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Abstract

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the

inherent sensitivity of a laser’s frequency to the parameters of its cavity. Intracavity

interferometry is orders of magnitude more sensitive than its extracavity alternatives.

This dissertation improves on previous free-space proof-of-concept designs. By im-

plementing the technique in fiber optics, using optical parametric oscillation, and

investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement

techniques, IPI has become more applicable and sensitive.

Ring and linear IPI configurations were realized in this work, both operating

as bidirectional fiber optical parametric oscillators. The benefit of using externally

pumped synchronous optical parametric oscillation is the removal of the sensor dead

band region and simplification of the sensing cavity. These two lasers, along with the

theoretical work found in this Dissertation, will facilitate future fundamental studies

of sensor noise and sensitivity enhancement.
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Chapter 1

Introduction

The work covered in this thesis has been carried out during historic times that included

2 laboratory moves, a pandemic, and nationwide riots. Despite these worldwide and

local challenges I am happy to present the following representation of my work as

a researcher working under the direction of Dr. Jean-Claude Diels. My time in the

group began as that of a utility researcher. I aided my colleagues on projects of

filamentation, titanium-sapphire laser development, Ultrafast metrology, software

development, and data analysis. The majority of that work has been documented

elsewhere [2–5]. This dissertation will focus on the work I completed, largely, alone.

The research summarized here revolves around the ultrafast metrological method

termed “Intracavity Phase Interferometry” (IPI). This method is an active interfer-

ometry method that uses a single cavity for common noise rejection. Additionally, by

using pulses instead of continuous wave (cw) fields, the frequency locking caused dead

band is eliminated. This thesis starts with a general overview of frequency combs

in chapter 2. While the topic of frequency combs is not new, it is imperative to the

understanding of IPI and will be developed in a fairly novel way. Chapter 3 introduces

the measurement technique and gives it a solid theoretical foundation, while chapter

4 outlines the experimental realization of the technique as a bidirectional fiber optic

parametric oscillator. Chapter 5 reviews the theoretical work that was completed

surrounding sensitivity enhancement of IPI. Finally, chapter 6 discusses a Genetic
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Algorithm that was developed as a software resource.

The scientific advancements represented by this dissertation can be broken into

three categories: experimental, theoretical, and numerical. Experimentally, IPI was

successfully realized in fiber using optical parametric oscillation in both ring and

linear configurations. Theoretically, IPI was analyzed in a novel way that allowed

consideration of sensor enhancement. The lasers and corresponding theory that has

been developed will facilitate future studies of IPI enhancement that include quantum

squeezing and intracavity dispersion tailoring. There are also fundamental questions

of laser noise and instability that are developed in the theoretical sections that the

experimental apparatuses are primed to explore. Finally, the software tools developed

throughout this work including the genetic algorithm, frequency comb simulations,

and noise analysis, will be invaluable to future studies.
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Chapter 2

Frequency Combs

2.1 Introduction

In order to fully understand the method of Intracavity Phase Interferometry (IPI),

the optical phenomenon of frequency combs must be well understood. Thus, a proper

introduction is required. It should be noted that a frequency comb is a special form

of pulsed lasing that involves the interference of laser modes and therefore has unique

characteristics. There are other forms of pulsed lasing, such as Q-switching, that

operate under different principles and therefore do not share the same properties or

derivations described here.

A frequency comb, as the name implies, is an optical signal which has equally

spaced frequency components (like the teeth of a hair comb). One of the important

characteristics of such a comb is that these frequency teeth are rigorously equally

spaced so that they can be used as a very precise ruler in frequency space [6]. The

qth frequency tooth of a comb with a round trip time of τrt can be expressed as,

νq = f0 + qνrep, (2.1)

where f0 = φp/2πτrt is known as the carrier-to-envelope offset (CEO) frequency and

can be interpreted as the offset from zero of the first frequency tooth of the virtual

extended comb. Note that φp is the pulse to pulse phase shift which will be described
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in detail in section 2.3. Each subsequent tooth, q, is separated by a distance (in

frequency space) defined by the repetition rate νrep = 1/τrt.

To create such a signal in frequency a repetitive series of light pulses in time,

termed a pulse train, must be made. A simple method to show this relationship

mathematically is to first create a train of Gaussian pulses in time, Etr(t), by

convoluting a Gaussian pulse, Ẽ(t) = e−(t/tg)
2

, with the Shah (comb) function,

III(t) =
∞∑

n=−∞
δ(t− n/νrep) [7, 8], such that,

Etr(t) = Ẽ(t) ~ III(t). (2.2)

The Gaussian width parameter, tg, is related to the full width half max by 2
√

ln(2)tg =

t1/2. To observe this pulse train in the frequency domain, the Fourier transform (FT),

F{}, is taken:

Etr(Ω) = F{Etr(t)}. (2.3)

The convolution property states that the FT of a convolution is equivalent to the

multiplication of the FTs of each individual distribution,

F{Etr(t)} = F{Ẽ(t) ~ III(t)} = F{Ẽ(t)} ·F{III(t)} = Ẽ(Ω) · III(Ω). (2.4)

Since the FT of a Gaussian is just another Gaussian and the FT of the Shah function

is another Shah function, it is easy to see that Eq. (2.4) describes a comb of delta

functions that are modulated by a Gaussian envelope. While this method easily

displays how a pulse train leads to a frequency comb, it hides a lot of the important

specifics. In particular, it gives no insight into what defines the width of each frequency

tooth.

2.2 From a pulse to a comb

A more rigorous approach involves doing away with the Shah function and building up

the pulse train from scratch. A single Gaussian pulse with a center carrier frequency,
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ω, can be written Ẽ(t) = Ẽ(t)eiωt. Where Ẽ(t) = e−(t/tg)
2

is the same Gaussian

amplitude described previously. The pulse train is then expressed as a sum,

Etr(t) =

p∑
q=0

Ẽ(t− qτrt)eiω(t−qτrt). (2.5)

This is a train of p identical pulses that are separated in time by τrt. To calculate

the FT, the convolution theory is invoked again but in reverse (from product to

convolution),

Etr(Ω) = F{Etr(t)} = F

{
eiωt

p∑
q=0

Ẽ(t− qτrt)e−iqωτrt
}

(2.6)

= F{eiωt}~ F

{
p∑
q=0

Ẽ(t− qτrt)e−iqωτrt
}

. (2.7)

The sum rule of integration allows the FT integral to be applied individually to each

summation component such that,

Etr(Ω) = δ(Ω− ω) ~
p∑
q=0

e−iqωτrtF
{
Ẽ(t− qτrt)

}
. (2.8)

The FT can be solved analytically by completing the square in the exponent and

carrying out a Gaussian integral. The result is,

Etr(Ω) = δ(Ω− ω) ~ tg
√
πe
−
(
tgΩ

2

)2 p∑
q=0

e−iqτrt(Ω−ω). (2.9)

Applying the sifting property of the convolution leads to the pulse train taking the

form 1,

Etr(Ω) = tg
√
πe
−
(
tg(Ω−ω)

2

)2 p∑
q=0

e−iqτrt(Ω−2ω). (2.10)

The sum can be simplified with a finite geometric series so that,

Etr(Ω) =

[
tg
√
πe
−
(
tg(Ω−ω)

2

)2] 1−
[
e−iτrt(Ω−2ω)

]p+1

1− e−iτrt(Ω−2ω)
. (2.11)

1The convolution is commutative so Eq. (2.9) can be written as, f(Ω) ~ δ(Ω − ω) =∫
f(τ)δ(Ω−ω− τ)∂τ = f(Ω−ω), such that the delta function convolution is replaced with

the variable substitution of Ω→ Ω− ω, where, f(Ω) = tg
√
πe
−
(
tgΩ

2

)2 ∑p
q=0 e

−iqτrt(Ω−ω).
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As can be seen in the numerical evaluation of Eq. (2.11) displayed in Fig. 2.1, this

expression describes a series of pulses with widths that are inversely related to the

length of the sum p. This series of frequency pulses is modulated by a Gaussian

envelope centered at ω with a width of 2/tg. This approach shows explicitly that
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Figure 2.1: Left: Plot of a frequency comb using Eq. 2.11 with tg = 0.01, ω = 500,
τrt = 0.3, and p = 10. Right: Plot of a single frequency tooth using the same
parameters, but with different numbers of round-trips: p = 2(blue), p = 5(orange),
p = 10(yellow), p = 100(purple).

the frequency bandwidth is inversely proportional to the pulse width in time, the

frequency tooth spacing is inversely proportional to the round-trip time, and the

width of each frequency tooth is inversely proportional to the length of the pulse

train, which is typically set by the coherence length of the laser.

Even this approach, however, is not rigorously correct in terms of a true laser

system. In fact, most of the nuances have been hidden away by describing the pulse

train in the form of Eq. (2.5). To explain this we need to think more explicitly about

how a laser creates a circulating pulse in its cavity.

2.3 Including dispersion

A laser cavity has a specific number of longitudinal modes that are allowed to oscillate

according to the resonant condition, ωq = 2πqc/nL, where q is an integer which has a
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range defined by the gain bandwidth, c is the speed of light and nL is the optical path

length (index of refraction, n, multiplied by the cavity length, L). In order to create

a pulse in time, all of these oscillating modes need to have a fixed phase relationship

such that they constructively interfere in one location and deconstructively interfere

everywhere else. This is known as mode-locking. If the index of refraction is the same

for all frequencies then each longitudinal mode and the resultant pulse propagate

together i.e. the group (pulse) and phase (longitudinal mode) velocities are equal.

This is not generally the case in a physical laser. In a typical laser, the index of

refraction (and therefore the optical path length) is dependent on frequency. This is

known as dispersion. What this means is not only does the pulse envelope walk-off

from the underlying frequency phases, but the longitudinal modes are no longer

equally spaced. There is a contradiction here. In order to have a pulse train, one

needs a comb of equally spaced frequency modes, and I have just explained that in a

real laser the allowed longitudinal modes do not follow this restriction. But, it has

been experimentally proven that pulse trains and frequency combs exist. It turns out

that a complicated dance between dispersion and nonlinear effects occurs within the

gain and mode-locking elements to maintain a single coherent optical pulse, known

as a soliton [6, 9].

Instead of trying to describe all of the complicated dynamics involved, let’s work

backwards from the experimental fact that a frequency comb exists. Ideally the

spectral domain is described by Eq. (2.1), which converting to angular frequency

leads to,

ωq = 2πf0 + 2πq/τrt, (2.12)

Again, these are resultant frequency modes that have no relation to the cold cavity

longitudinal modes. The phase picked up by each mode at every round-trip is then,

ωqτrt = 2πτrtf0 + 2πq. (2.13)

This means that at every round-trip the underlying modes slip from the pulse envelope

by an amount of,

φp = 2πτrtf0. (2.14)
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This also means we need to update the pulse train Eq. (2.5) to reflect the phase

slippage,

Etr(t) =

p∑
q=0

Ẽ(t− qτrt)ei(ωt−qφp). (2.15)

This represents an underlying central frequency mode, ω, that is regularly sampled

with a Gaussian envelope such that the underlying mode slips from the peak of

the envelope by an amount, φp, each pulse. This is why f0 has been termed the

carrier-to-envelope offset frequency. This phase slippage can also be interpreted as

caused by the difference between the average phase and group velocity. To see this

let’s rearrange Eq. (2.12) to be,

f0 =
ωq
2π
− q

τrt
. (2.16)

The propagating pulse by definition reconstructs itself every round trip so that the

average group velocity is defined as,

vg = L/τrt. (2.17)

It is again important to emphasize that this group velocity is not the textbook ∂Ω/∂k

quantity, but an effective velocity governed by nonlinear cavity effects. The phase

velocity is defined as vp = λν 2, where 2πν = ω. The qth resonant mode of a cavity

has a wavelength of λq = L/q, so that the phase velocity becomes,

vp = Lωq/2πq. (2.18)

Rearranging clearly shows the relationship between the CEO and dispersion:

f0 =
ωq
2π
− q

τrt
=
q

L

(
vp − vg

)
. (2.19)

Note that this definition is solely for demonstration purposes as it depends on which

mode is chosen to calculate the phase velocity, while Eq. (2.14) is independent of this

choice. Nonetheless, Eq. (2.19) clearly shows that the CEO frequency is sensitive to

changes in the phase velocity of light. As will be explained in the next chapter, It is

this sensitivity on which the method of IPI is based.

2This λ is the wavelength in the material. In other words, if λ0 is the vacuum wavelength,
then λ = λ0/np, where np is the average phase index.
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Chapter 3

Intracavity Phase Interferometry:

Theoretical Background

3.1 Introduction

Intracavity Phase Interferometry (IPI) is a sensing technique that involves implement-

ing an interferometer inside of a laser cavity. Thorough descriptions and theoretical

analysis of the technique have been carried out previously [10], so only a brief de-

scription will be given here. Most measurement techniques use the laser as a black

box and simply use the output radiation to investigate some external phemonenon.

By placing the measurement inside of the laser cavity itself, the sensitivity can be

increased by orders of magnitude. Instead of reading the measurement out as an

amplitude fringe that is vulnerable to environmental noise, IPI interference occurs

inside of the laser cavity which is realized as a frequency shift that can be read out

as a beat frequency.

To implement IPI, there must be two counter-propagating electric fields lasing

inside of a single cavity. One field is affected by the natural phenomenon to be inves-

tigated while the other serves as a reference. Because the two fields observe different

optical paths, they will have slightly different lasing frequencies. By extracting each
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field from the cavity and interfering them on an external detector (the fields must

have the same repetition rate), their frequency difference can be observed as a beat

frequency.

Due to coupling based injection locking, a laser has difficultly sustaining two

continuous-wave (cw) lasing fields that are slightly detuned from one another [11–13].

To avoid this difficulty, pulsed electric fields are used in place of cw. The method can

then be understood in the framework of frequency combs.

Two counter-propagating pulses of light can be represented in the frequency

domain as two frequency combs. Because they are propagating in the same cavity,

they have correlated noise and when no measurement is taking place each frequency

comb is identical. When the phenomenon to be measured is introduced into the cavity

such that it only affects one of the pulses, that frequency comb’s CEO frequency

is shifted causing the measurement to become the interference of two shifted (but

same repetition rate) frequency combs (see Fig. 3.1). The beat frequency can then be

Figure 3.1: An intracavity differential phase shift between two lasing pulses
causes their CEO frequencies, f0,1 and f0,2, to be slightly shifted from each other.
Nonlinear effects within the cavity leaves their repetition rates, νrep = 1/τrt,
unchanged such that interfering the pulses in time on an extracavity detector
displays a beat frequency equal to the difference in their CEO frequencies.

interpreted as the frequency difference between the two CEO frequencies, and thus

proportional to the external perturbation that caused the shift.
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3.2 The laser as a 2-level system

In order to more fully understand how this sensing technique operates, a model of how

the electric fields develop inside of the cavity can be developed from first principles.

A system of two counter-propagating electric fields in a laser can be described by

their so called coupled-mode equation (CME) [14]. This can be developed from first

principles i.e. Maxwell’s equations governing all electric fields:

∇ ·D = ρf Gauss’ Law (3.1)

∇ ·B = 0 Gauss’ Magnetism Law (3.2)

∇× E = −∂B
∂t

Faraday’s Law (3.3)

∇×H =
∂D

∂t
+ Jf Ampere’s Law (3.4)

Applying the curl (∇×) to both sides of Faraday’s law and simplifying (distributive

property and curl of curl identity) leads to,

∇(∇ ·E)−∇2E = −∇× ∂B

∂t
. (3.5)

Since the curl and time derivative operators commute (as any mixed partial derivative

should), they can be interchanged on the right-hand-side:

∇(∇ ·E)−∇2E = − ∂

∂t
(∇×B) . (3.6)

The constitutive relation between the magnetic flux density, B, and the magnetic

field strength (or magnetic auxiliary field), H, is,

B = µ0(H +M)

= µ0(H + χmH)

= µ0(1 + χm)H

= µH.

(3.7)

As an aside, keep in mind that H is the magnetic field in vacuum and B is the total

magnetic field. This seems to be opposite of the electric field where E is the field in

vacuum and the auxiliary displacement field, D, is the total field. In a non-magnetic
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material like the one we will consider here, µ = µ0. Also, since it can be assumed

that the light will propagate in a dielectric, free current can be ignored, Jf = 0. This

allows us to plug Ampere’s law into Eq. 3.6:

∇(∇ ·E)−∇2E = −µ0

∂

∂t

∂D

∂t
. (3.8)

The constitutive relations for the displacement and electric field are,

D = ε0E + P

= ε0E + PL + PNL

= ε0E + ε0χ
(1)E + PNL

= ε0(1 + χ)E + PNL

= εE + PNL.

(3.9)

Here we consider a linear medium so that PNL = 0. This means, since ρf = 0 in the

dielectric, that ∇ ·D = ∇ · εE = 0. Using the second equality of Eq. 3.9 results in

Eq. 3.8 taking the form,

∇2E − µ0ε0
∂2E

∂t2
= µ0

∂2PL

∂t2
. (3.10)

Finally, µ0ε0 = 1/c2, which leads to the wave equation,

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2PL

∂t2
. (3.11)

Other relations that may be useful include,

εr = ε/ε0 = 1 + χ (3.12)

µr = µ/µ0 = 1 + χm (3.13)

n2 = εrµr. (3.14)

From here the slowly-varying mode equation can be derived by starting with the

1-Dimensional Ansatz,

E(z, t) =
1

2
Ẽ(z, t)ei(kz−ωt), (3.15)
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so that ∇ → ∂
∂Z

in the wave equation (plane-wave approximation). From Eq. 3.9 we

know that PL = ε0χE. The wave equation is now,

∂2E

∂z2 −
1

c2

∂2E

∂t2
=
χ

c2

∂2E

∂t2
. (3.16)

One thing not mentioned in the section above is the fact that since we are in an

absorbing medium, χ is actually complex. In this case we will specify that n be the

index of refraction, or the real part of χ. The constitutive relations can be refined

(inserting µr = 1 since the dielectric considered here is non-magnetic),

χ = χr + iχi (3.17)

εr = ε/ε0 = 1 + χr (3.18)

n2 = εr. (3.19)

Eq. 3.16 can be rearranged,

∂2E

∂z2 −
1 + χr

c2

∂2E

∂t2
= i

χi

c2

∂2E

∂t2

∂2E

∂z2 −
n2

c2

∂2E

∂t2
= i

χi

c2

∂2E

∂t2
.

(3.20)

Using the Ansatz of Eq. 3.15 and the chain rule results in (dropping the explicit z

and t amplitude dependence for brevity of notation),1

∂2E

∂t2
=

1

2

∂2Ẽ
∂t2

ei(kz−ωt) − iω∂Ẽ
∂t
ei(kz−ωt) − 1

2
ω2Ẽei(kz−ωt) (3.21)

∂2E

∂z2 =
1

2

∂2Ẽ
∂z2 e

i(kz−ωt) + ik
∂Ẽ
∂z
ei(kz−ωt) − 1

2
k2Ẽei(kz−ωt). (3.22)

Invoking the slowly varying envelope approximation (SVEO) means that ∂2Ẽ/∂t2 =

∂2Ẽ/∂z2 = 0 so Eq. 3.20 becomes,

ik
∂Ẽ
∂z

+ i
n2ω

c2

∂Ẽ
∂t

+

(
n2ω2

2c2 −
1

2
k2

)
Ẽ =

ωχi

c2

∂Ẽ
∂t
− iω

2χi

2c2 Ẽ . (3.23)

Setting the wavenumber (also known as the propagation constant) to be k = nω/c,

causes the first order term on the left-hand-side to become zero such that we must

1There is a shortcut that can be used by noticing that the LHS of Eq. 3.16 can be

decomposed into left and right propogating waves: ∂
2
E

∂z
2 − 1

c
2
∂

2
E

∂t
2 =

(
∂E
∂z −

1
c
∂E
∂t

) (
∂E
∂z + 1

c
∂E
∂t

)
.

This significantly simplifies the math and leads to the same Eq. 3.26.
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keep the second order ∂E/∂t term. This is not the case on the right-hand-side where

the first order term remains and suppresses the effect of the second-order term i.e.

(ωχi/c
2)(∂Ẽ/∂t)� (iω2χi/2c

2)Ẽ . Rearranging leads to,

ik
∂Ẽ
∂z

+ ik
n

c

∂Ẽ
∂t

= −ik
2χi

2n2 Ẽ (3.24)

∂Ẽ
∂z

+
n

c

∂Ẽ
∂t

=
kχi

2n2 Ẽ . (3.25)

In order to avoid explicitly calculating χ, we will define an effective propogation

constant β = kχi/n
2 in addition to recalling that n = c/v.

∂Ẽ
∂z

+
1

v

∂Ẽ
∂t

=
β

2
Ẽ . (3.26)

This is known as the slowly varying wave equation since the fast varying phase term

has been removed such that the equation describes the evolution of the slowly varying

complex amplitude, Ẽ .

Many recent publications display a coupled-mode equation in time such that an

equivalence can be made to the Schrödinger equation [15–22]. In order to convert

Eq. 3.55 to depend only on time, the spatial derivative must be converted to a time

derivative through,

∂z = v∂t =
c

n
∂t. (3.27)

Such that,

∂Ẽ
∂z

=
n

c

∂Ẽ
∂t

=
1

v

∂Ẽ
∂t

. (3.28)

Eq. 3.26 then becomes,

∂Ẽ
∂t

=
β

2
Ẽ , (3.29)

where the constants have been absorbed into the propagation constant so that now

β = vkχi/2n
2. Typically Eq. 3.29 is written not in terms of the slowly varying

amplitude, Ẽ , but the full optical electric field, E. Converting back to that model

will make the inclusion of coupling more straighforward. Though, a phase convention

must be chosen since, unlike Eq. 3.29, the result is dependent on the chosen notation.
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Engineers typically take the phase to be e+iωt, such that the electric field Ansatz

takes the form of,

E =
1

2
Ẽ(t, z)eiωt. (3.30)

Note that this E is then slightly different from the Ansatz of Eq. 3.15 as the spatial

e−ikz phase has been absorbed into the slowly varying amplitude. With this in mind

both sides of Eq. 3.29 can be multiplied by 1
2
eiωt to achieve,

1

2
eiωt

∂Ẽ
∂t

=
β

2
E. (3.31)

By way of the chain rule,

∂E

∂t
=

1

2
eiωt

∂Ẽ
∂t

+ iωE, (3.32)

so that Eq. 3.31 becomes,

∂E

∂t
=
β

2
E + iωE, (3.33)

Where we again emphasize that E is slowly varying in spatial frequency, but quickly

varying in optical frequency i.e. this E is different from previous sections.

3.2.1 The slowly varying amplitude coupled-mode equations

The equations above are true for lone electric fields, however, to consider a two-level

coupled-mode system we require equations that include coupling between two fields.

This step is straight forward due to our choice to convert back to the full optical field.

In order to create a coupled-mode equation, we will define two separate electric

fields, E1,2, that each follow their own mode equation defined by Eq. 3.33. Coupling

between the two optical fields is then introduced through the use of a simple complex

constant, K1,2. Where K1 is coupling of the second electric field, E2, into the first

electric field, E1, and K2 is the opposite. Additionally, since we are considering a

laser system, the propogation constant is replaced with a saturable gain term such

that,

β1,2

2
= α1,2 =

α̂1,2

1 + θI1,2 + γI2,1

− αL. (3.34)
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Here, α̂1,2 is the small signal gain, αL is the loss, and the self/cross saturation

coefficiants are θ and γ, respectively. The generic coupled-mode equations are then

∂E1

∂t
= (α1 + iω1)E1 +K1E2 (3.35)

∂E2

∂t
= (α2 + iω2)E2 +K2E1. (3.36)

To account for experimental realities the coupling constant is split into conservative,

κ̃, and non-conservative, s, parts such that,

K1,2 = s1,2 + κ̃1,2. (3.37)

Conservative coupling means that κ̃1 = −κ̃∗2 = κ̃ (this is a limiting case as shown in

section 3.3).

We will observe the slowly-varying, engineering-phase-notation amplitudes from

a reference frame that oscillates at an average frequency. Many know this form as

changing to the rotating frame. In this case the Ansatz takes the form of,

E1,2 =
1

2
Ẽ1,2e

iωat, (3.38)

where ωa = (ω1 + ω2)/2. Plugging Eq. 3.38 into Eqs. 3.35 and 3.36, leads to (using

s1 = s2 = s, and κ̃1 = −κ̃∗2 = κ̃ in Eq. 3.37):

∂Ẽ1

∂t
= α1Ẽ1 − i

∆

2
Ẽ1 + (s+ κ̃)Ẽ2

∂Ẽ2

∂t
= α2Ẽ2 + i

∆

2
Ẽ2 + (s− κ̃∗)Ẽ1.

(3.39)

Note that teh detuning has been defined as, ∆ = 2(ω2 − ωa) = 2(ωa − ω1) = ω2 − ω1.

The lab frame beat signal is calculated to be,

Db(t) = |E1 + E2|2 =
1

4

(
|Ẽ1|2 + |Ẽ2|2 + Ẽ1Ẽ

∗
2 + Ẽ∗1Ẽ2

)
. (3.40)

Eq. 3.39 can be solved analytically by casting it into a matrix equation, ˙̃E1

˙̃E2

 =

α1 − i∆/2 (s+ κ̃)

(s− κ̃∗) α2 + i∆/2

Ẽ1

Ẽ2

 , (3.41)
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which has a characteristic equation of the form,

α1 − i∆/2− iλ (s+ κ̃)

(s− κ̃∗) α2 + i∆/2− iλ
= 0, (3.42)

and eigenvalues of,

λ± = −iα1 + α2

2
± ζ

2
. (3.43)

where ζ =
√

4|κ̃|2 − (α1 − α2 − i∆)2 − 4s2 − 4s(κ̃− κ̃∗). Recalling that to find the

eigenvectors we plug the eigenvalue back into the eigenvalue equation,

H |v±〉 = λ± |v±〉 (3.44)

H − λ± |v±〉 = 0, (3.45)

this leads to,α1 − i∆/2− iλ± s+ κ̃

s− κ̃∗ α2 + i∆/2− iλ±

v1±

v2±

 = 0. (3.46)

The eigenvectors are then,

|v±〉 =

 1

α2−α1+i∆±iζ
2(s+κ̃)

 (3.47)

which means that the two circulating electric fields take the form of,

Ẽ1(t) = c+e
iλ+t + c−e

iλ−t (3.48)

Ẽ2(t) = c+

(
α2 − α1 + i∆ + iζ

2(s+ κ̃)

)
eiλ+t + c−

(
α2 − α1 + i∆− iζ

2(s+ κ̃)

)
eiλ−t. (3.49)

Using the initial conditions Ẽ1,2(0) allows us to solve for the coefficients,

c− =
i

2ζ

[
2(s+ κ̃)Ẽ2(0)− (α2 − α1 + i∆ + iζ)Ẽ1(0)

]
(3.50)

c+ = E1(0)− c−. (3.51)

3.2.2 Time-domain simulation

Solving the time domain two-level coupled-mode equations numerically (or alge-

braically if the saturable gain is assumed to have reached steady-state) gives a
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theoretical curve for any IPI laser. Fig. 3.2 shows such a result. The circles are

calculated by solving Eq. 3.39 numerically, and then obtaining a beat frequency by

extracting the largest Fourier component of Eq. 3.40. The red dotted lines correspond

to the analytic solution for the beat frequency, which in this case (using Eq. 3.43)

leads simply to a frequency of 2ζ. The solutions plotted in Fig. 3.2 are assumed to

be at lasing threshold with a non-saturable gain such that α1,2 = 0 in Eq. 3.39.

Notice that when conservative and non-conservative coupling are balanced (equiv-

alent to no coupling at all), a linear response is observed (yellow circles). This is the

expected ideal IPI response where coupling is minimized [1]. When non-conservative

coupling dominates (purple and green circles), there exists an area of zero response

at low detunings. These curves are equivalent to a typical gyroscope response with

dead-band [12]. The conservative coupling curves (blue and orange circles) are inter-

esting in that they have never been observed due to the experimental challenge that

adding strong conservative coupling in a cavity typically destroys lasing.

Figure 3.2: The IPI beatnote response curve changes with κ̃ and s. All large
circles are beat frequencies numerically solved from Eq. (3.39) with κ̃ = 0.05 and
s = 0 (blue), s = 0.03 (orange), s = 0.05 (yellow), and s = 0.06 (purple). The
green circles are with κ̃ = 0 and s = 0.05. The red dashed curves correspond
to the eigenvalue beat frequency 2ζ determined from Eq. (3.43). An example of
data matching the κ̃ = 0 case can be found in [1].
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3.2.3 Pulsed time domain model

The time domain model described in previous sections has included no pulse inducing

process, and thus the analysis up till now has been valid for continuous wave (cw)

lasers. Because a lot of the benefit of IPI comes from the fact that it is an ultrafast

technique, a proper analysis including mode-locking should be developed. Instead of

forcing the coupled-mode equation to be a time derivative, it seems more straight

forward to solve the equations while keeping time and space distinct. A pulse can

then be assumed in time and propagated by stepping through space (removing the

need to model complicated mode-locking dynamics).

Instead of removing the time derivative from the plane-wave slowly-varying-

envelope approximation of the wave equation from Eq. 3.26, a more common transfor-

mation is to observe the fields from a frame of reference that moves with the electric

fields in time. To accomplish this, a change of coordinates is made such that,

z′ = z

t′ = t− z

v
.

(3.52)

Propogating this through,

Ẽ(z, t)→ Ẽ(z′(z), t′(z, t))

∂Ẽ
∂z

=
∂Ẽ
∂z′

∂z′

∂z
+
∂Ẽ
∂t′

∂t′

∂z

=
∂Ẽ
∂z′
− 1

v

∂Ẽ
∂t′

∂Ẽ
∂t

=
∂Ẽ
∂z′

∂z′

∂t
+
∂Ẽ
∂t′

∂t′

∂t

=
∂Ẽ
∂t′

.

(3.53)

Which means,

∂Ẽ
∂z

+
1

v

∂Ẽ
∂t

=
∂Ẽ
∂z′
− 1

v

∂Ẽ
∂t′

+
1

v

∂Ẽ
∂t′

=
∂Ẽ
∂z′

.

(3.54)

Using the change of coordinates of Eq. 3.54 in Eq. 3.26 leads to,

∂Ẽ(z′, t′)

∂z′
=
β

2
Ẽ(z′, t′). (3.55)
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This form of the plane-wave slowly-varying-envelope wave equation is commonly

referred to as written in the retarded frame of reference.

We now proceed almost identically to the process in section 3.2, but with a spatial

derivative instead of time. First, the engineering Ansatz,

E(z, t) =
1

2
Ẽe−i(kz−ωt), (3.56)

is used to convert Eq. 3.55 back to the full optical electric field expression resulting

in (dropping the primes for brevity):

∂E(z, t)

∂z
=
β

2
E(z, t)− ikE(z, t). (3.57)

Next coupling is added to create a coupled-mode equation,

∂E1(z, t)

∂z
=
β1

2
E1(z, t)− ik1E1(z, t) +K1E2(z, t) (3.58)

∂E2(z, t)

∂z
=
β2

2
E2(z, t)− ik2E2(z, t) +K2E1(z, t). (3.59)

The rotating frame engineering phase convention will be used such that,

E1,2(z, t) =
1

2
Ẽ1,2e

i(ωat−kaz), (3.60)

where ωa = (ω1 + ω2)/2 and ka = nωa/c are based on average frequencies. This leads

to a coupled-mode equation of,

∂Ẽ1(z, t)

∂z
=
β1

2
Ẽ1(z, t)− in∆

2c
Ẽ1(z, t) +K1Ẽ2(z, t) (3.61)

∂Ẽ2(z, t)

∂z
=
β2

2
Ẽ2(z, t) + i

n∆

2c
Ẽ2(z, t) +K2Ẽ1(z, t), (3.62)

where we again have made use of ∆ = ω2 − ω1. In order for this differential equation

to accurately model an IPI laser it needs to step forward one cavity round trip at a

time. Thus, a model describing an IPI laser with a cavity length of, L, results in,

∂Ẽ1(x, t)

∂x
= α1Ẽ1(x, t)− i∆ϕ

2
Ẽ1(x, t) + sẼ2(x, t)

∂Ẽ2(x, t)

∂x
= α2Ẽ2(x, t) + i

∆ϕ

2
Ẽ2(x, t) + sẼ1(x, t),

(3.63)
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where x = z/L is the round-trip index, αi = βiL/2 is the round-trip gain/loss,

∆ϕ = n∆L/c = ∆τp is the angular round-trip phase detuning, and s is the non-

conservative round-trip coupling parameter. If the pulses are shorter than the energy

relaxation time of the gain medium, the net saturable gain is given by (assuming no

cross saturation if the pulses do not meet in the gain medium),

αi =
α0

1 + Wi

Ws

− αL, (3.64)

where, now, Ws is the saturation energy density and the pulse energy is given by,

Wi =
∫

(|Ẽi|2dt).

An initial Gaussian pulse is assumed in time, which can then be stepped through

the laser cavity one round-trip at a time according to Eq. 3.63. To give a concrete

example, Fig. 3.3a shows the resultant pulse train after taking the inset initial

Gaussian pulse and solving Eq. 3.63 with a 7th order butcher predictor-corrector

differential solving algorithm. Taking the Fourier transform of each pulse train clearly

(a)

(b)

Figure 3.3: Resultant pulse train (a) and corresponding frequency comb (b) after
solving Eq. 3.63 with α1,2 = 0, ∆ϕ = 0.03/(2π), and s = 0. The solution was
calculated using 300 round-trips and the repetition rate was set by the zero
padding around the intial pulse in time which extended from [−0.5, 0.5] with
steps of 0.001. In (a) the two pulse trains are exactly overlapped in time, while
(b) shows that the two frequency combs have CEO frequencies that are offset by
the applied detuning.

shows that this can be described by two frequency combs with CEO frequencies offset

by the detuning (see Fig. 3.3b). The beat signal that would be recorded by a detector
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in time is calculated according to Eq. 3.40 where Ẽ1 and Ẽ2 are the full pulse trains

in time calculated from Eq. 3.63. The beat signal corresponding to the pulse trains in

Fig. 3.3a is shown in Fig. 3.4a where the envelope has a frequency of ∆ϕ = 0.03/(2π).

An interesting observation is that when coupling is added (s = 0.02) to the model

(a) (b)

Figure 3.4: The beat signals observed by a detector as predicted by the model
of Eq. 3.63. In a typical experiment a slow detector would be used to extract
just the envelope and an RF spectrum analyzer would be used to extract the
beat frequency. When the signal is in the linear response region of the detector,
the beat frequency is equivalent to the detuning which in the case of (a) is
∆ϕ = 0.03/(2π). If a coupling of s = 0.02 is added such that the same detuning
places the system near the dead band edge, the pulse trains become amplitude
modulated such that the beat frequency is not equal to the applied detuning.

of Eq. 3.63, and the detuning is set such the system is within the dead band curve

(∆ϕ = 0.03/(2π)), the pulse trains become amplitude modulated due to the coupling.

This effect can be seen in Fig. 3.4b and results in a distortion of the beat signal in

time as discussed in [20] 2.

3.2.4 Pulsed frequency domain simulation

For many things, including implementing sensor enhancement (as will be explained

in Chapter 5.4), a model of IPI in the frequency domain is required. While one could

2We call it a distortion of the beat signal because not only is the beat frequency different
than without coupling, but the modulation depth is no longer 100% either
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simply take the model in time and Fourier transform into the frequency domain, this

method would require several computationally intense fast Fourier transforms to be

calculated every round-trip. Additionally, in order to obtain the frequency resolution

required, large data arrays in time would be necessary. These computational hurdles

can be avoided entirely by creating a model that operates entirely in the frequency

domain. The resultant frequency comb will be built by assuming an oscillating

intracavity signal that picks up a specified round-trip phase.

If E(t, z) is some unspecified electric field (say, for instance, random noise) confined

to the single z spatial direction, it can be propagated forward in space and time using

Maxwell’s equations,[
∇2 − n2

c2

∂2

∂t2

]
E(t, z) = 0. (3.65)

Considering that only one spatial dimension is accounted for and taking the Fourier

transform in order to obtain a propagation relation in the frequency domain gives,[
∂2

∂z2 −
n2

c2 Ω2

]
E(Ω, z) =

[
∂

∂z
− in

c
Ω

] [
∂

∂z
+ i

n

c
Ω

]
E(Ω, z) = 0, (3.66)

where we have defined F{E(t, z)} = E(Ω, z). The second expression shows this is

equivalent to applying both a forward and backward propagation operator. Without

loss of generality we can consider just the forward propagation term,[
∂

∂z
+ i

n

c
Ω

]
E(Ω, z) = 0, (3.67)

which can be solved exactly as,

E(Ω, z) = E(Ω, 0)e−i
n
c

Ωz. (3.68)

E(Ω, 0) is some unspecified field which may or may not peak at some frequency

Ω = ω, c is the speed of light in vacuum, and n = n(Ω) is the index of refraction

which is, in general, a function of frequency.

If this field is placed inside of a resonator of length L, Eq. (3.68) states that

each round-trip the field will pick up a phase of exp(−inΩL/c) just by the nature of
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propagation. The internal cavity electric field spectrum can then be represented by

summing each round-trip as,

E(Ω,Nrt) =

Nrt∑
N=0

E(Ω, 0)e−i
n
c

ΩNL, (3.69)

where Nrt is the total number of round-trips inside of the laser cavity. Defining the

round-trip time as τ = nL/c, and simplifying the sum as a finite geometric series

leads to,

E(Ω,Nrt) = E(Ω, 0)

Nrt∑
N=0

[
e−iΩτ

]N
(3.70)

= E(Ω, 0)
1−

[
e−iΩτ

]Nrt+1

1− e−iΩτ
. (3.71)

This describes a frequency comb with teeth separated by νrt = 1/τ , that have a

linewidth inversely proportional to Nrt.

In order to simulate a more realistic situation we must include the fact that the

index of refraction is dependent on frequency. We can include this effect in our model

by Taylor expanding the index around some unspecified frequency, ω.

n(Ω) = n0 + (Ω− ω)
dn

dΩ

∣∣∣∣
ω

+
(Ω− ω)2

2

d2n

dΩ2

∣∣∣∣
ω

+ . . . (3.72)

To save on computing power, we will shift the x-axis to zero frequency with the

substitution ∆Ω = Ω − ω ⇒ Ω = ∆Ω + ω. For brevity we will also use E(Ω, z) =

E(ω + ∆Ω, z) = Ẽ(∆Ω, z). Making these substitutions in Eq. (3.68) leads to,

E(Ω, z) = E(ω + ∆Ω, z) = Ẽ(∆Ω, z) = Ẽ(∆Ω, 0)e−i
Ωz
c
n(Ω) (3.73)

= Ẽ(∆Ω, 0)e−i
(ω+∆Ω)z

c
n(ω+∆Ω). (3.74)

The phase factor can be simplified as (keeping only the first 3 terms of the Taylor

expansion),

φ =
ΩL

c
n(Ω) (3.75)

=
(ω + ∆Ω)L

c

[
n0 + ∆Ω

dn

dΩ

∣∣∣
ω

+
∆Ω2

2

d2n

dΩ2

∣∣∣
ω

]
(3.76)
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= L

[
ωn0

c
+

∆Ω

c

(
n0 + ω

dn

dΩ

∣∣∣
ω

)
+

∆Ω2

c

(
dn

dΩ

∣∣∣
ω

+
ω

2

d2n

dΩ2

∣∣∣
ω

)]
(3.77)

= L

[
ω

vp
+

∆Ω

vg
+

∆Ω2

2
GVD

]
. (3.78)

where the higher order ∆Ω3 term has been thrown out, GVD is the group velocity

dispersion parameter, vp is the phase velocity, and vg is the group velocity (all of which

are defined at the expansion frequency ω). However, by shifting the first frequency

tooth to zero frequency, we have inherently set the carrier-to-envelope offset frequency

to zero. In other words, there is no dispersion in the cavity (GVD=0, leading to

rigorously evenly spaced teeth) and the group and phase velocities are equivalent

(vg = vp). Taking that into consideration and defining the phase round-trip time as

τp = L/vp leads to:

φ = τp(ω + ∆Ω). (3.79)

In a lasing cavity without perturbation ωτp = 2πq, (q =integer) and thus the comb is

centered at zero.

The principle of IPI stems from a differential measurement between two shifted

frequency combs. For the specific example of a laser gyroscope, the shift is caused

by the optical path length difference between two counterpropagating electric fields

in a rotating cavity. To account for this we add a length perturbation to the cavity

as z = L ± `/2 in Eq. (3.78) where ` is the difference in length travelled by the

counterpropagating fields each round-trip,

φ = (L+
`

2
)

[
ω

vp
+

∆Ω

vp

]
(3.80)

=
ω

vp
(L+

`

2
) +

∆Ω

vp
(L+

`

2
) (3.81)

= 2πq +
ω`

2vp
+ ∆Ω

L

vp
(3.82)

=
ω`L

2vpL
+ ∆Ωτp (3.83)

=
ω`

2L
τp + ∆Ωτp (3.84)

=

(
∆ϕ

2
+ ∆Ω

)
τp (3.85)
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This derivation has utilized the fact that in a lasing cavity ωL/vp = 2πq (where q is

an integer), L� `/2, and the round-trip differential phase shift, ∆ϕ = ω`/L is the

same as that defined in the time domain model. The 2πq term can be dropped due

to the fact that this expression represents a phase. Plugging this phase into Eq. 3.71

leads to an expression describing two frequency combs offset from ∆Ω = 0 by an

amount exactly corresponding to the applied detuning, ∆ϕ. In order to measure

this quantity, the two frequency combs are interfered on a detector in time and the

beat signal, Db(∆Ω), is measured. This frequency domain signal can be extracted as

(taking the Fourier transform of Db(t) from Eq. 3.40),

Db(∆Ω) =
1

2η

∣∣Ẽ1(∆Ω)⊗ Ẽ1(∆Ω) + Ẽ2(∆Ω)⊗ Ẽ2(∆Ω) . . .

+ Ẽ1(∆Ω)⊗ Ẽ2(∆Ω) + Ẽ2(∆Ω)⊗ Ẽ1(∆Ω)
∣∣2.

(3.86)

where the cross-correlation function is defined as,

A(x)⊗B(x) =

∫ ∞
−∞

A∗(τ)B(x+ τ)dτ . (3.87)

The frequency comb expression implementing Eq. 3.85 is slightly misleading. First it

seems to imply that changing the phase delay, τp should change the frequency tooth

spacing defined by the ∆Ωτp term. Second, we have been treating the phase and group

velocity as equivalent to each other, which implies that the CEO frequency is 0. But,

there is a detuning term that shifts the CEO frequency, and thus the velocities should

now be different. These issues are resolved by the fact that we have not accounted for

higher order dispersion terms, nonlinear kerr phase, and saturable absorption pulse

shaping effects. Experimentally, we know that the nonlinear phase and chromatic

dispersion are involved in a dance that results in a rigorously spaced dispersionless

soliton circulating in the cavity. This leads to a tooth spacing (equivalent to round-trip

time) that are not explicitly dependent on the vp or vg that were introduced above.

Our model is therefore only accurate if it is limited to the middle frequency mode

near ∆Ω = 0 since the tooth spacing is not defined properly. Luckily that is all that

is needed to calculate the IPI response.

The frequency model can be extended to include saturable gain and coupling

between the counter-propagating pulses (±) such that it is equivalent to the time
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domain model. Since Fourier transformations are linear operations, the coupling

can be simply introduced the same way as in the time domain. The coupling and

gain prevents a neat closed form solution such that each round-trip must be stepped

through numerically. We choose here a non-conservative coupling, s. To calculate the

next round trip, x+ 1, from the current round trip, x, the two counter-propagating

fields are first propagated around the cavity just as before,

Ã± = Ã±,xe
−iτp(±∆ϕ/2+∆Ω). (3.88)

Next the fields are injected into each other according to the coupling parameter,

Ãc± = Ã± + sÃ∓. (3.89)

Gain is then applied to these coupled amplitudes using the same gain parameter from

Eq. 3.64 to obtain the field after a full round-trip,

Ã±,x+1 = Ãc± + α1,2Ãc±. (3.90)

This field is saved in memory and then used as the input for the next round-trip. The

final measureable field is then found by summing all of the round trips,

Ẽ±,Nrt
=

Nrt∑
x=0

Ã±,x. (3.91)

Without saturable gain the non-conservative coupling will cause the system to diverge.

Figure 3.5 shows the result of this coupled frequency domain calculation with and

without coupling. This simulation used Nrt = 100, ∆ϕ = 0.27, τp = 1, and gain

parameters of α0 = 1, αL = 0.05, and Ws = 1. The pulse time domain model gives

the same solution, however, the frequency domain calculation includes no numerically

messy Fourier transforms, and allows a more straightforward way to add the dispersion

enhancement that will be introduced in chapter 5.

3.3 An Aside Regarding Coupling

This section came about due to the need to understand the conservative coupling

relation κ1 = −κ∗2. It had been used in several places without explicit derivation
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Figure 3.5: Numerical solution showing the first frequency comb tooth of the two
electric fields (red,blue) defined by Eq. (3.91) after 100 round-trips with no coupling,

s = 0,(a) and coupling, s = 0.1e(1i),(b). Both simulations were carried out with a
detuning of ∆ϕ = 0.27, gain of α0 = 1, αL = 0.05, and Ws = 1, and τp = 1. When
coupling is included, energy is passed back and forth between the two electric field such
that which field is maximum depends on when the FT is truncated in time.

[13, 20, 23, 24], however, a much simpler relation, κ1 = −κ2 showed up in other places

[16, 18, 19, 25]. While the former simplifies to the later in the limit of real coupling,

in general, a complex coupling exists. Therefore a rigorous analysis was required and

is summarized below.

3.3.1 Real Stokes Relations

The most basic interface is simply a change of index of refraction. The behavior of

an electric field encountering such an interface is described by the Fresnel coefficients.

At normal incidence the S and P polarized electric fields exhibit the same reflection

and transmission such that,

r12 =
n1 − n2

n1 + n2

t12 = 1 + r12,

(3.92)

where r12E0 and t12E0 describe the reflected and transmitted fields when the incident

field, E0, traverses from a medium with index n1 to a medium with index n2. Note

that lossless homogenous media are being considered such that these relations are



Chapter 3. Intracavity Phase Interferometry: Theoretical Background 29

real. An electric field that propagates in the opposite direction will then encounter

Fresnel coefficients of,

r21 = −n1 − n2

n1 + n2

t21 = 1 + r21,

(3.93)

Equating and rearranging Eqs. 3.92 and 3.93 leads directly to the Stokes relations in

their typical form:

r12 = −r21

t12t21 + r2
12 = 1.

(3.94)

Note that these relations can be derived without relying on the Fresnel coefficients

by using a time-reversal argument that invokes energy conservation.

Since a negative reflection coefficient corresponds to a π phase shift through Euler’s

formula, −r = reiπ, the Stokes relations show that there is a π phase difference between

fields reflecting off of opposite sides of the same interface. Though, to know which

field actually gains the π phase shift (it is the one moving from low to high index),

the Fresnel equations must be used. This fact can also be determined experimentally

where it is known that laser damage occurs at interfaces that move from high to low,

where the reflected wave adds in phase with the input wave (since there is no π phase

shift).

Most interfaces that electric fields encounter are not simple interfaces as described

above, but include thin films to control reflection. Macroscopic behavior of light

reflecting off or transmitting through surfaces is typically due to thin film interference

on the surface. In this case, the above Stokes relations are not necessarily valid.

3.3.2 Complex Stokes Relations

A coated optical surface can be modelled as a stack of simple thin interfaces separated

by free-space propagation. When a right propagating electric field encounters such a

multilayered optical surface, the reflected and transmitted fields are the result from
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the interference from all of the layers. The right moving transmitted wave is the sum

of every right moving field after the energy has been bounced around between the

layers (and similarly with the left moving reflected wave being the sum of all left

moving fields). To calculate these resultant fields, the right moving and left moving

waves must be recorded at each interface. At each simple thin layer interface, the

incoming fields (from each direction) are split according to the scattering, S, matrix

defined as [26]:E2

E ′1

 =

t12 r21

r12 t21

E1

E ′2

 , (3.95)

where E ′2 is the left moving incoming wave on the right side of the interface and E1

is the right moving incoming wave from the left side of the interface. Notice that the

S matrix describes a set of two equations. The first equation, E2 = t12E1 + r21E
′
2,

states that the right moving outgoing wave on the right side of the interface, E2, is

a combination of the right moving incoming wave from the left that is transmitted

through the interface, t12E1, and the left moving incoming electric field incoming from

the right that is reflected, r21E
′
2. Similarly, the second equation, E ′1 = r12E1 + t21E

′
2,

shows that the left moving outgoing field, E ′1, is a linear combination of the reflected

right moving incoming wave, r12E1, and the transmitted left moving wave incoming

from the right, t21E
′
2 (see Fig. 3.6 for clarity) 3.

The elements of the S matrix have real physical significance; they are the field

reflection and transmission amplitudes of a layer. Unfortunately, the S matrix is

not useful for building up multilayer surfaces as these matrices cannot be cascaded.

What is needed is a matrix defining each layer that can be multiplied by the matrices

corresponding to the other layers to create an effective total matrix for the whole

surface. Instead of equations defining the relationship between incoming and outgoing

fields at each layer, the equations need to define the relationship between the fields

3To summarize, the electric field subscripts (1, 2) describe whether the field is on the
left or right side of the interface, while the no prime and prime discern whether the field is
right-propagating or left-propagating, respectively. The coefficients syntax is such that t12

and r12 describe the transmission and reflection coefficient of the wave starting on side 1
while t21 and r21 describe the coefficients of a field incoming from side 2.
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Figure 3.6: Thin simple interface incoming and outgoing wave equations.

on the left side of the layer and the right side of the layer (regardless of whether they

are incoming or outgoing). In other words, in order to cascade the matrix layers, the

matrix equation needs to move through the surface spatially (left to right) instead of

causally (incoming to outgoing). Such a matrix is defined as the wave-transfer, M,

matrix. This rearranged equation is,E2

E ′2

 = [M ]

E1

E ′1

 , (3.96)

where the relationship between the M and S matrices is,

M =

A B

C D

 =
1

t21

t12t21 − r12r21 r21

−r12 1

 (3.97)

S =

t12 r21

r12 t21

 =
1

D

AD −BC B

−C 1

 . (3.98)

In order to use the cascaded matrix method, each layer is defined using its physical

S matrix. Each S is converted into an M matrix, which are then multiplied together

to give an effective total MT matrix for the entire surface. This ultimate MT matrix

is converted back into a total ST matrix to extract the effective physical parameters of

the multilayer interface. Where the total effective scattering matrix, ST , has elements

that represent,

ST =

t r′

r t′

 , (3.99)
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where t and r are the transmission and reflection coefficients for a beam incoming to

the front surface, and t′, r′ are the similar coefficients for a beam incoming to the

back surface.

Free-Space Propagation Matrix

The most simple layer is free-space propagation with no change of index. Since there

is no reflection or transmission, such a layer does nothing but add a phase factor of

φ = nkd, where n is the refractive index, k the wavenumber of the electric field, and

d the propagation distance. The scattering matrix of a free-space layer is then,

Sφ =

e−iφ 0

0 e−iφ

 , (3.100)

since the same phase factor is added regardles of propagation direction. Converting

the scattering matrix to the wave-transfer matrix results in,

Mφ =

e−iφ 0

0 eiφ

 . (3.101)

Dielectric Interface Matrix

The scattering matrix of a dielectric interface can be defined using the Fresnel

coefficients of Eqs. (3.92) and (3.93). If the right-propagating incoming electric field

starts in index n1 and propagates into n2, then the S matrix is,

S12 =
1

n1 + n2

 2n1 n2 − n1

n1 − n2 2n2

 . (3.102)

This corresponds to a wave-transfer matrix of,

M12 =
1

2n2

n2 + n1 n2 − n1

n2 − n1 n2 + n1

 . (3.103)
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Figure 3.7: Multilayer surface of two interfaces separated by a propagation
through material of index n2.

Dielectric Stack Matrix

Any dielectric stack can then be built up using the propagation and interface matrices.

As an example let us imagine a 3 layer dielectric stack as shown in Fig. 3.7. In this case

the propagation through the end caps will not be considered such that the first matrix

encountered is the interface. Because matrix multiplication requires multiplying in

the reverse order, the total effective M matrix for this system is represented as,

MT = M23Mφ2
M12

=
1

4n3n2

n3 + n2 n3 − n2

n3 − n2 n3 + n2

e−iφ2 0

0 eiφ2

n2 + n1 n2 − n1

n2 − n1 n2 + n1


=

1

2n3n2

(n3n2+n1n2) cos(φ2)−i(n2
2+n1n3) sin(φ2) (n3n2−n1n2) cos(φ2)−i(n2

2−n1n3) sin(φ2)

(n3n2−n1n2) cos(φ2)+i(n
2
2−n1n3) sin(φ2) (n3n2+n1n2) cos(φ2)+i(n

2
2+n1n3) sin(φ2)

 .

Converting this to the scattering matrix using Eq. 3.98 results in,

ST =

 2n1n2

α+iβ
α
′−iβ′

α+iβ

−α′−iβ′

α+iβ
2n2n3

α+iβ

 , (3.104)

where α = (n2n3 +n1n2) cos(φ2), α′ = (n2n3−n1n2) cos(φ2), β = (n2
2 +n1n3) sin(φ2),

and β′ = (n2
2 − n1n3) sin(φ2). Separating each element of ST into real and imaginary

parts leads to,

ST =
1

α2 + β2

 2αn1n2 − i2βn1n2 α′α− β′β − i(α′β + β′α)

−α′α− β′β + i(α′β − β′α) 2αn2n3 − i2βn2n3

 . (3.105)

Taking the off-diagonals of Eq. 3.105 that represent r and r′, and expanding leads
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to,

(α2 + β2)r21 = [(n1n2)2 + (n2n3)2] cos2(φ2)− [(n2
2 − (n1n3)2)] sin2(φ2)...

... + i[(n2
1n2n3 − n3

2n3) sin(2φ2)] (3.106)

(α2 + β2)r12 = −[(n1n2)2 + (n2n3)2] cos2(φ2)− [(n2
2 − (n1n3)2)] sin2(φ2)...

... + i[(n1n2n
2
3 − n1n

3
2) sin(2φ2)]. (3.107)

It is easy to see that if n2 =
√
n1n3, and φ2 = n2kd2 = π/2, that this interface acts

as an anti-reflection coating i.e. r = r′ = 0.

One might naively expect that energy conservation should lead to a tidy relation-

ship between the reflections from either side of any interface. However, the result

here implies that there is no general relationship that exists between r and r’. In

order to recover a tidy relationship, the transfer matrix must begin and end in the

same material.

Non-Reciprocal Submerged Dielectric Stack

If the AR coating system derived above is submerged in a material such that the

light begins and ends in the same medium, the multilayer surface results in a more

tidy relationship between the matrix elements. Fig. 3.8 represents the surface being

modelled.

Figure 3.8: Submerged dielectric stack. This system is non-reciprocal, but begins
and ends in the same medium.

The wave-transfer matrix for the surface is,

MT = M30Mφ3
M23Mφ2

M12Mφ1
M01. (3.108)
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The algebraic solution is much too complicated to calculate by hand, so I will show

the results of a numerical calculation using n0 = 1, n1 = 1.1, n2 = 1.3 n3 = 1.5,

φ1 = 1, φ2 = 2, and φ3 = 3. In this case the scattering matrix is,

ST =

 0.9387 + i0.29 −0.1638 + i0.0884

0.0854 + i0.1654 0.9387 + i0.29

 . (3.109)

The relations that are followed are,

|t| = |t′|

|r| = |r′|

|t|2 + |r|2 = 1

t

t′∗
= − r

r′∗
.

(3.110)

(3.111)

(3.112)

(3.113)

These relations are true for any index or phase values used for the layers. Thus,

these relations are general for any dielectric system that begins and ends in the same

medium where energy is conserved.

The basic stoke relation of r = −r′ is recovered if the phase of the transmission

and reflection coefficients are zero. This is the case for a system where φ1 = φ2 = π/2

and φ3 = π (using same index values as above), such that,

ST =

0.9862 −0.1655

0.1655 0.9862

 . (3.114)

Notice that the relation mentioned at the beginning of the section is now present

if the transmission coefficient phase is zero. In this case r = −r′∗, which can be seen

when the phase values are set to φ1 = 2.1283, φ2 = 1, φ3 = 0 (again using the same

indices),

ST =

 −0.9902 −0.1187− i0.0737

0.1187− i0.0737 −0.9902

 . (3.115)

Therefore, the relation κ1 = −κ∗2 is a limiting case of conservative coupling where the

transmission phase is zero.
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3.3.3 Fabry-Perot

The confusion about the conservative coupling equation that led to this analysis came

from the derivation in [23] which uses the stokes relations of,

tt′ − rr′ = 1 (3.116)

r = −r′∗. (3.117)

Notice that these are particular representations of the more general relations (3.110)-

(3.113). If t and t′ are fully real, then Eq. (3.113) directly implies that Eq. (3.117)

is true. Additionally, Eq. (3.116) is nothing more than Eq. (3.112) with the added

assumption that t is fully real. To see this, rewrite Eq. (3.112) as, tt∗ + rr∗ = 1. If t

is fully real then t∗ = t such that, tt+ rr∗ = 1. Using Eq. (3.110) it can be rewritten

as, tt′ + rr∗ = 1. Now again since Eq. (3.117) is true when t is fully real, we land at

tt′ − rr′ = 1. Thus, the reason that the textbook concludes that r = −r′∗ is due to

the fact that t has been assumed to be fully real through the use of Eq. (3.116).

The fully general (including phase shifts induced by optical coatings) Fabry-Perot

transmission and reflection equations can be derived using the matrix method. Fig. 3.9

shows the FP being modelled. While the interfaces are assumed to be coated, the FP

can be broken up into 3 sections (X,Y,Z) that begin and end in the same medium

such that the relations (3.110)-(3.113) can be used on each layer. Notice that the

relations should also apply to the final relations between the overall transmission and

reflection coefficients. The S matrices of the layers are,

SX =

t12 r21

r12 t21

 SY =

e−iφ 0

0 e−iφ

 SZ =

t23 r32

r23 t23

 (3.118)

Rearranging these into corresponding M matrices and multiplying, results in a total

wave-transfer matrix of,

MT =
1

t21t32

t23t32 − r23r32 r32

−r23 1

e−iφ 0

0 eiφ

t12t21 − r12r21 r21

−r12 1

 (3.119)

=
eiφ

t21t32

θ1θ2e
−2iφ − r12r32 θ2r21e

−2iφ + r32

−θ1r23e
−2iφ − r12 1− r23r21e

−2iφ

 , (3.120)
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Figure 3.9: Fabry-Perot to be modeled. It is broken into 3 sections, X, Y, and Z
that each have their own matrix. The end layers are assumed to be multilayer
systems themselves such that the reflection and transmission coefficients are
complex. The middle, Y, layer is simple propagation. It is assumed that each
layer is lossless and begins and ends in the same media such that the relations
(3.110)-(3.113) can be used. Once the matrices are cascaded, the FP can be
treated as a black box with transmission and reflection coefficients of t,t′,r and r′

as shown in red.

where the placeholders, θ1 = t12t21 − r12r21, and θ2 = t23t32 − r23r32, have been used.

Eq. (3.98) is used to convert to the final transmission, (t,t′) and reflection coefficients,

(r,r′) for the fabry-perot.

r = −C
D

=
(t12t21 − r12r21)r23e

−2iφ + r12

1− r21r23e
−2iφ

(3.121)

= r12 +
t12t21r23e

−2iφ

1− r21r23e
−2iφ

(3.122)

r′ =
B

D
=

(t23t32 − r23r32)r21e
−2iφ + r32

1− r21r23e
−2iφ

(3.123)

= r32 +
t23t32r21e

−2iφ

1− r21r23e
−2iφ

(3.124)

t =
t12t23e

−iφ

1− r21r23e
−i2φ (3.125)

t′ =
t21t32e

−iφ

1− r21r23e
−i2φ . (3.126)

These equations are fully general in the sense that no stokes relations have been used.

These are sometimes referred to as Airy’s summation formulas for a FP. Note that

all of the variables are complex due to the end X,Y layers being made up of layered
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media themselves.

Notice that, in this general case, there is nothing to force the relationship

|r|2 = |r′|2. Experimentally this means, due to there being no explicit phase re-

lationship between the reflection coefficients, that the orientation of a Gires-Tournois

interferometer in relation to incoming light matters 4. Whether the light encounters

the high reflectivity face first, or last, effects the quantity and sign of aggregated

transfer phase.

Repeated Element Fabry-Perot

If layers X and Z are identical, then r12 = r23 = r1, r21 = r32 = r2, t12 = t23 = t1, and

t21 = t32 = t2. This simplifies Eqs. (3.121)-(3.126) to,

r =
(t1t2 − r1r2)r1e

−2iφ + r1

1− r1r2e
−2iφ

(3.127)

= r1 +
t1t2r1e

−2iφ

1− r1r2e
−2iφ

(3.128)

r′ =
(t1t2 − r1r2)r2e

−2iφ + r2

1− r1r2e
−2iφ

(3.129)

= r2 +
t1t2r2e

−2iφ

1− r1r2e
−2iφ

(3.130)

t =
t1t1e

−iφ

1− r1r2e
−i2φ (3.131)

t′ =
t2t2e

−iφ

1− r1r2e
−i2φ . (3.132)

These equations can be simplified further by separating each term into its amplitude

and phase as t1 = |t1|eiφt1 , t2 = |t2|eiφt2 , r1 = |r1|eiφr1 , and r2 = |r2|eiφr2 . Relations

(3.110)-(3.113) can be rewritten in terms of this updated notation as,

|r1| = |r2| (3.133)

|t1| = |t2| (3.134)

|t1|2 + |r1|2 = 1 (3.135)

4A Gires-Tournios interferometer is simply a fabry-perot etalon interferometer with a
single high reflectivity coated face.
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eiφt1+iφt2 = −eiφr1+iφr2 (3.136)

Using these simplications, r and t can be simplified to,

t =
(1− |r1|2)e−iφ+i2φt1

1− |r1|2e−i2φ+iφr1+iφr2
(3.137)

r =
r1(1− e−2iφ+iφr1+iφr2)

1− |r1|2e−i2φ+iφr1+iφr2
. (3.138)

Substituting δ = −2φ leads to,

t =
(|r1|2 − 1)eiδ/2+i2φr1+i2φr2−i2φt2

1− |r1|2eiδ+iφr1+iφr2
(3.139)

r =
r1(1− eiδ+iφr1+iφr2)

1− |r1|2eiδ+iφr1+iφr2
. (3.140)

Now if it is assumed that t1 and t2 are fully real (φt1 = φt2 = 0), then through

Eq. (3.136) we know that, φr1 + φr2 = π, which leads to a further simplication of,

t =
(|r1|2 − 1)eiδ/2

1 + |r1|2eiδ
(3.141)

r =
r1(1 + eiδ)

1 + |r1|2eiδ
. (3.142)

Notice that the expression for r can be achieved directly by setting (t1t2 − r1r2) = 1

in Eq. (3.127).

Symmetric Fabry-Perot

A symmetric FP doesn’t simply repeat the first matrix element, but flips it around such

that light encounters the interfaces in the same order regardless of input propagation

direction. In this case we set r12 = r32 = r1, r21 = r23 = r2, t12 = t32 = t1, and

t21 = t23 = t2 in Eqs. (3.121)-(3.126). This simplifies to,

r = r′ =
(t1t2 − r1r2)r2e

−2iφ + r1

1− r2
2e
−2iφ

(3.143)

= r1 +
t1t2r2e

−2iφ

1− r2
2e
−2iφ

(3.144)
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t = t′ =
t1t2e

−iφ

1− r2
2e
−i2φ (3.145)

Eqs.(3.133)-(3.136) are still valid as written so using them as well as separating the

terms into phasor notation and substituting δ = −2φ leads to,

r = r′ =
r1 − r2e

iδ+iφr1+iφr2

1− r2
2e
iδ

(3.146)

=
r1(1− eiδ+i2φr2)

1− r2
2e
iδ

(3.147)

t = t′ =
(1− |r1|2)eiδ/2+iφt1+iφt2

1− r2
2e
iδ

. (3.148)

In order to recover the expressions shown in the textbook, we must simply assume

that φt1 = φt2 = 0, which implies through Eq. (3.136) that

r = r′ =
r1 + r2e

iδ

1− r2
2e
iδ

(3.149)

=
r1(1− eiδ−2iφr1)

1− r2
2e
iδ

(3.150)

t = t′ =
(1− |r1|2)eiδ/2

1− r2
2e
iδ

. (3.151)

3.4 Conclusion

It has been shown that an IPI laser can succesfully be modelled as a coupled two-level

system in time or frequency. These simulations clearly show how two circulating

pulses in a cavity result in two shifted frequency combs that have CEO’s shifted

proportionally to the applied detuning. Further, it was shown that by removing

coupling from such a system, the dead-band can be eliminated. Last, an explicit

discussion was included of what it means to have conservative or non-conservative

coupling in terms of the coupling (or reflection) parameter.

Note that much confusion seems to arise regarding the correct form of the coupled-

mode equations. Most of this confusion is due to different forms of notation being used.
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Thus, Appendix A has been included which reiterates the derivation of Section 3.2

while including the many different ways that equivalent mathematical representations

can appear in different publications.
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Chapter 4

Intracavity Phase Interferometry:

Experimental Implementation

4.1 Introduction

The most familiar implementation of IPI is that of the ring laser gyroscope. When

two electric-fields counter-propagate in a rotating ring, the Sagnac effect causes a

frequency detuning to occur that is proportional to the ring rotation rate [27, 28].

All commercial gyroscopes today use cw light. The problem with cw light is that

there exists coupling everywhere within the ring between the counter-propagating

fields. This coupling leads to a dead-band where mutual injection scattering causes

the two electric field frequencies to lock together at low rotation rates and destroy the

measurement. With cw light, this coupling is unavoidable, and clever technological

tricks have been created to curb the issue (for example mechanical dithering [29]).

Pulsed light, however, has limited spatial extent and therefore will only overlap in

two locations within the ring which limits coupling. By also cross-polarizing the light,

the coupling between the fields is effectively removed which, in theory, leads to the

holy grail of gyrosocopes: a highly sensitive, dead-band free, linear response rotation

sensor. More importantly, switching to pulsed light allows the linear analog to a

laser gyroscope to exist which extends the technique’s measurement from just angular
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acceleration to any physical phenomenon that can change the optical phase of light

(linear acceleration, displacement, index of refraction, magnetic field, etc.). As can

be seen in the linear configuration example of Fig. 4.1, this involves an intracavity

Michelson interferometer where one lasing arm serves as a reference, while the other

probes the physical parameter to be measured.

Figure 4.1: Linear IPI configuration. Two pulses (orange and green) are lasing
in the cavity. Passive mode-locking is induced by the saturable absorber (SA).
Because the physical parameter to be measure, ∆, only affects the green pulse, a
beat frequency is observed when the pulses are overlapped in time on the external
detector, D.

Free-space proof of concept IPI lasers have been successfully constructed in the

past [30]. However, any viable sensor must be able to operate outside of a lab

environment – an obvious difficulty for free-flowing carcinogenic dye-jet based lasers.

Fiber lasers are an attractive solution as they are compact, scalable, and more

easily shielded from environmental noise. The first fiber optic IPI laser was recently

realized [4]. To improve on that design, it was decided to replace the gain mechanism

with optical parametric oscillation (OPO). This allowed the ability to synchronously

pump the IPI laser – removing the mode-locking element from the sensing cavity.

This change reduces the number of scattering elements inside the laser cavity which

removes the opportunity for injection locking and reduces the bias by allowing a

more symmetric cavity. Due to the phase sensitive nature of degenerate parametric

amplification, the choice of using OPO also primes the device for future quantum

squeezing enhancement.
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4.2 Optical Parametric Oscillation

An optical parametric oscillator is similar to a classic laser oscillator except that the

gain medium has been replaced by a nonlinear parametric process which, in this

case, happens to be partially degenerate four-wave mixing 1. Partially degenerate

four-wave mixing is a χ(3) process where two identical pump photons of frequency,

Ωp, are converted into an up frequency shifted photon (sometimes called the idler,

Ωi) and a down frequency shifted photon (sometimes called the signal, Ωs). Through

conservation of energy,

2Ωp = Ωs + Ωi, (4.1)

the signal and idler photons are equal distance from the pump in frequency space,

∆Ω = Ωp − Ωs = Ωi − Ωp. This process differs from Raman scattering in that it

is mediated by quantum virtual levels and so is effectively instantaneous and not

restricted to explicit material energy levels.

Figure 4.2: Left: Degenerate four-wave mixing converts two identical pump
photons of frequency Ωp into a down converted signal photon Ωs, and an up-
converted Ωi photon. The dashed lines represent virtual energy levels. Right:
Conservation of energy causes the signal and idler photons to be equidistant from
the pump in frequency space.

1Confusingly, partially degenerate four-wave mixing used to be called three-wave mixing
since only three distinct frequencies are involved [31], however three-wave mixing is now

reserved for χ(2) processes where three photons mediate the interaction.
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4.2.1 General Considerations

Parametric four wave mixing has been described in detail elsewhere [32–34], so

only an abbreviated description will be given here. The effect is caused by the

nonlinear response of a material to an incoming electromagnetic field. How a material

responds to an incoming electromagnetic field is summed up in a variable called the

susceptibility, χ. Due to a material’s symmetries and dispersion it is often convenient

to expand χ in a power series, where the first order (χ(1)) is related to the index of

refraction, and higher orders (χ(2), χ(3), etc.) define the nonlinear effects. Optical

fiber is made from silica glass which is an isotropic material (it is symmetric along all

3 spatial axes). This fact leads to nonlinear optical fiber phenomena to be dominated

by the χ(3) process since the χ(2) term vanishes in isotropic materials.

Instead of pumping a gain material and creating gain through stimulated emission,

an OPO laser creates gain by directly converting 2 pump photons into a signal and

idler photon. When the conversion occurs, if there is already signal (or idler) photons

hanging around (either from vacuum fluctuations, or a seed laser), then the signal (or

idler) beam experiences gain. In order for efficient energy transfer to occur, a specific

phase relation between the photons must exist,

2kp = ks + ki, (4.2)

where k is the effective propagation constant. It is an effective parameter not exactly

given by the sellmeier equations because in fiber there are additional terms from

nonlinear and waveguiding dispersion2. The amplification factor for a non-depleted,

single-frequency pump, four-wave mixing process is given by [32],

Gs = 1 +

(
γP0

g

)2

sinh2(gL), (4.3)

where P0 is the pump power, γ is the average nonlinear coefficient defined for the

material, g =
√

(γP0)2 − (κ/2)2 is the parametric gain, and κ = ∆k + 2γP0 is the

2To emphasize that this is an effective propagation constant the fiber community typically
uses β in place of k.
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effective phase mismatch between the pump, idler and signal waves with,

∆k = ks + ki − 2kp. (4.4)

Clearly, gain is maximized when κ = 0. The 2γP0 term is caused by self and cross

phase modulation and causes the phase mismatch to be affected by the pump power.

If the pump depletes as it traverses the gain material, then the phase mismatch term

changes along the length of the fiber which can cause energy to be passed back from

the idler and signal to the pump. While energy conservation governs what frequencies

are allowed to be created through 2Ωp = Ωs + Ωi, it is the phase matching equation

that governs how much energy flows from the pump to the signal and idler frequencies.

L is the effective gain length and is more complicated to define than one might expect,

as will be explained below.

Dispersion in the fiber results in different frequencies traveling at different velocities.

Since we are dealing with short pulses in this case, the signal, idler, and pump all

travel at slightly different velocities and thus are only overlapped in space for a

specific amount of time (or equivalently length of gain fiber). This is known as

temporal walk-off, and it means that the gain length is not always equal to the length

of OPO gain fiber. By pumping the OPO near the zero-dispersion wavelength of a

specific fiber, temporal walk-off is minimized. While dispersion also leads to chirp

induced pulse broadening, this does not improve the pump and signal overlap since

the underlying longitudinal modes are still walking off from one another.

The last consideration is that of synchronous pumping. Parametric gain only

occurs when all three (pump, signal, and idler) pulses are overlapped in time. For

lasing to occur, then, the parametric pulse must be timed such that it overlaps

with a pump pulse in the gain medium every round-trip. In other words, the pump

repetition rate must match (to within a pulse length 3) the repetition rate of the

parametric pulse in the OPO cavity. If this is achieved, then the parametric pulse

will experience positive feedback and gain can lead to lasing. This precise matching

3For a 1ps pulse in air this correspond to about 300µm. A typical fiber splice requires
the removal of at least 1-2cm of fiber, which is why the inclusion of a delay-line is necessary.



Chapter 4. Intracavity Phase Interferometry: Experimental Implementation 48

of fiber cavity lengths between the pump oscillator and OPO cavity is the most

challenging experimental hurdle when developing synchronous OPO lasers.

4.2.2 Phase mismatch calculation

The calculation of Eq. 4.4 is not as straight forward as that notation suggests due

to the fact fiber manufacturers do not typically publish curves of k(Ω). Thus, we

pause here to describe how different estimations are carried out in practice given

what information is provided.

Since there is a fixed relationship between the signal and idler (with the pump

frequency being fixed), Eq. 4.4 can be rewritten as,

∆k(ωi) = k(ωi) + k(2ωp − ωi)− 2k(ωp), (4.5)

assuming we are ultimately interested in oscillating the idler. Expanding k in a Taylor

series around an arbitrary point ω0 leads to,

k(Ω)|ω0
= k0 + (Ω− ω0)k1 +

1

2
(Ω− ω0)2k2 +

1

6
(Ω− ω0)3k3

+
1

24
(Ω − ω0)4k4 +

1

120
(Ω − ω0)5k5 + ..., (4.6)

where km = ∂
m
k

∂Ω
m

∣∣∣
ω0

(m = 0, 1, 2, ...) which means that the km’s are a function of the

chosen expansion frequency. This can then be plugged back into Eq. 4.5 (dropping

higher order terms) which simplifies to,

∆k(ωi) =
1

2

[
(ωi − ω0)2 + (2ωp − ωi − ω0)2 − 2(ωp − ω0)2

]
k2

+
1

6

[
(ωi − ω0)3 + (2ωp − ωi − ω0)3 − 2(ωp − ω0)3

]
k3. (4.7)

Note that the fiber community typically doesn’t use the group velocity dispersion

(GVD) parameter, k2 [fs2/mm], but the Dispersion, D [ps/(nm ∗ km], parameter

instead. The D parameter was contrived to allow technicians laying fiber to more

easily calculate the group delay (∆τ) between pulses with a wavelength spacing of

∆λ as, ∆τ = D∆λL, where L is the length of fiber under consideration. This results
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in it being similar to the GVD parameter except that the last derivative is taken in

terms of wavelength instead of frequency, D = ∂
∂λ

∂k
∂Ω

, and thus are related through,

k2 = − λ2
0

2πc
D(λ0). (4.8)

The D parameter is then related to the third order dispersion term by [33],

k3 =

(
λ2

0

2πc

)2(
2

λ0

D(λ0) +
∂D

∂λ

∣∣∣
λ0

)
. (4.9)

Implementing this adjustment in Eq. 4.7 results in,

∆k(ωi) = − λ2
0

2πc
(ωp−ωi)2

[
D(λ0)− λ2

0

2πc

(
2

λ0

D(λ0) +
∂D

∂λ

∣∣∣
λ0

)
(ωp − ω0)

]
, (4.10)

or equivalently,

∆k(νi) = −2πλ2
0

c
(νp− νi)2

[
D(λ0)− λ2

0

c

(
2

λ0

D(λ0) +
∂D

∂λ

∣∣∣
λ0

)
(νp − ν0)

]
, (4.11)

which converting to all wavelength notation results in,

∆k(λi) = −2πcλ2
0

λ2
pλ

2
i

(λi−λp)2

[
D(λ0)− λ0

λp

(
2

λ0

D(λ0) +
∂D

∂λ

∣∣∣
λ0

)
(λ0 − λp)

]
. (4.12)

Care must be taken when converting between D and GVD notation as there seems

to be some confusion as to what is the correct expression when comparing different

papers [35–37], however, clarity can be found in [33]. Eq. 4.12 is useful because

it allows the phase mismatch for a specific set of pump and idler (and therefore

signal) wavelengths to be estimated based on only the dispersion parameter, D, and

dispersion slope, ∂D/∂λ, at a single operating wavelength, which are parameters

typically published by fiber manufacturers. Eq. 4.3 can then be used to estimate

where the OPO will see the highest gain.

One common way to simplify Eq. 4.12 is to assume that the expansion is done at

the zero dispersion wavelength such that D(λ0) = 0 [36–38]. This results in,

∆k(λi) = −2πcλ3
0

λ3
pλ

2
i

(λp − λi)2∂D

∂λ

∣∣∣
λ0

(λp − λ0), (4.13)

where now all that is required to estimate the phase mismatch for a given idler, λi,

and pump, λp, wavelength, is the zero dispersion wavelength, λ0, and the dispersion
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slope at that wavelength, ∂D/∂λ|λ0
. A different simplification is instead to expand

around the pump wavelength such that, λ0 = λp, which simplifies Eq. 4.12 to [33],

∆k(λi) = −2πc

λ2
i

(λi − λp)2D(λp). (4.14)

If the idler frequency excursion from the pump is greater than a few nanometers,

however, this equation becomes less accurate and higher order terms are needed in

the expansion of Eq. 4.7. In fact, if one takes ω0 = ωp in Eq. 4.7, all of the odd terms

drop out such that,

∆k(ωi) = (ωp − ωi)2k2 +
1

12
(ωp − ωi)4k4 +

1

360
(ωp − ωi)6k6 + ... (4.15)

If one is lucky enough to posess a full dispersion curve, D(λ), for a specific fiber, a

sometimes more accurate calculation can be carried out by making a polynomial fit

of the dispersion curve, and using Eq. 4.15 directly in Eq. 4.3. [39–44].

Describing this latter process more explicitly, one first digitizes the D(λ) curve

given by the fiber company. This dispersion parameter curve is then converted to the

GVD parameter, k2(ω). Next, a polynomial fit of k2(ω) is made such that,

k2(ω) = aω4 + bω3 + cω2 + dω + e. (4.16)

All higher order dispersion coefficients can then be calculated by taking derivatives,

k3(ω) =
∂k2

∂ω
= 4aω3 + 3bω2 + 2cω + d (4.17)

k4(ω) =
∂k3

∂ω
= 12aω2 + 6bω + 2c (4.18)

k5(ω) =
∂k4

∂ω
= 24aω + 6b (4.19)

k6(ω) =
∂k5

∂ω
= 24a. (4.20)

The even coefficients are then calculated at the chosen pump expansion frequency, ωp,

and plugged into Eq. 4.15 to obtain an estimation for the phase mismatch. Knowing

the phase mismatch, an estimation of the OPO gain profile can be deduced from

Eq. 4.3 by plugging in values for gain length, pump pulse peak intensity, and the

nonlinear coefficient of the fiber. That gain profile is then used to choose a wavelength

to lase so that fiber components can be purchased.
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4.3 Ring cavity configuration

A free space OPO IPI has been successfully constructed in the past [45], however, the

goal of this dissertation was to move that device into fiber similar to [46]. In order to

design the laser cavity, it must be known which wavelengths will be involved. Initially

it was assumed that it would be easier to use a commercial pump laser instead of

building one from scratch.

4.3.1 The 1030nm source

An Ekspla FF1000 Yb:YAG 80fs 30MHz 1030nm 1.5W commercial laser was used as

the pump oscillator. Several nonlinear gain fibers were considered. Ultimately the

NKT photonics SC-5-1040-PM photonic crystal fiber was chosen due to its beneficial

dispersion characteristics. Photonic crystal fibers are unique in that their waveguiding

is not solely from total internal reflection but also photonic bandgap guiding caused

by a microstructed core [47]. Photonic crystal fibers have become popular in nonlinear

optics due to the ability to tailor their dispersion by adjusting the size and gaps of

the structured core [48, 49].

Following the procedure described in section 4.2.2, the dispersion curve published

for the chosen NKT photonic crystal fiber was digitized and the following dispersion

coefficients were extracted from the fit at the pump wavelength of 1030nm: k2 =

0.132 × 106 fs
2

km
, k4 = −100.88 × 106 fs

4

km
, and k6 = −839.7 × 106 fs

6

km
. Using these

parameters along with a gain length of 10cm, average power of 80mW, and the

parameters from the Ekspla laser described above resulted in the gain profile shown

in Figure 4.3. Assuming the longer wavelength is to be oscillated, the peak gain

for the four-wave mixing process is shown to be around 1150nm. There are several

caveats with this rather straightforward estimation of the gain curve. First, Eq. 4.3

shows that the gain can be significantly changed by adjusting the gain length and

pump power. In general, a shorter length of gain fiber allows for a broader gain

bandwidth and increasing pump power increases the phase mismatch (though this
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Figure 4.3: Four-wave mixing gain profile estimated from Eq. 4.3, using the
dispersion coefficients from the NKT SC-5-1040-PM fiber, peak power of 164000
Watts, nonlinear coefficient of 11.1 W−1km−1, gain length of 10cm, and pump
wavelength of 1030nm.

depends on if the pump wavelength is in the normal or anamolous portion of the

dispersion curve of the gain fiber). More concerning is the sensitivity of the extracted

dispersion coefficients to the specific dispersion curve used and the zero dispersion

wavelength. Inconsistencies in the manufacturing fiber draw process leads to variations

in the location of the zero dispersion wavelength along the fiber. This results in

the dispersion of a specific fiber to possibly vary significantly from the published

dispersion curve. This is all to say that without having a way to explicitly measure

the dispersion of a specific length of fiber (an involved experiment in and of itself),

the theoretical gain curve cannot be entirely trusted.

Nonetheless, the theoretical curve allows the ability to make a first guess and

obtain fiber components that might work. Figure 4.4 shows the initial design for

the bidirectional fiber optic parametric oscillator (BiFOPO). The Ekspla pump laser

is first coupled from free-space into fiber where the 1030nm pulses are split by a

50/50 splitter into two different paths. The two pump pulses are then sent into

counterpropagating directions in the bottom OPO loop by way of the wavelength

division multiplexor (WDM). The WDM is a fiber bragg grating based component
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Figure 4.4: Initial design plan for the ring bidirectional fiber optic parametric
oscillator. The transport fiber is a PANDA PM980 polarization maintaining
fiber. The OPO gain fiber is the NKT SC-5-1040-PM polarization maintaining
supercontinuum fiber. The Wavelength Division Multiplexor (WDM) reflects
the 1030nm pump into the loop while transmitting most of the 1150nm OPO
pulse power. It also acts as an output coupler by leaking a small amount of the
OPO bakc out of the loop. Because of the symmetry of the design the lasing
OPO pulses are automatically overlapped in time on the output detector for
beat note detection. The placement of the 90 degree splice forced the counter-
propagating pulses to be cross-polarized in the lasing loop while maintaining the
same polarization on the output detector for interference.

that operates similarly to a dichroic mirror. In this case the WDM reflects the

1030nm pump and transmits the 1150nm OPO signal wavelength. Notice that in

this configuration the WDM is also acting as an output coupler. To do this, it is

designed to be a “bad” component such that it leaks a bit of the 1150nm signal

into the reflection arm. This is done so that when the leaked OPO signal output

(from both lasing directions) makes its way back up to the 50/50 splitter, the pulses

will automatically be overlapped in time on the output detector for beat frequency

detection. This removes the need for an external beatnote detection delay apparatus.

The bottom loop is where the OPO gain fiber (chosen to be the NKT photonic crystal
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fiber) causes the four-wave mixing conversion that leads to lasing after feedback

through the WDM. Recall that the pump pulse must exactly overlap the generated

OPO pulse every round-trip. The free-space delay line allows for the size of the

loop to be adjusted with micron precision such that the repetition rate of the OPO

pulses can be matched to that of the pump laser, allowing for successful synchronous

pumping. Also of note is the fact that all fibers shown are polarization maintaining

fibers. By making a 90 degree splice in one of the arms leading to the WDM, the

counter-propagating OPO pulses are made to be cross-polarized in the loop. This

reduces any stray scattering that may lead to injection locking while still allowing

the pulses to be similarly polarized on the detector since the pulses travel the same

path in opposite order.

There were several challenges to overcome with this design. First, loss in the

cavity had to be managed. The Oz optics commercial ODL-650 free space delay line

inherently added 12% loss (measured at 1030nm) due to the coupling to and from

fiber, while the Haphit WDM included 27% insertion loss at the pump wavelength.

While these seem like high losses, the high gain and long gain lengths that exist in

fiber systems can easily make up for significant losses. The last form of loss to be

dealt with was the splice loss. Because the gain fiber was a structured core photonic

crystal fiber, splicing to step index fibers is a challenge. In order to achieve the least

lossy splice, the core size was first decreased by splicing a section of PM780 fiber to

the PM980 transport fiber. The PM780 fiber, with smaller core diameter than the

PM980, was then spliced to the even smaller core PCF gain fiber. The PCF fiber

required a custom splice recipe to be developed since our Fujikura FSM-45PM arc

fusion splicer was not programmed to carry out such a splice automatically. An arc

fusion splicer is a tool used to join two fibers. The fiber ends are placed between the

two electrodes in the splicer. An electrical discharge then arcs between the electrodes,

which briefly melts the silica fiber ends and allows them to be merged. By offsetting

the arc location towards the side of the smaller core PCF fiber and using several

long low-power arcs, the core of the PCF fiber could be slowly enlarged to decrease

coupling loss (see Fig. 4.5). A splice loss of 14% was achieved by offsetting the arc
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Figure 4.5: Diagram of the method used to splice the photonic crystal fiber (PCF)
to the PM980 fiber. First the PM980 fiber was spliced to the PM780 which had a
core size closer to the PCF. The PM780 was then spliced to the PCF by offsetting
the electrodes from the splice location and repeating long, low power arcs.

location 40um from the center, and arcing around 10 times for 300ms at a power of 0

bits (Fujikura splicing units). By actively monitoring the loss through the splice after

each arc, it is easy to find the ideal number of arcs for a specific offset and power.

Another challenge was achieving the synchronous pumping required for externally

pumped OPO. Because the precise group delay for the different fibers and components

used was not known, the repetition rate between the pump laser and OPO loop had

to be matched experimentally. The setup for this measurement is shown in Fig. 4.6. If

Figure 4.6: Measurement to ensure synchronous pumping. By ensuring the fiber
lengths of (B) and (C) added up to the length of fiber (A), the repetition rate
of the OPO loop could be matched to that of the Ekspla laser by ensuring the
pulses overlapped in time on the fast detector.

the fiber lengths are set such that the lengths follow the relationship, (A) = (B)+(C),
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then it can be assumed that the repetition rate of the OPO loop matches that of the

Ekspla pump when the two pulses are overlapped in time as measured by the fast

detector. The fiber lengths were measured as accurately as possible with string, and

the fast detector used had a rise time of 100ps. The OPO loop was built to initially

have too much fiber. The minimum amount of fiber that could be cut off at a time in

order for an acceptable fiber cleave to occur was about 1cm. So the fiber was cut

back 1cm at a time, and the fiber ends were aligned in the splicer. Without actually

splicing the fiber ends together, the Ekspla was turned on and the overlap of the two

pulses was observed on a fast analog sampling scope. Once the pulses were aligned to

within the error of the fiber length measurement, the fibers were spliced and evidence

of four-wave mixing was searched for as the delay line was scanned. It was initially

unknown how accurately the delay line had to be set for lasing to occur, so a labview

program was written that scanned the delay line and measured a spectrum in steps

of 0.1ps. If no evidence of OPO was found, then a minimal amount of fiber in the

OPO loop was removed and the delay-line was scanned again. This was repeated

until a four-wave mixing signal was found.

The four-wave mixing signal that was found is shown in Fig. 4.7. The amplitude

normalized plot Fig. 4.7a shows what seems to be promising newly created wavelengths

that are separate from the pump, however the unnormalized plot 4.7b tells a different

story. While there is clearly some nonlinear interaction occuring, it is difficult to tell

whether this is truly wave-mixing that can lead to lasing or just self-phase modulation.

The output signal is measured after the WDM which means the signal is what is

leaked out of the WDM and therefore could be affected by that transfer function.

One thing that is certain is that this is not displaying OPO based lasing.

More pump power was attempted to be squeezed out of the system by removing

fiber, re-attempting splices, and improving the Ekspla free-space coupling. Once the

power had been maxed out and no lasing was observed, attention was moved to the

quality of the pump source. Fig. 4.8 shows an autocorrelation of the commercial

Ekspla being used as a pump. The side lobes are indicative of a highly chirped source.

This is problematic because the OPO process is highly sensitive to the chirp of the
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Figure 4.7: (a) Normalized spectra showing the input pump (black dashed), and
the output (solid magenta) showing newly generated wavelengths from nonlinear
interaction. The plot in (b) is the same but without normalization showing
that the newly generated wavelengths are extremely weak and thus may not be
available to generate lasing. Note that the middle two peaks are an artifact from
the pump not being fully filtered out of the measurement (they are simply the
edge of the pump pulse and not actual peaks).

pump [33]. The chirp decreases the spectral intensity and creates an ambiguity in

the pulse duration, which makes defining a peak pulse power difficult. An unknown

pump power leads to an uncertainty in defining the four-wave mixing gain. This

inability to set the specific fiber component wavelengths with certainty, high loss in

the cavity, and inability to change the commercial pump characteristics led to the

decision to pivot the plan. It was decided that a home-built pump would enable more

flexibility and be better tailored for the task at hand.
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Figure 4.8: Background free autocorrelation of the Ekspla pump laser. The side
lobes are indicative of a highly chirped pulse. The green horizontal line displays
where the full width half maximumpulse width is calculated from, however, it is
clear that a significant portion of this pulse’s energy is located in the wings.

4.3.2 The 1550nm source

Since a home-built pump laser was to be constructed, changing the pump wavelength

to 1550nm (Erbium based fiber laser) made practical sense. Due to the telecom

industry operating mainly at 1550nm, stock commercial parts are widely available

and inexpensive. Additionally, extensive research has been done into designing fiber

lasers in this wavelength band. Specifically, solid core polarization maintaining highly

nonlinear dispersion tailored fibers (HNLF) were available such that the photonic

crystal fibers that were inducing high splice loss could be eliminated. The OFS optics

HNLF-PM with elliptical core was chosen as the gain fiber due to availability, cost,

and beneficial dispersion characteristics. Fig. 4.9 shows the dispersion curve (a),

and the calculated pulse walk-off (b) for a guessed OPO pulse center wavelength of

1680nm. The calculation was carried out using the expression in [50] as derived in

Appendix B. If the pump pulse is kept above 1ps, then the gain length can be as long
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Figure 4.9: Dispersion curve the HNLF used as gain (a), and the corresponding
OPO walk-off for a pulse centered at 1680nm (b).

as 10m which is a good sign for creating enough gain to lase in a highly lossy fiber

laser.

Erbium fiber lasers can lase at either 1530nm or 1560nm, however, 1560nm is

more desireable for mode-locking due to the larger bandwidth. Because the Erbium

fiber is more absorbant at 1530nm than it is at 1560nm, 1560nm lasing can be forced

by adding longer lengths of gain fiber. The saturable absorber used for mode-locking

was composed of carbon nanotubes sandwiched between two FC/APC connectors as

described in [4]. A 50/50 solution of distilled water and carbon nantubes is deposited

on the connector ferrule (covering the fiber core), and then the water is allowed to

evaporate leaving a thin layer of nanotubes. We have found that leaving the oscillator

running continuously avoids the initial start-up shock imparted on the saturable

absorber and has led to the laser running without maintenance for 19 months and

counting.

The oscillator-amplifier chain developed to pump the OPO is shown in Fig. 4.10.

Notice that the free-space delay line used to synchronize the OPO loop to the

pump was included in the pump oscillator so that the loss that it imparts could

be eliminated from the OPO loop. Two types of fiber were used in the oscillator-

amplifier chain: standard negative dispersion Corning PM1550 PANDA transport fiber
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Figure 4.10: Erbium Oscillator-amplifier chain used to pump the OPO sensing
loop. This system typically outputs 8ps, 17.7mW (average power) pulses at
29MHz. The components are labelled as follows: WDM = wavelength division
multiplexor; ISO = isolator; CNT = carbon nanotube saturable absorber; OC =
Output Coupler.

(dk/dΩ = −22.3 ps2/km) and positive dispersion erbium-doped nLight LEIKKI ER80

(dk/dΩ = 28.06 ps2/km) gain fiber. The oscillator consisted of 615.5cm (including

the length of the components) of PM1550 and 92.5cm of LEIKKI such that the total

round trip dispersion was −0.11ps2 (excluding the free space delay). The oscillator

mode-locked when the 980nm pump diode was driven with 223mA of current which

corresponded to around 130mW of 980nm pumping. This resulted in pulses spaced

by around 34.7ns or a 28.75mHz rep rate, 307uW average power output, and a 1.4ps

FWHM pulse duration. Fig. 4.11 shows the mode-locked spectrum with the cat’s ears

that are indicative of stable soliton mode-locking and an unchirped interferometric

autocorrelation.

In order to avoid adding chirp from the amplifier and to apply broadening to the

pulse in order to increase the walk-off length and facilitate synchronous pumping, a

0.7nm bandpass filter was inserted between the oscillator and amplifier. The bandpass

filter also makes the final pulse duration mostly independent of pumping power in

the amplifier. Fig. 4.12 shows the amplified pulse without (a) and with (b) the added

filter. The linear amplifier is pumped from both directions. When the pump diodes

are driven at their typical values of 686mA (LDI driver) and 600mA (Maiman driver),
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Figure 4.11: Mode-locked spectrum (a) and autocorrelation (b) of the ring laser
erbium oscillator used as pump to the ring IPI configuration. The cat’s ears on
the spectrum are indicative of stable soliton mode-locking. The interferometric
autocorrelation (blue), which is slightly noisy due the electronic amplification
necessary to detect the weak pulse, displays an unchirped pulse with FWHM of
1.4ps (green) when averaging down to the intensity autocorrelation (red).

(a) (b)

Figure 4.12: Ring laser pump pulse after amplification without (a) and with (b)
implementation of a 0.7 bandpass filter before the amplifier. The amplifier acts
to reduce the chirp (seen as wings) and broaden the pulse in time from < 1ps to
8ps FWHM. Without the filter the pulse chirp and duration are highly variable
based on how hard the amplifier is pumped. When the filter is added pulse chirp
and duration are independent of pumping.

the resultant pulse has an average power of 17.7mW. This pulse is then split almost

identically (7.7mW and 7.9mW) into clockwise and counter-clockwise directions with
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a 50/50 splitter to pump the OPO sensing loop through a WDM. Evidence of OPO

is observed when the average pump power in a single direction reaches above 5mW.

Fig. 4.13(a) shows a diagram of the OPO sensing loop, while (b) shows a typical

spectrum with the pump at 1560nm, signal at 1470nm and the lasing idler at 1660nm.

Which signal/idler pair is generated can be adjusted by changing the pump power

Figure 4.13: Diagram of the OPO sensing loop (a). (b) is a typical spectrum
showing the pump (1560nm), signal (1470nm), and lasing idler (1660nm). What
signal/idler pair are generated can be tuned by adjusting the pump delay line (c).

(changing the phase matching equation), or with the delay line (changing what part

of the pump pulse sees feedback each round-trip). Figure 4.13(c) shows the tunibility

of the OPO. Synchronism between the pump and OPO is maintained over a 500µm

delay which allows a tunability of around 20nm on the signal and idler.

The system is designed such that the counter-propagating pulses traverse the

same path in reverse order. This forces the pulses to be overlapped in time when they

emerge from the beat note port shown in Fig. 4.13(a). This removes the requirement

of a beat note detection delay line. Fig. 4.14 shows a beat signal measurement in

time (a) and the corresponding RF spectrum (b). Because the sensor is at rest,

this beat frequency is due to the Kerr nonlinearity causing the unequal intensity

pulses to pick up a differential phase. The bandwidth of the RF spectrum is caused

by instability in the laser. Because the OPO is highly sensitive to the characterics

of the pump, the next step will be to stabilize the pump in order to reduce this

bandwidth. Additionally, a variable power splitter will be used in place of the static

50/50 splitter currently in use so as to adjust the bias and more fully investigate the
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Figure 4.14: (a) Raw time data taken of the interference of the two counterprop-
agating OPO pulses. (b) the Fourier transform of the time signal showing the
corresponding RF spectrum of the beat signal.

sensor’s operation. The beat frequency currently can be seen to respond to external

tapping or manual rotation of the sensor container.

4.4 Linear cavity configuration

The diversity of measurements capable with an IPI sensor are only available if the laser

is configured with a linear cavity. Thus, another oscillator-amplifier chain pumping a

linear OPO cavity had to be developed. A diagram of the second oscillator-amplifier

chain is shown in Fig. 4.15. The main difference between this oscillator and the one

developed for the ring OPO is the length of fiber. In order to synchronize the linear

OPO cavity to the pump, the linear dimension (single pass) of the OPO cavity must

be half the size of the pump ring. To allow for enough fiber between components

such that fiber splices can comfortably be made in the OPO cavity, the oscillator

had to be enlarged. To facilitate the expansion, a different type of erbium gain

fiber was used (Fibercore DHB1500 erbium-doped bowtie PM fiber). This gain fiber

has a higher GVD of 40 ps2/km. The total round-trip dispersion should be slightly

negative (around −0.1 ps2) in order to enable stable soliton mode-locking. So, by

using a gain fiber with higher positive dispersion, additional negative dispersion
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Figure 4.15: Erbium Oscillator-amplifier chain used to pump the linear OPO
cavity. The components are labelled as follows: WDM = wavelength division
multiplexor; ISO = isolator; CNT = carbon nanotube saturable absorber; OC =
Output Coupler.

Corning PM1550 (−22 ps2/km) transport fiber can be included. Interestingly, the

laser mode-locked with a total dispersion of −0.262ps2/km when the pump diode was

driven with 65.3mA. The output spectrum was centered at 1621nm with a repetition

rate of 9.267MHz (107.89ns period) and 2.2µW was measured at the 4% monitor

port as seen in Fig. 4.16. As with the ring laser pump, this oscillator has been left

running continuously to increase longevity.

The HNLF OPO gain fiber used in the ring IPI configuration had PM1550 fiber

pigtails already spliced. This was not the case for the linear configuration. The

Fujikura FSM-45PM arc fusion splicer did not have the capability to automatically

align the HNLF elliptical core to the PANDA polarization rods of the PM1550 fiber.

Thus, an active polarization alignment apparatus had to be build. Fig. 4.17 shows

the experimental setup. Linearly polarized light was coupled from a 1550nm diode

laser into the HNLF fiber. By monitoring the polarization state at the output of the

HNLF with a home-built polarimeter (polarization cube rotation and power meter

as described in [4]), the light input to the fiber could be made to align with one of

the polarization axis of the elliptical core HNLF. Once the probe light was properly

aligned, the other end of the HNLF was placed in the splicer along with the PM1550
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Figure 4.16: Optical spectrum (a) and pulse train (b) of the pump oscillator for
the linear OPO laser. The spectrum is centered at 1561nm and stable mode-
locking is encountered when the diode is driven with a current of 65.3mA. The
repetition rate is measured to be 9.267 MHz and 2.2µW is measured out of the
4% monitor such that it can be assumed that the oscillator outputs an average
power of 55µW. Note that the autocorrelation for this pump is similar to that
shown for the ring configuration pump, and thus has little to no chirp.

Figure 4.17: Active polarization alignment setup used to splice the HNLF elliptical
core fiber to the PANDA PM1550 fiber. Coupling 1 must be set such that the
linearly polarized 1550nm source is aligned to the HNLF elliptical core. Similarly,
coupling 2 must be rotated such that the fast and slow axes are aligned to the two
axes of the polarizing beam splitter (PBS). If the two couplings are set correctly,
then the polarization axes are aligned when the largest difference between detector
DET2 and DET1 is observed as the fiber tips are rotated in the fiber splicer.

fiber. The other end of the PM1550 fiber was spliced to a collimator with polarization

axis aligned to a polarization beam splitter. By sending light through this system

while slowly rotating the fiber ends in the splicer and monitoring the difference in

power between the polarization beam splitter output, the polarization axes could be
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accurately aligned to one another. A Thorlabs PDB210C balanced detector was used

to measure the difference in power between the two polarization modes. Once the

difference between the slow and fast axis intensities was greatest, the two fibers could

be spliced together. Given the core size difference between the HNLF and PM1550

fiber, a similar splice recipe as that used for the PCF fiber was used. The arc location

was offset 30µm to the side of the HNLF and a long (30000 ms), low power (-10 bit)

arc was made. Shorter (1500ms), higher power (5 bit) rearcs were repeated (about

10 times) until the actively monitored power transmission reached a maximum. The

method could then be repeated for the opposite end of the HNLF fiber. This method

resulted in a 727cm length of HNLF with four splices (two for HNLF-to-PM1550

and two for splicing on FC/APC connectors) having 1.3dB loss. The polarization

extinction ratio was measured to be 11.7dB through the 4 splices, however, this was

limited by the exctinction ratio of the input pump laser 4.

The linear laser configuration was designed such that only a single length of HNLF

was included to limit the number of lossy splices as seen in Fig. 4.18. This required

using two 1x2 WDM’s to pump the gain medium in counter-propagating directions

after the 50/50 splitter. A 90 degree splice was made in one of the pump arms so

as to cross-polarize the counter-propagating pulses into the slow and fast axes of

the PM fiber. Since the round-trip time of the linear laser had to match that of

the pump oscillator, the single pass length of the laser had to be half that of the

oscillator ring. The interferometer arm (see the inset of Fig. 4.18) consisted of 3

inline collimators and a custom optically contacted lossless polarization beam splitter

crystal as described in [4]. The collimators and beam splitters were aligned such that

a single pass through the free-space coupling section added 1.3dB loss. Adding up

the cavity losses of 2 inline mirrors (1dB each), 2 WDM’s (0.5 dB each), gain fiber

splices (1.3dB), and free-space coupling (1 dB) resulted in a round-trip estimated loss

of 8.6dB (about 86% loss).

Since the two separate arms of the interferometer need to be the exact same

4The commercial pigtail splices made by OFS resulted in 1dB total loss and a polarization
extinction ratio of 26.5dB
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Figure 4.18: Diagram of the linear cavity OPO. The pump is split into counter-
propagating directions and pumps the highly nonlinear gain fiber (HNLF) through
the wavelength-divison multiplexors (WDMs) in reflection. A 90 degree splice
is made in one of the pump arms so that the lasing pulses are cross polarized
(one traversing the slow axis and the other the fast axis of the PM fiber). The
inline mirrors (M1,M2,M3) retroreflect the light back into the fiber. The inset
shows a photo of the free space section of the interferometer arm where the
light is collimated into air (C2), sent into a the polarization beam splitter (PBS)
which separates the cross-polarized pulses into separate arms which are then
are coupled back into fiber (C2 and C3). The collimator C1 can be translated
by a piezo-electric transducer (PZT) so as to impart the differential phase shift
required of IPI.

length, a systematic way of aligning and coupling the light was required. First, the

coupling between the fiber ends was maximized. In Fig. 4.18 coupler C2 and C1 were

aligned without the PBS in place. By sending 1550nm light through the C2 coupler

and defining the beam path with two irises, light could then be sent in the opposite

direction (through C1) and roughly aligned. Once enough light was coupled into a

fiber, fine adjustments could be made. The PBS was then put in place between the

couplers and the light again aligned to the irises. The polarization alignment was

ensured by sending light in either direction and rotating the couplers until maximum

power was transmitted through the PBS. The cavity length translation stage had

to be set such that coupling was not significantly changed as it was scanned in
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order for synchronous pumping to be achieved (explained later). The third coupler

(C3) was then aligned without touching the alignment of C2. Light with oppoosite

polarization was sent through C2 and another iris was placed to define this reflection

beam path. Alignment was done by sending light back through C3 and aligning to

the irises. With this method 80-85% coupling was achieved. It should be mentioned

that while it seems that using a single coupler with retroreflecting mirrors should

be simpler to align, this was initially attempted (with all components mounted to

Zerodur low thermal coefficient glass) and only 60% single pass coupling was achieved.

It is thought that by using two matched couplers that slightly focus the light, better

coupling can be achieved if the second coupler is placed the correct distance away to

mode match.

Next synchronous pumping was achieved. Only the reflection cavity (C2-C3) was

pumped initially. The length of fiber in the linear cavity was purposefully made to

be too long, and the fiber was then cut back one splice at a time. After each splice,

evidenc of OPO was searched for while the delay line in the oscillator was scanned.

Once OPO was achieved in the reflection cavity, the opposite polarization cavity

(C2-C1) was pumped. The same method was used here, however, none of the fiber

lengths involved in the reflection cavity were changed (including the oscillator delay

line). So only the fiber between C1 and M1 was shortened while the translation stage

holding the C1 coupler was scanned when searching for OPO evidence.

Remarkably, the long length of gain fiber was able to overcome the high cavity

losses and bidirectional, cross-polarized, OPO was observed when the two amplifier

drivers were driven at 245mA and 267mA. This pumping led to 76µW average power

measured at the 1% monitor port such that it can be assumed that 7.6mW was being

directed to the 50/50 splitter. The output spectrum showing the signal, pump and

idler of both polarizations lasing independently is shown in Fig. 4.19. This is the first

observation of a cross-polarized, dual-correlated comb fiber laser implemented in a

linear synchronously pumped OPO cavity.

Now that it has been proven that the linear configuration can be realized, work

must be done to stabilize the cavity such that a beat signal can be extracted. To
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Figure 4.19: Output spectrum of the linear configuration laser showing the lasing
OPO signal at 1665nm, pump at 1561nm, and non-lasing corresponding four-wave
mixing signal at 1463nm. The two independently lasing cross-polarized pulses
are plotted separately (red, blue).

describe the problem more concretely, consider a 1m long cavity (2m round-trip)

that uses λ = 1µm light. If a mirror translates by ∆L = 1µm (thermal expansion,

vibrational noise, etc.), then the central resonant frequency will shift by,

∆λ =
2

N
∆L = 1pm→ ∆ν = 300MHz, (4.21)

where the lasing mode number N was calculated to be 2× 106. Since a typical beat

frequency is expected to be in the kHz range, a MHz shift in lasing frequency will

wash out any evidence of the beating. Engineering enhancements are now required to

stabilize the cavity length to acceptable tolerances.
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Chapter 5

Intracavity Phase Interferometry

Enhancement

5.1 Introduction

As the world strives for more adventurous space missions, higher precision studies of

fundamental physics and sleek wearable technology, the need for compact and energy

efficient, but highly sensitive, measurement devices has never been greater. Thus, it is

beneficial to understand the methods that are available to increase the sensitivity and

resolution of a specific detection technique. With few exceptions [51–53] most reports

based on intracavity phase sensing have been limited to cw lasers i.e. the gyroscope. In

this context, a recent hot topic is a byproduct of the field of non-Hermitian quantum

mechanics and the discovery of the Exceptional Point (EP) [54]. By placing a sensor

at a specific location in parameter space (the EP), it has been shown that some

devices can exhibit significantly increased sensitivity [17, 18]. Unfortunately, these

enhancements generally come at the expense of increased noise [55, 56]. For the

specific case of the laser gyroscope, the EP is equivalent to the dead band edge where

noise and instability dominate [19, 20, 55, 56].

It has been shown that “slow light” media causes a reduction in sensitivity
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to resonator path length changes, while “fast light” sensors result in a linewidth

broadening that exactly cancels the added sensitivity benefit [57–59] 1. Recently,

the critical anomalous dispersion point spoken about in “fast light” lasers, and their

corresponding parasitic noise, have been equated to the EP of non-Hermitian quantum

mechanics [19, 20, 55]. By equating the two areas of study, the experimental work

regarding the critical anomalous dispersion point can be reexamined in the context of

EP theory. One can then conclude that the broadened linewidth is caused by coupling

between modes as quantified by the Petermann excess noise factor. This multiplicative

factor to the Schawlow-Townes linewidth describes a linewidth broadening that is

generated by mode nonorthagonality resulting from mode coupling [60].

Section 5.2 below will introduce the concepts of non-Hermitian Quantum mechanics

and section 5.3 will show that Exceptional Point enhancement causes added noise

according to the Petermann excess noise factor. Section 5.4 will then show that by

reducing the coupling between the modes by way of an ultrafast intracavity phase

interferometry sensor, the linewidth broadening typically encountered by dispersion

enhancement can be avoided.

5.2 Non-Hermitian Quantum Mechanics

One of the first postulates of quantum mechanics that students are taught is that all

operators must be Hermitian. That is, if Â is some operator, then Â = Â†, where † is

the conjugate transpose. The reason for this restriction is simply that these operators

correspond to physical observables which therefore must be real. It is a common

linear algebra exercise to show that Hermitian matrices always have real eigenvalues.

Theorem 1. All Hermitian operators have real eigenvalues

1Slow light refers to light that has a group velocity, vg, that is much slower than the
speed of light in vacuum, c, (vg � c). Fast light, then, corresponds to the situation of
vg � c.
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Proof. If |ψ〉 is an eigenvector of the operator Â with eigenvalue a then,

Â |ψ〉 = a |ψ〉

〈ψ|Â|ψ〉 = 〈ψ|a|ψ〉

= a 〈ψ|ψ〉 . (5.1)

Similarly,

〈ψ|Â|ψ〉† = 〈ψ|a|ψ〉†

〈ψ|Â†|ψ〉 = a∗ 〈ψ|ψ〉 . (5.2)

Since Â is Hermitian, Â = Â†, which leads to the conclusion that (5.1)=(5.2). Thus,

a = a∗, which is only true if a is real.

Other useful properties of Hermitian operators include that they conserve proba-

bility through unitary transformations, U = eiÂ, and they force an orthonormal basis

since their eigenvectors are orthogonal. These seem to be common sense requirements

of any operator since any useful theorem should include observables (real eigenvalues),

conserve energy (unitary transformations), and create a reasonable space to make

calculations (orthogonal eigenvectors).

In 1988, however, Carl Bender showed that some non-Hermitian Hamiltonians

(energy operators) can still result in real eigenvalues if they are invariant under parity

and time inversion (referred to as PT -symmetry) [54]. In fact, He went on to claim

that PT -symmetry is actually the broader requirement of operators i.e. that every

Hermitian operator is PT -symmetric.

To make this more concrete, consider the non-Hermitian Hamiltonian used by

Bender,

Ĥ = p̂2 + x̂2(ix̂). (5.3)

Inverting space (parity) changes the sign of the momentum and space operators such

that the parity operator induces the change,

P̂ : p̂→ −p̂ and x̂→ −x̂. (5.4)
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Inverting time leaves the space operator as is, but negates the imaginary unit, which

also causes the momentum operator to flip sign so that the time inversion operator

causes,

T̂ : p̂→ −p̂ and i→ −i. (5.5)

With this it is straightforward to see that the Hamiltonian of Eq. (5.3) is PT -

symmetric since,

P̂ T̂ Ĥ = (−p̂)2 + (−x̂)2(−i)(−x̂) = p̂2 + x̂2(ix̂) = Ĥ. (5.6)

The Hamiltonian of Eq. (5.3) has been shown by Carl Bender to have purely real

eigenvalues, which led to the conclusion that operator Hermiticity is a sufficient but not

necessary requirement for quantum mechanical operators. This has birthed the field

of Non-Hermitian quantum mechanics (NHQM). NHQM has been called an analytic

continuation of Hermitian quantum mechanics as you can imagine that Ĥ = p̂2+x̂2(ix̂)

is just a continuation of the Hermitian harmonic oscillator Hamiltonian Ĥ = p̂2 + x̂2

into the complex plane.

In order to show that any PT -symmetric Hamiltonian has real eigenvalues, a

few definitions must be made. First, inverting space and time twice should leave the

system unchanged,

(P̂ T̂ )2 = 1. (5.7)

Second, if a Hamiltonian is PT -symmetric, then it must commute with the P̂ T̂

operator,

[Ĥ, P̂ T̂ ] = 0. (5.8)

Last, Ĥ and P̂ T̂ operate in the same space. In other words, every eigenfunction of Ĥ

is also an eigenfunction of P̂ T̂ ,

if Ĥ |φ〉 = E |φ〉 then P̂ T̂ |φ〉 = λ |φ〉 , (5.9)

where E and λ are eigenvalues. This actually isn’t a definition, but a postulate as it

is not always satisfied. Another operator, Ĉ, has since been defined to ensure this is



Chapter 5. Intracavity Phase Interferometry Enhancement 75

satisfied so that the necessary and sufficient condition of real eigenvalues is that the

Hamiltonian commutes with the P̂ T̂ Ĉ operators 2. If the system commutes with Ĉ,

then the state is termed to have, “unbroken symmetry”, while the situation of the

commutation relationship only being maintain with the P̂ T̂ operators is referred to

as having, “broken symmetry”.

Theorem 2. All Hamiltonians exhibiting unbroken PT -symmetry have real eigenval-

ues.

Proof. Unbroken PT -symmetry means that Eq. (5.9) must be true. First it must be

shown that the eigenvalue of the P̂ T̂ operator, λ, is a pure phase.

P̂ T̂ |ψ〉 = λ |ψ〉

Now multiply both sides by P̂ T̂ and then take advantage of Eq. (5.7) twice.

(P̂ T̂ )2 |ψ〉 = P̂ T̂ λ |ψ〉

|ψ〉 = P̂ T̂ λ |ψ〉

|ψ〉 = P̂ T̂ λ(P̂ T̂ )2 |ψ〉 (5.10)

Now because the P̂ T̂ operator switches the sign of the imaginary unit, it is an

antilinear operator. This means that P̂ T̂ λP̂ T̂ = λ∗ and thus,

|ψ〉 = λ∗λ |ψ〉 . (5.11)

Therefore |λ|2 = 1 which is only true if λ = eiφ i.e. a pure phase. Now since the

Hamiltonian operates in the same space as the P̂ T̂ operator (unbroken symmetry),

this allows it to operate on the same eigenvector,

Ĥ |ψ〉 = E |ψ〉

P̂ T̂ Ĥ |ψ〉 = P̂ T̂E |ψ〉

= P̂ T̂E(P̂ T̂ )2 |ψ〉 (5.12)

2Note that this Ĉ operator is not equivalent to the charge operator in particle physics
but is denoted with the same symbol due to its similar properties
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Taking advantage of the fact the Ĥ and P̂ T̂ commute allows the left-hand-side to be

rearranged and P̂ T̂ to operate on |ψ〉 such that,

ĤP̂ T̂ |ψ〉 = P̂ T̂E(P̂ T̂ )2 |ψ〉

Ĥλ |ψ〉 = P̂ T̂EP̂ T̂λ |ψ〉

λE |ψ〉 = E∗λ |ψ〉 (5.13)

Considering the fact that λ is a phase means that E = E∗ i.e. the eigenvalues are

real.

An important observable difference between Hermitian and non-Hermitian systems

appears near singularities. A Hermitian singularity is called a diabolical point (DP),

where the eigenvalues are degenerate but the eigenvectors remain orthogonal. Non-

Hermitian singularities, on the other hand, are termed exceptional points (EPs) and

result in a coalescing of both the eigenvalues and eigenvectors. The eigenvectors are

not orthogonal and therefore no longer span the space, but split into the complex plane.

One area where this new quantum formalism is being employed is in laser systems

since they are inherently non-Hermitian due to gain/loss dynamics. The coalescing

of the eigenvalues and eigenvectors at the EP has led to many newly observed laser

phenomena due to the ability to remove certain allowed modes. [61–63].

Laser sensor research is one specific field that has attempted to benefit from this

new formalism [16, 18, 22]. Typically, laser sensors operate at a diabolical point such

that the quantity to be measured lifts the system out of the singularity linearly. If a

laser sensor could be placed at an exceptional point instead, the same quantity to be

measured would lift the system out of the singularity nonlinearly. This means that at

low detunings, the response of the EP sensor would be greatly enhanced over the DP

sensor.

In order to make this discussion more concrete, let us take a specific example of the

laser gyroscope. Chapter 3.4 showed that a mode-locked laser can be represented as a

2-level quantum system [14]. This makes the transition to representing a laser system

with the language of NHQM straightforward. Consider a single cavity mode-locked
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Figure 5.1: Idealized laser gyroscope. Two electric fields (green, pink) counter-
propagate in a ring cavity (a). Because the ring is rotating at an angular frequency,
Ω, the two fields encounter two different effective cavity round-trip lengths (b).
This cavity length difference ∆P results in the two fields lasing at slightly detuned
frequencies and thus create a beat note when interferred on a detector.

laser gyroscope as seen in Fig. 5.1. There are two counterpropogating electric fields,

E1 and E2 (green and pink). As the gyroscope is rotated, one pulse will travel a

longer effective optical path such that when the fields are interfered in time on the

detector, |E1 + E2|2, a beat frequency will be observed.

The counterpropogating electric fields can be represented as Ẽ1,2(t) = Ẽ1,2(t)eiωt

where Ẽ(t) is the Gaussian pulse amplitude and ω = (ω1 +ω2)/2 is the rotating frame

average frequency. The coupled-mode equations for the electric field amplitudes of

an idealized gyroscope (no coupling between counterpropogating electric fields and

equal constant gain in each field) are then,

˙̃E1(t) = −i∆
2
Ẽ1(t) (5.14)

˙̃E2(t) = i
∆

2
Ẽ2(t), (5.15)

where the detuning is defined as ∆ = ω2 − ω1. From this a Schrödinger-like equation
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can be contructed. Recall the form of the Schrödinger equation,

i
∂

∂t
|ψ〉 = Ĥ |ψ〉 , (5.16)

where for a two-level system we have |ψ〉 = (ψ1,ψ2). Our amplitudes will then be a

weighted linear combination of the eigenstates such that,

Ẽ1 = a1ψ1 + b1ψ2 (5.17)

Ẽ2 = a2ψ1 + b2ψ2. (5.18)

Converting the coupled-mode Eqs. 5.14 and 5.15 into a matrix equation and rear-

ranging into the form of Eq. 5.16 leads to,

Ĥ =

∆/2 0

0 −∆/2.

 (5.19)

Notice that Ĥ is Hermitian and by using the third Pauli matrix, σ3 =

1 0

0 −1

 , it

is easy to see that the eigenstates are |1〉 = (1, 0) = ψ1 and |2〉 = (0, 1) = ψ2 with

eigenvalues, λ1,2 = ±∆/2. This means the two allowed modes in this gyroscope are,

ψ1,2 = Ẽ1,2 = E1,2e
± i∆

2
t. (5.20)

Notice the singularity at ∆ = 0. Here the eigenvalues become 0, but the eigenstates

remain unchanged. This is the definition of a DP. When the two fields are interfered

in time, the signal the detector sees is,

|E1 + E2|2 =
1

4

(
|Ẽ1|2 + |Ẽ2|2 + Ẽ1Ẽ∗2 + Ẽ∗1 Ẽ2

)
=

1

4

(
E2

1 + E2
2 + 2E1E2e

−i∆t
)

, (5.21)

which means the beat frequency is ∆. The DP is at ∆ = 0 with the beat frequency

increasing linearly with ∆ as seen by the red curve in Fig. 5.2.

In order to observe an EP, we must add coupling into the coupled-mode equations,

˙̃E1(t) = −i∆
2
Ẽ1(t) + SẼ2(t) (5.22)
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˙̃E2(t) = i
∆

2
Ẽ2(t) + SẼ1(t). (5.23)

Notice that the coupling coefficient is non-conservative. In this case,

Ĥ =

∆/2 iS

iS −∆/2

 , (5.24)

which is non-Hermitian owing to the off-diagonals. It is, however, PT -symmetric

since inverting space and time gives the exact same system. The eigenvectors are,

|1〉 =

 1
iS

(√
(∆/2)2 − S2 −∆/2

)
1

 (5.25)

|2〉 =

 1
iS

(
−
√

(∆/2)2 − S2 −∆/2

)
1

 , (5.26)

with eigenvalues λ1,2 = ±
√

(∆/2)2 − S2. The important part to notice here is that

there is a singularity at ∆/2 = S. At this point there is a coalescing of both

eigenvectors and eigenvalues,

|1〉 = |2〉 =

− 1
iS

∆
2

1

 (5.27)

λ1 = λ2 = 0. (5.28)

This is the location of the EP. Notice that if ∆ decreases from this point, the system

splits into the complex plane. This is an example of broken PT -symmetry. If ∆

increases past the EP the system enters an unbroken-symmetry regime and the beat

frequency increases from 0 with a square-root dependence (see Fig. 5.2 where the

solid blue curve is the real part and the dashed blue is the imaginary part). Those

familiar with gyroscope response curves may notice that this curve looks eerily similar

to what is termed the deadband or lock-in region. This similarity has been shown to

be an equivalence [20]. This square-root response curve is what excites those in the

sensing world as it shows enhanced sensitivity (increased slope). In fact, if one were

to place a system exactly at the EP, the sensitivity would theoretically be infinite

since any small perturbation would lift the system out of the degeneracy. However,
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Figure 5.2: Two-level system beat frequency response curve showing a Diabolical
Point at ∆ = 0 (red) and an Exceptional Point degeneracy at ∆ = 2S = 0.6 (blue)
degeneracy. Also note that the PT -symmetric system splits into the imaginary
plan below the singularity at the Exceptional Point (dashed blue). The DP (red
curve) can be interpreted as a gyroscope without a coupling caused dead band,
while the EP (blue curve) is a typical gyroscope with dead band response.

the experimental feasibility remains suspect as some studies have shown that the

enhancement is overcome by noise and instability [55, 56].

5.3 Exceptional Point enhancement

While the increased slope of the sensor response curve near the Exceptional Point

seems to indicate that it would be desireable to operate a laser sensor in this regime

(solid blue curve in Fig. 5.2), it has been shown that parasitic noise acts to counteract

the benefit [55, 56]. The Petermann factor, Kp, characterizes the linewidth broadening

that occurs around the EP and is given by [60, 64],

Kp =
1

1− | 〈v+|v−〉 |2
, (5.29)
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where |v±〉 are the two eigenmodes of the system that must be normalized to 〈v±|v±〉 =

1 for the Petermann factor to take the simple form seen in Eq. (5.29) [65]. Clearly

the Petermann factor increases as the modes become nonorthogonal 〈v+|v−〉 > 0 near

the EP.

To see this, we start with the laser model described in Chapter 3.4 where the laser

sensor can be characterized by the coupled-mode system of Eq. (3.63), ˙̃E1

˙̃E2

 =

−i∆ϕ/2 s

s i∆ϕ/2

Ẽ1

Ẽ2

 . (5.30)

which has the analytic solution,

Ẽ1(t) = c+v
(1)
+ eiλ+t + c−v

(1)
− eiλ−t

Ẽ2(t) = c+v
(2)
+ eiλ+t + c−v

(2)
− eiλ−t.

(5.31)

The eigenvalues are,

λ± = ±
√

∆ϕ2 − 4s2

2
, (5.32)

and eigenvectors,

v± = µ±

 2s

i∆ϕ± i
√

∆ϕ2 − 4s2

 , (5.33)

where µ± is the normalization factor. If the system is just outside of the dead band

edge (or EP) such that ∆ϕ2 > 4s2, then, to ensure that the normalization 〈v±|v±〉 = 1

holds, we have to add the normalization factor of,

µ± =
1√

2
(
∆ϕ2 ±∆

√
∆ϕ2 − 4s2

) . (5.34)

The inner product is then,

〈v+|v−〉 = µ+µ−

[
2s −i∆ϕ− i

√
∆ϕ2 − 4s2

] 2s

i∆ϕ− i
√

∆ϕ2 − 4s2


=

2s

∆ϕ
.

(5.35)
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Plugging this into Eq. (5.29) shows explicitly that the Petermann factor diverges as

the system approaches the dead band edge at ∆ϕ = 2s:

Kp =
1

1− 4s
2

∆ϕ
2

. (5.36)

There is another degeneracy, termed the ‘gain difference Exceptional Point’ in

the language of [20], that occurs when gain and conservative coupling is included

in the model (see for instance [16]). This EP has been shown to be equivalent to

the critical anomalous dispersion point of ‘fast light’ lasers where the Petermann

factor noise exactly cancels the additional sensitivity enhancement [55, 57–59]. A

point rarely made in the literature is that this EP is actually not a degeneracy in

the beat frequency, but in the absolute optical frequency. This is important as the

measurement of the absolute frequency is harder to make and plagued by more classical

noise than the beat frequency measurement. To prove this fact mathematically, the

coupled-mode system must be updated by replacing the non-conservative coupling

with the conservative coupling of, κ1 = κ = −κ∗2, and including saturable gain,

αi =
α0

1 +Wi/Ws

− βi, (5.37)

where α0 is the small signal gain factor per round-trip, Wi = (
∫
|Ei|2dt)/2η is the

pulse energy density, Ws is the saturation energy density, η is the characteristic

impedance of the medium, and βi is the linear loss per round-trip for each field. Thus,

the coupled-mode equations become: ˙̃E1

˙̃E2

 =

α1 − i∆ϕ/2 κ

−κ∗ α2 + i∆ϕ/2

Ẽ1

Ẽ2

 . (5.38)

In this case the eigenvalues are,

λ± = i
α1 + α2

2
± χ

2
, (5.39)

where,

χ =

√
4|κ|2 − [(α1 − α2)− i∆ϕ]2. (5.40)
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The final solutions are again a linear combination of the eigenvalues and eigenvectors

according to Eq. (5.31). The gain difference Exceptional Point occurs when the gain

difference offsets the conservative coupling such that (α1 − α2 − i∆ϕ)2 = 4|κ|2. This

can be observed by setting α1 = k, α2 = −k. The eigenvalue then reduces to,

λ± = ±χ
2

,

χ =

√
−i2k∆ϕ−∆ϕ2.

Since the Exceptional Point occurs at ∆ϕ = 0, it can be assumed that ∆ϕ is small,

such that,

λ± = ±χ
2

= ±1

2

√
−2iκ∆ϕ−∆ϕ2

≈ ±
√
κ∆ϕ

2

√
−i = ±1

2

√
κ∆ϕ(1− i).

(5.41)

Plugging this into Eq.(5.31) leads to,

Ẽ1 = A1v
(1)
+ eit

√
κ∆ϕ/2−t

√
κ∆ϕ/2 + A2v

(1)
− eit

√
κ∆ϕ/2+t

√
κ∆ϕ/2

Ẽ2 = A1v
(2)
+ eit

√
κ∆ϕ/2−t

√
κ∆ϕ/2 + A2v

(2)
− eit

√
κ∆ϕ/2+t

√
κ∆ϕ/2.

(5.42)

The saturable gain in the lasing cavity will act such that gain and decay terms are

eliminated, leaving,

Ẽ1 =
(
A1ε

1
+ + A2ε

1
−
)
eit
√
κ∆ϕ/2

Ẽ2 =
(
A1ε

2
+ + A2ε

2
−
)
eit
√
κ∆ϕ/2.

(5.43)

This shows algebraically that under the circumstances of operating near this Ex-

ceptional Point, the two counterpropagating electric fields oscillate at the same

frequency.

Numerical verification can be found by solving the system of coupled differential

equations, Eq. (5.38), for a conservative coupling κ = 0.05, saturable gain using

α0 = 0.1, Ws = 1, β1 = 0, α2 = −κ, and ∆ϕ = 2π ∗ 0.1. The results are presented in

Fig. 5.3 which shows the two fields oscillating with the same optical frequency. Initial

cw fields of amplitude 1 were used, and the real fields are plotted as a function of

time. Assuming a cavity τp = 1 ns, the displayed period is 20 ns which corresponds
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to a frequency of 0.05 GHz. This does not agree with the predicted frequency of

1
4πτp

√
κ∆ϕ = 0.014 GHz because, as stated in [20], the relationship α1 − α2 = 2κ

isn’t maintained for ∆ϕ > 0. In this case the gain in the first resonator saturates to

α1 = 0.00068, while the second resonator maintains the constant α2 = −κ. Plugging

these values into Eq. (5.39) and taking the real part (since the imaginary part leads

to gain or loss) results in the expected value of, Re(λ±)/(2πτp) = 0.05.
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Figure 5.3: Evolution of the two fields (red, blue) near the “Gain Difference Exceptional
Point”. Eq. (5.38) was solved using initial cw fields of amplitude 1 and κ = 0.05, a
saturable gain with α0 = 0.1, Ws = 1, β1 = 0, α2 = −κ in Eq. (5.37), and ∆ϕ = 2π∗0.1.
Figure 5.3b is a zoomed in plot of 5.3a showing that the two fields have the same optical
frequency, and therefore there is no measureable beat frequency when the two fields
are interfered.

It is also of note that there exists a phase shift between the fields in Fig. 5.3. This

arises from the coupling phase as explained in [66]. In this case, the coupling phase

arises becuase κ1 = 0.05eiπ so that κ2 = −0.05ei0.

While no beat frequency can be extracted from this system, the absolute frequency

of each of the fields still corresponds to the applied perturbation, ∆ϕ. Thus, there

are ways that this could be used as a detector as described in [19]. However, because

the modes by definition are non-orthogonal in the area surrounding this Exceptional

Point, the issue of added noise remains. Another point of concern is that a lasing

cavity requires a saturable gain which means that maintaining the two relationships,

(α1 − α2)
2 = 4|κ|2, and α1 + α2 = 0, that are required to place the system at the
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Exceptional Point becomes a challenge. Forcing the gain terms to be constants of

α1 = k = −α2 results in the real electric fields tending to positive and negative

infinity. This is also the case when one chooses the saturable terms,

α± =
α0

1 +Wi/Ws

± κ. (5.44)

The only way to maintain steady-state lasing seems to be to choose a saturable gain

term in one resonator and a constant loss of κ in the other,

α1 =
α0

1 +Wi/Ws

(5.45)

α2 = −κ. (5.46)

However, as ∆ϕ is increased, the energy is unequally focused into the first resonator

such that α1 decreases. This means, then, that the only time that the EP relationship

is maintained is at ∆ϕ = 0.

5.4 Resonant dispersion

Recalling the model of section 3.2.4, it was shown that the electric field can be built

up in frequency one round-trip at a time according to (ignoring coupling for now):

Ã± = Ã±,xe
−iτp(±∆ϕ/2+∆Ω). (5.47)

Summarizing the different applied detuning variables used thus far (∆, ∆ϕ), the

ultimate frequency mode splitting, δ0, imparted to the IPI frequency combs in a laser

cavity of length, L, and phase delay, τp, is represented by,

δ0 =
∆

2πL
=

∆ϕ

2πτp
. (5.48)

If an additional dispersive element is inserted into the cavity with a periodic transfer

function of h̃ = e−iψ(∆Ω), then the round-trip is represented as:

Ã±,x+1 = Ã±,xe
−i[±(∆ϕ/2)τp+τp∆Ω+ψ(∆Ω)]. (5.49)
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Using a Taylor expansion limited to first order ψ(∆Ω) ≈ ψ0 + ∆Ω ∂ψ/∂∆Ω|0, and

ignoring the global phase factor ψ0 since it affects all teeth on each comb equally

results in:

Ã±,x+1 = Ã±,xe
−i
[
±(∆ϕ/2)τp+

(
τp+ ∂ψ

∂∆Ω

∣∣∣
0

)
∆Ω

]
. (5.50)

By comparing Eq. (5.47) and Eq. (5.50), it is clear that the effect of adding an

intracavity dispersive element is to modify the phase round-trip time as τp ⇒ τp +

∂ψ/∂∆Ω|0. Inserting this into Eq. (5.48) results in a modified mode splitting of,

δ =
∆ϕ

2π(τp + ∂ψ
∂∆Ω

∣∣∣
0
)

=

∆ϕ
2πτp

1 + 1
τp

∂ψ
∂∆Ω

∣∣∣
0

=
δ0

1 + 1
τp

∂ψ
∂∆Ω

∣∣∣
0

. (5.51)

Clearly if there exists negative (anomalous) resonant group-velocity dispersion in the

laser cavity such that, ∂ψ/∂∆Ω|0 < 0, then the mode shift is enhanced. A mode

splitting enhancement alone is not sufficient to prove a viable sensor improvement

method. As described in Section 5.3, noise and instability prohibit the readout of

mode splitting enhancement that may be present. In other words, it must be shown

that the physical readout signal seen by the IPI detector, Db(∆Ω) from Eq. 3.86, is

not broadened so much that the beat frequency, ∆ν, can’t be extracted.

Figure 5.4 shows the enhanced (solid) and non-enhanced (dashed) sensor response

curve (red, left) and beat signal bandwidth (blue, right). The simulation was carried

out by using Eq. (5.50) to solve for the enhanced response electric fields in place of

Eq. (5.47) in the frequency domain model described in section 3.2.4. Fig. 5.4 plots

the average beat frequency as a function of mode splitting (red, left axis) which is

calculated similarly to how it would be measured in the lab as the center of gravity

(first moment) of the beat signal spectrum,

∆ν =
1

2π

∫∞
−∞∆ΩDb(∆Ω)d∆Ω∫∞
−∞Db(∆Ω)d∆Ω

. (5.52)

Enhancement in the sensitivity of the average beat frequency to the mode splitting is

clearly shown as an increase in slope. The beat signal bandwidth is plotted in Fig. 5.4

(blue, right axis) as represented by the square root of the second moment of the beat
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Figure 5.4: Enhanced (solid) and non-enhanced (dashed) sensor response curves.
The average beat frequency (left axis, red) shows Eq. (5.52) plotted as function
of the applied mode-splitting. The result of using the enhancement factor of
∂ψ/∂∆Ω|0 = −0.5 acts to increase the sensitivity response (observed as the slope
of the average beat frequency curve), without causing the noise to diverge as
characterized by the beat signal bandwidth, Eq. (5.53) (right axis, blue). 150
round-trips were used in these calculations, without coupling, and gain parameters
of α0 = 1, γ = 0.05, and Ws = 1.

signal,

〈φ̈2〉 =

∫∞
−∞(∆Ω− 2π∆ν)2Db(∆Ω)d∆Ω∫∞

−∞Db(∆Ω)d∆Ω
. (5.53)

The flat curves imply that the noise does not diverge like the EP enhancement since

the coupling has been removed, s = 0. This calculation was carried out using τp = 1,

with 150 round-trips, gain parameters of α0 = 1, γ = 0.05, and Ws = 1, and an

enhancement factor of ∂ψ/∂∆Ω|0 = −0.5.

The enhancement described here is achieved by operating in the dispersive region of

an absorbing resonance. This can be achieved experimentally by using an intracavity

Gires-Tournois interferometer, a loop interferometer in a fiber laser, or using an active

medium [67–69] .
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Chapter 6

Genetic Algorithm

6.1 Introduction to Genetic Algorithms

As machine learning and deep neural networks have exploded in the computer

science disciplines it was only a matter of time until their benefits were applied to

optics. Artificial intelligence has been applied to optical design [70], initialized the

development of so called “smart lasers” [71–73], and greatly improved reconstruction

processes including ultrafast diagnostics [74], and imaging and super resolution [75–

77], to name a few. The genetic algorithm (GA) developed here is an extremely

versatile software tool that has found use throughout this research for reconstruction

of ultrafast pulse phases, and cavity design. It has been developed in such a way that

it can easily be catered to any individual future problem.

At the heart of machine learning is a minimization function. The computer needs

a method to move from less correct to more correct solutions. A GA is an error

minimization function that is frequently implemented in machine learning algorithms

due to its ability to search large parameter spaces without falling into local minima

[2, 78, 79].

The GA is a stochastic method that searches a parameter space similarly to how

evolutionary biology optimizes organisms to an environment. An initial population
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of solutions (solutions are termed chromosomes referring to the algorithm’s biological

roots) is first created. The most correct chromosomes are then allowed to mate and

generate offspring which randomly include mutations. There are various methods

with which to mate the chromosomes. As will be described in detail later, Binomial

crossover is the mating method chosen here. It involves filling each element (or

“gene”) of a child chromosome with the corresponding element from one of two parents.

Which parent offers its value to the child is randomly chosen for each element in the

chromosome. In this way, subsequent generations of chromosomes drift closer to the

optimum solution while the random mutations avoid local minima. These processes

are known as:

• Selection - Choose which chromosomes in the population are the most correct

and select them for mating. A fitness function quantifies how correct a solution

is compared to the others.

• Crossover - Mate two chromosomes out of the selection pool to create offspring

that have characteristics of both parents.

• Mutation - Mutations are randomly added to the genes of the offspring based

on a user defined mutation rate.

GA’s are separated into different types based on how each of these steps are imple-

mented. The specific implementation developed for this dissertation is a differential

evolution genetic algorithm (DEGA). The novelty of the DEGA lies in the fact that

mutation and crossover depend on a differential function that is related to the variance

in the population. This means that as the population coalesces to the ideal solution,

the effective mutation rate decreases allowing for a faster convergence.

This specific DEGA was employed for two different use cases: an ultrafast diagnos-

tic phase retrieval algorithm, and a thermal lensing reconstruction measurement. The

implementation and functionality of the DEGA will be described below without going

into detail about the specific use cases as they are not relevant to this dissertation.
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6.2 Ultrafast diagnostic reconstruction

Cascaded nonlinearity inside a spectrometer (CaNIS) is an ultrafast diagnostic

method that involves sending light to be analyzed through a nonlinear crystal,

spectrometer and then a second nonlinear crystal [2]. Interference caused by the

cascaded nonlinearity imprints the orginial pulse’s phase onto the final measured

signal. A reconstruction algorithm can then iteratively guess for a phase function

that recreates the measured interference pattern. It has been shown that a DEGA

performs quicker and more accurately than the ubiquitous Nelder-Mead (downhill

simplex) algorithm when applied to d-scan phase reconstruction [74], thus it was

decided that such an algorithm be implemented for CaNIS.

Figure 6.1: The three steps to a genetic algorithm are selection, crossover, and
mutation. How these steps are implemented differs depending on the specific
implementation. The differential evolution genetic algorithm used for this paper
combines the crossover and mutation steps by using a differential mutation
function, Eq. 6.1, to generate one of the parents used for crossover.

The DEGA developed for CaNIS reconstructs a phase value for every point in the
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spectrum instead of searching for Taylor series coefficients like what is usually done

in the Nelder-Mead algorithm. This allows the program the ability to reconstruct

highly exotic phases. Fig. 6.1 shows the steps that are involved in the program which

are described in detail below.

Initialization: A random number generator is used to generate an initial population

of solutions/chromosomes. The number of chromosomes in a population, N, is defined

by the user. Optimization of N is required since while a small population results in a

lower probability of the correct chromosome occurring in a single population, a large

population requires more time to calculate the next generation. Each chromosome is

a 1×n array with each element/gene being a phase value in the range [−π,π], where

n is the number of points used to decompose the measured spectra.

Step 1: Three chromosomes (Ca,Cb,Cc) are randomly chosen from the population.

The chromosomes are then sorted in decreasing fitness such that Ca is the most

accurate solution. The sorted chromosomes are then combined to create a mutation

chromosome (MC) according to:

CMC = Ca + β(Cb − Cc), (6.1)

where β is a random number on the interval [0, 1]. Notice that the MC is a high-

fitness solution, Ca, modulated by the difference between two lower-fitness solutions,

Cb − Cc. The β is included to randomize how strongly each element is modulated by

that difference (β can be thought of as a variable mutation rate). If the population

has a low variance, as should happen in later iterations of the algorithm, then the

modulation term will be small because Cb ≈ Cc. This means that the MC will

not be much different from Ca, and the algorithm will quickly converge i.e. every

chromosome in the population will essentially be the same.

Step 2: Two parents are required to develop a child chromosome for the next

generation. The MC will be used as the first parent, so a second parent chromosome

must be chosen randomly from the population. No limits were placed on the second

parent so it is possible that the second parent could be one of the chromosomes used

to create the MC.

Step 3: The child chromosome is created from the two parents using a process termed
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Binomial Crossover, explained here: For each element in the child chromosome, a

random number is generated on the interval [0, 1]. If the random number is less than

a user defined crossover rate, then that element in the child chromosome is filled

with the value in the corresponding element in the MC. Otherwise the element is

filled from the corresponding element in the other parent chromosome. Once the

offspring array is filled, a new MC is created using newly chosen φa,φb,φc, and β, and

the process repeats until there are N number of offspring. At this point there will be

2N total chromosomes in memory (N from the original population plus N additional

offspring)

Step 4: The fitness values of all 2N chromosomes are calculated and only the fittest

half is kept for the next generation (which maintains the population size of N). The

algorithm then repeats until a fitness tolerance or the maximum number of generations

is reached at which point the chromosome with the highest fitness is returned.

Fig. 6.2 shows the result of a simulated DEGA reconstruction where the pulse

had no second order (group-velocity) dispersion. This reconstruction is noteworthy

because the Nelder-Nead method failed to accurately reconstruct the phase of such a

pulse. The solid pink line shows the simulated phase and the circles are the successful

DEGA reconstruction.

Figure 6.2: Simulated phase with no group-velocity dispersion (solid pink), and
the DEGA phase reconstruction (pink circles).
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6.3 Thermal lensing reconstruction

As optical powers of laser systems increase, so too do nonlinear effects. One common

nonlinear effect is that of self-focusing. When light impinges on a nonlinear medium

The light itself affects the index of that medium as ∆n = n2I, where n2 is the

nonlinear index, and I is the light intensity. This means that a phase gradient

proportional to the spatial beam profile will be imprinted on the material as the light

propagates. If the spatial beam profile is Gaussian, the material picks up a Gaussian

phase and a kerr lens is produced. A slower effect is caused by a temperature gradient

in the material. Because the index of refraction also changes with temperature, a

beam that is more intense in the middle than the outside (like a Gaussian beam) can

induce a thermal lens by diferentially heating the material. These rogue lenses have

to be accounted for in the design of high power amplifiers in order to establish stable

cavities.

Many times theoretical knowledge of the power, thermal conductivity and nonlinear

parameters that exist in a specific laser system cannot be fully known. Therefore, the

most effective way of determining how strong a nonlinear lens will ultimately be is to

experimentally measure the induced focal length under the operating criteria. In our

case a Ti:Sapph nonlinear crystal to be used as the gain material for a regenerative

amplifier was pumped with a 100 Watt Q-switched Nd:YAG frequency-doubled

(532nm) Lee laser. The lens induced by this intense pumping needed to be known in

order to design the amplifier cavity. Towards that end, an experiment was devised to

measure just that.

While the crystal was being pumped by the Lee laser creating the artifical lens,

a second (HeNe) laser with known spatial profile was sent through the crystal to

probe the lens. By measuring the beam profile a known distance from the lens the

parameters of the lens could be backed out. A sketch of the experimental design is

shown in Fig. 6.3.

In order to back out the lens transfer function, the probe HeNe beam needed to be

fully characterized. By measuring the HeNe beam profile at 2 locations in space, the
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Figure 6.3: Experimental design to measure the thermal lens induced in the
nonlinear crystal by the Lee Laser. By profiling the HeNe beam after traveling
through the nonlinear crystal, the unknown properties of the thermal lens induced
in the crystal can be deduced if the initial HeNe beam characteristics are known.

position and size of the beam waist could be calculated. This was first done using the

Gaussian q-parameter, and then confirmed with the genetic algorithm reconstruction.

The complex q-parameter is an easy way to propagate the Gaussian envelope

through space. It is defined as q(z) = z + iρ0 where z is the distance from the beam

minimum waist and ρ0 = πw2
0/λ is the Rayleigh length (w0 being the minimum waist

radius) 1. The q-parameter is more often written as,

1

q(z)
=

1

R(z)
− i 1

ρ(z)
, (6.2)

where R(z) is the radius of curvature of the Gaussian beam at position z, and,

ρ(z) = πw(z)2/λ, (6.3)

is related to the Rayleigh range in that ρ(z = 0) = ρ(z0) = ρ0. It can be shown that

the beam radius at position z is defined as [80, 81] 2,

w(z) = w0

√
1 +

(
z

ρ0

)2

, (6.4)

1the sign of this equation is dependent on the choice of phase convention. This form
assumes the convention of exp{−i(kz − ωt)}.

2In practice the beam diameter is also referred to as the spot size but these terms can
be defined in slightly different ways. I will be explicit in my writing as to whether I am
referring to the minimum beam diameter, 2w0, or the beam diameter at a specific location,
2w(z).
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which by plugging Eq. 6.4 into Eq. 6.3 implies that,

ρ(z) = ρ0

[
1 +

(
z

ρ0

)2
]

. (6.5)

In order to characterize the HeNe beam, the location of the minimum beam waist

and the Rayleigh range must be extracted. This can be done knowing only the beam

radius at two different locations in space, w(z1) = w1, w(z2) = w2 and the distance

between those measurements, ∆z = z2 − z1
3. Solving Eq. (6.5) for z, subtracting

z2 − z1, and solving for ρ0 leads to an expression for the rayleigh range in terms of

the measurements,

ρ0 =
(ρ1 + ρ2)∆z2 ±

√
ρ1ρ2∆z4 −∆z6

(ρ1 − ρ2)2 + 4∆z2 . (6.6)

The exact location of the minimum beam waist can then be found in relation to the

location of the initial measurement of ρ1,

z1 = ρ0

√
ρ1

ρ0

− 1 = ρ0

√
w2

1

w2
0

− 1, (6.7)

where z1 is then the distance from the measurement location of w1 to the minimum

beam waist location. To discern which of the ± terms is the correct solution in

Eq. (6.6), both values are tried in Eq. (6.7) and the most reasonable solution is chosen.

The HeNe laser used for the experiment was measured to have w1 = 0.636mm,

w2 = 1.175, and ∆z = 1, 235mm which led to a calculated minimum waist size of

w0 = 0.4mm that was 997.3mm behind the first measurement. This resulted in the

effective minimum beam waist being 6.2cm behind the output opening of the HeNe

outer casing.

This conclusion was confirmed by the GA which operated by guessing different

values for the minimum beam waist and location, and then compared those guesses

to the measured values by propagating the guessed beam forward in space according

to the q-parameter propagation defined below. Fig. 6.4 shows the beam profile

measurement at different places in space along the HeNe beam path (right) and the

corresponding GA reconstruction at those spatial positions (left). The GA assumed

3Another experimental way to characterize the beam would be to take several waist
measurements along the beam path and fit Eq. (6.4) to that data.
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Figure 6.4: The Genetic Algorithm successfully found values for the minimum
beam waist size and location that accurately reconstructed the HeNe spatial
beam profile at three different locations in space. The left plots above show the
GA reconstructions while the right plots show the corresponding measurements.
Note that the x and y axes are set by the dimensions of the sensor used to profile
the beam.

a perfect guassian at the minimum beam waist location and propagated that forward

in space using the q-parameter ABCD matrix method.

The q-parameter is used to propagate a Gaussian beam through an optical system

by applying the system’s transfer ABCD matrix as,

1

q2

=
(1/q1)D + C

(1/q1)B + A
, (6.8)

where q2 defines the new gausian beam after propagating the q1 beam through the

system defined by the ABCD transfer matrix. Starting from the minimum beam

waist of the HeNe laser characterized above, the ABCD matrix describing the air,

thermal lens, then air propagation the beam encounters before being measured by

the beam profiler is (see Fig. 6.5),1− d2

f
d1 + d2 − d1d2

f

− 1
f

1− d1

f
,

 (6.9)
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where d1 is the known distance from the minimum beam waist to the thermal lens,

d2 is the known distance from the thermal lens to the final measurement location,

and f is the thermal lens focal length to be solved.

Figure 6.5: Propagation defined by the ABCD matrix of Eq. (6.9). This effective
propagation models the experimental situation show in Fig. (6.3), where the
nonlinear lens is represented by a thin lens.

There is now enough information to make an estimation of the thermal lens focal

length. Since the radius of curvature is infinity at the beam waist, q1 = iρ0. This q1

can then be propagated through the system according to Eq. (6.9) using the measured

d1,2 values, and a guessed f . The final beam waist measured after the thermal lens is

used to calculate ρ2 which can be compared to the imaginary part of the q-parameter

propagated through the simulated ABCD matrix lens with guessed focal length.

There are several ways of carrying out the calculation described above. As

described, the genetic algorithm is no different than a simple minimization function

that chooses an f that minimizes the error between the measured and calculated ρ2.

Because the radius of curvature that corresponds to the final measured q-parameter

is difficult to measure, information is lost and it is not clear whether just the beam

waist is sufficient to fully characterize the thermal lens. Additionally, the thermal

lens has been treated as an ideal thin lens. Abberations and other beam shaping

effects can’t be accounted for in the simple minimization model defined above. Where

the genetic algorithm may be better than a minimization function would be in a full

2D reconstruction of the phase transfer function of the lens. Instead of assuming a

thin lens phase, the genetic algorithm can reconstruct a phase value for every pixel of

measured amplitude. An alternative and less computationally heavy method would
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be assuming a polynomial lens phase that the GA then solves for coefficients. For

example, Fig. 6.6 shows the result of allowing the GA to reconstruct the coefficients,

a, b, c, for the spherical phase of −(a+ bx2 + cy2).

Figure 6.6: (a) shows the GA reconstruction of the measured spatial beam profile
(b). The GA guessed coefficients for a perfect spherical lens phase.

This is carried out by again starting from the beam minimum waist with q-

parameter, q1, which is propagated to a measurement location before the thermal lens.

This allows a phase to be applied to a measured amplitude before the lens. This 2D

matrix of amplitudes and phases representing the beam can then be propagated to

the lens, where the guessed lens transfer function is applied and then propagated to

the final measurement location where the error between measured and reconstructed

amplitudes can be calculated as the goodness of fit.

For the experimental measurement considered here the simple thin lens phase was

sufficient to calculate the thermal lens focal point which rendered the GA unnecessary.

It remains an open question whether there are cases where a GA could be used to

fully characterize exotic lenses where the q-parameter method fails.
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Chapter 7

Conclusion

The work summarized in this dissertation sets the stage for exciting future experiments.

The first step is to achieve a beat response curve for the ring laser. Both a rotation

table to physically rotate the sensor, and a variable intensity splitter to be used to

adjust the kerr phase difference between the counter-propagating pulses are being

developed currently. This will allow characterization of the bias beat frequency, and

dead band (if one exists). Cross polarizing the counter-propagating pulses can be

done to remove the lock-in if present. Additionally, full stabilization of the pump

should reduce the beat frequency bandwidth down to the quantum limit. Amplitude

stabilization by way of a feedback to the amplifier diodes was attempted without a

significant improvement on the beat signal bandwidth, so cavity length stabilization of

the pump is a next step. Once stabilization is successful, studies into the fundamental

noise of the device can be conducted. A confirmation of the theoretical prediction

that the noise is independent of detuning in the case of IPI can be made. Additionally,

an experimental confirmation of the exceptional point induced noise broadening,

similar to [56] can be achieved by placing the sensor at an exceptional point and

observing the noise. Enhancement studies are another interesting prospect. Quantum

squeezing and intracavity dispersion tailoring are both attractive options for further

study. Since the conservative coupling beat response curve predicted here has never

been observed experimentally, that would be another interesting topic to explore.
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Predicting further into the future, since solid state devices are a much more realistic

option for real world implementation, achieving IPI in an integrated device is the

natural next progression. Clearly, IPI has a bright future in the sensing community

with a lot more exciting research to come.
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Appendix A

Different forms of the

coupled-mode equations

The following is a similar derivation to that shown in Section 3.2, however, additional

notational forms are included. The hope is that this can be used as a future reference

to avoid confusion when comparing the various forms used in the literature.

Engineers typically take the phase to be e+iωt, such that the electric field Ansatz

takes the form of,

E =
1

2
Ẽ(t, z)eiωt. (A.1)

Both sides of Eq. 3.29 can be multiplied by 1
2
eiωt to achieve,

1

2
eiωt

∂Ẽ
∂t

=
β

2
E. (A.2)

By way of the chain rule,

∂E

∂t
=

1

2
eiωt

∂Ẽ
∂t

+ iωE, (A.3)

so that Eq. A.2 becomes,

∂E

∂t
=
β

2
E + iωE. (A.4)



Appendix A. Different forms of the coupled-mode equations 104

Theoretical physicists typically take the phase to be e−iωt such that the Ansatz is,

E =
1

2
Ẽ(t, z)e−iωt. (A.5)

Following the same argument as the previous subsection leads to Eq. 3.29 becoming,

∂E

∂t
=
β

2
E − iωE. (A.6)

The equations above are true for lone electric fields, however, to consider a two-

level coupled-mode system we require equations that include coupling between two

fields. This step is straight forward due to our choice to convert back to the full

optical field. Though, depending on the choice of phase convention (engineering or

physics), frame of reference, and whether the coupled-mode equations (CMEs) are

in the form of the Schrödinger equation or not, different equivalent forms can be

produced. We take a moment here to derive the 3 most common sets of equations so

as to avoid confusion when looking at different papers.

Engineering fields oscillating at a cavity resonance frequency

Engineering notation of Eq. A.4 will be used as the starting point. The slowly varying

amplitudes will be observed at their respective cavity resonant frequencies such that

the Ansatz takes the form of,

E1,2 =
1

2
Ã1,2e

iω1,2t. (A.7)

In order to create a coupled-mode equation, we will introduce coupling between

two optical fields with a simple complex constant, K1,2. Where K1 is coupling of

the second electric field, E2, into the first electric field, E1, and K2 is the opposite.

Additionally, since we are considering a laser system, the propogation constant is

replaced with a saturable gain term such that,

β1,2

2
= α1,2 =

α̂1,2

1 + βI1,2 + γI2,1

− αL. (A.8)
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The coupled-mode equations are then

∂E1

∂t
= (α1 + iω1)E1 +K1E2 (A.9)

∂E2

∂t
= (α2 + iω2)E2 +K2E1. (A.10)

To account for experimental realities the coupling constant is split into conservative,

κ̃, and non-conservative, s, parts such that,

K1,2 = s1,2 + κ̃1,2. (A.11)

Conservative coupling means that κ̃1 = −κ̃∗2 = κ̃ (this is a limiting case as shown in

section 3.3). Plugging the Ansatz into Eq. A.10 with these changes and rearranging

leads to the coupled-mode equations for the slowly varying amplitude,

∂Ã1

∂t
= α1Ã1 + (s+ κ̃)Ã2e

i∆t

∂Ã2

∂t
= α2Ã2 + (s− κ̃∗)Ã1e

−i∆t.

(A.12)

Note that to arrive at the final form of Eq. A.12 the detuning has been defined as

∆ = ω2 − ω1. Also it has been assumed that s1 = s2 = s. The beating of these two

signals in the lab frame will be,

Db(t) = |E1 + E2|2 = |E1|2 + |E2|2 + E1E
∗
2 + E∗1E2

=
1

4

(
|Ã1|2 + |Ã2|2 + Ã1Ã

∗
2e
−i∆t + Ã∗1Ã2e

i∆t
)

.
(A.13)

Eq. A.12 has no closed form solution since the Hamiltonian of that system does

not commute with itself at different points in time. To obtain an analytic solution

one must change basis as is done below.

Engineering fields oscillating at an average frequency

Another way to approach the problem is to observe the slowly varying amplitudes

from a reference frame that oscillates at an average frequency. Many know this form

as changing to the rotating frame. In this case the Ansatz takes the form of,

E1,2 =
1

2
Ẽ1,2e

iωat, (A.14)
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where ωa = (ω1 + ω2)/2. To derive the CMEs for the slowly varying amplitudes in

this case, we can either derive them directly from Eq. 3.29, or begin from Eq. A.4

with the understanding that, due to the way it was derived, the ω in that equation

is the corresponding cavity resonant frequency. This means that after including the

coupling and gain,

∂E1

∂t
= α1E1 + iω1E1 + (s+ κ̃)E2

∂E2

∂t
= α2E2 + iω2E2 + (s− κ̃∗)E1.

(A.15)

Plugging Eq. A.14 into Eq. A.15 results in a slowly varying amplitude CME of,

∂Ẽ1

∂t
= α1Ẽ1 − i

∆

2
Ẽ1 + (s+ κ̃)Ẽ2

∂Ẽ2

∂t
= α2Ẽ2 + i

∆

2
Ẽ2 + (s− κ̃∗)Ẽ1.

(A.16)

Note that ∆ = 2(ω2 − ωa) = 2(ωa − ω1) = ω2 − ω1 is the exact same as before since

we have defined ωa = (ω1 +ω2)/2. In this case, the lab frame beat signal is calculated

to be,

Db(t) = |E1 + E2|2 =
1

4

(
|Ẽ1|2 + |Ẽ2|2 + Ẽ1Ẽ

∗
2 + Ẽ∗1Ẽ2

)
. (A.17)

Eq. A.16 can be solved analytically by casting it into a matrix equation, ˙̃E1

˙̃E2

 =

α1 − i∆/2 (s+ κ̃)

(s− κ̃∗) α2 + i∆/2

Ẽ1

Ẽ2

 , (A.18)

which has a characteristic equation of the form,

α1 − i∆/2− iλ (s+ κ̃)

(s− κ̃∗) α2 + i∆/2− iλ
= 0, (A.19)

and eigenvalues of,

λ± = −iα1 + α2

2
± ζ

2
. (A.20)

where ζ =
√

4|κ̃|2 − (α1 − α2 − i∆)2 − 4s2 − 4s(κ̃− κ̃∗). Recalling that to find the

eigenvectors we plug the eigenvalue back into the eigenvalue equation,

H |v±〉 = λ± |v±〉 (A.21)
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H − λ± |v±〉 = 0, (A.22)

this leads to,α1 − i∆/2− iλ± s+ κ̃

s− κ̃∗ α2 + i∆/2− iλ±

v1±

v2±

 = 0. (A.23)

The eigenvectors are then,

|v±〉 =

 1

α2−α1+i∆±iζ
2(s+κ̃)

 (A.24)

which means that the two circulating electric fields take the form of,

Ẽ1(t) = c+e
iλ+t + c−e

iλ−t (A.25)

Ẽ2(t) = c+

(
α2 − α1 + i∆ + iζ

2(s+ κ̃)

)
eiλ+t + c−

(
α2 − α1 + i∆− iζ

2(s+ κ̃)

)
eiλ−t.

(A.26)

Using the initial conditions Ẽ1,2(0) allows us to solve for the coefficients,

c− =
i

2ζ

[
2(s+ κ̃)Ẽ2(0)− (α2 − α1 + i∆ + iζ)Ẽ1(0)

]
(A.27)

c+ = E1(0)− c−. (A.28)

The equivalence between these amplitudes and the cavity resonant frequency

amplitudes of the previous section are,

Ã1 = Ẽ1e
i(∆/2)t

Ã2 = Ẽ2e
−i(∆/2)t.

(A.29)

Physics fields oscillating at an average frequency with Schrödinger nota-

tion

When applying quantum mechanical methods to this two-level system it is useful to

map it into the same syntax used by that field. This means we will use the physics

phase convention with the fields oscillating at the average frequency,

E1,2 =
1

2
ψ̃1,2e

−iωat. (A.30)
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Because the Schrödinger equation is of the form iΨ̇ = HΨ, we must multiply Eq. A.6

by the imaginary unit on both sides to achieve (after including gain and coupling),

i
∂E1

∂t
= iα1E1 + ω1E1 + iK1E2

i
∂E2

∂t
= iα2E2 + ω2E2 + iK2E1.

(A.31)

Most of the papers that use this notation only consider conservative coupling such

that s = 0. Due to the addition of the imaginary unit in front of the coupling constant

the conservative coupling relation changes a bit such that K1 = K∗2 = κ̃0 = iκ̃.

Plugging in the Ansatz results in,

i
∂ψ̃1

∂t
= iα1ψ̃1 −

∆

2
ψ̃1 + iκ̃0ψ̃2

i
∂ψ̃2

∂t
= iα2ψ̃2 +

∆

2
ψ̃2 + iκ̃∗0ψ̃1.

(A.32)
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Appendix B

Walk-off calculation

The group delay, ∆τ , between two pulses with different central frequencies (ω1, ω2)

that travel through a length of fiber, L, is defined,

∆τ =
L

vg(ω1)
− L

vg(ω2)
, (B.1)

where vg is the group velocity curve of the specific fiber under consideration. Recall

that the first derivative of the effective mode propagation constant, k, is related to

the group velocity according to,

dk

dΩ
=

1

vg
. (B.2)

This allows the group delay to be rewritten,

∆τ = L

(
dk

dΩ

∣∣∣
ω1

− dk

dΩ

∣∣∣
ω2

)
≈ L

d2k

dΩ2

∣∣∣
ω1

∆Ω = LD(λ1)∆λ, (B.3)

where the ≈ is a simple calculus tangent line approximation with, ∆Ω = ω2 − ω1,

and the final equality is the definition of the fiber Dispersion parameter, D. A power

series expansion of ∆λ can be made such that,

∆τ

L
= D(λ1)∆λ+

1

2

dD

dλ

∣∣∣
λ1

∆λ2 +
1

6

d2D

dλ2

∣∣∣
λ1

∆λ3. (B.4)

Assuming the expansion wavelength, λ1, is the zero dispersion wavelength of the

chosen fiber such that D(λ1) = 0, simplifies the group delay difference to,

∆τ =

(
1

2

dD

dλ
∆λ2 +

1

6

d2D

dλ2 ∆λ3

)
L, (B.5)
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which is exactly the expression given in [50]. This allows the walk-off between a pump

pulse, assumed to be near the zero dispersion wavelength, and a parametric pulse a

distance ∆λ away from the pump to be estimated using only the dispersion slope

and slope derivative evaluated at the zero dispersion wavelength.
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Appendix C

Genetic Algorithm Code

This Genetic Algorithm was written in such a way that it could be tailored easily to

different problems. When applying this minimization function to a specific problem,

most of the work will go into defining the fitness function (fitFun), which tells the

genetic algorithm how to rank the population of chromosomes from best to worst.

Note that in the code below “data” is an array that is simply passed to fitFun and so

is specific to each implementation.

1 function [ globalMaxChrm, globalMaxFit ] = genA(fitFun, data, ...

chrmSize, popSize, numGens, crossRate, domains)

2 %Genetic Algorithm

3 %Luke Horstman

4 %01/26/2018

5 % 1) Generate Population

6 % 2) Evaluate Fitness

7 % 3) Crossover (mating)

8 % 4) Mutate

9 % 5) Repeat

10

11 %chrmSize: Number of genes in a chromosome

12 %popSize: Number of chromosomes in a generation

15



47

Appendix C. Genetic Algorithm Code 112

13 %numGens: Number of generations to iterate through

16 %crossRate: Crossover Rate (between 0−1)

17 %fitFun: Fitness Function (must be a function handle)

18 % Note the function must accept an array as input ...

which will have

19 % as many elements as chrmSize

20 %data: Data for fitness function

21 %domains: range of values phase can take goes from −domains ...

to +domains

22

23 %% Generate Population

24 %generate population with random number between 0−1

25 %Each row of matrix is a different chromosome

26 pop = 2*rand(popSize,chrmSize)−1;

27 %adjust each gene so that they fall within their domain

28 pop = domains*pop;

29 %initialize maxes

30 currentMaxFit = 0;

31 currentMaxChrm = zeros(1,chrmSize);

32 globalMaxFit = 0;

33 globalMaxChrm = zeros(1,chrmSize);

34

35 %% Begin Iterating Through Generations

36 for i = 1:numGens

37 % there is no nextpop on first iteration

38 if i 6= 1

39 pop = nextPop;

40 end

41

42 %Evaluate Fitness of every chromosome

43 fitness = zeros(popSize,1);

44 for j = 1:size(pop,1)

45 fitness(j) = fitFun(pop(j,:), data);

48
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46 end

49 % sort population based on fitness

50 [sortFit,fitIndex] = sort(fitness,'descend');

51 pop = pop(fitIndex,:);

52 %trim least fit chromosomes to population is correct size

53 pop = pop(1:popSize,:);

54

55 %% Display Diagnostic Data Of This Gen

56 currentMaxFit = sortFit(1);

57 currentMaxChrm = pop(1,:);

58 fprintf('Generation %d\tMax Fitness: ...

%.4f\n',i,currentMaxFit);

59

60 if(currentMaxFit > globalMaxFit)

61 globalMaxFit = currentMaxFit;

62 globalMaxChrm = currentMaxChrm;

63 end

64

65 %% Esmerando Mutation and Crossover

66 % Best of Random Differential Evolution

67 % select 3 random members of population and sort based on ...

fitness

68 % do this for every chromosome in population

69 childPop = zeros(popSize,chrmSize);

70 for j = 1:popSize

71 %ensure that chosen doners are not the same as each other

72 randMems = zeros(1,3);

73 while length(randMems) 6= length(unique(randMems))

74 randMems = randi(popSize,[1,3]);

75 end

76 %sort donors based on fitness

77 [¬,fitIndices] = sort(fitness(randMems),'descend');

78 sortRandMems = randMems(fitIndices);

81
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79 mem1 = pop(sortRandMems(1),:);

82 mem2 = pop(sortRandMems(2),:);

83 mem3 = pop(sortRandMems(3),:);

84 %create mutation chromosome from random members

85 mute = mem1 + rand(1,chrmSize).*(mem2−mem3);

86

87 %choose random parent

88 parent = pop(randi(popSize),:);

89 %create offspring by binomial crossover of parent and ...

mutation

90 child = zeros(1,chrmSize);

91 for k = 1:chrmSize

92 if rand < crossRate

93 child(k) = mute(k);

94 else

95 child(k) = parent(k);

96 end

97 end

98 childPop(j,:) = child;

99 end

100

101 %add all children to population

102 nextPop = [pop;childPop];

103

104 end

105

106 end
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un interféromètre en rotation uniforme. Comptes Rendus, 157:708–710, 1913. 43

[28] M. G. Sagnac. Sur la preuve de la réalité de l’éther lumineux démontré par
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