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Abstract

Methods for inferring species trees from gene trees motivated by incomplete lineage

sorting typically use either rooted gene trees to infer a rooted species tree, or use

unrooted gene trees to infer an unrooted species tree, which is then typically rooted

using one or more outgroups. Theoretically, however, it has been known since 2011

that it is possible to infer the root of the species tree directly from unrooted gene

trees without assuming an outgroup. The present work is the first that we know of

which attempts to infer the root of a species tree using unrooted gene trees as the

input data and without assuming an outgroup. It is hoped that this approach will

be useful in cases where an appropriate outgroup is di�cult to find and gene trees do

not follow a molecular clock. The method uses Approximate Bayesian Computation

vii



(ABC), and could also be useful when there is prior information that makes a small

number of root locations plausible in an unrooted species tree. This study also uses

the MLE method to compute the maximum value of the correct tree, which also uses

bootstrapping to support the MLE results. Also, this study makes a comparison

between using rooted gene trees and unrooted gene trees, both with and without

DNA sequences, for five and eight taxa. Finally, an original method developed in

this work is applied in an empirical study to data from Xi et al. (2014), and which

uses their hypothesis as part of the prior in the present study.

KEY WORDS: multispecies coalescent, outgroup, midpoint rooting, molecular

clock, identifiability, su�ciency, MLE, bootstrapping, DNA sequences.
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Chapter 1

Introduction

This chapter contains four sections, all of which briefly show the history of the field.

The first section explains rooted gene trees and unrooted gene trees as they occur in

phylogenetics. The second section discusses the history of Bayesian inference with

phylogenetics and the development of Approximate Bayesian Computation (ABC).

Section three deals with the maximum likelihood in this field. Finally, this chapter

concludes with a statement of this research.

Felsenstein (1981) goes over how techniques involving maximum likelihood are

applied for purposes of estimating how data for sequences of nucleic acid derives

evolutionary trees. He then develops a method for estimating ML, which he distin-

guishes from the probability that the tree itself is correct, and he shows this method

to be computable through certain available programs. He contrasts his method with

other types of algorithms, which he demonstrates provide highly flawed results.

In addition to the work on gene and species trees, many studies have also been

done to compute ML trees from DNA sequences (Huelsenbeck and Hillis, 1993; Kuh-

ner and Felsenstein, 1994; Huelsenbeck, 1995; Rosenberg and Kumar, 2001; Ranwez

and Gascuel, 2002). The programs used in these studies can recover the correct tree

1



Chapter 1. Introduction

data sets to simulate data more frequently than other methods could have shown.

As noted above, programs dealing with DNA sequencing problems are of the same

nature as those dealing with gene-tree and species-tree problems, since they involve

working with the same sort of molecular clock considerations.

A branching-process model involving probabilistics derives both an evolution-

ary tree and a model outlining DNA sequence evolution and change along the tree.

According to Felsenstein (1981), attempting a first-process model is impeded in a

number of ways. First, it requires both a process for speciation and one for extinc-

tion. It also requires a process which is particularly di�cult to model, involving the

selection of species from available candidates. Given such impediments, Felsenstein

opts out of using a probabilistic branching model for hypothesizing an evolutionary

tree, which he prefers to treat as an “unknown entity” (p. 369).

1.1 Gene Trees and Species Trees Background

A phylogenetic tree is called a species tree when it shows speciation events. It

depicts the gradually evolving relationships among the set of biological species that

share common ancestors. Species trees can be inferred through the data collected

from multiple genes. To find out the most recent common ancestors of a gene from

multiple species, a sample of genes is taken. Several examples illustrate how the gene

tree can di↵er from its species tree. Persistence of ancestral polymorphisms can lead

to this kind of di↵erence, which is also called deep coalescence (Maddison, 1997).

Two gene lineages coalesce (going backward in time) when they have a single ances-

tral gene as in Figure 1.1. The cause of deep coalescence is that gene copies from

di↵erent species might fail to coalesce in their most recent ancestral population. Ef-

fective population size and speciation time can a↵ect coalescence time. In coalescent

theory, species trees and gene trees are rooted phylogenetic trees (Wakeley, 2009),

2



Chapter 1. Introduction

whereas gene trees estimated from molecular sequences are typically unrooted trees

(Felsenstein, 2004).

Figure 1.1: A species tree (outer-lines) with genes (inner-lines) coalescing back in
time to a common ancestor gene (adapted from Nichols (2001), p. 359).

The Kingman coalescent model (Kingman, 1982) is a limiting case of the

Wright-Fisher model (Wright, 1931) in which there is an infinite population and

a reliance on continuous times. That leads to saying that under the Kingman model

coalescence time follows the exponential distribution with the rate determined by

the population size. The Kingman model is useful for determining the distribution

of the gene trees for specific species trees (Pamilo and Nei, 1988; Degnan and Salter,

2005).

There are several software packages that can simulate gene trees within species

trees such as SIMCOAL (Laval and Exco�er, 2004), ms (Hudson, 1983), and MaCS

(Chen et al., 2009). Csilléry et al. (2010) give a full section in their article about

the ABC software that researchers use for simulating gene trees. Fan and Kubatko

(2011) also in their work used ms program to simulate the gene tree. According to

Zhu et al. (2015), the program hybrid-lambda works to simulate the gene tree under

Kingman’s coalescent and other coalescent models. It deals with the specific sample

size of species in the population of genes and allows for di↵erentiation between gene

3



Chapter 1. Introduction

populations.

A lot of researchers like Nei (1987), Pamilo and Nei (1988), Rosenberg (2002),

Degnan and Salter (2005), and Degnan and Rosenberg (2009) dedicate much of their

research to the relation between species trees and gene trees by studying the origins

of species through the rooted gene trees. In a similar attempt to examine gene tree

history, Åkerborg et al. (2009), Liu et al. (2011), and Rasmussen and Kellis (2012)

focus their work on birth and death processes. Three important studies require

attention in order to fully understand the scope of research in unrooted gene-tree

topology from the multispecies coalescent. Larget et al. (2010), Liu and Yu (2011),

Mirarab et al. (2014), and Chifman and Kubatko (2014) focus on estimating the

unrooted species trees from the topology of unrooted gene trees. Allman et al.

(2011b) likewise studies the problem and reached a very important conclusion for

unrooted gene tree topologies for five taxa or more, which is that it is possible to

infer the rooted species tree topology by knowing the unrooted gene trees’ topologies.

Rannala and Yang (2003) derive the density of rooted gene trees by working

with the coalescence times and topologies. The methods described above use only

topologies of gene trees. The characteristics of unrooted gene trees under coalescence

still need development in order to fully understand the distribution of branch lengths.

Probabilistic model of DNA sequences, which evolve on gene trees, typically do

not depend on the root location under most models because mutation is assumed to

be reversible (Felsenstein, 1981). These considerations lead to phylogenetic programs

which return unrooted gene trees. One thing that impedes phylogenetic programs

from accurately rooting gene trees is the possible lack of an out-group or even of a

molecular clock. As such, they are forced to rely on DNA sequence data alone, which

produces limited results (Huelsenbeck et al., 2002; Boykin et al., 2010). A relaxed

molecular clock uses Bayesian statistics and the maximum likelihood methods to

provide a compromise between the molecular clock and the many-rates model, using
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MCMC techniques to determine the parameters (Felsenstein, 2001). Even with rates

of variation inside of lineages, such approaches can give accurate time estimates when

a strict molecular clock is not applicable (Drummond et al., 2006).

In their analysis of the phylogenetic isolate Orcuttieae, Boykin et al. (2010) note

that, while the outgroup method is most often used for phylogenetic tree rooting, it

has a number of drawbacks and, as such, must be substituted with other methods,

such as midpoint rooting, when data for an outgroup cannot be identified or is

otherwise not available. To perform midpoint rooting, it is first necessary to estimate

the ML tree. It is then necessary for the root to be placed on middle point of the

ML tree’s longest branch, assuming that the terminal at taxa at both ends have

evolved at the same rate (Boykin et al. (2010), p. 688). This assumption, paired

with the smaller number of taxa factored in, makes for a somewhat weak and at

times unreliable analysis (Boykin et al. (2010), p. 688).

In the past, researchers assumed that gene trees had to be rooted under the

coalescence model (Huang et al., 2010). However, the unrooted topological gene

tree could be considered the occasion when one of its rooted types happens (Heled

and Drummond, 2010). The formula (2n � 5)!! describes the number of unrooted

gene trees from n species. There are 2n � 3 possible edges where the root can be

located. According to Degnan (2013) as well as Degnan and Rosenberg (2006) the

gene tree topology and the species tree topology may be occasionally di↵erent from

each other (Degnan and Rosenberg, 2009). The authors refer to this condition as “the

anomaly zone” if the most likely gene tree has a di↵erent topology than the species

tree. In fact, there are no anomalies for the rooted species trees of three taxa or

for unrooted species trees of four taxa (Degnan and Rosenberg, 2009; Allman et al.,

2011b; Degnan, 2013). The probabilities of the unrooted gene tree can be found by

the sum of the probabilities of the rooted gene trees with the same unrooted topology.

The random variable of rooted gene trees follows a distribution which depends on
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the species trees under the multispecies coalescent model. Figure 1.2 and Figure

1.3 provide graphic illustrations of the following formula: P (U1)=P (T1)+P (T2)+

P (T3)+P (T4)+P (T5)+P (T6) +P (T7).

Figure 1.2: The unrooted gene trees topologies for 5-taxa species

By nontrivial splits, the topology of unrooted gene trees divides the taxa

into two sets, which happens by removing one interior edge of the unrooted tree.

Accordingly, “A set of all taxa descended from a node in a rooted tree forms a clade,

the rooted analog of a split” (Allman et al. (2011b), p. 838). When separated, the

interior branch or interior node of taxa in the phylogenetic trees connecting to two

connected parts shows bipartition or split (Salichos et al., 2014). Both Semple and

Steel (2003) and Chifman and Kubatko (2014) define a split in phylogenetics as the

division of two exhaustive subsets of taxa that do not share any set members. All

these definitions explain how the idea of the split would occur and also clarifies that

the intersection between the two splits are empty because each one has the specific

property that the other split does not have. For five taxa, it is evident that there are

two taxa together on one side and the rest on the other side like AB|CDE, AC|BDE,

which is clearer in reference to Table 2.1, taken from the Allman et al. (2011b) paper.

It is also evident that there is no di↵erence between the splits A|B and B|A (Semple

and Steel, 2003).
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Figure 1.3: All shapes of rooted gene trees topologies for five taxa with the same
unrooted topology as U1 in Figure 1.2.

Allman et al. (2011b) notes that, if the probabilities of the unrooted gene

topologies are known, then it is possible to get the topology of the rooted species

tree. Figure 1.2 shows the topology of an unrooted gene tree for five taxa, which,

according to Allman et al. (2011b), can be used to determine the topology of the

rooted species trees. Figure 1.3 shows all seven of the possible rooted trees obtained

by rooting the tree in Figure 1.2. Figure 1.4 similarly clarifies how it is possible to

distinguish rooted gene trees from unrooted gene trees.

Box 1 of Figure 1.4 displays how the rooted gene tree appears when the root

occurs on branch E of the unrooted gene tree. Then the unrooted gene tree topology

gives the first rooted gene topology. In box 2 the point on the branch of D also leads to
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the second rooted gene topology from the unrooted gene-tree topology. Box 3 shows

the third shape of the rooted gene topology from the unrooted gene-tree topology.

Box 4 presents the last caterpillar shape derived from the unrooted gene topology,

when a point appears to Branch A, thus giving a rooted gene topology. A rooted

caterpillar topology can be defined as a resolved tree in which every interior node has

at least one leaf as its immediate descendant. In the topology of the unrooted gene

tree in box 5, a point appears to Branch C, thus giving a rooted gene-tree topology,

which is a unique shape called a pseudocaterpillar. In box 6, when A, B, and C

coalesce with each other, the point in the branch between them and the coalescence

of D and E gets the shape of species tree 6, called balanced. Finally, D, E, and C

coalesce, and A and B coalesce. Then a point appears in the branch between them,

thus giving a rooted gene-tree topology based on the unrooted gene-tree topology.

According to Drovandi and Pettitt (2012) and Robert (2016), ABC methods

in statistics have become increasingly popular across the scientific fields in the last

fifteen years, from epidemiology (Blum and Tran, 2010), to biology (Drovandi and

Pettitt, 2011), to population genetics (Beaumont et al., 2002), since such methods

proceed from model to data (inverting the more traditionally intuitive data to model),

thus allowing statisticians to produce models that are increasingly more realistic and

can handle evaluations that were previously deemed too computationally expensive,

since they can now handle models that are capable of dealing with intractable like-

lihoods, for example, those which “cannot easily be completed or demarginalized by

the introduction of latent or auxiliary variables” and which “cannot be estimated by

an unbiased estimator” (Robert, 2016, p. 185).
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Figure 1.4: Unrooted gene-tree topology verses rooted gene-tree topology for 5 taxa

1.2 Approximate Bayesian Computation (ABC)

Background

Bayesian approaches have a strong relationship with and are very similar to like-

lihood approaches. The main di↵erence between the two approaches is that the

Bayesian methods use the prior distribution but the likelihood methods do not deal

with the prior distribution. In phylogenetics, there is a prior for the tree. Accord-

ing to Felsenstein (2004), Gomberg (1966) approved of the Bayesian method toward
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inferring phylogenies using traits of species, which are modeled using a Brownian

motion process. An important note for this paper is that it was an influential but

not a published manuscript. The first appearance of the Bayesian methods in the

phylogenetics field was in 1970.

Edwards (1970) was the first one who published the Bayesian approaches in this

field, and he argued in favor of the ability of expecting the random patterns of

branching and extinction on the tree, but that was not practical mathematically.

Farris (1973,9) published two papers to support his discussion about the validity of

the parsimony method by focusing on building basically a Bayesian model. Harper

(1979) computed the probabilities of groups of species by using the Bayesian method,

which takes information from back in the history of a clade. A clade can be defined as

“A group of organisms that comprises the last common ancestor of these organisms

and all extant and extinct descendants of that ancestor is called clade” (Sues (2016),

p. 56). Wheeler (1991) discussed the correct evaluation for di↵erent data of phyloge-

nies, which is taken from specific trees under the general parsimony. According to his

assumption any step of using parsimony methods leads to the likelihood to decrease

the factor of e. Smouse and Li (1987) similarly make the prior claim in the place of

the individual three-tree topology and also calculate the posterior probabilities by

the likelihood function also on the same three-tree topology; all this work was done

with three taxa for rooted trees but they were not placed on the prior happening

during the periods of the inside nodes for the tree. In its place, they also maximized

the likelihoods to complete these and appropriated the outcomes for example of the

likelihoods aimed at the tree topologies.

Most researchers who had discussed previously found it di�cult to use Bayesian

inference in full in phylogenetics. After all those researchers, Rannala and Yang

(1996) got involved with their attempt to study the fully Bayesian model where they

proposed the prior on the trees to be based on the birth-and-death process and to
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analyze the DNA sequences by assuming the molecular clock.

Studies using Bayesian statistics in the field of phylogeny have led to a move-

ment to further study the method of Approximate Bayesian Computation (ABC). A

number of evolutionary biologists summarize its foundations and basic applications

(Beaumont et al., 2010; Csilléry et al., 2010; Bertorelle et al., 2010). Woodhams

et al. (2016) in their study give more elaborate examples about how to apply ABC

to evolutionary biology. The examples are produced in two di↵erent types of simula-

tions. The first type is the number of hybrid speciation events. The other one is the

coalescence rate. They give an example using eight species of yeast, which come from

a 106-gene data set from Rokas et al. (2003). 50% of the genome is taken from one

parent; the simulation work in eight taxa and 106 gene trees allows for hybrid speci-

ation events alone. The simulation is based on the coalescence rates and the hybrid

speciation. They choose the iteration of simulation 100,000 after initial analyses.

They used the method of ABC on the data of Rokas et al. (2003) according to the

proposal of Fearnhead and Prangle (2012). Accordingly, the independent variable is

the data set of simulation; the response variable is the logarithm of the coalescence

rate. This is the way to produce the response variable, which is the log coalescence

rate. This is also the same summary statistic that gave the hybrid speciation number

of prediction. The result of the simulation parameters for ABC in Woodhams et al.

(2016) conform to the output in Rokas et al. (2003), which consists of the yeast data

set in 106 gene trees and eight species.

In population genetics, most regularly-used models include an enormous num-

ber of nuisance parameters which can be estimated through Bayesian methods (Shoe-

maker et al., 1999). BEST (Bayesian Estimation of Species Trees (Liu and Pearl,

2007)) and ?BEAST (Bayesian Evolutionary Analysis Sampling Trees (Heled and

Drummond, 2010)) are well-known approaches in species tree estimation. Using the

coalescent model as the prior, BEST uses the program MrBayes to estimate the joint
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posterior distributions of gene trees and species trees using Markov chain Monte

Carlo (MCMC) for species trees as does ?BEAST but with slightly di↵erent priors.

Both BEST and ?BEAST can use multilocus DNA sequence data as input but both

are time consuming. There are other time e�cient approaches such as STAR (species

tree estimation using average ranks of coalescences (Liu et al., 2009)) and STEAC

(species tree estimation using average coalescence times (Liu et al., 2009)). Approx-

imate Bayesian Computation (ABC) is another good approach (Fan and Kubatko,

2011). The procedure of ABC is to simulate the data sets several times by using

the prior distribution and then su�cient statistics or summary statistics are com-

puted. If the distance is very close between the simulated su�cient statistics and

the observed su�cient statistics, then the simulated parameters are accepted.

In addition, ABC is used as the second method with the Bayesian model and the

summary statistic method. The rejection-sampling model for simulating a posterior

for a parameter � is explained by Tavaré et al. (1997), which makes them the first

researchers who introduced the ABC method. The ABC method assumes a prior

distribution for �. Moreover, they used some summary, S, for the probability of

observing the data be calculated and �0 is drawn from the prior for �. After that,

work is done on the rule of how to accept �0 that has to work under this rule

P (S=s|�0) > cU with care given to the fact that U is the uniform distribution and

c is the constant, which satisfies the condition c < maxP (S = s|�). These steps are

reiterated several times, and the use of values acceptable for �0 in order to form an

estimate of the posterior distribution of �. Besides that, this approach is limited,

since under this simple setup, it needs P (s = s |�) to be easily calculated and the

maximum range to be �. Fu and Li (1997) develop this method by changing the

accepted criterion P (S=s|�0) > cU by pairing the observed statistic and the values,

which calculate the posterior probability for all of the data set. In addition, Weiss

and von Haeseler (1998) disseminate this model to several summary statistics and

simulate �0 values using a network, so it has become the accepted norm ks0�sk  �,
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where both of the s0 and the s counts as vectors, tolerance � and for several metrics

k.k. Pritchard et al. (1999) corrected the problems with the model of Weiss and

von Haeseler by simulating � from the prior distribution. But it has the restriction,

which is that only a small number of summary statistics can be used. There are

two developments produced from Beaumont et al. (2002) into the approach, which

are the smooth weighting and the regression modification. This is the reason for

raising the insensitivity from the approximate tolerance � and allowing the use of

more summary statistics. Moreover, the results become strong and accurate for

summary statistics when used with the MCMC method, with which it is available

to compare. Beaumont et al. (2002) studied the application of ABC to complex

problems in population genetics.

Jensen et al. (2008) used the ABC method as an example to find the rate of

selective sweeps in the sequence data of populations of the fly called Drosophila

melanogaster. They also infer the relation of the parameters in regression, depend-

ing on the ABC model, and they find the sweep rate by using forward simulations in

Drosophila melanogaster data. Csilléry et al. (2010) note that, even though the ap-

plication of ABC models is itself easy, the process of making inferences still requires

time-consuming steps which vary from situation to situation. Since data sets are

often small or elliptical, tests must always keep in mind the potentially large mar-

gins of error. Buzbas and Rosenberg (2015) propose the idea of the Approximate

Approximate Bayesian Computation (AABC). This is a class of mathematically pos-

sible ways to extend the ABC model spaces and provides an alternative to ABC in

cases when the sample size is too small for ABC to process it. Since the margin of

error for AABC is greater than it is for ABC, it should not be considered an alter-

native in cases when ABC can be used. ABC and AABC both use a mechanistic

model for inferring model-specific parameters. However, ABC uses likelihood only

derived from that mechanistic model, while AABC uses likelihood derived from a

non-mechanistic model that simulates data from the mechanistic model.

13



Chapter 1. Introduction

Fan and Kubatko (2011) propose an ABC-inspired algorithm, which they call

ST-ABC to estimate rooted species trees based on previous knowledge of rooted gene

trees and to estimate the branch lengths of those rooted gene trees. The procedure

of ABC is to simulate the data sets several times by using the prior distribution.

After that, su�cient statistics are computed. If the distance is very close between the

simulated su�cient statistics and the observed su�cient statistics, then the simulated

parameters are accepted. They did the simulation by using the COAL program

developed by Degnan and Salter (2005). Symmetric and asymmetric species trees

served as subjects of the two types of simulations, and various branch lengths were

taken into account, as were a number of sample sizes. The two sources of empirical

data were yeast genes from seven taxa and primate genes from four taxa. According

to their research, the posterior distribution of the parameters is estimated by the

accepted values from the ABC method.

According to Buzbas (2012), they did not apply the ABC method correctly,

and as such, it is not a reliable representative of ABC statistics. Since a proper ABC

algorithm follows a di↵erent set of steps than Fan and Kubatko’s methodology does,

their proposed ST-ABC might not accurately produce a distribution which is similar

to genuine posterior distributions or which reveals the actual species tree. This is

because they compute the probability of the data under species trees sampled from

the prior rather than simulating data sets. Buzbas (2012) furthermore claims that

the work of Fan and Kubatko (2011) is not a reliable representative of ABC statistics

because of its inability to correctly sample the posterior distribution; Buzbas devel-

ops this claim in his theoretical explanation which draws on three-taxon examples.

A proper ABC algorithm follows a di↵erent set of steps than Fan and Kubatko’s

methodology does.

Kubatko and Fan (2013) respond by acknowledging that Buzbas was partly

correct in his criticism because they use a computed distribution to make predictions
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about how much the observed data should resemble the data simulated from the prior

distribution. However, they emphasize that their algorithm (Fan and Kubatko, 2011)

is not identical to that of a genuine ABC and that it is unreasonable to expect it to

perform in the same way, as it is merely meant to perform a similar function when

ABC is not available for application.

Nonetheless, Buzbas forces them to consider refinements to their theory, such

as proposing the ST-ABC-CORRECTED algorithm. This algorithm requires con-

tinually estimating gene trees for sampled data sets. However, they ultimately do

not recommend using such an algorithm because it would negate the e�ciency gain

of their original ST-ABC algorithm, and as such, they do not consider it useful.

An ABC method can deal with data simulated by models with noisy param-

eters. The combination of summary statistics and Bayesian statistics provides the

advantages of computational convenience with resolving multiple parameter prob-

lems.

1.3 Maximum Likelihood Estimate (MLE) Back-

ground

Felsenstein (2004) recaps the history of likelihood methods starting with Edwards

(1964), who introduced likelihood methods dealing with phylogenies for purposes of

understanding the data of gene frequency. Felsenstein then discuss how Neyman

(1971), who was originally critical of the use of likelihood methods, was the first to

apply them to molecular sequences. Felsensten concludes by mentioning those who

built on this, including the work of Kashyap and Subas (1974), as well as his own

work, which applies to nucleotide sequences.

Knowles and Kubatko (2011) call attention to the fact that estimates for ML
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species trees can be obtained in two successive stages. In the first of these stages,

when working with a multi-locus data set for any given species tree, the evaluation

of the likelihood function must be applicable. In the second stage, which relies on

the success of the first, it is necessary to develop a method for locating a likelihood

maximizing tree by combing through the array of possible species trees within a given

space.

They go on to discuss the application of a likelihood function to both species

trees and gene trees. The likelihood of species trees is computed in a variety of ways

depending on whether the sample merely involves gene tree topologies, a gene tree

topology with branch lengths, or multi-locus sequence data, whereas the likelihood

of gene-tree data involves gene-specific DNA sequence data.

Two character-state methods which are of particular usefulness are the max-

imum parsimony (MP) method (Eck and Dayho↵, 1966) and the maximum likeli-

hood (ML) method (Felsenstein, 1981). According to the parsimony method (Eck

and Dayho↵, 1966), trees derived from fewer changes are more probable. As such,

the method prefers to hypothesize the smallest number of mutations that can be

used to account for any evolutionary change. According to the maximum likelihood

method (Felsenstein, 1981), preference is not given to the smallest number of mu-

tations; instead, preference is given to the mutations with the highest probability

of working together to produce the observed data, according to stochastic models

of nucleotide sequences. The best maximum likelihood estimate (MLE) for a tree

can be determined by choosing the highest value of the MLE, which usually hap-

pens by estimating the ML of the branch lengths for specific tree topology and DNA

substitution model. This process is done many times with other topologies (Felsen-

stein, 1981). The MLE method has an established statistical foundation (Felsenstein,

1981; Goldman, 1990) and is strong at restoring the true topology of trees by using

a computer simulation study (Fukami-Kobayashi and Tateno, 1991; Hasegawa et al.,
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1991). Bouckaert et al. (2014); Ronquist et al. (2012), and Alfaro et al. (2003) use

the frequentist parametric approach to estimate tree phylogeny. They try to find the

substitutes of the Bayesian and nonparametric approaches to estimate trees. The

argument they make about its e�cacy is part of a long tradition in the biology lit-

erature. Rogers (1997) and Yang (1994) developed the ideal characteristics of the

MLE of asymptotic properties. The problem that they encountered was consistency.

Yang (1994) has developed a guide to assess the consistency of ML trees that reflect

the complexity of the problem.

Another important feature of the ML method is that it can calculate the dif-

ferent models of evolutionary trees in a statistical framework. In the last five years,

many notable programs have been developed to also infer species trees. Wu (2012)

introduces a new algorithm for species tree inference based on maximum likelihood.

The likelihood is based on probabilities of rooted gene tree topologies. He compares

his algorithm to the algorithm of Degnan and Salter (2005), and finds his algorithm

is faster. He called his algorithm STELLS (which stands for Species Tree InfErence

with Likelihood for Lineage Sorting). The methods used by Yu et al. (2011) and

Yu et al. (2013) rely on hybridization as well as incomplete lineage sorting (ILS).

Yu et al. (2013) try to solve the inference problem by exploring the space of phylo-

genetic networks, which they accomplish by using search heuristics in the software

PhyloNet (Than et al., 2008). PhyloNet can infer species trees and networks using

probabilities of rooted gene tree topologies. Zhu (2012) discusses the developments

of Hybrid COAL, used for computing the probabilities of gene trees within a net-

work. He suggests looking at probabilistic modeling coalescence with sorting in the

lineages of hybrid species. In this work, trees always represent the relationships at

the genetic level, and so he represents the relationships between species through a

network instead of a tree.
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1.4 Assumptions

The present work employs ABC to estimate the rooted species tree topology while

pointing out that ST-ABC does not fit correctly in the Fan and Kubatko (2011)

paper about ABC, as suggested by Buzbas (2012), who claims that their ST-ABC

is not a reliable representative of ABC statistics because it might not accurately

produce a distribution which is similar to genuine posterior distributions or which

reveals the actual species tree. The present work uses simulation data with various

parameters and sample sizes to investigate the performance of the ABC approach.

The present work also extends the rest of the equations that Allman et al.

(2011b) mention in their article for five species, and both calculates them, and then

uses statistical tools, such as maximum likelihood and bootstrapping, for inference.

The present work, moreover, uses equations to compute the maximum likelihood

estimate (MLE); to calculate this, the present work uses the bootstrap analysis to

estimate support for the maximum likelihood species trees.
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Figure 1.5: Tree of all Chapters in the Dissertation.
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Chapter 2

Approximation Bayesian

Computation (ABC)

Figure 2.1: Example of counting topologies for 5-taxa species. Topologies T1, T2,
and T3 all have the topology U1 when they are unrooted.
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Chapter 2. Approximation Bayesian Computation (ABC)

This chapter explains the ABC method and the simulation study. It also

shows the results of this method for five and for eight taxa. Before starting with

explanations of the method and the simulation, it is necessary to explain the way

to calculate the topology and the split frequencies. An example is given in Figure

2.1, which is the first way to count the topology for unrooted gene trees and rooted

gene trees. The “n.topo.obs” is defined as a vector where the ith entry is the number

of times topology U
i

is observed. For example, the number of topologies observed

in “n.topo.obs” is (2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), where the first two

unrooted gene tree topologies are presented in the same way as the two rooted gene

tree topologies, and the third unrooted topology is presented as equal to the two

rooted gene tree topologies. The “n.split.obs” is defined as a vector where the ith

entry is the ith split based on the 10 splits listed in Table 2.1. The count of the

splits observed in “n.split.obs” is calculated as (3, 2, 0, 0, 1, 0, 0, 0, 0, 0), and the 3

comes from observing the split AB|CDE three times and ABC|DE twice. Lastly the

CD|ABE split occurs once.

2.1 Method

The general methodology for ABC is to first simulate from the prior distribution for

the parameter (in this case, a species tree with branch lengths), then to simulate data

from parameter (gene trees from species trees), and to record a distance between the

simulated data set and the observed data. In this project, the observed data as well

as simulated data consist of unrooted gene tree topologies. The distance computed

between the observed data and the simulated data depends on a choice of summary

statistic, and a few variations were used. For 5 taxa, there are only 15 unrooted

gene tree topologies, and it is possible to record how often each of the 15 gene tree

topologies occurs for both the observed and simulated data. A vector of topology
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counts therefore is a summary of the data which preserves all relevant information

in the sample. A variation is to instead record the splits that occur in a sample of

trees, counting how often each split occurs, but discarding information about which

split came from which tree. For five taxa, there are 10 possible splits.

For 8 taxa, there are 10,395 possible unrooted tree topologies. Having a vec-

tor of length 10,395 to record counts of how often each possible topology occurs is

impractical, and is an example of the di�culty of using ABC in high-dimensional

problems. Fan and Kubatko (2011) deal with this problem for 8 taxa by only record-

ing counts of the rooted gene trees occurring in the observed data, and then counting

the number of gene tree topologies in the simulated data that correspond to one of

the input trees. However, the number of distinct tree topologies can still be quite

high (Salichos and Rokas, 2013), and Fan and Kubatko (2011) found their approach

to be less accurate for trees with eight tips than for four, which might speculatively be

due to the dimensionality problem. consequently for 8 taxa, only splits are used, and

instead of recording counts of all possible splits, the symmetric di↵erence between

the set of splits in the observed data versus the simulated data is record. Details of

these algorithms are given below.

The data is composed of counts of L unrooted topologies for 5 taxa presented

in the observed data. The present work records “n.topo.obs”, which is the number

of times each unrooted gene tree topology was observed. The ABC algorithm for

inferring the rooted topology of the species tree involves steps 2-7. Step 1 is used to

simulate the observed data. Let G
n

denote the number of unrooted topologies for n

taxa.

Algorithm 1

1. Simulate the observed data by using the program Hybrid-Lambda (Zhu et al.,

2015) to simulate from the species tree, which is called “n.topo.obs”.

2. Start with j = 1.
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3. Simulate a species tree from the prior distribution of rooted species trees.

4. Simulate gene trees from the species tree sampled from the prior by using the

program Hybrid-Lambda; the vector of gene tree counts is called “n.topo.sim”.

5. Calculate D
j

.topo =
P

G

n

i=1(n.topo.obsi � n.topo.sim
i

)2

6. Increment j by 1 and repeat steps (2) – (5) J times.

7. Take the smallest ↵J values from step 5, then retain the species trees correspond-

ing to these smallest distances. These trees estimate the posterior distribution.

By finding a way to summarize the retained species trees it is possible to

estimate their topology. For example, in this study the ↵= 0.002 and J = 50, 000

were used to get the 100 trees with the smallest distances.

The present work infers the rooted topology of the species tree by summarizing

the posterior distribution of the species tree topologies. For species trees with a large

number of taxa, it is possible to use a consensus tree for the topology estimate.

The same method that was implemented for the topology counts can instead

use split frequencies of the gene trees. The data is summarized by the counts of

splits in L unrooted gene trees for 5 taxa presented in the observed data, which

is recorded as “n.split.obs”, and this is the number of times that each split was ob-

served. We let S
n

denote the length of the vector “n.split.obs” and the formula for S
n

:

S
n

=

8
>>>>>><

>>>>>>:

Pn

2�1

i=1

0

@ n

i

1

A+ 1
2

0

@ n

n

2

1

A if n is even

Pn�1
2

i=1

0

@ n

i

1

A if n is odd

The ABC algorithm, depending on the split counts, involves the following steps:

Algorithm 2

1. Simulate the observed data by using the program Hybrid-Lambda to simulate

gene trees, and count the splits in the gene trees which is called “n.split.obs”.
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2. Start with j = 1.

3. Simulate a species tree from the prior distribution of rooted species trees.

4. Simulate gene trees from the species trees sampled from the prior distribution by

using the program Hybrid-Lambda. The count of the splits is called “n.split.sim”.

5. Calculate D
j

.split =
P

S

n

i=1(n.split.obsi � n.split.sim
i

)2

6. Increment j by 1 and repeat steps (2) – (5) J times.

7. Take the smallest ↵ J values from step 5, then retain the sample species trees

corresponding to these smallest distances. Those trees estimate the posterior distri-

bution.

The above two algorithms were applied for trees with five taxa. For trees with

eight taxa, splits are recorded as multisets, which are sets that keep track of the

multiplicity of each element—the number of times each element of the set occurs,

involves the following steps:

Algorithm 3

1. Extract splits from the observed gene trees in to the multiset S
obs

.

2. Start with j = 1.

3. Simulate a species tree from the prior distribution of rooted species trees.

4. Simulate gene trees from the species trees sampled from the prior distribution by

using the program Hybrid-Lambda. Extract all splits from the simulated gene trees

into the multiset S
sim

.

5. Let D = |S
obs

\ S
sim

|+ |S
sim

\ S
obs

|

6. Increment j by 1 and repeat steps (2) � (5) J times.

7. Take the smallest ↵J values from step 5, then retain the sample species trees

corresponding to these smallest distances. Those trees estimate the posterior distri-

bution.

In these implementations of the ABC approach, the best ↵J species trees are

retained to estimate the posterior distribution. In original descriptions of the ABC
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algorithm, the idea was to accept simulated parameters when the distance satisfied

D < � where � was some tolerance. This approach leads to a random number of

parameters accepted in forming the posterior distribution. The alternative method

of retaining the best ↵J trees corresponds to setting � to be some quantile of the

observed distribution of D. This approach is used, for example, by Beaumont et al.

(2002) and Nunes et al. (2010). The latter authors give an example with J = 106

and ↵ = .01, leading to accepting 104 sampled parameters. We used J = 5⇥104 and

↵ = .002 to retain the best 100 trees.

The present work summarizes the posterior distribution of the species tree

splits to infer the rooted splits. The scripts and R code applied can be seen in their

entirety in Appendix A. To implement all calculations, this study employs a number

of scripts, including the R-Package (Ihaka and Gentleman, 1996). These can be seen

in their entirety in Appendix A.1, which displays the coding of the 5 taxa that are

used in this study. Moreover, Appendix A.2 displays the code that calculates the 5

taxa from the DNA. Finally, Appendix A.3 also shows the code used for calculating

the 8 taxa. All this script and code is used for calculating the posterior probability

and maximum likelihood estimation.

This study is similar to Fan and Kubatko (2011) in terms of estimating species

trees based on steps (2) to (4). However, in their study, they compute expected

counts of gene trees theoretically, whereas gene trees were simulated in order to

use a genuine ABC algorithm. This is also motivated by the fact that determining

the expected counts requires computing an entire gene tree distribution, which is

computationally expensive for larger trees (Degnan and Salter, 2005; Wu, 2012).

Second, the way that they computed the distance between the observed gene tree

and the simulated gene tree used the formula D
j

=
P

G

i=1
(n

obs,i

�n

exp,i

)2

n

exp,i

, whereas the

present study doesn’t divide by the expected counts (see step (5) in algorithms 1–

3. Third, they inferred the rooted species tree directly from rooted gene trees, but
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in this study rooted species trees are estimated by using the unrooted gene trees.

Finally, the priors used were restricted to locating the root of the species tree on an

unrooted tree. In their case, the prior for the species tree was based on trees that

were short distances from the input gene trees.

Table 2.1: The 15 unrooted topological gene trees for 5-taxa.

Tree Splits Probability
T1 AB|CDE, ABC|DE u1 = r1 + r2 + r59 + r60 + r67 + r76 + r105
T2 AB|CDE, ABD|CE u2 = r3 + r4 + r53 + r54 + r64 + r79 + r104
T3 AB|CDE, ABE|CD u3 = r5 + r6 + r47 + r48 + r61 + r88 + r103
T4 AC|BDE, ABC|DE u4 = r7 + r8 + r57 + r58 + r70 + r77 + r102
T5 AC|BDE, ACD|BE u5 = r9 + r10 + r41 + r42 + r65 + r82 + r101
T6 AC|BDE, ACE|BD u6 =r11 + r12 + r35 + r36 + r62 + r91 + r100
T7 AD|BCE, ABD|CE u7 = r13 + r14 + r51 + r52 + r71 + r80 + r96
T8 AD|BCE, ACD|BE u8 = r15 + r16 + r39 + r40 + r68 + r83 + r95
T9 AD|BCE, ADE|BC u9 = r17 + r18 + r29 + r30 + r63 + r94 + r97
T10 AE|BCD, ABE|CD u10 = r19 + r20 + r45 + r46 + r72 + r87 + r89
T11 AE|BCD, ACE|BD u11 = r21 + r22 + r33 + r34 + r69 + r86 + r92
T12 AE|BCD, ADE|BC u12 = r23 + r24 + r27 + r28 + r66 + r85 +r98
T13 BC|ADE, ABC|DE u13 = r25 + r26 + r55 + r56 + r73 + r78 + r99
T14 BD|ACE, ABD|CE u14 = r31 + r32 + r49 + r50 + r74 + r81 + r93
T15 BE|ACD, ABE|CD u15 = r37 + r38 + r43 + r44 + r75 + r84 + r90

The present work uses Table 5 in the appendix of Allman et al. (2011b), as

mentioned in Table 2.1. It is then necessary to take this table to follow it as a

guideline. The first column in Table 2.1 is T
i

where i is from 1 to 15, which indexes

the unrooted topology for each tree. The second column in Table 2.1 is the split of

each tree. The last column in Table 2.1 is the probability of each tree topology where

r
i

is the probability of the ith rooted gene tree topology and u
i

is the probability of

the ith unrooted gene tree topology (Allman et al., 2011b).
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2.2 Simulation

A set of 14 5-taxon rooted bifurcating trees was selected by taking 5 rooted bifur-

cating tree shapes from the caterpillar tree, 4 rooted bifurcating tree shapes from the

pseudocaterpillar tree, and 5 rooted bifurcating trees from the balanced tree to sim-

ulate the observation data. The species tree is the parameter, and the data consist of

the gene trees. The three rooted bifurcating tree shapes are shown in Figure 2.2. The

branch lengths used to simulate the observation data were (x, y, z) = (0.1,0.1,1.0),

(1.0,1.0,1.0), and (0.1,0.1,1.0) (Fig. 2.2). After simulating the observation data,

calculating the topology of the species, and recording them as observation topology

data, the simulation is called “n.topo.obs”. Furthermore, it is then necessary to

calculate the splits of the gene trees, which is called “n.split.obs”.

The second step is simulating data by using a prior. A uniform prior over the

7 trees with the same unrooted topology was used for the species tree topologies.

An exponential distribution with rate one was used for branch lengths of the species

tree. Once the data are simulated with those priors it is then necessary to compute

the vector of topology frequencies, which is called “n.topo.sim”. It is also necessary

to calculate the split frequencies, which is called “n.split.sim”.

All those simulations are done by using a Hybrid-Lambda program (Zhu et al.,

2015). The simulation is done primarily with J = 50, 000. For each repetition of J ,

a sample size of 100 genes was used. The value of ↵ was set to 0.002 so that the 100

best species trees were retained. The formula ↵J was used to determine the desired

number of species trees based on the smallest D
j

.
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Figure 2.2: The rooted bifurcating tree shapes for 5-taxa species

2.3 Results

An important definition in this study which is used to summarize the results is

as follows. The first thing is proportion correct, which refers to how many times

the simulation study matches the correct tree out of all iterations. The second is

the coverage probability, which refers to the percentage of times that the true tree

is included in the 90% credible interval. The number of trees in the 90% credibility

region (CR) refers to how many trees make the 90% CR even when this 90% CR

does not include the correct tree.

Figure 2.3 shows all of the 5-taxon species trees used in the present work,

including their branch lengths. Moreover, the first five species in Figure 2.3 have

the caterpillar species tree shape, and the second five in the figure shows the balance

species tree shape, and the last four species in the figure shows the pseudocaterpiller

species tree shape. Figure 2.3 clearly shows that, when the branch lengths are

di↵erent, the species trees look di↵erent.

To decide on a value of J , a pilot study was done with species tree 1. Table 2.2
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shows all di↵erent numbers of J ; the posterior probability using topology counts gives

a better result than the posterior probability using split counts. And it is also evident

that, when J=50,000 with 100 genes, it gives a higher posterior probability than for

J=10,000 with 500 genes although the computation time is the same. Therefore, J=

50,000 was used in subsequent simulations.

Table 2.2: Posterior probabilities times 100 for the seven possible root locations. The
posterior probability for the true tree is in bold.

J No. of Gene Posterior Probability Posterior Probability
of Topology Trees of Split Trees

1 2 3 4 5 6 7 1 2 3 4 5 6 7
50000 100 67 28 0 0 4 1 0 45 41 0 0 11 2 1
20000 100 56 32 0 0 6 3 3 42 34 3 1 12 4 4
10000 100 52 26 1 2 9 5 5 36 22 6 9 17 5 5
10000 500 56 40 0 0 0 3 1 47 45 0 1 1 4 2

Table 2.4 shows the result of the posterior probability of the topology of 5 taxa

for all species trees used in the simulation. The best match among the caterpillar

species trees is Species Tree 2, since it has the highest proportion correct at 90%,

the highest coverage probability at 100%, the highest average posterior probability

at 66.78% (for Posterior Species Tree 1), and the smallest credibility region at 2.4

trees. The second best match among the caterpillar species trees is Species Tree 1,

and the other species trees are di�cult to make inferences with, because they lack

either a high enough proportion correct, a high enough coverage probability, a high

enough average posterior probability, or a small enough credibility region.

The best match among the balanced species trees in Table 2.4 is Species Tree 7,

since it has the highest proportion correct at 65%, the highest coverage probability at

92%, and the highest average posterior probability at 28.74% (for Posterior Species

Tree 6); however, its credibility region of 5.26 is not the smallest among the balanced
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Table 2.4: Posterior Topology for Five Taxa without DNA
T
yp

e
of

T
re
e

S
p
ec
ie
s
T
re
e
(x
,y
,z
)

P
ro
p
.
C
or
re
ct

C
ov
er
ag
e
P
ro
b
ab

il
it
y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7

C
at
er
p
il
la
r (0.1,0.1,0.1) 0.76 0.96 53.62 23.96 2.40 2.60 7.26 7.46 2.7 3.04

(0.1,0.1,1.0) 0.94 1.00 67.66 20.8 0.30 1.64 4.04 4.7 0.86 2.4
(1.0,0.1,0.1) 0.50 0.96 40.10 34 0.56 0.56 15.48 3.94 5.36 3.32
(0.1,1.0,0.1) 0.47 1.00 36.06 33 0.28 0.36 1.3 28.86 0.14 3.06
(1.0,1.0,1.0) 0.36 0.94 25.34 25.32 2.10 2.82 9.46 28.08 6.88 4.14

B
al
an

ce

(0.1,0.1,0.1) 0.02 0.50 30.36 28.18 5.54 4.8 16.46 10.82 3.84 3.76
(1.0,1.0,1.0) 0.65 0.92 15.94 14.82 8.52 8.08 13.02 28.74 10.88 5.26
(0.1,0.1,1.0) 0.32 0.84 11.16 9.70 12.30 15.2 23.22 24.16 4.26 4.46
(0.1,1.0,0.1) 0.26 0.88 34.6 36.06 0.54 0.38 1.28 27.02 0.12 2.98
(1.0,0.1,0.1) 0.00 0.24 29.00 30.68 0.80 1.82 21.84 7.14 8.72 3.76

P
se
u
d
oc
at
er
. (0.1,0.1,0.1) 0.92 0.96 7.74 8.86 8.20 7.78 56.06 5.98 5.38 3.66

(1.0,1.0,1.0) 0.09 0.54 16.32 16.18 12.12 13.78 12.46 14.96 14.18 4.40
(0.1,0.1,1.0) 0.94 1.00 4.14 4.34 3.32 2.66 79.54 3.38 2.62 2.14

(0.1,1.0,0.1) 0.52 0.96 2.46 2.84 24.22 20.90 31.74 12.80 5.02 4.22

species trees. The balanced species tree which is the most di�cult to make inferences

with is Species Tree 10, because the proportion correct is as low as possible at 0%,

the coverage probability is very low at 24%, the average posterior probability is very

low at 7.14%; however, its credibility region of 3.76 is not undesirably large among

the balanced species trees.

The best match among the Pseudocaterpillar species trees in Table 2.4 is

Species Tree 13, since it has the highest proportion of correct matches at 94%, it is
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Table 2.5: Posterior Split for Five Taxa without DNA
T
yp

e
of

T
re
e

S
p
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s
T
re
e
(x
,y
,z
)

P
ro
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.
C
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C
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e
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y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7

C
at
er
p
il
la
r (0.1,0.1,0.1) 0.76 0.94 47.96 24.74 4.46 4.04 10.28 6.10 2.42 3.46

(0.1,0.1,1.0) 0.94 1.00 59.6 27.64 0.96 2.00 5.20 3.64 0.96 2.72
(1.0,0.1,0.1) 0.52 0.94 37.7 32.32 0.66 0.48 19.08 3.68 6.08 3.34
(0.1,1.0,0.1) 0.35 1.00 35.30 33.28 0.80 0.46 2.16 27.80 0.20 3.06
(1.0,1.0,1.0) 0.33 0.94 24.46 24.62 2.04 2.54 11.34 26.88 8.12 4.20

B
al
an

ce

(0.1,0.1,0.1) 0.00 0.34 27.78 26.60 7.06 7.60 19.00 8.86 3.10 4.14
(1.0,1.0,1.0) 0.72 0.92 15.76 15.26 9.08 8.08 12.06 28.84 10.92 5.40
(0.1,0.1,1.0) 0.40 0.84 9.54 9.36 14.60 15.90 23.16 23.62 3.82 4.62
(0.1,1.0,0.1) 0.36 0.94 33.68 33.22 1.10 1.14 2.12 28.58 0.16 3.16
(1.0,0.1,0.1) 0.00 0.22 28.28 29.14 0.80 1.58 24.32 6.34 9.54 3.86

P
se
u
d
oc
at
er
. (0.1,0.1,0.1) 0.76 1.00 9.74 10.60 10.52 10.88 48.8 4.72 4.70 4.14

(1.0,1.0,1.0) 0.10 0.56 16.34 15.60 11.94 13.38 13.04 15.84 13.84 4.52
(0.1,0.1,1.0) 0.96 1.00 7.00 7.20 6.12 5.38 66.96 3.64 3.56 3.52

(0.1,1.0,0.1) 0.56 0.94 2.44 2.52 24.30 23.24 30.54 12.38 4.50 4.22

included in all 90% of the coverage probability, and its posterior probability has an

average of 79.54% among the rest of the Pseudo-caterpillar species trees, which is the

smallest credibility region at an average of 2.14 trees. The second best match among

the Pseudo-caterpillar species trees is Species Tree 11. The posterior probability of

Species Tree 12 is the most di�cult to infer since it has a 9% proportion of matches

with the correct tree. Also the posterior probability of Species 12 has an average of

12.46, which is very small compared to the rest.

Table 2.5 shows the result of the posterior probability of the splits of 5 taxa
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for all 5-taxon species trees in the simulation. The best match among the caterpillar

species trees is Species Tree 2, since it has the highest proportion correct at 94%,

the highest coverage probability at 100%, the highest average posterior probability

at 59.12% (for the Posterior Species Tree 1), and the smallest credibility region at

2.7 trees. The second best match among the caterpillar species trees is Species Tree

1, and the other species trees are di�cult to make inferences with, because they lack

either a high enough proportion correct, a high enough coverage probability, a high

enough average posterior probability, or a small enough credibility region.

The best match among the balanced species trees in Table 2.5 is Species Tree

7, since it has the highest proportion correct at 72%, the highest coverage probability

at 92%, and the highest average posterior probability at 28.84% (for the Posterior

Species Tree 6); however, its credibility region of 5.4 is not the lowest desirable among

the balanced species trees. The balanced species trees which are the most di�cult to

make inferences with are Species Tree 6 and Species Tree 10, because the proportion

correct for each one is as low as possible at 0%, the coverage probability for each

one is very low at 34% and 22% respectively, the average posterior probability for

each one is very low at 8.86 and 6.34 respectively; however, their credibility regions

of 4.14 and 3.86 are not undesirably high among the balanced species trees.

The best match among the Pseudocaterpillar species trees in Table 2.5 is

Species Tree 13, since it has the highest proportion of correct matches at 96%, the

highest coverage probability at 100%, the highest average posterior probability at

66.96 (for the Posterior Species Tree 5), and the smallest credibility region at 3.52.

The second best match among the Pseudocaterpillar species trees is Species Tree 11,

and the other species trees are di�cult to make inferences with, because they lack

either a high enough proportion correct, a high enough coverage probability, a high

enough average posterior probability, or a small enough credibility region.

Upon comparing the posterior probabilities based on topologies versus splits, it
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is clear that the posterior probability based on splits gives a slightly lower probability

on average than the posterior probability based on topologies for the highest posterior

topology to match the rooted species tree. Also, the average number of trees in the

90% critical region in the posterior based on splits is more than it is for topologies,

according to the results that were obtained from the simulation number J = 50, 000

with 100 genes. The result of Species 2 from the caterpillar shape and Species Tree

13 from pseudo-caterpillar shape with the same branch length (0.1, 0.1, 1.0) have a

higher average posterior probability in topology and split cases; it is included in

all 90% CR, and it also has a higher percentage of matches with the true tree. In

two cases, the caterpillar trees and pseudocaterpillar trees agree in terms of branch-

length results, which are (0.1, 0.1, 0.1) and (0.1, 0.1, 1.0). Among all the rest of the

five species trees, Balanced Species Tree 10 with the branch length (1.0, 0.1, 0.1) is

the most di�cult to infer.

Figure 2.4 shows the correlation between posterior probabilities based on topol-

ogy counts vs. split counts of the topology matching the true tree and the posterior

probability of splits for trees matching the true tree for caterpillar trees. Inside each

chart of Figure 2.4 is the value of the correlation. Figure 2.4 shows everything from

Species 1 to Species 5, which demonstrates that the true tree has to be Tree 1 since

all five are caterpillar trees. According to this result, Species tree 1 has the higher

correlation value, which means it shows the strongest relationship among trees. From

among all the caterpillar trees, Species 4 has the lowest correlation between the pos-

terior probability of the topology and the posterior probability of the split, but there

is still a strong relationship between the posterior probability of topology for the true

tree and the posterior probability of the split for the true tree.

Figure 2.5 shows the correlation between posterior probabilities of the topol-

ogy matching the true tree using topology counts vs. split counts with balanced

trees. Inside each chart of Figure 2.5 is the value of the correlation. Figure 2.5
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shows everything from Species tree 6 to Species tree 10, which are all balanced trees.

According to this result, Species tree 7 shows the strongest correlation between all

of the balanced trees, and Species tree 6 shows the lowest correlation, but there is

still a moderate relationship between the posterior probabilities based on topologies

vs. splits. Therefore, Species Tree 7 has much evidence for the true species with this

branch length (((A:1.0,B:1.0):1.0,C:2.0):1.0,(D:2.0,E:2.0):1.0).

The relationship between posterior probabilities of matching the true tree using

topology counts vs. split counts with pseudocaterpillar trees is shown in Figure 2.6.

Inside each chart of Figure 2.6 is the value of the correlation. All species trees,

from Species Tree 11 to Species Tree 14, are shown in Figure 2.6, which are all

Pseudocaterpillar trees. According to this result, all the Pseudocaterpillar trees have

a stronger correlation with the posterior probabilities based on topologies counts vs.

splits counts. Therefore, Species Tree 11 has much evidence for the true species

with this branch length (0.1, 0.1, 0.1), which agrees with the highest correlation of

caterpillar tree with the same branch length.

Figure 2.4, Figure 2.5, and Figure 2.6 demonstrate that Species Tree 1, Species

Tree 7, and Species Tree 11 have the highest correlation between the topology and

the split posterior probability matching the true tree. At the opposite end of the

spectrum, Species Tree 6, from the balanced tree, has the lowest correlation among

all species, which leads to the conclusion that Species Tree 6 is the most di�cult to

infer with these branch lengths (0.1, 0.1, 0.1). Moreover, Species Tree 11, from the

Pseudocaterpillar tree, has the highest correlation when compared with all species

together, which leads to the conclusion that it is the best species with this branch

length (0.1, 0.1, 0.1), which agrees with the second highest correlation among all

others species trees that also agree with Species Tree 1 from the caterpillar tree with

the same branch length.

Figure 2.7 shows a correlation with the average posterior probability using
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topology counts versus split counts for 5-taxon trees. The line y = x is plotted so that

points below the line indicate that the posterior probability was higher using topology

counts rather than split counts as the summary statistic. Posterior probabilities

for the correct tree tended to be slightly lower when using splits, but are highly

correlated with posterior probabilities using topology counts – as shown in Figure

2.7 the correlation is larger than 0.99. There is a significant correlation between the

posterior probability of topology and the posterior probability of a split in matching

a correct tree in all of the species trees in this study.

2.4 DNA Sequences For Five species

The present study simulated DNA sequences by choosing the three 5-taxon species

trees, which are one caterpillar tree, one balanced tree, and one pseudocaterpillar

tree. Then, the present work applies the same ABC-algorithm (1 and 2) that is

used to simulate the regular five taxa from the caterpillar species tree, the balanced

species tree, and the pseudocaterpillar species tree. The present study uses the Seq-

Gen program (Rambaut and Grassly, 1997) to generate DNA sequences of length 500

nucleotides using an HKY + � model with base frequencies of 0.3, 0.2, 0.2, and 0.3

for A,C,G, and T , respectively. The PhyML program (Guindon and Gascuel, 2003)

was used to estimate the unrooted gene trees. After that is simulated, the ABC-

algorithm is applies to the five taxa of DNA sequences to calculate the posterior

probability using topologies and splits by using the same method used for five taxa

with known gene trees. Figure 2.8 shows the species trees with branch lengths that

this study uses.

35



Chapter 2. Approximation Bayesian Computation (ABC)

Table 2.6: Posterior Topology for Five Taxa with DNA sequences
T
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it
y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7
Caterpillar (0.1,0.1,1.0) 100 100 60.1 21.5 1.8 1.9 7.2 5 2.5 3.3
Balance (0.1,0.1,1.0) 0.35 100 6.4 7 21.4 20.4 19.6 20.8 4.4 5.4
Pseudo- (0.1,0.1,1.0) 100 100 8.1 6.3 5.9 7.8 61.3 5.3 5.3 4.9

caterpillar

2.4.1 Result

Tables 2.6 and 2.7 show the posterior probability using topologies and splits for

species trees with DNA sequences. From both tables, the present study displays that

the coverage probability for containing the correct species in all the iterations for all

types of species. Species Tree 2, which is the caterpillar tree with DNA sequences,

matches Tree 1, which is the correct tree 100% of the time, in the computation of

both the species topology and the species split. But the average posterior probability

for Species 2 in both the topology and split with DNA sequences is less than the

average probability for both the topology counts and the split counts without DNA

sequences, as shown in Table 2.4, Table 2.5, Table 2.6 and Table 2.7. Moreover, there

is no significant correlation between the topology and split for Species 2 with DNA

sequences where the p-value is 0.687, since the present study does it with a small

sample size, which is 10 iterations.

For species tree 8, which is a balanced tree, the proportion of matches for the

correct tree, which is Tree 6, is 35% with DNA sequences. For the split, the propor-
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Table 2.7: Posterior Split for Five Taxa with DNA sequences
T
yp

e
of

T
re
e

S
p
ec
ie
s
T
re
e
(x
,y
,z
)

P
ro
p
.
C
or
re
ct

C
ov
er
ag
e
P
ro
b
ab

il
it
y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7
Caterpillar (0.1,0.1,1.0) 100 100 49.5 21.2 4.9 4.9 11.3 5.1 2.9 4.4
Balance (0.1,0.1,1.0) 0.2 100 6.9 7.5 19.7 19.6 22.2 19.8 4.3 5.3
Pseudo- (0.1,0.1,1.0) 100 100 11 9.1 8.6 9.6 51.1 5.1 5.5 5.2

caterpillar

tion of correct trees for Species Tree 8, which is computed with a DNA sequence,

is less than the proportion of the correct tree for Species 8 without DNA, as seen

in Table 2.5 and Table 2.7. Also, the average posterior probability for Species Tree

8 in both the topology and the split with DNA sequences is less than the average

probability for both the topology and the split without DNA sequences, as shown in

Tables 2.4, 2.5, 2.6 and 2.7. Moreover, there is no significant correlation between the

topology and the split for Species Tree 8 with DNA sequences, where the p-value is

0.3845, since the present study does it with a small sample size, which is 10 iterations.

Species Tree 13 (a pseudocaterpillar shape) with DNA sequences matches the

correct tree by 100% of the time; it is also had coverage probability of 100% in both

topology counts and split counts. Moreover, the average of posterior probability is

the highest in both topology counts and split counts by 61.30 and 51.10 respectively.

There is no significant correlation between the topology and the split for Species 13

with DNA sequences, where the p-value is 0.067, since the present study does it with

a small sample size, which is 10 iterations. For these examples, inference of the cater-

pillar species tree and pseudocaterpillar species tree were improved using estimated
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rather than known gene trees, while inference of the balanced species tree was some-

what worse for estimated gene trees. Although estimated rather than known gene

trees typically make species tree inference more di�cult (Huang et al., 2010; Roch

and Warnow, 2015), it is possible to speculate that biases in estimated gene trees

(Huelsenbeck and Kirkpatrick, 1996) might lead to a gene tree distribution which

favors some trees at the expense of others, and to note that improved performance

in the anomaly zone using estimated gene trees rather than known gene trees has

been observed previously (Wang and Degnan, 2011).

2.5 Equal Branch length for 5-taxa

This section discusses applying the ABC method to a species tree with equal

branch lengths in order to investigate inferring the species tree. Also, it investigated

the e↵ect of having significantly longer branches, as well as having a star-shaped

species tree with all internal branches having length 0. The caterpillar and balanced

tree topologies were simulated with x = y = z = 0, 0.1, 0.5, 1.0, 2.0, and 3.0 using

the same settings as before, with J = 50, 000, and to retain the best 100 proposed

species trees, with 50 replicates for each combination of topology and branch lengths.

When all branches have the same length, and are long in coalescent units, there is

less variation in the gene trees. In this case, a large number of gene trees have the

unrooted topology ((a, b), c, (d, e)), which matches the unrooted topology of all of

the species trees in the prior. If all gene trees have this topology, then there should

be little or no information in the data to determine the correct rooted species tree.

In this case, it is possible to expect that the highest posterior probability tree would

be equally likely to be any of the seven trees in the prior.
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Table 2.8: Posterior Topology for Five Taxa Equal Branch Length
T
yp

e
of

T
re
e

S
p
ec
ie
s
T
re
e
(x
,y
,z
)

P
ro
p
.
C
or
re
ct

C
ov
er
ag
e
P
ro
b
ab

il
it
y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7

C
at
er
p
il
la
r (0.0,0.0,0.0) 0.27 0.64 21.24 0.00 21.22 24.44 20.14 8.52 4.32 4.32

(0.1,0.1,0.1) 0.76 0.96 53.62 23.96 2.40 2.60 7.26 7.46 2.70 3.04
(0.5,0.5,0.5) 100 100 64.70 0.00 0.00 0.02 2.82 31.5 0.96 2.06
(1.0,1.0,1.0) 0.36 0.94 25.34 25.32 2.10 2.82 9.46 28.08 6.88 4.14
(2.0,2.0,2.0) 0.00 0.46 10.64 0.00 8.96 8.74 9.76 42.5 19.38 4.92
(3.0,3.0,3.0) 0.00 0.14 8.08 0.00 7.30 7.64 7.04 45.94 23.98 4.62

B
al
an

ce

(0.0,0.0,0.0) 0.02 0.34 18.48 0.00 22.62 24.00 21.78 8.70 4.16 4.30
(0.1,0.1,0.1) 0.02 0.50 30.36 28.18 5.54 4.8 16.46 10.82 3.84 3.76
(0.5,0.5,0.5) 100 100 30.54 0.00 0.98 1.40 8.10 55.76 3.22 2.68
(1.0,1.0,1.0) 0.65 0.92 15.94 14.82 8.52 8.08 13.02 28.74 10.88 5.26
(2.0,2.0,2.0) 100 100 7.86 0.00 8.10 8.32 7.64 53.74 14.34 4.7
(3.0,3.0,3.0) 100 100 6.92 0.00 6.20 7.06 6.14 53.10 20.58 4.32

2.5.1 Result

According to this result in Table 2.8 and Table 2.9, it is di�cult to infer the cater-

pillar tree with long branch lengths. When the branch length in the balanced tree is

long, the highest posterior probability is obtained in each case of the topology and

each case of the split, and the highest proportion of correct trees is obtained. Both

species with caterpillar shape and balanced shape produce very accurate inferences

when the branch length is (0.5, 0.5, 0.5) with 100 loci. Also, when the branch length

is between zero and one, the level of accuracy to infer species trees has variation.

Figure 2.9 shows that the accuracy for inferring the caterpillar tree increases
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Table 2.9: Posterior Split for Five Taxa Equal Branch Length
T
yp

e
of

T
re
e

S
p
ec
ie
s
T
re
e
(x
,y
,z
)

P
ro
p
.
C
or
re
ct

C
ov
er
ag
e
P
ro
b
ab

il
it
y

Average of the Posterior Probability #
of

tr
ee
s
in

90
%

C
R
.

1 2 3 4 5 6 7

C
at
er
p
il
la
r (0.0,0.0,0.0) 0.17 0.88 20.90 0.00 21.90 25.74 23.24 5.28 2.80 4.20

(0.1,0.1,0.1) 0.76 0.94 47.96 24.74 4.46 4.04 10.28 6.10 2.42 3.46
(0.5,0.5,0.5) 0.91 100 59.34 0.00 0.02 0.00 5.02 34.40 1.22 2.18
(1.0,1.0,1.0) 0.33 0.94 24.46 24.62 2.04 2.54 11.34 26.88 8.12 4.20
(2.0,2.0,2.0) 0.00 0.54 11.10 0.00 8.88 8.96 9.22 42.24 19.60 4.88
(3.0,3.0,3.0) 0.00 0.20 8.16 0.00 7.22 7.70 7.10 46.62 23.18 4.54

B
al
an

ce

(0.0,0.0,0.0) 0.00 0.08 20.40 0.00 23.34 24.28 23.86 5.36 2.54 4.08
(0.1,0.1,0.1) 0.00 0.34 27.78 26.6 7.06 7.6 19 8.86 3.1 4.14
(0.5,0.5,0.5) 0.99 100 29.82 0.00 1.34 1.64 9.50 53.70 3.98 2.94
(1.0,1.0,1.0) 0.72 0.92 15.76 15.26 9.08 8.08 12.06 28.84 10.92 5.4
(2.0,2.0,2.0) 100 100 7.26 0.00 7.82 7.92 7.48 55.50 14.02 4.54
(3.0,3.0,3.0) 100 100 6.96 0.00 5.94 6.76 6.20 54.18 19.96 4.30

when the branch length increases until the branch reaches the length (0.5, 0.5, 0.5),

which gives the highest proportion of correct trees to match the true tree and then

starts decreasing until the branch reaches the length (2, 2, 2). Then, it goes to zero,

which means that it is di�cult to infer the caterpillar shape of a species tree with

long branch lengths. Figure 2.9 shows the species tree with a balanced shape, which

matches the long branch length. However, when the branch length is between zero

and one the proportion of correct trees goes to the highest branch length (0.5, 0.5,

0.5).

For the caterpillar topology, it is observed that, for long branches, the propor-

tion of times that the correct species tree is inferred is highest when x = y = z = 0.5,
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and quickly goes to 0 when the branch length is 2 or more coalescent units. When

the branch lengths are 0 (i.e. a star tree), the proportion of times that the caterpil-

lar is inferred is higher than the chance value of 1/7, with a proportion of roughly

26% using topology counts (Fig. 2.9). This suggests that the prior is informative.

Similarly, having 0% chance of recovering the correct tree for long branches suggests

an informative prior. For these cases, the prior, although uniform for the topology,

also includes a prior for branch lengths which is not well suited to the data.

Caterpillar species trees tend to have higher gene-tree discordance than bal-

anced species trees, given similar branch lengths (Degnan and Salter, 2005), which

could explain why the caterpillar is favored in the posterior when gene trees are

purely random (the star species tree) and why caterpillars are under-estimated when

the gene trees have no variation (long species tree branches). Consistent with this

prediction, the proportion of times the balanced species tree is inferred is lower than

would be expected for an uninformative prior for the star tree, and there is a bias

in favor of balanced topologies when there is no variation in the gene tree topologies

(Fig. 2.9). These examples also illustrate that, unlike the case of inferring rooted

species trees from rooted gene trees, or unrooted species trees from unrooted gene

trees, longer internal branches do not necessarily make the inferences easier. Infer-

ence of the rooted species tree from unrooted gene trees requires variation in the

gene trees.

2.6 Eight Taxa

This section discusses how more than 5 taxa work and can be generalized for more

taxa. This section contains two subsections, which are the simulation of 8 taxa and

the result.
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2.6.1 Simulation of 8-Taxon trees

A slightly modified ABC method (Algorithm 3) is used to compute the posterior

probability when eight-taxon trees were inferred. The ape library (Paradis et al.,

2004) and the sets library (Hornik and Meyer, 2009) from the R-package (Ihaka

and Gentleman, 1996) are used to do the calculation of the distance between the

simulated data and the observed data, which is done as the first step to compute the

di↵erence between the observed data and the simulated data and then the inverse

process by calculating the di↵erence between the simulated data and the observed

data. This process works to find the elements that are in the observed data but not

in the simulated data and inversely to find the elements in the simulated data but

not in the observed data. After all this process, it is necessary to find the union of

the di↵erences; then it is necessary to sum the number of elements in the union set.

All these steps are done depending on the splits of the tree. Two types of 8-taxon

trees were used, which are the caterpillar tree and the balanced tree. Figure 2.10

below shows that the first two shapes with 8 taxa in the left are a rooted and an

unrooted caterpillar tree, and the second two shapes of 8 taxa in the right are a

rooted and an unrooted balanced tree.
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Figure 2.3: Species Tree Shapes and Branch Length
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Figure 2.4: Correlation for Caterpillar Trees
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Figure 2.5: Correlation for Balanced Trees
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Figure 2.6: Correlation for Pseudocaterpillar Trees

Figure 2.7: Correlation of Average Posterior Probability for topology and Split
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Figure 2.8: Species Tree Shapes and Branch Length to Simulate DNA Sequenaces

Figure 2.9: Caterpillar and Balance Trees with Equal Branch Length
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Figure 2.10: Rooted tree vs. unrooted tree for 8 taxa
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2.6.2 Result

Table 2.10: Average Posterior probability for 8-Taxa With Caterpillar Tree.

posterior Coverage
of RF dist AB ABC ABCD ABC ABC ABC GH of # of

Topology DE DEF DEFG Probability Trees

24.46 2 98.22 96.38 93.08 82.48 54.74 24.48 51.66 100 6.16

To calculate the posterior probability, the split program is used. The posterior

probability of the topology is zero matching the caterpillar tree for 8 taxa. Since the

tree distance was constant; in this case, it was always equal to two. As seen in Table

2.10, since the highest posterior probability tree never matched the species tree, but

instead always had a (G,H) clade with all other clades being correct. As seen in

Table 2.12, the posterior probability in balanced trees is much flatter than it is for

the caterpillar tree. The reason behind this is that the number of trees, which equals

90%, is usually 10 out of 13 trees of the prior, but in the caterpillar tree, it is usually

6 out of 13 trees of the prior. A balanced tree is always obtained in all attempts.

Also, there is no di↵erence between the original tree and the tree generated by the

program.

Table 2.12: Average Posterior probability for 8-Taxa With Balance Tree.

posterior Coverage
of RF dist AB CD ABCD EF GH EFGH of # of

Topology Probability Trees

24.68 0.00 83.48 81.98 55.60 86.78 87.18 69.08 100 9.58

Figure 2.11 shows that the average posterior probability of each clade of the

caterpillar tree that is acquired from the consensus program. It also shows the shape
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that is acquired from the consensus program and also shows how it is di↵erent from

the caterpillar tree. Moreover, it also shows the average posterior probability of the

tree for each clade, which was acquired from the consensus program. Figure 2.12

displays the average posterior probability of each clade of the balanced tree.

Figure 2.11: Average of The Posterior Probability for Caterpillar Tree and Tree From
Consensus Program

Figure 2.12: Average of The Posterior Probability for Balanced Tree
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Maximum Likelihood Estimate

(MLE)

This chapter covers the idea of the maximum likelihood estimate (MLE) of the

phylogenetic tree. From among the many methods of the estimation in the statistics

field, the MLE is one of the most popular. In order to find the optimal value of the

parameters, it is necessary to find the ML, which leads to computing the likelihood

function. To compute the MLE, this study, from the outset, needs to compute the

likelihood function, which is as follows for unrooted trees, and this is also the for-

mula that the PhyloNet program (Than et al., 2008) uses to compute the MLE for

unrooted trees:

(2m�5)!!Y

i=1

P n

i

i

=
(2m�5)!!Y

i=1

(
2m�3X

j=1

P
ij

)ni

Where i is the index to the topology, P
i

= Probability of the ith unrooted topology,

n
i

is the number of trees observed with topology i, j indexes the root location within

the ith unrooted topology, and m is the number of taxa. From the left hand side

of the equation, the liklihood is multinomial, where the number of categories is the
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number of unrooted tree topologies. However, We also use the PhyloNet program

to compute the likelihood function for rooted trees, and also the PhyloNet program

needs to use this formula to compute the MLE:

Y

ij

P
n

ij

ij

=
(2m�3)!!Y

k=1

P n

k

k

In the following sections, the method of the MLE is used, as are the results obtained

from it.

3.1 MLE Method

Allman et al. (2011b) provided the three distributions for three particular trees

based on the three tree shapes for 5-taxon trees (caterpillar, pseudocaterpillar, and

balanced) of unrooted gene trees. The present work gathers all those three distri-

butions of unrooted gene trees here. The remaining distributions of unrooted trees

needed for all seven possible rootings of the unrooted tree ((a, b), c, (d, e)) are then

computed. The first type for the distribution of unrooted gene trees is taken from a

5 taxa Pseudocaterpillar and there is only one Pseudocaterpillar needed. The rooted

caterpillar species tree is considered the second type for the distribution of unrooted

gene trees and it is left with three rooted caterpillar species trees, which are calcu-

lated. In addition, the third type of distribution of unrooted gene trees is balanced

species tree, which has two rooted balanced species trees, three of them collected

from Allman et al. (2011b) and another four based on them, which are new to the

present work.
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3.1.1 Rooted Caterpillar Species Tree

The following 5-taxon rooted caterpillar species tree is the first equation in Allman

et al. (2011b):

�+ = ((((a,b):x,c):y,d):z,e),

Let X = exp(�x), Y = exp(�y), and Z = exp(�z). Then the distribution of un-

rooted gene tree T
i

under the coalescent is given by u
i

=P
�

+(T
i

) withThe first species:

u1 = 1 - 2
3
X - 2

3
Y + 1

3
XY + 1

18
XY 3 + 1

90
XY 3Z6,

u2 = 1
3
Y - 1

6
XY - 1

9
XY 3 + 1

90
XY 3Z6,

u3 = 1
3
Y - 1

6
XY - 1

18
XY 3 - 2

45
XY 3Z6,

u4 = u13 = 1
3
X - 1

3
XY + 1

18
XY 3 + 1

90
XY 3Z6,

u5 = u12 = 1
6
XY - 1

9
XY 3 + 1

90
XY 3Z6,

u6 = u9 = 1
6
XY - 1

18
XY 3 - 2

45
XY 3Z6,

u7 = u8 = u10 = u11 = u14 = u15 = 1
18
XY 3 + 1

90
XY 3Z6.

The following 5-taxon-rooted caterpillar species tree is new o↵ered in the present

work:

�+ = ((((a,b):x,c):y,e):z,d),

Under the same assumption of X, Y , and Z, its distribution should be as follows:

u1 = 1 - 2
3
X - 2

3
Y + 1

3
XY + 1

18
XY 3 + 1

90
XY 3Z6,

u2 = 1
3
Y - 1

6
XY - 1

18
XY 3 - 2

45
XY 3Z6,

u3 = 1
3
Y - 1

6
XY - 1

9
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90
XY 3Z6,

u4 = u13 = 1
3
X - 1

3
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XY 3 + 1
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u6 = u9 = 1
6
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9
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XY 3Z6,

u7 = u8 = u10 = u11 = u14 = u15 = 1
18
XY 3 + 1

90
XY 3Z6.

The following 5-taxon-rooted caterpillar species tree is also new o↵ered in the

present work:
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�+ = ((((d,e):x,c):y,a):z,b),

Under the same assumption of X, Y , and Z, its distribution should be as follows:

u1 = 1 - 2
3
X - 2

3
Y + 1

3
XY + 1

18
XY 3 + 1

90
XY 3Z6,
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The following 5-taxon-rooted caterpillar species tree is the final new distribution

derived for the caterpillar shape o↵ered in the present work:

�+ = ((((d,e):x,c):y,b):z,a),

Under the same assumption of X, Y , and Z, its distribution should be as follows:

u1 = 1 - 2
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3
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90
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6
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XY 3Z6.

3.1.2 Pseudocaterpillar Species Tree

The following 5-taxon-rooted pseudocaterpillar species tree is the second equation in

Allman et al. (2011b):

�+ = (((a,b):x,(d,e):y):z,c),

Under the same assumption of X, Y , and Z, its distribution should be as follows:
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u1 = 1 - 2
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3.1.3 Balanced Species Tree

The following 5-taxon-rooted balance species tree is the third equation in Allman

et al. (2011b):

�+ = (((a,b):x,c):y,(d,e):z),

Under the same assumption of X, Y , and Z, its distribution should be as follows:

u1 = 1 - 2
3
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The following 5-taxon-rooted balance species tree is new o↵ered in the present

work:

�+ = (((d,e):x,c):y,(a,b):z),

Under the same assumption of X, Y , and Z, its distribution should be as follows:
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6
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XY 3Z.
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3.2 MLE and Bootstrapping Simulation for Five

Taxa without DNA Sequences

The present work uses the R-package to create fifteen functions to calculate the

probability for each of the fifteen unrooted gene tree topologies. Each function

contains seven trees dependent on five species that have seven shapes of rooted

genes. After that, it is necessary to create the log likelihood function, which is the

sum of all fifteen functions with respect to the tree, and a crucial step involves using

“n.topo.obs” as real data. We use a grid search for X, Y, Z 2 [0, 1], corresponding

to x, y, z 2 [0,1] to maximize the function to find the best maximum likelihood

estimate for the tree with the best branch length. Moreover, the present work uses

the R-package to generate 50 iterations of bootstrapping. To do the bootstrap, the

unrooted gene tree topologies are bootstrapped, generating new frequency counts

for topologies and splits. The bootstrap allows an estimate of uncertainty in the

maximum likelihood estimate.

3.2.1 Results

Table 3.1: Average of Bootstrapping for Five Taxa

Type of Species Prop. Average of
Tree Tree (x, y, z) Correct Bootstrapping

1 2 3 4 5 6 7
(0.1,0.1,0.1) 0.62 26.5 8.22 1.22 0.62 2.3 8.38 2.76

Caterpillar

(0.1,0.1,1.0) 0.82 36.52 6.66 0.42 0.08 1.22 4.22 0.88
(1.0,0.1,0.1) 0.56 23.46 12.32 0.00 0.00 6.44 2.72 5.06
(0.1,1.0,0.1) 0.42 18.28 16.24 0.00 0.00 0.00 15.48 0.00
(1.0,1.0,1.0) 0.54 22.14 15.62 0.04 0.08 0.24 11.26 0.62
(0.1,0.1,0.1) 0.68 9.00 8.5 1.12 1.90 4.82 21.42 3.24

Balance

(1.0,1.0,1.0) 0.24 19.16 17.76 0.32 0.04 0.62 11.64 0.46
(0.1,0.1,1.0) 0.78 0.04 0.04 3.58 2.30 8.7 32.56 2.78
(0.1,1.0,0.1) 0.30 17.1 17.58 0.00 0.00 0.02 15.3 0.00
(1.0,0.1,0.1) 0.40 10.08 11.96 0.00 0.00 7.26 12.78 7.92
(0.1,0.1,0.1) 0.80 2.24 2.92 2.36 2.16 29.44 5.70 4.18

Pseudocaterpillar

(1.0,1.0,1.0) 0.14 7.88 6.84 6.20 5.24 5.94 11.14 6.76
(0.1,0.1,1.0) 0.94 1.56 1.68 1.32 1.14 40.94 1.90 1.46
(0.1,1.0,0.1) 0.42 0.00 0.00 5.82 7.56 19.20 12.32 5.10
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Table 3.1 shows the proportion of times when the MLE matched the true tree

and the average number of bootstrap replicates that supported a particular tree

topology. The first five species trees have a caterpillar tree shape, as seen in Table

3.1. Species Tree 2 has the highest percentage of matching the correct tree according

to the MLE, which is 82%. Also, Species Tree 2 has the highest average bootstrap

support for the correct species tree, at 36.52 for Tree 1, which is the only correct

tree. In contrast, Species Tree 4 has the lowest percentage of matching the correct

tree according to the MLE, which is 42%. Also, Species Tree 4 has the lowest average

of bootstrapping which supports the MLE, at 18.28 for Tree 1. Thus, the present

study shows that both the MLE and the bootstrapping match the correct tree with

highest percentage and highest support from the bootstrapping. Moreover, this result

displays that the caterpillar Species Tree 2 matches the true tree more than other

caterpillar trees.

The second set of five species trees have a balanced tree shape, also in Table

3.1. Species Tree 8 has the highest percentage of matching the correct tree according

to the MLE, which is 78%. Also, Species Tree 8 has the highest average bootstrap

support for the correct tree, at 32.56 for Tree 6, which is the only correct tree.

In contrast, Species Tree 7 has the lowest percentage of matching the correct tree

according to the MLE, which is 24%. Also, Species Tree 7 has the lowest average

bootstrap support for the correct tree, at 11.64 for Tree 6. Thus, the present study

shows that both the MLE and the bootstrapping match the correct tree with highest

percentage and highest support from the bootstrapping. Moreover, this result shows

that the balanced Species Tree 8 matches the true tree more than other balanced

trees.

The last four species trees in Table 3.1 have the pseudocaterpillar shape. Also,

the average of bootstrapping supports the MLE tree by 40.94%, which is Species Tree

13. Species Tree 13 obtains the highest proportion of matching the correct MLE tree
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(which is Tree 5) by 94%. In contrast, Species Tree 12 obtains the lowest proportion

of matching the correct MLE tree by 14%. Species Tree 12 also obtains the lowest

average of bootstrapping to support the correct MLE tree by 5.94%. From the result

in Table 3.1, the present study finds that all proportions of matching the correct

MLE tree and averaging the bootstrapping to support MLE trees are ordered from

the highest to the lowest in order to give the same branch length for the caterpillar

and pseudocaterpillar shapes. However, the balanced shape has di↵erent branch

length.

Figure 3.1 shows the correlation between the average bootstrap support, the

average posterior probability for topology, and the average posterior probability for

splits. These are not strong correlations since they have only a moderate relationship

between bootstrapping and the posterior probability. Figure 3.2 and Figure 3.3 show

that all caterpillar trees and all balanced trees have a very weak relationship between

bootstrapping supporting the MLE tree and the posterior probability matching the

correct tree, since each correlation value is very small. However, Species Tree 5 has

the highest correlation value between all species of caterpillar shapes and all species

of balance shapes. Figure 3.4 shows the pseudocaterpillar trees with a moderate

relationship between bootstrapping supporting the MLE tree, the posterior proba-

bility for topology counts matching the correct tree, and the posterior probability

for split counts matching the correct tree in both Species Tree 12 and Species Tree

14. In Species Tree 13 there is a stronger relationship between the bootstrap sup-

port for the MLE tree and the posterior probability for topology counts matching

the correct tree, but there is a moderate relationship between the bootstrap support

for the MLE tree and the posterior probability for split counts matching the correct

tree. Specie Tree 11 has the weakest relationship between all species trees of the

pseudocaterpillar shapes. Figure 3.5, Figure 3.6, and Figure 3.7 show the summary

of the five numbers for the branch length that is acquired from the simulation for

matching a correct tree.
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The correlation test for this data is as follows: There is a significant correlation

between the bootstrapping supporting the MLE tree and the posterior probability

of the topology matching the correct tree. There is also a significant correlation

between bootstrap support for the MLE tree and the posterior probability of a split

matching the correct tree in Species Tree 5 with the caterpillar shape and Species

Trees 12, 13, and 14 with a pseudocaterpillar shape. Moreover, Species Tree 6 with

a balanced shape has a significant correlation between the bootstrap support for

the MLE tree and the posterior probability of the topology matching the correct

tree. However, there is no significant correlation between the bootstrap support for

the MLE tree and the posterior probability of a split matching the correct tree.

Moreover, there is no significant correlation between the bootstrap support for the

MLE tree and the posterior probability of topology matching the correct tree. There

is also no significant correlation between the bootstrap support for the MLE tree and

the posterior probability of a split matching the correct tree in all of the rest of the

species trees.

Figure 3.1: Correlation of Average Bootstrapping vs Average Posterior Probability
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Figure 3.2: Correlation for Caterpillar Trees Bootstrapping vs Posterior Probability

60



Chapter 3. Maximum Likelihood Estimate (MLE)

Figure 3.3: Correlation for Balanced Trees Bootstrapping vs Posterior Probability
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Figure 3.4: Correlation for Pseudocaterpillar Trees Bootstrapping vs Posterior Prob-
ability
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Figure 3.5: Box Plot of Caterpillar Species Branch Length
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Figure 3.6: Box Plot of Balanced Species Branch Length
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Figure 3.7: Box Plot of Pseudocaterpillar Species Branch Length
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3.3 MLE and Bootstrapping Simulation for Five

Taxa with DNA Sequences

This study uses the same method of the simulation for five taxa without DNA

sequences to compute the MLE and bootstrapping for DNA sequences. However,

the di↵erence is that it is necessary to simulate the DNA sequences by using the

Seq-Gen program and the PhyML program. After simulating the data from DNA

sequences, it is necessary to follow the same steps that are used to compute the MLE

and bootstrapping for five taxa without DNA sequences.

3.3.1 Result

Table 3.2: Average of Bootstrapping for Five Taxa With DNA Sequences

Type of Species Prop. Average of
Tree Tree (x, y, z) Correct Bootstrapping

1 2 3 4 5 6 7
Caterpillar (0.1,0.1,1.0) 0.80 32.80 8.50 1.20 1.00 1.60 4.50 0.40
Balance (0.1,0.1,1.0) 0.70 0.00 0.00 5.00 5.10 9.40 27.40 3.10

Pseudocaterpillar (0.1,0.1,1.0) 100 1.10 1.10 0.60 2.60 42.40 1.70 0.50

Table 3.2 shows the proportion of correct matches of the MLE tree and the

average bootstrap support for the MLE tree for species trees with DNA sequences.

Both the caterpillar tree and the balanced tree in Table 3.2 with DNA sequences

are less accurate than the same species trees without DNA sequences, as seen in

Table 3.1, which matches the correct MLE tree. Also, the average bootstrap support

the correct MLE tree for species trees with DNA sequences, which are less than the

average of bootstrapping, and this supports the correct MLE tree for species trees

without DNA sequences. This means that the MLE without the DNA sequences

gives a better inference for the estimation of both species trees from the caterpillar
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tree and balanced tree. Also, the result in Table 3.2 with a DNA sequence is higher

than the result in Table 3.1, which lacks a DNA sequence. The pseudocaterpillar

tree gives an accurate result from the DNA sequence. Finally, there is no significant

correlation between the bootstrap support for the correct tree for MLE and the

posterior probability based on both topologies and splits.

3.4 MLE of 5 taxa for equal branch length

This section investigates the MLE method with equal branch lengths for 5 taxa.

The MLE method is simulated for caterpillar and balanced tree topologies with

x = y = z = 0, 0.1, 0.5, 1, 2, and 3, and it uses the PhyloNet program (Than et al.,

2008) to compute the MLE tree for rooted gene trees and unrooted gene trees, and

retaining the best 100 proposed species trees, with 50 replicates for each combination

of topology and branch lengths. All these computations have been done without DNA

sequences. The details of how PhyloNet works in Chapter 4. The following subsection

presents the results with equal branch lengths. Indicate that the simulation was done

with both rooted and unrooted gene trees as input.

3.4.1 Results

Table 3.3 shows all possible clades in caterpillar shape for 5 taxa with equal branch

length for rooted gene tree and for unrooted gene tree (abbreviated as GT in Table

3.3). The correct clades of the MLE tree for the caterpillar shape is AB, ABC,

and ABCD. According to the results in the star tree (which has all branch lengths

equal to 0) seen in Table 3.3, the branch length zero makes it di�cult to match the

caterpillar tree for both rooted gene trees and unrooted gene trees. But in the branch

lengths 0.5, 1, 2, and 3, it is possible to see that the clades AB, ABC, and ABCD are
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always obtained in the rooted gene tree. However, species trees with branch length

0.1 are also accurately inferred in the caterpillar clade shape for both rooted and

unrooted gene trees. Clade AB is always obtained for branch length 0.5, 1, 2, and

3. However, clade ABC is always obtained for 0.5 and 1, but for branch length 2

and 3, is most highly obtained. The clade of ABCD is infrequently obtained with

long branch lengths. However, clade DE is very frequently inferred with long branch

lengths. Thus, the 5 taxa with long equal branch lengths are di�cult to infer for the

unrooted gene tree. These patterns are consistent with the results of ABC for equal

branch lengths on caterpillar species trees.

Table 3.3: MLE for 5 Taxa Caterpillar Shape with Equal Branch Length and these
results are out of 50 iterations.

Species Tree (x, y, z) AB ABC ABCD DE CDE ABCE

R
oo

te
d
G
T

(0.0,0.0,0.0) 5 5 6 10 2 10
(0.1,0.1,0.1) 42 46 47 1 0 2
(0.5,0.5,0.5) 50 50 50 0 0 0
(1.0,1.0,1.0) 50 50 50 0 0 0
(2.0,2.0,2.0) 50 50 50 0 0 0
(3.0,3.0,3.0) 50 50 50 0 0 0

U
n
ro
ot
ed

G
T (0.0,0.0,0.0) 3 8 10 4 1 11

(0.1,0.1,0.1) 41 44 39 2 0 1
(0.5,0.5,0.5) 50 50 26 6 0 18
(1.0,1.0,1.0) 50 50 20 20 0 10
(2.0,2.0,2.0) 48 38 4 46 10 0
(3.0,3.0,3.0) 50 26 1 48 24 1

Table 3.4 shows all possible clades in the balanced shape for 5 taxa with equal

branch lengths for rooted gene trees and for unrooted gene trees (abbreviated as

GT in Table 3.4). The correct clades of the MLE tree for the balanced shape are

AB, ABC, and DE. According to the results in Table 3.4 the star tree, which has

branches of length 0 makes it di�cult to infer the correct clade for matching the

balanced tree for both rooted gene trees and unrooted gene trees. But in the branch

68



Chapter 3. Maximum Likelihood Estimate (MLE)

lengths 0.5, 1, 2, and 3, it is possible to see that the clades of AB, ABC, and DE

is always accurately inferred in the rooted gene tree. However, species trees with

branch length 0.1 are also accurately inferred for both rooted and unrooted gene

trees. The clade AB is accurately inferred for all those branch lengths 0.5, 1, 2,

and 3. The branch length 0.5 always matches all clades of the balanced tree. Long

branch lengths 1, 2, and 3 lead to accurately inferring the clades AB, ABC, and DE,

which leads to the inference that species of balanced shapes are easy to infer with

long branch lengths. These results are also consistent with the results for the ABC

method on five-taxon trees with equal branch lengths.

Table 3.4: MLE for 5 Taxa Balanced Shape with Equal Branch Length and these
results are out of 50 iterations.

Species Tree (x, y, z) AB ABC DE CDE ABCD

R
oo

te
d
G
T

(0.0,0.0,0.0) 11 3 7 7 3
(0.1,0.1,0.1) 43 49 46 1 3
(0.5,0.5,0.5) 50 50 50 0 0
(1.0,1.0,1.0) 50 50 50 0 0
(2.0,2.0,2.0) 50 50 50 0 0
(3.0,3.0,3.0) 50 50 50 0 0

U
n
ro
ot
ed

G
T (0.0,0.0,0.0) 7 8 5 4 8

(0.1,0.1,0.1) 42 41 34 5 8
(0.5,0.5,0.5) 50 50 50 0 0
(1.0,1.0,1.0) 50 49 36 1 7
(2.0,2.0,2.0) 48 30 47 20 1
(3.0,3.0,3.0) 48 32 48 18 1

3.5 MLE for Eight Taxa

This study is done with MLE for five taxa, both with DNA sequences and without

DNA sequences. This study the attempts to apply MLE to more numbers of taxa,
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which in this study consists of 8-taxa. This section has two subsections: The first

is the method that this study needs in order to do the computation, and another

subsection is the result of the computation.

3.5.1 Method of Simulated the MLE and Bootstrapping for

Eight Taxa

To compute the MLE and bootstrapping, we simulated the gene trees by using

the Hybrid-Lambda program from the observed data (Zhu et al., 2015). After that,

it is necessary to simulate the observed data which is used as the input data for

the PhyloNet program to compute the MLE (Than et al., 2008).1 The PhyloNet

program needs three files to run. The PhyloNet program works with both rooted

and unrooted gene trees.

3.5.2 Result

Table 3.5 shows that the percentage of the bootstrapping supports the MLE

method for the 8-taxa caterpillar shape. The consensus tree matches the MLE tree

for caterpillar shape. Moreover, the MLE tree obtains the clade of {ABCDE} by

100% in all iterations. Also, Figure 3.8 shows the caterpillar tree with the percentage

of each clade and Figure 3.9 also shows the percentage of bootstrap support in each

clade, which supports the MLE tree for the caterpillar tree.

Table 3.6 shows that the percentage of the bootstrapping supports the MLE for

the 8-taxa balanced shape. The consensus tree matches the MLE tree for balanced

shape. Also, Figure 3.10 shows the balanced tree with the percentage in each clade

1
This simulation needs to use the Java program since the program PhyloNet needs Java

in order to run.
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Table 3.5: The percentages of the MLE Tree and the Bootstrap with a Caterpillar
Shape for 8 taxa.

Type of Method AB ABC ABCD ABCDE ABCDEF ABCDEFG
MLE 0.28 0.40 0.56 100 0.36 0.74

Average Bootstrapping 0.350 0.401 0.602 0.997 0.346 0.611

Figure 3.8: MLE for caterpillar tree of 8-Taxa

and Figure 3.11 also shows the bootstrap percentage in each clade, which supports

the MLE tree for the balanced tree.

Figure 3.9: Bootstrapping supporting MLE tree for caterpillar shape of 8-taxa

71



Chapter 3. Maximum Likelihood Estimate (MLE)

Table 3.6: The percentages of the MLE Tree and the Bootstrap with a Balanced
Shape for 8 taxa.

Type of Method AB CD ABCD EF GH EFGH
MLE 0.90 0.54 0.96 0.40 0.64 0.98

Average Bootstrapping 0.88 0.55 0.95 0.45 0.51 0.98

Figure 3.10: MLE for balanced tree of 8-taxa

Figure 3.11: Bootstrapping supporting MLE tree for balance shape of 8-Taxa
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Inferring Species Trees From

Rooted vs Unrooted Gene Trees

This chapter compares using unrooted gene trees to infer a rooted phylogeny to

using rooted gene trees when there is an outgroup and molecular clock (with DNA

sequences and without DNA sequences). Comparisons of unrooted versus rooted

gene tree methods are made using ML only.

This approach both assumes that at least one taxon, the outgroup, is outside

of the ingroup, and that the root of the ingroup is a branch at which the ingroup

and the outgroup connect. The outgroup method indicates the root’s location in the

analysis. To perform midpoint rooting, it is first necessary to estimate the ML tree

– this must be done with no recourse to taxa from the outgroup. It is then necessary

for the root to be placed in the middle of two terminal taxa with the longest path

between them. To satisfy the molecular clock (and end up with rooted trees), it is

necessary to constrain the ML and Bayesian clock analyses so that the sum of branch

lengths from root to tip is constant – this also must be done with no recourse to taxa

from the outgroup (Boykin et al., 2010). This chapter contains two sections: One
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explains the method of simulation, and the other shows the results of the study.

4.1 Method of simulation

There exist four conditions under which species trees are inferred. The first type

consists of rooted, known gene trees. The second type consists of rooted gene trees

estimated from DNA sequences. The third type consists of unrooted, known gene

trees. Finally, the fourth and last type consists of unrooted gene trees estimated

from DNA sequences.

This study requires seven steps in order to do the simulation. The first step

uses the library from the R-package, which is TreeSim (Stadler, 2014). The TreeSim

library simulates the species tree. To simulate the species tree by using the library

TreeSim in the present study, it is necessary to have the following important in-

formation. It is first necessary to know the number of taxa, which, in the case of

this study, are of two di↵erent varieties, which are 5 taxa and 8 taxa. Then, it is

necessary to determine how many trees to simulate. It is also necessary to specify

the value of � (birth rate). In this study, � has five di↵erence values, which are 0.1,

0.25, 0.5, 0.75, and 1.0. The value of µ/� (turnover) is the final information needed

to simulate the species tree. There are four values of µ/�, which are 0.0, 0.25, 0.5,

and 0.75.

The second step is to add the outgroup to the species tree. The present work

uses R code to do it. Two versions of the species tree are saved, which makes one with

the outgroup to compare with the result from the PhyloNet program for rooted gene

trees and the other version without the outgroup to compare with the results from the

PhyloNet program for unrooted gene trees. The third step is to run the ultrametric

program, which makes the simulated tree from the first step into a molecular clock

tree with the outgroup. The fourth step is to use the molecular clock species tree as
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an input to the Hybrid-Lambda program to simulate the gene trees. The fifth step

is the longest step since the present work needs to run the PhyloNet program.

The sixth step is to simulate DNA sequences by using the Seq-Gen program and

the PhyML program. The Seq-Gen program uses the gene tree that is acquired from

Hybrid-Lambda as input to the program. The PhyML program uses the output data

from Seq-Gen as input. The present work runs an R code to make the output data

from PhyML as a rooted tree and save it as data simulated from DNA sequences.

The final step, which is the seventh step, is very similar to the fourth step in the

present study. The outgroup is removed after the gene trees are obtained from the

hybrid-lambda program to compute the MLE from the unrooted gene trees without

DNA by using the PhyloNet program. Also, the outgroup needs to be removed from

the DNA sequences of the PhyML program to compute the MLE of the unrooted

gene trees with DNA by using the PhyloNet program. Figure 4.1 shows the steps for

building the simulation code and how they compare with the results of the present

study. All R codes and the script are included in Appendix A.4.

75



Chapter 4. Inferring Species Trees From Rooted vs Unrooted Gene Trees

Figure 4.1: Diagram of the Simulation Method.
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4.2 Result

Table 4.1: Rooted Gene Trees vs Unrooted Gene Trees for Five Taxa

RGT RGT URGT URGT
� µ without DNA with DNA without DNA with DNA

0.10

0.00 0.16 0.24 1.6 1.52
0.25 0.24 0.2 1.72 1.68
0.50 0.12 0.12 1.8 1.68
0.75 0.12 0.12 1.88 1.68

0.25

0.00 0.40 0.44 1.32 1.20
0.25 0.16 0.36 1.56 1.32
0.50 0.24 0.48 1.36 1.52
0.75 0.36 0.40 1.48 1.40

0.50

0.00 0.64 0.67 1.24 1.32
0.25 0.72 0.56 1.12 1.08
0.50 0.24 0.52 1.00 1.12
0.75 0.28 0.44 1.16 1.24

0.75

0.00 1.04 1.00 1.12 1.20
0.25 0.72 0.72 0.84 1.32
0.50 0.64 0.96 1.28 1.20
0.75 0.48 0.60 0.88 1.36

1.00

0.00 1.00 1.04 1.32 1.16
0.25 0.40 0.76 1.08 0.96
0.50 0.96 0.92 0.96 1.20
0.75 0.64 0.80 1.04 1.28

Table 4.1 shows the average of the tree distance for 5 taxa between the simu-

lated species trees with the outgroup and without the outgroup; then it is necessary

to compute the MLE trees for rooted gene trees with DNA and without DNA, and it

also has been done for unrooted gene trees with DNA and without DNA. When the

value of � increases, inferring the species tree from rooted gene trees becomes more

di�cult, but in most of cases, when the values of µ increase, it reduces the di�culty

of inferring the species tree from rooted gene trees. In all values of � and µ, the

averages of rooted gene trees with DNA and without DNA are less than the average
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of unrooted gene trees with DNA and without DNA, which means the rooted gene

trees with DNA and without DNA are more accurate. Since the maximum distance

between trees is given by this formula 2n � 4, the maximum number for missing

5-taxon nodes is 6. According to all results in Table 4.1 and also between all four

types of comparisons of trees, it is possible to conclude that using rooted gene trees

is more accurate than using unrooted gene trees.

Table 4.2: Rooted Gene Trees vs Unrooted Gene Trees for 8 Taxa

RGT RGT URGT URGT
� µ without DNA with DNA without DNA with DNA

0.10

0.00 0.32 0.52 1.60 3.04
0.25 0.12 0.28 1.68 2.68
0.50 0.20 0.40 1.40 2.52
0.75 0.08 0.40 1.68 3.00

0.25

0.00 0.64 1.16 1.76 2.12
0.25 0.56 1.24 1.52 2.40
0.50 0.52 0.72 1.28 2.12
0.75 0.52 0.56 2.24 2.92

0.50

0.00 2.28 2.76 3.08 2.84
0.25 1.48 2.00 2.44 2.72
0.50 2.04 1.88 2.28 3.12
0.75 1.44 2.20 2.32 3.2

0.75

0.00 2.96 3.52 2.92 3.32
0.25 3.04 3.64 2.24 3.24
0.50 2.24 2.48 2.64 2.76
0.75 2.00 2.88 2.76 3.04

1.00

0.00 3.40 4.04 2.96 3.88
0.25 2.52 3.60 2.84 3.00
0.50 3.16 3.32 2.88 3.48
0.75 2.52 2.76 2.48 3.04

Table 4.2 shows the average tree distance for 8 taxa between the simulated

species trees with the outgroup and without the outgroup; then it is necessary to

compute the MLE trees for rooted gene trees with DNA and without DNA, and it

is also necessary for unrooted gene trees with DNA and without DNA. When the
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value of � increases, inferring species trees from rooted gene trees becomes more

di�cult, but in most of cases, when the values of µ increase, it reduces the di�culty

of inferring the species tree from rooted gene trees. The maximum distance between

8-taxon trees is 12. In most of the values of � and µ, the averages of rooted gene trees

with DNA and without DNA are less than the average of unrooted gene trees with

DNA and without DNA, which means the rooted gene trees with DNA and without

DNA are more accurate. However, when � becomes bigger, according to Table 4.2

for � = 0.75 and 1, with increasing the value of µ, then most of the unrooted gene

trees without DNA do better than the rooted gene trees. According to all results in

Table 4.2 and also between all four types of comparisons of trees, it is possible to

conclude that the rooted gene tree is more accurate in the first three values of �. But

in the last two value of �, it is possible to say that the unrooted gene tree without

DNA appears to be slightly more accurate.

Figure 4.2 and Figure 4.3 show the comparison between rooted gene trees and

unrooted gene trees for cases that have the gene trees with and without DNA for

both 5 taxa and 8 taxa. On the horizontal axis are the values of �, and in the

vertical axis is the average of the tree distance to the species tree from both rooted

gene trees and unrooted gene trees with and without DNA, where the µ is constant

in each subfigure. Those figures show how the � changes when µ is increased. Figure

4.2 and Figure 4.3 display that there are not many di↵erences between the rooted

gene trees and unrooted gene trees in both cases with and without DNA. However,

Figure 4.2 shows that when the � is increased the variation of di↵erences decreases

with all values of µ. Moreover, when we increase the numbers of taxa from 5 taxa

to 8 taxa, Figure 4.3 shows that unrooted gene trees become more accurate in all

values of µ when � is big. However, the rooted gene tree without DNA makes good

estimates for 5 taxa in all values of � and µ, as seen in Figure 4.2. For 8-taxa, the

rooted gene tree without DNA makes a better estimate with small values of �, but

when � becomes bigger, the unrooted gene tree without DNA does better, as seen in
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Figure 4.2: Rooted GT vs Unrooted GT for 5 Taxa

Figure 4.3. Since unrooted gene trees make better estimates by increasing the value

of �, when we increase the number of taxa, it may end up giving a good estimate for

a big number of taxa.
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Figure 4.3: Rooted GT vs Unrooted GT for 8 Taxa
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Chapter 5

Empirical Study

This chapter concentrates on an empirical example, in order to see how the method

of the present simulation study, in both Chapter 2 and Chapter 3, works with empir-

ical data. The empirical data from the Xi et al. (2014) was chosen to apply methods

of the present study in an attempt to see which hypotheses of their study are sup-

ported when Amborella clusters with Nuphar or when Nuphar clusters with the all

species in question.

The present work thus seeks to apply the ABC method, used elsewhere in

the present work, to their two hypotheses with the aim of determining which one

works best in the present framework. The present study also seeks to apply the

MLE method and bootstrapping, used elsewhere in the present work, to the two

hypotheses of their work with the aim of determining which one works best in the

present framework.
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5.1 Method

The present study incorporates data for 310 nuclear genes found in 45 seed plants,

which were analyzed by Xi et al. (2014). They argue that coalescent methods produce

better results than concatenation methods for fast-evolving nucleotide sites. A subset

for eight taxa is taken from this data with the aim of finding eight common tip labels

between all those 310 nuclear genes, but there were considerable amounts of missing

taxa for many loci. This ends up giving 224 nuclear genes for eight taxa, as shown

in Figure 5.1.

Figure 5.1: A subset species tree from a species tree of the Xi et al. (2014) study for
8-taxa

To apply the ABC method (Algorithm 3) in this empirical data for 8 taxa, it is

necessary to use the following steps. The first step is to run the empirical data with

a split program in order to compute the splits of the empirical data and compare it

with the splits of the simulation data from the prior. The second step is to generate

the data to use it as input for the Hybrid-Lambda program from the prior, which

uses the hypotheses of Xi et al. (2014) as priors - their first hypothesis assumes that

Amborella clusters with Nuphar, and their second hypothesis assumes that Nuphar

clusters with all other as shown in Figure 5.2. The third step is to modify the trees
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generated from the prior to be ultrametric. The fourth step is to use the species tree

from the prior as input for the Hybrid-Lambda program to simulate gene trees. The

fifth step is to run the split program again with the simulated gene trees to compute

the splits of simulation data. The final step is to run some R code to compute the

distance between the split frequencies of the empirical data and the split frequencies

of the simulated data and also to use the consensus program to compute the posterior

probabilities.

Figure 5.2: Two hypotheses by Xi et al. (2014) used as the prior for the present
study (p. 922).

The MLE for the empirical data has been done by using the PhyloNet program

to compute the MLE tree. Moreover, the bootstrapping for the MLE tree has also

been done by using the PhyloNet program. The previous section provides an expla-

nation of how the PhyloNet program works. The empirical study does not need to

simulate the data since the empirical data is directly used as an input to create the

PhyML-middle file to run the PhyloNet program.

For five taxa case, the subset from this data is also taken with the aim of

finding five common tip labels between all of the 310 nuclear genes. This ends up

giving 275 nuclear genes for five taxa, as shown in Figure 5.3.

After getting this empirical data for five taxa, it is possible to apply the same

two algorithms (1 and 2) used for the ABC method as the five-taxon cases in chapter

3 and 4. The MLE approach is the same as in chapter 4. In these empirical five

taxa, the same code used to compute regular five taxa without DNA are used, but
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Figure 5.3: A subset of a species tree from the Xi et al. (2014) study for 5-taxa

the di↵erence involves counting the topology of the empirical five taxa directly from

the empirical data, which is called the observed topology counts observation. The

vector program is also used to compute the topology counts of the simulated data

that is obtained from the prior, which is the prior dependent of the Xi et al. (2014)

hypothesis, as shown in Figure 5.2. The next step is to compute the distance from the

observed topology frequencies and the simulated topology frequences, which leads to

computing the ABC method.

The degree to which the MLE tree and bootstrapping method support the

MLE tree was calculated in two di↵erent ways. For the first way, the same code

computing the MLE and bootstrapping for five taxa with DNA and without DNA

was used. For the second way, the PhyloNet program was used to compute the MLE

and bootstrapping, and the consensus program was then used.
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5.2 Results

Figure 5.4 shows both tree shapes in both hypotheses for five taxa with the tip-label

name of the genes. The posterior probability of the topology of the empirical data

for five taxa supports the Amborella clustering with the Nuphar by 86%. In contrast,

14% of the posterior probability of the topology supports the Nuphar clustering with

the others genes. For the posterior probability based on splits, 86% of the results

support Amborella clustering with Nuphar, and 14% of the results support Nuphar

clustering with other genes. The MLE and bootstrapping from the present study’s

code without using the PhyloNet program show a tree that has the Amborella cluster

with the Nuphar, which is also supported by bootstrapping in 100% of the results.

From all of the results obtained from study, the five taxa empirical data highly

support that the Amborella clusters with the Nuphar.

Figure 5.4: Two hypotheses by Xi et al. (2014) used as the prior for 5-taxa in the
present study (p. 922). Numbers on branches represent the number of trees in the
input with the given clade.

Figure 5.4 shows the 5-taxa of the empirical data from the consensus program,

which supports the hypothesis of the Xi et al. (2014). Figure 5.5 shows the 8-taxa of

the empirical data from the consensus program which supports the hypothesis of Xi

et al. (2014), which is that the Nuphar clusters with other genera and the Nuphar
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culster with Amborella, but after computing the ABC method and the MLE method

with support from the bootstrap method, the results of the ABC method support

the clade of Amborella clustering with the Nuphar by 59%, as shown in Figure 5.6.

Figure 5.5: Empirical Shape from consistent program for 8 Taxa

Figure 5.6: Empirical Tree for 8 Taxa by ABC Method

The MLE method shows greater support for the Amborella and Nuphar clade

than for the Amborella-as-outgroup hypothesis; however, the support is not over-

whelming, with bootstrapping for this hypothesis being either 80% or 62% for the

eight-taxon and five-taxon analyses, respectively. This lends some support, but not

overwhelming support, to the hypothesis of Xi et al. (2014) as opposed to the hy-

pothesis supported by concatenation, using a subset of their gene trees. This is

perhaps not surprising since Alanzi and Degnan (forthcoming) use the same gene

tree topologies that lead to the conclusion of Xi et al. (2014). Alanzi and Degnan

(forthcoming) also use a coalescent method, although it is quite di↵erent from the
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methods used in the study of Xi et al. (2014).

Simmons and Gatesy (2015) argue that the anomaly zone, in which the most

likely gene tree has a di↵erent topology from that of the species tree, does not apply

to the root of the rooting of the angiosperms because there is only one short branch

leading to the Amborella-Nuphar clade, whereas the anomaly zone typically occurs

when there are two consecutive branches on a path from the root to the tips (Degnan,

2013; Rosenberg, 2013). Although this is typical of species trees in the anomaly zone,

a species tree with only one short branch can still be in the anomaly zone if the less

basal branch can be indefinitely long if the more basal branch is su�ciently short

(Degnan and Rosenberg, 2006). However, for this example, there is another reason

for thinking that the anomaly zone is not a factor, which is that caterpillar gene

tree shapes, which the Amborella-only outgroup hypothesis implies for the subset of

species that Alanzi and Degnan (forthcoming) analyzed, cannot be anomalous gene

trees (Degnan and Rhodes, 2015).

Another consideration is the clade support for Amborella as an outgroup. Sim-

mons and Gatesy (2015) point out that the Amborella-only outgroup occurs more

often than any conflicting relationship. Under the multispecies coalescent model, any

clade that occurs with more than 1/3 probability in the true gene trees is guaran-

teed to be in the species tree (Allman et al., 2011a). Using the 275-locus five-taxon

dataset, the proportion of loci for which Amborella is the only out- group is 107/275

= 38.9% as shown in Figure 5.4, thus suggesting some evidence using coalescent

considerations that the Amborella- outgroup hypothesis is correct. The eight-taxon

data set with more trees has weaker evidence, with 84/224=37.5% as shown in Fig-

ure 5.5 of trees supporting the Amborella- hypothesis. Although the proportion of

trees supporting the Amborella-only outgroup hypothesis is larger than for trees with

the Amborella-Nuphar clade, these di↵erences in proportion are also not significant.

Simmons and Gatesy (2015) also criticize the data analysis that lead to the 310 gene
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trees of Xi et al. (2014) particularly in terms of rooting, but also in terms of the

alignments used to reconstruct the gene trees. Simmons and Gatesy (2015) prefer

the summary coalescent analysis of Wickett et al. (2014), which used the unrooted

method ASTRAL (Mirarab et al., 2014) and found support for the Amborella-only

outgroup hypothesis. Our analysis is not intended to take sides in this debate; in-

stead, Alanzi and Degnan (forthcoming) use the Xi et al. (2014) data to illustrate

how the ABC approach and the MLE approach can be used to estimate a root from

unrooted gene trees, and find that this data set has the interesting property that a

set of gene trees can lead to a naive consensus method returning a caterpillar tree

while other methods can lead to a non-caterpillar estimate of the species tree.
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Table 6.1: Example to illustrate that split counts are not su�cient statistics

Dataset tree splits
1 t1 ABC|DE, BC|ADE
1 t2 ABD|CE, AB|CDE
1 t3 BCD|AE, BD|ACE
2 t4 ABC|DE, AB|CDE
2 t5 ABD|CE, BD|ACE
2 t6 BCD|AE, BC|ADE

Although the ABC approach in the present study used counts of split as a

summary statistic, it is notable that this statistic is not su�cient statistic. There

is not always a guarantee that the estimated and true posterior distributions will

converge with each other; for example, when the statistical summaries are given for

the ABC method results, they are sometimes insu�cient for this purpose (Marjo-

ram and Tavaré, 2006; Csilléry et al., 2010). This is typical of analyses using the

ABC method (Aeschbacher et al., 2012). In our case, split counts are not su�cient

statistics, although they do identify the species tree (Allman et al., 2016), meaning

that knowing the probabilities of the splits allows the inference of a unique species

tree. In particular, for a summary statistic T to be a su�cient statistic, it should
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be the case that given two data sets x, and y, if T (x) = T (y), then any inference

about the parameter should be the same for the two data sets (Casella and Berger,

2002). However, an example of two data sets each with three trees illustrates that

split counts can be the same for two data sets with di↵erent input trees as shown in

Table 6.1.

For this example, the split counts for the two datasets are identical, but the

original trees are di↵erent, and the likelihoods for the two data sets are di↵erent based

on using unrooted gene tree probabilities listed in Allman et al. (2011b). Although

split counts are not, therefore, su�cient statistics, they still identify the species tree

in the sense that two distinct species trees necessarily have di↵erent probabilities of

splits in the gene trees (Allman et al., 2016). The five-taxon examples suggested that

split counts did essentially as well as topology counts, suggesting that there was very

little loss of information in using splits instead of topologies, in spite of the lack of

su�ciency. This study also supports Allman et al. (2011b), who mention it in their

paper by knowing the unrooted topology from which all desired information about

the rooted tree can be obtained.

In cases where the ST-ABC method drew from the set of retained trees and

used the most frequently occurring one among them as an estimate for species trees,

the method faced performance di�culties in all 14 of the cases examined in the

simulation study involving 5 taxa. The simulation needed a long time to finish all

shapes of taxa, which was di�cult since time is limited. For example, this is a

sample calculation of time that this study needed to finish: 14⇥50⇥2=1400 days,

which means that 4 CPU years are needed for doing the ABC for five taxa without

DNA. Another sample time is 14⇥50⇥1=700 days, which means that 2 CPU years

are required for doing the MLE with bootstrapping for five taxa without DNA.

Moreover, the five taxa with DNA require 2⇥400⇥3=2400 days, which is equal to 7

CPU years to finish. That is also for the ABC of eight taxa 2⇥400⇥2=1600 days,
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which is more than 4 CPU years.

This study concludes that five-taxon species trees are di�cult to infer since,

doing this requires a greater number of loci. Since the correlation between the average

of the posterior probability for topology and splits is very strong this suggests that all

the information about the topology can be known by studying the split of species tree

for five taxa without DNA. There is not much di↵erence in the results using topologies

and split but sometimes the split makes much better results. The consensus program

can be used program for summarizing the ABC posterior distribution. Increasing

sample size helps to get a lot of accuracy with the estimate. Sequence data is

not needed for the ST-ABC method since gene trees are its only source of data.

However, it is assumed that the gene trees in the sample are all known with certainty.

Despite shortcomings with the ST-ABC method, larger sample sizes may increase the

accuracy and decrease the variability of the estimates. Whether or not the branch

lengths referred to are short (e.g; 0.1 coalescent units) or long (e.g; 1 coalescent units),

accurately estimating a species tree topology can sometimes be done with a sample

size of N = 100 loci or more than 100 loci.

The ABC method could be used with a flat prior or a more informative prior.

This study used a prior that was uniform for topologies but assumed that a particular

unrooted species tree was known. If the unrooted species tree also had uncertainty,

then this could be reflected by making the prior include more rooted species trees.

Another possibility is to consider that under typical birth-death processes, some

unrooted trees are more likely than others when there are 6 ore more taxa (Steel,

2012), and the prior could be based on this rather than making each labeled topology

equally likely in the prior.

If midpoint rooting gives one tree and an out-group gives another a prior could

be fifty-fifty for these two species trees. The midpoint and out-group give a di↵erent

prior, which makes the ABC more e�cient to compute, as well as easier to deal
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with, rather than going by all uniform priors of the species trees (Boykin et al.,

2010). For example, there is an empirical question about how many rooted trees

in the taxa are required to account for the 90% making the posterior probability

(Boykin et al., 2010). In comparing the two, the results for the five DNA taxa

are less accurate than the results for the five regular taxa at counting the average

posterior probability. Since it is di�cult to estimate the root location with certainty,

a possible application is to instead rule out implausible locations for the root, and

in this case a credible region for the root might be desirable. In the five-taxon cases,

90% credibility regions tended to have about 3-5 trees, meaning that about half of

the possible root locations had very low posterior probability.

The conclusion is, thus, that the ABC and MLE methods used in Chapter 2

and Chapter 3 yield the same results. It is di�cult to infer the species tree with

caterpillar shape for unrooted gene trees with long branch length. However, the

result of the balanced shape with equal branch length, which is computed by the

ABC method, agrees with the MLE method. This assumes that it is easy to infer

the species tree with long branch length. Both methods agree that it is di�cult to

infer the star tree.

The MLE method makes somewhat more accurate inferences than the ABC

method does because the MLE shows better in about 7 out of 13 cases for topologies

and 8 out of 13 cases for splits as seen in Figure 6.1. Figure 6.1 top shows the relation

for the proportion by which both the MLE method and the ABC method match the

correct tree by using topology counts. Figure 6.1 bottom displays the relation for the

proportion by which both the MLE method and the ABC method match the correct

tree by using split counts. In the x = y line graph, the points above the line indicate

that the proportion of matching a correct MLE tree was higher than using topology

counts. Similarly, the points above the line indicate that the proportion of matching

a correct MLE tree was higher than using split counts as the summary statistic.
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The proportion for the correct tree tended to be slightly lower when using

the ABC method with splits or topologies, but highly correlates with the proportion

using the MLE method. PhyloNet is a very easy way to compare unrooted gene trees

and rooted gene trees. It is necessary to infer the phylogenetic tree by using MLE to

figure out which is the maximum likelihood tree and then to use the bootstrapping

method to measure the support of the MLE tree. In most of the computation, the

MLE tree has support by the bootstrapping even though the MLE does not match

the correct tree.

Figure 6.1: Proportion of the MLE method and the ABC method match the correct
tree

The ABC method, MLE method, and bootstrap method in the empirical study

for both cases of 8-taxa and 5-taxa support that Amborella clusters with Nuphar by

more than 2/3 of the posterior probability. In the comparison between the posterior

probability using topologies and the posterior probability using splits, according to

the empirical data, it is found that the posterior probability using splits obtained
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the same probability.

According to the results from the empirical data, the ABC method and MLE

method weakly support the conclusion of Xi et al. (2014) that Amborella and Nuphar

cluster together based on their gene tree topologies, but using very di↵erent method-

ology (although theirs is also coalescent-based). Alanzi and Degnan (forthcoming)

note that their gene trees have been criticized, in particular for having problems with

how they are rooted. However, our method uses only unrooted gene tree topologies

and still found some support for their estimated species tree. Alanzi and Degnan

(forthcoming) have used this data set not to make a definitive claim about the rooting

of the angiosperms, but rather to illustrate how the ABC method and MLE method

could be used for this type of problem.
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Script and R code

A.1

1. Code for computing a prior, which is “priorst.r”.

library(ape)

tree < �sample(1 : 7, 1)

prior.tree < �paste(“prior”, tree, sep = “”)

prior < �read.tree(prior.tree)

prior$edge.length = rexp(length(prior$edge.length), rate = 1)

write.tree(prior, file = “tempst.1”)

2. Script for computing the ABC method, MLE, and Bootstrapping, which is

“scriptABC”.

cd name direction # This is used to open the direction and save the output in

this direction

for((h = 1;h <= 1;h++)).

do
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rm -f vector ts5a.obs # This command is used to delete this file.

rm -f vector ts5a.sim

rm -f st sim

rm -f Distance.output

./hybrid-Lambda -spcu ABCDE -num 100 -seed 130 # This command is used to run

the hybrid�Lambda program to generate the gene from the observed data.

sed ‘s/ 1//g’ OUT coal unit > data-ts5a

for((i = 1; i <= 100; i++))

do

head �$i data-ts5a | tail �1 > gt

./vector gt 0 >> vector ts5a.obs # This command is used to run the vector program

to compute the topology from the observe data.

done

for((j = 1; j <= 50000; j ++))

do

rm �f vector ts5a.sim

R CMD BATCH priorst.r # This command is used to run the R code to compute

the prior.

./ultrametric tempst.1 > ts5a.new # This command is used to run the ultrametric

program to make the prior data into a molecular clock.

cat ts5a.new >> st sim

echo $h $j >> log-output-number

./hybrid�Lambda �spcu ts5a.new �num 100 �seed 1301 # This command is used

to the run hybrid�Lambda program to generate the gene from data that is acquired

from the prior.

sed ‘s/ 1//g’ OUT coal unit > data�ts5a.new

for((k = 1; k <= 100; k ++))

do
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head -$k data-ts5a.new | tail �1 > gt.1

./vector gt.1 0 >> vector ts5a.sim # This command is used to run the vector pro-

gram to compute the topology from the simulated data.

done

R CMD BATCH compare.r.2 # This command is used to run the R code to compute

the topology for the five taxa and also to compute the split of the five taxa.

done

R CMD BATCH post.boot.r # This command is used to run the R code to compute

the posterior probability of the topology, the posterior probability of the split, the

MLE, and also bootstrapping.

done

3. R Code for computing the topology of the five taxa and the splits of the five

taxa, which is “compare.r.2”.

x.topo.obs < � read.table(“vector ts5a.obs”)

n.topo.obs< � 1:15

n.topo.obs[1] < �sum(x.topo.obs == “2 3 4 4 3 4 4 3 3 2”)

n.topo.obs[2] < �sum(x.topo.obs == “2 4 3 4 4 3 4 3 2 3”)

n.topo.obs[3] < �sum(x.topo.obs == “2 4 4 3 4 4 3 2 3 3”)

n.topo.obs[4] < �sum(x.topo.obs == “3 2 4 4 3 3 3 4 4 2”)

n.topo.obs[5] < �sum(x.topo.obs == “4 2 3 4 4 3 2 3 4 3”)

n.topo.obs[6] < �sum(x.topo.obs == “4 2 4 3 4 2 3 4 3 3”)

n.topo.obs[7] < �sum(x.topo.obs == “3 4 2 4 3 3 3 4 2 4”)

n.topo.obs[8] < �sum(x.topo.obs == “4 3 2 4 3 4 2 3 3 4”)

n.topo.obs[9] < �sum(x.topo.obs == “4 4 2 3 2 4 3 4 3 3”)

n.topo.obs[10] < �sum(x.topo.obs == “3 4 4 2 3 3 3 2 4 4”)
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n.topo.obs[11] < �sum(x.topo.obs == “4 3 4 2 3 2 4 3 3 4”)

n.topo.obs[12] < �sum(x.topo.obs == “4 4 3 2 2 3 4 3 4 3”)

n.topo.obs[13] < �sum(x.topo.obs == “3 3 3 3 2 4 4 4 4 2”)

n.topo.obs[14] < �sum(x.topo.obs == “3 3 3 3 4 2 4 4 2 4”)

n.topo.obs[15] < �sum(x.topo.obs == “3 3 3 3 4 4 2 2 4 4”)

write(n.topo.obs, file = “n.topo.obs”, ncol = 1)

n.split.obs < �1 : 10

n.split.obs[1] < �n.topo.obs[1] + n.topo.obs[2] + n.topo.obs[3]

n.split.obs[2] < �n.topo.obs[4] + n.topo.obs[5] + n.topo.obs[6]

n.split.obs[3] < �n.topo.obs[7] + n.topo.obs[8] + n.topo.obs[9]

n.split.obs[4] < �n.topo.obs[10] + n.topo.obs[11] + n.topo.obs[12]

n.split.obs[5] < �n.topo.obs[1] + n.topo.obs[4] + n.topo.obs[13]

n.split.obs[6] < �n.topo.obs[2] + n.topo.obs[7] + n.topo.obs[14]

n.split.obs[7] < �n.topo.obs[3] + n.topo.obs[10] + n.topo.obs[15]

n.split.obs[8] < �n.topo.obs[5] + n.topo.obs[8] + n.topo.obs[15]

n.split.obs[9] < �n.topo.obs[6] + n.topo.obs[11] + n.topo.obs[14]

n.split.obs[10] < �n.topo.obs[9] + n.topo.obs[13] + n.topo.obs[12]

n.topo.sim < �1 : 15

n.split.sim < �1 : 10

string < �paste(“vector ts5a.sim”)

x.topo.sim < �read.table(string)

n.topo.sim[1] < �sum(x.topo.sim == “2 3 4 4 3 4 4 3 3 2”)

n.topo.sim[2] < �sum(x.topo.sim == “2 4 3 4 4 3 4 3 2 3”)

n.topo.sim[3] < �sum(x.topo.sim == “2 4 4 3 4 4 3 2 3 3”)

n.topo.sim[4] < �sum(x.topo.sim == “3 2 4 4 3 3 3 4 4 2”)

n.topo.sim[5] < �sum(x.topo.sim == “4 2 3 4 4 3 2 3 4 3”)

n.topo.sim[6] < �sum(x.topo.sim == “4 2 4 3 4 2 3 4 3 3”)

n.topo.sim[7] < �sum(x.topo.sim == “3 4 2 4 3 3 3 4 2 4”)
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n.topo.sim[8] < �sum(x.topo.sim == “4 3 2 4 3 4 2 3 3 4”)

n.topo.sim[9] < �sum(x.topo.sim == “4 4 2 3 2 4 3 4 3 3”)

n.topo.sim[10] < �sum(x.topo.sim == “3 4 4 2 3 3 3 2 4 4”)

n.topo.sim[11] < �sum(x.topo.sim == “4 3 4 2 3 2 4 3 3 4”)

n.topo.sim[12] < �sum(x.topo.sim == “4 4 3 2 2 3 4 3 4 3”)

n.topo.sim[13] < �sum(x.topo.sim == “3 3 3 3 2 4 4 4 4 2”)

n.topo.sim[14] < �sum(x.topo.sim == “3 3 3 3 4 2 4 4 2 4”)

n.topo.sim[15] < �sum(x.topo.sim == “3 3 3 3 4 4 2 2 4 4”)

n.split.sim[1] < �n.topo.sim[1] + n.topo.sim[2] + n.topo.sim[3]

n.split.sim[2] < �n.topo.sim[4] + n.topo.sim[5] + n.topo.sim[6]

n.split.sim[3]¡-n.topo.sim[7] + n.topo.sim[8] + n.topo.sim[9]

n.split.sim[4]¡-n.topo.sim[10] + n.topo.sim[11] + n.topo.sim[12]

n.split.sim[5]¡-n.topo.sim[1] + n.topo.sim[4] + n.topo.sim[13]

n.split.sim[6]¡-n.topo.sim[2] + n.topo.sim[7] + n.topo.sim[14]

n.split.sim[7]¡-n.topo.sim[3] + n.topo.sim[10] + n.topo.sim[15]

n.split.sim[8]¡-n.topo.sim[5] + n.topo.sim[8] + n.topo.sim[15]

n.split.sim[9]¡-n.topo.sim[6] + n.topo.sim[11] + n.topo.sim[14]

n.split.sim[10]¡-n.topo.sim[9] + n.topo.sim[13] + n.topo.sim[12]

D.topo = sum((n.topo.obs� n.topo.sim)2)

D.split = sum((n.split.obs� n.split.sim)2)

write(c(D.topo,D.split), ncol = 2, f ile = “Distance.output”, append = TRUE)

3. R Code for computing the posterior probability, MLE, and bootstrapping, which

is “post.boot.r”.

library(ape)

dist< � read.table(“Distance.output”)

st< �read.tree(“st sim”)

M.topo< �sort(dist$V1)
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Best.trees.topo< �which(dist$V1<=M.topo[100])

M.split< �sort(dist$V2)

Best.trees.split< �which(dist$V2<=M.split[100])

library(ape)

posterior.topo< �rep(0,7)

posterior.split< �rep(0,7)

for(i in 1:100){

tree.topo< �st[[Best.trees.topo[i]]]

treestring.topo< �write.tree(tree.topo)

treestring2.topo< �gsub(“//d”,“”,treestring.topo)

treestring3.topo< �gsub(“:”,“”,treestring2.topo)

if (treestring3.topo==“((((A.,B.).,C.).,D.).,E.);”) posterior.topo[1]

< � posterior.topo[1]+1

if (treestring3.topo==“((((A.,B.).,C.).,E.).,D.);”) posterior.topo[2]

< � posterior.topo[2]+1

if (treestring3.topo==“((((D.,E.).,C.).,B.).,A.);”) posterior.topo[3]

< � posterior.topo[3]+1

if (treestring3.topo==“((((D.,E.).,C.).,A.).,B.);”) posterior.topo[4]

< � posterior.topo[4]+1

if (treestring3.topo==“(((D.,E.).,(A.,B.).).,C.);”) posterior.topo[5]

< � posterior.topo[5]+1

if (treestring3.topo==“(((A.,B.).,C.).,(D.,E.).);”) posterior.topo[6]

< � posterior.topo[6]+1

if (treestring3.topo==“(((D.,E.).,C.).,(A.,B.).);”) posterior.topo[7]

< � posterior.topo[7]+1
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print(treestring3.topo)

tree.split< �st[[Best.trees.split[i]]]

treestring.split< �write.tree(tree.split)

treestring2.split< �gsub(“//d”,””,treestring.split)

treestring3.split< �gsub(“:”,“”,treestring2.split)

if (treestring3.split==“((((A.,B.).,C.).,D.).,E.);”) posterior.split[1]

< � posterior.split[1]+1

if (treestring3.split==“((((A.,B.).,C.).,E.).,D.);”) posterior.split[2]

< � posterior.split[2]+1

if (treestring3.split==“((((D.,E.).,C.).,B.).,A.);”) posterior.split[3]

< � posterior.split[3]+1

if (treestring3.split==“((((D.,E.).,C.).,A.).,B.);”) posterior.split[4]

< � posterior.split[4]+1

if (treestring3.split==“(((D.,E.).,(A.,B.).).,C.);”) posterior.split[5]

< � posterior.split[5]+1

if (treestring3.split==“(((A.,B.).,C.).,(D.,E.).);”) posterior.split[6]

< � posterior.split[6]+1

if (treestring3.split==“(((D.,E.).,C.).,(A.,B.).);”) posterior.split[7]

< � posterior.split[7]+1

print(treestring3.split) }

write(posterior.topo,file=“posterior.topo”,append=TRUE,ncol=7)

write(posterior.split,file=“posterior.split”,append=TRUE,ncol=7)

Ayed< �read.table(”n.topo.obs”) n.topo.obs< �Ayed$V1

u 1< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)

Z< �exp(�z)

value< �0
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if(tree==1) value< �1� (2/3) ⇤X � (2/3) ⇤ Y + (1/3) ⇤X ⇤ Y + (1/18) ⇤X ⇤ Y 3 +

(1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �1� (2/3) ⇤X � (2/3) ⇤ Y + (1/3) ⇤X ⇤ Y + (1/18) ⇤X ⇤ Y 3 +

(1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �1� (2/3) ⇤X � (2/3) ⇤ Y + (1/3) ⇤X ⇤ Y + (1/18) ⇤X ⇤ Y 3 +

(1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �1� (2/3) ⇤X � (2/3) ⇤ Y + (1/3) ⇤X ⇤ Y + (1/18) ⇤X ⇤ Y 3 +

(1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �1� (2/3) ⇤X � (2/3) ⇤ Y + (4/9) ⇤X ⇤ Y � (2/45) ⇤X ⇤ Y ⇤Z6

if(tree==6) value< �1�(2/3)⇤X�(2/3)⇤Y ⇤Z+(1/3)⇤X⇤Y ⇤Z+(1/15)⇤X⇤Y 3⇤Z

if(tree==7) value< �1�(2/3)⇤X�(2/3)⇤Y ⇤Z+(1/3)⇤X⇤Y ⇤Z+(1/15)⇤X⇤Y 3⇤Z

return(value)}

u 2< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)

Z< �exp(�z)

value< �0

if(tree==1) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/9)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==2) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/18)⇤X ⇤Y 3� (2/45)⇤X ⇤Y 3 ⇤Z6

if(tree==3) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==4) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==5) value< �(1/3) ⇤ Y � (5/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/3) ⇤ Y ⇤ Z � (1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/3) ⇤X � (1/3) ⇤X ⇤ Y ⇤ Z + (1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 3< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)
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Z< �exp(�z)

value< �0

if(tree==1) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/18)⇤X ⇤Y 3� (2/45)⇤X ⇤Y 3 ⇤Z6

if(tree==2) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/9)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==3) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==4) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==5) value< �(1/3) ⇤ Y � (5/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/3) ⇤ Y ⇤ Z � (1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/3) ⇤X � (1/3) ⇤X ⇤ Y ⇤ Z + (1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 4< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)

Z< �exp(�z)

value< �0

if(tree==1) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==2) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==3) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/18)⇤X ⇤Y 3� (2/45)⇤X ⇤Y 3 ⇤Z6

if(tree==4) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/9)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==5) value< �(1/3) ⇤X � (5/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/3) ⇤X � (1/3) ⇤X ⇤ Y ⇤ Z + (1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/3) ⇤ Y ⇤ Z � (1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 5< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)

Z< �exp(�z)

value< �0
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if(tree==1) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 6< �function(tree, x, y, z){

X< �exp(�x)

Y< �exp(�y)

Z< �exp(�z)

value< �0

if(tree==1) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 7< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6
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if(tree==3) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 8< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/9) ⇤X ⇤ Y � (2/45) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 9< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6
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if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 10< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 11< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0 if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/9) ⇤X ⇤ Y � (2/45) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z
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return(value) }

u 12< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 13< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==2) value< �(1/3)⇤X� (1/3)⇤X ⇤Y +(1/18)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==3) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/9)⇤X ⇤Y 3+(1/90)⇤X ⇤Y 3 ⇤Z6

if(tree==4) value< �(1/3)⇤Y � (1/6)⇤X ⇤Y � (1/18)⇤X ⇤Y 3� (2/45)⇤X ⇤Y 3 ⇤Z6

if(tree==5) value< �(1/3) ⇤X � (5/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/3) ⇤X � (1/3) ⇤X ⇤ Y ⇤ Z + (1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/3) ⇤ Y ⇤ Z � (1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 14< �function(tree, x, y, z){
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X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

u 15< �function(tree, x, y, z){

X < �exp(�x)

Y < �exp(�y)

Z < �exp(�z)

value< �0

if(tree==1) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==2) value< �(1/18) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==3) value< �(1/6) ⇤X ⇤ Y � (1/9) ⇤X ⇤ Y 3 + (1/90) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==4) value< �(1/6) ⇤X ⇤ Y � (1/18) ⇤X ⇤ Y 3 � (2/45) ⇤X ⇤ Y 3 ⇤ Z6

if(tree==5) value< �(1/18) ⇤X ⇤ Y + (1/90) ⇤X ⇤ Y ⇤ Z6

if(tree==6) value< �(1/15) ⇤X ⇤ Y 3 ⇤ Z

if(tree==7) value< �(1/6) ⇤X ⇤ Y ⇤ Z � (1/10) ⇤X ⇤ Y 3 ⇤ Z

return(value) }

log.Like< �function(tree, x, y, z, n.topo.obs){

value< � n.topo.obs[1]*log(u 1(tree,x,y,z))+ n.topo.obs[2]*log(u 2(tree,x,y,z))+

n.topo.obs[3]*log(u 3(tree,x,y,z))+ n.topo.obs[4]*log(u 4(tree,x,y,z))+
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n.topo.obs[5]*log(u 5(tree,x,y,z))+ n.topo.obs[6]*log(u 6(tree,x,y,z)) +

n.topo.obs[7]*log(u 7(tree,x,y,z))+ n.topo.obs[8]*log(u 8(tree,x,y,z))+

n.topo.obs[9]*log(u 9(tree,x,y,z)) + n.topo.obs[10]*log(u 10(tree,x,y,z))+

n.topo.obs[11]*log(u 11(tree,x,y,z))+ n.topo.obs[12]*log(u 12(tree,x,y,z)) +

n.topo.obs[13]*log(u 13(tree,x,y,z))+ n.topo.obs[14]*log(u 14(tree,x,y,z))+

n.topo.obs[15]*log(u 15(tree,x,y,z))

return(value) }

best.MLE< �c(0,0,0,0,0)

x < �-log(seq(0.01,1,0.01))

y < �x

z < �x

best.MLE[4]< �log.Like(1, 1, 1, 1, n.topo.obs)

for (h in 1:7){

for(i in 1:length(x)){

print(c(h,i))

for(j in 1:length(y)){

for(k in 1:length(z)){

temp< �log.Like(h,x[i],y[j],z[k],n.topo.obs)

if(temp>best.MLE[4]){

best.MLE[4]< �temp

best.MLE[1]< �i

best.MLE[2]< �j

best.MLE[3]< �k

best.MLE[5]< �h

} } } } }

boot.trees< �NULL

for(i in 1:15) {
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boot.trees < � c(boot.trees,rep(i,n.topo.obs[i])) }

best<-c(0,0,0,0,0)

x< �-log(seq(0.01,1,0.01))

y < �x

z < �x

boot.suport< �rep(0,7)

for (b in 1:50){

boot.trees.temp< � sample(boot.trees,replace=TRUE)

n.topo.boot< �1:15

n.topo.boot[1]< �sum(boot.trees.temp==1)

n.topo.boot[2]< �sum(boot.trees.temp==2)

n.topo.boot[3]< �sum(boot.trees.temp==3)

n.topo.boot[4]< �sum(boot.trees.temp==4)

n.topo.boot[5]< �sum(boot.trees.temp==5)

n.topo.boot[6]< �sum(boot.trees.temp==6)

n.topo.boot[7]< �sum(boot.trees.temp==7)

n.topo.boot[8]< �sum(boot.trees.temp==8)

n.topo.boot[9]< �sum(boot.trees.temp==9)

n.topo.boot[10]< �sum(boot.trees.temp==10)

n.topo.boot[11]< �sum(boot.trees.temp==11)

n.topo.boot[12]< �sum(boot.trees.temp==12)

n.topo.boot[13]< �sum(boot.trees.temp==13)

n.topo.boot[14]< �sum(boot.trees.temp==14)

n.topo.boot[15]< �sum(boot.trees.temp==15)

best[4]< �log.Like(1,1,1,1,n.topo.boot)

for (h in 1:7){

for(i in 1:length(x)){

print(c(b,h,i))
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for(j in 1:length(y)){

for(k in 1:length(z)){

temp.boot< �log.Like(h,x[i],y[j],z[k],n.topo.boot)

if(temp.boot>best[4]){

best[4]¡-temp.boot

best[1]< �i

best[2]< �j

best[3]< �k

best[5]< �h

} } } } }

boot.suport[best[5]]< �boot.suport[best[5]]+1

print(best)}

write(c(best.MLE,boot.suport),ncol=12,file=“output.MLE.Bootstrap.r.1”)

A.2

# Script to simulate the DNA sequence and calculate the ABC method, MLE, and

Bootstrapping, which is scriptABC.

cd name direction

for((h = 1;h¡= 1;h++))

do

rm -f vector ts5a.obs

rm -f vector ts5a.sim

rm -f st sim

rm -f Distance.output

./hybrid-Lambda -spcu ABCDE1 -num 100 -seed 217

sed ’s/ 1//g’ OUT coal unit > data-ts5a
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for((i = 1; i <= 100; i++))

do

head -$i data-ts5a | tail -1 > gt

./seq-gen -l1000 -s.005 -mGTR -a1.0 -g4 -i.1 -f.3,.2,.2,.3 -z19$h5$i -op < gt > foo #

This command is used to generate the DNA sequences from the observed data.

./phyml -ifoo -mGTR -fe -ve -c4 -ae –r seed 5$i$h –no memory check –quiet > log #

Also this command is used to compute the DNA sequences from the observed data.

#./phyml foo 0 s 1 0 GTR e e 1 1.0 BIONJ y y

R CMD BATCH root.r # This R code uses to rooted gene trees from DNA sequences.

./vector gt.2 0 >> vector ts5a.obs # This command is used to run the vector pro-

gram to compute the topology from DNA sequence observed data.

done

for((j = 1; j <= 50000; j ++))

do

rm -f vector ts5a.sim

R CMD BATCH priorst.r

./ultrametric tempst.1 > ts5a.new

cat ts5a.new >> st sim

echo $h $j >> log-output-number

./hybrid-Lambda -spcu ts5a.new -num 100 -seed 2171

sed ’s/ 1//g’ OUT coal unit > data-ts5a.new

for((k = 1; k <= 100; k ++))

do

head -$k data-ts5a.new | tail -1 > gt.1

./seq-gen -l1000 -s.005 -mGTR -a1.0 -g4 -i.1 -f.3,.2,.2,.3 -z19$h05$j5$k -op < gt.1 >

foo # This command is used to generate DNA sequences from the simulated data.

#./phyml -ifoo -mGTR -fe -ve -c4 -ae –r seed 5$k$h337$j –no memory check –quiet

> log Also this comment to compute DNA sequences from the simulated data.
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./phyml foo 0 s 1 0 GTR e e 1 1.0 BIONJ y y

R CMD BATCH root.r # This R code uses to rooted gene trees from DNA sequences.

./vector gt.2 0 >> vector ts5a.sim # This command is used to run the vector pro-

gram to compute the topology from DNA sequence simulated data.

done

R CMD BATCH compare.r.2

done

R CMD BATCH post.boot.r

done

# This R code uses to rooted the gene tree that gets from the DNA sequence

simulation, which is “ root.r”

library(ape)

a< �read.tree(“foo phyml tree.txt”) # This code read the output from Phyml pro-

gram

b< �multi2di(a) # This to rooted the gene trees and create the gt.2 file.

write.tree(b,“gt.2”)

A.3

# R code to compute the distance between the simulated data and observed data

for the eight taxa split, which is “compare.r.3.1”

library(“sets”)

x.topo.obs < � read.table(“splits ts8s.obs3.1”)

n.obs.topo< � gset(x.topo.obs)

names(n.obs.topo)

n.obs.topo< � table(x.topo.obs)
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topo.obs.n< � matrix(n.obs.topo)

n.topo.obs< �gset(sort(unique(x.topo.obs$V1)),memberships=topo.obs.n[,1])

x.topo.sim < � read.table(“splits ts8s.sim3.1”)

n.sim.topo< � gset(x.topo.sim)

names(n.sim.topo)

n.sim.topo< � table(x.topo.sim)

topo.sim.n< � matrix(n.sim.topo)

n.topo.sim< �gset(sort(unique(x.topo.sim$V1)),memberships=topo.sim.n[,1])

topo.D1= n.topo.obs-n.topo.sim | n.topo.sim-n.topo.obs

topo.D2< � gset memberships(topo.D1)

D.topo=sum(topo.D2)

write (c(D.topo), ncol=1, file=“Output.8.taxa3.1”, append=TRUE)

# R code to find the best 100 trees for using to compute the posterior probability.

library(ape)

dist.3.1< � read.table(“Output.8.taxa3.1”)

st.3.1< �read.tree(“st sim3.1”)

M.topo3.1< �sort(dist.3.1$V1)

Best.trees.topo3< �which(dist.3.1$V1<=M.topo3.1[100])

for(iin1 : 100){

tree.topo3< �st.3.1[[Best.trees.topo3[i]]]

write.tree(tree.topo3,“split.8.taxa3.1”, append=TRUE)}

# Script for 8 taxa.

Make a temp directory on /dev/shm where small temp files will be written and read

from TEMP=/dev/shm/$1

mkdir $TEMP
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# Go to directory and clean up old files

cd $HOME/$2 || exit

rm -f split.8.taxa3.1

rm -f Output.8.taxa3.1

for((h = 1;h <= 1;h++))

do

rm -f splits ts8s.obs3.1

rm -f splits ts8s.sim3.1

rm -f st sim3.1

# Run the simulation

hybrid-Lambda -spcu ST8cat.txt -num 100 -seed $1 # This command is used run

hybrid-Lambda to simulate the observed data for the 8-taxa.

sed ’s/ 1//g’ OUT coal unit > data-ts8s3.1

for((i = 1; i <= 100; i++))

do

head -$i data-ts8s3.1 | tail -1 > $TEMP/gt

splits $TEMP/gt 0 > $TEMP/temp83.1 # This command is used to run the split

program to get the split of the 8-taxa of the observed.

head -5 $TEMP/temp83.1 >> splits ts8s.obs3.1

done

for((j = 1; j <= 12500; j ++))

do

rm -f splits ts8s.sim3.1

R CMD BATCH priorst.r.3.1 # This command is used to run the R code to create

data from the prior.

ultrametric tempst.3.1 > $TEMP/ts8s.new3.1 # make the tree that got from prior

clock’s.
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cat $TEMP/ts8s.new3.1 >> st sim3.1

echo $h $j >> log-output-number

hybrid-Lambda -spcu $TEMP/ts8s.new3.1 -num 100 -seed $1$j # This command is

used to run hybrid-Lambda to get the simulated data for the 8-taxa from the prior.

sed ’s/ 1//g’ OUT coal unit > $TEMP/data-ts8s.new3.1

for((k = 1; k <= 100; k ++))

do

head -$k $TEMP/data-ts8s.new3.1 | tail -1 > $TEMP/gt.1

splits $TEMP/gt.1 0 > $TEMP/temp8.3.1 # This command is used to run the split

program to get the split of the 8-taxa of the simulated.

head -5 $TEMP/temp8.3.1 >> splits ts8s.sim3.1

done

R CMD BATCH compare.r.3.1 # This command is used to run the R code to com-

pute the distance between the split of observed data and split of simulated data.

done

R CMD BATCH post.boot.r.3.1 # This command is used to run the R code to com-

pute the smallest distance of 100 trees.

done

# Clean up the temp directory on /dev/shm

mkdir temp files

cp $TEMP/* ./temp files

rm -r $TEMP

cp split.8.taxa3.1 intree # cp means cope the file “split.8.taxa3.1”, a smallest dis-

tance, which got from this code file “post.boot.r.3.1” , to file intree to use as input

data for consensus program to compute the posterior probability.

./consense <<EOF # The command is used to run consensus program. The EOF

command is used to open the file and apply the following this command.

R # This command is used to ask the consensus program to choose the rooted the
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output.

Y # means Yes.

EOF # end the file.

cat outfile >> outfile1 # To save the shape that gets from the consensus program

in this file “outfile1”.

cat outtree >>outtree1 # To save the output from the consensus program in this

file “outtile1”.

rm -f outfile

cat ts8bal outtree > intree # cope the original data to outtree file to use as input

data for treedist program.

./treedist << EOF # This command is used to run the treedist program to compute

the distance between the true tree and the simulated tree.

R # Ask the treedist program to root the tree.

D # To give the distance between the trees.

Y # Yes

EOF # end the command.

cat outfile >> outfile8 # Save the output from the treedist in this file “outfile8”.

A.4

# Code for computing the MLE for rooted vs unrooted trees with DNA and without

DNA.

# The code is from data.create.r

library(TreeSim) # This code is used for running the library TreeSim to use the

function to create species trees.

x< �sim.bd.taxa(n-taxa,number of species,�,�⇥µ, complete=FALSE) # This code
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is used for running the sim.bd.taxa function to simulate the species tree, but it is

necessary to specify the number of taxa desired, the number of gene trees desired,

the value of � desired, and the last entry of the value of µ times the �.

for(iin1 : 50){

filename< �paste(“speciestree.8-0.1-0”) # To save the data generated after adding

the outgroup.

filename1< �paste(“speciestree.without.outgroup”) # To save the data without out-

group.

string< �write.tree(x[[i]])

g< �gregexpr(“)”, string, fixed=TRUE)

loc< �g[[1]]

string1< �substring(string,1,loc[length(loc)])

string2< �paste(“(”,string1,“:10,z:10);”, sep=“”) # The code is from string until

string2 used for adding the outgroup to the species tree.

string3< �paste(string1,“;”, sep=“”)

write(string2, file=filename, append=TRUE, ncol=1)

write(string3, file=filename1, append=TRUE, ncol=1)}

# The code is from the drop.out-group.

library(ape) # To run the APE library (Analyses of Phylogenetics and Evolution)

Tr¡-read.tree(“data-ts8s3.1”) # To read the file from the hybrid-Lambda program

for(iin1 : length(Tr)){

y< �drop.tip(Tr[[i]], “z”) # This code is to drop the outgrop from the species after

simulating the gene tree without DNA.

write.tree(y, file=“species.unroot”, append=TRUE)}

# The code is from the drop.out-group.1
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library(ape)

Tre< �read.tree(“foo phyml tree.txt”) # Read the species tree after the gene tree

with DNA.

g< �drop.tip(Tre, “z”) ”) # This code is for dropping the outgroup from the species

after simulating the gene tree with DNA.

write.tree(g, file=“gt.drop”)

# The code is from root.r

library(ape)

library(phytools) # Run Phytools library to the rooted species on the place desired.

a< �read.tree(“foo phyml tree.txt”)

index< �which(a$tip.label==“z”)

b< �reroot(a,index,0.1) # Read the species tree after simulating the DNA until it

is rerooted to make the outgroup “z”.

write.tree(b,“gt.2”)

#The code is from PhyML-head.

#NEXUS

BEGIN TREES;

# The code is from PhyML.r

x< �read.table(“species.unroot”) # read the species tree without the outgroup after

simulating the known gene tree.

for(iin1 : 100){

string1< � paste(“gt”,i,sep=“”)

string < � paste(“Tree”,string1,“=”,“[&U]”,x$V1[i])

write(string, file=“phyml-middle”, append=TRUE)
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} # The code inside the loop creates the formula of the unrooted gene tree in order

to use PhyloNet.

# The code is from PhyML.r.1

x< �read.table(“data-ts8s3.1”) ”) # Read the species tree with the outgroup after

simulating the known gene tree.

for(iin1 : 100){ string1 < � paste(“gt”,i,sep=“”)

string < � paste(“Tree”,string1,“=”,x$V1[i])

write(string, file=“phyml-middle.1”, append=TRUE)

} # The code inside the loop creates the formula of the unrooted gene tree in order

to use PhyloNet.

#The code is from PhyML-tail

END;

BEGIN PHYLONET;

InferNetwork ML (all) 0 -x 5 -m 1000;

END;

# This PhyML-tail code is used for researching the MLE tree by using x=5 (which

how many times the search was run), and m=1000 which is the highest value of

examinable network topologies.

All code from the PhyML-head until the PhyML-tail makes the format run the

PhyloNet program.

# Below is the script used for computing the MLE for rooted vs unrooted trees

with DNA and without DNA.

rm -f MLE.8.taxa.*rooted* # This command is for removing those files.

R CMD BATCH data.create.r # This command is for running the R code to create
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the species trees.

for((h = 1;h <= 50;h++))

do

rm -f data-ts8s3.1

rm -f species.unroot

rm -f phyml-middle

rm -f temp.net

rm -f spe.drop.outgp

rm -f data.rooted # All those files need to be removed before starting.

head -$h speciestree.8-0.1-0 | tail -1 > TREE1 #the command to head only the last

line from the species.

./ultrametric TREE1 > TREEMLE # This command is for making the species tree

ultra-metric.

./hybrid-Lambda -spcu TREEMLE -num 100 # This command is for running the

hybrid-lambda program to simulate know gene trees.

sed ’s/ 1//g’ OUT coal unit > data-ts8s3.1

R CMD BATCH drop.out-group # This command is for running the R code to drop

the outgroup.

R CMD BATCH phyml.r # This command is for running some R codes to create

the PhyML-middle unrooted gene tree.

cat phyml-head phyml-middle phyml-tail > temp.net # cope all those file to one file

to be input for PhyloNet program.

java -jar PhyloNet 3.6.0.jar temp.net > taxa.8.MLE.output.unrooted # This com-

mand is for running the PhyloNet program.

tail -2 taxa.8.MLE.output.unrooted | head -1 >> MLE.8.taxa.unrooted # save the

last line to file with append the result.

rm -f phyml-middle.1

R CMD BATCH phyml.r.1 # This command is for running some R codes to create
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PhyML-middle.1.rooted gene tree.

cat phyml-head phyml-middle.1 phyml-tail > temp.net.1

java -jar PhyloNet 3.6.0.jar temp.net.1 > taxa.8.MLE.output.rooted # This com-

mand is for running the PhyloNet program.

tail -2 taxa.8.MLE.output.rooted | head -1 >> MLE.8.taxa.rooted

for((i = 1; i <= 100; i++))

do

head -$i data-ts8s3.1 | tail -1 > gt

./seq-gen -l1000 -s.005 -mGTR -a1.0 -g4 -i.1 -f.3,.2,.2,.3 -op < gt > foo # This com-

mand is for running the seq-gen program to create DNA sequences.

./phyml foo 0 s 1 0 GTR e e 1 1.0 BIONJ y y # This command is for running

the PhyML program, which is the result of seq-gen used as the input for PhyML to

create the estimate gene tree.

R CMD BATCH drop.out-group.1 group # This command is for running the R code

to drop the outgroup.

R CMD BATCH root.r #This command is for making the species from DNA rooted.

cat gt.drop >> spe.drop.outgp

cat gt.2 >> data.rooted

done

rm -f phyml-middle.2

R CMD BATCH phyml.r.2 # This command is for running some R codes to create

PhyML-middle.2 rooted gene tree.

cat phyml-head phyml-middle.2 phyml-tail > temp.net.2

java -jar PhyloNet 3.6.0.jar temp.net.2 > taxa.8.MLE.output.rootedDNA # This

command is for running the PhyloNet program.

tail -2 taxa.8.MLE.output.rootedDNA | head -1 >> MLE.8.taxa.rootedDNA

rm -f phyml-middle.3

R CMD BATCH phyml.r.3 # This command is for running some R codes to create
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PhyML-middle unrooted gene tree.

cat phyml-head phyml-middle.3 phyml-tail > temp.net.3

java -jar PhyloNet 3.6.0.jar temp.net.3 > taxa.8.MLE.output.unrootedDNA # This

command is for running the PhyloNet program.

tail -2 taxa.8.MLE.output.unrootedDNA — head -1 >> MLE.8.taxa.unrootedDNA

done

for((i = 1; i <= 50; i++))

do

head -$i MLE.8.taxa.unrooted | tail -1 > Temp1

head -$i speciestree.without.outgroup | tail -1 > Temp2

# These two commands above are for reading the specific line from “MLE.8.taxa.

unrooted”, which is the result from the PhyloNet program, to compare it with

“speciestree.without.outgroup”, based on the loop and then save it to these two

files “Temp1” and “Temp2”

rm -f outfile

rm -f intree # every time it is necessary to remove the two files above.

cat Temp1 > intree

cat Temp2 >>intree # copy the two files “Temp1” and “Temp2” to be input for the

treedist program.

./treedist <<EOF # This command is for running the treedist program.

D # mean distance.

R # rooted.

Y # Yes.

EOF

grep and outfile >> output.unroot.dist # After running the treedist program, save

the result for unrooted gene trees without DNA to this file “output.unroot.dist” and

also do this with URGT with DNA and RGT with and without DNA.

done
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Table B.1: Species 1; ((((A:1,B:1.0):0.1,C:1.1):0.1,D:1.2):0.1,E:1.3);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 70 14 0 4 6 2 4 71 4 0 11 5 4 5
2 31 17 11 8 12 18 3 15 19 18 19 16 12 1
3 39 54 0 0 4 2 1 41 34 10 2 11 2 0
4 75 22 0 0 0 2 1 64 28 0 0 2 5 1
5 11 19 0 1 21 11 37 34 28 4 0 9 13 12
6 93 6 0 0 0 1 0 80 20 0 0 0 0 0
7 60 26 2 2 5 3 2 33 37 10 2 16 2 0
8 51 23 0 0 14 0 12 40 26 1 1 20 0 12
9 41 7 0 6 20 22 4 39 14 1 14 24 5 3
10 46 35 0 0 2 15 2 47 36 0 0 1 12 4
11 66 17 1 1 0 15 0 72 16 3 1 0 8 0
12 34 4 0 0 32 24 6 36 7 0 2 30 18 7
13 58 26 0 0 2 14 0 67 24 0 1 6 2 0
14 74 21 0 0 0 5 0 62 19 0 0 10 9 0
15 57 42 0 0 1 0 0 46 34 1 1 17 0 1
16 10 10 31 36 5 0 8 9 20 26 27 3 0 15
17 24 76 0 0 0 0 0 39 58 0 0 2 1 0
18 8 45 12 0 24 11 0 7 41 21 0 25 6 0
19 82 16 1 0 0 1 0 55 33 1 3 5 2 1
20 88 10 0 0 0 1 1 68 25 2 1 1 1 2
21 36 18 11 6 14 12 3 32 24 18 6 14 5 1
22 45 47 3 1 3 1 0 50 45 4 0 1 0 0
23 92 8 0 0 0 0 0 90 7 0 0 3 0 0
24 31 48 0 0 2 17 2 36 33 0 2 4 21 4
25 62 27 1 0 6 4 0 56 14 2 3 17 8 0
26 32 27 0 5 24 7 5 29 39 1 7 14 9 1
27 54 19 0 1 4 14 8 46 4 3 8 9 16 14
28 63 25 0 1 0 11 0 52 28 2 0 7 11 0
29 79 18 0 0 0 3 0 49 40 1 0 6 4 0
30 26 52 0 0 9 8 5 31 42 1 1 12 8 5
31 87 9 0 0 2 2 0 67 14 4 2 9 2 2
32 37 7 0 0 28 20 8 29 14 1 0 38 14 4
33 43 52 0 0 1 0 4 44 52 0 1 1 2 0
34 92 6 0 0 0 2 0 79 19 0 0 0 2 0
35 12 82 0 0 2 4 0 25 65 0 0 2 7 1
36 52 34 0 0 0 14 0 40 20 7 10 10 13 0
37 39 58 0 0 2 0 1 47 38 0 0 15 0 0
38 95 5 0 0 0 0 0 94 4 1 0 0 1 0
39 51 9 3 17 12 8 0 25 20 4 17 21 13 0
40 71 9 2 3 7 7 1 60 14 6 3 7 7 3
41 7 1 14 18 53 4 3 18 1 13 17 41 4 6
42 30 12 19 15 8 10 6 9 5 36 28 18 0 4
43 59 36 0 0 0 5 0 63 31 2 1 0 3 0
44 79 6 4 3 0 5 3 64 9 8 7 5 2 5
45 95 4 0 0 0 1 0 83 10 1 0 4 2 0
46 45 16 3 1 12 19 4 55 23 4 1 6 11 0
47 72 11 0 0 3 13 1 53 25 2 1 6 12 1
48 79 17 0 0 1 3 0 68 20 0 0 7 1 4
49 57 13 2 1 14 13 0 38 20 4 2 21 13 2
50 41 32 0 0 8 19 0 41 34 0 0 13 12 0
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Appendix B. Output for ABC method

Table B.3: Species 2; ((((A:1,B:1.0):0.1,C:1.1):0.1,D:1.2):1.0,E:2.2);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 79 19 0 0 1 1 0 73 26 1 0 0 0 0
2 79 19 0 0 0 2 0 67 30 0 0 0 3 0
3 77 4 0 0 5 14 0 52 10 4 5 16 8 5
4 77 21 0 0 0 2 0 64 31 0 0 5 0 0
5 93 7 0 0 0 0 0 84 16 0 0 0 0 0
6 81 14 0 0 2 3 0 61 28 0 0 8 3 0
7 81 17 0 0 0 2 0 75 24 0 0 0 1 0
8 60 6 1 1 11 20 1 69 7 1 5 8 10 0
9 80 18 0 0 0 2 0 55 33 0 3 7 2 0
10 69 31 0 0 0 0 0 61 37 0 0 1 1 0
11 82 14 0 0 1 1 2 76 20 1 0 0 2 1
12 89 11 0 0 0 0 0 54 42 0 0 1 1 2
13 56 38 0 0 0 6 0 58 37 0 0 1 4 0
14 55 13 4 8 4 15 1 71 14 6 5 2 2 0
15 80 14 0 0 0 6 0 69 25 0 0 0 6 0
16 62 30 0 0 6 2 0 58 30 0 0 8 3 1
17 81 14 0 0 3 2 0 64 13 9 1 11 1 1
18 66 24 0 0 9 1 0 62 26 0 0 12 0 0
19 78 15 0 0 7 0 0 76 15 0 0 5 4 0
20 73 22 0 0 0 5 0 56 32 1 2 2 5 2
21 76 15 0 0 1 8 0 49 33 0 0 9 9 0
22 87 13 0 0 0 0 0 73 27 0 0 0 0 0
23 82 12 0 0 0 6 0 72 20 0 0 1 7 0
24 71 29 0 0 0 0 0 55 43 0 0 1 0 1
25 60 13 2 9 8 8 0 43 21 4 11 6 12 3
26 72 9 4 4 8 1 2 75 19 2 2 2 0 0
27 18 27 0 45 3 4 3 23 29 2 33 7 3 3
28 61 26 0 0 5 5 3 62 20 0 0 16 2 0
29 55 31 0 2 11 1 0 49 41 0 4 6 0 0
30 56 40 0 0 0 4 0 60 29 1 0 7 3 0
31 91 7 0 0 0 2 0 76 21 0 0 0 3 0
32 57 8 0 0 7 28 0 55 20 0 2 5 18 0
33 72 17 0 0 9 0 2 61 26 0 3 9 0 1
34 84 14 0 0 1 0 1 83 14 0 0 3 0 0
35 95 2 0 0 1 2 0 80 11 0 0 2 7 0
36 79 17 0 0 0 4 0 66 31 0 0 0 3 0
37 25 33 3 4 21 10 4 28 24 8 10 19 6 5
38 51 44 0 0 4 1 0 50 36 0 0 13 1 0
39 68 23 0 0 7 2 0 55 33 2 0 10 0 0
40 49 28 0 3 6 7 7 50 34 0 4 3 5 4
41 61 33 0 1 1 4 0 65 33 0 0 1 1 0
42 65 32 0 0 0 3 0 65 24 0 0 0 11 0
43 78 16 0 0 0 6 0 74 17 1 2 0 6 0
44 93 6 0 0 0 1 0 80 14 0 0 2 4 0
45 40 14 0 1 35 8 2 34 19 0 4 29 5 9
46 48 51 0 0 0 1 0 51 48 0 0 1 0 0
47 58 37 0 0 0 5 0 49 46 0 0 1 4 0
48 30 35 0 3 15 14 3 19 61 1 3 12 3 1
49 50 20 0 1 7 12 10 39 32 4 1 4 11 9
50 53 37 1 0 3 4 2 34 60 0 0 4 2 0
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Appendix B. Output for ABC method

Table B.5: Species 3; ((((A:1,B:1.0):1.0,C:2.0):0.1,D:2.1):0.1,E:2.2);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 59 27 0 0 0 4 10 58 25 0 1 5 3 8
2 34 38 2 2 14 1 9 40 32 0 0 18 3 7
3 47 21 2 3 6 9 12 42 42 0 0 4 7 5
4 1 94 0 0 4 0 1 4 87 0 0 7 1 1
5 29 5 0 0 56 2 8 38 12 0 0 45 1 4
6 39 50 0 0 7 4 0 33 54 0 0 9 3 1
7 39 48 0 0 6 1 6 31 56 1 0 8 0 4
8 38 21 2 4 9 25 1 42 25 3 1 9 20 0
9 26 36 5 2 20 6 5 23 31 2 4 35 2 3
10 47 35 0 0 14 1 3 37 34 0 0 24 1 4
11 58 32 0 0 6 3 1 59 29 0 0 6 4 2
12 65 24 0 0 7 4 0 45 26 2 0 18 1 8
13 33 42 0 0 7 7 11 20 38 1 2 13 10 16
14 3 53 6 5 7 3 23 4 54 4 3 8 6 21
15 57 24 0 0 19 0 0 49 26 0 0 25 0 0
16 29 39 1 3 21 6 1 39 31 1 0 26 0 3
17 44 36 0 0 16 3 1 49 20 0 0 23 3 5
18 31 60 0 0 3 0 6 27 45 0 0 8 3 17
19 56 22 0 0 11 11 0 54 9 0 0 15 13 9
20 48 34 0 0 7 3 8 45 41 0 0 7 1 6
21 35 20 0 0 34 6 5 31 29 0 0 32 5 3
22 49 35 0 0 11 1 4 39 33 0 0 27 1 0
23 41 9 0 1 37 6 6 29 13 1 1 39 4 13
24 21 25 0 0 37 10 7 32 32 0 0 16 9 11
25 96 1 0 0 3 0 0 90 2 0 0 4 4 0
26 37 27 1 1 21 5 8 28 24 2 4 26 2 14
27 30 41 0 0 18 4 7 26 40 0 0 18 2 14
28 35 50 0 0 5 3 7 43 49 0 0 3 3 2
29 47 12 0 0 39 0 2 43 26 0 0 28 2 1
30 64 32 0 0 2 0 2 57 28 0 0 13 2 0
31 75 17 0 0 2 0 6 72 22 0 0 4 0 2
32 36 49 0 0 13 0 2 35 47 0 0 13 0 5
33 24 41 0 0 17 2 16 40 34 0 0 18 1 7
34 37 30 9 6 11 0 7 33 22 16 6 14 0 9
35 87 0 0 0 8 5 0 65 0 0 0 34 1 0
36 38 26 0 0 26 7 3 23 40 0 0 27 5 5
37 41 22 0 0 23 4 10 28 35 0 0 22 4 11
38 32 25 0 0 40 0 3 19 12 0 0 61 1 7
39 39 48 0 0 8 0 5 54 35 0 0 10 0 1
40 17 49 0 0 13 10 11 15 38 0 1 16 17 13
41 41 43 0 0 14 0 2 27 24 0 1 33 2 13
42 19 46 0 0 24 6 5 27 43 0 0 24 4 2
43 33 39 0 1 14 12 1 44 27 0 0 18 8 3
44 46 38 0 0 10 2 4 47 29 0 0 13 5 6
45 11 80 0 0 3 4 2 9 60 0 0 26 4 1
46 33 36 0 0 15 3 13 19 38 0 0 19 3 21
47 57 24 0 0 9 2 8 48 27 0 0 13 3 9
48 23 47 0 0 29 1 0 32 39 0 0 29 0 0
49 26 31 0 0 30 0 13 36 38 0 0 21 0 5
50 52 16 0 0 18 11 3 55 13 0 0 20 10 2
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Appendix B. Output for ABC method

Table B.7: Species 4; ((((A:1,B:1.0):0.1,C:1.1):1.0,D:2.1):0.1,E:2.2);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 30 26 10 11 9 13 1 35 33 17 4 7 4 0
2 22 28 0 0 0 50 0 20 33 0 0 0 47 0
3 29 34 0 0 0 37 0 38 35 0 0 0 27 0
4 25 48 0 0 3 24 0 26 42 0 3 5 24 0
5 30 42 0 0 0 28 0 26 28 0 0 10 35 1
6 31 21 0 0 0 48 0 27 22 3 2 0 46 0
7 39 37 0 0 0 24 0 45 39 0 0 0 16 0
8 33 35 0 0 0 32 0 33 37 0 1 0 29 0
9 25 39 0 0 0 36 0 32 39 0 0 0 29 0
10 44 34 0 0 0 22 0 35 44 0 0 0 21 0
11 42 37 0 0 0 21 0 40 30 0 0 0 30 0
12 46 42 0 0 2 10 0 38 39 0 1 5 17 0
13 34 31 0 0 2 33 0 49 26 0 0 5 20 0
14 49 16 0 0 2 33 0 46 15 5 0 11 19 4
15 39 33 0 0 0 28 0 29 30 0 0 0 41 0
16 52 30 0 0 0 18 0 49 32 1 0 0 18 0
17 46 32 0 0 1 21 0 30 27 0 1 6 36 0
18 24 17 1 1 5 52 0 26 34 1 0 2 37 0
19 21 18 0 0 1 60 0 13 12 0 2 3 69 1
20 46 34 0 0 0 20 0 47 31 0 0 0 22 0
21 44 20 0 0 0 36 0 47 16 0 0 0 37 0
22 24 37 0 0 0 39 0 29 39 2 0 1 29 0
23 25 34 0 0 17 23 1 26 26 1 0 17 29 1
24 34 20 0 0 0 46 0 29 32 0 0 0 39 0
25 23 33 0 0 5 39 0 29 36 2 0 5 28 0
26 38 29 0 0 0 33 0 38 29 0 0 0 33 0
27 46 41 0 0 0 13 0 52 34 0 0 1 12 1
28 27 18 0 0 0 55 0 30 22 0 0 0 48 0
29 45 38 0 0 0 17 0 34 49 0 0 0 17 0
30 42 35 0 0 0 23 0 40 33 0 0 0 27 0
31 36 27 0 0 0 37 0 31 25 0 0 1 43 0
32 34 38 0 0 0 28 0 31 42 0 0 0 27 0
33 28 40 0 0 0 31 1 31 36 0 0 0 33 0
34 40 46 0 0 0 14 0 29 40 0 0 0 31 0
35 38 34 0 0 0 28 0 35 29 0 0 0 36 0
36 60 22 0 0 0 18 0 54 32 0 0 0 14 0
37 40 46 0 0 0 14 0 40 55 0 0 0 5 0
38 61 20 0 0 0 19 0 64 18 0 2 2 14 0
39 24 22 1 3 5 45 0 28 25 5 5 6 31 0
40 40 40 0 0 0 20 0 45 31 0 0 1 23 0
41 37 39 0 0 0 24 0 38 38 0 0 0 24 0
42 33 24 0 0 0 43 0 28 25 0 0 3 44 0
43 23 26 2 3 1 41 4 26 29 2 2 4 36 1
44 43 35 0 0 0 22 0 38 37 0 0 1 24 0
45 51 32 0 0 4 13 0 51 37 0 0 2 9 1
46 36 50 0 0 0 14 0 42 54 0 0 0 4 0
47 34 41 0 0 0 25 0 26 36 0 0 1 37 0
48 38 37 0 0 0 25 0 40 42 0 0 0 18 0
49 21 37 0 0 8 34 0 21 37 1 0 9 32 0
50 31 55 0 0 0 14 0 29 52 0 0 0 19 0
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Appendix B. Output for ABC method

Table B.9: Species 5; ((((A:1,B:1.0):1.0,C:2):1.0,D:3):1.0,E:4.0);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 19 47 0 0 10 19 5 20 42 0 0 13 17 8
2 13 14 8 3 7 55 0 18 15 0 7 8 51 1
3 17 39 2 0 16 26 0 16 35 2 2 19 22 4
4 20 28 0 0 10 24 18 20 39 0 0 5 24 12
5 22 41 1 1 3 29 3 29 29 1 0 7 28 6
6 25 17 1 9 8 21 19 35 4 2 3 8 21 27
7 3 2 19 18 11 19 28 5 7 11 14 5 19 39
8 48 12 3 7 20 10 0 47 14 3 4 16 12 4
9 17 24 5 4 15 32 3 23 21 9 11 14 19 3
10 21 24 0 0 15 40 0 27 26 0 0 12 28 7
11 23 15 3 4 6 48 1 26 16 0 0 13 44 1
12 34 31 0 0 1 31 3 23 29 0 0 24 23 1
13 36 32 0 2 6 17 7 31 27 4 1 5 20 12
14 41 27 0 0 3 29 0 38 30 0 0 8 19 5
15 19 7 1 0 21 36 16 14 5 4 1 18 28 30
16 35 9 0 0 11 32 13 31 13 0 0 10 29 17
17 24 38 0 0 3 33 2 33 25 3 3 5 27 4
18 27 13 0 0 23 32 5 22 10 0 0 24 41 3
19 10 16 3 3 10 40 18 12 16 2 3 10 41 16
20 11 22 3 5 19 24 16 12 17 2 1 18 29 21
21 30 50 0 0 6 14 0 35 47 0 0 4 14 0
22 31 35 0 0 7 24 3 17 37 1 2 3 29 11
23 35 13 0 9 5 22 16 45 29 0 2 0 16 8
24 18 39 0 0 4 39 0 14 36 1 1 4 40 4
25 9 44 0 0 9 38 0 11 44 0 0 8 37 0
26 29 18 1 3 11 26 12 24 13 0 1 28 20 14
27 12 20 9 8 30 17 4 13 20 9 8 25 18 7
28 37 27 3 3 4 23 3 23 33 5 0 17 19 3
29 25 13 7 8 10 22 15 24 11 9 11 19 16 10
30 21 40 0 0 6 31 2 27 33 0 0 3 37 0
31 45 29 0 0 14 12 0 46 30 0 1 13 9 1
32 34 33 0 0 10 17 6 26 32 0 1 7 31 3
33 38 28 4 10 8 8 4 29 32 4 10 8 11 6
34 43 13 4 0 9 15 16 41 16 2 9 6 14 12
35 32 37 0 0 4 27 0 33 41 0 0 5 21 0
36 27 24 6 6 12 15 10 30 23 3 4 14 15 11
37 34 30 0 1 9 25 1 38 30 0 0 8 23 1
38 20 29 0 0 7 44 0 24 20 0 1 10 41 4
39 18 27 1 15 6 17 16 16 20 1 7 9 23 24
40 16 10 0 1 14 44 15 22 17 0 0 8 47 6
41 12 28 1 4 10 44 1 15 19 1 6 16 39 4
42 41 26 0 0 0 32 1 30 31 0 0 6 32 1
43 35 38 0 0 7 18 2 20 38 0 0 9 33 0
44 12 19 2 6 5 42 14 10 20 4 6 9 41 10
45 33 23 0 0 3 39 2 31 18 0 0 8 38 5
46 14 16 7 4 17 33 9 11 28 7 4 22 22 6
47 19 43 0 0 13 17 8 9 48 0 0 18 16 9
48 17 15 0 0 2 62 4 13 13 0 0 16 52 6
49 20 13 11 7 8 20 21 26 14 12 3 7 19 19
50 45 28 0 0 5 20 2 38 18 0 0 15 29 0
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Appendix B. Output for ABC method

Table B.11: Species 6; (((A:1,B:1.0):0.1,C:1.1):0.1,(D:1.1,E:1.1):0.1);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 15 37 7 3 20 13 5 19 20 17 8 10 19 7
2 44 49 0 0 3 4 0 26 46 0 0 28 0 0
3 30 33 4 1 12 16 4 21 43 7 4 18 4 3
4 32 13 0 2 45 8 0 43 32 3 6 14 2 0
5 29 23 2 6 13 13 14 27 21 12 9 11 7 13
6 7 21 5 20 15 17 15 4 11 0 49 13 13 10
7 49 26 0 0 18 7 0 48 20 1 0 23 5 3
8 4 12 20 3 37 21 3 10 11 29 5 31 11 3
9 71 8 4 2 9 4 2 49 12 4 7 22 3 3
10 51 41 0 2 2 4 0 45 35 0 1 5 11 3
11 85 14 0 0 0 1 0 71 23 0 0 1 5 0
12 59 29 0 7 0 5 0 34 39 5 18 2 2 0
13 28 45 2 1 15 2 7 30 34 5 13 15 1 2
14 19 12 8 2 19 33 7 16 24 10 2 20 22 6
15 49 31 0 0 14 6 0 39 36 0 0 23 2 0
16 54 30 3 0 8 3 2 51 30 2 1 10 4 2
17 25 58 0 1 4 12 0 14 55 4 13 8 5 1
18 28 48 0 1 21 2 0 28 24 2 9 32 5 0
19 29 24 1 1 11 12 22 22 26 0 2 22 13 15
20 6 2 44 15 26 3 4 11 7 32 25 23 1 1
21 37 26 2 2 26 6 1 28 41 4 3 12 8 4
22 34 44 0 0 3 19 0 22 35 2 0 16 25 0
23 18 31 12 6 14 13 6 11 35 6 7 30 10 1
24 26 24 3 1 20 23 3 25 38 8 3 19 5 2
25 28 32 0 0 32 7 1 32 30 1 0 30 6 1
26 7 7 2 1 59 16 8 10 6 17 3 46 14 4
27 38 46 0 0 0 14 2 32 41 0 0 3 16 8
28 4 92 0 1 0 3 0 28 59 0 4 1 8 0
29 69 18 0 0 1 12 0 58 16 0 0 10 16 0
30 64 14 0 0 14 5 3 53 8 0 0 32 5 2
31 19 38 1 2 3 32 5 23 35 1 9 3 21 8
32 82 5 0 1 5 7 0 58 15 5 8 8 6 0
33 33 40 0 0 8 19 0 48 44 0 0 5 3 0
34 8 48 12 0 12 12 8 7 29 12 1 35 13 3
35 8 27 2 12 39 3 9 4 18 5 3 66 1 3
36 6 3 13 39 32 3 4 6 9 13 31 31 8 2
37 25 23 0 9 10 18 15 24 19 3 15 25 9 5
38 0 0 63 29 8 0 0 0 0 56 29 14 1 0
39 12 11 12 0 60 4 1 3 20 12 1 57 4 3
40 28 15 10 16 19 11 1 29 12 11 12 33 3 0
41 45 39 0 1 1 12 2 50 30 1 0 3 15 1
42 24 29 7 1 38 0 1 19 25 7 9 27 9 4
43 30 15 1 2 22 21 9 33 14 5 4 19 18 7
44 38 53 0 0 3 6 0 41 45 0 0 6 8 0
45 29 32 1 1 17 19 1 40 27 8 0 18 7 0
46 26 27 9 8 5 10 15 24 35 14 2 12 8 5
47 25 12 1 1 30 26 5 10 14 10 9 24 22 11
48 10 30 1 6 35 13 5 8 37 4 7 24 18 2
49 12 3 23 32 15 13 2 17 4 15 46 10 2 6
50 19 69 2 2 0 8 0 38 40 0 2 0 19 1
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Appendix B. Output for ABC method

Table B.13: Species 7; (((A:1.0,B:1.0):1.0,C:2.0):1.0,(D:2.0,E:2.0):1.0);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 20 15 9 11 7 29 9 11 8 4 16 12 41 8
2 6 2 14 0 25 10 43 3 0 13 3 27 6 48
3 15 14 2 11 20 16 22 12 8 12 10 14 18 26
4 29 28 12 3 12 7 9 36 31 12 0 4 9 8
5 15 15 3 2 15 43 7 19 22 5 5 12 29 8
6 25 13 2 6 14 23 17 20 12 3 2 19 30 14
7 25 17 7 12 14 10 15 24 8 14 18 4 14 18
8 21 30 13 5 0 26 5 21 29 12 4 4 26 4
9 14 28 4 5 2 29 18 17 32 1 1 5 32 12
10 12 13 7 17 4 40 7 12 24 6 11 9 33 5
11 19 14 14 9 7 18 19 21 14 7 7 11 27 13
12 10 8 12 7 15 38 10 9 9 14 7 16 33 12
13 19 11 5 15 14 24 12 11 13 6 17 17 25 11
14 14 22 8 10 12 25 9 9 15 14 5 13 27 17
15 16 8 20 9 14 22 11 12 7 23 13 17 17 11
16 26 17 4 6 6 16 25 17 14 4 5 11 19 30
17 22 10 14 13 11 25 5 19 13 12 22 9 19 6
18 25 24 2 1 5 39 4 24 17 5 3 9 40 2
19 8 17 17 13 23 14 8 16 23 11 11 24 5 10
20 10 16 18 6 18 18 14 17 16 17 4 12 24 10
21 13 13 6 3 20 38 7 29 23 3 2 11 29 3
22 4 2 6 16 34 28 10 6 5 8 12 25 40 4
23 14 10 6 11 22 25 12 11 14 8 10 21 27 9
24 24 9 0 2 10 48 7 23 13 2 2 11 41 8
25 8 11 10 11 11 36 13 7 12 7 6 16 45 7
26 9 11 5 9 18 43 5 11 11 7 11 15 39 6
27 23 20 6 17 3 22 9 24 18 2 22 3 25 6
28 10 10 10 8 12 40 10 13 11 7 6 6 44 13
29 12 20 8 10 19 26 5 8 19 10 8 19 31 5
30 10 26 14 5 5 30 10 10 27 16 4 3 34 6
31 16 16 2 5 4 30 27 16 12 2 9 3 28 30
32 7 20 13 23 13 21 3 12 25 12 19 10 18 4
33 3 3 9 16 39 8 22 2 2 15 7 34 9 31
34 31 9 3 2 9 36 10 23 12 8 5 10 31 11
35 14 29 2 13 5 24 13 14 21 7 7 10 24 17
36 27 17 7 3 1 41 4 31 20 1 5 5 35 3
37 18 23 2 6 16 28 7 17 20 4 7 17 25 10
38 20 14 13 8 8 31 6 13 7 23 7 15 34 1
39 15 8 9 11 10 38 9 16 6 12 16 9 30 11
40 24 21 5 3 4 35 8 26 27 3 5 4 28 7
41 20 18 17 10 11 12 12 14 21 19 7 8 17 14
42 15 10 4 9 35 23 4 14 8 7 11 15 31 14
43 27 14 2 6 12 17 22 21 12 6 6 16 23 16
44 10 13 18 5 8 36 10 11 11 16 9 9 32 12
45 7 7 21 20 8 28 9 11 12 15 16 10 29 7
46 9 8 0 0 24 50 9 17 15 2 5 6 48 7
47 15 9 7 6 25 32 6 15 14 6 6 17 36 6
48 3 2 30 3 7 51 4 4 3 26 3 8 53 3
49 16 14 1 0 9 59 1 19 20 3 5 7 44 2
50 22 32 3 2 11 29 1 20 27 2 2 11 38 0
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Appendix B. Output for ABC method

Table B.15: Species 8; (((A:1,B:1.0):0.1,C:1.1):0.1,(D:0.2,E:0.2):1.0);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0 0 7 9 73 8 3 3 0 16 9 50 21 1
2 1 1 31 11 12 12 32 1 1 42 17 16 3 20
3 4 11 17 14 18 33 3 8 5 14 13 35 20 5
4 4 11 17 21 17 19 11 4 7 26 21 17 16 9
5 0 0 35 47 3 13 2 2 0 32 39 10 15 2
6 18 12 13 12 30 10 5 7 7 23 11 32 16 4
7 0 0 9 4 75 11 1 1 0 21 7 53 17 1
8 0 0 14 63 12 11 0 0 0 21 45 20 13 1
9 4 5 19 11 19 42 0 11 3 13 17 10 46 0
10 29 24 0 0 22 21 4 33 21 0 2 23 19 2
11 31 12 11 3 16 27 0 17 15 14 4 21 29 0
12 1 1 36 30 17 13 2 0 0 24 41 16 13 6
13 22 18 14 4 5 37 0 13 8 14 15 5 45 0
14 23 8 20 8 3 33 5 12 13 37 6 6 24 2
15 16 14 13 21 12 22 2 16 8 13 29 15 16 3
16 0 0 0 8 58 28 6 3 0 0 17 37 38 5
17 6 8 26 32 11 17 0 8 10 28 22 13 19 0
18 1 0 30 22 20 23 4 0 1 28 28 23 16 4
19 36 15 0 2 14 33 0 26 10 4 5 25 29 1
20 3 34 8 4 20 20 11 7 30 4 6 16 28 9
21 3 12 15 9 15 46 0 4 20 5 6 18 47 0
22 12 19 21 3 32 13 0 17 30 15 2 23 13 0
23 40 24 3 0 5 20 8 24 23 0 2 13 30 8
24 9 2 12 24 14 37 2 10 2 17 25 17 27 2
25 5 14 8 19 12 37 5 3 22 11 10 6 39 9
26 23 4 7 16 17 30 3 20 10 8 10 19 28 5
27 0 0 21 16 53 6 4 0 0 23 26 42 8 1
28 8 2 3 20 14 47 6 8 1 6 17 25 39 4
29 8 21 2 0 16 44 9 19 28 2 1 9 37 4
30 13 15 1 1 8 61 1 4 23 7 3 19 43 1
31 5 2 12 28 23 27 3 1 1 16 13 27 33 9
32 8 4 6 41 35 5 1 8 1 8 36 44 2 1
33 15 18 10 5 26 23 3 14 9 14 9 22 28 4
34 15 22 10 27 5 14 7 4 9 12 35 8 22 10
35 22 15 2 1 6 54 0 12 19 8 4 15 42 0
36 13 18 10 2 20 31 6 3 7 13 14 18 40 5
37 5 8 3 29 18 17 20 17 6 6 34 17 7 13
38 1 1 12 21 53 7 5 0 2 15 15 64 2 2
39 10 10 13 13 41 5 8 9 11 19 11 30 7 13
40 19 21 4 14 15 22 5 11 23 1 23 11 28 3
41 1 1 44 6 29 16 3 1 0 40 0 30 28 1
42 0 3 31 14 38 9 5 4 15 44 7 18 10 2
43 11 5 7 35 22 19 1 12 4 14 20 33 15 2
44 36 20 8 7 6 22 1 30 12 10 12 17 17 2
45 18 15 13 40 7 6 1 8 12 11 52 5 10 2
46 3 0 1 6 61 23 6 6 0 1 3 67 18 5
47 6 1 6 1 74 12 0 8 5 19 4 49 15 0
48 25 21 2 0 24 27 1 20 10 2 3 25 38 2
49 21 4 2 9 10 47 7 17 14 4 27 16 17 5
50 4 9 6 27 5 48 1 11 10 5 17 8 48 1
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Appendix B. Output for ABC method

Table B.17: Species 9; (((A:1,B:1.0):0.1,C:1.1):1.0,(D:2.0,E:2.0):0.1);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 33 34 1 4 5 22 1 32 37 0 1 4 26 0
2 28 48 0 0 1 22 1 26 49 0 2 0 21 2
3 33 46 0 1 0 20 0 48 29 0 1 0 22 0
4 36 33 0 0 0 31 0 42 24 0 0 0 34 0
5 37 56 0 0 0 7 0 29 55 0 0 0 16 0
6 38 60 0 0 0 2 0 37 60 0 0 0 3 0
7 42 27 0 0 1 30 0 33 35 0 0 2 30 0
8 40 38 1 1 0 20 0 38 36 2 3 2 19 0
9 31 34 0 0 0 35 0 31 32 0 0 0 37 0
10 30 16 1 4 5 44 0 23 17 4 10 11 35 0
11 29 22 6 1 9 33 0 17 21 8 5 9 40 0
12 41 48 0 0 0 9 2 41 46 1 0 0 11 1
13 49 42 0 0 0 9 0 47 39 0 1 0 13 0
14 28 34 0 0 1 37 0 36 32 0 0 1 31 0
15 36 30 0 0 0 34 0 33 28 0 0 0 39 0
16 19 46 1 0 2 31 1 13 30 3 3 1 49 1
17 31 54 0 0 1 14 0 24 56 1 0 1 18 0
18 29 23 0 0 1 47 0 30 21 1 0 1 47 0
19 49 20 0 1 0 30 0 48 21 1 0 0 29 1
20 42 23 0 0 0 35 0 43 32 0 0 0 25 0
21 20 5 14 3 15 43 0 15 4 21 11 17 32 0
22 31 50 0 0 1 18 0 29 39 0 2 4 26 0
23 33 27 0 0 1 39 0 31 29 0 0 3 37 0
24 33 38 0 0 0 29 0 33 30 0 0 0 37 0
25 35 56 0 0 2 7 0 35 46 0 0 5 13 1
26 37 27 1 0 1 34 0 38 22 2 1 8 29 0
27 33 46 0 0 0 21 0 39 41 0 0 0 20 0
28 49 31 0 0 0 20 0 46 27 0 1 1 25 0
29 26 50 0 0 0 24 0 22 45 0 0 0 33 0
30 21 35 0 0 0 44 0 28 32 0 0 0 40 0
31 26 56 0 0 1 17 0 30 57 0 0 0 12 1
32 43 36 0 0 0 21 0 48 42 0 0 0 10 0
33 19 45 0 0 0 36 0 29 29 0 0 0 42 0
34 44 44 0 0 0 12 0 35 51 0 0 1 13 0
35 22 27 0 1 2 48 0 19 17 6 3 10 45 0
36 29 29 0 0 0 42 0 32 29 0 0 2 37 0
37 35 33 0 0 1 31 0 22 28 1 0 2 47 0
38 34 18 1 0 2 45 0 37 21 3 3 1 35 0
39 27 46 0 0 0 27 0 32 27 0 0 0 41 0
40 24 35 0 0 1 40 0 23 35 1 1 3 37 0
41 52 22 0 2 1 23 0 51 21 0 2 2 24 0
42 37 29 0 0 0 34 0 33 29 0 0 0 38 0
43 47 40 0 0 0 13 0 50 32 0 0 0 18 0
44 29 43 0 0 3 25 0 21 43 0 0 1 35 0
45 49 40 0 0 0 11 0 49 35 0 0 0 16 0
46 32 33 1 1 2 31 0 35 26 0 3 7 28 1
47 60 27 0 0 3 9 1 66 23 0 0 2 9 0
48 51 37 0 0 0 12 0 44 38 0 0 0 18 0
49 29 40 0 0 0 31 0 27 38 0 1 0 34 0
50 22 24 0 0 2 52 0 14 25 0 3 5 53 0

134



Appendix B. Output for ABC method

Table B.19: Species 10; (((A:1,B:1.0):1.0,C:2.0):0.1,(D:2.0,E:2.0):0.1);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 24 16 0 0 38 6 16 20 22 0 0 46 1 11
2 31 34 0 0 4 11 20 46 17 0 0 6 3 28
3 37 57 0 0 2 2 2 33 44 0 0 12 4 7
4 24 42 5 10 5 9 5 35 32 0 7 18 4 4
5 21 45 0 0 11 20 3 28 34 0 0 20 16 2
6 10 16 0 0 42 5 27 11 14 0 1 60 1 13
7 35 11 0 0 29 16 9 22 10 0 0 56 4 8
8 37 54 0 0 3 6 0 33 58 0 0 3 3 3
9 50 17 0 0 13 13 7 45 24 0 0 15 9 7
10 6 49 0 0 24 19 2 6 50 0 0 24 16 4
11 28 22 0 0 22 1 27 18 36 1 0 24 2 19
12 38 46 0 0 11 0 5 24 39 0 0 27 1 9
13 57 23 0 0 19 0 1 37 13 3 2 44 1 0
14 17 12 0 0 57 2 12 13 11 0 0 62 2 12
15 12 48 0 7 11 12 10 13 41 0 3 11 14 18
16 19 17 0 0 33 5 26 26 20 0 0 24 12 18
17 27 26 0 0 34 9 4 31 21 1 0 33 11 3
18 23 32 0 0 38 7 0 26 24 0 0 42 7 1
19 31 25 0 0 21 11 12 26 33 0 0 15 12 14
20 20 29 0 6 11 2 32 21 32 2 8 7 1 29
21 43 23 0 0 27 0 7 20 37 1 2 32 0 8
22 5 8 0 0 60 8 19 7 10 0 1 62 2 18
23 16 19 7 13 16 2 27 38 19 4 4 16 1 18
24 38 35 0 0 22 4 1 50 21 0 0 18 7 4
25 30 20 3 3 12 8 24 32 16 4 5 9 12 22
26 1 12 11 29 19 2 26 9 36 8 19 8 1 19
27 13 61 0 0 15 7 4 7 60 0 0 13 9 11
28 25 51 0 1 5 15 3 28 49 1 1 6 11 4
29 37 25 0 0 33 3 2 43 33 0 0 17 3 4
30 40 9 0 0 36 14 1 25 2 1 0 44 18 10
31 49 27 0 0 9 8 7 36 17 0 0 22 3 22
32 53 26 2 6 9 2 2 70 9 2 5 5 2 7
33 18 15 5 6 43 5 8 12 11 1 3 42 15 16
34 31 21 0 0 33 6 9 21 21 0 1 38 3 16
35 43 20 0 0 31 5 1 62 7 0 0 24 7 0
36 38 15 0 0 26 8 13 39 8 0 1 29 4 19
37 19 35 1 4 32 0 9 18 42 1 3 27 4 5
38 31 19 0 0 21 16 13 31 14 0 0 19 19 17
39 10 66 0 0 14 6 4 10 62 0 0 22 1 5
40 14 68 1 0 8 9 0 29 52 0 0 12 6 1
41 40 25 0 4 18 5 8 40 29 0 0 17 8 6
42 36 28 0 0 21 15 0 23 24 0 0 43 9 1
43 35 17 0 0 47 1 0 30 33 0 0 29 8 0
44 20 52 0 0 12 7 9 18 62 0 0 10 7 3
45 48 34 0 0 8 10 0 46 36 0 0 8 10 0
46 40 48 0 0 8 1 3 39 48 0 0 13 0 0
47 38 37 0 0 16 8 1 40 33 0 0 20 7 0
48 32 18 0 0 45 2 3 29 29 0 1 29 5 7
49 24 43 0 0 9 19 5 22 42 0 0 17 9 10
50 36 36 5 2 9 5 7 26 20 10 12 16 2 14
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Appendix B. Output for ABC method

Table B.21: Species 11; (((A:1,B:1.0):0.1,(D:1.0,E:1.0):0.1):0.1,C:1.2);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0 0 23 45 23 3 6 2 0 19 41 28 4 6
2 0 0 0 0 99 1 0 2 1 0 0 94 2 1
3 2 1 0 2 86 5 4 10 3 0 6 75 4 2
4 3 1 34 6 44 8 4 3 5 35 15 33 5 4
5 3 2 0 2 85 5 3 9 7 3 3 73 4 1
6 1 3 6 4 65 6 15 1 9 12 5 58 4 11
7 22 6 6 5 48 3 10 21 11 9 6 43 4 6
8 1 0 17 17 57 3 5 1 0 20 21 49 4 4
9 0 0 1 1 93 2 3 0 1 3 5 83 4 4
10 0 0 0 0 92 3 5 0 0 1 2 90 3 4
11 0 0 26 7 61 2 4 0 0 28 7 59 2 4
12 14 4 8 0 53 16 5 15 7 10 2 47 13 6
13 11 62 4 3 9 10 1 16 44 8 8 12 12 0
14 0 3 0 1 94 0 2 4 2 6 4 80 1 3
15 2 1 5 4 79 5 4 5 5 17 13 52 4 4
16 2 4 7 4 71 9 3 6 5 14 16 49 5 5
17 5 1 7 9 60 8 10 5 8 7 23 46 6 5
18 2 0 4 2 80 3 9 4 7 9 6 62 2 10
19 3 2 30 15 36 6 8 4 5 35 15 33 3 5
20 3 8 15 25 43 2 4 6 10 20 25 35 2 2
21 4 8 2 2 69 6 9 6 16 8 3 54 4 9
22 3 4 11 27 45 2 8 3 3 14 28 44 2 6
23 13 6 20 8 35 17 1 9 13 20 9 29 16 4
24 1 0 0 3 94 0 2 3 2 2 7 84 0 2
25 8 12 6 5 60 6 3 12 19 8 6 48 3 4
26 9 7 1 1 65 11 6 18 6 2 3 62 5 4
27 12 11 4 1 51 15 6 18 13 8 9 38 9 5
28 8 6 8 52 15 8 3 8 5 13 44 22 6 1
29 16 15 16 14 27 5 7 15 16 18 24 23 2 2
30 10 5 9 14 51 5 6 15 10 9 21 44 1 0
31 17 25 3 3 26 19 7 23 30 1 3 21 13 9
32 0 0 5 10 75 6 4 0 0 7 17 67 3 6
33 22 3 0 1 67 2 5 22 6 1 2 65 2 2
34 2 0 43 26 18 3 8 3 0 33 29 23 4 8
35 22 7 3 6 29 16 17 31 6 7 7 27 9 13
36 14 22 0 2 51 5 6 13 30 1 3 41 5 7
37 36 16 10 3 16 13 6 29 24 14 5 11 12 5
38 0 0 1 3 89 4 3 2 1 5 6 77 5 4
39 22 12 5 4 46 9 2 21 16 7 8 43 4 1
40 1 0 10 22 55 4 8 2 1 14 22 46 4 11
41 11 7 0 0 74 4 4 11 9 1 4 67 5 3
42 2 2 1 0 94 0 1 1 2 0 0 90 3 4
43 11 19 5 11 49 2 3 16 23 7 10 40 1 3
44 4 28 7 3 38 11 9 14 33 9 7 19 9 9
45 22 25 3 3 33 9 5 24 20 5 5 36 6 4
46 18 18 0 0 57 5 2 18 24 0 0 49 5 4
47 5 74 5 3 10 2 1 9 57 8 10 11 1 4
48 19 13 9 4 37 7 11 24 12 10 7 38 6 3
49 1 0 6 1 89 2 1 3 3 12 8 70 2 2
50 0 0 24 5 60 1 10 0 0 26 14 50 1 9
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Appendix B. Output for ABC method

Table B.23: Species 12; (((A:1,B:1.0):1.0,(D:1.0,E:1.0):1.0):1.0,C:3.0);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 22 31 1 2 13 19 12 26 27 1 1 17 22 6
2 37 38 0 0 1 24 0 31 46 0 0 1 22 0
3 0 0 47 26 6 1 20 0 0 36 23 15 9 17
4 35 37 2 0 12 9 5 38 37 0 0 15 9 1
5 40 35 0 0 3 21 1 47 30 0 0 4 18 1
6 49 37 0 0 0 14 0 46 30 1 0 0 23 0
7 0 0 33 33 0 1 33 0 0 29 37 3 3 28
8 6 16 13 14 12 29 10 4 14 12 12 13 33 12
9 8 12 13 13 16 29 9 5 6 13 10 16 34 16
10 0 0 4 95 0 0 1 3 1 18 69 2 1 6
11 48 49 0 0 0 3 0 47 51 0 0 0 2 0
12 15 11 15 13 5 26 15 10 8 20 13 8 28 13
13 37 24 2 1 17 12 7 37 19 0 0 22 11 11
14 9 10 13 10 18 16 24 8 13 13 10 12 18 26
15 18 17 13 9 11 19 13 21 9 10 13 9 25 13
16 12 18 17 15 11 26 1 13 15 17 17 8 30 0
17 30 30 0 0 8 29 3 24 33 0 0 18 23 2
18 9 13 11 8 11 26 22 11 16 12 5 9 32 15
19 41 37 0 0 2 20 0 44 25 0 0 10 19 2
20 30 31 0 0 1 38 0 32 29 0 0 4 33 2
21 0 0 36 51 0 0 13 0 0 38 47 2 0 13
22 6 12 10 9 11 33 19 7 8 14 9 13 28 21
23 1 0 2 1 67 10 19 5 4 4 2 50 19 16
24 8 13 12 11 15 16 25 9 12 14 16 13 11 25
25 0 0 45 48 0 0 7 0 0 38 54 2 0 6
26 2 2 10 10 45 21 10 4 1 15 11 29 16 24
27 17 14 6 2 22 17 22 7 17 4 4 38 12 18
28 0 1 33 18 5 2 41 0 1 26 24 6 8 35
29 1 2 34 30 13 9 11 0 1 31 37 12 10 9
30 34 30 1 0 29 2 4 33 32 0 0 25 4 6
31 46 46 0 0 0 8 0 58 35 0 0 0 7 0
32 46 47 0 0 0 7 0 40 50 0 0 0 10 0
33 4 10 23 14 16 5 28 13 15 13 14 16 5 24
34 0 0 22 48 1 0 29 2 3 19 35 10 2 29
35 9 12 18 27 7 10 17 8 9 13 21 18 13 18
36 14 18 7 10 13 23 15 13 19 9 12 12 18 17
37 10 10 14 13 17 29 7 9 7 18 11 23 26 6
38 13 10 16 22 7 27 5 6 12 16 16 11 33 6
39 7 13 12 12 14 2 40 6 14 15 18 13 1 33
40 38 30 1 0 9 15 7 32 33 0 2 9 19 5
41 0 0 41 36 5 0 18 1 0 35 36 10 1 17
42 8 4 19 26 5 0 38 4 2 23 28 3 2 37
43 14 14 9 6 26 13 18 11 9 15 6 23 14 22
44 5 2 0 6 59 13 15 7 10 1 2 45 17 18
45 9 6 10 16 9 35 15 9 9 12 12 12 31 15
46 11 9 8 6 11 34 21 9 8 7 7 12 38 19
47 32 27 2 2 17 6 14 40 29 0 1 9 8 13
48 9 13 9 2 14 9 44 11 13 10 3 13 8 42
49 10 9 12 16 19 14 20 11 9 17 18 17 12 16
50 16 9 10 8 20 26 11 15 9 8 13 20 24 11
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Appendix B. Output for ABC method

Table B.25: Species 13; (((A:1,B:1.0):0.1,(D:1.0,E:1.0):0.1):1.0,C:2.1);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0 0 0 0 97 1 2 0 1 2 1 87 6 3
2 1 0 0 0 98 1 0 1 2 2 1 89 1 4
3 12 47 0 0 34 4 3 14 36 2 2 37 6 3
4 0 0 0 0 99 1 0 2 0 2 2 89 1 4
5 9 31 0 0 52 6 2 12 26 1 0 50 5 6
6 1 8 8 3 66 9 5 5 10 11 13 53 4 4
7 3 2 1 1 89 4 0 7 9 3 2 73 2 4
8 1 0 1 0 94 2 2 2 7 2 1 77 6 5
9 1 1 0 1 96 0 1 1 2 8 4 80 3 2
10 0 0 2 2 96 0 0 0 1 6 7 83 1 2
11 0 1 2 1 92 4 0 4 2 6 6 73 8 0
12 0 2 0 0 97 0 1 2 8 0 1 83 1 5
13 1 0 0 0 98 1 0 4 3 2 2 85 2 2
14 0 1 7 3 82 2 5 3 3 17 6 65 2 3
15 3 1 31 19 33 1 12 2 3 35 26 28 0 6
16 0 1 16 15 59 3 6 0 2 19 19 48 4 8
17 2 0 1 0 91 2 4 4 4 5 6 67 7 7
18 0 0 1 3 90 4 2 4 1 3 6 80 3 3
19 17 7 5 4 50 13 4 28 12 4 10 36 7 3
20 0 2 0 0 96 2 0 3 5 0 1 87 1 2
21 37 11 5 3 36 6 2 33 15 5 2 39 3 2
22 37 28 0 0 24 10 1 31 33 3 0 25 6 2
23 0 0 0 0 99 1 0 2 0 1 1 93 1 1
24 0 12 4 2 76 4 2 6 15 10 6 58 3 2
25 1 3 2 0 81 4 9 6 2 5 6 71 2 8
26 22 1 13 4 41 11 8 16 5 17 13 32 10 7
27 3 0 0 0 94 2 1 10 4 0 1 78 4 3
28 3 0 3 3 86 2 3 6 4 8 12 64 2 4
29 0 0 0 0 100 0 0 4 1 2 2 89 2 0
30 6 9 1 0 73 10 1 13 17 1 3 58 5 3
31 0 6 0 2 87 5 0 11 16 3 2 62 3 3
32 1 1 3 16 74 3 2 4 2 9 25 54 2 4
33 0 0 0 0 95 2 3 3 2 4 2 81 4 4
34 1 0 4 4 85 2 4 6 3 7 9 70 3 2
35 1 2 1 0 91 5 0 6 5 3 1 72 11 2
36 12 7 0 0 70 5 6 17 10 2 0 63 4 4
37 0 0 0 0 100 0 0 1 5 1 0 89 2 2
38 1 0 4 1 88 5 1 2 0 6 2 78 8 4
39 3 2 0 0 91 3 1 16 3 3 1 70 4 3
40 5 4 0 0 83 1 7 11 9 6 4 59 0 11
41 1 1 6 25 63 2 2 4 4 6 27 53 2 4
42 5 2 0 4 83 4 2 7 8 2 3 73 5 2
43 0 0 1 0 98 1 0 1 5 5 0 84 4 1
44 1 1 4 0 85 9 0 3 5 9 5 72 6 0
45 1 2 1 1 92 2 1 3 14 6 4 69 2 2
46 2 1 1 5 90 0 1 5 3 3 6 75 4 4
47 0 0 4 3 89 1 3 0 0 7 4 85 1 3
48 3 3 4 3 77 1 9 7 5 8 8 60 4 8
49 0 2 29 2 57 5 5 1 4 30 3 55 3 2
50 10 15 1 3 60 3 8 17 24 4 1 47 2 5
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Appendix B. Output for ABC method

Table B.27: Species 14; (((A:1,B:1.0):0.1,(D:0.1,E:0.1):1.0):0.1,C:1.2);

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0 0 30 41 12 13 4 0 0 22 38 26 11 3
2 0 0 18 43 35 1 3 0 0 19 31 44 2 4
3 0 0 29 28 34 5 3 2 1 24 27 32 10 3
4 0 0 50 25 15 7 3 0 0 42 26 22 8 2
5 1 0 41 21 21 11 5 0 0 31 25 25 15 4
6 1 4 12 27 30 17 9 2 2 15 22 33 18 8
7 0 0 16 8 63 1 12 0 0 16 15 55 3 10
8 4 1 17 16 35 21 6 8 3 15 20 38 14 2
9 4 2 20 16 35 19 4 5 3 19 18 32 19 4
10 0 0 35 23 29 7 6 0 0 23 24 40 8 5
11 0 0 15 15 48 6 16 0 0 23 29 27 9 12
12 1 3 46 20 14 12 4 0 0 45 29 10 10 6
13 0 0 35 21 29 8 7 0 0 29 20 39 8 4
14 0 3 13 15 53 12 4 0 0 20 15 53 9 3
15 2 7 6 11 44 21 9 15 12 3 11 27 26 6
16 2 0 22 11 52 10 3 0 1 23 13 49 12 2
17 3 5 24 18 24 15 11 3 3 22 19 25 21 7
18 6 6 13 11 30 33 1 6 10 17 10 27 26 4
19 2 6 22 35 17 11 7 5 6 27 32 14 12 4
20 12 9 20 15 25 17 2 5 7 27 27 18 10 6
21 8 8 22 32 12 17 1 5 3 21 29 24 14 4
22 8 8 35 15 12 20 2 5 6 31 25 9 22 2
23 2 4 20 24 26 22 2 6 6 17 20 28 21 2
24 10 15 18 13 14 29 1 11 6 24 13 21 25 0
25 0 0 31 36 28 3 2 0 0 26 32 33 5 4
26 0 0 33 41 17 1 8 0 0 38 35 18 3 6
27 2 0 43 22 17 12 4 0 1 44 29 18 5 3
28 3 3 12 10 48 23 1 1 0 15 22 34 23 5
29 7 7 7 6 41 26 6 7 8 11 13 31 24 6
30 9 5 32 25 10 14 5 9 6 28 28 9 16 4
31 0 0 41 30 17 5 7 0 0 36 24 26 9 5
32 0 0 33 18 34 9 6 0 0 32 30 31 7 0
33 10 16 2 7 34 29 2 7 16 13 12 22 24 5
34 0 0 25 52 15 4 4 0 0 30 49 14 4 3
35 9 11 22 14 22 19 3 10 11 22 17 18 17 5
36 0 0 16 30 48 4 2 0 0 17 27 49 4 3
37 0 0 49 15 28 7 1 2 0 37 17 34 9 1
38 0 0 8 16 62 7 7 0 0 16 30 41 6 7
39 0 0 27 27 34 7 5 0 0 30 25 35 6 4
40 8 8 16 14 32 18 4 2 4 18 20 31 20 5
41 3 3 15 2 55 19 3 2 2 21 6 52 15 2
42 0 0 21 14 46 9 10 0 0 26 25 39 3 7
43 3 5 19 28 18 23 4 1 7 17 30 18 24 3
44 0 0 25 15 44 11 5 0 0 29 18 41 3 9
45 0 0 21 25 39 9 6 0 0 21 21 42 11 4
46 3 3 31 17 17 18 11 1 2 25 21 27 16 8
47 0 0 43 25 28 2 2 0 0 38 29 24 7 2
48 0 0 46 33 10 2 9 0 0 38 36 17 2 7
49 0 0 3 8 76 9 4 0 0 12 13 64 9 2
50 0 0 11 11 58 15 5 2 0 20 15 41 14 8
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Appendix B. Output for ABC method

B.2

Table B.29: output of Species 2 With DNA Sequences

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees Note
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 66 18 0 4 7 3 2 45 26 3 7 13 3 2 *
2 67 16 3 1 10 1 2 45 22 9 7 14 0 3
3 69 11 2 0 5 10 3 51 15 3 7 10 9 5
4 60 26 1 1 5 4 3 56 20 4 2 11 2 5
5 63 20 0 2 4 9 2 52 20 5 3 5 12 3
6 56 22 2 5 9 6 0 48 19 5 7 14 6 1
7 57 20 3 5 9 3 3 52 21 5 5 13 3 1
8 46 29 4 0 8 8 5 50 18 5 6 10 8 3
9 56 29 0 0 8 2 5 46 26 2 3 13 3 6 *
10 61 24 3 1 7 4 0 50 25 8 2 10 5 0

Table B.31: output of Species 8 With DNA Sequences

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 7 9 18 23 17 22 4 7 9 22 17 25 17 3
2 5 4 24 25 20 17 5 6 3 29 16 24 18 4
3 11 6 25 15 17 21 5 9 8 22 15 22 20 4
4 5 6 20 19 22 23 5 7 7 17 21 21 24 3
5 3 6 20 21 23 23 4 4 11 16 28 22 15 4
6 6 6 26 17 17 21 7 8 5 26 26 19 11 5
7 3 9 24 23 16 20 5 5 2 23 16 23 22 9
8 9 9 17 17 21 26 1 9 12 4 19 28 27 1
9 7 8 21 24 24 13 3 9 11 16 24 16 19 5
10 8 7 19 20 19 22 5 5 7 22 14 22 25 5
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Appendix B. Output for ABC method

Table B.33: output of Species 13 With DNA Sequences

Number Posterior Probability of Topology Trees Posterior Probability of Split Trees
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 9 11 4 4 61 3 8 7 14 10 9 53 3 4
2 5 2 7 9 62 9 6 13 7 5 8 53 8 6
3 12 8 5 6 61 5 3 13 7 8 11 51 5 5
4 10 4 9 9 63 1 4 10 7 12 14 48 5 4
5 9 4 3 5 68 4 7 13 4 10 8 58 3 4
6 9 13 9 9 44 7 9 14 12 10 9 41 5 9
7 5 3 10 14 59 6 3 4 6 10 9 58 7 6
8 14 8 2 8 58 4 6 13 8 6 12 51 4 6
9 3 4 1 4 76 5 7 9 14 4 6 53 5 9
10 5 6 9 10 61 9 0 14 12 11 10 45 6 2
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Appendix B. Output for ABC method

B.3

Table B.35: Output of Caterpillar Tree for Eight Taxa

posterior RF dist AB ABC ABCD ABCDE ABCDEF ABCDEFG GH
of Topology

1 26 2 97 95 92 83 54 26 51
2 26 2 100 100 98 88 63 26 49
3 20 2 97 94 91 81 54 20 52
4 29 2 99 99 96 83 54 29 55
5 16 2 97 95 90 80 51 16 59
6 26 2 99 98 97 89 60 26 50
7 28 2 96 92 90 77 58 28 50
8 20 2 100 97 95 85 55 20 58
9 28 2 97 97 93 79 58 28 49
10 23 2 99 98 95 82 51 23 53
11 28 2 100 99 98 89 65 28 43
12 23 2 97 92 90 79 47 23 58
13 34 2 98 96 95 87 63 34 46
14 27 2 98 97 95 78 55 27 48
15 31 2 97 93 90 81 52 31 51
16 19 2 98 98 96 86 52 19 59
17 24 2 100 98 94 78 50 24 54
18 17 2 95 93 87 77 44 17 64
19 22 2 99 94 90 77 59 22 50
20 15 2 100 98 92 82 45 15 62
21 21 2 95 92 86 78 48 21 58
22 18 2 100 100 96 86 58 18 50
23 25 2 100 98 94 85 54 25 49
24 29 2 96 93 90 80 59 29 46
25 27 2 97 92 85 76 46 27 57
26 19 2 97 95 88 76 43 19 60
27 22 2 99 97 94 86 56 22 52
28 20 2 100 98 91 84 46 20 56
29 30 2 100 99 98 86 58 30 47
30 24 2 100 99 94 83 59 24 45
31 32 2 100 99 96 86 63 32 45
32 24 2 96 95 92 85 55 24 52
33 25 2 99 99 98 87 60 25 49
34 30 2 97 95 93 82 59 30 46
35 19 2 94 93 87 78 48 19 59
36 32 2 98 95 93 82 66 32 39
37 30 2 99 99 98 90 60 31 49
38 20 2 99 98 97 86 58 20 49
39 16 2 99 97 94 83 47 16 60
40 25 2 98 95 92 78 54 25 51
41 25 2 99 99 95 88 61 25 46
42 19 2 96 94 91 87 56 19 53
43 28 2 98 96 93 85 58 28 44
44 24 2 99 99 94 80 55 24 52
45 37 2 99 97 95 87 67 37 38
46 29 2 100 99 95 82 55 29 51
47 16 2 98 95 94 78 44 16 59
48 27 2 97 95 93 77 60 27 44
49 19 2 100 97 94 81 45 19 60
50 29 2 99 97 90 81 49 29 56

142



Appendix B. Output for ABC method

Table B.37: Output of Balance Tree for Eight Taxa

posterior RF dist AB CD ABCD EF GH EFGH
of Topology

1 23 0 79 78 48 88 93 75
2 21 0 82 75 46 94 90 75
3 29 0 86 87 58 87 84 71
4 27 0 79 88 50 90 89 77
5 29 0 83 82 51 95 88 78
6 22 0 85 77 49 83 90 73
7 31 0 83 82 54 92 87 77
8 24 0 88 77 59 86 85 65
9 29 0 86 83 59 87 88 70
10 17 0 78 79 48 89 81 69
11 29 0 87 79 57 89 88 72
12 23 0 88 79 57 81 92 66
13 15 0 80 87 59 80 83 56
14 23 0 85 79 59 88 85 64
15 29 0 83 83 57 86 91 72
16 28 0 82 84 55 87 89 73
17 19 0 84 76 50 84 91 69
18 16 0 77 78 46 86 90 70
19 22 0 82 80 50 93 84 72
20 25 0 86 85 61 84 84 64
21 19 0 84 79 53 83 87 66
22 30 0 92 77 62 83 86 68
23 31 0 82 82 52 92 88 79
24 28 0 93 85 66 81 85 62
25 15 0 80 77 44 83 91 71
26 20 0 81 85 59 84 83 61
27 21 0 80 86 54 80 91 67
28 25 0 80 77 46 87 94 79
29 29 0 78 87 58 90 89 71
30 20 0 87 80 59 85 80 61
31 23 0 86 83 60 85 83 63
32 17 0 86 77 53 86 85 64
33 28 0 79 88 59 86 93 69
34 31 0 82 83 55 92 91 76
35 26 0 87 83 58 88 88 68
36 22 0 76 87 55 90 81 67
37 24 0 87 84 54 89 86 70
38 26 0 80 80 52 88 91 74
39 26 0 84 84 55 90 83 71
40 28 0 78 80 51 94 83 77
41 32 0 86 88 67 89 89 65
42 27 0 89 82 58 80 92 69
43 20 0 82 82 55 89 82 65
44 25 0 84 84 53 85 91 72
45 21 0 84 73 51 85 90 70
46 22 0 86 85 63 80 86 59
47 28 0 80 82 57 88 87 71
48 31 0 84 87 65 86 84 66
49 30 0 85 89 68 83 87 62
50 28 0 89 85 65 89 81 63
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Appendix C. Output for MLE and Bootstrapping method

Table C.1: Output of MLE and Bootstrapping For Species 1

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 92 91 79 -263.7466 1 37 2 1 3 0 4 3
2 91 95 92 -265.7397 6 11 2 5 2 2 18 10
3 95 90 91 -265.6416 1 31 19 0 0 0 0 0
4 86 88 1 -256.4748 1 47 3 0 0 0 0 0
5 94 90 1 -260.1342 1 49 0 0 0 0 1 0
6 91 93 85 -264.4548 1 37 6 1 1 0 0 5
7 79 99 75 -259.912 1 40 2 0 0 4 2 2
8 92 92 92 -264.5097 6 12 2 0 0 13 23 0
9 93 78 97 -256.4972 6 17 7 0 0 0 26 0
10 98 86 81 -262.8554 1 36 8 0 0 0 6 0
11 92 88 92 -261.9833 6 27 0 0 0 6 17 0
12 85 89 88 -260.3466 1 32 2 0 0 5 11 0
13 86 90 73 -259.4897 1 41 8 0 0 0 0 1
14 86 91 95 -263.4135 1 26 8 0 0 3 13 0
15 99 90 97 -267.3793 7 1 1 19 8 0 1 20
16 94 89 72 -262.5622 2 7 42 0 0 0 1 0
17 95 90 94 -265.3021 6 3 19 0 2 1 23 2
18 91 89 1 -259.2106 1 45 0 0 0 0 5 0
19 90 94 76 -264.0921 1 43 5 0 0 1 1 0
20 98 94 97 -269.2104 6 14 8 4 2 5 15 2
21 85 92 90 -262.2867 1 30 16 0 1 0 3 0
22 93 86 1 -257.5151 1 47 3 0 0 0 0 0
23 85 92 87 -261.5141 2 5 41 0 0 0 3 1
24 93 89 98 -265.7362 1 20 13 0 1 3 13 0
25 94 91 96 -266.2565 6 8 13 5 0 7 17 0
26 83 95 92 -261.7519 6 5 5 0 0 7 23 10
27 98 88 95 -265.7439 1 27 14 0 1 0 8 0
28 98 86 73 -262.0745 1 42 6 0 0 0 2 0
29 88 93 97 -265.2051 6 13 7 0 0 16 14 0
30 94 95 1 -264.023 1 48 2 0 0 0 0 0
31 94 90 93 -264.3425 6 12 3 0 2 6 27 0
32 93 90 82 -263.0878 2 31 19 0 0 0 0 0
33 97 91 1 -261.2138 1 46 4 0 0 0 0 0
34 87 90 77 -260.6802 2 3 37 0 0 2 8 0
35 86 96 86 -263.7647 1 36 1 0 1 1 6 5
36 88 96 1 -261.2854 1 50 0 0 0 0 0 0
37 100 88 87 -262.4688 6 12 0 16 0 1 21 0
38 96 86 93 -264.3796 1 27 4 0 0 0 19 0
39 97 93 81 -260.9357 7 2 0 4 0 12 0 32
40 96 79 92 -258.9226 1 28 11 0 0 0 11 0
41 93 96 81 -265.7874 1 41 3 0 1 0 0 5
42 96 95 1 -263.4693 1 45 0 0 0 1 3 1
43 95 89 96 -265.9623 1 24 11 0 0 1 13 1
44 92 84 90 -261.3337 1 32 2 0 0 0 16 0
45 94 98 83 -263.8955 7 6 4 0 2 8 11 19
46 81 96 93 -262.1708 1 27 5 0 0 2 8 8
47 86 89 92 -261.4837 1 26 18 0 0 0 6 0
48 91 95 92 -267.1982 1 28 0 6 2 1 3 10
49 93 95 93 -267.5752 1 34 5 0 1 6 4 0
50 82 90 97 -260.8592 2 14 20 0 1 1 13 1
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Appendix C. Output for MLE and Bootstrapping method

Table C.3: Output of MLE and Bootstrapping For Species 2

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 90 90 1 -254.6614 1 49 1 0 0 0 0 0
2 100 90 1 -263.093 1 43 6 0 0 0 1 0
3 86 93 83 -262.6607 1 27 0 0 0 5 13 5
4 78 91 74 -256.0214 1 41 9 0 0 0 0 0
5 81 87 1 -250.3972 1 50 0 0 0 0 0 0
6 94 88 1 -260.2149 1 47 0 0 0 0 3 0
7 87 94 1 -257.7319 1 49 1 0 0 0 0 0
8 98 87 94 -265.2887 1 30 7 0 0 0 13 0
9 93 97 1 -261.919 1 47 3 0 0 0 0 0
10 85 84 1 -252.6745 1 40 9 0 0 0 0 1
11 98 92 1 -260.0364 1 49 0 0 0 0 1 0
12 100 89 64 -263.53 1 41 9 0 0 0 0 0
13 89 86 85 -260.3092 1 41 7 0 0 0 2 0
14 87 89 96 -262.2509 6 19 2 0 0 5 23 1
15 90 80 1 -251.5361 1 44 6 0 0 0 0 0
16 94 87 1 -257.4073 1 48 2 0 0 0 0 0
17 88 89 1 -255.7076 1 47 1 0 0 1 1 0
18 92 87 85 -262.0107 1 39 8 0 0 0 3 0
19 100 85 73 -262.1074 1 41 7 0 0 0 2 0
20 96 88 1 -261.4295 1 46 4 0 0 0 0 0
21 92 84 1 -254.0752 1 42 8 0 0 0 0 0
22 86 87 1 -255.8913 1 49 1 0 0 0 0 0
23 92 84 1 -254.4022 1 37 13 0 0 0 0 0
24 85 94 95 -263.6747 6 16 6 0 0 1 16 11
25 94 92 75 -264.2569 1 43 4 1 0 0 2 0
26 91 93 98 -266.5504 6 10 17 13 0 0 5 5
27 88 93 80 -263.3019 1 39 3 1 0 3 4 0
28 93 94 85 -265.9219 1 28 22 0 0 0 0 0
29 86 82 84 -255.7079 1 32 14 0 0 0 4 0
30 87 87 1 -256.8296 1 46 2 0 0 0 2 0
31 79 96 86 -259.8175 1 34 4 0 0 5 4 3
32 93 91 1 -262.567 1 48 1 0 0 0 1 0
33 83 87 1 -254.4576 1 48 1 0 0 0 1 0
34 96 96 99 -269.7092 6 7 14 2 4 10 8 5
35 87 89 95 -262.2226 2 22 19 0 0 8 1 0
36 87 93 76 -261.8802 1 38 4 0 0 7 1 0
37 91 91 88 -264.1069 1 33 6 0 0 0 8 3
38 93 87 93 -263.1204 1 20 24 0 0 0 6 0
39 85 87 1 -255.4122 1 43 7 0 0 0 0 0
40 87 88 75 -259.4678 1 40 1 2 0 0 5 2
41 94 93 1 -259.0934 1 49 0 0 0 0 1 0
42 78 90 93 -257.706 1 30 5 0 0 1 13 1
43 91 92 68 -262.3838 2 30 20 0 0 0 0 0
44 91 88 90 -262.7418 2 24 22 0 0 0 4 0
45 86 93 97 -264.0182 6 14 10 2 0 4 14 6
46 91 90 90 -264.3417 1 23 1 0 0 3 23 0
47 95 89 94 -265.51 1 27 19 0 0 2 2 0
48 94 96 1 -264.6761 1 48 2 0 0 0 0 0
49 76 90 89 -251.9163 6 19 1 0 0 6 23 1
50 90 87 1 -257.362 1 49 0 0 0 0 1 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.5: Output of MLE and Bootstrapping For Species 3

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 35 100 85 -205.1585 1 31 4 0 0 2 1 12
2 37 93 1 -202.7226 1 42 7 0 0 1 0 0
3 38 93 88 -209.2292 2 4 29 0 0 7 2 8
4 44 97 1 -215.7373 2 0 50 0 0 0 0 0
5 37 88 1 -204.2905 1 27 0 0 0 14 6 3
6 34 75 49 -189.5318 2 9 31 0 0 3 7 0
7 26 88 1 -182.3551 2 26 20 0 0 0 1 3
8 91 99 32 -199.7307 7 0 5 0 0 21 7 17
9 30 92 85 -194.3162 1 26 4 0 0 8 4 8
10 47 83 1 -213.4206 1 45 4 0 0 0 0 1
11 29 92 92 -191.9621 1 24 11 0 0 0 2 13
12 30 87 1 -189.9398 2 3 35 0 0 0 3 9
13 41 88 1 -208.9313 2 16 32 0 0 2 0 0
14 35 96 90 -203.4602 6 15 1 0 0 11 9 14
15 44 87 1 -214.8666 2 16 32 0 0 0 1 1
16 32 75 1 -185.9808 1 31 17 0 0 1 1 0
17 39 86 75 -206.3336 1 35 5 0 0 3 5 2
18 40 82 78 -204.7212 1 33 9 0 0 3 5 0
19 26 90 1 -181.1052 1 46 3 0 0 0 0 1
20 31 92 98 -197.0514 6 7 11 0 0 29 3 0
21 96 94 31 -197.7338 7 0 1 0 0 19 0 30
22 31 92 1 -192.8672 1 37 0 0 0 9 2 2
23 39 86 81 -206.513 1 26 16 0 0 1 6 1
24 34 92 1 -198.0926 1 42 5 0 0 0 0 3
25 46 86 1 -216.091 1 32 18 0 0 0 0 0
26 35 90 1 -199.8477 1 39 7 0 0 0 1 3
27 32 93 93 -199.8722 2 3 18 0 0 2 6 21
28 28 96 84 -192.269 1 25 0 0 0 0 1 24
29 46 93 1 -219.5174 1 32 0 0 0 14 4 0
30 45 96 1 -219.3294 2 26 21 0 0 3 0 0
31 40 90 93 -213.2978 5 16 2 0 0 24 4 4
32 36 95 77 -206.5379 1 24 1 0 0 23 2 0
33 36 86 1 -199.6063 2 10 33 0 0 1 4 2
34 35 91 98 -204.0894 6 17 9 0 0 0 5 19
35 40 85 100 -209.4639 1 20 16 0 0 2 7 5
36 36 94 1 -203.7653 1 39 4 0 0 3 0 4
37 37 94 80 -206.7632 1 21 3 0 0 17 5 4
38 32 86 1 -191.2577 1 47 3 0 0 0 0 0
39 28 99 1 -191.4961 5 18 0 0 0 32 0 0
40 38 100 77 -211.6561 1 34 5 0 0 10 0 1
41 40 87 93 -209.7615 2 9 22 0 0 5 14 0
42 33 84 1 -193.5596 2 24 24 0 0 0 2 0
43 31 97 1 -194.9776 1 45 0 0 0 0 1 4
44 34 94 87 -202.1541 1 25 7 0 0 14 2 2
45 36 91 95 -206.9207 5 0 4 0 0 22 2 22
46 49 96 1 -224.0915 1 44 0 0 0 1 2 3
47 32 90 1 -194.9674 2 23 27 0 0 0 0 0
48 37 86 1 -200.8787 1 46 2 0 0 0 2 0
49 29 91 88 -191.6671 1 13 13 0 0 13 6 5
50 37 86 1 -199.5729 2 0 45 0 0 2 1 2
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Appendix C. Output for MLE and Bootstrapping method

Table C.7: Output of MLE and Bootstrapping For Species 4

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 100 41 73 -214.3131 1 20 6 0 0 0 24 0
2 93 39 85 -208.6711 1 26 15 0 0 0 9 0
3 99 34 1 -200.5509 2 5 36 0 0 0 9 0
4 94 28 1 -188.9095 2 22 28 0 0 0 0 0
5 88 34 1 -197.5486 2 1 44 0 0 0 5 0
6 100 39 85 -202.2107 6 7 20 0 0 0 23 0
7 79 44 1 -206.4824 1 40 7 0 0 0 3 0
8 95 47 77 -207.4085 6 8 4 0 0 0 38 0
9 95 37 1 -204.1888 1 29 21 0 0 0 0 0
10 85 33 1 -193.6929 1 36 14 0 0 0 0 0
11 68 41 1 -195.6203 2 10 28 0 0 0 12 0
12 78 33 1 -189.6613 1 50 0 0 0 0 0 0
13 94 31 1 -195.6773 1 21 14 0 0 0 15 0
14 80 50 78 -205.2178 6 11 6 0 0 0 33 0
15 81 35 1 -197.1403 1 20 15 0 0 0 15 0
16 74 59 65 -201.9125 6 3 5 0 0 0 42 0
17 79 40 1 -201.7456 2 9 37 0 0 0 4 0
18 96 39 88 -203.532 6 14 14 0 0 0 22 0
19 92 39 1 -206.7669 1 38 10 0 0 0 2 0
20 97 45 1 -216.526 2 8 40 0 0 0 2 0
21 86 41 82 -198.777 6 21 6 0 0 0 23 0
22 96 28 1 -189.1027 2 15 35 0 0 0 0 0
23 86 30 1 -188.8676 1 47 3 0 0 0 0 0
24 93 50 65 -200.9271 6 5 1 0 0 0 44 0
25 93 57 59 -204.6523 6 4 0 0 0 0 46 0
26 78 43 1 -205.4896 1 29 14 0 0 0 7 0
27 79 46 93 -208.3953 6 10 15 0 0 0 25 0
28 89 34 1 -197.4654 2 6 44 0 0 0 0 0
29 91 37 1 -204.2679 1 36 1 0 0 0 13 0
30 89 39 93 -203.9742 6 11 13 0 0 0 26 0
31 88 49 69 -201.5585 6 0 19 0 0 0 31 0
32 90 38 1 -205.4976 1 22 10 0 0 0 18 0
33 97 29 1 -192.7393 2 4 27 0 0 0 19 0
34 94 33 1 -197.0325 2 11 39 0 0 0 0 0
35 94 36 1 -202.5662 1 49 1 0 0 0 0 0
36 79 34 1 -193.3268 2 15 35 0 0 0 0 0
37 93 28 1 -188.8556 1 26 24 0 0 0 0 0
38 86 42 82 -200.3203 6 27 1 0 0 0 22 0
39 100 44 90 -213.1033 6 19 9 0 0 0 22 0
40 83 32 1 -193.2311 1 18 13 0 0 0 19 0
41 96 37 52 -206.3022 1 27 5 0 0 0 18 0
42 88 41 1 -208.7513 1 29 8 0 0 0 13 0
43 82 52 62 -196.6181 6 0 8 0 0 0 42 0
44 86 40 1 -205.1862 2 5 42 0 0 0 3 0
45 85 40 92 -202.8474 6 6 20 0 0 0 24 0
46 85 43 1 -210.4822 1 36 5 0 0 0 9 0
47 84 37 1 -200.963 1 26 0 0 0 0 24 0
48 100 44 87 -211.8161 6 7 19 0 0 0 24 0
49 99 46 1 -219.3059 1 25 22 0 0 0 3 0
50 75 53 69 -198.5872 6 0 9 0 0 0 41 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.9: Output of MLE and Bootstrapping For Species 5

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 39 41 1 -161.8227 1 38 12 0 0 0 0 0
2 43 46 58 -149.1948 6 0 19 0 0 0 31 0
3 42 61 57 -162.8521 6 6 5 0 0 4 35 0
4 40 40 85 -163.8133 1 18 12 0 0 0 20 0
5 36 34 1 -148.5189 1 31 19 0 0 0 0 0
6 36 45 86 -157.1396 6 3 26 1 0 0 18 2
7 33 73 53 -155.6577 6 3 10 0 0 0 27 10
8 27 40 1 -143.2721 1 39 11 0 0 0 0 0
9 48 34 1 -165.8834 1 40 10 0 0 0 0 0
10 34 34 1 -146.5321 1 26 24 0 0 0 0 0
11 33 28 1 -135.4962 2 18 32 0 0 0 0 0
12 32 52 65 -144.6683 6 8 6 0 0 0 36 0
13 27 33 1 -132.6781 1 33 17 0 0 0 0 0
14 32 42 1 -154.5658 1 25 14 0 0 0 11 0
15 39 68 46 -153.958 6 3 8 0 0 0 34 5
16 33 29 1 -137.5078 1 47 3 0 0 0 0 0
17 42 34 1 -158.2126 1 37 13 0 0 0 0 0
18 39 37 1 -157.352 1 31 19 0 0 0 0 0
19 27 25 1 -121.4909 2 10 38 0 2 0 0 0
20 26 64 64 -145.8821 6 0 12 0 1 0 35 2
21 40 49 1 -175.1207 1 36 9 0 0 0 5 0
22 44 31 1 -156.1739 1 46 4 0 0 0 0 0
23 41 48 1 -174.8827 2 13 37 0 0 0 0 0
24 37 46 1 -167.4578 2 3 35 0 0 0 12 0
25 42 36 1 -160.9072 2 4 46 0 0 0 0 0
26 39 76 46 -159.6467 6 0 1 0 0 0 41 8
27 30 38 1 -147.1071 1 38 12 0 0 0 0 0
28 42 41 89 -162.2655 6 12 13 0 0 0 25 0
29 29 64 59 -147.1291 6 10 0 0 0 0 38 2
30 37 35 1 -151.8512 1 39 11 0 0 0 0 0
31 33 41 1 -154.7041 1 25 25 0 0 0 0 0
32 34 41 1 -157.2195 1 33 17 0 0 0 0 0
33 31 26 1 -129.9341 2 20 30 0 0 0 0 0
34 31 41 1 -152.8455 1 28 0 0 0 0 22 0
35 39 38 1 -158.5439 1 44 6 0 0 0 0 0
36 30 36 1 -144.5014 1 31 18 0 1 0 0 0
37 40 31 1 -150.8097 1 34 16 0 0 0 0 0
38 36 53 77 -161.5516 6 13 9 0 0 0 28 0
39 37 46 70 -150.124 6 18 12 0 0 0 20 0
40 33 34 1 -145.2755 1 38 12 0 0 0 0 0
41 40 44 1 -169.5901 2 16 24 0 0 0 10 0
42 34 34 1 -144.2348 2 0 32 0 0 0 18 0
43 38 42 1 -163.0057 1 40 10 0 0 0 0 0
44 31 53 53 -134.5864 6 16 1 1 0 0 32 0
45 52 35 95 -171.7842 1 20 14 0 0 0 16 0
46 36 69 48 -152.1895 6 0 11 0 0 8 29 2
47 39 43 1 -166.5892 1 24 11 0 0 0 15 0
48 39 31 1 -148.1756 2 12 38 0 0 0 0 0
49 25 37 1 -137.1268 1 36 14 0 0 0 0 0
50 49 41 1 -174.8294 1 42 3 0 0 0 5 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.11: Output of MLE and Bootstrapping For Species 6

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 91 92 88 -262.4587 6 0 10 0 0 6 30 4
2 83 89 98 -260.7403 2 16 20 0 0 4 10 0
3 92 90 96 -265.0892 6 6 21 0 3 1 16 3
4 89 94 86 -261.5443 6 2 2 0 0 21 25 0
5 88 92 92 -263.0227 6 8 6 3 0 1 20 12
6 85 93 90 -261.1289 6 18 1 0 3 0 20 8
7 81 88 90 -255.1912 6 10 5 0 1 3 29 2
8 99 93 85 -263.7675 6 0 2 7 6 1 32 2
9 97 94 94 -267.8767 6 18 1 2 0 11 18 0
10 91 86 99 -262.896 6 16 14 0 0 3 17 0
11 92 85 1 -257.457 1 44 5 0 0 0 1 0
12 94 81 97 -260.6156 2 6 22 3 0 0 19 0
13 91 88 84 -257.3399 6 1 2 0 0 0 45 2
14 89 88 83 -255.4895 6 1 2 0 0 0 41 6
15 85 88 1 -257.4199 1 46 1 0 0 0 3 0
16 93 82 92 -257.953 6 15 6 0 1 0 28 0
17 95 83 94 -261.8645 2 6 28 1 0 0 15 0
18 99 90 93 -266.1267 6 9 11 6 0 3 19 2
19 89 89 89 -260.2993 6 8 5 0 0 0 31 6
20 84 99 94 -264.7136 7 1 0 0 21 7 11 10
21 88 92 89 -261.8238 6 6 4 0 0 10 27 3
22 100 81 99 -262.2264 2 15 19 0 0 0 16 0
23 100 89 81 -259.439 6 0 3 0 2 4 41 0
24 92 91 91 -263.7023 6 10 3 2 0 5 26 4
25 90 90 97 -265.1253 1 17 17 0 1 10 5 0
26 89 90 79 -254.4658 6 0 0 0 0 21 29 0
27 84 76 92 -250.8328 2 3 30 0 0 0 17 0
28 84 93 80 -260.9466 2 3 43 0 0 0 4 0
29 83 81 72 -252.545 1 30 1 0 0 7 12 0
30 84 89 97 -261.7969 1 23 6 0 0 16 5 0
31 88 92 95 -263.9593 6 5 20 2 0 0 6 17
32 92 100 74 -265.7532 1 46 0 1 0 3 0 0
33 86 87 89 -256.9973 6 6 6 0 0 4 34 0
34 86 92 91 -261.2618 6 0 14 0 3 1 23 9
35 94 95 86 -264.2491 6 1 2 1 1 20 25 0
36 93 98 86 -265.1457 6 2 3 16 0 2 21 6
37 93 92 89 -263.8931 6 3 5 0 0 0 35 7
38 77 93 65 -255.5657 4 0 0 1 38 2 1 8
39 98 94 87 -265.2253 6 1 2 0 0 24 22 1
40 100 96 88 -267.0711 6 5 2 4 13 2 19 5
41 93 80 99 -259.646 1 14 19 0 0 0 16 1
42 98 91 87 -263.909 6 0 5 0 2 15 28 0
43 93 95 91 -266.379 6 8 5 0 0 14 18 5
44 88 79 91 -255.8811 2 7 33 0 0 0 10 0
45 98 86 85 -258.8824 6 1 3 0 0 2 43 1
46 83 97 85 -259.6556 6 3 0 1 0 8 20 18
47 93 89 83 -258.1886 6 3 0 0 0 5 41 1
48 87 93 88 -260.8696 6 0 6 3 0 2 29 10
49 92 94 84 -261.965 6 6 0 3 0 3 32 6
50 96 80 82 -251.3317 6 1 10 0 0 0 36 3
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Appendix C. Output for MLE and Bootstrapping method

Table C.13: Output of MLE and Bootstrapping For Species 7

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 34 59 16 -101.7346 6 12 1 0 1 0 31 5
2 24 12 1 -91.8256 1 21 3 1 0 0 25 0
3 35 9 1 -100.3913 1 15 6 0 0 0 29 0
4 38 21 1 -131.3423 2 19 30 0 0 0 1 0
5 34 13 1 -108.8242 1 19 26 0 0 0 5 0
6 33 17 1 -115.355 2 24 24 0 0 0 2 0
7 46 9 95 -113.1156 6 38 0 0 0 0 12 0
8 33 13 1 -107.2158 2 13 27 0 0 0 10 0
9 37 10 1 -106.3809 2 6 36 0 0 0 8 0
10 32 9 1 -96.42451 1 26 0 0 0 0 24 0
11 40 66 18 -115.6861 6 7 11 1 0 0 24 7
12 39 5 1 -95.28758 1 7 4 0 0 0 39 0
13 41 22 1 -137.3243 2 13 37 0 0 0 0 0
14 29 17 1 -109.4137 2 1 46 0 1 0 2 0
15 42 14 1 -121.5165 2 8 30 0 0 0 12 0
16 44 15 1 -125.6722 2 12 32 0 0 0 6 0
17 36 13 1 -110.7425 2 22 26 0 0 0 2 0
18 51 18 1 -139.9728 1 28 21 0 0 0 1 0
19 36 24 1 -134.9198 1 24 23 2 0 0 1 0
20 37 86 16 -115.2225 6 9 1 11 0 0 22 7
21 47 74 14 -120.5699 6 8 0 0 0 24 18 0
22 33 59 25 -112.2048 6 11 9 0 0 7 23 0
23 46 9 95 -113.1156 6 28 7 0 0 0 15 0
24 28 17 1 -107.8379 2 12 37 0 0 0 1 0
25 31 9 1 -96.06089 2 10 20 0 0 0 20 0
26 45 15 1 -127.2751 1 39 6 0 0 0 5 0
27 42 12 1 -117.5299 1 21 26 0 0 0 3 0
28 40 7 90 -99.86903 6 16 10 0 0 0 24 0
29 39 10 1 -109.2252 1 28 1 0 0 0 21 0
30 38 11 1 -110.2676 1 20 18 0 0 0 12 0
31 38 16 1 -121.4926 2 0 48 0 0 0 2 0
32 41 14 1 -119.8187 1 32 5 0 0 0 13 0
33 32 18 1 -116.3441 1 33 12 0 0 0 5 0
34 33 17 1 -115.355 2 18 30 0 0 0 1 1
35 33 54 27 -112.0044 6 14 4 1 0 0 28 3
36 40 14 1 -118.0355 2 0 49 0 0 0 1 0
37 40 15 1 -121.9622 2 18 29 0 0 0 3 0
38 33 14 1 -109.3905 1 48 0 0 0 0 2 0
39 41 9 97 -107.3101 6 10 17 0 0 0 23 0
40 48 10 96 -118.8854 6 22 12 0 0 0 16 0
41 43 11 1 -116.122 2 13 29 0 0 0 8 0
42 42 14 1 -120.8174 1 37 7 0 0 0 6 0
43 31 18 1 -115.9558 1 38 11 0 0 0 1 0
44 36 10 1 -105.5934 1 29 0 0 0 0 21 0
45 39 9 1 -105.5675 1 30 1 0 0 0 19 0
46 45 20 1 -136.0699 2 0 50 0 0 0 0 0
47 44 13 1 -123.499 1 30 7 0 0 0 13 0
48 33 8 97 -94.62442 6 6 23 0 0 0 21 0
49 49 17 1 -135.9212 1 50 0 0 0 0 0 0
50 48 16 1 -132.1047 2 13 36 0 0 0 1 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.15: Output of MLE and Bootstrapping For Species 8

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 92 43 1 -215.9176 5 0 0 0 0 48 2 0
2 39 92 96 -210.8875 7 0 0 11 14 0 14 11
3 94 86 46 -216.7043 6 0 0 2 0 2 45 1
4 88 93 36 -203.1026 6 0 0 12 1 1 25 11
5 89 95 33 -198.9998 6 0 0 6 7 5 22 10
6 82 84 36 -194.9145 6 0 0 0 0 6 43 1
7 87 40 91 -212.4041 5 0 0 0 3 26 19 2
8 30 98 70 -194.8125 3 0 0 34 7 5 3 1
9 96 83 37 -201.1066 6 0 0 0 0 9 41 0
10 82 79 44 -202.8893 6 0 0 0 1 3 46 0
11 100 68 47 -204.9632 6 0 0 0 1 0 49 0
12 92 94 39 -211.157 6 0 0 16 6 0 22 6
13 88 84 27 -181.3157 6 0 0 0 7 2 39 2
14 98 81 43 -210.0034 6 0 0 4 1 1 43 1
15 93 50 1 -226.3554 5 0 0 0 0 43 7 0
16 100 89 39 -209.4273 6 0 0 0 4 15 31 0
17 98 92 42 -216.3164 6 0 0 6 2 14 27 1
18 86 75 36 -189.8272 6 2 0 0 0 1 46 1
19 94 82 33 -193.497 6 0 0 0 1 7 41 1
20 88 87 43 -211.2417 6 0 0 0 2 0 45 3
21 98 85 46 -217.1179 6 0 0 0 1 8 41 0
22 84 59 56 -199.3025 6 0 1 0 0 0 49 0
23 84 86 27 -180.9526 6 0 0 5 0 0 41 4
24 88 82 33 -191.5627 6 0 0 2 0 3 44 1
25 78 84 32 -185.8248 6 0 1 0 0 16 28 5
26 93 99 37 -209.6579 6 0 0 3 13 10 21 3
27 82 79 48 -209.1725 6 0 0 0 0 11 39 0
28 98 91 48 -224.1896 6 0 0 9 7 1 32 1
29 100 34 80 -204.9301 5 0 0 1 2 36 11 0
30 87 88 39 -204.3293 6 0 0 4 0 8 38 0
31 84 91 37 -201.2653 6 0 0 0 0 15 30 5
32 85 75 50 -209.2676 6 0 0 0 0 3 46 1
33 85 94 40 -209.2057 6 0 0 15 0 5 18 12
34 79 34 97 -198.1706 5 0 0 0 5 17 17 11
35 94 40 85 -213.7044 5 0 0 7 0 23 20 0
36 85 94 48 -221.7773 6 0 0 8 0 4 31 7
37 92 76 50 -213.78 6 0 0 0 0 0 50 0
38 96 93 35 -205.014 6 0 0 1 12 3 33 1
39 92 47 94 -226.0431 5 0 0 5 1 18 25 1
40 100 80 39 -203.3114 6 0 0 3 3 0 44 0
41 98 88 38 -206.7672 6 0 0 8 1 2 37 2
42 84 35 92 -202.2462 5 0 0 0 1 21 26 2
43 85 32 1 -194.4408 5 0 0 0 1 33 16 0
44 86 83 46 -211.5321 6 0 0 1 1 0 40 8
45 79 91 41 -205.5043 6 0 0 3 1 1 30 15
46 97 92 43 -218.1619 6 0 0 9 1 4 33 3
47 99 85 37 -204.0754 6 0 0 2 1 4 42 1
48 99 83 49 -220.6521 6 0 0 0 7 0 42 1
49 90 83 43 -209.0192 6 0 0 2 0 0 45 3
50 89 76 44 -205.0404 6 0 0 0 0 1 49 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.17: Output of MLE and Bootstrapping For Species 9

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 100 33 1 -198.8 2 11 39 0 0 0 0 0
2 88 58 59 -203.7293 6 1 4 0 0 1 44 0
3 92 42 76 -198.4817 6 10 5 0 0 0 35 0
4 81 40 1 -203.8534 1 31 17 0 0 0 2 0
5 73 37 1 -193.3293 2 12 38 0 0 0 0 0
6 88 41 84 -200.767 6 21 0 0 0 0 29 0
7 99 39 1 -208.9679 1 40 1 0 0 0 9 0
8 85 29 1 -187.1267 1 44 6 0 0 0 0 0
9 87 30 1 -189.3122 1 44 6 0 0 0 0 0
10 100 66 43 -197.9175 6 1 2 0 0 0 47 0
11 88 26 1 -182.4548 1 49 1 0 0 0 0 0
12 99 44 88 -211.8012 6 8 15 0 0 0 27 0
13 100 35 1 -201.6319 2 9 41 0 0 0 0 0
14 84 34 1 -196.4414 2 9 30 0 0 0 11 0
15 88 32 83 -194.6365 2 18 11 0 0 0 21 0
16 82 24 1 -177.0125 1 32 18 0 0 0 0 0
17 97 41 74 -197.3487 6 1 19 0 0 0 30 0
18 88 32 86 -188.0126 6 17 6 0 0 0 27 0
19 85 32 1 -192.0535 2 1 32 0 0 0 17 0
20 100 33 1 -198.8 1 39 11 0 0 0 0 0
21 96 66 37 -188.0565 6 0 0 0 0 0 50 0
22 93 29 1 -190.4122 2 3 47 0 0 0 0 0
23 93 31 1 -193.9686 2 2 34 0 0 0 14 0
24 92 41 80 -200.0261 6 20 1 0 0 0 29 0
25 87 29 1 -189.3821 1 27 23 0 0 0 0 0
26 75 36 1 -194.6329 2 12 27 0 0 0 11 0
27 90 42 1 -209.7861 2 28 22 0 0 0 0 0
28 100 38 83 -209.1723 1 18 13 0 0 0 19 0
29 82 31 1 -189.424 1 45 5 0 0 0 0 0
30 86 29 1 -187.139 2 12 38 0 0 0 0 0
31 91 42 76 -198.2958 6 7 10 0 0 0 33 0
32 84 35 71 -181.436 6 11 11 0 0 0 28 0
33 90 36 1 -202.4038 1 31 0 0 0 0 19 0
34 85 31 1 -190.3905 1 27 23 0 0 0 0 0
35 97 30 1 -194.3694 1 23 3 0 0 0 24 0
36 92 29 1 -190.4406 2 2 24 0 0 0 24 0
37 92 31 91 -190.5578 6 13 7 0 0 0 30 0
38 99 61 67 -219.1667 6 6 0 0 0 0 44 0
39 90 41 81 -199.6342 6 22 1 0 0 0 27 0
40 92 30 98 -193.8498 1 19 13 0 0 0 18 0
41 100 33 1 -200.6317 1 22 18 0 0 0 10 0
42 91 40 67 -209.6254 2 17 22 0 0 0 11 0
43 87 33 1 -193.9264 2 3 47 0 0 0 0 0
44 80 34 1 -193.6801 1 31 7 0 0 0 12 0
45 86 40 1 -205.4719 2 1 46 0 0 0 3 0
46 84 36 66 -179.2351 6 4 17 0 0 0 29 0
47 89 37 1 -203.529 2 7 33 0 0 0 10 0
48 94 35 1 -201.7131 2 18 27 0 0 0 5 0
49 83 32 1 -191.6586 2 5 29 0 0 0 16 0
50 78 29 1 -184.7142 2 21 29 0 0 0 0 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.19: Output of MLE and Bootstrapping For Species 10

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 44 85 76 -202.884 6 0 4 0 0 1 39 6
2 42 85 93 -211.2028 2 8 30 0 0 1 8 3
3 34 82 62 -195.3521 2 11 26 0 0 0 10 3
4 37 79 1 -197.9703 1 30 15 0 0 0 2 3
5 43 85 91 -210.9492 6 16 9 0 0 2 19 4
6 43 84 82 -214.8921 5 1 2 0 0 36 8 3
7 38 95 78 -202.9054 6 7 0 0 0 13 24 6
8 39 78 90 -201.422 2 14 26 0 0 0 9 1
9 35 84 91 -199.7616 1 25 3 0 0 8 10 4
10 27 80 95 -182.3007 1 21 4 0 0 12 13 0
11 44 89 88 -219.0326 5 8 1 0 0 30 4 7
12 43 90 96 -217.5369 1 24 10 0 0 1 9 6
13 43 94 84 -213.9991 6 4 4 0 0 1 22 19
14 34 97 1 -201.194 5 0 26 0 0 24 0 0
15 38 82 94 -201.5769 6 6 21 0 0 0 18 5
16 33 84 98 -199.9368 5 2 5 0 0 21 8 14
17 59 95 87 -237.2268 6 9 3 0 0 7 18 13
18 34 88 79 -200.2015 1 28 7 0 0 13 2 0
19 36 87 92 -200.9975 6 13 5 0 0 7 18 7
20 91 93 40 -210.9511 7 12 1 0 0 0 3 34
21 38 96 86 -206.9125 6 15 0 0 0 3 18 14
22 75 96 43 -209.3823 7 0 0 0 0 10 11 29
23 84 93 40 -208.1239 7 0 12 0 0 3 15 20
24 43 86 85 -215.9105 5 7 15 0 0 22 6 0
25 41 90 86 -209.0247 6 10 1 0 0 0 17 22
26 84 88 25 -177.5517 7 0 1 0 0 13 5 31
27 42 90 86 -214.8097 2 7 30 0 0 0 5 8
28 43 76 92 -203.8467 6 6 10 0 0 0 32 2
29 39 98 59 -211.1535 1 29 0 0 0 18 1 2
30 43 77 1 -206.6592 2 0 32 0 0 0 16 2
31 37 83 81 -193.7525 6 11 0 0 0 7 31 1
32 48 91 90 -221.4293 6 7 9 0 0 2 20 12
33 39 91 81 -202.8691 6 0 9 0 0 3 27 11
34 36 89 96 -203.7121 2 7 17 0 0 0 7 19
35 37 89 90 -205.6328 2 4 31 0 0 7 6 2
36 45 95 80 -219.8896 2 2 34 0 0 9 1 4
37 32 98 85 -197.5059 6 3 8 0 0 8 13 18
38 37 96 94 -209.0634 6 5 12 0 0 6 12 15
39 33 78 73 -191.2261 1 37 6 0 0 2 5 0
40 34 87 1 -196.429 2 1 44 0 0 0 1 4
41 28 92 80 -182.9268 6 1 3 0 0 11 28 7
42 39 84 91 -203.6565 6 7 9 0 0 7 27 0
43 42 90 93 -213.6786 6 18 4 0 0 14 11 3
44 38 94 94 -208.613 6 6 21 0 0 2 11 10
45 29 75 1 -181.514 1 27 21 0 0 0 2 0
46 44 79 96 -211.0616 2 12 19 0 0 3 14 2
47 36 80 88 -198.2488 1 22 7 0 0 0 11 10
48 34 77 97 -194.0765 1 11 10 0 0 4 24 1
49 40 91 87 -207.797 6 2 17 0 0 8 16 7
50 37 93 92 -209.358 5 8 14 0 0 24 2 2

154



Appendix C. Output for MLE and Bootstrapping method

Table C.21: Output of MLE and Bootstrapping For Species 11

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 90 89 1 -257.3126 5 0 0 0 0 50 0 0
2 88 95 73 -264.3213 5 0 0 0 0 49 0 1
3 100 84 92 -265.5595 5 0 0 3 15 28 3 1
4 89 89 77 -263.0444 5 1 0 0 0 46 2 1
5 77 84 87 -254.4649 5 0 1 0 2 32 0 15
6 86 92 96 -264.8572 5 11 1 0 0 17 7 14
7 95 85 81 -264.6294 5 0 0 6 2 35 0 7
8 86 88 1 -257.8523 5 0 0 0 0 48 0 2
9 93 85 1 -257.5943 5 0 0 0 0 47 2 1
10 99 84 67 -261.861 5 0 0 1 14 34 0 1
11 93 92 82 -259.9979 6 0 0 0 0 18 32 0
12 100 90 89 -266.8634 2 0 24 2 0 1 23 0
13 92 92 1 -263.0604 5 0 0 1 0 47 1 1
14 90 92 80 -264.0771 5 0 0 2 0 39 0 9
15 92 83 86 -262.3847 5 0 0 0 0 44 6 0
16 86 82 94 -260.612 5 1 1 3 0 21 14 10
17 83 90 79 -260.4577 5 0 1 0 0 41 0 8
18 93 93 95 -268.1476 5 0 2 1 16 24 1 6
19 100 93 90 -268.7422 5 0 1 6 2 37 4 0
20 81 94 84 -261.0329 5 0 0 1 0 35 1 13
21 96 90 93 -267.7426 5 2 0 11 3 26 0 8
22 99 94 84 -264.0676 6 0 2 0 8 18 22 0
23 94 94 1 -264.2636 5 0 0 1 0 48 0 1
24 92 94 90 -267.4719 5 0 7 1 0 36 3 3
25 79 85 90 -256.9485 5 1 0 0 0 40 7 2
26 85 86 97 -262.2198 5 5 0 0 1 23 15 6
27 87 100 90 -265.9814 3 4 0 29 1 2 14 0
28 99 98 95 -269.8984 7 8 3 6 4 18 3 8
29 94 94 92 -267.8835 5 5 2 3 1 33 1 5
30 82 93 86 -256.8358 6 0 6 0 0 9 24 11
31 91 71 84 -252.4726 5 0 0 8 1 35 1 5
32 85 98 85 -263.9753 5 9 0 0 0 37 0 4
33 82 93 96 -261.6059 7 0 0 5 14 15 2 14
34 80 98 84 -257.5334 6 6 0 1 1 9 18 15
35 85 94 92 -264.9388 5 4 14 0 0 25 6 1
36 96 95 96 -268.5283 6 13 1 0 12 5 15 4
37 85 79 1 -253.7218 5 0 0 1 0 46 0 3
38 86 97 98 -266.5605 5 8 2 3 0 19 5 13
39 96 81 86 -261.6255 5 0 0 3 1 40 4 2
40 91 91 77 -263.4343 5 1 3 0 0 40 6 0
41 89 88 1 -259.0789 5 1 0 0 0 47 2 0
42 95 100 92 -269.6541 5 1 12 3 1 32 0 1
43 95 100 92 -269.6541 5 1 10 8 0 30 0 1
44 83 86 95 -261.3153 5 0 3 0 0 25 12 10
45 91 94 94 -266.0418 6 3 9 1 0 15 20 2
46 79 97 87 -261.0684 5 6 1 0 0 39 4 0
47 97 100 71 -266.6365 2 0 40 5 0 4 1 0
48 95 98 96 -269.7616 5 21 0 3 2 20 4 0
49 99 90 72 -265.1235 5 0 0 0 7 43 0 0
50 92 85 73 -523.8821 5 0 0 0 7 43 0 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.23: Output of MLE and Bootstrapping For Species 12

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 38 74 47 -156.9636 6 0 5 0 0 2 42 1
2 34 61 59 -151.5548 6 8 0 0 0 3 39 0
3 39 59 1 -183.8123 4 0 0 0 27 0 1 22
4 26 59 1 -162.5323 2 12 34 0 0 0 4 0
5 51 44 1 -183.1418 1 27 16 0 0 0 7 0
6 100 39 1 -210.2916 1 35 4 0 0 0 11 0
7 63 33 1 -179.906 3 0 0 44 6 0 0 0
8 2 34 1 -75.85782 3 0 0 25 0 0 25 0
9 10 23 1 -85.02215 3 0 2 26 18 0 4 0
10 100 87 1 -256.6182 3 0 0 50 0 0 0 0
11 93 78 58 -254.2328 2 17 31 0 0 0 2 0
12 33 9 1 -98.43591 1 19 5 0 0 0 26 0
13 37 80 85 -193.9695 6 11 2 0 0 0 32 5
14 20 27 1 -114.0821 5 0 0 4 11 30 0 5
15 33 11 93 -102.1064 6 12 3 0 0 0 35 0
16 100 91 13 -156.0322 6 2 0 1 23 5 19 0
17 31 37 1 -145.4116 2 8 42 0 0 0 0 0
18 12 1 1 -33.42918 6 0 0 0 0 0 50 0
19 40 48 1 -173.5823 1 28 4 0 0 0 18 0
20 64 25 1 -165.5601 2 20 30 0 0 0 0 0
21 69 42 1 -198.2024 3 0 0 33 13 0 0 4
22 15 3 93 -50.72198 6 0 0 0 0 0 48 2
23 58 63 63 -218.7085 5 0 0 0 0 36 4 10
24 36 81 33 -142.0009 7 0 1 6 2 9 5 27
25 71 78 79 -240.7922 3 0 0 31 13 0 0 6
26 59 35 1 -182.0754 5 0 0 0 0 47 0 3
27 18 99 73 -162.1283 6 0 6 0 0 12 14 18
28 39 25 1 -138.5634 4 0 0 4 46 0 0 0
29 23 61 1 -158.1598 4 0 0 8 38 0 1 3
30 21 90 1 -173.8831 1 35 1 0 0 14 0 0
31 91 64 1 -239.0003 1 37 12 0 0 0 1 0
32 65 65 1 -221.2489 2 11 34 0 0 0 5 0
33 84 80 37 -194.6155 7 1 1 0 0 0 4 44
34 96 72 69 -232.3161 7 1 0 1 0 0 0 48
35 24 77 68 -155.5866 7 0 0 11 0 0 8 31
36 18 23 1 -102.6277 2 27 21 0 0 0 0 2
37 81 93 22 -171.9866 6 0 0 0 11 2 31 6
38 73 92 17 -155.4487 6 1 2 7 0 5 22 13
39 77 65 11 -134.5695 7 4 0 2 1 0 3 40
40 34 52 1 -168.0538 1 46 0 0 0 0 4 0
41 68 74 86 -229.9397 7 0 0 9 8 0 0 33
42 88 15 1 -158.6905 3 0 0 44 4 0 0 2
43 20 35 1 -125.5121 5 1 2 2 0 34 9 2
44 54 48 1 -195.5823 5 0 0 0 0 37 9 4
45 51 3 1 -99.16743 5 1 0 0 0 33 16 0
46 7 2 73 -29.24904 6 1 0 0 0 0 49 0
47 23 71 1 -166.2416 2 10 37 0 0 0 2 1
48 3 66 1 -111.1896 5 16 0 0 0 28 1 5
49 15 20 1 -89.51904 4 0 0 2 41 0 6 1
50 29 17 1 -109.4154 2 3 47 0 0 0 0 0
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Appendix C. Output for MLE and Bootstrapping method

Table C.25: Output of MLE and Bootstrapping For Species 13

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 96 96 1 -260.6364 5 0 0 0 0 50 0 0
2 87 87 1 -256.5815 5 0 0 0 0 50 0 0
3 90 91 96 -264.9974 6 0 24 0 0 17 8 1
4 96 93 1 -259.5159 5 0 0 0 0 50 0 0
5 76 94 80 -257.1479 5 2 17 0 0 28 3 0
6 94 94 86 -267.5805 5 0 5 4 0 38 1 2
7 94 94 86 -267.5805 5 0 3 1 0 40 2 4
8 86 91 1 -259.3127 5 0 0 0 0 49 0 1
9 86 91 1 -259.3127 5 0 0 0 0 49 0 1
10 98 87 1 -258.4493 5 0 0 0 0 50 0 0
11 97 86 58 -262.0381 5 2 0 0 0 41 7 0
12 81 96 1 -255.6457 5 0 1 0 0 49 0 0
13 89 96 1 -260.9528 5 0 0 0 0 50 0 0
14 97 92 74 -265.9751 5 0 0 0 4 46 0 0
15 89 93 98 -266.0555 7 0 0 16 12 12 0 10
16 96 84 83 -263.5615 5 0 0 4 7 37 0 2
17 84 90 75 -260.7656 5 1 0 0 2 45 0 2
18 91 93 52 -263.3753 5 0 0 2 0 46 0 2
19 89 88 94 -265.0576 5 0 1 1 0 36 6 6
20 89 95 1 -260.1911 5 3 0 0 0 46 1 0
21 90 98 92 -267.5807 1 19 0 0 1 21 8 1
22 86 100 94 -267.0338 5 22 12 0 0 15 1 0
23 91 89 1 -252.7296 5 0 0 0 0 50 0 0
24 91 95 84 -266.1805 5 0 1 0 3 44 1 1
25 91 87 81 -262.1567 5 0 0 0 2 43 3 2
26 94 89 94 -266.9669 5 10 0 0 1 22 14 3
27 87 90 1 -260.1674 5 0 0 0 0 47 3 0
28 99 94 1 -264.7834 5 0 0 1 0 47 2 0
29 96 94 1 -259.1229 5 1 0 0 0 49 0 0
30 88 93 75 -264.0387 5 0 2 0 0 46 2 0
31 88 97 41 -263.577 5 0 1 0 0 49 0 0
32 100 87 71 -263.5017 5 0 0 8 0 41 1 0
33 93 90 1 -261.1094 5 0 0 1 2 45 1 1
34 100 90 70 -264.6104 5 0 0 1 3 44 2 0
35 88 87 66 -260.9968 5 0 3 0 0 43 4 0
36 89 90 88 -263.9141 5 5 0 0 0 33 12 0
37 89 92 1 -258.9139 5 0 0 0 0 50 0 0
38 90 82 53 -257.3827 5 0 0 0 0 49 1 0
39 89 95 1 -262.786 5 3 0 0 0 47 0 0
40 79 100 70 -259.6643 5 3 0 0 0 38 1 8
41 96 96 87 -267.9845 5 0 3 21 0 25 0 1
42 94 92 75 -265.0796 5 2 0 0 0 45 3 0
43 93 84 1 -256.7057 5 0 0 0 0 50 0 0
44 95 78 1 -256.0822 5 0 0 0 0 46 4 0
45 91 88 1 -260.6567 5 0 3 0 0 44 2 1
46 96 97 1 -264.277 5 1 0 3 0 46 0 0
47 95 89 1 -260.8843 5 0 0 3 2 41 0 4
48 78 91 85 -258.8997 5 0 0 0 0 36 0 14
49 96 89 79 -264.9376 5 0 0 0 18 32 0 0
50 82 100 88 -263.7315 5 4 8 0 0 30 2 6
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Appendix C. Output for MLE and Bootstrapping method

Table C.27: Output of MLE and Bootstrapping For Species 14

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 31 95 92 -197.6258 3 0 0 18 19 7 3 3
2 99 41 77 -215.9791 5 0 0 14 4 32 0 0
3 100 32 86 -200.3309 5 0 0 2 17 29 2 0
4 33 96 1 -198.921 4 0 0 0 46 2 1 1
5 43 96 91 -217.2957 7 0 0 5 7 3 16 19
6 81 35 90 -201.0396 5 0 0 9 0 27 8 6
7 81 35 90 -201.0396 5 0 0 8 0 30 10 2
8 90 33 92 -201.6932 5 0 0 0 1 28 21 0
9 90 33 92 -201.6932 5 0 0 0 1 29 15 5
10 35 86 65 -199.2041 4 0 0 1 33 9 0 7
11 78 47 85 -218.3054 5 0 0 6 0 28 3 13
12 39 92 91 -209.5341 7 0 0 1 17 6 9 17
13 41 98 91 -215.525 7 0 0 0 23 14 10 3
14 95 33 1 -198.2749 5 0 0 0 1 45 3 1
15 81 93 46 -215.6896 6 0 0 1 0 12 36 1
16 100 40 76 -213.8155 5 0 0 0 8 29 13 0
17 77 96 37 -201.4007 6 0 0 1 2 2 22 23
18 98 88 34 -199.7107 6 0 0 0 1 14 35 0
19 28 89 91 -186.6237 7 0 0 23 0 2 18 7
20 89 92 37 -205.4709 6 0 0 0 0 22 27 1
21 97 91 34 -202.3893 6 0 0 7 3 7 31 2
22 87 90 42 -211.0816 6 0 0 2 0 0 33 15
23 94 27 82 -189.5293 5 0 0 6 4 29 11 0
24 93 91 32 -196.995 6 0 0 0 5 10 31 4
25 42 98 89 -218.5081 3 0 0 21 7 19 1 2
26 45 83 95 -213.3051 7 0 0 19 6 6 1 18
27 40 96 92 -213.156 7 0 0 4 14 12 10 10
28 90 34 1 -200.7073 5 0 0 0 0 39 11 0
29 81 34 87 -198.6061 5 0 0 2 0 25 23 0
30 28 97 96 -192.5115 7 0 0 15 4 13 15 3
31 31 93 76 -196.6857 4 0 0 5 24 11 4 6
32 36 91 92 -202.7408 7 0 0 11 15 10 2 12
33 86 88 40 -206.2666 6 0 0 0 0 21 29 0
34 34 93 1 -198.0731 3 0 0 40 4 6 0 0
35 91 94 30 -194.3314 6 0 0 0 3 17 30 0
36 96 36 1 -204.7749 5 0 0 2 5 43 0 0
37 30 99 88 -197.8503 4 0 0 1 22 14 11 2
38 84 48 57 -222.1471 5 0 0 1 2 38 3 6
39 96 34 88 -205.0373 5 0 0 6 11 27 5 1
40 89 32 75 -198.5875 5 0 0 0 1 32 15 2
41 90 45 89 -221.3378 5 0 0 0 2 28 18 2
42 80 41 64 -208.459 5 0 0 0 8 27 1 14
43 97 91 41 -213.8568 6 0 0 20 0 2 27 1
44 84 39 87 -208.9545 5 0 0 1 3 34 1 11
45 96 99 40 -216.6821 6 0 0 15 5 9 21 0
46 40 93 84 -207.2174 7 0 0 1 8 0 17 24
47 41 96 96 -216.249 7 0 0 10 8 21 5 6
48 38 81 70 -201.4985 4 0 0 13 32 0 1 4
49 82 33 1 -191.5509 5 0 0 0 0 49 1 0
50 89 42 67 -214.2176 5 0 0 0 2 41 6 1
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Appendix C. Output for MLE and Bootstrapping method

C.2

Table C.29: Bootstrapping For Species 2 with DNA Sequences

MLE Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 81 96 83 -261.6993 2 1 45 0 0 3 1 0
2 96 87 77 -262.8739 1 37 1 0 0 3 9 0
3 94 90 83 -264.9898 1 29 0 2 0 7 12 0
4 100 92 98 -268.6477 2 16 14 9 9 0 2 0
5 89 94 86 -264.5168 1 36 6 1 0 1 4 2
6 95 97 1 -262.589 1 47 0 0 1 0 2 0
7 89 95 84 -264.5598 1 38 3 0 0 1 7 1
8 100 94 1 -262.4725 1 50 0 0 0 0 0 0
9 94 86 94 -263.298 1 27 16 0 0 1 5 1
10 88 81 1 -252.5431 1 47 0 0 0 0 3 0

Table C.31: Bootstrapping For Species 8 with DNA Sequences

MLE Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 84 95 41 -211.1605 6 0 0 2 0 15 29 4
2 90 86 39 -205.0766 6 0 0 0 0 26 24 0
3 78 43 97 -213.0961 5 0 0 3 0 21 11 15
4 100 81 47 -216.3957 6 0 0 0 3 2 45 0
5 88 84 43 -208.6663 6 0 0 0 2 4 44 0
6 36 86 1 -199.1348 3 0 0 39 0 3 4 4
7 94 91 40 -211.0931 6 0 0 0 0 13 35 2
8 34 100 59 -202.164 4 0 0 1 36 0 13 0
9 90 95 37 -206.5552 6 0 0 1 8 10 26 5
10 100 87 38 -206.8139 6 0 0 4 2 0 43 1
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Appendix C. Output for MLE and Bootstrapping method

Table C.33: Output of MLE and Bootstrapping For Species 13

Bootstrapping Trees
# X Y Z Likelihood Tree 1 2 3 4 5 6 7
1 94 91 87 -267.0443 5 0 0 2 2 42 0 4
2 99 91 90 -267.9877 5 1 0 0 20 28 1 0
3 89 100 73 -265.1202 5 0 7 0 0 43 0 0
4 95 92 79 -265.2235 5 2 0 0 0 46 2 0
5 96 84 77 -262.2094 5 0 0 1 2 46 1 0
6 96 93 79 -266.2966 5 2 1 1 0 40 5 1
7 96 91 52 -264.4116 5 1 0 2 0 47 0 0
8 94 94 81 -265.5535 5 5 0 0 2 37 6 0
9 93 99 1 -263.3402 5 0 3 0 0 45 2 0
10 91 99 1 -257.7463 5 0 0 0 0 50 0 0
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lescence times from dna sequence data. Genetics, 145(2):505–518.

Than, C., Ruths, D., and Nakhleh, L. (2008). Phylonet: a software package for

analyzing and reconstructing reticulate evolutionary relationships. BMC bioinfor-

matics, 9(1):1.

Wakeley, J. (2009). Coalescent theory: an introduction. Number 575: 519.2 WAK.

Wang, Y. and Degnan, J. H. (2011). Performance of matrix representation with

parsimony for inferring species from gene trees. Statistical Applications in Genetics

and Molecular Biology, 10(1).

Weiss, G. and von Haeseler, A. (1998). Inference of population history using a

likelihood approach. Genetics, 149(3):1539–1546.

Wheeler, W. C. (1991). Congruence among data sets: A bayesian approach. Phylo-

genetic analysis of DNA sequences (MM Miyamoto and J. Cracraft, eds.). Oxford

Univ. Press, Oxford, UK, pages 334–346.

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N.,

Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., et al.

(2014). Phylotranscriptomic analysis of the origin and early diversification of land

plants. Proceedings of the National Academy of Sciences, 111(45):E4859–E4868.

Woodhams, M. D., Lockhart, P. J., and Holland, B. R. (2016). Simulating and

summarizing sources of gene tree incongruence. Genome Biology and Evolution,

page evw065.

Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2):97–159.

171



REFERENCES

Wu, Y. (2012). Coalescent-based species tree inference from gene tree topologies

under incomplete lineage sorting by maximum likelihood. Evolution, 66(3):763–

775.

Xi, Z., Liu, L., Rest, J. S., and Davis, C. C. (2014). Coalescent versus concatenation

methods and the placement of amborella as sister to water lilies. Systematic biology,

63(6):919–932.

Yang, Z. (1994). Statistical properties of the maximum likelihood method of phy-

logenetic estimation and comparison with distance matrix methods. Systematic

biology, 43(3):329–342.

Yu, Y., Barnett, R. M., and Nakhleh, L. (2013). Parsimonious inference of hy-

bridization in the presence of incomplete lineage sorting. Systematic biology, page

syt037.

Yu, Y., Than, C., Degnan, J. H., and Nakhleh, L. (2011). Coalescent histories on

phylogenetic networks and detection of hybridization despite incomplete lineage

sorting. Systematic Biology, 60(2):138–149.

Zhu, S., Degnan, J. H., Goldstien, S. J., and Eldon, B. (2015). Hybrid-lambda:

simulation of multiple merger and kingman gene genealogies in species networks

and species trees. BMC bioinformatics, 16(1):292.

Zhu, S. J. (2012). Hybrid coal.

172


	Using Statistical Techniques to Estimate Rooted Species Trees from Unrooted Gene Trees
	Recommended Citation

	template.tex.12

