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Growth, mortality, and life-history
scaling across species

Eric L. Charnov and Wenyun Zuo

Department of Biology, The University of New Mexico,
Albuquerque, New Mexico, USA

ABSTRACT

Hypothesis: Allometric scaling of mortality versus adult body size across species is predicted
by evolutionary life-history theory to be present (and precise) only if all the species in the data
set share the same value for the ‘height’ parameter in their body-size growth curves.

Results: This basic prediction is tested and supported in a large fish data set, with the various
species spanning the entire range of marine environments, and having about a 12 × range in
growth curve height.

Keywords: allometry, body size, fish, maturity, optimal life history.

In this paper, we explore a central question in the comparative study of life histories: When
should we expect to find good allometries for adult mortality rates (Z�) versus adult body
mass (M�) across species? When should Z� = C ·M�

−p, where C and p are the same for all
species in the data set? Evolutionary life-history theory tells us when species in a collection
are expected to share the same constant C and exponent p (Charnov, 1993, 2011). To see how to
predict the constant, let us first review an ESS (evolutionarily stable strategy) M� argument
for a simple determinate growing organism in a non-growing population. [For more general
cases and arguments, see references in Charnov (2011).]

R0, the net reproductive rate, is a Darwinian fitness measure appropriate for a non-
growing population, and can be written as R0 = S� ·V� (Charnov, 1993, p. 8), where S� is the
chance of living to age α (first reproduction) and V� is the average number of offspring
produced over an individual’s adult life if she is alive at age α. The optimal (or ESS) α is

where 
dR0

dα
= 0 or 

d lnV�

dα
= −

d ln S�

dα
.

Since S� can be written as e−∫
�

0 Z(x)dx, the optimum is where 
d ln V�

dα
= Z� (equation 1).

Suppose we have determinate growth, where production of offspring is just diverted
self-growth, and assume that the Z(x) curve is flat near possible ages of first reproduction;
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then (Charnov, 1991, 1993, p. 78), V� ∝
dM�

dα
 and ln V� = ln

dM�

dα
+ C�, where C� is a constant. Many

pre-reproductive growth curves, particularly for fish, can be approximated by the simple
growth model dM/dT = A ·M 0.67, which leads through equation (1) to Z� = 0.67A ·M�

−0.33

(equation 2), where A is the ‘height’ of the growth curve.
More complex models (see Charnov et al., 2001; Charnov and Gillooly, 2004; Charnov, 2011) give a constant

different from the 0.67 in equation (2), but generally growth curve height (A) enters the
power function in exactly this multiplicative way; thus Z� will only show an across-species
allometry (Z� ∝ M�

−0.33 across species) if all of the species have the same (similar) A values.
Differences in A among species will contribute scatter to the plot, and any correlations
between A and M� will distort the slope from the expected −0.33. A, the growth curve
‘height’, is known to vary greatly with many environmental and other factors (endotherms
vs. ectotherms, environmental temperature within ectotherms, primates vs. typical
mammals, etc.); we expect Z� ∝ M�

−0.33 only if we control for A among the species. We can
do this by plotting only species having approximately the same A [e.g. primates vs. typical
mammals (Charnov and Berrigan, 1993)], or by plotting Z�/A vs. M�.

Griffiths and Harrod (2007) compiled a database comprising natural mortality near
maturation sizes (Z�), body-size growth curves, and estimated asymptotic size [M∞,
proportional to M� (Charnov, 1993)] for 175 species of fish. The various fish species occupied
virtually all marine environments (demersal, benthopelagic, pelagic, reef associated) except

Fig. 1. Mortality near adulthood (Z�) vs. asymptotic size (M∞) in fish, uncorrected for differences in
the height of the body-size growth curve. Data for all three figures kindly provided by David Griffiths
and Chris Harrod, from their 2007 paper; units are in years and grams, respectively.
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deep water, and included all major phylogenetic groups (48 fish families are represented).
They included some freshwater and estuarine species.

If we plot lnZ� vs. lnM∞ for the 175 species, we obtain Fig. 1, a roughly linear relation
with a slope of −0.25 and R2 = 0.47. This level of precision (or less) is common for
across-species Z� vs. M plots for fish (e.g. Cury and Pauly, 2000).

All of the species in Griffiths and Harrod’s data set had fitted Bertalanffy body-size
growth curves (dM/dT = AM 0.67 – BM). The Bertalanffy equation merely describes body
size growth while the underlying reproductive allocation that produces the growth curve is
adjusted by natural selection in a similar way to the determinate growth case described
earlier; Charnov and Gillooly (2004) show that ‘A’ in the first term here plays the same ‘height
role’ as ‘A’ in the simple growth model of equation (2); it becomes the ‘height’ parameter of
the Z�, M scaling. [See Charnov (2008) for the argument that B is simply (proportional to)
reproductive effort.]

We estimated A, the growth curve ‘height’ for the various species, the distribution of
which is shown in Fig. 2. ‘A’ follows a lognormal distribution and 95% of the lnA values are
contained within ∼2.5 logarithm units; that is, A varies by a factor of 12 × (e2.5 ∼12). If we
correct each Z� by dividing by the A from the associated body-size growth curve, Fig. 3
results. The slope is now −0.35, and the R2 = 0.79, a very tight scaling relation.

Many environmental variables (e.g. water temperature, foraging habits, food type) differ
greatly among the habitats and some correlate with phylogeny, thus driving the variation in
A seen in Fig. 2 (Griffiths and Harrod, 2007). However, when simply corrected for the heights of

Fig. 2. The distribution of A, the height of the Bertalanffy body-size growth curves, among the
175 species. 95% of the A values fall within about 2.5 natural logarithm units, or a multiplier of about
12 × for A. This spread is about the separation in growth curve height observed between endothermic
eutherian mammals and typical ectotherms.
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their body-size growth curves, the species all fall on the same scaling line for Z� vs. body
mass, just as evolutionary life-history theory leads us to expect. Although not all life-history
allocation models predict power functions for Z� vs. M�, it is a very common result, and
always requires we correct by the height of the body-size growth curve to produce good
across-species allometries.
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Fig. 3. Z�/A vs. M∞. As predicted, the scaling is much more precise, and the slope near the expected
−1/3. Dashed line is best-fit −1/3 slope line for comparison.
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