a schedule—an assignment of n tasks to ¢ processors—with minimal total length.
Because of the problem’s considerable importance and due to its computational in-
tractability (MSP is known to be NP-hard [19, 41]), many efficient heuristics have
been proposed and studied [12, 31, 57, 67, 77, 91, 100]. Here, we focus on a few that

align with our primary interests.

Affinity Scheduling

Markatos and LeBlanc studied affinity scheduling in their work concerning loop
scheduling algorithms for shared-memory multiprocessors [77]. Their results show
that parallel workloads on such systems can benefit from scheduling policies that
exploit data locality in caches and local memories during parallel loop iteration
assignment to processors. Their work builds on that of Squillante and Lazowska,
which shows that locality-indifferent scheduling increases the cache-reload transient
penalty—the cache misses caused by bringing a task’s working set from main memory
into cache as it is reinitiated after being suspended temporarily [96]—thus negatively

affecting both individual task and overall system performance [91].

An affinity schedule is given by a potentially dynamic specification that ex-
ploits application-specific features (e.g., adjacency graphs, parallelization strategies)
to improve upon application-oblivious schedules. The problem can be stated as
follows: given ¢ processors and a set of cooperating tasks 7', find a set of task
scheduling directives M and a binary relation R : T+ M that minimizes T"s
makespan. Most often the derivation of M and R involves offline manual experi-
mentation, but automated techniques have been proposed and studied in the litera-
ture [5, 21, 22, 23, 60, 61, 88, 89]. A task’s CPU affinity mask determines the set of
processors P on which it is eligible to run and is defined as follows: given ¢ linearly
ordered processors P = {po,p1,Pi,---,Dg-1}, let m be a least significant bit zero

(LSB-0) string defined by m; « 1 if use of p; is permitted and m; < 0 otherwise,

26

Chapter 3. Accommodating Thread-Level Heterogeneity

so P ={p;| 0 <i<mn,m; =1} To better understand what we mean, consider the
following scenarios given four processors P = {p0, pl,p2,p3} and as many cooper-
ating tasks T = {t0,t1,¢2,t3}. Relation Ry, diagrammed in Figure 3.8a, represents
a configuration commonly used for single-threaded data-parallel workloads: a pro-
cessor is dedicated to a single thread of execution to minimize task migration costs.
If we let T, = {0,1} and T,, = {2,3} be two multithreaded processes taken from
T, then Figure 3.8b represents a typical configuration used to influence the schedule
of multithreaded data-parallel workloads: each multithreaded process is given a set
of dedicated processing elements so that threaded regions can execute in parallel
while maintaining some memory locality—an especially important point on NUMA
architectures. Finally, the relation shown in Figure 3.8c represents a completely per-
missive scheduling policy. That is, each task is runnable (can be scheduled) on any
available processor. In practical terms this means that the operating system’s sched-
uler can assign tasks to resources in any way it sees fit, most likely using completely

fair scheduling.

M; = {0001, (0x1),00105 (0x2),0100, (Ox4), 1000, (0x8)}
M, = {0011, (0x03), 1100, (0xC)},

t) @ —— e (x1 t0 o t0 e
tl e ———— 0 (Ox2 t1 0>¢° 0x3 t1 Ok
OxF
t2 & ————— e (x4 t2 o e 0xC t207. ’
t3 e ® 0x8 t3 e t3 e
(a) Ry : T+ M, (b) Ry : T — M, (c) Ry : T — Ms

Figure 3.8: Example task to affinity mask relations.

27

Chapter 3. Accommodating Thread-Level Heterogeneity

3.2.4 Current Approaches in HPC

Affinity scheduling has proven useful for improving HPC workload performance [25,
43, 60, 90], so much that, in one form or another, it is regularly used in practice.
Today, the majority of parallel applications use static affinity (or binding) policies
characterized by their use of a single, persistent configuration set during parallel
application startup. Most single-threaded applications are launched by binding a
single processing element dedicatedly to each process to mitigate the ill effects of
task migration, for example, cache invalidation occurring when a task moves from
one processing element to another. In contrast, multithreaded applications tend to
favor less restrictive process binding policies that allow for maximal hardware-level
parallelism during the execution of threaded regions, meaning in practical terms that
a CPU affinity mask is chosen so a process’s threads are eligible for execution on an

appropriate number of processing elements.

Hybridizing MPT applications has been studied extensively [30, 36, 84, 85]. These
works suggest that choosing between MPI-everywhere and MPI4+OpenMP is a non-
trivial task involving careful consideration regarding, but not limited to, algorith-
mic choices in the application and the characteristics of the target architecture.
These works evaluate MPI4+OpenMP schemes that use a static under-subscription
approach, whereas we present a general methodology to dynamically accommodate a
broader set of Pthread-based MPI+X schemes that additionally consider both data

and hardware localities at runtime.

The study of dynamic process and memory binding methodologies that consider
application, data, and hardware localities is not new. Broquedis et al. present and
evaluate hwloc by incorporating it into MPI and OpenMP runtimes to dynamically
guide task affinities at runtime [25]. While similar in many respects, our work differs

from theirs in that we present a general methodology for programmatically resolving

28

Chapter 3. Accommodating Thread-Level Heterogeneity

configuration conflicts in dynamic, phased Pthread-based MPI+X programs—a use

case not considered in their work.

For HPC applications there are a variety of published approaches for efficiently
resolving runtime configuration conflicts that arise in thread-heterogeneous envi-
ronments. Carribault et al. present a unified runtime for both distributed- and
shared-memory MPI+X codes [81, 82]. Unlike other MPI implementations, theirs
implements MPI processes as user-level threads (instead of processes), so their sched-
uler can efficiently accommodate both single- and multi-threaded regions during the
execution of an MPI+X application. In contrast, our approach is MPI implementa-
tion agnostic and exposes an API to programmatically influence task placement and
scheduling at runtime. Huang et al. present another MPI implementation that uses
processor virtualization to facilitate application adaptation, including thread-level
heterogeneity [59]. Their approach, however, requires the use of their runtime and
modified versions of others, for example, GNU OpenMP, whereas ours works with
unmodified MPI and OpenMP runtimes. Other parallel and distributed program-
ming systems such as Legion [18] and Charm++ [62] are designed to dynamically
resolve runtime configuration conflicts, but once again require that applications be

rewritten to their respective paradigms.

3.3 Adaptive Parallelism for Coupled MPI+X

Next we present a general, composable runtime approach for programmatically ac-
commodating library configuration conflicts that arise in dynamic, coupled, thread-
heterogeneous MPI+X applications. Our design is influenced by requirements for
generality, composability, efficiency, and pragmatism in the face of production HPC
software realities, that is, easily fitting into large, established code bases that are

still be under active development.

29

Chapter 3. Accommodating Thread-Level Heterogeneity

3.3.1 Adaptive Execution Environments with Quo

QUuo (as in “status quo™) is both a model and a corresponding implementation that
facilitates the dynamically varying requirements of computational phases in coupled
MT-MP applications. Specifically, QUO allows an application to dynamically query
and reconfigure its process bindings. While the model is general, the current im-
plementation focuses on Pthread-based MPI4+X applications [49]. Fundamentally,
QUuo uses hwloc [25] and MPI, interfacing with those libraries and the application as
shown in Figure 3.9. The hwloc library is used to gather system hardware topology
information and to control process binding policy changes during the target applica-
tion’s lifetime. MPI is used primarily for exchanging setup information during QUo

context (QC) setup, which is discussed in a later section.

MPI Application

Quo Library

hwloc MPI Library

Figure 3.9: QUO architecture diagram.

The portable, production-quality, open-source runtime library is written in C, but
also provides C++ and Fortran language bindings. The Quo API operates on QC
pointers. This design allows for the creation and manipulation of multiple QCs within
a single application that are either encapsulated within a library or passed from one
library to another—a key for composability. The remainder of this section presents

the principle concepts and mechanisms that underlie our design and approach.

30

Chapter 3. Accommodating Thread-Level Heterogeneity

3.3.2 Quo Contexts

QUO contexts, which encapsulate state data gathered and manipulated by QUo, are
created via a collective call to QUO_create () in which all members of the initializing
communicator must participate. QCs may be created at any time after the underlying
MPT library has been initialized and remain valid until freed via QUO_free (), which
must occur before the MPI library has been finalized. QUO can maintain multiple

independent, coexisting QCs within a single application.

3.3.3 Hardware/Software Environment Queries

As previously described in Section 3.2.1, contemporary HPC node architectures are
complex and diverse, demanding careful consideration of their resource (PE and
memory) configurations. To effectively guide the dynamic (runtime) mapping of
application-specific software (logical) affinities to hardware resources, one must be
able to obtain both the underlying platform’s resource information and the applica-
tion’s current usage of those resources. In this regard, QUO’s approach is straight-
forward: its API provides thin convenience wrappers around commonly-used hwloc
hardware query routines for hardware information. Relevant hardware information
includes memory localities relative to PEs in non-uniform memory access (NUMA)
architectures and hierarchical hardware relationships (e.g., determining how many

cores are contained in a particular socket).

Process affinity state queries provide another mechanism to influence runtime
software-to-hardware mapping decisions based on the hardware affinities of cooper-
ating processes within a compute node. For example, on a per-node basis, one can
query for the set of MPI processes with affinity to a particular hardware resource.
For these queries, QUO uses a combination of hwloc and MPI services. For a given

QC, Quo uses MPI to share a cached mapping of MPI processes to process IDs,

31

Chapter 3. Accommodating Thread-Level Heterogeneity

and hwloc is used to query the affinities of the relevant processes. We note that to
effectively map tasks to PEs, both intra-process (first party) and inter-process (third

party) affinity state queries are necessary.

3.3.4 Programmable Dynamic Process Affinities

Quo allows arbitrary process binding policies to be enacted and reverted during
the execution of an MPI+X application. Ideally, binding instantiations and rever-
sions will coincide with the entries and exits of the application’s different computa-
tional phases. Accordingly, QUO exposes a straightforward, stack semantics through
QUO_bind_push () and QUO_bind_pop (). For example, a new process binding pol-
icy can be instantiated before entering a computational phase via QUO_bind_push ()
and then reverted at the end of that phase via QUO_bind_pop (). This semantics
allows a user to conveniently and dynamically stack an arbitrary number of binding
policies that map to the potentially stacked composition of coupled components in

a Quo-enabled MPI+X application (Listing 3.1 and Figure 3.10).

=
)
t
L S g Ty e
Ty eereeferees Ty o Ty foeee
g Y T S R Ty f-mmmemfee Ty f------ Parallel compute phase.
T3 - N Ty |- T3 r------ Ti | PE occupied by task Ti.

PO P1 P2 P3 P4 P5 P6

Figure 3.10: Compute resource utilization by tasks over time u(t) for a Quo-enabled
MPI+X configuration. Consult Table 3.1 for a description of the phases.

32

Chapter 3. Accommodating Thread-Level Heterogeneity

Phase Description

Phase PO

Four single-threaded processes P = {To, 15, T}, T3} are launched
onto cores R = {Cy, C1, Cy, C3}, where each process Ty -1 € P
has affinity to the core on which it was launched: Ty/Cy, To/Ch,
T1/Csy, T5/C5. Process state data S = {My, My, My, M3} is
initialized for each process in P.

Phase P1

Processes in P execute in parallel during first compute phase,
fully subscribing the compute resources in R.

Phase P2

Processes in P map data from their domain X (resident in)
to the callee’s domain Y, M : X,, — Y,,, where m = |P| and
n = |L|. Then two processes in P,) = {T1», T3}, are quiesced
while the remaining processes L = P — () push a new binding
policy such that their hardware affinities expand to cover two
cores each: Ty/Cy||Cy, T1/Csl|Cs.

Phase P3

Two new threads P = {T,,T5} are spawned by their respective
parents in L onto cores C7,C5: cores once occupied by MPI
processes in (). State in M is shared between Ty and T}, while
M in a similar fashion is shared between T} and T5.

Phase P4

Processes and threads residing in LUP execute in parallel during
this compute phase, fully subscribing the compute resources in
R. The threaded compute phase completes and the spawned
threads in P die or are suspended by the threading library’s
runtime. Processes in L revert to their previous binding policies
by popping them off their respective affinity stacks.

Phase P5

Processes in () resume execution on the computational resources
they relinquished in Phase P2.

Phase P6

Processes in P map data from domain Y (resident in S =
{My, M,}) back to the caller’s domain X (residing over state
in S), M :Y, - X, where n = |L| and m = |P|. That
is, results are disseminated via explicit message passing from n
processes in L to m processes in P.

Table 3.1: Explanation of Quo-enabled MPI+X phases in Figure 3.10.

33

Chapter 3. Accommodating Thread-Level Heterogeneity

QUO offers two variants of QUO_bind_push (). The first pushes a hardware affin-
ity policy specifically outlined by the caller. This variant unconditionally, without
regard to the caller’s current hardware affinities, changes the calling process’s affinity
mask to encompass the PEs dominated by the provided policy. QUO also offers a
more sophisticated version of this call that first queries the caller’s current hardware
affinities to choose the closest target resource that dominates the caller’s current
hardware affinities in hwloc’s hardware object tree. If, for example, the caller cur-
rently has an affinity to a core in socket 3, then a call to the latter variant with a
target resource of SOCKET will automatically expand the caller’s affinity mask to en-
compass all PEs in socket 3. The rationale for this functionality is to maintain data
locality (i.e., memory affinity) while moving in and out of process binding policies,

in this case keeping data resident within one NUMA region across library calls.

Intra- and inter-process affinity state queries are used to guide dynamic bind-
ing policy choices and are often used in concert with QUO_bind_push (). For
added convenience, QUO offers an automatic task distribution capability through
QUO_auto_distrib (). This routine automates the two-step query and bind pro-
cess at the cost of generality. Specifically, this routine allows callers the ability to
distribute tasks across a specified resource with minimal effort. For example, one
can specify that a maximum of two tasks be assigned to each socket on the target
compute resource, and this routine will do so by choosing at most two tasks that are
enclosed within (i.e., have an affinity to) each respective socket. When there exists
a subset of cooperating processes not bound to a particular hardware resource, QUO
favors bound processes, avoiding unbound processes even if the distribution criteria
were not completely satisfied with bound processes. This helps maintain data local-
ity when moving in and out of process binding policies, easing programmer burden.
With these primitives, applications can dynamically create policies tailored specif-
ically to their current needs based on the underlying hardware characteristics and

the current process binding policies of other participating processes within a node.

34

Chapter 3. Accommodating Thread-Level Heterogeneity

3.3.5 Data Dependencies

Before the number of active MPI processes can be safely increased or decreased,
data must be exchanged among node-local processes to satisfy all inter-process data
dependencies. Typically, this occurs via node-local gathers and scatters before and
after QUO-enabled regions as described in Listing 3.1 (P2 and P6) and shown in Fig-
ure 3.11. As is typical for message passing models, inter-process data dependencies
are managed explicitly and programmatically. Once dependencies are satisfied, QUO

can enact arbitrary task reconfigurations.

Selected?
No Execute MT-MP Phase
Yes
Gather Data (RX) Gather Data (TX) QUO_bind_push ()
Execute MT-MP Phase Compute
QUO_barrier () QUO_barrier () QUO_bind_pop ()
Scatter Data (TX) Scatter Data (RX) QUO_barrier ()

Figure 3.11: Control flow of a QuUo-enabled application.

35

Chapter 3. Accommodating Thread-Level Heterogeneity

3.3.6 Parallel Task Distribution

As discussed in Section 3.3.4, QUO offers an automatic task distribution capability
through QUO_auto_distrib (). Recall that this function aids in mapping tasks to
arbitrary node-local resources such that hardware utilization and data locality for a

given task set are maximized. QUO_auto_distrib’s algorithm is as follows.

Algorithm 1: Automatic SPMD Task Distribution
Input : A hardware resource type, 7.
The maximum number of allowable tasks per resource, m.
Output: A boolean indicating whether or not the caller was selected.
begin
let R be the set of all available node-local resources of type 7;
let T be the set of all tasks that share memory and a QUO context;
let A be an |R|-element collection of totally ordered task sets (X, <),
where < is defined by the sequence of insertions into X;
let u be the caller’s unique node-local task identifier in {0, 1,...,|T|—1};
for r € R do
fort € T do
L // If t has affinity to r, add it to r’s task set.

if ¢/r then let A, «+ A, U {t};

let [< ﬂ A, // Calculate task set intersection.

reR
// If task hardware affinities overlap completely.

if |I| = |T'| then
// Allow if a distribution slot exists for the caller.
if u < m - |R| then return true ;

// Prevent 1if caller shares affinity with other tasks.
else if u € I then return false ;
// Either I =@ or the caller was not a member of [# .
else
for a € A do
// Select if in task set with an index less than m.
L if u € a and i(a,) < m then return true ;

return false;

36

Chapter 3. Accommodating Thread-Level Heterogeneity

3.3.7 Node-Level Process Quiescence

To make our approach maximally effective, there must be a portable and efficient
mechanism for quiescing sets of MPI processes to yield their use of compute re-
sources to make room for more threads of execution, as detailed in Table 3.1 and
illustrated in Figure 3.10. A naive approach might use MPI-provided facilities such
as an MPI_Barrier () across a sub-communicator containing only processes that
may communicate over shared memory, for example, a sub-communicator created by
calling MPT_Comm_split_type () with MPI_COMM_TYPE_SHARED as its split type.
While this approach certainly works, as demonstrated in an early implementation of
QUuo, it introduces prohibitively high overheads and is therefore unusable in practice
(an analysis of process-quiescence-induced application overhead is presented in Sec-
tion 5.1.2). Instead, we employ an efficient, portable approach for compute-node-level

process quiescence via QUO_barrier (). Its underlying machinery is straightforward:

1. At QUO_create () a shared-memory segment is created by one MPI process
and then attached to by all processes P that are (a) members of the initializing

communicator and (b) capable of communicating over shared memory.

2. A pthread_barrier_t is embedded into the shared-memory segment with an
attribute that allows all processes with access to the shared-memory segment
to operate on it. Finally, its count parameter is set to the number of MPI
processes that must call pthread_barrier_wait () to complete the barrier,

i.e., the number of processes in P.

3.3.8 Policy Management

Policies that influence how logical (software) affinities are mapped to hardware re-

sources may be managed with QUO in a variety of ways. In a caller-driven approach,

37

Chapter 3. Accommodating Thread-Level Heterogeneity

the caller modifies the callee’s runtime environment and assumes responsibility for
resource selection (the computational resources to be used by a particular compu-
tational phase), MPI process selection (the set of MPI processes that will use the
selected resources), and process affinity selection (pushing and popping binding poli-
cies as the target library’s computational phases are entered and exited, respectively).
A caller-driven approach is appropriate when using off-the-shelf threaded libraries
that are difficult or impossible to modify at the source code level. Caller-driven
approaches require the caller to be cognizant of the inner workings of the target li-
brary to make informed policy decisions. An example caller-driven policy is provided
in Listing A.1. In contrast, callee-driven policies are encapsulated within called li-
braries such that the caller may be oblivious to policy decisions made by the libraries
it uses, as shown in Listing A.2. Because these policies are directly embedded in the
target library and are under developer control, they can be tailored precisely to the

library’s implementation and runtime requirements.

3.4 Quo Performance and Effectiveness

Our performance evaluation is designed to show performance and scaling character-
istics for full applications. We integrate QUO into three production-quality parallel
scientific applications using a variety of parallelization strategies. With these, we
measure and analyze QUO’s costs and benefits, and how these vary with scale. Inte-

grating QUO into different codes demonstrates the generality of the QUO approach.

3.4.1 Experimental Setup

Performance results were gathered from the following systems located at Los Alamos

National Laboratory. Data were collected during regular operating hours, so the

38

Chapter 3. Accommodating Thread-Level Heterogeneity

systems were servicing other workloads alongside the performance evaluation runs.

A summary of architectural details is provided in Table 3.2.

Cielo is a 96-cabinet Cray XE6 system with a 16x12x24 (XYZ) three-dimensional
torus topology built from Gemini ASICs that provide two NICs and a 48-port
router [9]. Each Gemini connects two 16-core nodes (dual eight-core AMD Opteron
Magny-Cours clocked at 2.4 GHz with two NUMA domains per socket), each equipped
with 32 GB of memory. This system has 8,944 compute nodes, totaling 143,104 com-
pute cores, and 272 six-core AMD Opteron Istanbul service nodes. Compute nodes

run Cray Linux Environment (CLE), a Linux-based operating system.

Wolf is a 616-node system connected by a Qlogic Infiniband (IB) Quad Data Rate
(QDR) network in a fat tree topology. Each 16-core compute node (dual eight-core
Intel Xeon Sandy Bridge E5-2670 processors clocked at 2.6 GHz with one NUMA
domain per socket) has a total of 64 GB of memory. Compute nodes run Clustered

High Availability Operating System (CHAOS), a Red Hat Linux derivative [24].

Darwin is a cluster comprising different compute node architectures running
CentOS 7, a Red Hat Linux derivative. Our experiments were conducted on 20-core
compute nodes (2x 10-core 2.6 GHz Intel Xeon E5-2660 v3 processors) equipped
with 128 GB of memory, each connected by 10 Gbit Ethernet.

Sockets NUMA Cores
System CPU Per Node Per Socket Per Socket
Cielo AMD 6136 2 2 8
Wolf Intel E5-2670 2 1 8
Darwin Intel E5-2660 2 1 10

Table 3.2: An overview of compute node architectures used for this study.

39

Chapter 3. Accommodating Thread-Level Heterogeneity

3.4.2 Application Results: Evaluating Quo’s Effectiveness

Tables 3.3 and 3.4 detail the three QUoO-enabled parallel scientific applications us-

ing all the supported language bindings (C, C++, and Fortran) and a diversity of

parallelization strategies, workloads, and software environments. All application con-

figurations represent real workloads to showcase different application communication

and computation characteristics.

We evaluated QUO’s effectiveness at increasing resource utilization with compar-

isons against a baseline (without QUO) that under-subscribes compute nodes such

that the computational phase with the highest degree of threading per process (tmax)

Identifier

Application Description

2MESH

LANL-X is an application used at Los Alamos National Labora-
tory comprising two libraries LLO and L1. LO simulates one type
of physics on an adaptive structured mesh and L1 simulates a
different physics on a separate, structured mesh. L0 phases are
MPI-everywhere and L1 phases are MPI4+OpenMP.

RAGE

XRAGE+INLINLTE: XRAGE is a multi-physics application used in
a variety of high-deformation flow problems. XRAGE solves the
Euler equations of conservation of mass, momentum, and energy
on an adaptive structured mesh. All of the other physics are cou-
pled through added terms to the conservation of momentum and
energy equations. INLINLTE solves for atomic populations in cases
not in local thermodynamic equilibrium (LTE). XRAGE phases
are parallelized using MPI-everywhere, while INLINLTE phases are
multithreaded with Kokkos [38].

ESMD

MD+Analysis: ESPRESS0O [13] is a molecular dynamics (MD)
program for coarse-grained soft matter applications. Its analy-
sis routines typically calculate observables (functions of the cur-

rent system state). MD phases are MPI-everywhere and analysis
phases are MPI+OpenMP.

Table 3.3: Application identifiers and descriptions of the applications they represent.

40

Chapter 3. Accommodating Thread-Level Heterogeneity

Quo Version MPI
ID (Language Binding) Compiler Implementation System
2MESH Quo 1.2.4 (Fortran) Intel 15.0.4 Cray MPICH 7.0.1 Cielo
RAGE Quo 1.2.9 (C) Intel 16.0.3 Open MPI 1.6.5 Wolf

ESMD Quo 1.3-alpha (C++) GCC 4.9.3 Open MPI 1.10.3 Darwin

Table 3.4: Target applications and their environments used for this study.

has one PE per thread. This baseline represents the previous, long-standing mode
for production runs of these applications. Table 3.5 shows the application configu-
rations. For baseline experiments, MPI processes are launched with a static process
binding policy set by either aprun (Cray MPICH) or orterun (Open MPI). For exam-
ple, 2MESH is launched with four MPI processes per node (one process per NUMA
domain), each with a NUMA binding policy. In contrast, QUo-enabled experiments
fully subscribe resources at startup such that each MPI process is bound to a sin-
gle core (by the parallel launcher) and MPI4+X configuration policies are enacted

dynamically using QUO.

MPI+X Process Processes
Identifier Binding Policy Per Resource tmax
2MESH-W NUMA 1/NUMA 4
RAGE-W Machine 1/Machine 16
ESMD-W Socket 10/Socket
2MESH-S NUMA 1/NUMA 4
RAGE-S Machine 1/Machine 16
ESMD-S Socket 5/Socket 4

Table 3.5: Application configurations used in this study.

41

Chapter 3. Accommodating Thread-Level Heterogeneity

Quo Performance Results

We evaluated the three QUO-enabled applications on three different platforms at
scales up to 2,048 PEs (and processes).? Figure 3.12 shows all the application perfor-
mance and scaling results: 30 sets of experiments, ten different application/workload
combinations, each executed at three different scales. QUO’s effectiveness is deter-
mined principally by two criteria: 1. how much of an application’s overall runtime is
dominated by under-subscribed computational phases and 2. how well these other-

wise under-subscribed computational phases strong-scale at full node utilization.

The overall average speedup across all 30 QUo-enabled workloads was ~70 %. Of
these workloads, 26 show an overall speedup when using QUO, with more than half
the cases (16) yielding speedups greater than 50 %. RAGE-S3 yields a maximum
Quo-enabled speedup of 476 % at 64 PEs, and seven other workload configura-
tions showed a speedup of greater than 100 %. The reason these workloads realize
huge benefits when dynamically configured using QUO is that their otherwise under-
scribed computational phase (in this case the MPI-everywhere phase) strong-scales

well with the given realistic input sets.

Four of the Quo-enabled workloads yield modest speedups (less than 10 %) and
four other cases in fact demonstrated slowdowns (ESMD-52-640, 2MESH-W4-128,
2MESH-W4-512, and 2MESH-W4-512). There are three main reasons for this:
1. as previously mentioned, if the under-subscribed phase does not strong-scale well,
QuO’s approach will not yield a significant performance boost; 2. QUO can increase
the costs of data domain remappings; and 3. in some cases, QUO appears to add
some overhead to the multithreaded computational phase. These phenomena can be

observed in Figure 3.12a and Figure 3.12b.

2The seemingly strange PE counts (80, 320, 640) in the ESPRESSO experiments are
from runs on a system with 40 hardware threads per node (2 hardware threads per core).

42

Chapter 3. Accommodating Thread-Level Heterogeneity

2MESH-W1 2MESH-W2 2MESH-W3 2MESH-W4 2MESH-S5
125 et et e e e
W MP Library 000 MT-MP Library ~ EE8 Domain Mapping [——1 Without Quo With Quo
EES
[}
85
<
=]
£ B
=5 50
<z
"<
2 I
078 512 2018 128 512 2048 128 512 2048 128 512 2048 128 512 2048
Job Size (Number of Available Processing Elements)
(a) 2MESH results without and with Quo.
RAGE-W1 RAGE-W2 RAGE-S3 ESMD-W1 ESMD-S2
125
W MP Library 000 MT-MP Library EE8 Domain Mapping [Without Quo With Quo
1 100
EES
[}
58 n
o <
£ B
= = 501
o
“ <
=25
0,
64 256 512 64 256 512 64 256 512 80 320 640 80 320 640
Job Size (Number of Available Processing Elements)
(b) RAGE and ESMD results without and with Quo.
476
20011 183
S 1501 138137135 198 !
~ 115 107 99
= 66
8 58 53 52 51
&, 50 o 37377
wn I 20 18 12
01 Iln-iilﬁﬁ-ﬁ?-{
P R R R EEEE R EEEEEEE TS
CEANEEREZRERERRIEETEARIEETEEE A
mgm££|—1%gmv—<NEHN&S%(@H&%HH&B;\;%Qﬁg
BaZLiZha=zZ2222E88 0022422220228 ¢8¢%
Oz E R8s il 82834z L E =z Z
é N om o N N m Y OO T m m@mEEEmEEEmmE
T O S A FsaRr=za = R I < E PRSI T I < <5)
©PZZS ez E22 282 SR BRAzREHE ==

(c) Quo-enabled speedups: QUO versus a standard under-subscribed baseline.

Figure 3.12: Application results without and with QUo.

43

Chapter 3. Accommodating Thread-Level Heterogeneity

3.5 Practical Considerations

As previously described, commonly used parallel application launchers only provide
for static, whole-application binding policies, or none at all, and each has its syntax
for command-line or configuration-file specification of binding policy. Using QUO
one does not need to specify binding policies via the job launcher: QUO can com-
pletely specify and manage resource bindings efficiently and dynamically. While
Quo is simple, efficient, effective, and convenient, it does introduce some practical

considerations and complexities:

e Increased Code Complexity: With the quiescing and later resumption of tasks,
application data remappings across library domains may increase. Either the
library developer or the library user must be prepared to deal with this added
programming burden. We posit that in a well-engineered library such complex-

ity is manageable.

e Encapsulating Dynamically Driven Code Regions: When using the QUo ap-
proach one must identify and surround computationally-intensive code regions
with calls to QUO_bind_push () and QUO_bind_pop (). Again, in a well-
engineered library these modifications should be trivial—ordinarily, such code

regions are well-bound by a function call or loop body.

e Determining Minimum Threading Levels: Though not brought by the use
of our methodology, determining the minimum required threading level at
MPI_Init_thread() can be challenging in a dynamic multi-library environ-
ment. That is, a threaded library may only execute under certain circumstances
that are not necessarily evident at MPI initialization time, for example, at run-
time requiring a new physics capability. Blindly initializing with the highest

level of thread safety (that is, MPT_THREAD_MULTIPLE) is wasteful because of

44

Chapter 3. Accommodating Thread-Level Heterogeneity

performance degradation brought by higher degrees of required critical section

protection in an MPI library [93].

e Conflicting Runtime Affinity Policies: actions taken by OpenMP runtimes
concerning their static affinity policies can be counterproductive in dynamic
MPI+OpenMP environments such as the one we have presented. For ex-
ample, we have encountered instances where setting a KMP_AFFINITY pol-
icy, a static mechanism used to bind OpenMP worker threads to specific
hardware resources, for QuUoO-enabled applications has degraded their perfor-
mance in OpenMP-enabled regions by ~30x on Intel Knights Landing archi-
tectures when compared to a comparable configuration not using Quo. While
we have not yet determined the cause for this slowdown, manually disabling

KMP_AFFINITY alleviates the performance degradation.

3.6 Summary

We have presented a novel approach and implementation for accommodating thread-
level heterogeneity in coupled MPI applications. Our approach, QUO, enables full
utilization of all available compute resources throughout an application’s entire ex-
ecution. Significant performance improvements are achievable when used in envi-
ronments positioned to make effective use of the additional levels of parallelism our
strong-scaling approach enables. Our performance results show that for a majority
of the 30 tested workloads, using QUO renders speedups greater than 50 %, and the

best case speedup was a resounding 476 %.

QUuO’s interface is programmable, meaning that it can be used preferentially
in cases where it will improve performance and not used otherwise in favor of a
conventional static policy. Better yet, a graded approach could be used wherein only

that subset of libraries that benefit from strong-scaling are strong-scaled, and to the

45

Chapter 3. Accommodating Thread-Level Heterogeneity

optimal degree within the available bounds. This, in turn, implies that the decision
to actively use QUO, and the strong-scaling factors used when it is, could be made

dynamically, but we have not yet explored this possibility.

One important aspect of analysis remains, namely the precise measurement of
QUuO runtime and memory overheads. Before delving into this examination, how-
ever, we must first address the memory attribution problem, as our solution enables

analyses pertinent to the study presented in Section 5.2.

46

Chapter 4

Addressing The Memory
Attribution Problem

In HPC, parallel programming systems and applications are evolving to improve
performance and energy efficiency, particularly as systems scale to higher degrees
of intra- and inter-node parallelism. As the number of processing elements in these
systems continues to grow, memory capacity to core ratios tend to remain constant
or shrink. The data in Table 4.1 show the ratios of memory capacity to compute
core count for the last ten top-ranked systems of the Topr500 [97]. Of these sys-
tems, only three have a memory-to-core ratio (in GB:core) of at least 2:1—the first
was 4:1 in 2002 and the last was 2:1 in 2011—with over half of the remaining seven
systems having less than 1 GB of memory per core. This decrease has been push-
ing many applications toward memory-capacity-bound computing regimes. In these
cases, developers will increasingly rely on understanding how the supporting soft-
ware infrastructure (i.e., operating system (OS), software libraries, and middleware)
affects overall application memory efficiency along three major axes: runtime, job

size (scale), and workload.

47

Chapter 4. Addressing The Memory Attribution Problem

System # Cores Memory Memory/Core
Jun. 2002 Earth Simulator 5,120 20,480 GB 4.00 GB
Nov. 2004 Blue Gene/L 32,768 8,192GB 0.25GB
Jun. 2008 Roadrunner 122,400 106,086 GB 0.87GB
Nov. 2009 Jaguar 298,592 598,016 GB 2.00GB
Nov. 2010 Tianhe-TA 186,368 229,376 GB 1.23GB
Jun. 2011 K Computer 705,024 1,410,048GB 2.00 GB
Jun. 2012 Sequoia 1,572,864 1,572,864GB 1.00 GB
Nov. 2012 Titan 560,640 710,144 GB 1.27GB
Jun. 2013 Tianhe-2 3,120,000 1,024,000GB 0.33GB

Jun. 2016 Sunway TaihuLight 10,649,600 1,310,720GB 0.12GB

Table 4.1: Hardware statistics of the last 10 number one computer systems according
to the TopP500 by earliest date of first-place ranking.

HPC application developers commonly couple the high-level application driver
code, software components that drive the use of lower-level parallel programming
systems, with supporting software such as a message passing library, resulting in a
single executable after linking. Such couplings can make it difficult to accurately
attribute an application’s memory usage across the full set of software components.
For example, we may not be able to accurately answer questions such as: What is the
message passing library’s contribution to my application’s overall memory footprint?
In general, this memory attribution problem arises when an application developer
cannot predict or evaluate during runtime where the available memory is used across
the software stack comprising the application, software libraries, and supporting
runtime architecture needed to enable the application at a given scale, under a given

workload, and in a time- and space-sharing scheduled environment.

In summary, improving application memory efficiency is becoming increasingly

important in the development, deployment, and upkeep of parallel and distributed

48

Chapter 4. Addressing The Memory Attribution Problem

programs, but is complicated by concurrent instances of coupled software components
dynamically consuming memory resources over time. At the same time, there is a
lack of parallel tools capable of extracting the relevant metrics to solve the memory
attribution problem. In this work, we address the memory attribution problem in

parallel and distributed message-passing software systems as follows.

e We propose an approach for accurate, per-process quantification of memory
resource usage over time that is able to clearly distinguish between application
and MPI library usage. Our experimental results show that job size, com-
munication workload, and hardware/software architecture can influence peak

runtime memory usage.

e We develop a corresponding open-source profiling library named memnesia [48]
for applications using any implementation of MPI. We develop this software
with a specific goal in mind: once memory attribution is better understood,
applications and MPI implementations will potentially be able to improve or

maintain their memory utilization as they are developed and maintained.

e We evaluate our profiler’s runtime overhead and behavior using both micro-
benchmarks and proxy applications, concluding with an analysis of memnesia’s

memory overhead and perturbation.

To the best of our knowledge this is the first work to both implement and evaluate

such an approach for parallel and distributed software systems.

4.1 Background

In the first half of this section, we discuss application memory utilization in the

context of parallel message-passing programs, and then go on to discuss techniques

49

Chapter 4. Addressing The Memory Attribution Problem

in parallel application analysis, where we summarize well-known taxonomies that
categorize tools along four axes. The last half of this section describes key approaches,

mechanisms, and system software infrastructure used by our memory usage profiler.

4.1.1 Parallel Application Memory Utilization

Application memory utilization is concerned with application memory usage and of-
ten focuses on studying dynamic heap behavior. In this context, an application’s
memory footprint, the minimum memory capacity required to complete its calcula-
tion successfully, is the aggregate of the application driver footprint and each of the
middleware and runtime library footprints. The application driver implements the
numerical methods that underlie a particular system model or simulation, while the
middleware and runtime services coordinate the execution of parallel (and poten-
tially distributed) process instances. An application driver’s footprint is primarily
influenced by 1. its underlying numerical methods, 2. how those methods are im-
plemented (e.g., data structures, parallelization strategies), and 3. the size and fi-
delity of its computational domain. Message passing libraries such as Open MPI [40]
and MPICH [46] are examples of message-passing middleware. Like the application
drivers they support, they consume memory to maintain their internal state, which
is primarily influenced by how they are driven with respect to job size (e.g., the size

of MPTI_COMM_WORLD) and communication workload.

4.1.2 Parallel Application Analysis

Parallel and distributed tools that provide insight into application behavior are im-
portant for the development, deployment, and upkeep of parallel programs. De-
veloping such tools is challenging because data collection and analysis is usually

distributed across a set of computational resources, requiring that their resulting

20

Chapter 4. Addressing The Memory Attribution Problem

outputs be aggregated for further analysis. Tools may be categorized by

e Functionality (correctness or performance): Correctness tools aid in identifying
application (algorithmic) correctness bugs, whereas performance tools aid in

identifying performance bugs.

e [nstrumentation methodology (dynamic or static): Dynamic tools generally
operate on unmodified application binaries and use facilities such as ptrace [4]
to observe and control the execution of application processes. In contrast,
static tools insert instrumentation instructions such as probes into applications

during preprocessing-, compilation-, or link-time transformations.

e Measurement methodology (event tracing, event sampling): Event tracing gath-
ers data by activating a set of instrumentation probes at every event associated
with a trace, for example, function interposing, whereas sampling-based mea-
surements are typically interrupt-driven and provide only a statistical view of

application behavior, e.g., program counter sampling.

e [nteractivity (online, offline): Online analysis tools are interactive and meant
to be influenced at run time by an end user during data collection and analysis
phases. Offline analysis tools, in contrast, are generally more static, meaning
that the tool is started with and runs alongside an application until termina-
tion, then tool data are written, post-processed, and finally analyzed by other
programs. This approach, while popular in practice because of its simplicity,

tends to scale poorly because of high data storage and analysis costs [86].

4.1.3 Intercepting Application Behavior

Function interposition is a powerful technique used to insert arbitrary code between

a caller and its intended callee [33, 92]. For compiled languages this is typically

51

Chapter 4. Addressing The Memory Attribution Problem

achieved by function symbol overloading, where a duplicate function definition is
introduced into an application such that the duplicate entry’s symbol is resolved
ahead of the intended callee’s, with the consequence that its code is executed instead.
This technique is well known and widely used to instrument dynamically linked
libraries because probes can be introduced into unmodified binaries via the runtime

loader, which is typically achieved by using LD_PRELOAD.

The MPI profiling interface (PMPI) provides a straightforward and portable
mechanism for intercepting all MPI-defined functions [78]. Specifically, the MPI spec-
ification requires that libraries provide an alternate entry point, achieved through a
name shift, which can be used for tooling purposes. Listing 4.1 shows an example
of how a tool might intercept application calls to MPI_Barrier () using PMPI and

ultimately function interposing.

Listing 4.1: MPI profiling interface example.

// For MPI_Comm type definition.
#include "mpi.h"

int MPI_Rarrier (MPI_Comm comm) {
// Tool code before barrier.

// Execute MPI barrier.
int rc = PMPI_Barrier (comm) ;

// Tool code after barrier.

return rc;

4.1.4 Collecting Process/System Information

The proc pseudo file system (procfs) offers a convenient interface for obtaining infor-

mation about and influencing the state of a running OS kernel [3]. procfs provides

52

Chapter 4. Addressing The Memory Attribution Problem

user-space access to kernel-maintained state by exposing a file-based access semantics
to the structure hierarchy it maintains (directories and files). Obtaining informa-
tion about current OS state, including that of active processes, is accomplished by
opening and parsing files located below procfs’s mount point (typically /proc). In
many cases the content of these special files is generated dynamically to provide an

updated view of the operating system’s state.

In Linux, /proc/[pid]/smaps (smaps) shows memory consumption for each
of the process’s mappings [3]. Each smaps entry can be thought of as having two
pieces: a header and a body. The header contains address range occupancy, access
permission, and (if applicable) backing store information, while the body contains
memory map statistics, including resident set size (RSS) and proportional set size
(PSS). The RSS represents how much of the mapping is currently resident in RAM,
including shared pages. In contrast, PSS represents a process’s share of the mapping,
meaning that, for example, if a process has 100 private pages and additionally shares
100 more with another process, then its PSS is 150 (i.e., 100 + 100/2). A process’s
RSS and PSS will change during run time and are both influenced by the amount of

process-driven memory pressure exerted on the system.

4.2 Methods in Memory Utilization Analysis

In this section, we begin with an examination of related work in memory utilization
analysis, describing how contemporary approaches address the previously described
memory attribution problem. We then describe our approach and its corresponding

open-source implementation, memnesia.

93

Chapter 4. Addressing The Memory Attribution Problem

4.2.1 Heap Profiling and Memory Map Analysis

Heap profiling identifies and gathers statistics about call paths containing dynamic
memory management calls, for example, malloc () and free (). Notable heap pro-
filers include Valgrind Massif [80], Google heap profiler (GHP) [45], and memP [28].
GHP and memP work by using LD_PRELOAD and function overloading of memory
management calls. This approach to heap profiling has limitations: 1. it does not
work on statically linked binaries, 2. it does not allow a user to distinguish between
memory pages mapped into a process’s address space and memory pages that are
resident in physical memory, 3. it multiply counts shared memory pages and does not
allow a user to determine which cooperating process owns the page, and 4. it does
not allow a user to distinguish application driver memory usage from runtime/mid-

dleware memory usage.

Memory map analysis collects information about a running application by in-
specting application-specific entries in procfs. This approach is appealing for a va-
riety of reasons. First, it is relatively straightforward to implement, avoiding com-
plications brought by user-level interception of memory management functions (e.g.,
some memory management calls cannot be traced, for example when glibc calls
__mmap () [102]) or virtualization (e.g., processes run in isolated virtual environ-
ments do not adequately emulate OS-specific management schemes regarding shared
pages). Second, when compared to heap profiling alone, it can provide a more holis-
tic view into important features that ultimately impact a process’s actual memory
footprint, namely the size and count of private/shared pages and their occupancy in
RAM. Finally, it is language-agnostic and therefore readily applicable to any run-
ning process. As an example, smem [95] is a standalone tool capable of generating a
variety of whole-system memory usage reports based on the PSS metric. Like mem-
nesia, smem uses memory map analysis of smaps for usage reporting but is not a

parallel tracing tool.

o4

Chapter 4. Addressing The Memory Attribution Problem

4.2.2 Middleware Attribution of Memory Usage

As previously described, determining how much memory the message-passing library
consumes is challenging and becoming increasingly important in the development,
upkeep, and deployment of parallel programs. Current approaches for MPI library
memory attribution generally can be categorized as library-specific instrumentation
or benchmark-driven library analysis. An example of the former, craymem, can
be found in Cray’s implementation of MPICH [83], where through environmental
controls, internal memory monitoring statistics can be accessed via textual output
(either to a terminal or a file.). Such library-specific approaches are implementation-

dependent and often provide coarse-grained output. For example, the output

MPICH_MEMORY: Max memory allocated by malloc: 711424 bytes by rank 0
MPICH_MEMORY: Min memory allocated by malloc: 710024 bytes by rank 1
MPICH_MEMORY: Max memory allocated by mmap: 83072 bytes by rank 0
MPICH_MEMORY: Min memory allocated by mmap: 83072 bytes by rank 0
MPICH_MEMORY: Max memory allocated by shmget: 159307008 bytes by rank 0
MPICH_MEMORY: Min memory allocated by shmget: 0 bytes by rank 1

0] Max memory allocated by malloc:711424 bytes

0] Max memory allocated by mmap: 83072 bytes

0] Max memory allocated by shmget: 159307008 bytes

1] Max memory allocated by malloc: 710024 bytes

1] Max memory allocated by mmap: 83072 bytes

1] Max memory allocated by shmget: 0 bytes

I T

does not allow a user to determine when during the program’s execution memory
usage high-water marks—the maximum recorded values—were reached or whether

these maxima were transient or sustained for long periods of time.

As an example of the latter, mpimemu [47] provides benchmark-driven memory
attribution for MPI implementations. mpimemu is an MPI program with built-
in memory map monitoring that works by sampling /proc/self/status and
/proc/meminfo, while also imposing a scalable communication workload on the
system. Runtime memory attribution is approximated by calculating usage deltas

between samples collected during its execution and those collected before the MPI

95

Chapter 4. Addressing The Memory Attribution Problem

library was initialized. This approach works for understanding coarse-grained appli-
cation and workload features captured in the given benchmarks, but does not provide
any insight into how a given MPI library’s memory usage is affected when driven by

a specific application or set of applications.

4.2.3 Owur Approach

We present an event-driven-analysis approach for accurately capturing both application-
and message-passing-library-specific memory usage of parallel and distributed message-
passing programs. As shown in Table 4.2, our approach overcomes virtually all of
the shortcomings of previous approaches. While our approach generalizes to any
MP system, our reference C++ implementation, memnesia, relies on OS support for

certain procfs features (i.e., smaps) and C entry points into the MPI library.

e

= o o <

= 2 g =

3 = = <

+~ = < < o

g ap g =
s < & s g =
< =) = o M 3 =
= 9 o0) o Q o
=) -4 = ‘79 S g
3= A= g g A S 5
— = — ~ cZ @) =
GHP — — — —
memP — — — — — —
Massif — — — — — v
smem v ve v v — —
craymem v v — — — —
mpimemu — v v — — —
memnesia v — v v v v

Table 4.2: Tools and their respective attributes.

o6

Chapter 4. Addressing The Memory Attribution Problem

Application Instrumentation and Data Collection

We implement our application instrumentation as a runtime system compiled into
a shared library that is loaded into target application binaries at startup via the
runtime loader. In practice this is accomplished via environmental controls: before
application startup, LD_PRELOAD is set to include the memnesia runtime, then the
application is launched as usual. The application drives data collection through its
use of MPI. Each entry point into the message passing library becomes an instrumen-
tation point at which we execute tool code between the caller and the intended callee
using function interposition. At each instrumentation point, the memnesia runtime
places calipers—a pair of instrumentation probes—around the target function such
that smaps data are collected immediately before and after callee execution, as shown
in Listing 4.2. Tool data are stored in per-process, in-memory caches maintained by
the memnesia runtime through parallel data aggregation. On program completion,

memory analysis data are written to disk, as shown in Figure 4.4.

Listing 4.2: Code snippet showing memnesia instrumentation of MPI_Barrier ().

int MPI_Barrier (MPI_Comm comm) {

int rc = MPI_ERR_UNKNOWN;

{
// Constructor collects /proc/self/smaps sample.
memnesia_scoped_caliper caliper (MEMNESIA_FUNC) ;
// Execute barrier on behalf of the application.
rc = PMPI_Barrier (comm) ;

}

// caliper’s destructor collects another smaps sample.

return rc;

memnesia trace data are stored in a straightforward on-disk representation made

up of records containing three fields:

o7

Chapter 4. Addressing The Memory Attribution Problem

Node A ——————— ——— Node B
Target Target Target Target
Process 1 Process i Process j Process n
Tool Instance 1 Tool Instance i Tool Instance j Tool Instance n

Tool Data n

Tool Data 1 Tool Data i Tool Data j

Aggregated
Tool Data

Analysis

Figure 4.3: A typical offline tool architecture where analysis probes start with the
application and remain in place for the entirety of the application’s execution. After
all analysis data are written, they are then read, aggregated, and finally analyzed by
a separate tool.

e trigger (8-bit integer): name (ID) of the function triggering data collection.

e time (float): collection time relative to when the MP library was initialized.

e usage (float): observed memory usage calculated by summing PSS entries in
smaps, while ignoring those associated with our instrumentation library—an

enhancement included to improve the accuracy of our reported statistics.
From those data, component-level metrics can be obtained readily. Total appli-

cation memory usage m(t) (that of the application driver and MPI library) at time

t is equal to the smaps usage u reported at that point, i.e., m(t) = u. MPI library

o8

Chapter 4. Addressing The Memory Attribution Problem

Node A —————— ——— Node B
Target Target Target Target
Process 1 Process i Process j Process n
Tool Instance 1 Tool Instance i Tool Instance j Tool Instance n

Data
Aggregation
Network

Aggregated
Tool Data

Analysis

Figure 4.4: The tool architecture we adopted, which bears many similarities to its
counterpart shown in Figure 4.3. The key difference is that tool data aggregation is
parallelized using the job’s resources with MPI.

usage m(t) at time ¢ is determined by summing all preceding usage deltas (Equa-
tion 4.1 and Figure 4.5)—the intuition is that there is a causal relationship between
MPI library calls and any observed usage deltas (positive or negative), since the MPI
library was the only software component executing between data collection points.
With these values, an application driver’s memory can trivially be calculated as the

difference between total memory usage and MPI library memory usage.

In summary, our approach overcomes virtually all the shortcomings of previous
methods, though our current reference implementation has limitations: 1. memnesia

requires OS support for certain procfs features and C entry points into the MPI

99

Chapter 4. Addressing The Memory Attribution Problem

library, accessed through dynamic linkage, and 2. PSS reporting for applications
that use hugepages [1, 2] is not currently supported.

i<|j+1/2]
m(t;) = Z Ajy A = ugip1 — uy (4.1)
=0

Memory Usage
OC
5}

A, A, A, A,

tg t, t, t,, Time t, ts t t,

Figure 4.5: Single-process memory usage and data collection points.

4.3 Micro-Benchmarks and Proxy Applications

Computational benchmarks are commonly used to assess and compare the perfor-
mance of various workloads on differing software (e.g., library, OS) and hardware
(e.g., processor, network) configurations. Individual benchmarks may be designed
to exhibit a minimal set of behaviors to enable precise characterization of specific
hardware or software mechanisms—so-called micro-benchmarks. At the other end of
the spectrum, the net performance characteristics of whole real-world applications
on a range of inputs may be the atomic units of observation. While the latter can
calibrate expectations for the applications tested, such benchmarking may be expen-
sive in terms of resources consumed and time to result and may produce results not

generalizable to other applications.

60

Chapter 4. Addressing The Memory Attribution Problem

As a middle ground, proxy applications have become established as useful tools.
The proxy is intended to be a software construction that is somehow representative
of a larger application (or some components of a larger application) in terms of al-
gorithmic structure (perhaps for the purpose of rapid prototyping) or computational
and communication behavior (for benchmarking). In an effort to generalize beyond
specific applications, in the context of HPC the notion of a “computation dwarf” has
been developed. In the general sense, a dwartf is not a specific program but a closely
related set of algorithmic methods with closely related computational and communi-
cation behaviors. Widely known lists of dwarfs include Colella’s list of seven [32] and
Asanovic et al.’s extension of that list to thirteen [14], both of which are concerned
with numerically intensive scientific computing. These have inspired other such lists,

for example for symbolic computing [63], but we are concerned with the former.

In the general sense the dwarfs are concepts, not computer codes, but for practical
experimentation concrete programs are needed. For this work, we consider the first
two of Colella’s dwarfs, structured grids and unstructured grids, and their reification
as the well-known proxy applications LULESH [65] and Kripke [70], respectively.
Proxy applications serve as proxies—representatives—of full applications, again in

terms of some specified properties such as problem type or runtime behavior.

4.3.1 Application Drivers: Proxy Applications

In this section, we describe the proxy applications used in our study.

Trivial and Alltoall: Micro-benchmarks that are meant to represent extreme ends
of the in-band (i.e., application-driven) communication spectrum. Our Trivial bench-
mark calls MPT_Tnit () and then immediately calls MPI_Finalize (), thereby rep-
resenting the most trivial of all MPI applications: one with no communication. We

study the trivial case to understand an MPI library’s minimum required memory

61

Chapter 4. Addressing The Memory Attribution Problem

footprint for parallel application lash-up. Alltoall, by contrast, is meant to repre-
sent applications that impose the most stressful (from the MPI library’s perspec-
tive) communication workload: an all-to-all communication pattern where data are
exchanged between every pair of processes. In particular, this program executes
MPI_Alltoall () over MPT_COMM_WORLD in a loop, alternating between per-process
message sizes of 2kB and 4 MB. For each iteration of the loop, new communication
buffers are allocated before the all-to-all data exchange and then freed after its com-
pletion. We use this workload to study the memory efficiency of runtime metadata

structures associated with memory registration and connection management.

Multiple Bandwidth/Message Rate: The OSU multiple bandwidth/message
rate test measures aggregate uni-directional bandwidth between multiple pairs of pro-
cesses using MPI [94]. The purpose of this micro-benchmark is to quantify achieved
bandwidth and message rates between a configurable number of processes concur-

rently imposing a communication workload on a system.

Structured Grids: Kripke: Kripke is a proxy application developed at Lawrence
Livermore National Laboratory, designed to be a proxy for a fully functional discrete-
ordinates (Sn) 3D deterministic particle transport code [70]. It is widely regarded
as an exemplar of Colella’s structured-grid computational dwarf. Figure 4.6a shows

the point-to-point communication structure formed by this application.

Unstructured Grids: LULESH: LULESH is a proxy hydrodynamics code that
is widely regarded as an exemplar of Colella’s second computational dwarf, unstruc-
tured grids [65]. It is in fact a family of implementations specialized to various
programming models and expressed in multiple programming languages. Our work
uses the C++ MPI port [64]. Figure 4.6b shows the point-to-point communication

structure formed by this proxy application.

62

Chapter 4. Addressing The Memory Attribution Problem

Global Process Identifier (

Point-to-Point Data Transmission

~ O
0 50 100
Global Process Identifier (Receiver)
(a) Kripke
120 =
3

100
80
60
40

20]

Global Process Identifier (Sender)

O

Point-to-Point Data Transmission (

0 25 50 75 100
Global Process Identifier (Receiver)

(b) LULESH

Figure 4.6: Point-to-point communication structure formed by each proxy applica-
tion used in this study. Colors are mapped to data transfer totals between MPI
processes (send/receive pairs) using point-to-point communication operations.

63

Chapter 4. Addressing The Memory Attribution Problem

4.4 Results

In this section, we present and discuss our results gathered using our profiling and
analysis infrastructure. We first discuss our tool’s capabilities and the resulting
insight into how memory is allocated as a function of run time, scale, and workload.
Further, we show how memnesia is able to capture features particular to a workload
instance, namely those related to data structure management, message protocol, and
communication pattern, all at a per-process and per-software-component level—a

capability that is not readily available today through other means.

4.4.1 Experimental Setup

Performance results were gathered from the Trinitite and Snow systems located at
Los Alamos National Laboratory, detailed in Table 4.3. Data were collected during
regular operating hours, so the systems were servicing other workloads alongside, but
in isolation from, ours. For each study in this section, experiments were executed
in succession on a single set of dedicated hardware resources. Our experiments used

weak scaling such that each process was given a fixed problem size.

4.4.2 Memory Usage Timelines

Figures 4.7 and 4.8 show per-process memory usage for two proxy applications run-
ning atop different MPI implementations on Snow. Results shown are from 100-cycle
runs of LULESH (96% elements per process) and 50-cycle runs of Kripke (16% zones
per process)—small-scale configurations meant to showcase our tool’s analysis and
reporting capabilities. The left column shows the evolution of MPI library mem-
ory usage (in isolation from the application driver’s) over time and highlights how

different communication substrates and workloads, shown in Figure 4.6, influence

64

Chapter 4. Addressing The Memory Attribution Problem

— 1 MPI Library Memory Usage
2 94 X 10 Yy y g 215 A
= =
o A
p— q)
%0 2.2) 7 §
= i e s — A
> 2.0 ﬁ' =z
5 £
g i
=18 : : : : : ; ; ; o
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) x10?
(a) LULESH (Open MPI)
. 2 Total Memory Usage
= X10 Yy g 215 A
2 AAAAAMARMMARAAAMARAAMAMAAMAAIANAMAAAIAAIAAAAMA NN VAT —
~— 3 . ‘ %
5 | :
g 2 e
) [
>> —
21 E
g 2
=0 : : : : : : : : 0 ©
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) x10?
(b) LULESH (Open MPI)
— 1 MPI Library Memory Usage
2 X10 y y g 915 o
= 3.00 A =
o 2
Q
2 275 _ —_— g
= — A
> - —
2 2.50 A <
5 o
g 2
§ 2-25 T T T T T T T T U
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Wall Time Since Initialization (s) x10?
(c) LULESH (MVAPICH?2)
— 2 Total Memory Usage
= X 10 Yy g 215 -
% a un | :
- ¢
3,] g
- [
>} —
é) 0 T T T T T T T T 0 U
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Wall Time Since Initialization (s) X102

(d) LULESH (MVAPICH2)

Figure 4.7: Tool output showing per-process memory usage over time for LULESH.
Colors are mapped to a process’s MPI_COMM_WORLD rank.

65

Chapter 4. Addressing The Memory Attribution Problem

x 10! MPI Library Memory Usage

0 2.4+ 215
= P
€0 2.2 - 5
— | :
T T
> 2.0 1 =
: :
g O
1.8 T T T T 0
= 0 1 2 3 4
Wall Time Since Initialization (s) x10?
(a) Kripke (Open MPI).
— 2 Total Memory Usage
= x10 y g 215 A
= — - =
P Z
Y)
g 2- S
- [
:
g 2
] &)
0 T T T T 0
= 0 1 2 3 4
Wall Time Since Initialization (s) x10?
(b) Kripke (Open MPI)
— 1 MPI Library Memory Usage
m X10 1prary mory g 215 A
% 3.00 A H%
[0
Lo g
o :
£ 2.50 - 2
E
()
2-25 T T T T T 0
= 0 1 2 3 4 5
Wall Time Since Initialization (s) x10?
(c) Kripke (MVAPICH?2)
—~ 2 Total Memory Usage
2 %10 y g 215 A
= = P
% g
& 24 =
=) [al
>} —
g O
0 T T T T T 0
= 0 1 2 3 4 5
Wall Time Since Initialization (s) X107

(
(d) Kripke (MVAPICH2)

Figure 4.8: Tool output showing per-process memory usage over time for Kripke.
Colors are mapped to a process’s MPI_COMM_WORLD rank.

66

Chapter 4. Addressing The Memory Attribution Problem

o X 10° Aggregate Total Memory Usage

2 4-_'_'_'!—_'_'_'_' o o o o e
:]]

&n

&

P 21

&

S

5

0 T T
= 0.0 0.5 1.0 1.5 2.0
Wall Time Since Initialization (s) x10?
(a) Alltoall
x10% Aggregate Total Memory Usage

(o]

Memory Usage (MB)
s o

2
0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wall Time Since Initialization (s) x10?
(b) LULESH
) x 104 Aggregate Total Memory Usage
=
~— 6 i
)
=Y0]
>
8 21
5
2 O T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Wall Time Since Initialization (s) x10?
(¢) Kripke

Figure 4.9: memnesia timelines showing aggregate total (i.e., MPI library and appli-
cation) memory usage over time from 216-process (six-node) runs on Trinitite.

usage features. Similarly, the right column shows total memory usage (i.e., appli-
cation and MPI library). Here we can see that both applications share a similar
memory usage pattern: simulation state data dominate overall usage and remain

relatively constant throughout their execution. Figure 4.9 shows aggregate (i.e.,

67

Chapter 4. Addressing The Memory Attribution Problem

Trinitite Snow
Model Cray XC40 Penguin Computing
Nodes 100 368
(O8] Cray Linux Environment TOSS/CHAOS [24] (Linux)
CPU 2x 16-core Intel E5-2698 v3 2x 18-core Intel E5-2695 v4
RAM 128 GB 128 GB
Network Aries NICs [10, 68] Intel OmniPath
MPI Cray MPICH 7.6.2 Open MPI 1.10.5, MVAPICH2 2.2
Compiler Intel 17.0.4 GCC 5.3.0

Table 4.3: An overview of hardware and software used for this study.

summed) memory usage reports for three workloads run at 216 processes on Trini-
tite, where for LULESH and Kripke we use the same per-process configurations as
before. Notice that our tool can capture application-specific data structure manage-
ment features, for example, the regular oscillatory behavior exhibited in our Alltoall
benchmark. We omit aggregate memory usage plots at other processor counts be-
cause the weak-scaled simulation state data dominates overall memory usage, so
additional plots would look similar to the ones provided, only differing by some

process scaling factor.

4.4.3 Peak Memory Usage

In this section, we study how job scale, workload, and runtime implementation in-
fluence per-process peak memory usage for MPI libraries and, whenever possible,
compare results gathered from Cray MPICH’s internal usage monitoring (craymem)
to results reported by memnesia using two different smaps metrics: RSS and PSS.
Unless otherwise noted, memnesia’s reporting is based on proportional set size. We

compare RSS and PSS metrics to highlight the differences between the two because

68

Chapter 4. Addressing The Memory Attribution Problem

of memory page sharing. RSS tends to be a more pessimistic, and oftentimes inac-
curate, metric because memory usage attributed to shared pages is counted multiple
times; the multiplier in our case is the number of MPI processes sharing pages on a
node. Table 4.4 shows peak memory usage averaged over MPI processes for four dif-
ferent workloads; the reported error for each entry represents the standard deviation
across the peak memory usage reported for each process. Since craymem reports
three memory usage components (malloc (), mmap (), and shmget ()) without pro-
viding a corresponding time component (i.e., when they occurred relative to one

another), we simply sum those values for reporting.

Our results show that job size, communication workload, and hardware/software
architecture influence peak runtime memory usage, as indicated by craymem (cray)
and memnesia (rss and pss) reporting (Table 4.4 and Table 4.5). Memory usage
spikes observed at 64 processes are caused by crossing a compute node boundary—
our experiments run a maximum of 32 processes per node. Of the workloads, Trivial
achieves the lowest peak usage, while the proxy applications tend to yield the high-
est. The large standard deviations observed in the craymem data are due to large
variations in per-node shmget () usage reporting: a single process reports non-zero
usage, while the rest report zero. While valid, attributing shared-memory usage in

this way is inaccurate for cooperative parallel workloads.

4.4.4 Tool-Induced Application Overhead

To quantify tool-induced overhead, we study how two performance metrics commonly
used to assess message-passing systems, message rate and bandwidth, are affected
while under memnesia supervision. This is accomplished by running the previously
described multiple bandwidth /message rate micro-benchmark in both the presence
and absence of memnesia instrumentation, where the latter serves as our performance

baseline. Data were collected on Snow using Open MPI 1.10.5 over three different

69

Chapter 4. Addressing The Memory Attribution Problem

Number of MPI Processes

27 64 125 216
Trivial
cray 4.4 + 0.0 49+ 12.6 6.2+294 19.1 £334 19.1+32.7 23.4+36.9
rss 2.2+ 0.0 2.4 +0.0 2.6 £ 0.0 6.6 £ 0.2 6.7 £ 0.3 6.8 £ 0.4
pss 2.2+ 0.0 1.0 £ 0.0 1.0 £ 0.0 4.6 +£0.2 4.7+0.3 4.8 +04
Alltoall
cray 4.4 +0.0 49+ 12.6 6.4 +29.2 20.2+33.3 20.2+325 246+ 36.7
rss 2.2+ 0.0 3.0+0.3 4.4 +0.0 12.7+ 04 11.6 £ 0.5 11.2 £ 0.5
pss 2.2+ 0.0 1.1 +£0.1 2.7+ 0.0 59+ 0.2 6.0 £ 0.3 59+ 0.4
LULESH
cray 4.4 +0.0 59+ 12.6 7.3+29.2 202+33.3 20.2+325 245+ 36.7
Irss 2.4 +0.0 50=+0.2 6.5+ 0.8 10.4 £ 1.2 10.8 £ 0.8 11.1 £ 0.7
pss 2.4 +0.0 2.0+ 0.1 2.3+0.1 6.3 £ 0.7 6.9 £ 0.1 6.9 £ 0.1
Kripke
cray 4.4 +0.0 59+ 126 7.2+29.2 20.1+33.3 20.1 £325 244+ 36.7
rss 2.4+ 0.0 3.7+0.1 4.3 +£0.2 8.0 =+0.2 7.9 +0.3 8.0=+0.4
pss 2.3+ 0.0 1.9 £0.0 2.1+0.1 56+ 0.2 57 +0.3 5.8+ 0.4

Table 4.4: Average reported peak memory consumption (in MB) on Trinitite.

job sizes, plotted in Figure 4.10. We then conclude with an analysis of memnesia’s

memory overhead and application perturbation.

Effects on Message Rate and Bandwidth

Across the board, memnesia overheads are most apparent at small message sizes,

where its effect on operational latencies dominates messaging rates in messages per

second (MPS). Notice that our performance baselines have typical messaging rate

curves where small message transfers yield the highest rates (3.6 x 10° | 6.0 x 107,

and 1.2 x 108 MPS for 1B payloads at 1, 18, and 36 TX/RX pairs, respectively)—

decreasing steadily from there as message size increases. In contrast, with memnesia

70

Chapter 4. Addressing The Memory Attribution Problem

Number of MPI Processes

1 8 27 64 125 216
Trivial
sn-ompi 7.6 0.0 6.5 £ 0.0 6.4+00 19.8+0.0 199=+0.0 20.1+0.0
sn-mv2 79+00 109+0.1 11.0+0.1 245+0.0 250+0.2 25.7+0.0
tt-mpich 2.2 +0.0 1.0 £ 0.0 1.0 £ 0.0 4.6 £0.2 4.7 £0.3 4.8 £0.4
Alltoall
sn-ompi 7.6 0.0 6.6 £ 0.0 6.5+£04 19800 199=+0.0 20.2+0.2
sn-mv2 80+0.0 11.0+0.1 11.0+0.1 246+0.3 25.0=+0.1 25.8+0.0
tt-mpich 2.2+0.0 1.1 £0.1 2.7+ 0.0 59 +0.2 6.0 £ 0.3 59 +04
LULESH
sn-ompi 7.6 +£0.0 71+0.5 73+07 206=+0.8 206+06 20.8=+04
sn-mv2 8000 123+04 124=+0.7 26.0%+0.7 26306 27.0x04
tt-mpich 2.4 +0.0 20+0.1 2.3+0.1 6.3 £ 0.7 6.9 £0.1 6.9 £0.1
Kripke
sn-ompi 7.6 0.0 6.6 £ 0.0 6.5+£0.0 198+0.0 20.0+0.3 20.3+0.2
sn-mv2 80+0.0 11.8+0.1 11.8+0.0 253+0.0 258=+0.1 26.6=+0.1

tt-mpich 2300 1.9+ 0.0 2101 5.6 £0.2 5.7+ 0.3 5.8 £ 0.4

Table 4.5: Average peak memory consumption (in MB) on Trinitite (tt) and Snow
(sn) as reported by memnesia.

supervision message rates appear to be capped and remain constant irrespective of
message payload size, yielding message rates of approximately 1.0 x 10% , 1.4 x 10% ,
and 2.4 x 10> MPS across all payload sizes. This is caused by the collection of two
smaps samples for each call into the MPI library, thereby increasing latency and

therefore negatively affecting message rate.

Large-message bandwidth is least affected by the presence of memnesia instru-
mentation because increased operational latencies are amortized over the transfer of
larger payloads. That is, once a transfer is initiated, memnesia instrumentation has
no appreciable effect on transfer rate. This micro-benchmark represents a worst-case

scenario; still, memnesia can be useful in practice even though relative differences

71

Chapter 4. Addressing The Memory Attribution Problem

shown here are large. Scientific applications tend not to be rate bound by small mes-

sages, which is the metric that is most severely degraded by the use of memnesia.

Memory Overhead and Perturbation

As argued in Section 4.2, gathering accurate component-level memory usage statis-
tics is difficult. Because our memory profiler is loaded into the target application
binary at startup, it becomes an additional application component and is therefore
subject to the memory attribution problem, so we describe its overheads analyti-
cally. The aggregate memory overhead of our current reference implementation can
be calculated as follows. Given m MPI processes under memnesia supervision, let
n, be the total number of trace events triggered by process p,0 < p < m, where n,
equals the total number of times p called into the MPI library. For each trace event,
two records are collected and subsequently stored, as detailed in Section 4.2.3. So to-
tal tool-induced memory overhead given m processes is proportional to 2s 2?501 N,
where s is a constant representing the size of a single trace record in bytes. Each trace
record contains four entries: an 8-bit identifier naming the function that triggered
data collection, two double-precision floating-point values storing timing information

(start time and duration), and a 64-bit integer storing memory usage in kilobytes.

Assuming 64-bit double-precision floating-point values, s = 25 B.

As previously described, our memory profiler is loaded into the target applica-
tion binary at startup via the runtime loader. Consequently, memnesia’s presence
perturbs application heap behavior through its use of dynamic memory management
(allocations and deallocations). For a single process, the primary unit of observation,
the amount of tool-induced application perturbation is proportional to s times the

number of trace records already collected by memnesia.

72

Chapter 4. Addressing The Memory Attribution Problem

e Message Rate -=- Bandwidth
5] oe-ee .
10 0 -0 00 igie & - p 10° e
-
u? '..\ a” o]
— X e 3
= 107 4 /ﬁ “e. 8
o = /” Mo 0 2
"‘Cg 8 o-0e Byl e 00 n . ® F 107 A2
S gy Jeeg e . P
A e x 'S g — 1Pair =
J st ’ R O .
%g A o ":‘;::& —— 18 Pairs =)
& o «x s g 36 Pairs {10 =
S gy o g
e,
= /X e, =
N . T, 10! 3
10 ,, "".‘” [as]
o e
100 10! 102 103 104 109 106
Message Size (B)
(a)
e Message Rate -=- Bandwidth
SR SRR ST TART SR DAY S L RRU SR SRY T TEY TRY TER TET IUE TES TEL TR SRR BER ST B 3 104
- —~~
o -
Py GRS S RS TR R T T e e e e g e Te e F 108 g
o & 107 i = g
29 R y o8 L1022
<L . /" - -~
faed (})-’ —— 1 Pair t,' " e /M
7
gz —— 18 Pairs St i 10! \%
< g)o . P s
22 | —— 36 Pairs T =
§ 2 - -7 L F100 78
é') l:./ /’ g
= e - g
o - F101 5
P g <
PLI | i m
1024 e .',:{,{... a._r’. 0::0::0..0::0:" 0 ..q. -.~._'_ 0::0...q -"-.' L 102
100 10! 102 103 104 10° 106
Message Size (B)
(b)

Figure 4.10: Results from the OSU multiple bandwidth /multiple message rate micro-
benchmark, where the number of send/receive pairs vary. Figure a shows our per-
formance baseline, while Figure b shows performance results with memnesia instru-
mentation enabled, both plotted using a log-log scale.

73

Chapter 4. Addressing The Memory Attribution Problem

4.5 Discussion and Summary

Even though storage requirements for memnesia trace records are relatively small,
structural improvements can be made to reduce their size, thereby decreasing over-
all tool-induced memory overhead and application perturbation. Because of the
way our profiler is introduced into the application, tool-induced memory exhaustion
manifests as an application runtime error that ultimately results in parallel job termi-
nation. The current implementation of memnesia requires calling MPT_Finalize ()
to flush memory usage statistics to disk for later analysis by other programs. This re-
quirement is potentially problematic for long-running MPT applications because the
amount of memory consumed by the tool grows without bound. A straightforward so-
lution to limit memnesia’s memory usage might include the use of MPI_Pcontrol (),
which allows for a standard, user-accessible interface for controlling when tool data
checkpoints are performed. This capability, in turn, could allow for user-defined
analysis extents, trace data collected over a user-defined time span, that may then

be used to attribute memory usage to specific application phases.

This work addresses the need for an easy to use, reasonably general, open source,
and minimally intrusive tool for attributing dynamic memory usage to individual
libraries comprising a distributed memory application. Our technique is able to
capture features particular to a workload instance at a per-process and per-software-
component level, a capability that is not readily available today through other means.
The key techniques are function interposition and accurate memory map analysis.
Our case study is MPI, addressing the growing need to understand and control
the memory footprint of HPC applications on memory-constrained hardware. MPI
already provides an interposition layer in the form of PMPI, obviating the need
to create one for an arbitrary library via a mechanism such as LD_PRELOAD. Our
results show that job size, communication workload, and hardware/software archi-

tecture influence peak runtime memory usage. As an example, our experimental

74

Chapter 4. Addressing The Memory Attribution Problem

results show that different popular MPI implementations exhibit different memory
usage behaviors, and such information could influence the choice of MPI implemen-
tation by application developers or users, and could also be of use to both MPI
implementers and application/library developers to guide memory-use optimization

of their implementations.

75

Chapter 5

Overhead of Adaptive Parallelism:
A Case Study with Quo

In this chapter, we study the overhead of dynamically reconfiguring execution envi-
ronments for coupled, thread-heterogeneous MT-MP programs. Focusing on runtime
and memory costs brought on by the use of our dynamic approach, we examine QUO’s
overhead using proxy and full applications. We show that QUO’s overheads are mod-

est, imposing small runtime and memory usage penalties over the static baseline.

5.1 Runtime Overhead

We begin with an examination of QUO runtime overhead, quantifying three major
sources: runtime operations, process quiescence, and data remapping. First, we
measure the operational latencies of key QUO operations at different processor counts
and discuss their performance and scaling characteristics up to 2,048 processes across
128 nodes. Next, using a scientific application as our case study, we contrast the

performance of MPI_Barrier () and QUO_barrier () with that of the ideal case

76

Chapter 5. Overhead of Adaptive Parallelism: A Case Study with QUO

requiring no process quiescence. Finally, we examine data remapping costs from the

three applications used in our performance evaluation of QUO in Chapter 3.

5.1.1 Micro-Benchmark Results: Cost of Quo Operations

We quantify the individual overhead costs for a representative set of QUO operations
using a micro-benchmark we developed named QuoBench. For each operation, we
measure the time required to complete that operation 100 times in a tight loop—at
each scale, processes co-located on the same compute node simultaneously execute
this loop. Micro-benchmark results were collected on Cielo, detailed in Section 3.4.1.
Figure 5.1 shows each operation’s average execution time as a function of scale. All
QUO operations, except QUO_create () and QUO_free (), are performed on a per-
node basis, and their overheads are a function of the number of concurrent QUO

processes within a single compute node. This phenomenon is observed in job sizes

- @ Context Create ~-a- Affinity Query -4 Auto Distribution
~ B Context Free ~ @ Bind Push ~4@ Barrier
Hardware Query Bind Pop

—_

S
T~
L

102 - ::,_.ﬁ..._.',.._.‘,“

—_

=}
[e=]
1

Average Execution Time (us)

1 9 4 8 16 32 64 128 256 512 1024 2048
Job Size (Number of Processes)

Figure 5.1: Log-log plot of average execution times of QUO operations on Cielo.

77

Chapter 5. Overhead of Adaptive Parallelism: A Case Study with QUO

ranging from one to sixteen processes since our test platform contains sixteen-core
compute nodes. QUO_create () and QUO_free () overheads depend on the total
number of processes in the initializing communicator because they require inter-
node process communication when processes are distributed. Figure 5.1 shows that
even beyond 16 processes (i.e., the node width) the cost of these two operations
continues to grow. Even so, their costs are modest at ~100ms at 2,048 processes
across 128 nodes. Furthermore, these costs are amortized over the life of a QUO
context: we expect most applications to use long-lived contexts that persist until
library termination. Note that a long-lived context does not imply a single, static

configuration; rather, it implies a single dynamic instance of QUO-maintained state.

5.1.2 Application Overhead from Process Quiescence

To evaluate the overhead of QUO process quiescence—a key QUO mechanism—
we compare two approaches, namely MPI_Barrier () and QUO_barrier (). The
benchmarking application is straightforward: an MPI-everywhere driver program
that calls 2MESH’s computationally intensive MPI+OpenMP library described in
Table 3.3. Depending on the setup, before the multithreaded computation can be
executed there is either no quiescence (ideally) or quiescence using one of the two
approaches. We compare average wall-clock times reported by the application when

using each mechanism. The single-node experiment is as follows.

1. 16 MPI processes are launched with a core binding policy, fully subscribing the

cores in the compute node.

2. Four MPI processes are chosen using QUO_auto_distrib () such that each
has an affinity to a different NUMA domain. The processes in this set P will

enter the threaded compute phase.

3. Before executing the threaded 2MESH phase, processes in P push a NUMA

78

Chapter 5. Overhead of Adaptive Parallelism: A Case Study with QUO

binding policy to accommodate the four OpenMP threads they will spawn in
each NUMA domain, while the remaining processes are quiesced using either

MPI Barrier () or QUO_barrier ().

Table 5.1 contrasts the performance of MPI_Barrier () and QUO_barrier ()
with that of the ideal case in which four MPI processes (each with a NUMA bind-
ing policy) are launched across all four NUMA domains on the target architecture,
thereby avoiding the need for quiescing any processes, thus mimicking what to-
day’s MPI+X codes do in practice. The results show that our QUO_barrier ()
implementation significantly outperforms MPI_Barrier () and is close to the ideal
case where quiescence is not necessary. In particular, our approach introduces ap-
proximately an 8 % overhead, while the naive approach using MPI_Barrier () over
MPTI_COMM_WORLD introduces approximately 116 % overhead. Please note that be-
cause this experiment runs on a single compute node this setup mimics the shared-

memory sub-communicator approach outlined in Section 3.3.7.

Quiescence Mechanism Average Execution Time Mechanism Overhead
Ideal 16.46 £+ 0.05s —

Quo Barrier 17.82 +0.32s 8.24 %

MPI Barrier 35.49+0.17s 115.63 %

Table 5.1: Average quiescence-induced overhead by mechanism.

5.1.3 Application Overhead from Data Remapping

Next, we quantify data remapping overhead at different scales and input configura-
tions using the three applications introduced in Section 3.4, detailed in Table 3.3. We

study data remapping cost because it is additional runtime overhead often brought

79

Chapter 5. Overhead of Adaptive Parallelism: A Case Study with QUO

on by the use of our approach. As previously described in Section 3.3.5, before the
number of active MPI processes can be safely increased or decreased, data must be
exchanged among node-local processes to satisfy all inter-process data dependencies.
Typically, this data remapping occurs via node-local gathers and scatters before and
after Quo-enabled regions, respectively. Here we study two classes of applications:
1. those requiring data remapping irrespective of whether or not QUO is in use and
2. those only requiring data remapping when QUO is enabled. Examples of the for-
mer are 2MESH and ESMD), as data continuously are remapped from one library
domain to another. That said, differences in data movement patterns still exist
between the baseline and QUO-enabled versions, which we will discuss later. An
example of the latter is RAGE, as data remapping occurs as a result of using QUO

and would otherwise be unnecessary.

Table 5.2 details data remapping costs without and with QuUo, where the former
serves as our performance baseline. The first column names each experiment, orga-
nized as a hyphen-delimited string comprising an application identifier, input name,
and scale (in the number of available PEs). The two remaining columns contain
three entries each: average time spent on remapping data (Remap), average total

execution time (Total), and percentage of total time spent remapping (R % of Total).

Across the board, our performance baselines spend little to no time remapping
data between library domains, averaging across the 30 experiments approximately
2% of total runtime—the worst case spending in total ~6 % (2MESH-W1-512). For
their baseline remapping phases, 2MESH and ESMD use all available MPI processes
in MPT_COMM_WORLD to parallelize data transfers between library domains. Since N
processes (i.e., the size of MPT_COMM_WORLD) participate in mapping data to and from
each domain, we will call this exchange N-N. For Quo-enabled runs, 2MESH and
ESMD use an N-M (or M-N) data exchange pattern wherein N processes exchange

data with M processes before and after QUo-enabled regions, where M < N.

30

Chapter 5. Overhead of Adaptive Parallelism: A Case Study with QUO

Without Quo With Quo

Experiment Remap, Total (R% of T) Remap, Total (R% of T)

2MESH-W1-128 29.14s, 522.73s (5.58 % 33.55s, 229.62s (14.61 %
2MESH-W1-512 31.83s, 518.99s (6.13% 32.37s, 266.40s (12.15%
2MESH-W1-2048 33.67s, 710.35s (4.74% 36.93s, 428.28s (8.62%

))

())

())

OMESH-W2-128 18.18s, 467.22s (3.89%) 10.09s, 196.38s (5.14%)
OMESH-W2-512 18.81s, 402.55s (4.67%) 11.86s, 202.25s (5.86%)
OMESH-W2-2048 21.20s, 461.08s (4.60%) 17.40s, 304.17s (5.72%)
2MESH-W3-128 6.55s, 106.59s (6.15 %) 474s, 88.89s (5.33%)
OMESH-W3-512 6.69s, 123.24s (5.43%) 5.10s, 117.83s (4.33%)
OMESH-W3-2048 8.03s, 192.51s (4.17%) 5.85s, 189.68s (3.09%)
2MESH-W4-128 1.13s, 55.98s (2.02%) 3.21s, 69.02s (4.66%)
OMESH-W4-512 1.51s, 82.51s (1.83%) 3.35s, 98.97s (3.38%)
OMESH-W4-2048 1.38s, 133.59s (1.03 %) 3.89s, 184.23s (2.11%)
OMESH-S5-128 198.08s, 6556.40s (3.02%) 98.04s, 2764.60s (3.55%)
2MESH-S5-512 55.55s, 1599.57s (3.47%) 34.35s, 679.92s (5.05%)
OMESH-S5-2048 20.82s, 461.07s (4.52%) 15.99s, 305.65s (5.23%)
RAGE-W1-64 0.00s, 1884.65s (0.00 %) 5.00s, 908.31s (0.55%)
RAGE-W1-256 0.00s, 1854.61s (0.00%) 3.00s, 1171.06s (0.26%)
RAGE-W1-512 0.00s, 1924.41s (0.00 %) 3.80s, 1405.99s (0.27%)
RAGE-W2-64 0.00s, 1581.83s (0.00 %) 1.90s, 558.63s (0.34%)
RAGE-W2-256 0.00s, 1549.325s (0.00 %) 2.00s, 831.73s (0.24%)
RAGE-W2-512 0.00s, 1629.10s (0.00 %) 1.85s, 1067.85s (0.17%)
RAGE-S3-64 0.00s, 10782.285 (0.00%) 13.50s, 1872.14s (0.72%)
RAGE-S3-256 0.00s, 3095.27s (0.00 %) 4.40s, 1442.50s (0.31%)
RAGE-$3-512 0.00s, 1929.49s (0.00 %) 3.40s, 1406.68s (0.24 %)
ESMD-W1-8