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8. - Transmission electron microscopy reveals exosomes are released from primary 
fibroblasts into culture media.  
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CHAPTER 4 

DISCUSSION 

There is sufficient evidence showing tumor adjacent tissue can have molecular 

alterations in the absence of histological abnormalities. Previous studies report shortened 

telomeres, genetic instability, and uncontrolled proliferation.15,14 There is also evidence 

of the presence of myofibroblasts in histologically normal tissues 1cm from the tumor. 

Markers of EMT have also been seen in TAHN tissue specimens at a margin of 1cm 

away from the tumor edge.11 Previous studies have shown that myofibroblasts can induce 

an EMT phenotype in epithelial cells. Based on these observations, we hypothesized that 

myofibroblasts observed TAHN-1 specimens would maintain their myofibroblast 

phenotype in primary culture, along with their ability to induce EMT in epithelial 

populations. We have also begun to investigate a mechanism through which this occurs.  

The first conclusion of these studies is that TAHN-1 fibroblasts maintain 

myofibroblast markers, as well as myofibroblast functional characteristics when removed 

from the context of the tissue and grown in primary culture. Myofibroblasts are 

mesenchymal cells, which have contraction and migration capabilities.  

Immunocytochemistry with α-SMA indicates TAHN-1 but not TAHN-5 cells retain this 

myofibroblast marker. Myofibroblasts are associated with solid tumor cancers and 

enhance tumor progression by secreting ECM altering proteins.7,31  A contraction assay 

demonstrates the ability of TAHN-1 cells, but not TAHN-5, to contract the edges of the 

collagen culture. An interesting finding in this test was the ability of TAHN-1 to contract 

to a higher degree than CAF. It is also important to note that TAHN-1 contracted a larger 

area than THAN-5 even when 1-2mm surgical margins are considered to be normal. 
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Although we show that myofibroblast protein alpha-smooth muscle actin accumulates in 

TAHN-1 and CAF cells we need to test for the presence of smooth muscle proteins to 

conclude they are true myofibroblasts.20,37,38 

The second conclusion of this study is that TAHN-1 fibroblasts can induce EMT 

in non-malignant MCF-10A epithelia through secreted factors. Previous studies show 

EMT markers in TAHN tissue tested by immunohistochemistry.11 Immunohistochemistry 

is a tool to visualize the presence of EMT markers in tissue, it cannot be used to 

determine how these properties were induced.11 Two of the EMT-related proteins we 

observed in epithelial cells in TAHN-1 tissues were SPARC and TGF-β. To test if these 

markers could be induced by TAHN-1 fibroblasts, conditioned culture media from patient 

matched CAF, TAHN-1, and TAHN-5 fibroblasts were used as a treatment to test if EMT 

properties were being communicated from stromal cells to epithelial cells.   

Immunocytochemistry using antibodies against SPARC and TGF-β show CAF 

and TAHN-1 treated MCF-10A stain positive for these EMT markers. These markers 

cannot be seen in TAHN-5 treated MCF-10A. TGF-β is used in a myriad of signaling 

pathways one of which is the SMAD pathway, which can initiate α-SMA expression as a 

downstream effect. 12,31  Similar to TGF-β, SPARC is involved in many signaling 

pathways. Previous studies show over expression of SPARC can cause EMT in 

melanoma and is an indicator of poor prognosis of breast cancer.35  

To test if the functional EMT characteristics can be induced by TAHN-1 

conditioned media. A migration assay was performed on MCF10a cells treated with 

fibroblast conditioned media. We see CAF and TAHN-1 treated MCF-10A cells are able 

to migrate and close the wound scratch more that TAHN-5 and control. This is in 



	
   	
   	
  30	
  

accordance with the SPARC and TGF-β staining.  TGF-β and SPARC are proteins that 

are understood to induce a migratory characteristic.12,35 

Taken together, this study validates our hypothesis that TAHN-1 myofibroblast 

retain the myofibroblast phenotype and can induce EMT in cell culture. First we 

demonstrated that TAHN-1 fibroblasts, when removed from the context of the tissue, 

retain their myofibroblast markers and demonstrate functional myofibroblast 

characteristics such as contraction. Additionally, we demonstrated that TAHN-1 

fibroblasts could communicate to normal epithelial to undergo an EMT transformation. 

This was shown both though staining with EMT markers, and through functional 

migrations assays.  These characteristics suggest TAHN-1 specimens may be more 

closely related to CAF than TAHN-5 fibroblasts. This study provides new insight into 

understanding tumor adjacent field tissue and what may be causing local recurrence in 

breast cancer. This study is similar to the study done decades ago by Dr. Slaughter by 

showing abnormalities in tumor adjacent fields of tissue. The main difference would be 

our molecular abnormalities are found in histologically normal tissue, whereas, Dr. 

Slaughter studied histologically abnormal specimens.  

There is sufficient evidence supporting EMT initiation in the tumor 

microenvironment via exosome communication.29,29,31,39 Transmission electron 

microscopy reveals exosomes are present in primary cell culture media, but does not 

reveal what cargo is being transported within the exosomes. Studies are currently being 

done to investigate the contents of the CAF and TAHN fibroblast derived exosomes. We 

are testing the affects of exosome depleted conditioned media may have on migration and 

EMT induction on MCF-10A breast epithelial cells. 
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