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Introduction 

 The decline of amphibian populations is one of the most pressing conservation 
issues of the 21st Century (Wake & Vredenburg 2008). The large-scale drivers of population 

declines include disease, anthropogenic land use and habitat modification, and climate 
change (Hof et al. 2011). These drivers may facilitate additional threats from hybridization 

and competition from native and non-native species as they expand their range (Kats & 
Ferrer 2003; Knapp 2005). Because threat vulnerability can vary by species and threat type, 

it is necessary to implement multiyear monitoring programs to determine if populations 

are in decline or exhibiting natural fluctuations, and to identify proximate causes 
(Pechmann et al. 1991; Lips et al. 2003; Storfer 2003).  

 Multi-year monitoring is critical for evaluating species and populations that lack 

baseline data and may be suspected to be in decline (Green 2003). Amphibian populations 

intrinsically fluctuate confounding the ability to detect decline trends, especially in absence 
of baseline data (Pechmann & Wilbur 1994; Alford & Richards 1999; Marsh 2001; Green 

2003). To determine amphibian population trends, whether in abundance or occurrence, 
requires multi-year studies that ideally cover population turnover (Connell & Sousa 1983; 

Semlitsch 2002; Adams et al. 2013). Such long-term monitoring provides valuable insights 
to decline stressors, population responses to environmental variation, and population 

resilience to perturbations and habitat change for at-risk species (Gibbons et al. 2006; 

Homyack & Hass 2009). 

 One popular method to measure trends of populations is to use historical occurrence 

data as a baseline and compare it with present-day sampling to assess longitudinal changes 

in species presence/absence (e.g. Skelly et al. 2003; Tingley & Beissinger 2009). This 

approach may be biased if resurvey efforts are of short duration or if historical data is 
based on detections rather than detections and non-detections (Skelly et al. 2003; 

MacKensie et al. 2006). Studies that occur over multiple seasons and account for imperfect 
detection can assuage concerns of bias estimations of species occurrence and trend 

interpretations (MacKensie et al. 2002; 2003). 

 Amphibians are highly sensitive to changes in the hydrological cycle and both dry 

and wet extremes can impact annual breeding success and abundance (Walls et al. 2013; 
Mac Nally et al. 2014; Ryan et al. 2015). This issue is especially pronounced for species that 

live in highly variable habitats such as rivers in arid environments, which have highly 

variable flow regimes (Kupferberg 1996; Ocock et al. 2014). For instance, annual flow 

variability can lead to gradual decreases in flow that desiccate eggs and tadpoles; whereas 

abrupt flow increases can scour eggs and tadpoles (Kupferberg 1996) or preclude and/or 
shift breeding to poor quality habitats (Ocock et al. 2014). The influence of extreme 

hydrologic shifts can induce regional declines even among species that may not be typically 
considered at risk (Mac Nally et al. 2014). 

In 2013, we initiated a field study to assess the status of the Arizona Toad (Anaxyrus 
microscaphus) in New Mexico. The Arizona Toad is currently listed as a Species of Greatest 
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Conservation Need in New Mexico with habitat modification, disease, and hybridization as 
the primary threats to the species’ long-term persistence (Hammerson & Schwaner 2004; 
Schwaner & Sullivan 2005; New Mexico Department of Game & Fish 2006). The Arizona 
Toad is protected or considered a state ‘sensitive’ species in Arizona, Nevada, and Utah 
where introgression and hybridization with the Woodhouse’s Toad (A. woodhousii) and 
habitat modification are its primary threats (Schwaner & Sullivan 2009; Schwaner and 
Sullivan 2005; Dodd 2013). At the time of the 2006 conservation categorization in New 
Mexico, threat risk was assigned based on disease-related declines of the sympatric 
Chiricahua Leopard Frog, and hybridization-related declines Arizona, Nevada, and Utah 
(Hammerson & Schwaner 2004; C.W. Painter, personal communication).  

The New Mexico portion of the Arizona Toad’s range is ideal for long-term 
monitoring because of highly variable riverine habitats. For rivers where to toad occurs, 
the mean annual stream flows of the Gila and San Francisco Rivers were greatest in 2013, 
at 299 cfs (cubic feet per second) and 142 cfs respectively, than in 2014 (Gila River, 118 cfs; 
San Francisco 41 cfs) and 2015 (Gila River 194.6; San Francisco 69.2 cfs). Furthermore, 
there is a lack of data on populations and a lack of threat risk assessments compared to 
neighboring states. 

Within New Mexico, the Arizona Toad is restricted to the Gila, Mimbres, and San 
Francisco watersheds in the Gila Region of the Mogollon Rim, with disjunct populations in 
the San Mateo Mountains and the Black Range, approximately 40 miles east and southeast, 
respectively, of the Gila Region (Degenhardt et al. 1996; Kindscher et al. 2008; Jennings et 
al. 2010). To date potential threats to the Arizona Toad in New Mexico include climate 
change, forest fires, hybridization, and the disease chytridiomycosis (Ryan et al. 2014a). At 
this time, these threats should be considered tentative until more thorough assessments 
can be made with additional data. The positive chytridiomycosis record in 2014 was the 
first time the disease has been reported in the Arizona Toad, but it appears unlikely that 
the disease has caused the observed declines (Ryan et al. 2014b).  

Prior to this project, the conservation status of the Arizona Toad in New Mexico was 
data deficient due to a lack of systematic population surveys. The only available data was 
limited to opportunistic and haphazard specimen collections between 1925 and 2003, 
which focused on the species distribution (e.g. Degenhardt et al. 1996). Furthermore, 
approximately 60% of the historic specimens were collected in the non-breeding season 
(June to August) along roads after rains, providing no insight into the size of local breeding 
populations. Many aspects of the toad’s ecology, behavior, breeding phenology and 
duration, are well known in Arizona but not much is known about the toad’s ecology in 
New Mexico. New Mexico populations of the Arizona Toad live at higher elevations than 
Arizona, Nevada, and Utah, and it should be expected that the higher elevation populations 
should differ in important ecological aspects (Ryan et al. unpublished). Additionally, little is 
known about the use of non-breeding habitats, tadpole habitats, adult diet, and size at 
metamorphosis (e.g. Schwaner & Sullivan 2005; Dodd 2013) 

Herein we provide the results of three years (2013-2015) of range-wide population 
monitoring, a review of threat assessments, and several contributions to the basic ecology 
of the Arizona Toad in New Mexico. This work highlights the sensitivity of the species to 
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abiotic factors and emphasizes the nature of annual population fluctuations in a variable 
environment. We provide analyses of environmental factors that influence toad 
reproductive behaviors, employ occupancy and detection modeling at breeding sites, and 
provide analyses of tadpole habitat and adult non-breeding habitat-use and movement 
ecology. We have built on previous threat assessments, quantitatively confirm the absence 
of hybridization, and assess the importance of hydroperiod on reproductive success.  

Methods 

Call Surveys and Site Occupancy 

Our sampling protocol in 2015 followed that used in 2013 and 2014. We conducted 
weekly call surveys in March and April, covering the seasonal breeding period for the 
Arizona Toad in New Mexico at 76 historical localities (Degenhardt et al. 1996; Ryan et al. 
unpublished). Our call survey design was used to evaluate occupancy and provide an assay 
of relative abundance of males based on call intensity (Heyer et al. 1994). Each site was 
scored using a metric established by the North American Amphibian Monitoring Program 
(Weir & Mossman 2005). We listened for toad vocalizations for 3 minutes at each site and 
intensity was categorized as: 0 = no toads heard calling; 1 = individuals could be counted; 2 
= calls overlapping but individuals can still be distinguished; 3 = full chorus, cannot 
distinguish individuals. This is an ideal method for detecting species that have strong 
vocalizations and call regularly over the course of the breeding season (Heyer et al. 1994). 

Accurate measures of detectability are critical when assessing a species 
conservation status because non-detection may not imply that a species is truly absent 
from a study site (MacKenzie et al. 2002). This issue is especially important when using call 
surveys where daily climatic variability can influence whether individuals may vocalize (e.g. 
Saenz et al. 2006). Repeated sampling of sites over the course of a single season allows for 
robust calculation of species detection and site occupancy estimates that may otherwise be 
biased by examining raw presence/absence data (MacKenzie et al. 2006).  

We used program PRESENCE (MacKenzie et al. 2002) to estimate the detectability of 
toads and the probability of occupancy for sites where toads were not detected. This 
approach makes several assumptions: 1) occupancy does not change during the sampling 
period; 2) detections are independent of detections at other sites; 3) detectability is 
constant across sites and surveys or it can be modeled using site or survey covariates. To 
model detection probability, we considered models where detection probability was either 
constant or survey-specific. For purposes of occupancy analyses, sampling periods were 
defined as occurring within a 48-hour period. According to this criterion we had a total of 
six sampling periods in 2015. We then used Akaike’s Information Criterion (AIC) to rank 
models by calculating Akaike weights (Burnham & Anderson 2002) and selected the 
highest ranking model to calculate probability of occupancy at each sampling site. Finally, 
we used ANOVA to compare site occupancy probabilities between 2014 and 2015. 

Stream Flow and Calling Behavior 

The reproductive strategies of stream breeding amphibians are well suited to flow 
perturbations at long-time scales, but are vulnerable to reproductive failure during annual 
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disturbances (e.g. Kupferberg 1996; Ocock et al. 2014). The flow regime of the rivers in the 
Gila Region is highly variable with potential flashfloods from spring and summer storms 
(Fig 1), and conversely, to very low levels in years with low winter snow accumulation and 
drought conditions (Gori et al. 2014). Such variability in flow rates can be a determining 
factor whether riparian breeding species call or reproduce, especially during periods of 
above average flow (e.g. Kupferberg 1996; Bondi et al. 2013). Episodic high flow rates from 
severe storms or other perturbations can also influence whether frogs call and breed, 
further affecting annual reproduction (Kluge 1981; Fukuyama & Kusano 1992; Ocock et al. 
2014). Other factors such as temperature, cloud cover, and lunar cycles have been shown to 
influence anuran breeding activity (Fukuyama & Kusano 1992; Saenz et al. 2006). 
Understanding the effect of abiotic factors, such as stream flow, on call behavior is critical 
for monitoring programs and management actions (Bondi et al. 2013). 

We tested the effects of multiple abiotic variables on toad calling activity 
(presence/absence and intensity). We analyzed nightly call survey data with air 
temperature, wind speed (Beaufort wind scale), moon phase, index of cloud cover 
percentage, and river flows (cubic feet per second [cfs]; obtained from the USGS U.S. 
Stream Flow database (http://waterdata.usgs.gov/nwis/rt?) for the date of each survey. 
We limited the analyses to call survey data collected between 2013 and 2015 from the Gila, 
Mimbres, and San Francisco Rivers, the only rivers with USGS gauge stations. We used 
ordinal logistic regression with call detection (yes or no) and call intensity (ranked 0-3) as 
the dependent variables and the environmental factors as predictor variables. We 
combined data for all years and produced models for each river separately. 

Breeding Success and Use of Lentic Habitats 

Amphibian breeding success cannot be determined by the presence of calling males, 
eggs or tadpoles (Richter et al. 2003). Hydroperiod length (i.e. the number of days a 
breeding water body maintains water; Semlitsch 1987; Pechmann et al. 1989; Rowe & 
Dunson 1995) and hydrologic conditions (i.e. consistent water levels; Kupferberg 1996; 
Richter et al. 2003) are critical for amphibian breeding success, i.e. emergence of 
metamorphosed froglets. Reproductive failure can occur from drying of breeding habitats 
or flashfloods before metamorphosis or (Richter et al. 2003; Kupferberg et al. 2011; Bondi 
et al. 2013). 

To disentangle toad detection and calling activity with reproductive success we 
monitored a subset of occupied sites to confirm the presence of emerging metamorphosed 
toadlets, which indicates breeding success. We detected toads calling at 23 sites and 
conducted post breeding season (May to August) visual encounter surveys at 12 of these 
sites. Supplemental surveys identified five additional sites with eggs or tadpoles, providing 
a total of 17 sites where reproductive success could be evaluated. We 11 occupied sites 
were excluded from post-calling monitoring because they were on private property.  

The Arizona Toad is considered a riparian breeding species but has been 
occasionally reported to call and lay eggs in lentic (i.e. pond) habitats. To date, there have 
been no observations of Arizona Toads successfully breeding in lentic habitats despite the 
presence of eggs and tadpoles (B. Sullivan, personal communication; Ryan et al. 
unpublished). Sullivan (personal communication) hypothesizes that Arizona Toad tadpoles 
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cannot complete development in lentic habitats when oxygen levels decrease, or they are 
depredated on by fish, other amphibian larvae, or invertebrates. Thus, it appears that egg 
laying in lentic habitats may act as a sink for local population recruitment if tadpoles do not 
survive to metamorphosis. Previous work in 2014 found eggs and tadpoles in nine lentic 
habitats, in 2015 we included these habitats in our surveys. 

We conducted visual encounter surveys at 29 lentic habitat sites (e.g. cattle tanks 
and lakes). Twelve of these sites were part of the call survey effort and 17 were added to fill 
in gaps in the species distribution and to determine the extent of lentic habitat use. Sites 
were sampled twice per month to survey for eggs, tadpoles, and emerging metamorphosed 
toadlets.  

Tadpole Habitat Use and Adult Movement Ecology 

Little information has been reported on the habitat use of tadpoles and movement 
patterns of the Arizona Toad. Calling and egg laying typically occurs in shallow water along 
the margins of streams, backwashes, or side pools where water flow is minimal (Schwaner 
& Sullivan 2005). Along the West Fork of the Gila River egg masses were deposited in clear 
shallow water with sand or cobble substrates at a mean depth of 4.5 cm (Range 1.5-7 cm) 
(Ryan et al. 2014a). Habitat use of tadpoles along in streams has not yet been quantified. 

The Arizona Toad is considered a habitat specialist for all aspects of their lives. For 
instance, adults have been found to move up to 200 m from streams, but remain within the 
floodplain habitats (Schwaner & Sullivan 2005). The Arroyo Toad (A. californicus), a 
phylogenetically sister species to the Arizona Toad, has been reported to rarely disperse 
from stream margins, but there are a few observations of adults being found up to 1,200 m 
from streams (Sweet & Sullivan 2005). Between these two ecologically similar species 
there are only a handful of upland non-breeding observations limiting the knowledge of 
their movement behavior. In 2015 we conducted two pilot studies to investigate tadpole 
habitat use and adult movement ecology. 

Tadpole Habitat Use 

To measure the riparian habitat use of tadpoles, we sampled five 30-meter stretches 
of the West Fork of the Gila River. Within each 30-meter stretch, we sampled four 5-meter 
sections where we recorded tadpole presence or absence and habitat characteristics along 
1-meter width bands. Each sampling section was spaced 100 meters apart along the river 
course. We categorized habitats according to substrate type: sand or cobble/pebble; 
stream flow: riffle or run; and stream dimensions: wetted width, water depth at midstream 
and 25 centimeters from the banks. We then used logistic regression to predict presence 
and absence of tadpoles with habitat characteristics. Individual models were constructed 
with an index of percent of substrate type, stream flow designations, mean depth, and 
wetted width by tadpole presence or absence. 

Adult Upland Habitat Movement 

We conducted upland surveys (away from breeding sites) during and after the 
breeding season to determine non-breeding habitat use and estimate the potential distance 
toads may move from breeding sites. We used time-constrained visual encounter surveys, 
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with a minimum of 60 minutes per survey per site. We randomly walked at least 1000 
meters throughout areas adjacent to breeding habitats, visually scanning the ground for 
toads. For each survey we recorded date, time and distance surveyed, and for each toad 
observation we recorded body size, sex, habitat type, and the geographical coordinates of 
its location with a GPS unit. We estimated potential movement distance by plotting toad 
observation coordinates and then measuring (in meters) the distance to the nearest known 
water body using Garmin Basecamp. 

Hybrid Analysis 

Hybridization with the native Woodhouse’s Toad has been identified as one of the 
most serious threats to the Arizona Toad in Arizona, Utah, and Nevada (e.g. Hammerson & 
Schwaner 2004; Schwaner & Sullivan 2005). Our previous work qualitatively assessed the 
threat of hybridization on the Arizona Toad in New Mexico. Using specimens collected in 
2014 and 2015, as well as museum specimens from multiple institutions we investigated 
the threat and history of hybridization in New Mexico. 

To evaluate the occurrence and extent of hybridization between A. microscaphus 
and A. woodhousii in New Mexico we reviewed 174 A. microscaphus and 406 A. woodhousii 
museum specimens from the Gila Region. The morphological review included adults, 
juveniles, and tadpole lots to verify species identification. To determine whether any toad 
specimens were A. microscaphus x A. woodhousii hybrids, we scored all specimens from the 
Gila Region using four characters established by Blair (1955) and Sullivan (1986). We 
recorded ventral spotting, cranial crests, mid-dorsal stripe, and pale bar across the eyelids 
with a numerical value following Sullivan (1986) and Sullivan & Lamb (1988): P=present, 
W= weakly present, VW= very weakly present, A= absent.  Ventral spotting, mid-dorsal 
stripe, and cranial crest were scored as P = 3, W = 2, VW = 1, A = 0; while pale eye bar 
across the eyelids was scored conversely: P = 0, W = 1, VW = 2, A = 3.  Numerical scores 
were then summed and used to calculate a hybrid index from 0 to 12, with low scores 
representing A. microscaphus and high scores representing A. woodhousii (Blair 1955; 
Sullivan 1986). We only examined toads greater than 45 mm SVL to avoid trait ambiguities 
of juveniles associated with ontogenetic changes (e.g. Sullivan 1986). 

We used logistic regression to compare hybrid index scores between specimens of 
both species for the entire Gila Region in New Mexico. We then repeated the logistic 
regression for Grant and Sierra counties where the two species co-occur. This use of 
logistic regression provides a test of whether the hybrid scores can be used to predict trait 
overlap between the two species. We did not do this analysis for Catron County because 
during the specimen review, all specimens previously identified as A. woodhousii were 
found to have been misidentified (see Results).  
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Disease and Die-offs 

We collected 45 chytridiomycosis samples from the Arizona Toad but these samples 
have not yet been analyzed. We observed 36 toads with red ventral spotting which in 2014 
was preliminarily identified as Amphibiothecum sp. or Amphibiocystidium sp. fungi (Kiryu et 
al. 2014). We collected 23 of the infected toads for further analyses and sent three of these 
samples to the Fish and Wildlife Research Institute Pathology Lab in Florida. 

Results  

Call Survey Summary and Site Occupancy 

Between 11 March and 14 April 2015 we sampled 76 localities where we conducted 
a total of 248 call surveys (Table 1, Fig 2) and detected toads at 22 (29%) of the sampling 
localities. Each site was visited an average of 3.9 times (median 4, range 2-6). Of the 22 
occupied sites, 12 (54%) had a maximum call intensity of 1; 6 (27%) had a maximum call 
intensity of 2; and only 2 sites (9%) had a maximum call intensity of 3. In 2015, the number 
of occupied sites and the number of sites with maximum call intensity of 3 were similar to 
results in 2014, but greater than in 2013 (Figs 3 and 4). This suggests that regional 
population status was stable in 2014 and 2015, but the naïve number of occupied sites has 
decreased compared to the number of historically known occupied sites, i.e. a ~70% 
decline range-wide. 

In 2013 and 2014, we did not detect toads at historic localities in Alamosa Creek 
near Monticello Box or at West Red Canyon in the San Mateo Mountains. In 2015, we did 
not detect toads at these two sites through call surveys, but on March 24th we did find a 
single male Arizona toad in Alamosa Creek on Socorro County Road C033, approximately ¾ 
miles East of Monticello Box. This observation confirms that Arizona toads are extant in the 
San Mateo Mountains and warrant further investigation in order to determine the species’ 
current distribution in this isolated mountain range. 

We used all 76 sites in model construction to estimate probabilities of detection and 
occupancy for 2015 (Table 2). The best model included sampling period as a covariate 
affecting detectability. The naïve occupancy estimate for all surveyed sites is 0.329 whereas 
the estimated proportion of sites occupied was slightly higher (0.398) but within the range 
of the standard error. Probability of occupancy estimates for sites where toads were not 
detected ranged from 0.0128 to 0.2931, suggesting a low probability of presence of toads at 
unoccupied sites. The estimated mean detection probability for all sites was 0.444, and 
ranged from 0.0128 to 1, with 1 representing the sites where toads were detected. 
Estimates varied considerably between periods which may be attributed to short-term 
weather variation or seasonal shifts in calling behavior (Fig 5). Estimates of detection 
probabilities can be used to estimate the number of sampling occasions necessary to 
declare that a species is absent during a given year. Based on the mean detection 
probability in 2015, at least five sampling periods per site are required to conclude with 
95% probability that toads were absent. In spatial analyses, we did not find a pattern in 
individual site detection probability or occupancy across the Gila Region. Instead, both 
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detection and occupancy varied relatively uniformly across the region, suggesting a large-
scale connective metapopulation within each river system (Fig 6). 

The mean detection probability estimates for all sites did not vary between 2014 
and 2015 (ANOVA: P=0.36; R2=0.006; F-ratio = 0.836). Combined with our raw call data 
results, this suggests that regional population status was stable for 2014 and 2015. 

Stream Flow and Calling Behavior  

Our analyses of Arizona Toad calling behavior predictors (i.e. environmental 
variables) found that stream flow (i.e. cubic feet per second, cfs) was the only significant 
predictor influencing call behavior (Table 3). Both call detection and call intensity was best 
predicted by low cfs in the Gila, Mimbres, and San Francisco Rivers (Table 4; Figs 7 and 8). 
These results suggest that Arizona Toad breeding behavior is highly sensitive to water 
levels and stream flow rates. 

All three rivers had significant variation in mean flow rate on the dates we 
conducted call surveys (ANOVA: P=0.0001; F-Ratio=242.77), with the Gila River having the 
greatest mean flow (149.3 cfs), followed by the San Francisco (18.0 cfs) and Mimbres River 
(12.3 cfs). While each river varies in mean flow rate during the breeding season, the impact 
of flow rates on toad breeding behavior scales with each river. Our model results indicate 
that toads do not call when flow rates exceed a flow rate threshold: 79.6 cfs for the Gila 
River, 20.4 cfs for the San Francisco, and 5.9 cfs for the Mimbres River (Table 4; Figs 7 and 
8). 

Reproductive Habitat & Success 

We detected toads at 31% (nine tank) of the 29 tank habitats sampled, four by 
calling surveys and five by visual surveys (Table 5). This represents a small subset of total 
tanks in the Gila Region and suggests Arizona Toads will occasionally use tanks. The caveat 
with the use of tanks as breeding sites is that there is a very low reproductive success rate 
compared to stream habitats. 

Reproductive success (emergence of metamorphosed toadlets) was 35% at our 17 
focal sites 2015 (Table 6). This included nine stream sites and eight tank sites, and streams 
had a higher success rate (55%) than the tank habitats (12%). Reproductive failure at two 
stream sites (Pueblo Creek and US 180-6) was caused by a flashflood in July, which washed 
away tadpoles before metamorphosis. Our Mimbres River site, at Cooney Camp, dried out 
in April resulting in mortality of tadpoles. Reproductive failure at tanks was caused by 
drying out of tanks at four sites and undetermined factors at another four sites. 

These observations suggest that the Arizona Toad is highly vulnerable to changing 
water levels and the presence of calling males, eggs, and tadpoles are not a reliable 
indicator of successful reproduction. The 2015 results are consistent with the results 
observed in 2014 (Ryan et al. 2014a). 

Tadpoles Habitat Use 

Our assessment of tadpole habitat use at the West Fork of the Gila River showed that 
water depth, wetted width and the flow type, i.e. riffles, best predicted the presence of 
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tadpoles along stream stretches, with no relationship with substrate type (Table 7; Fig. 9). 
The water flow characteristics suggest tadpoles prefer shallower and slower flowing 
stream stretches and microhabitats when flow rates are low. This same section of stream 
was monitored in 2013 during flows >222 cfs, with no tadpoles observed.  

Our habitat preference analysis suggests that Arizona Toad breeding and tadpole 
development sites are based on specific stream habitat features. This pilot study should be 
expanded to other rivers and streams to better understand that habitat association and 
requirements to better inform management actions. If our preliminary results remain 
consistent with greater sample sizes, it may be possible to model the distribution of toads 
within river systems (i.e. Treglia et al. 2015). 

Adult Upland Habitat Use and Movements 

We conducted 24 upland surveys around occupied breeding sites, two during the 
breeding season and 22 in the non-breeding season yielding a total of 154 individual toad 
observations. During the breeding season (March) we made 14 observations of toads 
moving towards Indian Tank with mean distance of 122.1±73.8 m (31.9 – 289.6 m) from 
breeding sites. During the non-breeding season we made 140 observations with a mean 
distance of 178.8±143.0 m (Range: 8.5 – 965 m) from nearest water body. We made 22 
observations at Indian Tank and 142 observations near streams and found tank toads to 
move slightly further than stream toads (Fig. 10). 

One toad, an adult male, was excluded from the non-breeding season calculation 
because it was found an estimated 2011 m from the nearest water body on Highway 15 on 
12 June 2015. This single observation appears to represent the extreme distances this 
species is capable of covering. 

The upland vegetation types where toads were observed consisted of meadows, 
mixed meadow-woodlands, or ponderosa pine woodlands. There does not appear to be any 
upland vegetation preference according to our data for the months of June, July, August, 
and September. During this time period, toads appear to be foraging in order to gain mass 
to prepare for overwintering and the breeding season. We infer that summer activity is 
related to foraging based on the gut content analyses of 49 toads, of which 78% (38 
individuals) had ingested prey items. Conversely, during the breeding season (March and 
April) 2.5% (2 individuals) of 78 toads had ingested prey items. 

Our upland and distance from breeding site observations provide a tentative 
estimate that toads require, at a minimum, a buffer of approximately 1,900 m around 
breeding sites for non-breeding foraging area. This is likely an underestimate constrained 
by our sampling design, and future surveys should focus on areas <1000 m from breeding 
sites. It is still unknown where toads are overwintering, which would alter the estimated 
buffer around breeding sites. The final piece of the movement ecology of this species is to 
determine overwintering grounds which will require radio-telemetry. 

We do not have sufficient data for analyses, but rainfall appears to have a major 
influence on whether toads are observed and active during the non-breeding season. For 
example, on 26 June 2015 we observed 67 toads following a late afternoon rain, whereas 
surveys on dry days and nights yielded less than 20 observations per night. 
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Hybrid Analysis  

Prior to this review, museum records indicated that A. microscaphus and A. 
woodhousii co-occurred in four counties: Catron, Grant, Sierra, and Socorro; and within 
these counties specimens of both species were found in relatively close proximity (within 4 
kilometers of each other) at 20 localities: 17 in Catron County and three in Grant County 
(Fig. 11).  

Our initial specimen review found that all previously identified A. woodhousii from 
Catron County were misidentified and should be assigned to A. microscaphus.  The 
misidentifications included two adults and 71 tadpole lots from 15 unique collection 
localities. Additionally, we found one misidentified juvenile A. woodhousii from Grant 
County and one from Luna County, which should be assigned to A. microscaphus.  Finally, 
we found three misidentified A. microscaphus specimens from Grant County that should be 
assigned to A. woodhousii. Refer to Figure 12 for the revised distribution of both species in 
the Gila Region. 

The hybrid index scores indicate that there is no morphological evidence of 
hybridization between A. microscaphus and A. woodhousii throughout the Gila Region, and 
Grant and Sierra Counties, specifically, where the two species co-occur (Table 1). The 
logistic regression further supports this finding for the entire Gila Region (P = 0.0001; Chi 
Square = 348.75; Estimate = -6.51; Fig. 13A), Grant County (P = 0.001; Chi Square = 125.66; 
Estimate = -7.29; Fig. 13B), and Sierra County (P = 0.0001; Chi Square = 59.40; Estimate = -
5.82; Fig. 13C). The hybrid index logistic regression plots show a strong separation 
between A. microscaphus and A. woodhousii (Fig. 13). 

Disease and Die-offs 

The 2014 histopathology results tentatively identified the red ventral spotting and 
mortality was caused by infection with Amphibiothecum sp. or Amphibiocystidium sp. In 
2015 we sent three additional specimens for confirmation of the 2014 findings but the 
results were conflicting. The 2015 histopathology results suggest the cause of the red 
ventral spotting is due to chigger mites, possibly from the genus Hannemannia (Kiryu et al. 
2015). Duzynski and Jones (1973) and Grover et al. (1975) reported Hannemannia spp. in 
New Mexico anurans from Sierra County in the Arizona toad and Hyla arenicolor. To our 
knowledge infections of Hannemannia spp. do not cause mortality in amphibians (e.g. 
Duzynski and Jones 1973; Grover et al. 1975). It is unclear why there was a discrepancy 
between the 2014 and 2015 histopathology analyses and does not elucidate the cause of 
the observed dead and moribund toads. 

In 2015, we found two dead Arizona Toads and four dead Ambystoma tigrinum at 
Indian Tank. We could not perform necropsies on carcasses this year because all were 
collected in late stages of decomposition. This issue of unexplained die-offs remains 
enigmatic and warrants further attention and monitoring. We are going to contact a second 
laboratory to conduct histopathology to assist in determining the cause of observed 
mortality. 
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Endangered Species Observations 

Much of the range of the Arizona Toad overlaps with the Federally Threatened 
Chiricahua Leopard Frog (Lithobates chiricahuensis). We observed approximately 5-8 
Chiricahua Leopard Frog tadpoles at Rain Creek in the western Gila (N33° 11.282’, W -108° 
40.134’) on 15 August 2015. Tadpoles were observed along the banks of the creek and co-
occurred with H. arenicolor tadpoles. Photographs of the tadpoles were taken and Michelle 
Christman of the U.S. Fish and Wildlife Service was contacted immediately after this 
observation. Dr. Randy Jennings conducted a follow-up survey on 22 August 2015 to 
confirm this observation. This represents a new, previously unknown population of 
Chiricahua Leopard Frogs in the Gila. This site is approximately 6 Euclidian miles from 
Bud’s Hole, a historic Chiricahua Leopard Frog locality that is now extirpated. 

Discussion 

Our raw call survey data collected between 2013 and 2015, and results form 
detection and occupancy modeling from 2014 and 2015, show consistent results among 
years, with an approximate 70% decline in the number of occupied Arizona Toad localities 
(Figs. 3 & 4; Table 2; Ryan et al. 2014a). The largest annual variation in occupied sites was 
between 2013 and 2014-2015, which was due to high river flow rates along the Gila River 
(Fig. 1), which appears to influence detection and breeding activity. The below-average 
rainfall in recent years has led to the drying of many small tributaries along the river 
systems in the Gila excluding many potential breeding sites. The reduction in available 
breeding sites may be the driving factor in the low number of occupied sites we have found 
over the last three years. The current El Niño brought high amounts of winter precipitation 
in the region and many of the previously dried tributaries are now flowing (Ryan personal 
observation, December 2015). Considering the sensitivity of the Arizona toad to flow rates 
and breeding habitat desiccation, the wet conditions expected for 2016 may result in an 
increase in the number of occupied small streams. Conversely, there may be a decrease in 
reproductive activity in larger order streams and rivers due to higher spring flow rates. 

Consistent with the number of occupied sites between 2013 and 2015, is the 
proportion of occupied sites that have small numbers of breeding males. Our call intensity 
assays show that in 2014 and 2015, 6% and 18% of sites, respectively, had a call index of 3, 
indicating a small number large breeding congregations. While there was an increase in 
large congregations between years, this confirms that the majority of occupied sites are 
relatively small and therefore vulnerable to extirpation from stochastic events. It is likely 
that this is a long-term stable strategy for the Arizona toad considering the highly dynamic 
nature of their riparian breeding habitats. Flashfloods are a common occurrence for the 
rivers of the Gila Region, which can alter riparian habitats in a shifting mosaic. We 
hypothesize that the small number of large breeding congregations act as core sources for 
colonization of the smaller satellite congregations following flashfloods. Under this 
scenario, river systems that lack large source congregations are at greater risk of local 
extirpation. To date, we are unaware of any large breeding congregations along the San 
Francisco River, Whitewater Creek, and Willow Creek, which all consist of small breeding 
congregations. Conversely, the Gila River, Mimbres River, and Black Canyon Creek have 
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large breeding congregations, which may preserve the integrity of the metapopulation 
dynamics within these rivers. Our call intensity assay data and inferences are in need of 
testing and quantification using population genetic analyses to determine dispersal 
patterns within drainages in relation to large breeding congregations. This information will 
be invaluable to conservation managers in planning any recovery or management plans. 

The disease chytridiomycosis (Bd) has been responsible for many enigmatic 
amphibian population die-offs and declines (Wake & Vredenburg 2008), and is responsible 
for declines in some New Mexico species (e.g. Ryan et al. 2014b). Bd-driven amphibian 
population declines are typically associated with mass die-offs (dozens to hundreds of 
individuals) at breeding sites, often occur at middle elevations, may effect stream species 
more than terrestrial species, and occur uniformly across the landscape (Bradley et al. 
2002; Lips et al. 2003; 2006). The apparent declines we have observed in the Arizona Toad 
do not necessarily fit the pattern of a Bd outbreak. For example, during the period of time 
when Bd moved through New Mexico causing declines in the Chiricahua Leopard Frog, 
there were no reported incidents of mass die-offs of the Arizona Toad (e.g. Ryan et al. 
2014b). In addition, extant toad populations occur in scattered localities across the Gila 
Region from low to high elevations (Fig 6), which do not conform to a Bd-decline spatial 
pattern. Furthermore, even though Bd has been detected in the Arizona Toad, prevalence 
rates are low (Ryan et al. 2014b) and many amphibian species can exist with Bd but not 
show signs of decline (e.g. Lannoo et al. 2011; Olson et al. 2013). While we cannot 
conclusively rule out Bd as a causative or contributing agent of the apparent declines in the 
Arizona Toad, other factors such as land-use change or climatic factors appear to be driving 
declines (Ryan et al. 2014a). 

One major contribution provided by the 2015 work is the call behavior –
environmental variable analyses. For the first time we were able to quantify which abiotic 
factors regulate call behavior and intensity for the Arizona toad. Of the factors we 
measured, only stream flow (cfs) regulated calling behavior. For each river analyzed, (i.e. 
the Gila, Mimbres, and San Francisco Rivers), we estimated a maximum flow threshold for 
call detection (Table 4). These analyses confirm that the Arizona toad is highly sensitive to 
water levels and cease calling and breeding if flows reach this threshold. The lack of calling 
during high flow rates may be due to adult toads and/or freshly laid eggs being vulnerable 
to displacement downstream. 

Tadpoles are also highly vulnerable to extreme shifts and increases in stream flow 
caused by flashflood events. Arizona toad tadpoles appear to require relatively shallow, 
slow flowing stream stretches, avoiding more rapid run types of flow habitats under 
normal flow conditions (Table 5). The avoidance of rapidly flowing habitats in our habitat 
selection analysis supports the inference of tadpole vulnerability to shifts in flow. This was 
confirmed in 2013 and 2014 when we observed a complete loss of tadpoles along the 
Mimbres and San Francisco Rivers following floods (Ryan et al. 2014a); and again in 2015 
along the San Francisco River and Pueblo Creek when a series of severe thunderstorms 
moved across the western Gila in July causing flooding. From our post-flood surveys all 
tadpoles were lost at these sites resulting in reproductive failure. 
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It is important to emphasize that call detection and tadpole presence does not equal 
reproductive success in a given year (e.g. Richter et al. 2003). Of the 17 sites we monitored 
through the summer of 2015, only six had toadlets emerge, confirming reproductive 
success. The combination of summer flooding, and conversely drying, of aquatic habitats in 
the spring often resulted in reproductive failure. This has important implications for long-
term local population trends and persistence if reproductive failure occurs over 
consecutive years. Because of the year-to-year variability in water levels in the Gila Region, 
the Arizona Toad epitomizes importance of occasional highly successful reproductive years 
as a long-term breeding strategy (e.g. Alford & Richards 1999; Green 2003). 

Prior to the 2015 work, there was little information on non-breeding upland habitat 
use in Arizona toads. Schwaner and Sullivan (2005) reported that Arizona toads could be 
found up to 200m from rivers. Our upland, non-breeding season surveys show that toads 
can be found up to 965 meters from their aquatic breeding habitats. This is significant 
because it greatly expands the buffer areas around breeding habitats that may need 
protection or management. 

The results presented in this report need to be examined in the context of the 
proposed Gila River Diversion Project and subsequent flow changes to the Gila River. The 
proposed diversion project would occur at Turkey Creek, and can potentially impact flow 
rates and habitat change up to 60 miles upstream (Schwaner & Sullivan 2009). This has the 
potential to negatively impact the largest Arizona toad populations in New Mexico. A side 
effect of riverine diversions in the southwest is the facilitation of the spread of the native 
Woodhouse’s toad, which may hybridize with, and threaten the persistence of the Arizona 
toad (Hammerson & Schwaner 2004; Sullivan et al. 2015). Currently, there is no evidence 
of hybridization between the Arizona and Woodhouse’s Toads in New Mexico. 

Future Directions 

The work presented in this report was collected over 3-years that experienced 
similar climatic conditions. The fact that 2013-2015 were climatically similar is useful 
because it provides inferences on toad occupancy and call behavior under comparable 
environmental conditions. Now that we have established a 3-year baseline, we are uniquely 
prepared to test the Arizona Toad’s response to the current extreme El Niño climatic event. 
To date, the current El Niño has produced high levels of rain and snow across the Gila 
Region; this is expected to continue through 2016 (NOAA Climate Prediction Center; 
http://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=2; 
accessed 16 Dec 2015).  

In December 2015, we visited five streams in the western Gila that have not had 
aboveground water flow for the last 4-years. These five streams are all flowing now due to 
the recent increase in precipitation. In addition, many tanks that were dried or had low 
water levels in 2015 are now filled with water. The fall and winter precipitation associated 
with the 2016 El Niño appears to have greatly increased the number of potential Arizona 
Toad breeding sites. Additionally, the excess water may prevent tanks and smaller streams 
from drying during the breeding season, potentially increasing regional reproductive 
success. 
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The continuation of sampling in 2016 will also allow us to further test the effects of 
stream flow on breeding behavior. We will continue to expand upon the tadpole habitat use 
study and further elucidate the movement patterns of adults in the breeding and non-
breeding season. 
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Publications and Abstracts 

To date we have published one paper in Herpetological Review and presented one 
talk at The Wildlife Society’s annual meeting of Arizona and New Mexico Chapters 
(February 2015). We have a manuscript in review and are preparing three additional 
manuscripts for submission to peer-reviewed journals. Listed below are the citations of 
manuscripts that are published or in preparation. 

 

Published: 

Ryan, MJ, IM Latella, CW Painter, JT Giermakowski, BL Christman, RD Jennings, JL 
Voyles (2014) First record of Batrachochytrium dendrobatidis in the Arizona toad 
(Anaxyrus microscaphus) in southwestern New Mexico, USA. Herpetological Review 45:616-
618. 

In Review: 

Ryan, MJ, IM Latella, JT Giermakowski, G Gustafson & HL Snell. Anaxyrus 
microscaphus. Diet. Herpetological Review. 

In Preparation: 

Ryan, MJ, IM Latella, JT Giermakowski. Range correction of the toad Anaxyrus 
woodhousii (Amphibia: Bufonidae) in southern New Mexico. Target Journal: Herpetological 
Conservation and Biology. 

Ryan, MJ, IM Latella, JT Giermakowski, G Gustafson. Toads eat the craziest things: 
diet of the Arizona Toad (Anaxyrus microscaphus) in New Mexico. Target Journal: Journal of 
Herpetology. 

Ryan, MJ, IM Latella, JT Giermakowski. The decline of another anuran in the 
southwestern United States? Recent population trends of the Arizona Toad in west-central 
New Mexico. Target Journal: Biological Conservation. 

Ryan, MJ, IM Latella, JT Giermakowski. The decline of another southwestern anuran 
species? Recent population trends of the Arizona Toad in west-central New Mexico. New 
Mexico & Arizona Chapters of The Wildlife Society annual meeting (Feb 2015). 
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Tables 

Table 1. Summary of calling intensity for sites sampled in 2015. A site was assigned to a 
category based on the highest calling intensity recorded during the March through April 
sampling. Intensity criteria are: 0 = no toads heard calling; 1 = individuals could be 
counted; 2 = calls overlapping but individuals can still be distinguished; 3 = full chorus, 
cannot distinguish individuals. 
 
Call intensity category 2014 

# Sites  
(% of sites) 

2015 
# Sites  

(% of sites) 

0 59 (65%) 54 (71%) 
1 15 (16%) 12 (16%) 
2 14 (15%) 6 (8%) 
3 2 (2%) 4 (5%) 

TOTAL 90 76 
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Table 2. Summary of PRESENCE analyses estimating probability of occupancy for 2015.  
Site Prob. 

Occupancy 
Prob.      
Occupancy (SE) 

95% Confidence 
interval 

Maximum 
Call Index 

Number 
of visits 

FS 150-1 0.0153 0.0171 0.0017-0.126 0 5 

FS 150-2 0.0153 0.0171 0.0017-0.126 0 5 

FS 150-3 1 0 1 1 5 

FS 150-4 0.0153 0.0171 0.0017-0.126 0 5 

FS 150-5 1 0 1 1 4 

FS 150-6 1 0 1 1 4 

FS 150-7 0.0239 0.0258 0.0028-0.1758 0 4 

NM 12-2 0.2148 0.0723 0.1056-0.3879 0 3 

NM 12-3 1 0 1 1 3 

NM 12-4 0.2079 0.0701 0.1023-0.3767 0 3 

NM 12-5 0.2079 0.0701 0.1023-0.3767 0 3 

NM 12-6 0.1476 0.0612 0.0626-0.3099 0 4 

NM 15-01 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-02 1 0 1 2 5 

NM 15-03 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-04 1 0 1 1 5 

NM 15-05 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-06 1 0 1 1 5 

NM 15-07 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-08 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-09 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-10 0.0153 0.0171 0.0017-0.126 0 5 

NM 15-11 1 0 1 1 3 

NM 15-12 1 0 1 1 3 

NM 15-13 0.025 0.0268 0.0029-0.1816 0 3 

NM 159-3 0.2931 0.0756 0.1687-0.4587 0 2 

NM 159-4 1 0 1 3 3 

NM 159-5 1 0 1 1 2 

NM 211-1 0.0128 0.0154 0.0012-0.1236 0 3 

NM 293 0.0128 0.0154 0.0012-0.1236 0 3 

NM 35-01 1 0 1 2 4 

NM 35-02 0.0228 0.0245 0.0027-0.1677 0 4 

NM 35-03 0.0153 0.0171 0.0017-0.126 0 5 

NM 35-04 0.0153 0.0171 0.0017-0.126 0 5 

NM 35-05 1 0 1 3 5 

NM 35-07 0.0153 0.0171 0.0017-0.126 0 5 

NM 35-08 0.0153 0.0171 0.0017-0.126 0 5 
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NM 35-09 0.2148 0.0723 0.1056-0.3879 0 3 

NM 35-10 0.2148 0.0723 0.1056-0.3879 0 3 

NM 435-1 1 0 1 2 3 

NM 435-2 1 0 1 2 3 

NM 59-01 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-02 1 0 1 3 4 

NM 59-03 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-04 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-05 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-06 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-07 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-08 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-09 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-10 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-11 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-12 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-13 0.1476 0.0612 0.0626-0.3099 0 4 

NM 59-14 0.1476 0.0612 0.0626-0.3099 0 4 

NM 61-1 1 0 1 3 5 

NM 61-2 1 0 1 2 5 

NM 61-3 1 0 1 1 5 

NM 61-4 0.0153 0.0171 0.0017-0.126 0 5 

NM 61-5 1 0 1 2 5 

NM 61-6 0.0153 0.0171 0.0017-0.126 0 5 

NM 78-1 1 0 1 1 4 

NM 78-2 1 0 1 2 4 

North Star Tank 0.2148 0.0723 0.1056-0.3879 0 3 

North Tank 0.2148 0.0723 0.1056-0.3879 0 3 

Rock Core Tank 0.2833 0.736 0.1627-0.4457 0 2 

Sawmill Tank 1 0.2918 0.0754 0.1678-0.4571 0 2 

US 180-01 0.0358 0.0369 0.0045-0.2316 0 3 

US 180-02 0.0358 0.0369 0.0045-0.2316 0 3 

US 180-03 1 0 1 1 3 

US 180-04 0.0358 0.0369 0.0045-0.2316 0 3 

US 180-05 0.025 0.0268 0.0029-0.1816 0 3 

US 180-06 0.1476 0.0612 0.0626-0.3099 0 4 

US 180-10 1 0 1 1 5 

US 180-11 0.2145 0.0707 0.107-0.3833 0 2 

US 180-12 1 0 1 2 4 
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Table 3. Ordinal logistic regression results of Arizona toad call intensity and call detection by environmental variables for all 
rivers and years combined (cfs = stream flow rate as cubic feet per second, P = p-value, asterisk denotes significant 
relationship).  
 

 Predictor variable Whole Model 
Pdf, N 

Whole Model Χ² Parameter P Parameter Χ² Parameter Estimate 

Call Intensity cfs *0.00471,223 7.98 0.0110 6.47 0.008 
 Cloud Cover 0.08631,307 2.94 0.1030 2.66 0.007 
 Temp C° 0.74661,184 0.10 0.7480 0.10 -0.01 
 Wind speed 0.09451,179 7.92 NA NA NA 
 % Moon Visible 0.05941,286 3.55 0.0611 3.51 0.007 
       

Call Detection cfs *0.00291,223 8.90 0.0075 7.14 0.008 
 Cloud Cover 0.13441,307 2.24 0.1476 2.10 0.006 
 Temp C° 0.75041,184 0.10 0.7499 0.10 -0.01 
 Wind speed 0.12821,179 7.14 NA NA NA 

 % Moon Visible 0. 08671,172 2.93 0.0874 2.92 0.007 
 
 
  



Page | 24  

 

Table 4. Ordinal logistic regression results of Arizona toad call intensity and call detection for Gila, Mimbres, and San Francisco 
Rivers for all years combined with stream flow summaries (asterisk denotes significant relationship; P = p-value; SD = 
standard deviation). **CFS values are estimated maximum stream flow for toad calling, above this level toads are not detected. 
 

 Predictor variable Whole Model 
Pdf, N 

Whole Model Χ² Parameter Estimate Mean CFS±STD 
(Range) 

**Mean CFS±SD 
for detection 

Call Intensity Gila 0.00011,106 36.06 0.04 149.3±51.0 
(222.6-4.67) 

NA 

 Mimbres 0.00091,50 10.93 0.34 12.3±9.2 
(23.3-3.2) 

NA 

 San Francisco 0.02581,66 4.97 0.21 18.0±23.1 
(88.1-3.2) 

NA 

       
Call Detection Gila 0.00011,106 38.51 0.05 149.3±51.0 

(222.6-4.67) 
79.6±9.0 

 Mimbres 0.00091,50 10.93 0.34 12.3±9.2 
(23.3-3.2) 

5.98±6.0 

 San Francisco 0.02621,66 4.94 0.21 18.0±23.1 
(88.1-3.2) 

20.4±15.3 

 
 



 

 

Table 5. Cattle tank and lake sites sampled for Arizona toads in 2015.  
Site Name Survey 

Type 
Call survey 

result 
Eggs/tadpoles 

observed 
Bullfrogs 
detected 

Tennessee Creek @ NM78 Call Present No Yes 
Indian Tank Call Present Yes No 

Lake Roberts Call Absent No Yes 
North Star Tank Call Absent No No 

North Tank Call Absent No No 
O-Bar-O Tank Call Present No No 

Rock Core Tank Call Absent No No 
Sawmill Tank 1 Call Absent No No 
Sawmill Tank 2 Call Absent No No 

Snow Lake Call Present No No 
Unnamed Tank on NM-59 Call Absent No No 

Wall Lake Call Absent No Yes 
Alexander Cienega Visual NA Yes No 

Alexander Tank South Visual NA No No 
Aspen Tank Visual NA No No 

Baney Park Tank Visual NA No No 
Bull Pass Tank Visual NA No No 

Burnt Cabin Tank Visual NA No No 
Cabin Tank Visual NA Yes No 

Collins Pasture Tank Visual NA No No 
Cooney Tank One Visual NA Yes No 

Deep Canyon Tank Visual NA No No 
Dutchman Tank Visual NA No No 
Five Spring Tank Visual NA No No 

Gap Tank Visual NA No No 
Gillette Tank East Visual NA No No 

Gillette Tank West Visual NA Yes No 
Gwynn Tank Visual NA No No 

Kennedy Mesa Tank Visual NA No No 
Loco Mountain Tank Visual NA No No 

Miner Tank Visual NA No No 
NF-94 West Tank Visual NA No No 

Pipe Tank Visual NA No Yes 
Potato Patch Tank Visual NA No No 

Sacaton South Tank Visual NA No Yes 
Slater Tank Visual NA No No 

Steer Mesa Tank Visual NA No No 
T Bar Duck Tank Visual NA No No 
Tennessee Tank Visual NA No No 

Trail Tank Visual NA No No 
Unnamed Tank (FR28 & 141) Visual NA Yes No 



 

 

Table 6. List of 17 sites monitored to determine whether eggs survived to metamorphosis, 
indicating successful reproduction in 2015. Emerging toadlets were observed at 37% of 
sites. 
 

Site Name Eggs or 
tadpoles 
observed 

Metamorphosed 
toadlets observed 

Reason for 
failure 

Indian Tank Yes No Tank dried 
Snow Lake Yes No ? 

Alexander Cienega Yes No Tank dried 
Cabin Tank Yes No ? 

Gillette Tank Yes No Tank dried 
Unnamed Tank (FR28 & 141) Yes No ? 

NM 78-2 Yes No Tank dried 
Pueblo Creek Yes No Flashflood 

Cooney Camp Yes No Stream dried 
US 180-6 Yes No Flashflood 

Mule Creek Yes No ? 
Cooney Tank 1 Yes Yes  

West Fork 1 Yes Yes  
West Fork 2 Yes Yes  

Black Canyon 1 Yes Yes  
Black Canyon 2 Yes Yes  

Hell’s Hole Yes Yes  



 

 

Table 7. Stream characteristics at different sections of habitat available to tadpoles. 
 
Section % 

Cobble 
% 

Sand 
Water Depth 
(Left-Center-

Right) 

Mean 
Water 
Depth 

Mean 
Wetted 
Width 

% 
Riffle 

% 
Run 

Tadpoles 
Present 

A 75 25 2.9 – 16.7 – 3.6 7.7±1.0 694.7±67.5 75 25 Yes 
B 26 74 4.4 – 18.9 – 4.7 9.3±1.3 1072±54.0 48 52 Yes 
C 100 0 5.2 – 23.0 – 5.0 11.1±0.8 451±24.4 100 0 Yes 
D 100 0 7.5 – 16.4 – 8.1 10.7±1.1 285±56.0 100 0 Yes 
E 73 27 4.8 – 20.1 – 5.7 10.2±1.9 1320±68.3 6 94 No 

 
  



 

 

Table 8. Logistic regression results of tadpole presence, which was set as the dependent 
variable. The results indicate whether a habitat characteristic increases likelihood of 
observing tadpoles. According to these analyses tadpoles prefer narrow stream sections 
that are dominated by riffle type flows. Substrate type is not a factor in use of habitat by 
tadpoles. 
 

Habitat 
Characteristic 

Whole Model 
Pdf, N 

Whole Model 
Χ² 

Parameter 
Estimate 

Association 

Mean Depth 0.02921,83 4.75 0.32 + 
Wetted Width 0.00011,83 93.89 0.37 + 

% Cobble 0.58381,83 0.03 0.00 - 
% Riffle 0.00011,83 62.97 -0.08 + 

  



 

 

Table 9. Summary of the means, standard deviations (SD), range, and sample sizes of four 
traits, and hybrid index of A. microscaphus and A. woodhousii from Grant and Sierra 
Counties, the only counties in New Mexico where the two species co-occur. 
 

 A. microscaphus A. woodhousii 

 Mean ± SD Range Sample 
Size 

Mean ± SD Range Sample 
Size 

Gila Region       
Dorsal Stripe 0.16 ± 0.44 0-3 202 3.00 ± 0.00 0 85 
Throat Spots 0.20 ± 0.46 0-2 202 1.57 ± 0.91 0-3 85 
Cranial Crest 0.73 ± 0.46 0-2 202 2.91 ± 0.27 2-3 85 

Pale-bar 0.18 ± 0.41 0-2 202 3.00 ± 0.00 0 85 
Hybrid Index 1.29 ± 0.87 1-4 202 10.49 ± 0.98 9-12 85 

       
Catron Co.       

Dorsal Stripe 0.17 ± 0.43 0-3 123 NA NA NA 
Throat Spots 0.23 ± 0.61 0-4 123 NA NA NA 
Cranial Crest 0.69 ± 0.46 0-2 123 NA NA NA 

Pale-bar 0.17 ± 0.39 0-1 123 NA NA NA 
Hybrid Index 1.21 ± 0.84 0-4 123 NA NA NA 

       
Grant Co.       

Dorsal Stripe 0.23 ± 0.60 0-3 34 3.00 ± 0.00 0 63 
Throat Spots 0.20 ± 0.47 0-2 34 1.52 ± 0.94 0-3 63 
Cranial Crest 0.88 ± 0.40 0-2 34 2.95 ± 0.21 2-3 63 

Pale-bar 0.32 ± 0.53 0-2 34 3.00 ± 0.00 0 63 
Hybrid Index 1.64 ± 1.01 1-4 34 10.47 ± 0.98 9-12 63 

  
Sierra Co.  

Dorsal Stripe 0.04 ± 0.20 0-2 23 3.00 ± 0.00 3 20 
Throat Spots 0.30 ± 0.55 0-3 23 1.65 ± 0.81 0-3 20 
Cranial Crest  0.65 ± 0.48 0-1 23 2.85 ± 0.36 2-3 20 

Pale-bar 0.08 ± 0.28 0-1 23 3.00 ± 0.00 3 20 
Hybrid Index 1.08 ± 0.90 0-3 23 10.50 ± 1.00 9-12 20 

 



 

 

Figures 

 
Figure 1. Summary of flow (cubic feet per second [cfs]) and precipitation for 2013—2015 for major rivers in the Gila region. 
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Figure 2. Call survey sampling summary by date for 2015. 
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Figure 3. Summary comparison of A. microscaphus call intensity surveys from 2013 to 2015. 
Call intensity represents the maximum intensity observed at a sampling locality. The 
number of sites sampled varied per year (2013: 59; 2014:90; 2015:76) but maximum call 
intensity is consistent among years. 
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Figure 4. Summary comparison of occupied and unoccupied sites from 2013 to 2015. Site 
occupancy was assessed from call surveys. 

  

0

10

20

30

40

50

60

70

80

90

100

Occupied Unoccupied Total Sites

N
u

m
b

er
 o

f 
Si

te
s 

Sa
m

p
le

d

2013

2014

2015



 

 

 
Figure 5. Estimates of detectability per each sampling period during 2015. Bars indicate 
standard errors. 
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Figure 6. Map of the study area indicating per-site detection probability. Black circles 
denote an occupied site (probability of occupancy is 1), whereas grey circles represent an 
estimated occupancy (see Results). Size of grey circle is proportional to the probability of 
occupancy. Note that majority of sites where toads were not detected have a low 
probability of occupancy (<0.25). 
  



 

 

A. Gila River 

B. Mimbres River 

C. San Francisco River 

Figure 7. Ordinal logistic regression plots of toad call intensity and stream flow for (A) Gila, 
(B), Mimbres, and (C) San Francisco Rivers. Closed circles are surveys where toads were 
not detected, open diamonds are surveys where toads were detected. See Table XX for 
results.   



 

 

A. Gila River 

B. Mimbres River 

C. San Francisco River 

Figure 8. Ordinal logistic regression plots of toad call detection and stream flow for (A) Gila, 
(B), Mimbres, and (C) San Francisco Rivers. Closed circles are surveys where toads were 
not detected, open diamonds are surveys where toads were detected. See Table XX for 
results.   



 

 

A. Mean Depth 

B. Wetted Width 

 

  



 

 

C. % Cobble 

 

D. % Riffle 

 

Figure 9. Heat maps of tadpole presence-absence per meter of stream by habitat 
characteristics. Red indicates high frequency of occurrence, blue indicates low frequency of 
occurrence, white indicate moderate frequency of occurrence.   



 

 

Figure 10. Contour graph showing density of observations by meters from water for non-
breeding season (June to August) Arizona Toad observations separated by type of habitat. 

  



 

 

Figure 11. Currently recognized distribution of A. microscaphus (black triangles) and A. 
woodhousii (white circles) in Catron, Grant, and Sierra Counties. 

  



 

 

 

Figure 12. Revised distribution of A. microscaphus (black triangles) and A. woodhousii 
(white circles) in Catron, Grant, and Sierra Counties. 

  



 

 

A. All specimens (P = 0.0001; Chi Square = 348.75; Estimate = -6.51) 

B. Grant County (P = 0.001; Chi Square = 125.66; Estimate = -7.29) 



 

 

C. Sierra County (P = 0.0001; Chi Square = 59.40; Estimate = -5.82) 

 

Figure 13. Hybrid index logistic regression plots of: A) all scored A. microscaphus (closed 
circles) and A. woodhousii (open circles) from the Gila; B) A. microscaphus (closed circles) 
and A. woodhousii (open circles) from Grant County; C) A. microscaphus (closed circles) and 
A. woodhousii (open circles) from Sierra County. These figures show the hybrid index break 
between the two species and logistic regression results in parentheses. The four A. 
microscaphus specimens with a hybrid score of four are discussed in the text.  
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