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Chapter 1

Introduction

An Intelligent Virtual Assistant (IVA) is “an engineered entity residing in software

that interfaces with humans in a human way. This technology incorporates ... modern

artificial intelligence projects to deliver full-fledged ‘virtual identities’ that converse

with users.” [2]

IVAs are commonly used for answering questions and task optimization as in the

case of Apple’s Siri, Microsoft’s Cortana, or Google Now. However, many companies

are deploying IVAs for e�cient problem resolution and cost cutting in call centers

and also as the first layer of technical and product support on websites [3]. At the

present time many di↵erent software companies (close to two hundred, by analysts’

estimates [4]) have created IVAs that reside on corporate web pages or otherwise

are embedded in advertising and selling e↵orts. Perhaps the largest gathering of

such agents today exists on the Facebook Messenger platform. Through recent APIs

provided by Facebook which made creating and deploying agents simple, the number

of live “messenger bots,” as they are known, has eclipsed 100,000 [5].

In these business domains, IVA accuracy and e�ciency directly impacts customer

experience and greatly reduces the company support costs. In one case study [6], a

Fortune 50 insurance company saw a 29% reduction in live-chat volume within five
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easier debugging and visualization of data flow through all stages of processing the

dialog.

ALICE Launched on November 23, 1995 by Richard Wallace, the Artificial Lin-

guistic Internet Computer Entity or ALICE introduced the Artificial Intelligence

Markup Language (AIML) [19]. AIML was an Extensible Markup Language (XML)

dialect for creating chatbots. ALICE AIML was provided free and Open Source as

a platform for others to contribute to its knowledge base and to create their own

custom chatbots. As of 2017, the ALICE AIML knowledge base contained approx-

imately 41,000 categories1 and Pandorabots2, a reseller of the technology, reported

deploying over 285,000 chatbots based on the platform. ALICE went on to win the

Loebner Prize, an annual competition to determine the most human-like computer

program, in 2000, 2001, and 2004 [43].

Ask Jeeves Founded in 1996, “Ask Jeeves” was developed to allow users to search

the Internet using (human language) sentences in addition to the standard key-word

approach common to search engines at that time. The original idea behind Jeeves,

named for a gentleman’s personal valet (from the writings of P. G. Wodehouse)3,

was to allow users to get answers to questions posed in everyday human language as

well as support for math, dictionary, and conversion questions for the World Wide

Web. A 2001 study of search engine user queries demonstrated that users were

increasingly searching for e-commerce information in question format as opposed to

listing keywords and the “Ask Jeeves” platform was encouraging the trend [44].

Cyberlover In the mid-2000s, the ELIZA and PARRY technologies were devel-

oped into systems which were observed on chatrooms and forum sites with malicious

1http://www.alicebot.org/downloads/sets.html
2https://www.pandorabots.com/
3http://en.wikipedia.org/wiki/Ask.com
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or Amazon’s Mechanical Turk6 as there must be some selection process applied to

the workers to ensure they have proper knowledge of the domain and associated

terminology. One strategy o↵ered by many such platforms is to create a series of tests

that workers must pass before they are allowed access to the task. Another strategy

is to mix in conversations with known labels to the batch and score reviewers on

them. Those that do poorly on the known conversations are tossed out.

The sample to be reviewed can be selected in a variety of ways. If a particular

event is important to analyze, there may be flags set on a conversation by the live IVA

indicating the event occurred. An example of such events would be if a user escalated

the conversation to a di↵erent party or the conversation was abandoned before the

initiated task was complete. A sample for review can then be created by selecting all

conversations containing a flag of interest. These samples will obviously be biased

and may miss many other important failure scenarios, so for a more holistic view of

interactions a random sample can be used. Another selection strategy mentioned in

Chapter 1 is to review the interactions where the NLU and/or ASR confidence score is

lower than some predetermined threshold. In this case, reviewers rely on the system

itself to indicate where error lies. As previously discussed in detail in Chapter 1,

while low confidence is potentially more e↵ective than a random sample at finding

poor interactions, a major purpose of review is to discover error in the system. Any

existing error in confidence calculation can e↵ect the quality of the selection process.

It also creates a dependency on the underlying system implementation that makes

it di�cult to compare the performance of di↵erent IVAs, or, if the system design is

ever modified, the same IVA over time.

Once a sample is retrieved by one of the above-mentioned means they are manu-

ally graded in an e↵ort to find intents which need improvement. If a reviewer decides

that an intent was not appropriate given the user utterance, he or she may indicate

the intent the IVA should have selected. The reviewers may assign grades per turn

6https://www.mturk.com

https://www.mturk.com
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Figure 2.3: Typical language model refinement cycle

in any form, but a star rating system such as one-to-five stars is common [77].

The result of this review process is a set of conversations along with their grades

and any suggested intent replacements which are passed to the domain experts. Do-

main experts are typically linguists or computer scientists with training in NLP

and are responsible for the construction and modification of language models. Only

poorly graded conversations require in-depth analysis by domain experts to deter-

mine the necessary changes to the language models.

This process can be visualized as in Figure 2.3. The domain experts construct

and refine the language models which are deployed into the live virtual assistant.

These assistants, which are the IVAs, then interact with human users and generate

conversation logs which are then sampled for human review. The graded conver-

sations are then given to the domain experts to make necessary adjustments to the

language model. The faster this cycle completes, the more quickly the IVA can adapt

to changes in domain language, environmental events that cause transportation in-

terruptions, or product or website changes that require additional knowledge.
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It is important to note that this refinement cycle would look the same regardless

of the implementation details of the IVA. There are multiple approaches to intent

recognition within the NLU such as in [78, 79, 80, 64, 63]. Whether the language

models are created by statistical means (e.g. Support Vector Machines or Neural

Networks) or created manually (regular expressions and grammars), there is no dif-

ference in the conversation log format. Therefore, we may ignore the implementation

details of the IVA and focus on only conversational features. This makes the system

presented herein more general and applicable to all single intent IVAs regardless of

their complexity or implementation.
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Chapter 3

Related Work

Although related to other Human Computer Interface (HCI) technologies, there are

di↵erences that prevent existing HCI methods of automated review to apply to IVAs.

While IVAs are similar to general conversational agents (known as “chat bots” or

“chatterbots”), IVAs are goal-oriented. The primary purpose of an IVA is not to be

indistinguishable from a human (the Turing test) but to help users complete tasks

by providing relevant information. Therefore, regardless of user opinion, there exist

topics that an IVA is expected not to understand, and this is by design. Business

rules dictate what an IVA should and should not know, complicating review. For this

reason, surveys, star rating systems, and other measures of user satisfaction alone

cannot determine all the errors in language models [81]. However, user ratings are

still positively correlated with task completion and goal success [81], so we do not

discount them completely. Users may rate an IVA poorly simply because it did not

allow the user to violate business rules and not due to misunderstanding of the user

intention. For example, denying the transfer of a ticket to another party or a refund

for a product are common cases where users give poor ratings in retaliation despite

the IVA understanding their intentions correctly. The IVA is bound to the business

rules it was encoded with and, unlike human agents, will not bend those rules based
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on feeling sorry for the user or wanting to improve its feedback survey results for

personal gain.

IVAs share features with Spoken Dialog Systems (SDS), one of which is a conver-

sational interface that may accept speech input from a user. Methods introducing

confidence measures in language models used by the SDS typically rely on features

present in the acoustic models, word lattice density, etc. [82, 83, 84]. Auditory

and acoustic prosodic features are also used in other works to detect error in the

SDS [85, 86, 87, 88, 89]. Although there are similarities, IVAs di↵er from Spoken

Dialog Systems in that they support other forms of interactions. For many tex-

tual IVAs deployed on business websites, speech may not be the primary channel of

communication; it may not even be an available option.

Our topic is measuring posthoc risk of missed intent in a turn for the purpose

of language model development. As such, we are only concerned with the direct

input and output of NLU; Automatic Speech Recognition (ASR) error detection and

correction are considered outside the scope of this work. Speech may not be present

in some or even all the turns of a conversation. In addition, analysis is done o✏ine,

so no ASR features are available. Thus, the aforementioned approaches are not ap-

plicable for determining misunderstood turns. In addition, textual IVAs face various

user input formatting errors, an issue not present in SDS. Spelling errors, incor-

rect punctuation, abbreviations, bad grammar, unicode symbols, foreign languages,

emoticons, slang, and Short Message Service (SMS) language are commonplace, and

IVAs must be able to handle them.

Many approaches to online detection of SDS errors use a large collection of fea-

tures collected from the ASR, prosody, dialog manager, discourse history, and the

NLU [90, 91]. However, not only do these strategies rely on acoustic features and

prosodic features, they also depend on features only found in the conversational state

of the live IVA. There is an abundance of literature focused on finding ASR errors

or SDS miscommunication errors propagated by the ASR; there is surprisingly little
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literature that focuses on the detection of understanding errors in isolation.

As for IVA specific work, a frame-based intention recognition confidence method

is proposed for correction of online misunderstanding [92]. This work is narrowly

focused on tasks within intent recognition which are modelled as frames or slot-value

pairs. These tasks generally require gathering multiple pieces of information from the

user necessary to perform an action such as booking a flight or transferring money

between di↵erent accounts [93]. The authors use discourse-related features combined

with speech recognition features to train confidence models. These models are used to

determine if a specific slot value is correct or incorrect which will suppress or trigger

a clarifying question, respectively, by the IVA. The authors also only consider slots

that have already been filled, ignoring error scenarios where a slot value, although

present in the utterance, was not detected. As the authors’ system does not consider

the general task of determining missed user intention, requires speech recognition

features, and who’s purpose is to modify the IVA’s responses live, it has little in

common with the system presented in this work.

In [94], conversations from a SDS that provides train timetable information are

collected and conversational cues are examined to determine if the user turn was mis-

understood. Although this work involved data from a SDS, no acoustic features were

used in their methods. The authors assume Clark’s principle of least collaborative

e↵ort [95, 96]; both the user and system want the dialog to be finished as e�ciently

as possible and with success. Certain combinations of cues are found to have the best

predictive potential for discovering the presence or absence of problematic conver-

sations. Cues include turn length, marked or unmarked word order (topicalization

or extraposition), confirmation, the presence or absence of an answer, corrections or

repetitions, and new information. The highest precision is achieved with a combi-

nation of correction and repetition cues on a small set of 120 dialogs; users tend to

repeat their requests and correct the system in its interpretation of these requests

when there are communication problems. However, this method assumes that all in-
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teractions are frame-based tasks and uses knowledge of the live dialog state specific

to that SDS. This constrains the usefulness of their findings in an o✏ine setting and

when no assumptions of the underlying language model are desired. In addition, the

work relied on a very small corpus in a single language domain. Still, the accuracy

of specific combined cues in finding misunderstanding (96.7%) gives hope that an ef-

fective error detection system using only text-based methods is possible. Therefore,

the cues that are broadly applicable, such as repetition and corrective language, are

incorporated into the system presented herein.

The QART system presented in [97] monitors live customer service dialogs and

provides supervisors with visualizations and summaries of ongoing chats. It employed

features in the categories of customer behavior (emotion and sentiment), conversa-

tional characteristics (deviation from typical structure, number of turns, average

delays), and organizational compliance (greeted customer, used customer name, as-

surance, etc.). When compared against human reviewers on an annotated set of 188

real-world dialogs, the system greatly outperformed the humans in the categories of

organizational compliance and conversational characteristics. It was less accurate in

emotion detection and nearly identical in sentiment detection.

The QART system does not attempt to detect misunderstanding or user inten-

tion and is monitoring human-to-human chats. However, measuring the change in

sentiment and emotion in the detection of problematic chats, as well as measuring

a conversation’s adherence to a typical structure for a given task, prove useful for

indicating misunderstanding and have been implemented in the system presented in

this work.

Perhaps the most similar work to the system we constructed is [81] where one

of the authors’ goals was to predict intent classification quality of an IVA using nu-

merous ASR, dialog, and tactile features. 60 users were asked to complete three

categories of tasks using the IVA: device control, web search, and chat. After each

task, the users were given a survey to rate their satisfaction with the IVA, the qual-
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dependence, for example tie in conv and triggers tie, we used the adjusted ORs

from the logistic regression coe�cients, as in [216]. To eliminate the e↵ect of any

risk indicators with high multicollinearity, we first calculated the Variance Inflation

Factor (VIF) for each risk indicator using the Python statsmodels package2. The VIF

is a means to determine if a variable has a significant impact on variance of the model,

and therefore should be removed. It is a ratio of the variance in a model with multiple

terms over the variance in a model with one term [219]. A VIF threshold greater

than between 5 and 10 is commonly used to indicate high multicollinearity [220, 221].

Thus, we ignored any indicators with a VIF greater than 5 by setting their weight to

0. Finally, we calculated an adjusted OR using logistic regression on the remaining

indicators with an intercept and taking the exponent of their coe�cients [218]. Any

indicators with 1 in the 95% confidence interval were set to 0. The normalized OR

is used as the weight for the rest.

Risk Indicator Airline

Count

Telecom

Count

Train

Count

Airline

OR

Telecom

OR

Train

OR

backstory 298 186 200 1.9±0.53 1.46±0.5 1.1±0.34

conv rating 1 0 0 0 - - -

conv rating 2 0 0 0 - - -

conv rating 3 0 0 0 - - -

conv rating 4 0 0 0 - - -

conv rating 5 0 0 0 - - -

conv should esc 167 186 182 1.9±0.95 0.6±0.29 0.88±0.5

end rating 1 0 0 0 - - -

end rating 2 0 0 0 - - -

end rating 3 0 0 0 - - -

end rating 4 0 0 0 - - -

end rating 5 0 0 0 - - -

2http://www.statsmodels.org/dev/generated/statsmodels.stats.outliers_

influence.variance_inflation_factor.html
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Table 11.2: Risk indicator incidence per dataset. The ad-

justed OR and 95% confidence interval is given for each with

count > 25. Those with a confidence interval spanning 1 are

eliminated, as are those with a VIF > 5.

The counts of each risk indicator by dataset, and the adjusted ORs with 95%

confidence are given in Table 11.2. Note that many risk indicators were not present

or did not meet the 25 count minimum to be considered. When constructing these

datasets, we drew a random sample that did not consider any prior knowledge of risk

indicators. Therefore, we did not have enough data to draw any conclusions about the

e↵ectiveness of these under-represented indicators. In the future, as voters continue

to use the system, we can re-evaluate the predictive power of these indicators. Deeper

analysis of these OR scores is covered in Chapter 12.

In Figure 11.3, we see the new distribution of risk scores created using the

weighted indicators. Notice that when compared to those from the equal weights

in Figure 11.2, the two distributions of user turns are pushed further apart on the

risk scale. Unfortunately, comparing the overlap between Yes and No it does not

appear that the error is necessarily diminished any. We discuss this in detail and the

possible reasons for it later in Chapter 12.
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For the last combination of voting classifier and OR tuned weights, we once again

see a more complex story. The Telecom dataset appears to pick up the combined

error in the voting classifier and the risk distributions as N increases. By N = 400,

the random sample out performs this selection method. With the Train dataset, we

see the opposite e↵ect. For some values of N this approach nears 100% reviewer

productivity. We must be careful to point out that the scores for this method will

also be subject to the bias introduced by the OR tuning, and therefore should be

considered theoretical maximums. Further discussion of these results is continued in

Chapter 12.

11.5 Performance in Automating the Existing Re-

finement Cycle

The second configuration of the CRS, introduced in Section 5.2, is to vote in place

of the human reviewers. To select a voting classification method, we evaluated 9

di↵erent classification models using several metrics. We performed training and

evaluation using stratified 10-fold cross validation on subsets of each dataset, starting

from 10% of the total dataset and increasing by tenths until reaching the full set.

The increasing partitions were to simulate the growth of the training data as humans

continue to vote. We could then see how each model performed with increasing

training samples.

The voting classifiers were trained using the risk indicators as features and the

majority decision as the outcome. Repeating the example from Section 5.2 for clarity,

if voters agreed that turn t belongs to the intent assigned by the IVA, the outcome

is 1. If they disagree, the outcome is 0. Then for each turn with a voter consensus

we add a row to a feature matrix M , with a column for each risk indicator and a

final column for the outcome.
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methods chosen and their configuration parameters4 are detailed in Table 11.3. A

Naive Bayes classifier was also considered, but did so poorly on the preliminary tests

it was discarded.

Name Method Parameters References

dt Decision
Tree

{criterion=’gini’, splitter=’best’,
max depth=None, min samples split=2,
min samples leaf=1}

[229]

rf Random
Forest

{estimators=15, criterion=’gini’,
max depth=None, min samples split=2,
min samples leaf=1}

[228]

svm Liner Sup-
port Vector

{penalty=’l2’, loss=’l2’, C=0.5} [225, 113]

ada AdaBoost {estimator=DecisionTree, n estimators=50,
learning rate=1.0, algorithm=’SAMME.R’}

[230, 228]

gauss Gaussian
Process

{kernel=’1.0 * RBF(1.0)’, opti-
mizer=’fmin l bfgs b’}

[231, 232]

knc3 K-Nearest
Neighbor

{n neighbors=3, weights=’uniform’} [233]

knc10 K-Nearest
Neighbor

{n neighbors=10, weights=’uniform’} [233]

nn1 Multi-Layer
Perceptron

{input neurons=12, input activation=’relu’,
hidden neurons=8 hidden activation=’relu’,
output activation=’sigmoid’, epochs=20,
batch size=32}

[226, 227]

nn2 Multi-Layer
Perceptron

{input neurons=64, input activation=’relu’,
dropout=0.2, hidden neurons=64 hid-
den activation=’relu’, dropout=0.2, out-
put activation=’sigmoid’, epochs=20,
batch size=32}

[226, 227]

Table 11.3: Details on classifiers under comparison for the voting classifier.

In Figure 11.5, the results of the evaluation using 10% of the data (a) and the

final step using 100% of the data (b) is shown. The intermediate steps were not

shown as there was surprising little change, outside of the macro precision, as the

4Documentation on parameter meanings and possible values is available at http://

scikit-learn.org/stable/modules/classes.html.

http://scikit-learn.org/stable/modules/classes.html
http://scikit-learn.org/stable/modules/classes.html
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(a) 10% dataset

(b) 100% dataset

Figure 11.5: Comparison of classification models on majority voter prediction task,
using 10-fold cross validation. The initial evaluation at 10% of the datasets and final
size of 100% are shown. 95% confidence interval is represented by black bars.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter2 1.000000 1 voter2 1.000000

2 voter15 1.000000 2 voter15 1.000000

3 voter17 1.000000 3 voter17 1.000000

4 voter6 0.926611 4 voter9 0.958349

5 voter1 0.904731 5 voter1 0.952381

6 voter9 0.891965 6 voter6 0.947956

7 voter3 0.861885 7 voter3 0.942841

8 voter4 0.844408 8 voter4 0.941643

9 voter5 0.832290 9 voter7 0.933943

10 voter8 0.790549 10 voter8 0.917561

11 voter7 0.772389 11 CRS 0.889902

12 CRS 0.739638 12 voter12 0.878893

13 voter12 0.695378 13 voter11 0.866667

14 voter11 0.666667 14 voter5 0.836735

15 voter10 0.641716 15 voter10 0.790123

mean±95% 0.844899±0.239 mean±95% 0.926221±0.123

Telecom Dataset

The Telecom dataset was composed of 7, 313 user turns of which 5, 252 (71.82%) had

a majority voter agreement. It originated from the most complex IVA of the three.

The IVA recognizes 2, 173 unique intents and carries out complex user interactions

that take into account meta-data such as the users mobile device, if the user is

logged in or not, the location and account type the user has, et cetera. Without

understanding this meta-data and how it is used in intent classification, the CRS is

at somewhat of a disadvantage in selecting the proper intent as an outside observer.

Due to this IVA complexity, the scores are lower on this dataset than the other two.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter1 1.000000 1 voter1 1.000000

2 voter16 0.935140 2 voter10 0.980040

3 voter10 0.914609 3 voter6 0.952590

4 voter6 0.894821 4 voter2 0.943147

5 voter15 0.858721 5 voter13 0.936842

6 voter4 0.833291 6 voter16 0.923913

7 voter9 0.826032 7 voter3 0.911934

8 voter2 0.825104 8 voter4 0.898210

9 voter7 0.815603 9 voter15 0.895105

10 voter5 0.813492 10 voter5 0.887090

11 voter3 0.761177 11 voter7 0.871921

12 voter13 0.738506 12 CRS 0.857446

13 voter11 0.680040 13 voter9 0.803738

14 CRS 0.587383 14 voter12 0.788462

15 voter12 0.564286 15 voter11 0.696275

mean±95% 0.818630±0.243 mean±95% 0.892090±0.158

Train Dataset

The Train dataset was composed of 7, 270 user turns of which 6, 331 (87.1%) had a

majority voter agreement. The originating IVA can recognize 930 distinct intents,

making it the smallest language model of the three. Despite its smaller size, it

appeared to have more disagreement between the individual voters and the majority

vote, evidenced by the lower means and larger 95% confidence intervals.
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter15 0.972222 1 voter6 0.973888

2 voter10 0.918452 2 voter10 0.951338

3 voter6 0.910626 3 voter15 0.950000

4 voter2 0.874898 4 voter4 0.933293

5 voter5 0.853439 5 voter5 0.931871

6 voter4 0.848875 6 voter7 0.931398

7 voter3 0.848343 7 voter8 0.920548

8 voter8 0.838889 8 voter3 0.909347

9 voter7 0.825955 9 voter14 0.909091

10 voter1 0.809436 10 voter11 0.856651

11 CRS 0.742357 11 voter2 0.854251

12 voter11 0.730333 12 voter1 0.836417

13 voter12 0.594160 13 CRS 0.831601

14 voter16 0.562500 14 voter12 0.630252

15 voter14 0.500000 15 voter16 0.222222

mean±95% 0.792009±0.276 mean±95% 0.843612±0.382

Overall Performance

Averaging the voter performance over the three datasets we can see how each of

the voters faired overall. Although all three datasets had 14 human voters, not all

of the voters were the same people. There were 17 unique voters overall, and their

labels are consistent across datasets (voter3 in the Train dataset is the same person

as voter3 in the Airline dataset).
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Rank Voter Precision Macro Rank Voter Precision Micro

1 voter17 1.000000 1 voter17 1.000000

2 voter15 0.943648 2 voter6 0.958145

3 voter6 0.910686 3 voter15 0.948368

4 voter1 0.904722 4 voter13 0.936842

5 voter2 0.900001 5 voter2 0.932466

6 voter9 0.858999 6 voter1 0.929599

7 voter4 0.842192 7 voter4 0.924382

8 voter5 0.833074 8 voter3 0.921374

9 voter10 0.824926 9 voter8 0.919054

10 voter3 0.823801 10 voter7 0.912421

11 voter8 0.814719 11 voter14 0.909091

12 voter7 0.804649 12 voter10 0.907167

13 voter16 0.748820 13 voter5 0.885232

14 voter13 0.738506 14 voter9 0.881044

15 voter11 0.692346 15 CRS 0.859649

16 CRS 0.689793 16 voter11 0.806531

17 voter12 0.617941 17 voter12 0.765869

18 voter14 0.500000 18 voter16 0.573068

mean±95% 0.809931±0.251 mean±95% 0.885464±0.252
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Chapter 12

Discussion

We begin our discussion with a review of the work presented thus far. The task at

hand is to review logs of conversation between Intelligent Virtual Assistants (IVAs)

and human users in order to find communication errors in the form of misunderstand-

ing on the part of the IVA. This task is currently reserved for human reviewers, who

are unable to scale to the volume and velocity of the logs for commercial IVA deploy-

ments. Therefore, sampling strategies are employed to create manageable subsets of

the conversations that can be handled by humans.

The work presented in this dissertation is the design and construction of a system

that can handle the scale of the logs (Section 6.2), provide an intelligent selection

strategy superior to current practices (Section 11.4), suggest relevant alternative

intents autonomously (Section 11.2), and even potentially altogether replace human

reviewers (Section 11.5). The system proposed to perform all of these tasks is named

the Chat Review System (CRS).

The motivations for the construction of the CRS are the cost of human labor,

the subjectivity of human language decisions, and the inability for a set of human

reviewers to find all of the di↵erent error scenarios present in the conversations logs

(such as misunderstanding an infrequent intent) as time and money do not permit
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SDS Spoken Dialog Systems. 27–29, 93, 94

TTS Text To Speech. 17, 138, 139

VIF Variance Inflation Factor. xxi, 192–194

XML Extensible Markup Language. 13
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