
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-14-2014

Lesson Plan and Workbook for Introducing
Python Game Programming to Support the
Advancing Out-of-School Learning in
Mathematics and Engineering (AOLME) Project
Cherish Franco

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Franco, Cherish. "Lesson Plan and Workbook for Introducing Python Game Programming to Support the Advancing Out-of-School
Learning in Mathematics and Engineering (AOLME) Project." (2014). https://digitalrepository.unm.edu/ece_etds/89

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/89?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

 Cherish A. Franco
 Candidate

 Electrical and Computer Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Dr. Marios Pattichis, Chairperson

 Dr. Ramiro Jordan

 Dr. Sylvia Celedón-Pattichis

 Dr. Carlos LopezLeiva

ii

Lesson Plan and Workbook for Introducing Python Game
Programming to Support the Advancing Out-of-School Learning in

Mathematics and Engineering (AOLME) Project

By

Cherish A. Franco

B.S., Computer Science, New Mexico Institute of Mining and Technology, 2010

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico
Albuquerque, New Mexico

December 2013

iii

DEDICATION

All my work, both past and present, will forever and always be dedicated to my

father, mother, and brother. Without their love and support, I wouldn’t be where I

am today. Also, a special thanks to Jason R., for believing in me and loving me.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Lorie Liebrock of New Mexico Tech, whose compassion,

understanding, guidance, and tireless efforts to keep me on track and advise me

every chance she had, helped me to achieve my Bachelor’s degree through much

trial and tribulation. I would also like to thank Dr. Nasir Ghani for his

encouragement when I was new to the program. His quick responses and well-

advised guidance helped me to pursue what was best for me, and helped me to find

my passion for teaching. Lastly, I would like to thank Dr. Marios Pattichis for his

exemplary efforts to help me find the topic that worked best for me, and whose

infectious excitement and attitude towards visual learning for children showed me

that my passion for teaching and learning is something worth fighting for.

v

Lesson Plan and Workbook for Introducing Python Game
Programming to Support the Advancing Out-of-School Learning in

Mathematics and Engineering (AOLME) Project

By

Cherish A. Franco

B.S., Computer Science, New Mexico Institute of Mining and Technology, 2010

ABSTRACT

In recent years, research has started to show a distressing trend in the world of

science, technology, engineering, and mathematic (STEM) fields. It has become

apparent that students from under-represented groups get little to no experience or

practice in the field of engineering. This apparent lack of exposure to engineering

knowledge and practice is likely to be the cause as to why students from under-

represented groups may not become interested in engineering careers.

 The Advancing Out-of-School Learning in Mathematics and Engineering

(AOLME) project was created specifically for providing integrated mathematics and

engineering experiences to middle-school students from under-represented groups.

The thesis presents a new approach to introducing game programming to middle-

school students that have undergone AOLME-training while still maintaining a fun

and relaxed environment. The thesis provides a discussion of three different

educational, visual-programming environments that are also designed for younger

programmers and provides motivation for the proposed approach based on Python.

vi

The thesis details interactive activities that are intended for supporting the students

to develop their own games in Python.

vii

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES .. xi

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Thesis Statement, Innovations, and Contributions .. 3

1.3 Thesis Summary.. 6

Chapter 2 Background ... 9

2.1 Existing Visual Programming Environments .. 9

2.2 Daisy the Dinosaur (ages 5-8) ... 9

2.2.1 The Syntax for Daisy the Dinosaur .. 10

2.2.2 Daisy the Dinosaur as an Introductory Environment .. 11

2.3 Alice (ages 8+) ... 12

2.3.1 The Syntax for Alice ... 12

2.3.2 Alice as an Introductory Environment ... 14

2.4 Scratch (ages 8+) .. 16

2.4.1 The Syntax for Scratch .. 16

2.4.2 Scratch as an Introductory Environment ... 17

2.5 Python ... 19

2.5.1 The Syntax for Python ... 20

2.5.2 Python as an Introductory Environment .. 21

viii

2.6 A Summary of AOLME .. 22

2.7 Programming Environments and Languages Summaries ... 22

Chapter 3 Middle School Lesson Plans for Teaching Game Programming Using Python 24

3.1 Using Python to Create Games .. 24

3.2 Providing Students with Working Code .. 24

3.2.1 Lesson Plan Example for Section 3.2 .. 25

3.3 Providing Students with Line-by-Line Explanations ... 27

3.3.1 Lesson Plan Example for Section 3.3 .. 28

3.4 Providing and Running Programs with Errors or Missing Code 32

3.4.1 Lesson Plan Example for Section 3.4 .. 34

3.5 The Paddle Battle! Activity Workbook .. 37

3.5.1 Introduction .. 38

3.5.2 Lesson 1: Paddle Battle in Action! (15 min.) ... 38

3.5.3 Lesson 2: Building a Canvas (30 min.) ... 39

3.5.4 Lesson 3: Drawing an Object, Part I (45-50 min.) ... 39

3.5.5 Lesson 4: Drawing an Object, Part II (30-45 min.) .. 40

3.5.6 Lesson 5: Animating an Object (20 min.) .. 41

3.5.7 Lesson 6: Movement and Collision Detection (60 min.) ... 41

3.5.8 Lesson 7: Adding Movement with Keyboard Inputs (60 min.) 42

3.5.9 Lesson 8: On Your Own (60 min. x 3) ... 42

3.6 The Paddle Battle! Instructor’s Manual ... 42

ix

Chapter 4 Future Work and Conclusions ... 44

4.1 Future Work ... 44

4.2 Conclusion ... 45

APPENDIX A: The Paddle Battle! Workbook .. 46

APPENDIX B: The Paddle Battle! Instructor’s Manual ... 89

REFERENCES .. 114

x

LIST OF FIGURES

Figure 1: Example Program Using the Daisy the Dinosaur Application [2]. 10

Figure 2: Example Program using Alice [5] .. 13

Figure 3: Scratch Syntax [8] .. 17

Figure 4: Example Code from Workbook ... 20

Figure 5: Lesson 1 Questions .. 26

Figure 6: Lesson 3 Example of Line by line Explanations ... 29

Figure 7: Lesson 3 Questions .. 31

Figure 8: Lesson 4 Example ... 35

Figure 9: Lesson 4 Questions .. 36

xi

LIST OF TABLES

Table 1: Summary of Visual Programming Languages ... 23

1

Chapter 1

Introduction

1.1 Motivation

As children, we are often taught new concepts and ideas through the use of

interactions and visualizations. Children from preschool through elementary school

age are taught topics such as their ABCs, shapes, and colors by using images. This is

predominantly done to reinforce the particular concept they are trying to learn. In

my opinion however, as the age of the child, and the child’s education increases, we

begin to see that the use of visualizations is not so prevalent. Because of this lack of

exposure to engineering experiences and practices through the use of these

visualizations, it is possible that students become less inclined to pursue any sort of

scientific or engineering-based subject for their educational future. Students are

generally unprepared when it comes to engineering because they are required to

learn difficult subjects in a setting that is not geared towards their learning needs at

such a young age. A possible approach to address this dilemma was initiated in the

Advancing Out-of-School Learning in Mathematics and Engineering (AOLME)

project.

AOLME is an interdisciplinary project run by two distinct departments. The

Electrical and Computer Engineering Department from the School of Engineering,

and the Department of Language, Literacy, and Sociocultural Studies from the

College of Education have worked together to bring AOLME to fruition. The

2

project’s primary audience is middle school-aged children. The goal of AOLME is to

promote awareness of both a set of mathematical practices different from, but still

related to those experienced at school, and a set of meaningful experiences in

engineering through the processing of digital images and video [1].

The basis for this thesis revolves around this idea of reaching out to students

who have not been exposed to the elements of engineering and mathematics by

teaching them using non-traditional means. Non-traditional means in this case

would be either verbal or written instruction.

As a naive college freshman, I ventured into the world of computer science

without any prior knowledge, except for a very basic programming class on Visual

Basic. I had no idea what Linux was, no idea what object-oriented meant, and

certainly had no clue as to how to program using a terminal. Because of this

struggle, I began to develop an idea on how I could prepare students for what was to

come, far in advance of the start of their college career. I felt that in order to

stimulate more interest in engineering and computer science, I needed to be able to

effectively teach younger aged students the basics of programming so that they

could be far better prepared for more complex topics.

I learned very quickly that I am a visual learner. If I am given some code, and I

can watch it run, I quickly learn how to make things work and make them better. So,

I decided that in order to capture the minds and imaginations of younger students,

while at the same time guaranteeing that they will be well prepared when it comes

to programming, why not create a means for them to learn to program while still

3

having fun? This idea could be simply solved by introducing the concept of games

and learning how to program them.

Programming games is by no means a new art form. Essentially every single

video game created is made possible by programming. AOLME already has ventured

towards the idea of having its students create animated videos with pixels, but

introducing games would be a whole new area of interest for them.

In summary, the motivation behind this thesis is address the general lack of

motivation and interest in engineering of middle school students by implementing a

teaching design and workbook that instructs those students and retains their

interest and attention.

1.2 Thesis Statement, Innovations, and Contributions

There are hundreds of different programming languages and applications in use in

today’s technologically advanced world. These programming languages, however,

are created with the assumption that the potential user has some sort of basic

knowledge when it comes to programming. These widely used programming

languages are primarily geared towards young adults and beyond and rarely take

into consideration a much younger audience. Recently, however, there has been a

bit of a push in the direction of developing programming languages and

environments that can be used to teach young children the intricate art of

programming. Instead of exposing students to the underlying programming

languages, most of these efforts provide programming environments that are

centered on one key aspect, the use of interactive visualizations.

4

Educational programming environments are tools that try to approach

instruction through the use of these interactive visualizations. These programs were

largely created with the idea that they would help the student to understand the

logistics of programming by using interactive visuals, instead of the more common

practice of verbal and written instruction. Some environments that are particularly

suited towards younger children incorporate more visual aids as well as much

simpler explanations. Although most of these environments are not meant for the

creation of real-world applications, they do allow the user to create programs that

follow the same flow and syntax of an actual program.

The goal of this thesis is to introduce a Python-based framework for extending

the current AOLME activities into game programming. This goal can be achieved by

using my proposed three-step teaching process based on providing students coding

examples and thorough line-by-line explanations. Another goal of this thesis is to

explore a means to teach game programming in Python, by incorporating visual

stimuli in the form of creating characters all the way to creating interactive games.

This thesis will explore a way to develop a visual guide to teach the topic of game

programming in Python, while maintaining an understanding that those students

participating in AOLME, will have little to no experience with programming.

In order to teach students how to actually program, we must first be able to

engage them through the use of visuals and interactions, while at the same time

introduce programming using languages such as C or Python. This thesis will

introduce a few key innovations and contributions, as listed below:

5

1. Develop a 3-step approach on how to teach programming. The 3 steps

are as follows:

a. Provide students with working code – This step allows the student

to see the code in action without any errors, as well as give them a

template of what their code may look like as they develop their own

game. This template will aid them in finding errors when they began

to write more complex programs. This step avoids having students

type significant amount of code or having to work through syntax

errors as outlined in [16].

b. Provide students with line-by-line explanations – This step allows

the instructor the ability to explain each and every parameter and

function of a line of code, and gives the student an inside look as to

how the code works as a whole. These explanations will also aide in

enhancing the students’ programming skills by enforcing good

programming practices. This step will be compatible with AOLME

practice of explaining the code that is being used in the tutorials and

then having the students fill-in their own code.

c. Provide and run programs with errors or missing code – This step

is the key to the 3-step approach. The instructor has provided a

working template, and explained what each line is doing at each step,

but now we introduce errors. This step is here to ensure that the

students understand that no error is a bad error. There is a lesson to

be learned from each and every mistake. Some errors will need to be

6

fixed, but other so-called errors may actually produce an unexpected

surprise when the program is run. Students may find that they

discover some unintentional action that wasn’t previously provided to

them. They will also have to fill-in missing code based on material

taught to them during previous activities. This template approach has

also been tested and proven to be effective in AOLME where the

students are asked to develop their own video representations based

on the examples that are given [16].

2. Develop a workbook that is based on the 3-step approach discussed

above. This workbook will:

a. Introduce programming in Python;

b. Use the 3-step approach in each lesson;

c. Engage the students by teaching them how to program a very simple

game, and

d. Leave enough to the imagination to make the students want to learn

more once they see how easy and fun programming can be.

3. Develop an answer manual that aides the instructor.

 Sample answers will be given, time amounts for each lesson, as well as

specific instructions on how the students might find the answers they need in

order to answer the question in the book.

1.3 Thesis Summary

The remainder of this thesis is organized in the following fashion:

7

1. Chapter 2: Background

This chapter will provide background information on 3 widely used visual

programming environments--Daisy the Dinosaur, Alice, and Scratch. These

three languages were chosen specifically because of their unique approaches

to introducing programming to a younger audience. Topics discussed for

each programming environment will include an overview of the interface of

the programming environment, a sample, block-based program, as well as a

discussion on how the environments were used, and whether students are

retaining useful programming skills. The discussion on these three

programming environments will then be followed by a discussion on Python,

its approach to game programming, and its use throughout the activity

workbook created for this thesis.

2. Chapter 3: Middle School Lesson Plans for Teaching Game Programming

Using Python

In this chapter we will extensively discuss the 3-step approach highlighted in

Section 1.2 above. Individual lessons will also be addressed in order to show

how this 3-step approach is being utilized throughout the workbook. There

will also be a discussion on how the workbook was developed, an

explanation on how each lesson was created, as well as a discussion on why

this particular game was chosen as an introductory programming lesson.

3. Chapter 4: Future Work and Conclusions

8

In this chapter we will discuss future projects, including a discussion on

introducing 3D environment, as well as conclusions on the practicality of the

Python workbook and 3-step approach.

4. Appendix A: The Paddle Battle! Workbook

Appendix A will provide the actual workbook in its entirety. Lesson plans,

questions, and code are shown throughout the workbook. Some lesson plans

are step-by-step instructions on how to program the particular piece of code

the student is being taught, and other lessons rely solely on the knowledge

that the student has gained from previous lessons. At the end of the

workbook, the students will have enough code to see results, but will be

expected to finish their game on their own. Time limits on lessons will range

from 15 minutes to 60 minutes. Students are encouraged to ask questions

and make mistakes.

5. Appendix B: The Paddle Battle! Instructor’s Manual

Appendix B provides all the answers for the activity workbook. Instructors

will use this manual as a guide for students and the questions they may have.

Sample answers are provided, and all code is provided for each lesson. Lastly,

all code needed to answer the questions at the end of the workbook are

provided.

9

Chapter 2

Background

2.1 Existing Visual Programming Environments

As discussed earlier, there are many educational programming languages being

used in classrooms all over the world. In the following sections, three educational

programming environments will be discussed. The first environment, an app called

Daisy the Dinosaur, is created for children ages 5 and up. The second and third

programming environments, Scratch and Alice, are more well-known. These three

environments were chosen because of their ingenuity and creativeness. Each section

will give an overview, a sample program, as well as a discussion on how they were

used, and whether students are actively learning how to program by using these

languages. This discussion will then be followed by a proposal on how AOLME might

approach this same concept, while still maintaining their unique goals of bringing

awareness to mathematics and engineering, and using Python. The proposal will

contain a discussion on three key elements for this teaching approach, as well as a

discussion on the creation and use of the activity workbook created for this thesis.

2.2 Daisy the Dinosaur (ages 5-8)

Daisy the Dinosaur is a visual programming environment that is geared towards a

much younger audience. Students as young as 5 years of age are able to use this

application to get a basic introduction into the world of programming. Daisy the

Dinosaur is currently only supported on the iPad and iPhone platforms, so it

unfortunately only reaches those students who happen to have access to that

10

particular technology. Nevertheless, the concept of Daisy the Dinosaur is a rather

interesting and engaging approach.

2.2.1 The Syntax for Daisy the Dinosaur

The basic idea for programming in Daisy the Dinosaur revolves around making

Daisy do whatever the student has created in their program window. Students are

given access to a finite set of commands that they drag and drop to their program

window, as shown below in

 Figure 1. Once they have created their program, they can then press play to

see what they have made Daisy do.

 Figure 1: Example Program Using the Daisy the Dinosaur Application [2].

There are a few tutorials in the application; however, the entirety of the

Daisy the Dinosaur application is separated into two simple categories: Freeplay

11

Mode and Challenge Mode. Freeplay Mode allows students to interact with the

application and create their own programs to see what happens. As stated before,

there is a finite set of commands that the students have access to, such as move or

grow. In Challenge Mode, students are asked to write simple programs in order to

pass the challenge. The first challenge is the easiest of all the challenges; however, as

the student progresses through each challenge, the difficulty increases. To make the

challenges a little easier to complete, only those commands that are needed for their

program are shown in the commands window. Unfortunately, there are only 5

challenges at this point in time. It is my opinion that more challenges that created

much more intricate programs to attempt would be very beneficial to a beginner.

Essentially, Daisy the Dinosaur programming is as simple as it can get, and

yet, introduces more complex concepts such as loops. The when command in Daisy

the Dinosaur is basically a simple loop command. Students can learn how to make

certain actions happen at a set number of times that they determined. Being able to

introduce a concept such as loops to kindergarten aged students is phenomenal, but

do the students actually acquire sufficient skills that relate how to program real

world applications?

2.2.2 Daisy the Dinosaur as an Introductory Environment

Daisy the Dinosaur introduces students to computer programming by engaging

them with cute graphics and easy to learn syntax. Students not only learn basic

computer programming skills, but also build their problem-solving and analytical

skills, something they will need in their future educational careers [3].

12

Unfortunately, Daisy the Dinosaurs’ layout and content is not enough to prepare

students for more complex programming languages. There are no published studies

that describe whether students actually learned any skills of value from using this

application. However, a quick overview of the program has convinced me that there

is a limited amount of information that students will learn. The process of

programming, and the beginnings of conditional programming are addressed, but

the lessons learned using this application may not be very useful when a student

needs to start programming in something like Python for the AOLME project. If

anything, Daisy the Dinosaur is a fun application that can be used to pique the

interest of the students and get them to start exploring the world of programming.

2.3 Alice (ages 8+)

The next educational programming environment we will discuss is called Alice. Alice

is an innovative 3D programming environment that makes it easy to create an

animation for telling a story using the idea of programming. It allows students to

learn fundamental programming concepts in the context of creating animated

movies and games [4].

2.3.1 The Syntax for Alice

One of the key things that Alice does for its students is letting them see almost

immediately what their programs are doing when they run them. The highly

interactive and eye-catching 3D graphics that are readily available for the students

to use opens up a whole new way to learn. Students can play around with their

programs and can create their own environments and characters with very little

13

programming knowledge. For example, in Figure 2 below, we see a program where

the student has made an ice skater that skates and moves around the screen. The

steps it took to make this environment a reality are quite simple. The student

created the environment, invoked the iceSkater object, the lake, and the ground, and

then simply wrote their code using the drag and drop operations provided. Granted,

the program described here is incredibly simple. As the student begins to develop

more complex environments and characters, the code, and the knowledge of how

Alice works becomes immensely more complicated.

Figure 2: Example Program using Alice [5]

Alice is able to introduce complex programming concepts without over-

burdening their students with memorization or requiring that they have prior

14

programming knowledge. Alice introduces the user to functions, flow control and

loops, as well as recursion, which is not an easy topic to introduce. Another great

feature of Alice is the fact that the Python language is interwoven into Alice. This

opens the door to the beginnings of teaching younger students more complex and

real-world programming languages.

2.3.2 Alice as an Introductory Environment

In a published study authored by a group from multiple universities, they found that

although there are many benefits to using Alice, there are still many issues and

problems that arise from using it [6]. One of the main issues they found was the fact

that errors in Alice were either incredibly cryptic, or no error or warning was

displayed. For example, if a user wrote a program to move their object 5 spaces, and

then back 5 spaces, they might try something like the following:

someObject.Move(Forward, 5)

someObject.Move(Back, 5)

Unfortunately, this will produce no movement at all, primarily because Alice,

by default, causes all animations to occur simultaneously [6]. Although this is not

necessarily an error, it might have been beneficial to throw a warning telling the

student that since they did not include a control structure, then their animation may

not work as they expected.

Another issue that can occur is the fact that in order to properly use Alice, the

student must have a complete understanding of how Alice statements work, as well

as how Python works [6]. Students may run into the issue of non-functioning

15

programs purely because they were unable to distinguish between Alice statements

and Python statements. If a student accidently puts a Python statement within an

Alice statement, their function will fail because Alice will not recognize the Python

code. In order for the program to run correctly, the student would have to move

their Python code outside of the Alice code. This would seem to indicate that a

student must understand two languages, Alice and Python, before they could even

begin to program. Understanding two different languages is not a bad things,

however, asking that a middle-school aged student to learn and memorize two

languages may be pushing their limits a bit much.

After viewing the Alice environment, it becomes apparent that the particular

learning style most predominantly used is interactive visualizations. The Alice

developers wanted the users to be able to have fun while at the same time learn

programming. In my opinion, interactive learning is very important when trying to

teach a difficult problem. By engaging the user, the instructor can delve farther into

more complex topics. Alice does a wonderful job of simplifying the topic of

programming and allows the user to learn at a comfortable pace through the power

of inquiry and creativity. However, learning Alice is not quite that simple and

requires a little more background in programming than Daisy the Dinosaur. Alice is

another programming environment that has the ability to increase more interest in

programming by engaging their audience with graphics and games.

16

2.4 Scratch (ages 8+)

One of the most highly used early-education programming language environments

for children is a programming language called Scratch. Scratch is a type of

educational program that makes it easy to create interactive stories, animations,

games, music, and art [7]. It was developed in 2003 by the Lifelong Kindergarten

group, led by Mitchell Resnick at the MIT Media Lab [7].

2.4.1 The Syntax for Scratch

The Scratch syntax is based on a collection of graphical “programming blocks”

children piece together to create programs. The blocks are shaped to fit together

only in ways that make syntactical sense [7]. In other words, if a block does not fit

another block, then the flow of the program does not make sense and will therefore

not run as the user expects. The blocks have many shapes, sizes, and functions. They

also are only pieced together in an obvious way based on these shapes and sizes.

This unique visual programming method limits the amount of syntax and grammar

of the language [7]. In Figure 3 below, we see a simple Hello, World example being

created using the distinctive Scratch syntax.

17

- This block is a Control Block. This particular block performs an action
when the green flag is clicked.

- This block will make the program, or sprite in this case, perform a

specified action. In this case, the sprite will say “Hello World”.

- This is what the completed program will look like, with the pieces
nicely locked into place.

- Once the green flag is clicked, this is what the screen in the Scratch
interface will show.

Figure 3: Scratch Syntax [8]

 This style of programming is very beneficial to the users. It allows them to

experience the process of programming, but eliminates the need for memorization

of syntax, rules, and formatting.

2.4.2 Scratch as an Introductory Environment

Outreach programs, such as AOLME, are designed to attract and increase the

amount of students in the science and engineering disciplines. In order to do so,

these programs must come up with ways to engage their students by using tools,

such as Scratch, to stimulate more interest in subjects that are not always taught

well. One example of an outreach program that used Scratch as its base

programming language is a two-week camp known as Animal Tlatoque [9]. This

particular camp was created not only to increase interest, but also to research

whether or not using tools such as Scratch were at all beneficial to learning how to

actually program.

18

 Animal Tlatoque was initially designed with two specific goals: (1) to attract

a target audience of middle school students from underrepresented groups with

non-CS backgrounds that appeal to both parents and children, and (2) to engage

participants in interdisciplinary activities that allow them to learn about computer

science and develop skills for computational thinking [9]. They also took on an

added goal of assessing the amount of information retained of any actual CS content

that took place during the camp. They placed some constraints on the camp that

determined that it would be a two-week, non-academic, interdisciplinary, “fun-

oriented” camp [9].There were lessons for each of the two weeks of the camp. The

first sets of lessons for week 1 were setup to only introduce those concepts that the

students would need to complete a final project. The set of lessons for week 2 were

primarily to reinforce topics such as conditionals and events, but were not

necessarily needed for the final project. By the end of the camp, students were

tested on what they had learned.

What this group found was that even with those constraints listed above, the

students were more or less able to comprehend and retain the material that they

were given. They found that the student were able to utilize several computer

science concepts such as variable usage, changing the sprite, or even manipulating it

with ease; however, it did appear that concepts such as if blocks were not well

known. The group believed that this was probably due to some extraneous issues

such as the students being rushed or being far more interested in other, more

fascinating lessons. Though these issues may have been a factor in the students not

retaining this particular concept, it still needs to be considered that perhaps the

19

programming tool itself is not structured well enough to teach a concept such as if

blocks effectively. Though no age specifications were given in their final report, the

group did indicate that their research was based on those students who were first

year students to the camp, thus they were students who had no background in

computer science. Nevertheless, the camp was effective in its approach to teach

programming concepts while determining whether or not using Scratch was useful.

Students did learn some programming concepts that would benefit them in

programming with real-world languages such as variable usage, correct

implementation of some functions and controls, and correct use of events.

2.5 Python

All three of the programming environments mentioned earlier approach

programming in largely different ways; however, none of them focus on the direct

use of a general purpose programming language. The three programming

environments, though fun and engaging do not sufficiently expose them with the

source-code behind the programming concepts. Exposure to the source-code and

development of programs at the source-code level is an essential skill for access to

computing careers. AOLME’s objective is to create a learning environment where

students are learning both concepts of mathematics, engineering, and computer

science concepts while still having fun. In order to guarantee that a student is

actually learning applicable material, a general-purpose programming language,

such as one that supports object oriented programming, needs to be utilized. Object

oriented languages are powerful languages that are used throughout the world of

programming. Some languages are difficult to learn and understand, but then there

20

are languages like Python, which in my opinion are very powerful and relatively

easy to comprehend.

2.5.1 The Syntax for Python

Python’s syntax is widely used and easy to understand. Its syntax is based on the

idea that it be as readable as possible. Another key aspect of the language is that it

boasts the ability to allow programs to be built using fewer lines of code than those

of other programming languages [10]. As an example, let’s take a look at a simple

Python program from the workbook in APPENDIX A: The Paddle Battle!

Workbook.

Figure 4: Example Code from Workbook

This example shows a class that students will work with in a lesson. The class

simply creates a small oval that will later be drawn on the canvas or window the

student has created. Though the syntax for Python is immensely more complicated

than those of the previous visual programming environments discussed, the Python

language itself provides direct access to the practices that computer science and

engineering students need to be successful.

21

Python has many capabilities from being used as a scripting language, to

being used in conjunction with other tools to create more complex programs. An

example of this is Python’s ability to support a module called Pygame. Pygame is

specifically written and used to develop games in Python. The use of this module

opens the door for much more interactive and visual games than can be produced

with the standard packages of Python, and works by introducing a relatively small

number of additional programming constructs.

2.5.2 Python as an Introductory Environment

As an introductory programming language, Python seems to work for children

trying to learn programming for the first time. The book primarily used for research

in this thesis, “Python for Kids: A Playful Introduction to Programming”, by Jason R.

Briggs [10], is an excellent example of how Python can be taught to even the

youngest of students.

 The book’s aim is to introduce programming by keeping the lessons

incredibly short and interesting. Lessons are broken up into short pieces of

information the students will need as they progress through the book. Finally, the

last few chapters are dedicated to putting together all the knowledge gained and

creating a couple of games. These lessons on creating the games are broken up in

the same way the book is, and take measures to keep the content low level and fun.

Students are provided all the code that they need to create a finished product, and

then asked to improve upon it at the end. The students are also allowed to view the

answers to the challenge questions, just in case they are having a difficult time,

22

although Python is still considered an easy enough programming language to be an

effective tool for teaching programming.

2.6 A Summary of AOLME

AOLME is a good indicator that teaching introductory programming using Python

can be done succesfully. The projects primary goal is to establish a pipeline of

support and motivation for underrepresented middle school students to pursue a

career in STEM [16]. AOLME has been successful in teaching students programming

by using Python and have been able to stimulate more interest in the field of

programming by developing a curriculum that jointly approaches a design that

would combine mathematical ideas with engineering concepts. The curriculum

includes but is not limited to proportional reasoning, geometry, and algebra for the

mathematics portion, and digital image and video through computer programming

for the engineering concepts. In keeping with this trend, this thesis is a way to

further the reach of the students and keep them interested in learning an actual

programming language.

2.7 Programming Environments and Languages Summaries

In summary, the table below is provided to showcase each language discussed in

Chapter 2. It must be noted that all of these programming environments and

languages are unique and useful in their own ways. It is my opinion that each

language has its own way to get students thinking about computer programming

and in a sense, teaches them the basic concepts that they will need to understand in

order to pursue a future in engineering and computer science. The goal of this thesis

23

however, is to reach even farther than what these environments are aiming for. The

goal of this thesis is to teach the concept of programming using a general purpose

programming language, not a programming environment. The table provides a

summary of each language and what they tried to accomplish, as well as provide

examples of students gaining useful programming skills using these languages.

Programming
Environment

Summary Skills Gained?

Daisy the
Dinosaur

This is an introductory programming
language that teaches students as young as 5
years of age how to program by controlling
the character known as Daisy the Dinosaur.
Students are limited to just a short list of
commands, and the GUI blocks support a
rather limited number of specific uses.
Students can either create programs on their
own, or take the challenges that prepare
them for more intricate programs.

No studies have been conducted using this
language. The syntax of Daisy is a little too
simplified to support teaching more complex
programming concepts (e.g., variables). This
would best be used as perhaps an example of
what a student could make when they learn
how to program.

Alice

A 3D environment that allows the student to
create environments, characters, movies,
and games. This powerful language is very
fun and engaging. It has a set of commands
to be used, but also allows the students the
ability to enhance their programs by
changing and modifying those commands.

Studies done on Alice show that for the most
part, Alice is an effective tool to teach
introductory programming. Colleges and
universities currently use Alice in some of
their classes; however, it is noted that the
syntax and usage of the programming are
often times considered difficult to learn right
away. Another issue is that error messages
are not readily given, thus confusing the
student more when something doesn’t work
right.

Scratch

An interesting and fun programming
language that builds its programs through
the use of puzzle-like code pieces, the
approach to writing programs is fun and
interesting. It is powerful and has the ability
to create very fun programs; however, its
application in the real-world is not
incredibly useful. If anything, students learn
how the functionality of code works, but not
how to actually write their own programs.

Animal Tlatoque found that although the
students were limited in what they could
make, they were still able to retain a lot of
useful information and showed signs of
comprehending many difficult computer
science topics. There were some topics that
were not as easily retained, such as if
statements, but overall, this language was
able to open the door for the students to
begin to comprehend programming.

Python

Python’s syntax is much more difficult to
learn than the other programming
languages; however, its main goal is to be
able to write functional, real-world
applications with as little lines of code as
possible. It requires the use of functions and
understanding of the syntax for the ability to
create general-purpose applications..

AOLME students have created images and
videos in classes so far. Preliminary results
indicate that students’ interest in
programming has grown [16], but more
research is needed on ways to support
student engagement. The workbook in this
thesis is a proposal on how to better engage
the students using game programming.

 Table 1: Summary of Visual Programming Languages

24

Chapter 3

Middle School Lesson Plans for Teaching Game Programming Using

Python

3.1 Using Python to Create Games

The proposed activities assume that the students have already learned the basics of

Python and how to create digital images and videos in the AOLME project. The next

logical step to better their programming skills, and pique their interest is to

introduce game programming. This thesis is a proposal for how this step might be

approached by AOLME. The following sections will highlight three key elements of

this educational approach which I developed as part of this project. The three key

elements discussed are (a) providing students with working code, (b) giving line-by-

line explanations, and (c) having the students run code that has been purposely

tampered with. There will be a discussion on all three of these elements and why

they were chosen and considered important. There will also be examples provided

on particular lessons that students will come across in the proposed activity

workbook that is part of this thesis. Finally, there will be a discussion on the layout

and content of the activity workbook, future work, and how this proposal might be

used by AOLME in the future.

3.2 Providing Students with Working Code

One of the most beneficial ways to help students learn the art of programming is by

giving them examples of running code. Although some might consider this a form of

25

cheating, providing working code to the students helps them to visualize how the

code works, and what it should be doing. Students who are being introduced to a

new programming language need to first be able to understand those basic concepts

of the language that will be used in any program, simple or complicated. Providing

working examples of these basic concepts gives the students a piece of working code

to fall back on if they find themselves struggling to write a more complicated

program in the future.

This kind of approach could be considered a sort of reverse engineering

approach to programming. This method allows the students to see and modify

existing code, and then watch what happens when those changes are compiled and

implemented. By taking this reverse engineering stance, we begin to open up new

doors for the students to enter such as seeing what happens when code is changed,

learning what errors are caused by changes and how to deal with them, as well as

giving them the potential to discover some new concept that might make their

programs even better.

This teaching method is what is to be considered the main concept for this

proposed approach introduced in this thesis. To better understand this proposed

approach, the example below is a possible lesson that a student might be asked to

complete using the first step of this 3-step approach.

3.2.1 Lesson Plan Example for Section 3.2

One of the first lessons in the workbook that accompanies this thesis is to have the

students run the code for the game they will eventually be creating. This workbook

26

will provide each student with the complete source code for a Pong-like game. As

shown in Figure 5 below, the students are asked to run and watch the code, and

then answer a few questions about it.

Figure 5: Lesson 1 Questions

27

The purpose of this lesson is to make sure the students understand how the

code works before they start to actually create it themselves. The lessons that follow

in the workbook continue with this approach by first having the students run the

individual pieces of code they are working with, learning how it works, and finally

experimenting with it.

3.3 Providing Students with Line-by-Line Explanations

In my opinion, providing the students with line-by-line explanations is essential to

teaching effective programming skills. There is no greater feeling than writing a

program and then watching it run. However, before a student can get to this point,

the student needs to first understand the flow of the code as it runs. This knowledge

will help the student not only to better understand how his or her program works

and what it is doing, but also to understand where things may be broken if errors

occur.

The purpose of providing a line-by-line explanation of what is happening at

each step of the program is to reinforce good programming practices. These

practices are strengthened because the student will not only be learning what each

line of code is doing, but also be observing how each line impacts the flow of the

code as it is run. For example, if we provide the students with a simple “Hello,

World” program, and then provide them with line-by-line instructions, we find that

we are able to teach at least three different topics using this one simple program.

The student will be learning how the canvas works and how to implement it, how

28

the print functions works, and how we can manipulate the text that is displayed

when using the print function.

In order to make sure that the students understand the flow of a program, we

must first provide them with an explanation of the program code we already have

provided them with in their lesson plans. The code supplied is already correct, so

the first step is to show the students what happens when the program is run. This

gives the student a visual idea of what the code does. The next step will then be to

run this same code, but show the students what happens at each line, even if the

explanations seem a little redundant. By explaining the concepts over and over

again, we hope to instill these good programming practices for later use.

Once these explanations have been given, and a step-by-step walk through has

been completed, the students will then be expected to write their own piece of code,

while using the code given previously as their guide. Students will be expected to

write their program, and provide their own explanations as to how they think their

code should run. The students will then run their own code and figure out whether

their explanations and understanding are reflected in the way that their program is

running. For a better understanding of this proposed approach, the example below

will highlight steps a student might have to take when attempting this lesson.

3.3.1 Lesson Plan Example for Section 3.3

In the workbook created for this thesis, we see that each lesson is broken down into

small steps and small pieces of code. Each lesson displays the sample code given to

the student for that particular lesson, and then steps line-by-line through the code

29

with them. In Lesson 3, the students are learning how to create a class called Ball,

which will allow them to draw a ball on the window that they just created in Lesson

2. The first step in this lesson is to have them run and watch the sample code to see

what happens. Then we begin our explanations as seen in Figure 6 below.

Figure 6: Lesson 3 Example of Line by line Explanations

30

In the case of Figure 6, we have spent a little bit more time on this particular

line’s explanation. This is because this line requires a lot of parameter inputs from

the students. We want to make sure that the students understand how to use this

particular function in this line, and that they know what parameters they will need.

We also want to make sure that they know that there are other functions like it, so

that the students can explore with the different functions available to them. The

introduction of similar functions also makes an appearance in this lesson as a setup

for a question that must be answered in the following lesson, Lesson 4.

As we continue to step through the code for Lesson 3, each line is explained

as thoroughly as possible. However, the lines of code are not expanded upon.

Questions asked at the end of each lesson are designed to help the students further

their knowledge on some of these concepts. For example, let’s take a look at

Questions 2 and 3 of Lesson 3 shown in Figure 7 below.

31

Figure 7: Lesson 3 Questions

Question 2 asks the students to change the color of their ball from red to

green. Students are expected to go back through their workbook and look at the

explanations to find which line needs to be changed. If they review the explanations,

they will find that on slide 15, there is an explanation on how we give the ball its

color, and that there are many other colors they can choose from. If they change this

line, they will answer the question with ease.

32

In much the same way, Question 3 asks the student to figure out what line of

code needs to be changed in order to make their ball bigger. If they have read the

explanations, they will find that slide 13 (shown in Figure 6 above) describes how

we make a ball by providing x and y coordinates to make it a particular size. If the

students change these x and y coordinates, and then compile and run their code,

they will see that they are adjusting the size of their ball.

3.4 Providing and Running Programs with Errors or Missing Code

In order to teach the students valuable programming skills, we must be able to show

them what to expect when things go wrong. In following the 3-step approach, we

have already given the students a program with working source code; however, this

only teaches the student what to expect when everything is correctly done. If we

provide the student with working code, and then purposely break this code by

introducing errors or removing pieces of code, we will be able to show them what

happens when these errors occur, and what they need to do to fix the issue.

There are two lessons that can be learned from this approach. The first lesson

that a student will encounter is the ability to compare working code against the code

that is not performing as expected. This is very beneficial because the student will

be able to see where they may have gone wrong in their own rendition of their

program.

The second lesson that the student will learn, however, is the most valuable.

The point of providing working code and then introducing errors into it is to teach

the student what to expect when things go wrong. This will aid in their future ability

33

to create better, more efficient programs. By showing students what errors and

issues they may run into, we can preemptively provide them the tools to debug their

own programs when issues arise, while at the same time, potentially introduce some

new, and interesting results. These new outcomes are the result of a hidden lesson

to be learned from these errors. For example, let’s say we have provided the

students with the piece of working code shown in Figure 8 in Section 3.4.1. In

keeping with the format introduced in the previous sections, we will first run the

code to show the students what happens and what to expect when everything is

correct. Then we will step line-by-line through the code and explain to the students

what each line is doing, and how it affects the program. Finally, we will ask the

students to write their own version of the program provided and ask them to play

around with the parameters and inputs. Some of the changes implemented by the

students will cause errors. This will allow the student to go back and figure out

where they went wrong. However, some of the changes might produce a good and

unexpected result. Using our example in Figure 8, let’s say that during one of these

sessions, a student changes some parameters and suddenly discovers that they have

found a way to change the direction of their object. The original code only had the

object moving up and down, however, with just a small change in the code, a student

might be able to discover the code needed to make their object move left to right.

In my opinion, by writing code through trial and error, the student is allowed

to use their imagination and their own intuition to make their program even better

than what it was once before. The student will learn how to implement new results,

while at the same time learn where they may have gone wrong when errors occur.

34

By providing a working piece of code for the student to work with, and then

introducing errors, we have given them the tools to be creative, without the added

stress of asking them to create a program entirely from memory. The working code

and the error-ridden code will be there to reinforce their knowledge and help them

to better their programming skills.

3.4.1 Lesson Plan Example for Section 3.4

As shown in Figure 8, Lesson 5 has the student learning how to make their ball

move up. There is no further discussion on how a student might make the ball move

in a different direction. The goal of this workbook is to provide the student with

enough information that they can figure out what line of code needs to be changed,

and then change this line to experiment with different parameters.

35

Figure 8: Lesson 4 Example

The red circle in Figure 8 is showing us the explanation given for this line. We

have purposely told the student that this line is where we tell the ball what direction

to move; however, we only provide the up direction for our sample code. It is up to

the student to figure out what needs to be done in order to change the direction. The

36

questions for this section are the areas in which the student will change parameters.

These questions are shown in Figure 9 below.

Figure 9: Lesson 4 Questions

Questions 1 and 2 ask the students to figure out how to change the direction of

their ball. If they have read the explanation on slide 23 (Figure 8), they will find a

discussion on how to make their ball move left, right, or down, although the code to

do that is not explicitly given to them. It is up to them to figure that part out. There

37

may be errors as the students try different inputs, but there may be a discovery as

well. Aside from making their ball go up, down, left, or right, the students may

happen upon the parameters that they need to make the ball go diagonal. This can

only happen if the student decides to put a value in both parameters. Increasing the

value will also increase the speed at which the ball travels, another gem that we

purposely did not provide the students. These examples were not discussed in the

hope that the students will discover them on their own.

Question 4 asks the student to purposely remove a key line in their code and

then describe what happens when they run the code. This may not cause an error,

but it will cause the program to not run correctly. This question is there to make

sure the students know what to expect and how to fix it if the issue should ever

come up again.

3.5 The Paddle Battle! Activity Workbook

We’ve already seen some examples of what the activities will look like in the

workbook in the previous section. We will now discuss what each lesson will

include, the layout of the workbook overall, and how to use it.

Instructors are expected to let the students program their own programs with

as little assistance as possible. The explanations in the beginning of each lesson will

be taught by the instructor, but students are expected to take those explanations,

and the templates provided to create their own version of the game called Paddle

Battle! The code for the Paddle Battle! Game is an adaptation of the code found in

the book titled Python for Kids by Jason R. Briggs [10]. There are a few changes to

38

the original code to make the game a little easier to explain and program, as well as

to rid the original program of any excess code. For a more visual and thorough

reference, please refer to APPENDIX A: The Paddle Battle! Workbook for the

activity workbook.

3.5.1 Introduction

In the beginning of the activity workbook the student is introduced to the main

character of the Paddle Battle! Game named Mr. Bounce. Mr. Bounce is a colorful

character who has decided that he would like to teach our students how to program

his favorite game Paddle Battle! Mr. Bounce understands that programming can be

difficult at times, so he starts the students off with the basics of Python.

3.5.2 Lesson 1: Paddle Battle in Action! (15 min.)

Lesson 1 is the first, and most important lesson to get the students started. The

instructor is expected to run the completed and error-free code for the students to

watch and see what they should expect when their version of the game is complete.

At this point in time, the instructor will not provide any explanations on the actual

lines of code. This lesson is just to introduce the students to the game, and then ask

them to answer a few questions on what the game does while it runs. This particular

lesson should only take about 15 minutes to allow for adequate time viewing the

code in action, and answering the questions provided in the workbook. The

following lessons will be where the instructor will start getting into the explanations

of code, but in much smaller segments.

39

3.5.3 Lesson 2: Building a Canvas (30 min.)

In this lesson, students are introduced to the tkinter package. This package is what

makes the entire program work. Students will be shown eleven lines of code for this

section. When complete, these lines of code actually do a lot to prepare the program

for future code that will be introduced earlier, even though all that happens is a

window appears. Just like Lesson 1 before, the instructor will run the snippet of

code to show the students what to expect. The instructor will then go line-by-line

and explain what each line of code is doing. Finally, after all explanations are

complete, the students will be asked to write their own code modeled after the code

given and explained to them earlier. This lesson should take about 30 minutes to

complete.

While the students are writing and running their programs, the instructor is

expected to walk around and assist students who are struggling. Students are

encouraged to change and experiment with any parameters in their code. Once the

students have completed their small program, and it runs correctly, the students are

then expected to answer questions on what happens to the program when they

change specific parameters given in the workbook questions for Lesson 2. These

questions are to ensure that students actually understand the concepts and

fundamentals of the lines of code they were just introduced to.

3.5.4 Lesson 3: Drawing an Object, Part I (45-50 min.)

Now that the students have a small piece of working code for their Paddle Battle!

Game, they will now continue to build on it by creating their first character in this

40

lesson. Lesson 3 introduces the concept of the class and the object. Once again,

students will be shown what the working code will do when run. Instructors will

then go line-by-line and explain the 8 lines of code that will be introduced, as well as

explain where in their existing code, these lines will be located. The students will

then need to write their own code into their own programs and answer questions.

The first question asks the students to describe what happened when they

got any errors and to explain why they think they happened. The remaining

questions are modeled to see if the students understand what certain lines of code

actual do. There are already explanations that the instructor will give that provide

hints on what the lines specifically do, so the answers to these questions should not

be difficult to implement and answer. Because the students are learning new

concepts, this lesson should take about 45 -50 minutes to complete to allow for

adequate time for questions.

3.5.5 Lesson 4: Drawing an Object, Part II (30-45 min.)

In this lesson, students will be expected to write about 95% of the code with little

instruction. The Paddle class that they need to create is essentially the Ball class that

they just created with one minor change. The change they will need to do is to create

a rectangle instead of an oval. This lesson should take anywhere between 30-45

minutes to complete, especially if the students understand that the classes are

fundamentally the same.

41

3.5.6 Lesson 5: Animating an Object (20 min.)

To make Mr. Bounce move, we simply need to add 3 lines of code. Although these

lines of code are very short and simple, they contain a lot of information that the

instructor must explain thoroughly. The instructor will run the new sample of code

and then explain the lines accordingly. Students will write their own program and

then answer the questions that follow. These questions will ask the students what

parameters they would need to change in order to achieve a particular action. These

questions are written with the hope that the students will stumble upon code that

will not be introduced by the instructor or this workbook. The hope is that the

students will discover new and interesting things they can do with their programs,

such as figuring out how to make their ball move left and right. This lesson should

only take about 20 minutes to explain and complete.

3.5.7 Lesson 6: Movement and Collision Detection (60 min.)

This is the lesson where the students will actually learn how to implement

animation, collision detection, speed control, and determining movements. This

lesson is highly critical to the body of the student’s game. The lesson will take

roughly 60 minutes to complete. The students will be given about half of the code

for this lesson, but they will be asked to write their own pieces in question 2.

Explanations given by the instructor should be precise and methodical. Instructors

must answer as many questions as possible that pertain to collision detection. It is

imperative that they understand that concept, especially because it will help them to

progress in the next lesson.

42

3.5.8 Lesson 7: Adding Movement with Keyboard Inputs (60 min.)

In this lesson, the students will be learning how to make an object move through the

use of events such as pressing a key on a keyboard. The students will be expected to

program a significant portion of this section, but those lines of code that pertain to

using events will be given to the students. By the time they have completed this

lesson, which should take about 60 minutes, they will have a ball that bounces

around the screen, and a paddle that moves from side to side. The following lesson

is where we will test their skills and see if they can complete the game.

3.5.9 Lesson 8: On Your Own (60 min. x 3)

By the time the students get to this lesson, they should have the tools they need to

make what they have so far into a real game. The three questions in this section are

programming questions. All three questions build on the code that they have

generated thus far; however, these questions are written to have them develop the

game more with little instruction. Each question in this lesson should take at least

60 minutes to complete. Although the answers seem easy to implement, this is really

the first time we are asking the students to think about and develop their own code

without actually walking them through what they need to do.

3.6 The Paddle Battle! Instructor’s Manual

The instructor’s manual contains all the code needed as the students step through

the workbook. Each lesson’s code is provided, and sample answers are provided for

the questions. For the On Your Own section, the code is provided with some

descriptions as to what the students will need to know in order to complete these

43

questions; however, there really should be little help given for answering these

questions. These questions were chosen specifically so that the students would have

a somewhat complete game to work with, but still have pieces of it that they need to

implement. Their game will not really be a game until they implement the first 2

questions of the lesson. The third question is more of an added bonus if they can get

it. For a more visual and thorough reference, please refer to APPENDIX B: The

Paddle Battle! Instructor’s Manual for the instructors manual.

44

Chapter 4

Future Work and Conclusions

4.1 Future Work

This thesis is a proposal for AOLME to continue to introduce more complex, but

interesting topics to teach their students. If the AOLME group accepts this approach

discussed in this report, future work will comprise of revising and improving the

activity workbook. Instructors will be taught how to use the workbook by

implementing the activities themselves so that they may draw on their experiences,

as well as provide ideas on how to make it better.

Other future work will be to create other workbooks for more complex topics.

A pong-like game is just the start of game programming using Python. There are

additional capabilities within Python that can create more complex and interactive

games. Workbooks can be created in order to teach these complex topics, but never

shy away from being written and explained as simply as possible.

Lastly, a possible introduction to 3D environments could be considered for

teaching students how to program. Originally, AOLME thought that perhaps this was

the way to go, especially because the students were asking for more interactive and

visual programming using 3D characters. Unfortunately, in order to introduce 3D

objects, the students need to have a thorough understanding of angles, geometry,

and intense mathematical reasoning that goes beyond middle-school mathematics.

AOLME students use algebra and topics such as coordinate systems to develop their

45

programs. In order to introduce 3D programming, AOLME will have to develop a set

of lessons that explain the different mathematical topics that the students will need

to know in order to create their 3D images. Future work for this potential topic

would be the lessons on mathematics, as stated above, as well as very simple

programs for the students to create after they have become comfortable with the

new mathematical subjects.

4.2 Conclusion

There are many introductory programming environments that are GUI-based and

interactive. To provide access to computing practices, there needs to be an

understanding of how programs operate at the source code level. The way to

introduce source-code level programming is by providing an environment that

engages the student and allows them to learn actual material using a general-

purpose programming language. By using Python, and introducing programming

concepts through the creation of games, we are able to keep the interest of the

students while teaching them how to program using a programming language that

will support their growth on and understanding of computing practices.

46

APPENDIX A: The Paddle Battle! Workbook

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

APPENDIX B: The Paddle Battle! Instructor’s Manual

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

REFERENCES

[1] Advancing Out-of-School Learning in Mathematics and Engineering.
[http://aolme.unm.edu/]. 2013.

[2] deHaan, J., “5 best iPad apps to teach programming.” Technology with Intention. July
2012. [http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-
programming/].

[3] “Daisy the Dinosaur.” Mind Leap: Education Apps for Kids.
[http://www.mindleaptech.com/apps/daisy-the-dinosaur/].

[4] “What is Alice?” Alice: An Educational Software that teaches students computer
programming in a 3D environment.
[http://www.alice.org/index.php?page=what_is_alice/what_is_alice].

[5] Alice. [http://www.alice.org/index.php].

[6] Cooper, S., Dann, W., Pausch, R., “Alice: A 3-D Tool For Introductory Programming
Concepts.” Technical Report. Stanford University.
[http://www.stanford.edu/~coopers/alice/ccscne00.PDF].

[7] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Kafai, J., “Scratch: Programming
For All”. Journal Article. Communications of the ACM, Vol. 52, No. 11. November 2009.

[8] “Computer Programming/Hello world.”
[http://en.wikibooks.org/wiki/Computer_Programming/Hello_world#Scratch].

[9] Franklin, D., et. al, “Assesment of Computer Science Learning in a Scratch-Based
Outreach Program.” Technical Report.
[http://www.cs.ucsb.edu/~franklin/cv/pubs/sigcse13at.pdf].

[10] Briggs, J., Python for Kids: A Playful Introduction to Programming. No Starch Press,
2013.

[11] Cooper, S., Dann, W., and Pausch, R., “Teaching Objects-first In Introductory
Computer Science”. Proceeding. 34th SIGCSE Technical Symposium on Computer Science
Education. January 2003. http://portal.acm.org/citation.cfm?id=611966.

[12] Dourish, P., “Seeking a Foundation for Context-Aware Computing”. Journal Article.
Human Computer Interaction. 2001. http://www.dourish.com/embodied/essay.pdf.

http://aolme.unm.edu/
http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-programming/
http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-programming/
http://www.mindleaptech.com/apps/daisy-the-dinosaur/
http://www.alice.org/index.php?page=what_is_alice/what_is_alice
http://www.alice.org/index.php
http://www.stanford.edu/~coopers/alice/ccscne00.PDF
http://en.wikibooks.org/wiki/Computer_Programming/Hello_world#Scratch
http://www.cs.ucsb.edu/~franklin/cv/pubs/sigcse13at.pdf
http://portal.acm.org/citation.cfm?id=611966
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.dourish.com%2Fembodied%2Fessay.pdf

115

[13] Fernaeus, Y. and Tholander, J., “Collaborative Computation On The Floor”. Technical
Report. DSV, Stockton University, Sweden. 2003.
http://www.lkl.ac.uk/kscope/weblabs/papers/FloorProgramming_Fernaeus_Tholande
r.pdf.

[14] Mor, Y., and, Tholander, J. and Holmberg, J., “Designing For Cross-Cultural Web-
Based Knowledge Building”. Technical Report. The 10th Computer Supported
Collaborative Learning Conference. June 2005.
http://www.lkl.ac.uk/kscope/weblabs/papers/cscl-2005.pdf.

[15] Moskal, B. Lurie, D., and Cooper, S., “Evaluating the Effectiveness of a New
Instructional Approach”. Proceeding. 35th SIGCSE Technical Symposium on Computer
Science Education. March 2004. http://portal.acm.org/citation.cfm?id=971328.

[16] Celedon-Pattichis, S., Lopez Leiva, C., Pattichis, M., Llamocca, D., “An interdisciplinary
collaboration between computer engineering and mathematics/bilingual education to
develop a curriculum for underrepresented middle school students”. Cultural Studies of
Science Education Issue 3, Vol. 8. September 2013.

[17] National Research Council. (2011). “A framework for K-12 science education:
Practices crosscutting concepts, and core ideas”. Washington, DC: National Academy
Press.

https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2FFloorProgramming_Fernaeus_Tholander.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2FFloorProgramming_Fernaeus_Tholander.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2Fcscl-2005.pdf
http://portal.acm.org/citation.cfm?id=971328

	University of New Mexico
	UNM Digital Repository
	2-14-2014

	Lesson Plan and Workbook for Introducing Python Game Programming to Support the Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) Project
	Cherish Franco
	Recommended Citation

	tmp.1472502609.pdf.KHpYI

