Development of opioid vaccines using bacteriophage virus-like particles

Isabella G. Romano, Bryce Chackerian¹, Matthew Campen², Kathryn M. Frietze^{1,3}

¹University of New Mexico Health Sciences, School of Medicine, Department of Molecular Genetics and Microbiology, Albuquerque, NM

² University of New Mexico College of Pharmacy

³University of New Mexico Health Sciences, Clinical & Translational Science Center, Albuquerque, NM

Oxycodone is the most abused prescription opioid and a common cause of opioid use disorder and overdose. Despite the availability of different treatment options, opioid overdose rates have skyrocketed to a staggering 80,000 deaths in 2021. Vaccines against opioids have been proposed as a novel strategy for preventing overdose and several studies have established the feasibility of this approach. Here, we report our efforts to engineer a vaccine against oxycodone that elicits high-titer antibodies with protective functionality against oxycodone. We accomplish this using a bacteriophage Q β virus-like particle (VLP) platform to display oxycodone in a highly immunogenic and multivalent format. The repetitive nature, small particulate size, and excellent safety profile of Q β VLPs makes them a promising platform for vaccine design. The oxycodone hapten was chemically modified to include a short peptide linker (GGGG-C) to enable conjugation to Q β VLPs. Mice and rhesus macaques were immunized with Q β oxycodone or unconjugated Q β control. Q β -oxycodone elicited high-titer antibodies after one immunization, with high-avidity IgG antibodies elicited after two immunizations. In future studies, we will investigate drug distribution in the blood and brain, as well as protection from oxycodone-induced anti-nociception and opioid induced respiratory depression.