University of New Mexico

UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

2-14-2014

Lesson Plan and Workbook for Introducing
Python Game Programming to Support the
Advancing Out-of-School Learning in

Mathematics and Engineering (AOLME) Project

Cherish Franco

Follow this and additional works at: https://digitalrepository.unm.edu/ece etds

Recommended Citation

Franco, Cherish. "Lesson Plan and Workbook for Introducing Python Game Programming to Support the Advancing Out-of-School
Learning in Mathematics and Engineering (AOLME) Project.” (2014). https://digitalrepositoryunm.edu/ece_etds/89

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact

disc@unm.edu.

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/89?utm_source=digitalrepository.unm.edu%2Fece_etds%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Cherish A. Franco

Candidate

Electrical and Computer Engineering

Department

This thesis is approved, and it is acceptable in quality and form for publication:

Approved by the Thesis Committee:

Dr. Marios Pattichis, Chairperson

Dr. Ramiro Jordan

Dr. Sylvia Celed6n-Pattichis

Dr. Carlos LopezLeiva

Lesson Plan and Workbook for Introducing Python Game
Programming to Support the Advancing Out-of-School Learning in
Mathematics and Engineering (AOLME) Project

By

Cherish A. Franco

B.S., Computer Science, New Mexico Institute of Mining and Technology, 2010

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Computer Engineering
The University of New Mexico

Albuquerque, New Mexico

December 2013

ii

DEDICATION

All my work, both past and present, will forever and always be dedicated to my
father, mother, and brother. Without their love and support, wouldn’t be where I

am today. Also, a special thanks to Jason R,, for believing in me and loving me.

iii

ACKNOWLEDGMENTS

[would like to thank Dr. Lorie Liebrock of New Mexico Tech, whose compassion,
understanding, guidance, and tireless efforts to keep me on track and advise me
every chance she had, helped me to achieve my Bachelor’s degree through much
trial and tribulation. I would also like to thank Dr. Nasir Ghani for his
encouragement when [was new to the program. His quick responses and well-
advised guidance helped me to pursue what was best for me, and helped me to find
my passion for teaching. Lastly, I would like to thank Dr. Marios Pattichis for his
exemplary efforts to help me find the topic that worked best for me, and whose
infectious excitement and attitude towards visual learning for children showed me

that my passion for teaching and learning is something worth fighting for.

iv

Lesson Plan and Workbook for Introducing Python Game
Programming to Support the Advancing Out-of-School Learning in
Mathematics and Engineering (AOLME) Project

By

Cherish A. Franco

B.S., Computer Science, New Mexico Institute of Mining and Technology, 2010

ABSTRACT

In recent years, research has started to show a distressing trend in the world of
science, technology, engineering, and mathematic (STEM) fields. It has become
apparent that students from under-represented groups get little to no experience or
practice in the field of engineering. This apparent lack of exposure to engineering
knowledge and practice is likely to be the cause as to why students from under-

represented groups may not become interested in engineering careers.

The Advancing Out-of-School Learning in Mathematics and Engineering
(AOLME) project was created specifically for providing integrated mathematics and
engineering experiences to middle-school students from under-represented groups.
The thesis presents a new approach to introducing game programming to middle-
school students that have undergone AOLME-training while still maintaining a fun
and relaxed environment. The thesis provides a discussion of three different
educational, visual-programming environments that are also designed for younger

programmers and provides motivation for the proposed approach based on Python.

The thesis details interactive activities that are intended for supporting the students

to develop their own games in Python.

vi

TABLE OF CONTENTS

LIST OF FIGURES ...ttt s ssssss s sanssssns X
LIST OF TABLES ...t ssss s s ss bbb ssssses xi
ChaPLer 1 INTrOAUCION ..ccuieereeeeeieecetseessesseessetseesse s essebssse e s ss s e bbb bbb 1
1.1 1Y 0T L2 Un o) RPN 1
1.2 Thesis Statement, Innovations, and CONtrIDULIONS ... ssssesessssesaes 3
1.3 TheSiS SUIMIMATIY ..iuuieueerersreesseesseesseesssesseesseesssesssesssesssessssssssesssessssesssesssesssesssessssssmsesssasssessssesssessseeens 6
Chapter 2 BaCKEBIOUNG ... ceeeeemeeseeseessessseesseesseesseesssssssesssesssesssesssessseessessssssssssssesssessssssssesssesssessssssssesmsesanes 9
2.1 Existing Visual Programming ENVironments.......c.oeneneneenseenseseessessesseesseessessessesees 9
2.2 Daisy the Dinosaur (AZES 5-8) ...cccenernreneisessssessssssesssesssssssssssssssssssss s sssssssssssssssssssssanes 9
221 The Syntax for Daisy the DINOSAUTvceeeeeeseesseerseeeseessessseesssesssesssessssesseessssssessses 10
2.2.2 Daisy the Dinosaur as an Introductory Environment........cocooeoeneenneeneeeseesseeneens 11

2.3 ALICE (AZES 8 crureereereureenrerreesserseesess s sessse e st s bR R 12
2.3.1 The SYNtax fOr ALICE ... ssss s sanes 12
2.3.2 Alice as an Introductory ENVIroNmMent. ... ceeeneeseesnsessmessseesseessessssssesssessssesssees 14

2.4 SCratCh (@8ES 8+) et s e ss s b e a e bR 16
241 The Syntax for SCratCh.... e 16
2.4.2 Scratch as an Introductory ENVIroNmMenNtcceeemeeseesseeesseesessseesssesssesssessseesseeens 17

2.5 PYHRON e bR R AR R 19
2.5.1 The SYyNtax for PYThON. ...ttt ssss s 20
2.5.2 Python as an Introductory ENVironment........eneeneeenseensesessseesssessseesseeseeens 21

vii

2.6 ASUMMArY Of AOLME ... st sssssssssssssssssssssssssssses 22

2.7 Programming Environments and Languages SUMMATies........ceeeneseeneesseessesseens 22
Chapter 3 Middle School Lesson Plans for Teaching Game Programming Using Python........ 24
3.1 Using Python t0 Create GAIMES ... eeeemeesseesseessssssesssessees 24
3.2 Providing Students with Working Code........connensenesnssenssssssssessssesssssssssseesseesns 24
3.2.1 Lesson Plan Example for SECtION 3.2 ... esseseessessssssessssssesssesseens 25
3.3 Providing Students with Line-by-Line EXplanations.........eneenneneeneensenenns 27
3.3.1 Lesson Plan Example for SECtioNn 3.3nennnsenssnsessssssssssssssssssssssssssssessssns 28
3.4 Providing and Running Programs with Errors or Missing Codecccuuemeenmeerrecrseeens 32
34.1 Lesson Plan Example for SECtion 3.4eenreenmeeeesseeenseesessseesseesssesseesseesseeens 34
3.5 The Paddle Battle! Activity WOTrKDOOK ...ttt seesseesessenns 37
3.5.1 oL (06 10 ot () o PP 38
3.5.2 Lesson 1: Paddle Battle in Action! (15 MiN.) weneenmeeseeeernsesenseesseesseeeseesseesseeens 38
3.5.3 Lesson 2: Building a Canvas (30 MiN.J ceneeneesesseseesseessesssessessessessessesns 39
3.5.4 Lesson 3: Drawing an Object, Part I (45-50 mMin.) ... 39
3.55 Lesson 4: Drawing an Object, Part IT (30-45 MiN.)..eeneeemeesseeeseeeseesseeseeens 40
3.5.6 Lesson 5: Animating an Object (20 MIN.) .o ceereennerneeneensesseeeesseessesseesseseessesssessenns 41
3.5.7 Lesson 6: Movement and Collision Detection (60 mMin.)ccoveereereenseenecereenseeneens 41
3.5.8 Lesson 7: Adding Movement with Keyboard Inputs (60 min.).......eeen. 42
3.59 Lesson 8: On Your Own (60 MiN. X 3] occnenmeeseesreersmeesessseesseessssssesssessssssssssssessssssseeens 42
3.6 The Paddle Battle! InStructor’'s Manual.......oeersesssssssssssesssssssssssessesss 42

viii

Chapter 4 Future Work and COnCIUSIONS ... ssssssssssssssssssssssssssssssses 44

4.1 FULUTE WOTK oottt ettt es e bbb bbb 44
4.2 CONCIUSTON wcereeeeeeeetseeseeect et b st s s bbb s a bRt 45
APPENDIX A: The Paddle Battle! WOTKDOOK........ocieieeeeecisseeseesssessessssssssssessssessssssssssssesssssssssssesanes 46
APPENDIX B: The Paddle Battle! InStructor’s Manualceeenseenseesseesnsesssesssessssessesssssssesnnes 89
REFERENCES ...ttt sssssssess s s s sssssssss s sssass st sssassssssssssssasssessssssass e sssasssassssnsss 114

ix

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

LIST OF FIGURES

Example Program Using the Daisy the Dinosaur Application [2]. ...ceoreenmereenseenes 10
Example Program using AlICE [5] .o eeieeneessesseesssessesssesssssssssssssssssssssssssssssssssssssanes 13
SCratCh SYNTAX [8] veieureerreueererreiuresseessseses e sssesssssesssssss s sbsss s s bbb s 17
Example Code from WOrKbDOOK......cicissssssssss s ssssssssssssssssssanes 20
LeSSON 1 QUESTIONS ..cuviirerersiressisssressesss st sses sttt ssssssssesssessssssssssssssnssnses 26
Lesson 3 Example of Line by line EXplanations........eeessssssessssnnes 29
LeSSON 3 QUESTIONS c.ueueeeresreresressessessessessessssessssssssssssssessessessessessessessessessssssssssssssessssssssssssessessessenss 31
LESSON 4 EXAMPLE ... sssss s sssssssssssssssssssss st sssssssssssssssssssessesns 35
LeSSON 4 QUESTIONS .ueueuerresreresresressessessessesssssessssssssssssssessesssssessessessessessssssssssssssssesssssssssssessessessenss 36

LIST OF TABLES

Table 1: Summary of Visual Programming Languages

Xi

Chapter 1
Introduction

1.1 Motivation

As children, we are often taught new concepts and ideas through the use of
interactions and visualizations. Children from preschool through elementary school
age are taught topics such as their ABCs, shapes, and colors by using images. This is
predominantly done to reinforce the particular concept they are trying to learn. In
my opinion however, as the age of the child, and the child’s education increases, we
begin to see that the use of visualizations is not so prevalent. Because of this lack of
exposure to engineering experiences and practices through the use of these
visualizations, it is possible that students become less inclined to pursue any sort of
scientific or engineering-based subject for their educational future. Students are
generally unprepared when it comes to engineering because they are required to
learn difficult subjects in a setting that is not geared towards their learning needs at
such a young age. A possible approach to address this dilemma was initiated in the
Advancing Out-of-School Learning in Mathematics and Engineering (AOLME)

project.

AOLME is an interdisciplinary project run by two distinct departments. The
Electrical and Computer Engineering Department from the School of Engineering,
and the Department of Language, Literacy, and Sociocultural Studies from the

College of Education have worked together to bring AOLME to fruition. The

project’s primary audience is middle school-aged children. The goal of AOLME is to
promote awareness of both a set of mathematical practices different from, but still
related to those experienced at school, and a set of meaningful experiences in

engineering through the processing of digital images and video [1].

The basis for this thesis revolves around this idea of reaching out to students
who have not been exposed to the elements of engineering and mathematics by
teaching them using non-traditional means. Non-traditional means in this case

would be either verbal or written instruction.

As a naive college freshman, I ventured into the world of computer science
without any prior knowledge, except for a very basic programming class on Visual
Basic. I had no idea what Linux was, no idea what object-oriented meant, and
certainly had no clue as to how to program using a terminal. Because of this
struggle, | began to develop an idea on how I could prepare students for what was to
come, far in advance of the start of their college career. I felt that in order to
stimulate more interest in engineering and computer science, I needed to be able to
effectively teach younger aged students the basics of programming so that they

could be far better prepared for more complex topics.

[learned very quickly that I am a visual learner. If [am given some code, and I
can watch it run, I quickly learn how to make things work and make them better. So,
[decided that in order to capture the minds and imaginations of younger students,
while at the same time guaranteeing that they will be well prepared when it comes

to programming, why not create a means for them to learn to program while still

having fun? This idea could be simply solved by introducing the concept of games

and learning how to program them.

Programming games is by no means a new art form. Essentially every single
video game created is made possible by programming. AOLME already has ventured
towards the idea of having its students create animated videos with pixels, but

introducing games would be a whole new area of interest for them.

In summary, the motivation behind this thesis is address the general lack of
motivation and interest in engineering of middle school students by implementing a
teaching design and workbook that instructs those students and retains their

interest and attention.

1.2 Thesis Statement, Innovations, and Contributions

There are hundreds of different programming languages and applications in use in
today’s technologically advanced world. These programming languages, however,
are created with the assumption that the potential user has some sort of basic
knowledge when it comes to programming. These widely used programming
languages are primarily geared towards young adults and beyond and rarely take
into consideration a much younger audience. Recently, however, there has been a
bit of a push in the direction of developing programming languages and
environments that can be used to teach young children the intricate art of
programming. Instead of exposing students to the underlying programming
languages, most of these efforts provide programming environments that are

centered on one key aspect, the use of interactive visualizations.

Educational programming environments are tools that try to approach
instruction through the use of these interactive visualizations. These programs were
largely created with the idea that they would help the student to understand the
logistics of programming by using interactive visuals, instead of the more common
practice of verbal and written instruction. Some environments that are particularly
suited towards younger children incorporate more visual aids as well as much
simpler explanations. Although most of these environments are not meant for the
creation of real-world applications, they do allow the user to create programs that

follow the same flow and syntax of an actual program.

The goal of this thesis is to introduce a Python-based framework for extending
the current AOLME activities into game programming. This goal can be achieved by
using my proposed three-step teaching process based on providing students coding
examples and thorough line-by-line explanations. Another goal of this thesis is to
explore a means to teach game programming in Python, by incorporating visual
stimuli in the form of creating characters all the way to creating interactive games.
This thesis will explore a way to develop a visual guide to teach the topic of game
programming in Python, while maintaining an understanding that those students

participating in AOLME, will have little to no experience with programming.

In order to teach students how to actually program, we must first be able to
engage them through the use of visuals and interactions, while at the same time
introduce programming using languages such as C or Python. This thesis will

introduce a few key innovations and contributions, as listed below:

1. Develop a 3-step approach on how to teach programming. The 3 steps
are as follows:

a. Provide students with working code - This step allows the student
to see the code in action without any errors, as well as give them a
template of what their code may look like as they develop their own
game. This template will aid them in finding errors when they began
to write more complex programs. This step avoids having students
type significant amount of code or having to work through syntax
errors as outlined in [16].

b. Provide students with line-by-line explanations - This step allows
the instructor the ability to explain each and every parameter and
function of a line of code, and gives the student an inside look as to
how the code works as a whole. These explanations will also aide in
enhancing the students’ programming skills by enforcing good
programming practices. This step will be compatible with AOLME
practice of explaining the code that is being used in the tutorials and
then having the students fill-in their own code.

c. Provide and run programs with errors or missing code - This step
is the key to the 3-step approach. The instructor has provided a
working template, and explained what each line is doing at each step,
but now we introduce errors. This step is here to ensure that the
students understand that no error is a bad error. There is a lesson to

be learned from each and every mistake. Some errors will need to be

fixed, but other so-called errors may actually produce an unexpected
surprise when the program is run. Students may find that they
discover some unintentional action that wasn’t previously provided to
them. They will also have to fill-in missing code based on material
taught to them during previous activities. This template approach has
also been tested and proven to be effective in AOLME where the
students are asked to develop their own video representations based
on the examples that are given [16].
2. Develop a workbook that is based on the 3-step approach discussed
above. This workbook will:
a. Introduce programming in Python;
b. Use the 3-step approach in each lesson;
c. Engage the students by teaching them how to program a very simple
game, and
d. Leave enough to the imagination to make the students want to learn
more once they see how easy and fun programming can be.
3. Develop an answer manual that aides the instructor.
Sample answers will be given, time amounts for each lesson, as well as
specific instructions on how the students might find the answers they need in

order to answer the question in the book.

1.3 Thesis Summary

The remainder of this thesis is organized in the following fashion:

1. Chapter 2: Background
This chapter will provide background information on 3 widely used visual
programming environments--Daisy the Dinosaur, Alice, and Scratch. These
three languages were chosen specifically because of their unique approaches
to introducing programming to a younger audience. Topics discussed for
each programming environment will include an overview of the interface of
the programming environment, a sample, block-based program, as well as a
discussion on how the environments were used, and whether students are
retaining useful programming skills. The discussion on these three
programming environments will then be followed by a discussion on Python,
its approach to game programming, and its use throughout the activity
workbook created for this thesis.

2. Chapter 3: Middle School Lesson Plans for Teaching Game Programming
Using Python
In this chapter we will extensively discuss the 3-step approach highlighted in
Section 1.2 above. Individual lessons will also be addressed in order to show
how this 3-step approach is being utilized throughout the workbook. There
will also be a discussion on how the workbook was developed, an
explanation on how each lesson was created, as well as a discussion on why
this particular game was chosen as an introductory programming lesson.

3. Chapter 4: Future Work and Conclusions

In this chapter we will discuss future projects, including a discussion on
introducing 3D environment, as well as conclusions on the practicality of the
Python workbook and 3-step approach.

. Appendix A: The Paddle Battle! Workbook

Appendix A will provide the actual workbook in its entirety. Lesson plans,
questions, and code are shown throughout the workbook. Some lesson plans
are step-by-step instructions on how to program the particular piece of code
the student is being taught, and other lessons rely solely on the knowledge
that the student has gained from previous lessons. At the end of the
workbook, the students will have enough code to see results, but will be
expected to finish their game on their own. Time limits on lessons will range
from 15 minutes to 60 minutes. Students are encouraged to ask questions
and make mistakes.

. Appendix B: The Paddle Battle! Instructor’s Manual

Appendix B provides all the answers for the activity workbook. Instructors
will use this manual as a guide for students and the questions they may have.
Sample answers are provided, and all code is provided for each lesson. Lastly,
all code needed to answer the questions at the end of the workbook are

provided.

Chapter 2

Background

2.1 Existing Visual Programming Environments

As discussed earlier, there are many educational programming languages being
used in classrooms all over the world. In the following sections, three educational
programming environments will be discussed. The first environment, an app called
Daisy the Dinosaur, is created for children ages 5 and up. The second and third
programming environments, Scratch and Alice, are more well-known. These three
environments were chosen because of their ingenuity and creativeness. Each section
will give an overview, a sample program, as well as a discussion on how they were
used, and whether students are actively learning how to program by using these
languages. This discussion will then be followed by a proposal on how AOLME might
approach this same concept, while still maintaining their unique goals of bringing
awareness to mathematics and engineering, and using Python. The proposal will
contain a discussion on three key elements for this teaching approach, as well as a

discussion on the creation and use of the activity workbook created for this thesis.

2.2 Daisy the Dinosaur (ages 5-8)

Daisy the Dinosaur is a visual programming environment that is geared towards a
much younger audience. Students as young as 5 years of age are able to use this
application to get a basic introduction into the world of programming. Daisy the
Dinosaur is currently only supported on the iPad and iPhone platforms, so it

unfortunately only reaches those students who happen to have access to that

9

particular technology. Nevertheless, the concept of Daisy the Dinosaur is a rather

interesting and engaging approach.

2.2.1 The Syntax for Daisy the Dinosaur

The basic idea for programming in Daisy the Dinosaur revolves around making
Daisy do whatever the student has created in their program window. Students are
given access to a finite set of commands that they drag and drop to their program

window, as shown below in

Figure 1. Once they have created their program, they can then press play to

see what they have made Daisy do.

commands program

shrink

stage

Play

Menu

® @

([

Figure 1: Example Program Using the Daisy the Dinosaur Application [2].

There are a few tutorials in the application; however, the entirety of the

Daisy the Dinosaur application is separated into two simple categories: Freeplay

10

Mode and Challenge Mode. Freeplay Mode allows students to interact with the
application and create their own programs to see what happens. As stated before,
there is a finite set of commands that the students have access to, such as move or
grow. In Challenge Mode, students are asked to write simple programs in order to
pass the challenge. The first challenge is the easiest of all the challenges; however, as
the student progresses through each challenge, the difficulty increases. To make the
challenges a little easier to complete, only those commands that are needed for their
program are shown in the commands window. Unfortunately, there are only 5
challenges at this point in time. It is my opinion that more challenges that created

much more intricate programs to attempt would be very beneficial to a beginner.

Essentially, Daisy the Dinosaur programming is as simple as it can get, and
yet, introduces more complex concepts such as loops. The when command in Daisy
the Dinosaur is basically a simple loop command. Students can learn how to make
certain actions happen at a set number of times that they determined. Being able to
introduce a concept such as loops to kindergarten aged students is phenomenal, but
do the students actually acquire sufficient skills that relate how to program real

world applications?

2.2.2 Daisy the Dinosaur as an Introductory Environment

Daisy the Dinosaur introduces students to computer programming by engaging
them with cute graphics and easy to learn syntax. Students not only learn basic
computer programming skills, but also build their problem-solving and analytical

skills, something they will need in their future educational careers [3].

11

Unfortunately, Daisy the Dinosaurs’ layout and content is not enough to prepare
students for more complex programming languages. There are no published studies
that describe whether students actually learned any skills of value from using this
application. However, a quick overview of the program has convinced me that there
is a limited amount of information that students will learn. The process of
programming, and the beginnings of conditional programming are addressed, but
the lessons learned using this application may not be very useful when a student
needs to start programming in something like Python for the AOLME project. If
anything, Daisy the Dinosaur is a fun application that can be used to pique the

interest of the students and get them to start exploring the world of programming.

2.3 Alice (ages 8+)

The next educational programming environment we will discuss is called Alice. Alice
is an innovative 3D programming environment that makes it easy to create an
animation for telling a story using the idea of programming. It allows students to
learn fundamental programming concepts in the context of creating animated

movies and games [4].

2.3.1 The Syntax for Alice

One of the key things that Alice does for its students is letting them see almost
immediately what their programs are doing when they run them. The highly
interactive and eye-catching 3D graphics that are readily available for the students
to use opens up a whole new way to learn. Students can play around with their

programs and can create their own environments and characters with very little

12

programming knowledge. For example, in Figure 2 below, we see a program where
the student has made an ice skater that skates and moves around the screen. The
steps it took to make this environment a reality are quite simple. The student
created the environment, invoked the iceSkater object, the lake, and the ground, and
then simply wrote their code using the drag and drop operations provided. Granted,
the program described here is incredibly simple. As the student begins to develop
more complex environments and characters, the code, and the knowledge of how

Alice works becomes immensely more complicated.

% \hen the world stz
7 do [:World.myfi

ADD
OBJECTS

@ World.my first method

World.my first method | create new parameter |

No parameters

No variables l create new variable I

(Do Nothing

“Do in order| Do together| [/IfiElse| “Loop) [While
[#For all in order] “For all together| [Wait | [/ print | IE|

Figure 2: Example Program using Alice [5]

Alice is able to introduce complex programming concepts without over-

burdening their students with memorization or requiring that they have prior

13

programming knowledge. Alice introduces the user to functions, flow control and
loops, as well as recursion, which is not an easy topic to introduce. Another great
feature of Alice is the fact that the Python language is interwoven into Alice. This
opens the door to the beginnings of teaching younger students more complex and

real-world programming languages.

2.3.2 Alice as an Introductory Environment

In a published study authored by a group from multiple universities, they found that
although there are many benefits to using Alice, there are still many issues and
problems that arise from using it [6]. One of the main issues they found was the fact
that errors in Alice were either incredibly cryptic, or no error or warning was
displayed. For example, if a user wrote a program to move their object 5 spaces, and

then back 5 spaces, they might try something like the following:

someObject.Move (Forward, 5)
someObject .Move (Back, 5)

Unfortunately, this will produce no movement at all, primarily because Alice,
by default, causes all animations to occur simultaneously [6]. Although this is not
necessarily an error, it might have been beneficial to throw a warning telling the
student that since they did not include a control structure, then their animation may

not work as they expected.

Another issue that can occur is the fact that in order to properly use Alice, the
student must have a complete understanding of how Alice statements work, as well

as how Python works [6]. Students may run into the issue of non-functioning

14

programs purely because they were unable to distinguish between Alice statements
and Python statements. If a student accidently puts a Python statement within an
Alice statement, their function will fail because Alice will not recognize the Python
code. In order for the program to run correctly, the student would have to move
their Python code outside of the Alice code. This would seem to indicate that a
student must understand two languages, Alice and Python, before they could even
begin to program. Understanding two different languages is not a bad things,
however, asking that a middle-school aged student to learn and memorize two

languages may be pushing their limits a bit much.

After viewing the Alice environment, it becomes apparent that the particular
learning style most predominantly used is interactive visualizations. The Alice
developers wanted the users to be able to have fun while at the same time learn
programming. In my opinion, interactive learning is very important when trying to
teach a difficult problem. By engaging the user, the instructor can delve farther into
more complex topics. Alice does a wonderful job of simplifying the topic of
programming and allows the user to learn at a comfortable pace through the power
of inquiry and creativity. However, learning Alice is not quite that simple and
requires a little more background in programming than Daisy the Dinosaur. Alice is
another programming environment that has the ability to increase more interest in

programming by engaging their audience with graphics and games.

15

2.4 Scratch (ages 8+)

One of the most highly used early-education programming language environments
for children is a programming language called Scratch. Scratch is a type of
educational program that makes it easy to create interactive stories, animations,
games, music, and art [7]. It was developed in 2003 by the Lifelong Kindergarten

group, led by Mitchell Resnick at the MIT Media Lab [7].

2.4.1 The Syntax for Scratch

The Scratch syntax is based on a collection of graphical “programming blocks”
children piece together to create programs. The blocks are shaped to fit together
only in ways that make syntactical sense [7]. In other words, if a block does not fit
another block, then the flow of the program does not make sense and will therefore
not run as the user expects. The blocks have many shapes, sizes, and functions. They
also are only pieced together in an obvious way based on these shapes and sizes.
This unique visual programming method limits the amount of syntax and grammar
of the language [7]. In Figure 3 below, we see a simple Hello, World example being

created using the distinctive Scratch syntax.

16

- This block is a Control Block. This particular block performs an action
when the green flag is clicked.

5‘-1-‘}' - This block will make the program, or sprite in this case, perform a
= specified action. In this case, the sprite will say “Hello World”.

- This is what the completed program will look like, with the pieces
say [(ETETTE nicely locked into place.

Hello World

- Once the green flag is clicked, this is what the screen in the Scratch
interface will show.

Figure 3: Scratch Syntax [8]

This style of programming is very beneficial to the users. It allows them to
experience the process of programming, but eliminates the need for memorization

of syntax, rules, and formatting.

2.4.2 Scratch as an Introductory Environment

Outreach programs, such as AOLME, are designed to attract and increase the
amount of students in the science and engineering disciplines. In order to do so,
these programs must come up with ways to engage their students by using tools,
such as Scratch, to stimulate more interest in subjects that are not always taught
well. One example of an outreach program that used Scratch as its base
programming language is a two-week camp known as Animal Tlatoque [9]. This
particular camp was created not only to increase interest, but also to research
whether or not using tools such as Scratch were at all beneficial to learning how to

actually program.

17

Animal Tlatoque was initially designed with two specific goals: (1) to attract
a target audience of middle school students from underrepresented groups with
non-CS backgrounds that appeal to both parents and children, and (2) to engage
participants in interdisciplinary activities that allow them to learn about computer
science and develop skills for computational thinking [9]. They also took on an
added goal of assessing the amount of information retained of any actual CS content
that took place during the camp. They placed some constraints on the camp that
determined that it would be a two-week, non-academic, interdisciplinary, “fun-
oriented” camp [9].There were lessons for each of the two weeks of the camp. The
first sets of lessons for week 1 were setup to only introduce those concepts that the
students would need to complete a final project. The set of lessons for week 2 were
primarily to reinforce topics such as conditionals and events, but were not
necessarily needed for the final project. By the end of the camp, students were

tested on what they had learned.

What this group found was that even with those constraints listed above, the
students were more or less able to comprehend and retain the material that they
were given. They found that the student were able to utilize several computer
science concepts such as variable usage, changing the sprite, or even manipulating it
with ease; however, it did appear that concepts such as if blocks were not well
known. The group believed that this was probably due to some extraneous issues
such as the students being rushed or being far more interested in other, more
fascinating lessons. Though these issues may have been a factor in the students not

retaining this particular concept, it still needs to be considered that perhaps the

18

programming tool itself is not structured well enough to teach a concept such as if
blocks effectively. Though no age specifications were given in their final report, the
group did indicate that their research was based on those students who were first
year students to the camp, thus they were students who had no background in
computer science. Nevertheless, the camp was effective in its approach to teach
programming concepts while determining whether or not using Scratch was useful.
Students did learn some programming concepts that would benefit them in
programming with real-world languages such as variable usage, correct

implementation of some functions and controls, and correct use of events.

2.5 Python

All three of the programming environments mentioned earlier approach
programming in largely different ways; however, none of them focus on the direct
use of a general purpose programming language. The three programming
environments, though fun and engaging do not sufficiently expose them with the
source-code behind the programming concepts. Exposure to the source-code and
development of programs at the source-code level is an essential skill for access to
computing careers. AOLME'’s objective is to create a learning environment where
students are learning both concepts of mathematics, engineering, and computer
science concepts while still having fun. In order to guarantee that a student is
actually learning applicable material, a general-purpose programming language,
such as one that supports object oriented programming, needs to be utilized. Object
oriented languages are powerful languages that are used throughout the world of

programming. Some languages are difficult to learn and understand, but then there

19

are languages like Python, which in my opinion are very powerful and relatively

easy to comprehend.

2.5.1 The Syntax for Python

Python’s syntax is widely used and easy to understand. Its syntax is based on the
idea that it be as readable as possible. Another key aspect of the language is that it
boasts the ability to allow programs to be built using fewer lines of code than those

of other programming languages [10]. As an example, let’s take a look at a simple

Python program from the workbook in APPENDIX A: The Paddle Battle!

Workbook.

class Ball:

def init (self, canvas, color):

self.canvas = canvas
self.id = canvas.create oval (10, 10, 25, 25, fill=color)

self.canvas.move(self.id, 250, 250)

def draw(self):
pass

Figure 4: Example Code from Workbook

This example shows a class that students will work with in a lesson. The class
simply creates a small oval that will later be drawn on the canvas or window the
student has created. Though the syntax for Python is immensely more complicated
than those of the previous visual programming environments discussed, the Python
language itself provides direct access to the practices that computer science and

engineering students need to be successful.

20

Python has many capabilities from being used as a scripting language, to
being used in conjunction with other tools to create more complex programs. An
example of this is Python’s ability to support a module called Pygame. Pygame is
specifically written and used to develop games in Python. The use of this module
opens the door for much more interactive and visual games than can be produced
with the standard packages of Python, and works by introducing a relatively small

number of additional programming constructs.

2.5.2 Python as an Introductory Environment

As an introductory programming language, Python seems to work for children
trying to learn programming for the first time. The book primarily used for research
in this thesis, “Python for Kids: A Playful Introduction to Programming”, by Jason R.
Briggs [10], is an excellent example of how Python can be taught to even the

youngest of students.

The book’s aim is to introduce programming by keeping the lessons
incredibly short and interesting. Lessons are broken up into short pieces of
information the students will need as they progress through the book. Finally, the
last few chapters are dedicated to putting together all the knowledge gained and
creating a couple of games. These lessons on creating the games are broken up in
the same way the book is, and take measures to keep the content low level and fun.
Students are provided all the code that they need to create a finished product, and
then asked to improve upon it at the end. The students are also allowed to view the

answers to the challenge questions, just in case they are having a difficult time,

21

although Python is still considered an easy enough programming language to be an

effective tool for teaching programming.

2.6 A Summary of AOLME

AOLME is a good indicator that teaching introductory programming using Python
can be done succesfully. The projects primary goal is to establish a pipeline of
support and motivation for underrepresented middle school students to pursue a
career in STEM [16]. AOLME has been successful in teaching students programming
by using Python and have been able to stimulate more interest in the field of
programming by developing a curriculum that jointly approaches a design that
would combine mathematical ideas with engineering concepts. The curriculum
includes but is not limited to proportional reasoning, geometry, and algebra for the
mathematics portion, and digital image and video through computer programming
for the engineering concepts. In keeping with this trend, this thesis is a way to
further the reach of the students and keep them interested in learning an actual

programming language.

2.7 Programming Environments and Languages Summaries

In summary, the table below is provided to showcase each language discussed in
Chapter 2. It must be noted that all of these programming environments and
languages are unique and useful in their own ways. It is my opinion that each
language has its own way to get students thinking about computer programming
and in a sense, teaches them the basic concepts that they will need to understand in

order to pursue a future in engineering and computer science. The goal of this thesis

22

however, is to reach even farther than what these environments are aiming for. The

goal of this thesis is to teach the concept of programming using a general purpose

programming language, not a programming environment. The table provides a

summary of each language and what they tried to accomplish, as well as provide

examples of students gaining useful programming skills using these languages.

Programmlng Summary Skills Gained?
Environment
This is an introductory programming
language that teaches students as young as 5 . . :
. No studies have been conducted using this
years of age how to program by controlling L
. : language. The syntax of Daisy is a little too
the character known as Daisy the Dinosaur. . o .
. . : . simplified to support teaching more complex
Daisy the Students are limited to just a short list of :) .
. programming concepts (e.g., variables). This
Dinosaur commands, and the GUI blocks support a
. i would best be used as perhaps an example of
rather limited number of specific uses.
. .| what a student could make when they learn
Students can either create programs on their T
own, or take the challenges that prepare program.
them for more intricate programs.
Studies done on Alice show that for the most
part, Alice is an effective tool to teach
A 3D environment that allows the student to | introductory programming. Colleges and
create environments, characters, movies, universities currently use Alice in some of
and games. This powerful language is very their classes; however, it is noted that the
Alice fun and engaging. It has a set of commands syntax and usage of the programming are
to be used, but also allows the students the often times considered difficult to learn right
ability to enhance their programs by away. Another issue is that error messages
changing and modifying those commands. are not readily given, thus confusing the
student more when something doesn’t work
right.
An interesting and fun programming Animal Tlatoque found that although the
language that builds its programs through students were limited in what they could
the use of puzzle-like code pieces, the make, they were still able to retain a lot of
approach to writing programs is fun and useful information and showed signs of
Scratch interesting. It is powerful and has the ability | comprehending many difficult computer
to create very fun programs; however, its science topics. There were some topics that
application in the real-world is not were not as easily retained, such as if
incredibly useful. If anything, students learn | statements, but overall, this language was
how the functionality of code works, but not | able to open the door for the students to
how to actually write their own programs. begin to comprehend programming.
Python’s syntax is much more difficult to AOLME students have created images and
learn than the other programming videos in classes so far. Preliminary results
languages; however, its main goal is to be indicate that students’ interest in
Python able to write functional, real-world programming has grown [16], but more

applications with as little lines of code as
possible. It requires the use of functions and
understanding of the syntax for the ability to
create general-purpose applications..

research is needed on ways to support
student engagement. The workbook in this
thesis is a proposal on how to better engage
the students using game programming.

Table 1: Summary of Visual Programming Languages

23

Chapter 3
Middle School Lesson Plans for Teaching Game Programming Using

Python

3.1 Using Python to Create Games

The proposed activities assume that the students have already learned the basics of
Python and how to create digital images and videos in the AOLME project. The next
logical step to better their programming skills, and pique their interest is to
introduce game programming. This thesis is a proposal for how this step might be
approached by AOLME. The following sections will highlight three key elements of
this educational approach which I developed as part of this project. The three key
elements discussed are (a) providing students with working code, (b) giving line-by-
line explanations, and (c) having the students run code that has been purposely
tampered with. There will be a discussion on all three of these elements and why
they were chosen and considered important. There will also be examples provided
on particular lessons that students will come across in the proposed activity
workbook that is part of this thesis. Finally, there will be a discussion on the layout
and content of the activity workbook, future work, and how this proposal might be

used by AOLME in the future.

3.2 Providing Students with Working Code

One of the most beneficial ways to help students learn the art of programming is by

giving them examples of running code. Although some might consider this a form of

24

cheating, providing working code to the students helps them to visualize how the
code works, and what it should be doing. Students who are being introduced to a
new programming language need to first be able to understand those basic concepts
of the language that will be used in any program, simple or complicated. Providing
working examples of these basic concepts gives the students a piece of working code
to fall back on if they find themselves struggling to write a more complicated

program in the future.

This kind of approach could be considered a sort of reverse engineering
approach to programming. This method allows the students to see and modify
existing code, and then watch what happens when those changes are compiled and
implemented. By taking this reverse engineering stance, we begin to open up new
doors for the students to enter such as seeing what happens when code is changed,
learning what errors are caused by changes and how to deal with them, as well as
giving them the potential to discover some new concept that might make their

programs even better.

This teaching method is what is to be considered the main concept for this
proposed approach introduced in this thesis. To better understand this proposed
approach, the example below is a possible lesson that a student might be asked to

complete using the first step of this 3-step approach.

3.2.1 Lesson Plan Example for Section 3.2

One of the first lessons in the workbook that accompanies this thesis is to have the

students run the code for the game they will eventually be creating. This workbook

25

will provide each student with the complete source code for a Pong-like game. As
shown in Figure 5 below, the students are asked to run and watch the code, and

then answer a few questions about it.

LESSON1:

PADDLE BATTLEIN
ACTION QUESTIONS!

o Question I: What does the ball do?
Question 2: What does the paddie do?

Question 3: What happens when the ball hits the sides or
the top of the window?

Question 4: What happens when the ball hits the paddie?

Question 5: What happens if the ball hits the bottom of the
window?

Figure 5: Lesson 1 Questions

26

The purpose of this lesson is to make sure the students understand how the
code works before they start to actually create it themselves. The lessons that follow
in the workbook continue with this approach by first having the students run the
individual pieces of code they are working with, learning how it works, and finally

experimenting with it.

3.3 Providing Students with Line-by-Line Explanations

In my opinion, providing the students with line-by-line explanations is essential to
teaching effective programming skills. There is no greater feeling than writing a
program and then watching it run. However, before a student can get to this point,
the student needs to first understand the flow of the code as it runs. This knowledge
will help the student not only to better understand how his or her program works
and what it is doing, but also to understand where things may be broken if errors

occur.

The purpose of providing a line-by-line explanation of what is happening at
each step of the program is to reinforce good programming practices. These
practices are strengthened because the student will not only be learning what each
line of code is doing, but also be observing how each line impacts the flow of the
code as it is run. For example, if we provide the students with a simple “Hello,
World” program, and then provide them with line-by-line instructions, we find that
we are able to teach at least three different topics using this one simple program.

The student will be learning how the canvas works and how to implement it, how

27

the print functions works, and how we can manipulate the text that is displayed

when using the print function.

In order to make sure that the students understand the flow of a program, we
must first provide them with an explanation of the program code we already have
provided them with in their lesson plans. The code supplied is already correct, so
the first step is to show the students what happens when the program is run. This
gives the student a visual idea of what the code does. The next step will then be to
run this same code, but show the students what happens at each line, even if the
explanations seem a little redundant. By explaining the concepts over and over

again, we hope to instill these good programming practices for later use.

Once these explanations have been given, and a step-by-step walk through has
been completed, the students will then be expected to write their own piece of code,
while using the code given previously as their guide. Students will be expected to
write their program, and provide their own explanations as to how they think their
code should run. The students will then run their own code and figure out whether
their explanations and understanding are reflected in the way that their program is
running. For a better understanding of this proposed approach, the example below

will highlight steps a student might have to take when attempting this lesson.

3.3.1 Lesson Plan Example for Section 3.3

In the workbook created for this thesis, we see that each lesson is broken down into
small steps and small pieces of code. Each lesson displays the sample code given to

the student for that particular lesson, and then steps line-by-line through the code

28

with them. In Lesson 3, the students are learning how to create a class called Ball,
which will allow them to draw a ball on the window that they just created in Lesson
2. The first step in this lesson is to have them run and watch the sample code to see

what happens. Then we begin our explanations as seen in Figure 6 below.

LESSON 3:

DRAWING AN OBJECT,
PART I

init (self, canvas, color):

self.canvas = canvas

1. class Ball:

self.id = canvas.create_oval (10, 10, 25, 25, fill=color)

self.canvas.move (self.id, 250, 250)

def draw(self):
8. pass

Line 4 above is an interesting line. Here we call our create oval
function.You need to give create oval 5 parameters in order for it
to work correctly. We need to supply < and v coordinates for the top
and bottom of the oval so we know how big our circle will be, and it’s
color, In this case, the < and v coordinates for the top are 10,and 25
for the bottom. This tells us that the circle we are creating will fit into a
rectangle defined by these coordinates, like the example below, We will
set the color for our ball a little later,

25¢ 25
(x2,y2)

There are also many shapes you can make such as create rectangle
and create polygonscreate rectangle Will draw a rectangle,
and create_polygon allows you to draw your own shape using
parameters you give it

Figure 6: Lesson 3 Example of Line by line Explanations

29

In the case of Figure 6, we have spent a little bit more time on this particular
line’s explanation. This is because this line requires a lot of parameter inputs from
the students. We want to make sure that the students understand how to use this
particular function in this line, and that they know what parameters they will need.
We also want to make sure that they know that there are other functions like it, so
that the students can explore with the different functions available to them. The
introduction of similar functions also makes an appearance in this lesson as a setup

for a question that must be answered in the following lesson, Lesson 4.

As we continue to step through the code for Lesson 3, each line is explained
as thoroughly as possible. However, the lines of code are not expanded upon.
Questions asked at the end of each lesson are designed to help the students further
their knowledge on some of these concepts. For example, let’s take a look at

Questions 2 and 3 of Lesson 3 shown in Figure 7 below.

30

LESSON 2:

DRAWING AN OBJECT,
PART 1

Question I: If you get errors when you compiled, please list some of them
here and tell me why you think they happened.

Question 2: Mr. Bounce loves the color ‘red’y but today he wants to wear
greens What line of code would you change to make him green? €Change
the parameter and run your code to describe what happens.

Question 3: What if Mr. Bounce wants to be bigger in the game? What line
of code would you have to change in order to make your ball bigger?
Change the parameter and run your code to describe what happens.

Question 4: What happens if we change the position of where our ball is
drawn to 250, 2007 Change the parameter and run your code to
describe what happens.

Figure 7: Lesson 3 Questions

Question 2 asks the students to change the color of their ball from red to
green. Students are expected to go back through their workbook and look at the
explanations to find which line needs to be changed. If they review the explanations,
they will find that on slide 15, there is an explanation on how we give the ball its
color, and that there are many other colors they can choose from. If they change this
line, they will answer the question with ease.

31

In much the same way, Question 3 asks the student to figure out what line of
code needs to be changed in order to make their ball bigger. If they have read the
explanations, they will find that slide 13 (shown in Figure 6 above) describes how
we make a ball by providing x and y coordinates to make it a particular size. If the
students change these x and y coordinates, and then compile and run their code,

they will see that they are adjusting the size of their ball.

3.4 Providing and Running Programs with Errors or Missing Code

In order to teach the students valuable programming skills, we must be able to show
them what to expect when things go wrong. In following the 3-step approach, we
have already given the students a program with working source code; however, this
only teaches the student what to expect when everything is correctly done. If we
provide the student with working code, and then purposely break this code by
introducing errors or removing pieces of code, we will be able to show them what

happens when these errors occur, and what they need to do to fix the issue.

There are two lessons that can be learned from this approach. The first lesson
that a student will encounter is the ability to compare working code against the code
that is not performing as expected. This is very beneficial because the student will
be able to see where they may have gone wrong in their own rendition of their

program.

The second lesson that the student will learn, however, is the most valuable.
The point of providing working code and then introducing errors into it is to teach

the student what to expect when things go wrong. This will aid in their future ability

32

to create better, more efficient programs. By showing students what errors and
issues they may run into, we can preemptively provide them the tools to debug their
own programs when issues arise, while at the same time, potentially introduce some
new, and interesting results. These new outcomes are the result of a hidden lesson
to be learned from these errors. For example, let’s say we have provided the
students with the piece of working code shown in Figure 8 in Section 3.4.1. In
keeping with the format introduced in the previous sections, we will first run the
code to show the students what happens and what to expect when everything is
correct. Then we will step line-by-line through the code and explain to the students
what each line is doing, and how it affects the program. Finally, we will ask the
students to write their own version of the program provided and ask them to play
around with the parameters and inputs. Some of the changes implemented by the
students will cause errors. This will allow the student to go back and figure out
where they went wrong. However, some of the changes might produce a good and
unexpected result. Using our example in Figure 8, let’s say that during one of these
sessions, a student changes some parameters and suddenly discovers that they have
found a way to change the direction of their object. The original code only had the
object moving up and down, however, with just a small change in the code, a student

might be able to discover the code needed to make their object move left to right.

In my opinion, by writing code through trial and error, the student is allowed
to use their imagination and their own intuition to make their program even better
than what it was once before. The student will learn how to implement new results,

while at the same time learn where they may have gone wrong when errors occur.

33

By providing a working piece of code for the student to work with, and then
introducing errors, we have given them the tools to be creative, without the added
stress of asking them to create a program entirely from memory. The working code
and the error-ridden code will be there to reinforce their knowledge and help them

to better their programming skills.

3.4.1 Lesson Plan Example for Section 3.4

As shown in Figure 8, Lesson 5 has the student learning how to make their ball
move up. There is no further discussion on how a student might make the ball move
in a different direction. The goal of this workbook is to provide the student with
enough information that they can figure out what line of code needs to be changed,

and then change this line to experiment with different parameters.

34

LESSON 5:

ANIMATING AN OBJECT

There are 2 simple additions that must be made in order to
make our ball move up. First, we must¢ change our original
draw function. If you remember, our original draw function
looked something like this:

def draw(self)
pass

This picce of code really didn’t do anything, but now we’re
going to add some action to it, Instead of rass, we'll add this
one line:

def draw(self)
pass self.canvas.move(self.id, 0, -1)

then pass it 3 parameters. The firs¢ parameter is the circle
we created before labeled sc1f. id, The second parameter is
where we tell the ball to move left or right, and finally, the
third parameter is to tell the ball to move up or down, Our
code is currently telling our ball to move up | pixel,

(What this line does is call the move function on canvas, and

Figure 8: Lesson 4 Example

The red circle in Figure 8 is showing us the explanation given for this line. We
have purposely told the student that this line is where we tell the ball what direction
to move; however, we only provide the up direction for our sample code. It is up to

the student to figure out what needs to be done in order to change the direction. The

35

questions for this section are the areas in which the student will change parameters.

These questions are shown in Figure 9 below.

LESSON 5:

ANIMATING AN OBJECT

We've already seen what happens when we run the code, so
now, let’s take these 2 lines we learned about and add them to
our own program. Once you have compiled and run your code,
answer the following questions.

Question 1: What parameter would you have to change to
make the ball go down? €Change the parameter and run your
code to describe what happens.

Question 2: What parameter would you change to make the
ball go left or right? Change the parameter and run your code
to describe what happens.

Question 3: What happens if | change the speed at which the
ball moves from 1 pixel to 25 pixels? Change the parameter
and run your code to describe what happens.

Question 4: What happens if you forget to include the line
‘vall.draw ()’in your main function? Change the parameter
and run your code to describe what happens.

Figure 9: Lesson 4 Questions

Questions 1 and 2 ask the students to figure out how to change the direction of
their ball. If they have read the explanation on slide 23 (Figure 8), they will find a
discussion on how to make their ball move left, right, or down, although the code to

do that is not explicitly given to them. It is up to them to figure that part out. There

36

may be errors as the students try different inputs, but there may be a discovery as
well. Aside from making their ball go up, down, left, or right, the students may
happen upon the parameters that they need to make the ball go diagonal. This can
only happen if the student decides to put a value in both parameters. Increasing the
value will also increase the speed at which the ball travels, another gem that we
purposely did not provide the students. These examples were not discussed in the

hope that the students will discover them on their own.

Question 4 asks the student to purposely remove a key line in their code and
then describe what happens when they run the code. This may not cause an error,
but it will cause the program to not run correctly. This question is there to make
sure the students know what to expect and how to fix it if the issue should ever

come up again.

3.5 The Paddle Battle! Activity Workbook

We’ve already seen some examples of what the activities will look like in the
workbook in the previous section. We will now discuss what each lesson will

include, the layout of the workbook overall, and how to use it.

Instructors are expected to let the students program their own programs with
as little assistance as possible. The explanations in the beginning of each lesson will
be taught by the instructor, but students are expected to take those explanations,
and the templates provided to create their own version of the game called Paddle
Battle! The code for the Paddle Battle! Game is an adaptation of the code found in

the book titled Python for Kids by Jason R. Briggs [10]. There are a few changes to

37

the original code to make the game a little easier to explain and program, as well as

to rid the original program of any excess code. For a more visual and thorough
reference, please refer to APPENDIX A: The Paddle Battle! WorkbooK for the

activity workbook.

3.5.1 Introduction

In the beginning of the activity workbook the student is introduced to the main
character of the Paddle Battle! Game named Mr. Bounce. Mr. Bounce is a colorful
character who has decided that he would like to teach our students how to program
his favorite game Paddle Battle! Mr. Bounce understands that programming can be

difficult at times, so he starts the students off with the basics of Python.

3.5.2 Lesson 1: Paddle Battle in Action! (15 min.)

Lesson 1 is the first, and most important lesson to get the students started. The
instructor is expected to run the completed and error-free code for the students to
watch and see what they should expect when their version of the game is complete.
At this point in time, the instructor will not provide any explanations on the actual
lines of code. This lesson is just to introduce the students to the game, and then ask
them to answer a few questions on what the game does while it runs. This particular
lesson should only take about 15 minutes to allow for adequate time viewing the
code in action, and answering the questions provided in the workbook. The
following lessons will be where the instructor will start getting into the explanations

of code, but in much smaller segments.

38

3.5.3 Lesson 2: Building a Canvas (30 min.)

In this lesson, students are introduced to the tkinter package. This package is what
makes the entire program work. Students will be shown eleven lines of code for this
section. When complete, these lines of code actually do a lot to prepare the program
for future code that will be introduced earlier, even though all that happens is a
window appears. Just like Lesson 1 before, the instructor will run the snippet of
code to show the students what to expect. The instructor will then go line-by-line
and explain what each line of code is doing. Finally, after all explanations are
complete, the students will be asked to write their own code modeled after the code
given and explained to them earlier. This lesson should take about 30 minutes to

complete.

While the students are writing and running their programs, the instructor is
expected to walk around and assist students who are struggling. Students are
encouraged to change and experiment with any parameters in their code. Once the
students have completed their small program, and it runs correctly, the students are
then expected to answer questions on what happens to the program when they
change specific parameters given in the workbook questions for Lesson 2. These
questions are to ensure that students actually understand the concepts and

fundamentals of the lines of code they were just introduced to.

3.5.4 Lesson 3: Drawing an Object, PartI (45-50 min.)

Now that the students have a small piece of working code for their Paddle Battle!

Game, they will now continue to build on it by creating their first character in this

39

lesson. Lesson 3 introduces the concept of the class and the object. Once again,
students will be shown what the working code will do when run. Instructors will
then go line-by-line and explain the 8 lines of code that will be introduced, as well as
explain where in their existing code, these lines will be located. The students will

then need to write their own code into their own programs and answer questions.

The first question asks the students to describe what happened when they
got any errors and to explain why they think they happened. The remaining
questions are modeled to see if the students understand what certain lines of code
actual do. There are already explanations that the instructor will give that provide
hints on what the lines specifically do, so the answers to these questions should not
be difficult to implement and answer. Because the students are learning new
concepts, this lesson should take about 45 -50 minutes to complete to allow for

adequate time for questions.

3.5.5 Lesson 4: Drawing an Object, Part II (30-45 min.)

In this lesson, students will be expected to write about 95% of the code with little
instruction. The Paddle class that they need to create is essentially the Ball class that
they just created with one minor change. The change they will need to do is to create
arectangle instead of an oval. This lesson should take anywhere between 30-45
minutes to complete, especially if the students understand that the classes are

fundamentally the same.

40

3.5.6 Lesson 5: Animating an Object (20 min.)

To make Mr. Bounce move, we simply need to add 3 lines of code. Although these
lines of code are very short and simple, they contain a lot of information that the
instructor must explain thoroughly. The instructor will run the new sample of code
and then explain the lines accordingly. Students will write their own program and
then answer the questions that follow. These questions will ask the students what
parameters they would need to change in order to achieve a particular action. These
questions are written with the hope that the students will stumble upon code that
will not be introduced by the instructor or this workbook. The hope is that the
students will discover new and interesting things they can do with their programs,
such as figuring out how to make their ball move left and right. This lesson should

only take about 20 minutes to explain and complete.

3.5.7 Lesson 6: Movement and Collision Detection (60 min.)

This is the lesson where the students will actually learn how to implement
animation, collision detection, speed control, and determining movements. This
lesson is highly critical to the body of the student’s game. The lesson will take
roughly 60 minutes to complete. The students will be given about half of the code
for this lesson, but they will be asked to write their own pieces in question 2.
Explanations given by the instructor should be precise and methodical. Instructors
must answer as many questions as possible that pertain to collision detection. It is
imperative that they understand that concept, especially because it will help them to

progress in the next lesson.

41

3.5.8 Lesson 7: Adding Movement with Keyboard Inputs (60 min.)

In this lesson, the students will be learning how to make an object move through the
use of events such as pressing a key on a keyboard. The students will be expected to
program a significant portion of this section, but those lines of code that pertain to
using events will be given to the students. By the time they have completed this
lesson, which should take about 60 minutes, they will have a ball that bounces
around the screen, and a paddle that moves from side to side. The following lesson

is where we will test their skills and see if they can complete the game.

3.5.9 Lesson 8: On Your Own (60 min. x 3)

By the time the students get to this lesson, they should have the tools they need to
make what they have so far into a real game. The three questions in this section are
programming questions. All three questions build on the code that they have
generated thus far; however, these questions are written to have them develop the
game more with little instruction. Each question in this lesson should take at least
60 minutes to complete. Although the answers seem easy to implement, this is really
the first time we are asking the students to think about and develop their own code

without actually walking them through what they need to do.

3.6 The Paddle Battle! Instructor’s Manual

The instructor’s manual contains all the code needed as the students step through
the workbook. Each lesson’s code is provided, and sample answers are provided for
the questions. For the On Your Own section, the code is provided with some

descriptions as to what the students will need to know in order to complete these

42

questions; however, there really should be little help given for answering these
questions. These questions were chosen specifically so that the students would have
a somewhat complete game to work with, but still have pieces of it that they need to
implement. Their game will not really be a game until they implement the first 2

questions of the lesson. The third question is more of an added bonus if they can get

it. For a more visual and thorough reference, please refer to APPENDIX B: The

Paddle Battle! Instructor’s Manual for the instructors manual.

43

Chapter 4

Future Work and Conclusions

4.1 Future Work

This thesis is a proposal for AOLME to continue to introduce more complex, but
interesting topics to teach their students. If the AOLME group accepts this approach
discussed in this report, future work will comprise of revising and improving the
activity workbook. Instructors will be taught how to use the workbook by
implementing the activities themselves so that they may draw on their experiences,

as well as provide ideas on how to make it better.

Other future work will be to create other workbooks for more complex topics.
A pong-like game is just the start of game programming using Python. There are
additional capabilities within Python that can create more complex and interactive
games. Workbooks can be created in order to teach these complex topics, but never

shy away from being written and explained as simply as possible.

Lastly, a possible introduction to 3D environments could be considered for
teaching students how to program. Originally, AOLME thought that perhaps this was
the way to go, especially because the students were asking for more interactive and
visual programming using 3D characters. Unfortunately, in order to introduce 3D
objects, the students need to have a thorough understanding of angles, geometry,
and intense mathematical reasoning that goes beyond middle-school mathematics.

AOLME students use algebra and topics such as coordinate systems to develop their

44

programs. In order to introduce 3D programming, AOLME will have to develop a set
of lessons that explain the different mathematical topics that the students will need
to know in order to create their 3D images. Future work for this potential topic
would be the lessons on mathematics, as stated above, as well as very simple
programs for the students to create after they have become comfortable with the

new mathematical subjects.

4.2 Conclusion

There are many introductory programming environments that are GUI-based and
interactive. To provide access to computing practices, there needs to be an
understanding of how programs operate at the source code level. The way to
introduce source-code level programming is by providing an environment that
engages the student and allows them to learn actual material using a general-
purpose programming language. By using Python, and introducing programming
concepts through the creation of games, we are able to keep the interest of the
students while teaching them how to program using a programming language that

will support their growth on and understanding of computing practices.

45

APPENDIX A: The Paddle Battle! Workbook

Advancl'ns
Qut-of-School
Learning in
Mathematics and
Engineering

PADDLE
BATTLE!

A Python Introduction
to Game Programming

46

o]
o]
o]
o]
o]
o]
o]
o]
o]
o]
o]

TABLE OF CONTENTS

Introduction

Lesson 1: Paddie Battle in Action!

Lesson 2: Building a Canvas
Lesson 3: Drawing an Object, Part |
Lesson 4: Drawing an Object, Part Il
Lesson 5: Animating an Object

Lesson 6: Movement and Collision Detection

Lesson 7: Adding Movement with Keyboard Inputs
Lesson 8: On Your Own

Conclusion
References

47

INTRODUCTION

Hi There!

Welcome €o your first lesson in
programming exciting games in Python! In this
workbook we are going to learn how to create
new and sensational things using Python, and in
the end, we will write our very own simple
game using all the things we learned, and of
course, starring me! But first, let’s star¢ off
with the basics!

~ Mr. Bounce

48

LESSON1:

PADDLE BATTLE IN
ACTION!

In this exercise, let’s take the Paddle
Battle! code we gave you and run it to see what
happens. Be prepared to answer the five questions
on the following page.

@

49

LESSON1:

PADDLE BATTLE IN
ACTION QUESTIONS!

o Question I: What does the ball do?
Question 2: What does the paddie do?

Question 3: What happens when the ball hits the sides or
the top of the window?

Question 4: What happens when the ball hits the paddie?

Question 5: What happens if the ball hits the bottom of the
window?

50

LESSON 2: m

BUILDING A CANVAS

In order €0 star¢ programming our own game,
we must first understand the basics that make
the program work. Our first lesson is on a
package called cxinters tkinteris a
package in Python that allows you ¢o make a
drawing board called a canvas,in order to
create all the wonderful characters and
animations you dream up. Let’s look at the
example code from the Paddle Battle! program
on the next page and run it to see what
happens.

51

LESSON 2:

BUILDING A CANVAS

. from tkinter import *
. import random
. import time

« tk = "Tki()

tk.title("Paddle Battlel!™)

. tk.resizable(0, 0)

. tk.wm attributes("-topmost", 1)

9. canvas = Canvas(tk, width=500, height=500)
10.canvas.pack ()

11.tk.update()

s NNENS e MU G L RT=NI 7 I O I

Before we build our own canvas, let’s explore the code line-by-line.

Explanation

This line is where we import the t kinter
from tkinter import * package. Now we will be able to use all of
the tools form tkinter to make our
Paddie Battle game.

Here we are importing the randomn
import random package. This package will be discussed
more and used a little later in our
workbook.

Here we are importing the tine package.
This package, like ~=ndcm, will be
discussed more and used a little later in
our workbook.

52

LESSON 2:

BUILDING A CANVAS

from tkinter import *
. import random
. import time

« tk = "Tki()

tk.title("Paddle Battlel!™)
tk.resizable(0, 0)

. tk.wm attributes("-topmost", 1)

9. canvas = Canvas(tk, width=500, height=500)
10.canvas.pack ()

11.tk.update()

s NNENS e MU G L RT=NI 7 I O I

Before we build our own canvas, let’s explore the code line-by-line.

Explanation

Here we are building a « object so that we
can create our window,

. Here we are using the - object we created
tk.title("Paddle Battle i) | jp the line above so that we can give our
new window a hame,

This line sets how big our window can be
hofeiizablelh W resized. In this case, (0,) pixels means
that the window is not r<si zeable, and
cannot be changed horizontally or
vertically.

53

LESSON 2:

BUILDING A CANVAS

. from tkinter import *
. import random
. import time

« tk = "Tki()

tk.title("Paddle Battlel!™)

. tk.resizable(0, 0)

. tk.wm attributes("-topmost", 1)

9. canvas = Canvas(tk, width=500, height=500)
10.canvas.pack ()

11.tk.update()

s NNENS e MU G L RT=NI 7 I O I

Before we build our own canvas, let’s explore the code line-by-line.

Code Explanation

. This line may seem confusing, but all
thovm_attributes ("—topmost”, 1) | thigs line is doing is making sure that
when our game window loads, that it
loads over all the other windows (-
topmost)e

canvas = Canvas(tk, width=500, Here we are creating a canvas object

st ghc=Sniy and giving it some parameters. We
give it the + - object, and then give it
a height and width of -~ 00 pixels as
it's window size,

This line tells the window to follow the
Ganvasipack() parameters we gave it in the line
above.

This line tells the tkinter library to
th.update 6 prepare itself for animations to come.

54

LESSON 2:

BUILDING A CANVAS

from tkinter import *
import random
import time

« tk = "Tki()

tk.title("Paddle Battlel!™)
tk.resizable(0, 0)

. tk.wm attributes("-topmost", 1)

9. canvas = Canvas(tk, width=500, height=500)
10.canvas.pack ()

11.tk.update()

s NNENS e MU G L RT=NI 7 I O I

Now that we have gone through each line of code, and understand what
each line does, lets run this piece of code to again to see it in action,

Question 1: What happens when we run this code?

Now, let’s write our own code using the above code as an example. Be
sure to ask questions if you run into trouble, and remember, if you get
an error, go back and compare your code to see where you may have went
wrong. No error is a bad error. Once you have written your own program,
run it and then try answering these questions.,

Question 2: Let’s change the width of the canvas to 30, and our height to
300, and then run our code. Describe what happens

Question 3: Remove the line that says “canvas.pack ()", and then run
your code. Describe what happens.

55

LESSON 3: m

DRAWING AN OBJECT,
PARTI

Now that we have made our window for our own
Paddle Battle! game, we ¢an now move on €o
more difficult topics such as creating the ball
and making it move. In this lesson we will be
writing our own class for our ballLA class
is a part of the program that defines a type of
object. A class performs tasks, calculations, and
provides information that an object of the class
will need once it is created. Let’s run our
sample code now to see what happens!

Class Ball

56

LESSON 3:

DRAWING AN OBJECT,
PARTI

def init (self, canvas, color):

class Ball:

self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25, 25, fill=color)

self.canvas.move (self.id, 250, 250)

def draw(self):
pass

Before we build our own ball, let’s explore the code line-by-line. There are
quite a few new concepts introduced in this small piece of code. Make
sure and pay attention to the explanations given for each line.

Line # Code Explanation

In this line, we are simply naming our
clags Balls class. Make sure when you name a class or
variable, that you name it something with
meaning so you know what it’s for later
on,

When we have this line in our code, we are
initializing our function, or -1=s= Ball,
In the parentheses, we are sending it
def init (self, canvas, three key things it will need in order to
color): initialize it. We send it itself, to create the
function, We then send it canvas, Which
we made earlier and will need it in order
to draw our ball, and lastly, we send it
color $0 We are able to set a color for
our ball,

In this line we are simply setting the
self.canvas = canvas object canvas we created earlier, to the

value of the parameters given by canvas.

57

LESSON2:

DRAWING AN OBJECT,
PART I

dat init i(=elf, canras=s, color) -
i o B o o s L

=elf . canras = canvas
S e ey ey e eyl

=elf.id = canvas.create oval (10, 10, Z5,

==]lf canra=s move iself 14, Z50, ZZ0)

def drawi=elf)] -
b i ol

pPass

Line 4 above is an interesting line, Here we call our crezce oval
funccion, You need €0 give creatce oval § parameters in erder for it
to weork cerrectly. We need €0 supply = and - ceerdinates for the top
and betcom of the oval s¢ we know hew big our circle will be, and its
coler. In this case, the = and v coordinates for the top are 1 o,and -
for the bettom. This tells us that the circle we are creating will fit inte a
rectangle defined by these coordinaces, like the example below. We will
set the colox fer our ball a little later,

There are alse many shapes you can make such as create rectangle
amM create polvoomcreate rectancle Will draw a rectangle,
aM create polvgon allews you o draw your own shape using

parameters you give it

58

LESSON 3:

DRAWING AN OBJECT,
PART I

def init (self, canvas, color):

class Ball:

self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

def draw(self):
pass

Code Explanation

‘ This line is where we tell our program
e, °an‘2’§3'mg‘5’§)‘self'1d' where we would like the ball to be drawn

) on our canvas. We give it our object -,
and the pixel coordinates where we want
id drawn (250, 250)s

def draw(self): This line creates our - function so
that we can draw our ball

This line is just to move the code on. More
code will be added as we develop our
game,

59

LESSON 3:

DRAWING AN OBJECT,
PARTI

Now, if we ran this code as it is, we would see that our ball does not
appear on the screen, That's because we are missing a key line like the
one below:

Line # 10: ball = Ball{(canvas, ‘red’)

This line is where the magic happens. We’ve set our class Ball:

equal to it’s object ba11 and then given it canvas as a parameter (so
we ¢an draw on the canvas) and the color we want our ball to be. There
are many other colors you can choose such as green and blue, just
explore to find more!

However, there is one more thing we need to program, and that is our
main function. A main function or loop is what controls all the things we
created in our program. Right now, all we need our main function to do is
make sure the window stays open until we close it, and make our ball
appear. So we introduce the following code at the end of our program:

Line # Code Explanation
This is the start of a . 1= loop. A loop
1 while 1: is a function that repeats an action until
the set parameter is met. This particular =
o loop runs until we close the window.
: 12 tk.update_idletasks() This line tells our program to update the >

window from time to time.

This line is from our previous code we

13 tk.update wrote earlier, It tells the « kinter library
to prepare itself for animations to come.
14 time.sleep(0.01) This line tells - <inter to redraw itself

and then sleep for © .01 seconds.

& : 'll ' \\\\/j; > : il

60

LESSON 3:

DRAWING AN OBJECT,
PART I

After all is said and done, we can now add the Ball class to the sample
code from before, The sample code should now look like the code below,
Lines added have a comment next ¢to them in green,

from tkinter import *
import random
import time

tk = Tk()

tk.title ("Paddle Battle!!")
tk.resizable (0, 0)

tk.wm_attributes ("-topmost™, 1)

canvas = Canvas (tk, width=500, height=500)
canvas.pack()

tk.update ()

class Ball: # Lesson 3 code
def init (self, canvas, color): # Lesson 3 code
self.canvas = canvas # Lesson 3 code
self.id = canvas.create oval (10, 10, 25, 25, fill=color) # Lesson 3 code
self.canvas.move (self.id, 250, 250) # Lesson 3 code

def draw(self): # Lesson 3 code
pass # Lesson 3 code

ball = Ball(canvas, ‘red’) # Lesson 3 code

while 1: # Lesson 3 code
tk.update_idletasks() # Lesson 3 code
tk.update() # Lesson 3 code
time.sleep(0.01) # Lesson 3 code

Now that we have a working example, and have seen how the program
works, let’s add the code we learned about in this lesson to our existing
code from Lesson 2. Remember, if you get any errors while you are
trying to program your own class, use the sample code as a guide. Once
you have completed your program, answer the questions on the following

61

LESSON 2:

DRAWING AN OBJECT,
PART I

Question I: If you get errors when you compiled, please list some of them
here and tell me why you think they happened.

Question 2: Mr. Bounce loves the color ‘red’y but today he wants to wear
green. What line of code would you change to make him green? Change
the parameter and run your code to describe what happens.

Question 3: What if Mr. Bounce wants ¢to be bigger in the game? What line
of code would you have to change in order to make your ball bigger?
Change the parameter and run your code to describe what happens.

Question 4: What happens if we change the position of where our ball is
drawn to 250, 2007 €Change the parameter and run your code to

describe what happens.

62

LESSON 4: m

DRAWING AN OBJECT,
PART Il

Now that we’ve created Mr. Bounce, it’s time to
introduce his adversary, the Paddle. We have
already learned how to create objects on our
canvas. In this lesson, you will create your own
paddie by simply looking at the code we used
when we made the ball. The only difference,
Paddle is a rectangle, not an oval. Let’s run our
sample code and see what happens!

63

LESSON 4:

DRAWING AN OBJECT,
PART Il

def init (self, canvas, color):

. class Ball:

self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25, 25, fill=color)

self.canvas.move (self.id, 250, 250)

def draw(self):
8. pass
The Ball and Paddle classes will be very similar, Le¢’s start by creating
and adding our own Paddle class after the Ball class in our code. Use the
Ball class code above as a model for what your Paddle class will look like.

Question I: If we want to create a rectangle instead of an oval, what line
do you think we should change? Write the line and show the changes.

The line that should be changed is the crcate oval line on line 4. The
new line should look like the following:

self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)

Make sure and experiment with the size of your paddie by changing the
% and y coordinates inside the crcate rectangle function. Figure out
which size paddle is best for your game!

Question 2: We should also position our new paddie in a different location
to make sure we aren’t covering up our Ball, What line should we change

if we want to change the position of our Paddle? Write the line and show

the changes.

64

LESSON 4:

DRAWING AN OBJECT,
PART Il

def init (self, canvas, color):

. class Ball:

self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25, 25, fill=color)

self.canvas.move (self.id, 250, 250)

def draw(self):
8. pass
The line that should be changed for Question 2 is the
self.canvas.move line on line 5. The new line should look like the
following:

self.canvas.move(self.id, 200, 300)

As with the rectangle parameters before, experiment with the position of
your paddie by changing the pixel coordinates inside the canvas.move

function. Figure out which position is best for your paddie!

Question 3: What happens if we run the code as it is now? Hint: We ran
the Ball class code once when we only had these lines. Do you remember
what happened? Run your code and describe what happens.

Question 4: What line are we missing in order to make the paddie appear
on our canvas? Hint:You might find an example of it in Lesson 3. Add the
line to your code and then run your program to describe what happens.

65

LESSON 4:

DRAWING AN OBJECT,
PART Il

As a guide, your code should now look something like the following:

from tkinter import *
import random
import time

tk = Tk()

tk.title("Paddle Battle!!"™)
tk.resizable (0, 0)

tk.wm_attributes ("-topmost™, 1)

canvas = Canvas (tk, width=500, height=500)
canvas.pack()

tk.update ()

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

draw(self) :
pass

class Paddle: # Lesson 4 code
def init (self, canvas, color): # Lesson 4 code
self.canvas = canvas # Lesson 4 code
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color) # Lesson 4

self.canvas.move (self.id, 200, 300) # Lesson 4 code

def draw(self): # Lesson 4 code
pass # Lesson 4 code

ball = Ball(canvas, ‘red’)
Paddle = Paddle(canvas, ‘blue’) # Lesson 4 code

while 1:
tk.update idletasks()
tk.update ()
time.sleep(0.01)

Lines added have a comment next ¢to them in oreen,

66

LESSON 5:

ANIMATING AN OBJECY

We now have a working program where we have
successfully drawn a ball and a paddie. However,
Mr. Bounce loves to dance and needs ¢o be able
to move. In this lesson we will learn how ¢o
make our ball move on it’s own using the code
we've already written, Let’s run our sample
code now to see what happens!

67

LESSON 5:

ANIMATING AN OBJECY

There are 2 simple additions that mus¢ be made in order ¢o
make our ball move up. First, we mus¢ change our original
draw function. If you remember, our original draw function
looked something like this:

def draw(self)
pass

This piece of code really didn’t do anything, but now we’re
going to add some action to it. Instead of rass, we’ll add this
one line:

def draw(self)
pass self.canvas.move(self.id, 0, -1)

What this line does is call the move function on canvas, and
then pass it 3 parameters. The firs¢ parameter is the circle
we created before labeled sc1f. id, The second parameter is
where we tell the ball to move left or right, and finally, the
third parameter is to tell the ball to move up or down. Our
code is currently telling our ball to move up | pixel.

68

LESSON 5:

ANIMATING AN OBJECY

The second ¢change we are going to add to our ¢ode is in our main
:ﬂ:utlon we ¢reated earlier. Our original main function looked like
(4

while 1:
tk.update idletasks()
tk.update ()
time.sleep(0.01)

Now we are going to add this line:
ball.draw()

This line tells the program to start performing all the actions you
just added in your - - function. In other words, it will tell your
program to start drawing your ball and then move it 1 pixel up.

Since we know tha¢ in order to make our ball move we need this
line, do you think that maybe we will need to do this for our
paddie as well? The answer is yes. Go ahead and add
paddle.draw() to your ¢ode as well. Adding this line won’t
make your paddie move, We still need to add code ¢to our Paddle
class to make it move. We’ll learn how to do that in Lesson 7.

69

LESSON 5:

ANIMATING AN OBJECY

We’ve already seen what happens when we run the code, so
now, let’s take these 2 lines we learned about and add them to
our own program. Once you have compiled and run your code,
answer the following questions.

Question 1: What parameter would you have to change to
make the ball go down? Change the parameter and run your
code to describe what happens.

Question 2: What parameter would you change to make the
ball go left or right? Change the parameter and run your code
to describe what happens.

Question 3: What happens if | change the speed at which the
ball moves from 1 pixel to 25 pixels? Change the parameter
and run your code to describe what happens.

Question 4: What happens if you forget ¢to include the line
‘ball.draw ()’ in your main function? Change the parameter
and run your code to describe what happens.

70

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

Now that we’ve created Mr. Bounce and the
Paddle, we're ready ¢o introduce some
movements. Right now in the sample, all that
Mr. Bounce does is go up and out of the screen.
This really isn’t very fun or interesting. In this
lesson we're going to discuss the topic of
collision detection. Collision detection is where

we figure out when our object crashes into or
hits another object. In our case, when Mr.
Bounce hits a wall or the Paddle, we want Mr.
Bounce to bounce away from it. Let’s run our
sample code and see what happens!

, A
X

71

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

Before we began adding in the code to make our ball bounce, let’s first
go line by line through the new code. This set of code is a lit¢tle more
difficult to understand. We will first discuss how to make the ball bounce
up and down without flying off the canvas. Then we will discuss how to
make the ball bounce around the whole canvas. As a guide, your code
should now look something like the code below.

from tkinter import *
import random
import time

tk = Tk()
tk.title{"Paddle Battlel ")
tk.resizable (0, 0)
tk.wm_attributes("-topmost"™, 1)

canvas = Canvas(tk, width=500, height=500)
canvas.pack()

tk.update ()

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

def draw(self):
self.canvas.move (self.id, 0, -1)

class Paddle:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move (self.id, 200, 300)

def draw(self):
pass

ball = Ball{canvas, ‘red’)
Paddle = Paddle(canvas, ‘blue’)

while 1:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update ()
time.sleep (0.01)

72

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

The first thing we want to be able ¢to do is make the ball move or bounce
without having it fly off our canvas. We’ll be dealing primarily with the
Ball class for our code changes in this lesson.

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

def draw(self):
pass

Ly
i
8.,
4.
B
6.
728
8.

The firs¢ thing we need ¢to do is create some new variables. These
variables will live in the def init function of the Ball class, after
line 5.

Line # Code Explanation

self.x = 0 This line is setting the variable = to the
value of .

self.y = -1 This line is setting the variable - to the
value of — 1.

self.canvas_height = This line is setting the variable
self.canvas.winfo height () | canvas height to the value of
winfo heighte winfo height
returns the value of the current height
of your canvas. Our canvas height is
500 pixels,

Question 1: What is the current height of your canvas?

73

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

Now that we have created our variables, we are going to add some code to
the draw function of the Ball class. In order to make the ball bounce,
and detect when it’s about to hit a wall, we need ¢o look at our canvas
like it is a graph with coordinates. We've already written the coordinates
for our oval variable sc1f. ic., Now we need to add some lines that will
determine the current x and y coordinates of an object, as well as
coordinates to determine when the ball has hit a wall,

Line #

Code

Explanation

self.canvas.move(self.id,
self.x, self.y)

Here we have replaced © and - | with the
new variables we created earliery sc1f.x
and self.ys

pos =
self.canvas.coords(self.id)

The pos variable created here will return
the = and - coordinates of any object drawn
on the canvas. In this line, the x and
coordinates of our oval variable, sc1f.id,
are returned. The oo s variable will return a
list of four coordinates in the format [:1,

vl, x2, y2le

pos[1] Is the value of the +1 coordinate.
In this if statement to the left we are
saying, “If the value of pos[1] is less than
or equal to 0, then s<1 £ . equals 1.* In
other words, if we hit the top of the canvas,
then stop moving up.

if pos([3] >=
self.canvas_height:
self.y = -1

pos[3] Is the value of the 2 coordinate.
In this if statement to the left we are
saying, ““If the value of pos[3] is greater
than or equal t0 canvas height, then
self.y = -1

74

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

Our Ball class should now look like the following code below. Lines with a
green comment are the lines added in this lesson so far

1 class Ball:

2 def init (self, canvas, color):

8, self.canvas = canvas

4. self.id = canvas.create oval(10, 10, 25, 25, fill=color)

B, self.canvas.move (self.id, 250, 250)

6 self. = n 6 e

7 self. : on ¢ &

8. self.canvas_height = self.canvas.winfo height () # Lesson 6 Code
9.
10 = def draw(self):

iz self.canvas.move (self.id, self.x, self.y) # L
12. pos = self.canvas.coords(self.id) # Lesson @

13. if pos[l] <= 0: # Lesson 6 Code

14. self.y = 1 # Lesson 6 Code

15 . if pos[3] >= self.canvas_height: # Lesson 6 Code
16. self.y = -1 # Lesson 6 Code

Now, let’s run your code so that you can answer the following questions.

Question 2: Right now we only have code that detects when the ball hits
the top or bottom of the window. What code would we need to add to
make sure that the lef¢ and right ends (x-axis) of the window are
detected by the ball? Add the lines of code you think you need, run your
code, and describe what happens. If you run into errors, describe those
as well,

Question 3: What do you think we need to do in order to get the ball to
move around the window, instead of just up and down? Make a guess.

75

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

In order to answer Question 3, we need to introduce a few more lines of
code to our program. These lines will essentially change the angle at
which the ball starts at. In other words, instead of having our ball start
it’s movement in a vertical direction, we are now going to start its

movement in a random direction,

Once again, the first thing we need to do is create some new variables

and edit a few others.

Line # Code

Explanation

6 starts =3, =2, -1,
(add before the <11 .x variable)

1I 2’

3]

Here we have created a variable called
startse starts Will have a list of 6
values inside of ity — =y —2y —14 1y 2y and 3.

random. shuffle(starts)
(add before the 1. x variable)

The random.shuffle function is called
on starts in this line so that we can
change the order of the values in starts
list. In other words, we choose a random
direction for our ball.

self.x starts[0]

The value of =c1 £.x is changed to
starts[0]« This sets = equal to whatever
value starts becomes after it is shuffled.

The value for =1 .y is changed to - to
speed up the direction of -~ for the ball.

Question 4: Why do we make the starts variable shuffle it’s values?

Question 5: What happens if | change the speed of v? Implement your
answer in your code, run it, and discuss what happens.

76

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

Question 6: The following page shows what your code should look like at
this point in time. Run your own code with the new inputs we just
discussed, and describe in detail what is happening in the space below. If
you run into any errors, describe them and discuss how you might fix
them,

77

LESSON 6:

MOVEMENT AND
COLLISION DETECTION

from tkinter import *
import random
import time

tk = Tk()
tk.title("Paddle Battlel!™)
tk.resizable (0, 0)

tk.wm_attributes ("-topmost", 1)

canvas = Canvas(tk, width=500, height=500)
canvas.pack()

tk.update ()

class Ball:
def init (self, canvas, color):

self.canvas = canvas
self.id = canvas.create oval (10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)
starts = [-3, -2, -1, 1, 2, 3] # Lesson 6 code
random.shuffle (starts) # Lesson 6 code
self.x = starts[0] # Lesson 6 code
self.y = -3 # Lesson 6 code
self.canvas height = self.canvas.winfo height () # Lesson 6 code
Question 2 Code

draw (self):
self.canvas.move(self.id, self.x, self.y) # Lesson 6 code
pos = self.canvas.coords(self.id) # Lesson 6 code
if pos[l] <= 0: # Lesson 6 code
self.y = 1 # Lesson 6 code
if pos[3] >= self.canvas_height: # Lesson & code
self.y = -1 # Lesson 6 code
Question 2 Code
Question 2 Code
Question 2 Code
Question 2 Code

class Paddle:
def init_(self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300)

def draw(self):
pass

ball = Ball (canvas, ‘red’)
Paddle = Paddle (canvas, ‘blue’)

while 1:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update ()
time.sleep(0.01)

78

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Now that we’ve created Mr. Bounce and the
Paddle, we're ready to introduce some keyboard
movements. We have Mr. Bounce moving along
the screen, but the Paddle does not move. Right
now, all the Paddle does is stay in one spot. In
order to make this into the begins of a game,
let’s add some movement controls ¢o the Paddle
using the keyboard! Let’s run our sample code
and see what happens!

79

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Before we began adding in the code to make our paddie move, let’s first
go line by line through the new code. We will be dealing mostly with the
Paddle class code. Below is what your Paddle class should look like so far.

class Paddle:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)
self.canvas.move (self.id, 200, 300)

def draw(self):
pass

L.
2.
3.
4.
B
<
FR
8.

This first thing we have to do is create 2 new functions inside our Paddle
class. These functions will be where we tell the paddie to move left or
right. These new functions will be added after the draw function.

Line # Code Explanation

10 def left (self, evt): This line is the start of our |- - function, The =t
inside the parentheses is a parameter that indicates
there will be some sort of event or action that will
make this function work. In our case, we want this
function to run when we hit the left arrow key.

This line sets the variable x to -, which means
when we click the left arrow key, the paddie will
move - pixels to the left,

def right(self, evt): This line is the same as line 10, but in this case, this
function will run when we hit the right arrow key.

Like line 11 above, this line sets variable = to ,
which moves the paddie - pixels to the right.

80

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

So, we've added our 2 new functions, but wait! We're using a variable that
doesn’t exist in our Paddle class!

Question 1: What variable are we using that we haven’¢ created ye¢?

Question 2: How would you create your variable, and where would it go in
your Paddle code? Write your code here, and tell me where you think it
should go. Run your code when you have completed this question and
describe what happens.

Question 3: We are also missing another variable that tells us the value of
the width of the window. Create this variable and tell me where it should
go. Hint: There is a similar variable that we created in the Ball class

81

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Now that we have created our 2 new functions and variables, we are now
ready to introduce movement through a keyboard event. We want the
paddie to move from left to right without leaving the window. You already
know how to determine whether your object has hi¢ a wall in the window,
so let’s add the code you need to your Paddle class. Take a good look at
the draw function in the Ball class below,

class Ball:

def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_oval(10, 10, 25, 25, fill=color
self.canvas.move(self.id, 250, 250)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
Question 2 Code, Lesson 6

draw(self) :
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[l] <= 0O:
self.y =1
if pos[3] >= self.canvas_height:
self.y = -1
Question 2 Code, Lesson
Question 2 Code, Lesson
Question 2 Code, Lesson
Question 2 Code, Lesson

Question 4: We only need to verify whether the paddie has hit the left or
right wall, so what code would you need to add to your Paddle draw
function? Hin¢, the answer to Question 2 from Lesson 6 will be helpful
here. Write your code, run your program, and describe what happens. If
you run into errors, describe those as well,

82

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Below is what your Paddle class should look like so far. Lines in blue are
lines of code added so far

class Paddle:
def init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color
self.canvas.move(self.id, 200, 300
#0 2 Cod Les i

W~y O W N

def draw(self):
C o 4

€

4
on 4 C

def left(self, evt):
self.x = -2 # Lesso

def right(self, evt): #
self.x = 2 # Lesson 7

The last thing we need ¢o do is ‘bind’ the new functions we created to
the left and right arrow keys. Binding in Python is where we make our
program run a function when a particular key is pressed on the
keyboard.You can even bind functions with mouse clicks. To bind our
functions with a keyboard event we will use the bind all function.
These lines will go a¢ the end of your Paddle init function.

Line # Code Explanation

8 self.canvas.bind_all(‘<KeyPress-Left>’, self.left) Thisline binds the
‘<KeyPress-Left>’event to
our 1= function we created
early in our Paddle class.

self.canvas.bind all(‘<KeyPress-Right>', self.right) Thls|lne b'nds the
‘<KeyPress-Right>’event to
our i gh+ function we created
early in our Paddle class.

83

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Below, and on the next page is what your code should now look like.

from tkinter import *
import random
import time

tk = Tk{()

Ekstitle ("Paddle: Batklel I'™)
tk.resizable(0, 0)

tk.wm_attributes ("-topmost"™, 1)

canvas = Canvas(tk, width=500, height=500)
canvas.pack ()

tk.update ()

class Ball:

def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25, 25, fill=color
self.canvas.move(self.id, 250, 250)
sharks =« [43; =2 —=Lp Ly 2Z; 3]
random.shuffle(starts
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height ()
Question 2 Code, Lesson 6

draw (self) :
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[l] <= 0:
selfy = 1
if pos[3] >= self.canvas_height:
self.y = -1
Question 2 Code, Lesson 6
Question 2 Code, Lesson 6
Question 2 Code, Lesson 6
Question 2 Code, Lesson 6

84

LESSON7:

ADDING MOVEMENT WITH
KEYBOARD INPUTS

Below, and on the next page is what your code should now look like.

class Paddle:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move (self.id, 200, 300)
Question 2 Code,
Question 3 Code,

def draw(self):

Question 4 Code,
Question 4 Code,
Question 4 Code,
Question 4 Code,
Question 4 Code,
Question 4 Code,

def left(self, evt):
self.x = -2 #

def right(self, evt):
self.x = 2 # Lesson

ball = Ball({canvas, ‘red’
Paddle = Paddle(canvas, ‘blue’)

while 1:
ball.draw()
paddle.draw()
tk.update_idletasks ()
tk.update()
time.sleep(0.01)

Question 5: Run your code now and describe what happens when the ball
hits the paddlie.

85

LESSON 8:

ON YOUR OWN

Programming Question I:

In Question 5 from Lesson 7, you found out that the ball goes straight
through the paddie. This is a problem, We can’t have a Paddie Battle!
game without a paddie that bounces the ball back. We’ve already gone
through how to do collision detection with the window walls. Use what
you have learned about detection to find out when the ball hits the
paddie.

Programming Question 2:

Right now, all the ball does is bounce around when it hits a wall or the
paddle. This isn’t much of a game if you can’t lose. What we need ¢o do is
make one of the walls a bad wall to hit. Use your knowledge of collision
detection to make the bottom of your window the wall that ends the
game.

Programming Question 3:

Now that you have figured out how ¢to make the ball bounce away from
the paddie, let’s make this game interesting. What line would you need to
change in order to make the balls speed go faster once it bounces away
from hitting the paddie?

86

CONCLUSION

You've completed your first ever Python game, We hope
you had fun! You now have the tools to create even more
exciting games like Asteroids or even a nifty Pacman
game! The sky is the limit! Remember to always
experiment with your code and try new things. And most
importantly, remember that no error is a bad error, You
can always learn amazing things from mistakes made!
Happy Programming

Sincerely,

Mr. Bounce and the Paddle

87

REFERENCES

Code for the Paddie Battle! Game adapted from:

o Briggs, l« Python for Kids: A Playful Introduction to
Programming No Starch Press, 1013,

Code explanations and definitions can be found at:

o Shipman, J,, “Tkinter 8.5 reference: a GUI for
Python” New Mexico Tech.
[http:/infohoest.nmt.edu/tcc/help/pubs/tkinter/web/inde
x.htm"o

88

APPENDIX B: The Paddle Battle! Instructor’s Manual

Advancing
Qut-of-School
Learning in
Mathematics and
Engineering

PADDLE
BATTLE!

A Python Introduction
to Game Programming

INSTRUCTORS
MANUAL

89

90

TABLE OF CONTENTS

Introduction

Lesson | Code

Lesson | Questions and Answers
Lesson 2 Code

Lesson 2 Questions and ANSWEIS -« -« -« -sremmmnnmnaning 71
Lesson 3 Code

Lesson 3 Questions and Answers
Lesson 4 Code

Lesson 4 Questions and Answers
Lesson 5 Code

Lesson 5 Questions and Answers
Lesson 6 Code

Lesson 6 Questions and Answers
Lesson 7 Code

Lesson 7 Questions and Answers
Lesson 8 Code, Questions, and Answers

o
o
o
o
o
o
o
o
o
o]
o
o
o
o
o
o

91

INTRODUCTION

This answer manual provides sample answers to the
questions asked in the Paddle Battle! workbook. Each
lesson start¢s off with a piece of code that the instructor
must¢ run and then explain line by line. Some lessons do
not provide any code and rely solely on what the
students have learned thus far. A¢ the beginning of each
lesson, the newly added code that will be provided in the
lesson to come is run so that the students can see how
their program progresses through each step.

92

LESSON 1 CODE:

from tkinter import * This lesson should take less than 15
i §of tel
LMPORE: SRANCOI, minutes to accomplish.

import time

tk = Tk() Show them the game and how it works,
tk.title("Paddle Battlel!l") then le¢ them answer the lesson questions

tk.resizable (0, O
tk.wm_attributes("-topmost", 1) a“"‘in""

canvas = Canvas(tk, width=500, height=500
canvas.pack()
tk.update()

class Ball:
def init (self, canvas, paddle, color):

self.canvas = canvas
self.canvas = paddle
self.id = canvas.create_oval (10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 250, 250
starts = [-3, =2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = =3
self.canvas_height = self.canvas.winfo_height()

self.canvas_width = self.canvas.winfo width()
self.hit bottom = False

some_function(self, pos):
paddle_pos = self.canvas.coords (self.paddle.id)
if pos[2] >= paddle pos[0] and pos[0] <= paddle pos[Z]:
if pos[3] >= paddle pos[l] and pos[3] <= paddle pos[3]:
self.x += self.paddle.x

return False

draw({self) :
self.canvas.move(self.id, self.x, self.y)
pos = self.canvas.coords(self.id)
if pos[l] <= 0:
self.y = 1
if pos[3] >= self.canvas_height:
self.hit_bottom = True
if self.some_function(pos) == True:
self.y = -1
if pos[0] <= O:
selfiy =1
if pos([2] >= self.canvas_width:
self.y = -1

93

LESSON 1 CODE (CONT.):

def init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move(self.id, 200, 300
self.x = 0

self.canvas_width = self.canvas.winfo_width()
self.canvas.bind all(‘<KeyPress-Left>’, self.left)
self.canvas.bind all(‘<KeyPress-Right>’, self.right)

draw(self) :
self.canvas.move(self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= O:
self.y = 0
if pos[2] >= self.canvas_width:
self.y = 0

def left{self, evt):
self.x = -2

def right(self, evt):
self.x = 2

ball = Ball(canvas, paddle, ‘red’)
Paddle = Paddle(canvas, ‘blue’)

while 1:
if ball.hit bottom == False:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update()
time.sleep (0.01)

94

LESSON 1 QUESTIONS AND ANSWERS

o Question 1: What does the ball do?

Sample Answer: The ball bounces around the screen, and also
bounces off the paddle.

Question 2: What does the paddie do?

Sample Answer: The paddie moves left ¢to right using the arrow keys.
If the ball hits the paddle, the ball bounces away.

Question 3: What happens when the ball hits the sides or the top of
the window?

Sample Answer: The ball bounces away from it.

Question 4: What happens when the ball hits the paddie?

Sample Answer: The ball bounces away from it.

Question 5: What happens if the ball hits the bottom of the window?

Sample Answer: If the ball hits the bottom of the window, then the
game ends.

95

LESSON 2 CODE:

from tkinter import *
import random
import time

= Tk ()
tk.title({"Paddle Battle!!"™)
tk.resizable(0, 0)
tk.wm_attributes("-topmost™, 1)

This lesson should take less than 30
minutes to accomplish.

Show them the what happens when the
code runs, explain the lines step by step in
following with the workbook, and then have
them answer the lesson questions accordingly.

canvas = Canvas(tk, width=500, height=500)

canvas.pack()
tk.update ()

96

LESSON 2 QUESTIONS AND ANSWERS.

o Question I: What happens when we run this code?

Sample Answer: A window appears with the title Paddle Battle!!

Question 2: Let’s change the width of the canvas to 30, and our
height to 300, and then run our code. Describe what happens

In order to answer this question, the student needs to change the
parameters in the following line:

canvas = Canvas (tk, width=500, height=500)

Sample Answer: The window gets very small,

Question 3: Remove the line that says ‘‘canvas.pack()’”’, and then run
your code. Describe what happens.

Sample Answer: The window isn’t the right size,

97

LESSON 3 CODE:

from tkinter import * This lesson should take less than 45
import random minutes to accomplish. This lesson introduces

ook ime a lot of material that is unfamiliar, so
P explanations may take longer.
= Tk () Show them the what happens when the
tk.title("Paddle Battle!!™) code runs, explain the lines step by step in
following with the workbook, and them have

e o L, them answer the lesson questions accordingly.

tk.wm_attributes("-topmost™, 1)
canvas = Canvas(tk, width=500, height=500)
canvas.pack()

tk.update ()

#The code below 1s the new code being added in Lesson 3 to the end of
Lesson 2’s code.

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval (10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

def draw(self):

pass

ball = Ball(canvas, ‘red’)

while 1:
tk.update idletasks()
tk.update()
time.sleep(0.01)

98

LESSON 3 QUESTIONS AND ANSWERS:

o Question I: If you get errors when you compiled, please list some of them here
and tell me why you think they happened.

Question 2: Mr. Bounce loves the color ‘red’, but today he wants to wear green.
What line of code would you change to make him green? Change the parameter
and run your code to describe what happens.

In order to answer this question, the student needs to change the parameters in
the following line from red to green:

ball = Ball(canvas, ‘red’)

Sample Answer: The ball turns green.

Question 3: What if Mr. Bounce wants to be bigger in the game? What line of

code would you have to change in order to make your ball bigger? Change the
parameter and run your code to describe what happens.

In order to answer this question, the student needs to change the parameters in
the following line of code. Do not tell them which parameters they need to fix,
let them try changing all of them until they find the right ones.

self.id = canvas.create oval (10, 10, 25, 25, fill=color)

Sample Answer: The parameters that need ¢to be changed are the x and y
coordinates for the bottom of the oval (i.e, (25, 25)).

Question 4: What happens if we change the position of where our ball is drawn
to 450, 2007 Change the parameter and run your code to describe what
happens.

In order to answer this question, the student needs to change the parameters in
the following line:

self.canvas.move(self.id, 250, 250)

Sample Answer: The ball is drawn closer to the right side of the window.

99

LESSON A CODE:

from tkinter import *
import random
import time

tk = Tk()

tk.title("Paddle Battle!!™)
tk.resizable(0, 0)

tk.wn_attributes ("-topmost™, 1)

Canvas (tk, width=500, height=500)
canvas.pack()

canvas =

tk.update ()

This lesson should take less than 45
minutes to accomplish. This lesson does not
introduce anything new, however, the students
are expected to write a large portion of this
¢ode on their own using the knowledge they
have gained from the previous lesson,

Show them the what happens when the
code runs, explain the lines step by step in
following with the workbook, and them have
them answer the lesson questions accordingly.

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10,
self.canvas.move (self.id, 250, 250)
def draw(self):
pass

class Paddle: # Lesson 4 code

25, 25, fill=color)

def init (self, canvas, color): # Lesson 4 code

self.canvas =
self.id =
self.canvas.move (self.id,

canvas.create rectangle(0,
200, 300)

def draw(self):
pass # Lesson 4 code

Lesson 4 code

ball = Ball(canvas,
Paddle =

‘red’)

Paddle (canvas,

while 1:
tk.update idletasks()
tk.update ()
time.sleep(0.01)

100

canvas # Lesson 4 code

0, 100, 10, fill=color) # Lesson 4 code

Lesson 4 code

‘blue’) # Lesson 4 code

LESSON 4 QUESTIONS AND ANSWERS:

o Question I: If we want to create a rectangle instead of an oval, what line do you
think we should change? Write the line and show the ¢changes.

Sample answer: The line that should change is the line below:

selif. id. = canvas soreate_evali(ll, 10, 25, 25, fill=color)y
10y self.id = canvas.create rectangle (0, €, 100, 10, fills=celor)
(Let them decide on their own parameters.)

Question 2: We should also position our new paddie in a different location to
make sure we aren’t covering up our Ball. What line should we change if we
want to change the position of our Paddle? Write the line and show the changes.

In order to answer this question, the student needs to change the parameters in
the following line:

self.canvas.move (self.id, 250, 250) fer the ball, to
self.canvas.move (self.id, 200, 300) for the paddle.

Question 3: What happens if we run the code as it is now? Hint: We ran the Ball
class code once when we only had these lines. Do you remember what happened?
Run your code and describe what happens.

Sample Answer: The paddie does not appear on the window.

Question 4: What line are we missing in order to make the paddie appear on our
canvas? Hint: You might find an example of it in Lesson 3. Add the line to your
code and then run your program to describe what happens.

In order to answer this question, the student needs to add the following line to
their code:

paddle = Paddle(canvas, ‘blue’)

101

LESSON 5 CODE:

from tkinter import * This lesson should take less than 20
import random minutes to accomplish. This lesson introduces
import time the first steps in making their object move,
There are only 3 lines that need to be

tk = Tk() introduced and discussed here.
tk.title("Paddle Battle!!")
tk.resizable(0, 0)

tk.wn_attributes ("-topmost™, 1)

canvas = Canvas (tk, width=500, height=500)
canvas.pack()

tk.update ()

Show them the what happens when the
code runs, explain the lines step by step in
following with the workbook, and them have
them answer the lesson questions accordingly.

class Ball:
def init (self, canvas, color):
self.canvas = canvas
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move (self.id, 250, 250)

def draw(self):
self.canvas.move (self.id, 0, -1) # Lesson 5 code

class Paddle:
def init [(self, canvas, color):
self.canvas = canvas
self.id = canvas.create rectangle(0, 0, 100, 10, fill=color)
self.canvas.move (self.id, 200, 300)

def draw(self):
pass

ball = Ball(canvas, ‘red’)
Paddle = Paddle(canvas, ‘blue’)

while 1:
ball.draw() # Lesson 5 code
paddle.draw() # Lesson 5 code
tk.update_idletasks()
tk.update ()
time.sleep(0.01)

102

LESSON 5 QUESTIONS AND ANSWERS:

o Question I: What parameter would you have to change to make the ball go down?
Change the parameter and run your code to describe what happens.

In order to answer this question, the student needs to change the parameters in
the following line:

self.canvas.move(self.id, 0, -1),%0,
self.canvas.move(self.id, 0, 1)

Question 2: What parameter would you change to make the ball go left or right?
Change the parameter and run your code to describe what happens.

In order to answer this question, the student needs to change the parameters in
the following line:

self.canvas.move(self.id, -1, 0) if] want to make the ball go left,
and self.canvas.move(self.id, 1, 0) if] want te make the ball go
right, As an added exercise, have the students see what happens when they have
a non-zero value in both parameters (ball goes diagonal).

Question 3: What happens if 1 change the speed at which the ball moves from |
pixel to 25 pixels? Change the parameter and run your code to deseribe what
happens.

In order to answer this question, the student needs to change the parameters in
the following line:

self.canvas.move (self.id, 0, -1),%0,
self.canvas.move(self.id, 0, -25)

Sample Answer: The ball moves up very quickly.

Question 4: What happens if you forget to include the line ‘ball.draw()’ in your
main function? Change the parameter and run your code to describe what
happens.

Sample Answer: The ball does net move at all.

103

LESSON 6 CODE:

from tkinter import *
import random
import time

tk = Tk ()

tkititle("Paddle Battle!!™)
tk.resizable (0, 0)
tk.wm_attributes("-topmost"”, 1
canvas = Canvas(tk, width=500,
canvas.pack()

tk.update()

height=500)

class Ball:

def init (self, canvas, color):

This lesson should take less than 60
minutes to accomplish. This lesson introduces
actual animation, collision detection, speed
control, and movements with angles. The
students are also expected program a portion
of this code on their own.

Show them the what happens when the
code runs, explain the lines step by step in
following with the workbook, and them have
them answer the lesson questions accordingly.

self.canvas = canvas
self.id = canvas.create_oval (10, 10, 25,
self.canvas.move(self.id, 250, 250
stapks = [F3; =2Z; -L; 15 25 3l
random.shuffle(starts) # Lesson 6 code
self.x = starts[0] # Lesson 6 code
self.y = -3 # Lesson 6 code
self.canvas_height =

self.canvas_width = self.canvas.winfo_width()

draw{self) :
self.canvas.move(self.id, self.x,
pos = self.canvas.coords{self.id)
if pos[l] <= 0: # Lesson 6 code
self.y = 1 # Lesson 6 code

self.y)

25,

self.canvas.winfo_height()

fill=color)

Lesson 6 code

Lesson 6 code

Lesson 6 code, Question 2

Lesson 6 code
Lesson 6 code

if pos[3] >= self.canvas height: # Lesson 6 code

self.y = -1 # Lesson 6 code
if pos[0] <= 0: # Lesson 6 code,
self.y = 1 # Lesson 6 code,

Question 2
Question 2

if pos[2] >= self.canvas width: # Lesson 6 code, Question 2
self.y = -1 # Lesson 6 code, Question 2

class Paddle:
def init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, O,
self.canvas.move(self.id, 200, 300

def draw(self) :
pass

ball = Ball (canvas,
Paddle = Paddle(canvas,

‘red”)
‘blue’)

while 1:
ball.draw()
paddle.draw()
tk.update_idletasks (
tk.update()
time.sleep(0.01)

104

100,

10, fill=color

LESSON 6 QUESTIONS AND ANSWERS:

o Question 1: What is the current height of your canvas?

In order to answer this question, the student needs to look at this line below:
canvas = Canvas(tk, width=500, height=500)

Sample Answer: The height of our canvas is 500 pixels.

Question 2: Right now we only have code that detects when the ball hits the top
or bottom of the window. What code would we need to add to make sure that the
left and right ends (x-axis) of the window are detected by the ball? Add the
lines of code you think you need, run your code, and describe what happens. If
you run into errors, describe those as well,

Sample Answer:

if pos[0] <= O:
self.y = 1

if pos[2] >= self.canvas width:
self.y = -1

Question 3: What do you think we need to do in order to get the ball to move
around the window, instead of just up and down? Make a guess.

Sample Answer: Make the ball start moving in a different direction.

Question 4: Why do we make the starts variable shuffie it’s values?

Sample Answer: So that the angle and direction of the ball is different every
time we start the game.

105

LESSON 6 QUESTIONS
AND ANSWERS (€ONT.):

o Question 5: What happens if we change the value of y? Implement your answer
in your code, run it, and discuss what happens.

In order to answer this question, the student needs to change the parameters in
the following line:

self.y = -3

Sample Answer: The ball speeds up.

Question 6: The following page shows what your code should look like at this
point in time. Run your own code with the new inputs we just discussed, and
describe in detail what is happening in the space below. If you run into any
errors, describe them and discuss how you might fix them.

106

LESSON 7 CODE:

from tkinter import *
import random
import time

tk = Tk()

tk.title("Paddle Battle!!™)
tk.resizable (0, 0)
tk.wm_attributes("-topmost"™, 1

canvas = Canvas(tk, width=500, height=500
canvas.pack()

tk.update ()

class Ball:
def init (self, canvas,

self.canvas = canvas
self.id = canvas.create_oval(10, 10,
self.canvas.move (self.id, 250, 250)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height =

color):

This lesson should take less than 60
minutes to accomplish. This lesson introduces
how to move an object using an event like
pressing a key. Events are introduced here, as
well as the students are expected to write a
portion of the code using the knowledge they
learned from lesson 6, question 2.

Show them the what happens when the
code runs, explain the lines step by step in
following with the workbook, and them have
them answer the lesson questions accordingly.

25,

25,

fill=color)

self.canvas.winfo_height()

self.canvas_width = self.canvas.winfo_width()

draw(self) :

self.canvas.move(self.id, self.x,

pos = self.canvas.coords(self.id)

1 pos[l] ==: i
self.y = 1

if pos[3] >= self.canvas_height:
self.y = —1

if pos[0] <= O:
self.y = 1

if pos[2] >= self.canvas_width:
self.y = -1

self.y)

107

LESSON 7 CODE (CONT.):

def init_ (self, canvas, color):
self.canvas = canvas
self.id = canvas.create_rectangle(0, 0, 100, 10, fill=color)
self.canvas.move (self.id, 200, 300)
self.x = 0 # Lesson 7 code, Question 2
self.canvas_width = self.canvas.winfo width(}) # Lesson 7 code, Question 3
self.canvas.bind_all(‘<KeyPress-Left>’, self.left) # Lesson 7 code
self.canvas.bind all(‘<KeyPress-Right>’, self.right) # Lesson 7 code

draw(self) :
self.canvas.move(self.id, self.x, 0) # Lesson 7 code, Question 4
pos = self.canvas.coords(self.id) # Lesson 7 code, Question 4
if pos[0] <= 0: # Lesson 7 code, Question 4
self.y = 0 # Lesson 7 code, Question 4
if pos[2] >= self.canvas_width: # Lesson 7 code, Question 4
self.y = 0 # Lesson 7 code, Question 4

def left(self, evt): # Lesson 7 code
self.x = -2 # Lesson 7 code

def right(self, evt): # Lesson 7 code
self.x = 2 # Lesson 7 code

ball = Ball{canvas, ‘red’)
Paddle = Paddle(canvas, ‘blue’)

while 1:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update ()
time.sleep (0.01)

108

LESSON 7 QUESTIONS AND ANSWERS:

o Question 1: What variable are we using that we haven’t ¢reated yet?

Sample Answer: The variable that we are using that isn’t defined yet for our
Paddle elass is the x variable.

Question 2: How would you create your variable, and where would it go in your
Paddle code? Write your code here, and tell me where you think it should go.
Run your ¢ode when you have completed this question and describe what
happens.

Sample Answer: The variable should look like the following: sc1f.x = 0, and
should be placed right after the following line in their code:
self.canvas.move(self.id, 200, 300)s

Question 3: We are also missing another variable that tells us the value of the
width of the window. Create this variable and tell me where it should go. Hint:
There is a similar variable that we created in the Ball ¢lass

Sample Answer: The variable should look like the following: se1f.canvas width
= self.canvas.winfo width (), and should be placed right after the variable x
that they just created in Question 2.

Question 4: We only need to verify whether the paddie has hit the left or right wall,
so what code would you need to add to your Paddle draw function? Hint, the answer
to Question 2 from Lesson 6 will be helpful here. Write your code, run your

program, and describe what happens. If you run into errors, deseribe these as well.

Sample Answer: The code that should be added to the draw function is the following
set of lines using the variables they have created in the previous questions:

def draw(self):
self.canvas.move (self.id, self.x, 0)
pos = self.canvas.coords(self.id)
if pos[0] <= O:
self.y = 0
if pos[Z] >= self.canvas width:
self.y = 0

109

LESSON 7 QUESTIONS
AND ANSWERS (€ONT.):

o Question 5: Run your code now and describe what happens when the ball hits the
paddie.

At this point, their ball should be bouncing around the screen, and they shouild
be able to move their paddie from left to right using the keyboard, One key
thing they should netice is that their ball passes through their paddie instead of
bouncing away from it.

110

LESSON 8 CODE, OUESTIONS, AND ANSWERS

o Programming Question I:

In Question 5 from Lesson 7, you found out that the ball goes straight through the paddie. This
is a problem. We can’t have a Paddie Battle! game without a paddie that bounces the ball back.
We've already gone through how to do collision detection with the window walls. Use what you
have learned about detection to find out when the ball hits the paddie.

This question should take about 60 minutes te figure out. In order for the ball to acknowledge
the paddie, the paddie must become a part of the Ball class, and change the line where they
create the ball object:

class Ball:
def init (self, canvas, paddle, color):

self.canvas = canvas
self.canvas = paddle
self.id = canvas.create_oval (10, 10, 25, 25, fill=color
self.canvas.move(self.id, 250, 250)
starts = [-3, =2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height()
self.canvas_width = self.canvas.winfo_width()

ball = Ball(canvas, paddle, ‘red’)

They must create a funetion that figures out when the ball has hit the paddie:

def some_function(self, pos):
paddle pos = self.canvas.coords(self.paddle.id)
if pos[2] >= paddle pos[0] and pos[0] <= paddle_pes[2]:
if pos[3] >= paddle pos[l] and pes[3] <= paddle pos[3]:
return True
return False

And they must add a line to their draw function in the Ball class that calls their new function so
that when the ball hits the paddle, it moves away:

def draw(self) :

self.canvas.move({self.id, self.x, self.y)

pos = self.canvas.coords(self.id)

if pos[l] <= 0:
self.y = 1

if pos[3] >= self.canvas_height:
self.y = -1

if self.some_function(pos) == True:
self.y = -1

if pos[0] <= O:
self.y = 1

if pos[2] >= self.canvas_width:
self.y = -1

111

LESSON 8 CODE, OUESTIONS, AND ANSWERS

o Programming Question 2:

Right now, all the ball does is bounce around when it hits a wall or the paddie. This isn’¢t much
of a game if you can’t lose. What we need to do is make one of the walls a bad wall to hit. Use
your knowledge of collision detection to make the bottom of your window the wall that ends the
game.,

This question should ¢take about 60 minutes te figure out. In order for the game to end, the
student needs to add the hit bottom ebjeet variable to their Ball class:

class Ball:
def init (self, canvas, paddle, color):

self.canvas = canvas
self.canvas = paddle
self.id = canvas.create oval(10, 10, 25, 25, fill=color)
self.canvas.move(self.id, 250, 250)
starts = [-3, -2, -1, 1, 2, 3]
random.shuffle(starts)
self.x = starts[0]
self.y = -3
self.canvas_height = self.canvas.winfo_height ()
self.canvas_width = self.canvas.winfo_width()
self.hit bottom = False

They need to change the main loop so that the game is constantly checking to see if the ball has hit
the bottom:

while 1:
if ball.hit_bottom == False:
ball.draw()
paddle.draw()
tk.update_idletasks()
tk.update()
time.sleep(0.01

And they must edit a line in their draw function in the Ball so it can deteet when the ball hits the
bottom, so it can end the game:

def draw(self):

self.canvas.move(self.id, self.x, self.y)

pos = self.canvas.coords(self.id)

if pos[l] <= O:
self.y = 1

if pos[3] >= self.canvas_height:
self.hit_bottom = True

if self.some function(pos) == True:
self.y = -1

if pos[0] <= 0:
self.y = 1

if pos[Z] >= self.canvas_width:
self.y = -1

112

LESSON 8 CODE, QUESTIONS, AND ANSWERS:

o Programming Question 3:

Now that you have figured out how to make the ball bounce away from the paddie, let's make
this game interesting. What line would you need to change in order to make the balls speed go
faster once it bounces away from hitting the paddie?

This question shouldn’t take long to figure out, but figuring out where ¢to put the line may take some
time. This question should take about 30-60 minutes to figure out. In order to answer this question,
the students must have first answered Programming Question I,

In the following function they ereated, the student must change the line in red:

def some function(self, pos):
paddle pos = self.canvas.coords(self.paddle.id)
if pos[2] >= paddle pos[0] and pos[0] <= paddle pos[2]:
if pos[3] >= paddle pos[l] and pos[3] <= paddle pos[3]:
return True
return False

self.x += gelf.paddle.x

This allows us to add the value of the x variable of the paddlie, to the value of the x variable of the
ball. So if the ball is travelling at a speed of 1, and it hits the paddie, which is ¢ravelling at a speed
of 3, then the ball will then bounce away at a speed of 4.

113

REFERENCES

1] Advancing Out-of-School Learning in Mathematics and Engineering.
g g g g
[http://aolme.unm.edu/]. 2013.

[2] deHaan,]., “5 best iPad apps to teach programming.” Technology with Intention. July
2012. [http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-

programming/].

[3] “Daisy the Dinosaur.” Mind Leap: Education Apps for Kids.
[http://www.mindleaptech.com/apps/daisy-the-dinosaur/].

[4] “What is Alice?” Alice: An Educational Software that teaches students computer
programming in a 3D environment.
[http://wwwe.alice.org/index.php?page=what is alice/what is alice].

[5] Alice. [http://www.alice.org/index.php].

[6] Cooper, S., Dann, W., Pausch, R., “Alice: A 3-D Tool For Introductory Programming
Concepts.” Technical Report. Stanford University.
[http://www.stanford.edu/~coopers/alice/ccscne00.PDF].

[7] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E,, Silver, |, Silverman, B., and Kafai,]., “Scratch: Programming
For All”. Journal Article. Communications of the ACM, Vol. 52, No. 11. November 2009.

[8] “Computer Programming/Hello world.”
[http://en.wikibooks.org/wiki/Computer Programming/Hello world#Scratch].

[9] Franklin, D, et. al, “Assesment of Computer Science Learning in a Scratch-Based
Outreach Program.” Technical Report.
[http://www.cs.ucsb.edu/~franklin/cv/pubs/sigcse13at.pdf].

[10] Briggs, J., Python for Kids: A Playful Introduction to Programming. No Starch Press,
2013.

[11] Cooper, S. Dann, W., and Pausch, R, “Teaching Objects-first In Introductory
Computer Science”. Proceeding. 34th SIGCSE Technical Symposium on Computer Science
Education. January 2003. http://portal.acm.org/citation.cfm?id=611966.

[12] Dourish, P, “Seeking a Foundation for Context-Aware Computing”. Journal Article.
Human Computer Interaction. 2001. http://www.dourish.com/embodied/essay.pdf.

114

http://aolme.unm.edu/
http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-programming/
http://www.techwithintent.com/2012/07/5-best-ipad-apps-to-teach-programming/
http://www.mindleaptech.com/apps/daisy-the-dinosaur/
http://www.alice.org/index.php?page=what_is_alice/what_is_alice
http://www.alice.org/index.php
http://www.stanford.edu/~coopers/alice/ccscne00.PDF
http://en.wikibooks.org/wiki/Computer_Programming/Hello_world#Scratch
http://www.cs.ucsb.edu/~franklin/cv/pubs/sigcse13at.pdf
http://portal.acm.org/citation.cfm?id=611966
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.dourish.com%2Fembodied%2Fessay.pdf

[13] Fernaeus, Y. and Tholander, J., “Collaborative Computation On The Floor”. Technical
Report. DSV, Stockton University, Sweden. 2003.
http://www.lkl.ac.uk/kscope/weblabs/papers/FloorProgramming Fernaeus Tholande

r.pdf.

[14] Mor, Y., and, Tholander, J. and Holmberg,]., “Designing For Cross-Cultural Web-
Based Knowledge Building”. Technical Report. The 10th Computer Supported
Collaborative Learning Conference. June 2005.
http://www.Iklac.uk/kscope/weblabs/papers/cscl-2005.pdf.

[15] Moskal, B. Lurie, D., and Cooper, S., “Evaluating the Effectiveness of a New
Instructional Approach”. Proceeding. 35th SIGCSE Technical Symposium on Computer
Science Education. March 2004. http://portal.acm.org/citation.cfm?id=971328.

[16] Celedon-Pattichis, S., Lopez Leiva, C., Pattichis, M., Llamocca, D., “An interdisciplinary
collaboration between computer engineering and mathematics/bilingual education to
develop a curriculum for underrepresented middle school students”. Cultural Studies of
Science Education Issue 3, Vol. 8. September 2013.

[17] National Research Council. (2011). “A framework for K-12 science education:
Practices crosscutting concepts, and core ideas”. Washington, DC: National Academy
Press.

115

https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2FFloorProgramming_Fernaeus_Tholander.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2FFloorProgramming_Fernaeus_Tholander.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fwww.lkl.ac.uk%2Fkscope%2Fweblabs%2Fpapers%2Fcscl-2005.pdf
http://portal.acm.org/citation.cfm?id=971328

	University of New Mexico
	UNM Digital Repository
	2-14-2014

	Lesson Plan and Workbook for Introducing Python Game Programming to Support the Advancing Out-of-School Learning in Mathematics and Engineering (AOLME) Project
	Cherish Franco
	Recommended Citation

	tmp.1472502609.pdf.KHpYI

