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Human hunting mortality threshold rules for
extinction in mammals (and fish)

Eric L. Charnov1,2 and Wenyun Zuo1

1Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA and
2Departament of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA

ABSTRACT

Question: Are there general life-history rules for exploitation-caused extinction of mammal
populations?

Mathematical methods: A population of size N faced with the added mortality of human
exploitation will deterministically go extinct if its per-capita birth rate can no longer match its
per-capita mortality rate as N approaches zero. We develop exploitation-extinction theory for a
mammal life history using R0 < 1 as N goes to zero, and combine the criterion with several facts
about mammal life histories.

Conclusions: Extinction results if the ratio of the instantaneous mortality rate caused
by hunting (F) divided by the adult instantaneous mortality rate (M, for the unexploited
population) exceeds a critical value (F/M > C). The C value is determined mostly by the level
of recruitment compensation as N declines, and C is likely very similar for different sized
mammals. We use existing mammal life-history data to estimate C (∼0.5). We then estimate
the threshold of instantaneous mortality rate, F, as a function of adult body mass, W; it’s
a −0.25 power allometry. Finally, we extend the model to fish. C is expected to vary a lot
between fish species, mostly because fish are expected to have much larger recruitment
compensation than mammals, the recruitment may correlate with body size, and immature fish
are often not exploited. We show how to combine these to predict C.

Keywords: exploitation-caused extinction, fisheries-extinction, life span allometry, mammals,
population recruitment.

INTRODUCTION

Animal populations may be driven extinct by human exploitation even in the absence of
other forms of habitat degradation. This simply requires that the added fishing/hunting
mortality overpower the added recruitment normally present as N → 0. Fishery scientists
have studied this, theoretically and empirically, for many years (e.g. Myers and Mertz, 1998;

Myers et al., 1999; Myers and Worm, 2005). In general, if a fishing fleet exploits several populations
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(stocks) simultaneously, the less productive stocks may well be driven extinct. ‘Less
productive’ is always a combination of low adult mortality rates and poor ability of juvenile
recruitment to increase the adult population as N becomes small. In this paper, we build
upon – and extend – these deterministic extinction ideas to a mammal-like life history
(see also Brook and Bowman, 2005). We use existing life-history data for mammals to produce
quantitative rules for extinction in mammals due to over-exploitation. Finally, we discuss
how mammals and fish differ.

DETERMINISTIC EXTINCTION THRESHOLD MODEL

An unexploited animal population of size (or density) Nu has birth rates = death rates or, for
continuous time reproduction, b ·S� = M, where M = adult instantaneous mortality rate,
b = daughters produced per mother per unit of time, and S� = the proportion of b who
survive to become reproductive adults at age α. S� ·b is termed the recruitment per adult
(or just recruitment), which at Nu equals M as the population is not growing. For simplicity
we assume b and M are independent of adult age. We reserve the symbols b and S� for the
b and S values at the equilibrium (unexploited) population size, Nu.

When the population is not at Nu denote the recruitment as S*b*. There is much evidence
(Fowler, 1981, 1987, 1988; Myers et al., 1999) to support the idea that S*b*is a declining function of N,
while M is independent of N. Thus if we push the population below Nu, S*b*will be > S� ·b,
recruitment will exceed mortality and the population will grow, driving S*b*back down to
S� ·b. As N approaches zero, S*b*will approach its highest value, which we shall write
as B ·S� ·b; thus B is the amount we must multiply equilibrium recruitment by to reach
maximum S*b*at N near zero. We use the symbol B to denote the boost in recruitment as N
approaches zero. We leave undetermined whether S or b – or both – show this density
dependence (but see below).

The ratios (S� ·b)/M and (B ·S� ·b)/M are the average number of daughters (surviving
to age α) produced over the adult life span (called the ‘net reproductive rate’, R0, by
demographers) in the stable and rarified populations, respectively, since 1/M is the average
adult life span. At Nu, b ·S� = M, so R0 = 1. As N → 0, recruitment (B ·S� ·b) rises to its

maximum, thus, R0max =
B ·b ·S�

M
= B, and R0max is simply the multiplicative increase in the

recruitment per adult as N becomes small.
Now, put the population at Nu and impose an added hunting/fishing mortality with its

own instantaneous mortality rate of F. If F falls on all ages, the new total adult mortality
rate increases to M + F, while survival to α is now decreased by an e−F ·� multiplier. R0 in this

newly exploited Nu population is immediately decreased since R0 now equals 
S� ·b ·e−F ·�

M + F
< 1.

The population will thus decline, and as it does so recruitment (S*b*) will increase. The
population will go extinct if the R0 associated with this exploited population remains < 1 as

N approaches 0, or if 
B ·S� ·b ·e−F ·�

M(1 + F/M)
< 1, which implies:

e
−

F

M
�M

1 + F/M
<

1

R0max

. (1)
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If F/M satisfies this inequality, the population will deterministically go extinct. Clearly, the
threshold F/M, here denoted as C, can be found by solving the following equation:

e−C ·�M

1 + C
=

1

R0max

. (2)

If C < F/M, the population is doomed to extinction. Clearly, species with the same α ·M
and R0max values have the same C. α ·M is known to average about 0.6 in mammals and to be
independent of adult body size (Charnov, 1993; Purvis and Harvey, 1995; Fig. 2b shows these 1995 data). R0max

is not known with much precision for mammals, but the data that exist place its central
value near 2–3, with no correlation with body size (Fowler, 1981, 1987, 1988). The following
argument shows why these small R0max values are expected for mammals. S� ·b in mammals
cannot increase too much, because S� is already quite high [estimated to be 0.3–0.4 (Charnov,

1993)], and b is expected to be highly dependent upon adult body size, which is not expected
to change much as N changes. If b is fixed, R0max can only reflect the increase in S� at low N,
and the maximum S� is, of course, one. Probably, maximum S� is far below 1 (say, 0.6–0.8),
rather limiting R0max to the range of 2–3. Figure 1 shows the extinction threshold, F/M = C,
for various values of R0max and α ·M: the threshold is C = 0.49 if R0max = 2 and α ·M = 0.6,
which means if F/M > 0.49, species go extinct.

Note again that this extinction rule is a demographic, life-history variable, threshold rule.
This will also imply a body size extinction rule since M is, on average, related to body mass
(W) in mammals.

Fig. 1. The F/M critical value (C) for various values of α ·M and R0max; at the average α ·M of 0.60,
C = 0.49 if R0max = 2. C is well approximated by k ln(R0max) and the dashed line shows the approxima-
tion for α ·M = 0.60, which makes k = 0.71.
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Now, suppose all species have the same threshold C: species go extinct if F/M > C.
Further suppose that M decreases with adult mass, W, according to a quarter power
allometry, ln M = ln A − 0.25 ln W, where A is a coefficient. Figure 2a shows the most
precise data set for mammals (Purvis and Harvey, 1995): ln M = −0.38 − 0.25 ln W (units are kg,
years). This, combined with F > 0.49M, implies that ln F > −1.09 − 0.25 ln W is required for
extinction, a threshold W for any fixed F; all species larger than the threshold go extinct.
Since there is variation in M at any fixed W (Fig. 2a), species with low M at any W may
still go extinct even if the average species at that W does not (the reverse applies for species
with relatively high M at any W). For example, primates have very low M at any W
compared with typical mammals (Charnov and Berrigan, 1993), and thus we expect them to be more
prone to extinction at any F and W. Of course, species with low recruitment compensation
(equation 1, Fig. 1) are also more likely to go extinct at any F. Elsewhere (Zuo et al., submitted)

we have used a version of these rules to help understand the late Pleistocene extinction
of mammals.

DISCUSSION

The argument developed here is a continuous time version of similar discrete time
arguments used to understand the risk of exploitation-caused extinction in fisheries (Myers

and Mertz, 1998; Myers et al., 1999; Myers and Worm, 2005), although in the discrete time versions the final
extinction rules are much less transparent than equation (1). Fish differ from mammals in
four important ways. First, fish generally have much higher b, or smaller S, which means
that the recruitment increase (B) at low N is not restricted to the range 2–3, but can be
several times higher (Myers et al., 1999). It really does not matter that b is age/size dependent for
fish since the recruitment response can be captured simply with the increase in B (Myers and

Mertz, 1998; Myers et al., 1999; Myers and Worm, 2005). However, since exploitation cuts down on the
number of older, more fecund individuals, it may negatively impact B (called ‘recruitment
over-fishing’). Second, the α ·M value in equation (1) is ∼2 for fish (Charnov, 1993), about three
times the mammal value. This decreases C from the mammal value at any fixed R0max

(Fig. 1). Third, not all juvenile fish are available to be caught; equation (1) for a fish
exploitation theory where only some of the juveniles are available to be caught simply
multiplies the α ·M of equation (1) by the fraction of α that includes catchable juveniles. For
example, if only the oldest 0.33 of the juveniles can be caught, the exponential term in
equation (1) may be written as

e
−

F

M
·0.33�M

1 + F/M
<

1

R0max

.

Fourth, the R0max (= B) value may be larger for larger bodied species, since they generally
have larger b, smaller S, and thus have more scope for recruitment to rise as N becomes
small.

All of the above combine to make fish extinction rules, both the C values, and the average
body size rules more complex. For example, M also declines with W across species of fish
(e.g. Charnov, 1993), but since R0max may rise with W, it is not always clear if large bodied species
are expected to be more prone to extinction at any fixed F; it depends upon the balance of
these two factors that push C in opposite directions (see Fig. 1). One suspects that larger
bodied species are more at risk, since the smaller M must generally overpower the larger
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ln R0max. Figure 3 shows contours of equal extinction threshold (C) values for various
fractions of exploitable juveniles and R0max.

The formalism could be applied to other situations, such as birds on islands;
we emphasize mammals simply because the M allometry and other needed numbers are
best known for mammals. The formalism might also be useful for other sources of added
mortality, such as new competitors, predators or disease, perhaps with invasive species.
These cases might be more complicated if the added mortality also impacts recruitment or
various age classes in ways other than developed here. The formalism probably will not be
useful if the impact also degrades the general environment, something common with
human impacts; we need to think in terms of F, M or R0max. Of course we have nothing
useful to say about community-level impacts of exploitation-caused extinction; individual
species formalisms such as equation (1) are mute on things like trophic cascades, and
the like.

The extinction criterion used here is equivalent to using F to drive the maximum intrinsic
rate of increase (rmax) to zero (e.g. Charnov, 1993, equation 6.4b; Brook and Bowman, 2005); clearly, F = rmax

at its threshold value (if juveniles are fully exploited). The use of R0 < 1 is simply easier than
working with the full characteristic equation. For stochastic extinction rules, see Lande
et al. (2003).

Fig. 3. Fish have R0max values much larger than mammals and juvenile fish are often not exploited in
the way that adults are. This figure plots the contours of equal C (F/M threshold) values for these two
variables, assuming equation (1) can be used for fish. The C value is rather sensitive to the proportion
of non-exploitable juveniles.
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